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CHAPTER

ONE

PROJECT GOALS

The Institute for the Design of Advanced Energy Systems (IDAES) will be the world’s premier resource for the devel-
opment and analysis of innovative advanced energy systems through the use of process systems engineering tools and
approaches. IDAES and its capabilities will be applicable to the development of the full range of advanced fossil energy
systems, including chemical looping and other transformational CO2 capture technologies, as well as integration with
other new technologies such as supercritical CO2.

For a more detailed overview of the IDAES integrated platform, see this page.
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CHAPTER

TWO

COLLABORATING INSTITUTIONS

The IDAES team is comprised of collaborators from the following institutions:

• National Energy Technology Laboratory (Lead)

• Sandia National Laboratory

• Lawrence Berkeley National Laboratory

• Carnegie-Mellon University (subcontract to LBNL)

• West Virginia University (subcontract to LBNL)

• University of Notre Dame (subcontract to LBNL)
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CHAPTER

THREE

CONTACT US

General, background and overview information is available at the IDAES main website. Framework development
happens at our GitHub repo where you can report issues/bugs or make contributions. For further enquiries, send an
email to: <idaes-support@idaes.org>
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CHAPTER

FOUR

CONTENTS

4.1 Getting Started

4.1.1 Installation

To install the IDAES PSE framework, follow the set of instructions below that are appropriate for your needs and
operating system. If you get stuck, please contact idaes-support@idaes.org.

After installing and testing IDAES, it is strongly recommended to do the IDAES tutorials located on the examples
online documentation page.

If you expect to develop custom models, we recommend following the advanced user installation.

The OS specific instructions provide information about optionally installing Miniconda. If you already have a Python
installation you prefer, you can skip the Miniconda install section.

Note: IDAES supports Python 3.6 and above.

System Section
Linux Linux
Windows Windows
Mac OSX Mac/OSX
Generic Generic Install

Warning: If you are using Python for other complex projects, you may want to consider using environments of
some sort to avoid conflicting dependencies. There are several good options including conda environments if you
use Anaconda.

4.1.2 Windows

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

2. Install anaconda from the downloaded file in (1).

3. Open the Anaconda Prompt (Start -> “Anaconda Prompt”).

4. In the Anaconda Prompt, follow the Generic Install instructions.
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4.1.3 Linux

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

2. Open a terminal window

3. Run the script you downloaded in (1).

Install Dependencies

1. The IPOPT solver depends on the GNU FORTRAN, GOMP, Blas, and Lapack libraries, If these libraries are not
already installed on your Linux system, you or your system administrator can use the sample commands below
to install them. If you have a Linux distribution that is not listed, IPOPT should still work, but the commands
to install the required libraries may differ. If these libraries are already installed, you can skip this and proceed
with the next step.

Note: Depending on your distribution, you may need to prepend sudo to these commands or switch to the
“root” user.

Ubuntu 18.04 and 19.10 and distributions based on them:

sudo apt-get install libgfortran4 libgomp1 liblapack3 libblas3

Ubuntu 20.04 and distributions based on it

sudo apt-get install libgfortran5 libgomp1 liblapack3 libblas3

Current RedHat based distributions, including CentOS:

yum install lapack blas libgfortran libgomp

Complete Generic Install

Follow the Generic Install instructions.

4.1.4 Mac/OSX

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

2. For the next steps, open a terminal window

3. Run the script you downloaded in (1).

Complete Generic Install

Follow the Generic Install instructions.
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4.1.5 Generic Install

The remaining steps performed in either the Linux or OSX Terminal or Powershell. If you installed Miniconda on
Windows use the Anaconda Prompt or Anaconda Powershell Prompt. Regardless of OS and shell, the following steps
are the same.

Install IDAES

1. Install IDAES with pip by one of the following methods

a. To get the latest release:

pip install idaes-pse

b. To get a specific release, for example 1.7:

pip install idaes-pse==1.7

c. To get the latest version from the GitHub main branch:

pip install 'idaes-pse[prerelease] @ https://github.com/IDAES/idaes-pse/archive/
→˓main.zip'

d. To get a specific fork or branch, for example myfork (of idaes-pse) and mybranch:

pip install 'idaes-pse[prerelease] @ https://github.com/myfork/idaes-pse/archive/
→˓mybranch.zip'

e. For developers: follow the advanced user installation.

2. Run the idaes get-extensions command to install the compiled binaries:

idaes get-extensions

Note: If you are not able to successfully run the idaes get-extensions command due to network
security settings or another reason, you can download binary release files from https://github.com/IDAES/
idaes-ext/releases, and extract them in the directory indicated by the idaes bin-directory command.
You will need both the idaes-lib-* and idaes-solvers-* files appropriate for your operating system.

Warning: The IDAES binary extensions are not yet supported on Mac/OSX.

As a fallback (assuming you are using a conda env) you can install the generic ipopt solver with the
command conda install -c conda-forge ipopt though this will not have all the features of our
extensions package.

3. Run the idaes get-examples command to download and install the example files:

idaes get-examples

By default this will install in a folder “examples” in the current directory. The command has many options,
but an important one is –dir, which specifies the folder in which to install.

for Mac and Linux users this would look like:

4.1. Getting Started 9
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idaes get-examples --dir ~/idaes/examples

or, for Windows users, it would look like:

idaes get-examples --dir C:\Users\MyName\IDAES\Examples

Refer to the full idaes get-examples command documentation for more information.

4. Run tests:

pytest --pyargs idaes -W ignore

5. You should see the tests run and all should pass to ensure the installation worked. You may see some “Error”
level log messages, but they are okay, and produced by tests for error handling. The number of tests that failed
and succeeded is reported at the end of the pytest output. You can report problems on the Github issues page
(Please try to be specific about the command and the offending output.)

Install IDAES using Conda

As an alternative to the pip install method described above, IDAES can also be installed using the Conda package
manager.

1. Create a new Conda environment with a name of your choice (in this example, my-idaes-env):

conda create --yes --name my-idaes-env python=3.8

Note: The --yes optional flag can be used to perform the installation without having it pausing to ask
for confirmation.

2. Activate the my-idaes-env Conda environment:

conda activate my-idaes-env

Note: This step is needed when starting a new session or a new console tab/window.

3. Install the IDAES Conda package using the conda install subcommand:

conda install --yes -c IDAES-PSE -c conda-forge idaes-pse

Note: The most recent stable release will be selected by default. To instead select a particular version,
specify the version tag using an = after the package name, e.g. idaes-pse=1.9.0rc0.

4. To complete the installation, follow the instructions described in the previous section from Step 2 (“Run the
idaes get-extensions command. . . ”) onward.

10 Chapter 4. Contents
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4.1.6 Optional Dependencies

Some tools in IDAES may require additional dependencies. Instructions for installing these dependencies are located
here.

Optional Dependencies

(content will be added soon)

4.1.7 Updating an existing installation

When a new version is released, an IDAES installation can be updated without having to remove and reinstall it from
scratch.

The following steps describe how to upgrade an existing installation in-place, assuming that the installation was done
using one of the methods described earlier in this section.

Warning: If IDAES was installed in a dedicated environment (e.g. a Conda environment, or Python virtual
environment), activate the environment before running any of these commands.

1. Open a terminal and verify the currently installed version of IDAES:

idaes --version

2. Install the upgraded version of the idaes-pse package using pip install:

pip install --upgrade idaes-pse

If a newer version of the idaes-pse package is available, the currently installed version will be removed
and replaced by the newest available version. Check again the IDAES version to verify that the upgrade
was successful:

idaes --version

3. Run the idaes get-extension command to install compiled binaries compatible with the newly upgraded
IDAES version:

idaes get-extensions

4. Finally, use the idaes get-examples command to install the most recent version of the IDAES examples
compatible with the upgraded IDAES version.

Warning: If the examples target installation directory is not empty, its contents, including ex-
amples installed with a previous IDAES version and other files, will be overwritten without
warning. To avoid losing data, it is strongly recommended that you make a backup copy of
any existing examples directory before proceeding.

After creating a backup copy of the existing examples directory, run:

idaes get-examples

4.1. Getting Started 11



IDAES Documentation, Release 1.10.1

4.2 User Guide

4.2.1 Why IDAES

The National Energy Technology Laboratory’s Institute for the Design of Advanced Energy Systems (IDAES) is a
powerful and versatile computational platform offering next-generation engineering capabilities for optimizing the
design and operation of innovative chemical process and energy systems beyond current constraints on complexity,
uncertainty, and scales ranging from materials to process to market.

The IDAES Integrated Platform was conceived in 2016 to specifically address the gaps between state-of-the-art simu-
lation packages and algebraic modeling languages.

Major strengths of commercial simulation packages are their libraries of unit models and thermophysical properties.
However, such simulation packages often have difficulty optimizing flowsheets and have limited support for incorpo-
rating models of non-standard, dynamic units, such as solids handling, and uncertainty quantification. On the other
hand, AMLs are eminently flexible and readily support large-scale optimization, but considerable work is required to
construct process models, which are often only useful for a one-time application.

The IDAES Integrated Platform represents an innovative approach for the design and optimization of chemical and
energy processes by integrating an extensible, equation-oriented process model library with Pyomo (a Python-based
AML). Built specifically to enable rigorous large-scale mathematical optimization, the platform includes capabilities
for conceptual design, steady-state and dynamic optimization, multi-scale modeling, uncertainty quantification, and
the automated development of thermodynamic, physical property, and kinetic sub-models from experimental data.

Key Features

Open Source

All IDAES Code is completely free and redistributable, the license is avaliable here. Users are free to modify and
redistribute code, and community development is encouraged.

Equation Oriented

By using an equation-oriented platform, users gain access to a wide range of highly efficient, derivative-based numerical
solvers for a wide range of problem types, including support for both linear and non-linear problems, ordinary and
partial differential equations, and problems involving binary and integer variables.

Fully-Featured Programming Environment

By building off of Python, a fully-featured programming environment, users gain access to a wide range of libraries
for tools such as data visualization and management.

12 Chapter 4. Contents
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Extensible

The source code for all models and tools is fully-open and visible to the user. This allows users to both see and
understand what is happening in each model, but also modify and extend models to suit their needs.

Flexible Form

No single model form is best suited to all applications, thus the IDAES Integrated Platform is built to provide users
with access to a range of different model forms. This allows users to easily pick-and-choose from the available model
forms to find the one best suited to their particular application.

Access to Advanced Capabilities

IDAES aims to provide an integrated platform for development of not just process models but also tools for solving and
analyzing these problems. The platform supports conceptual design, parameter estimation, model predictive control,
uncertainty quantification, and surrogate modeling.

4.2.2 Concepts

This page gives a conceptual overview of the IDAES platform and provides terminology for the different components
of that platform.

Contents

• IDAES-IP

– Description

– Terminology

• IDAES-CMF

– Overview

– Modeling Components

– Model Libraries

– Modeling Extensions

IDAES-IP

Description

The IDAES integrated platform (IDAES-IP) supports the full process modeling lifecycle from conceptual design to
dynamic optimization and control within a single modeling environment. At the center of this platform is the Core
Modeling Framework (IDAES-CMF) which leverages the open source, U.S. Department of Energy-funded extensible
algebraic modeling environment, Pyomo.

Below is a diagram showing the components of the IDAES Integrated Platform (IDAES-IP).

4.2. User Guide 13
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Terminology

The following terms are used in the diagram above, and throughout this documentation.

IDAES-IP IDAES integrated platform, described on this page

IDAES-Core The software package that includes the Core Modeling Framework (IDAES-CMF); process, unit, and
property model libraries; data management, artificial intelligence and uncertainty quantification tools; and graph-
ical user interfaces.

IDAES-CMF The IDAES-CMF is the center of the IDAES-Core. It extends Pyomo’s block-based hierarchical mod-
eling constructs to create a library of models for common process unit operations and thermophysical properties,
along with a framework for the rapid development of process flowsheets.

IDAES-AI Artificial intelligence and machine learning tools

IDAES-UQ Tools supporting rigorous uncertainty quantification and optimization under uncertainty

Graphical User Interfaces Tools for graphical interactive work, such as visualization of IDAES flowsheets

Python programming environments Jupyter Notebook examples and extensions for interactive scripting in Python

Data Management (IDAES-DMF) Data Management Framework (DMF) supporting provenance for IDAES work-
flows

Pyomo Open source, U.S. Department of Energy-funded extensible algebraic modeling environment (AML). For more
information, see the Pyomo website.

IDAES-Materials

IDAES-Design

IDAES-Enterprise

IDAES-Operations Domain-specific tools for materials design, process design, enterprise-wide optimization, and
control.

14 Chapter 4. Contents
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IDAES-CMF

Overview

The core modeling framework of IDAES was designed to be modular, and is based on the block-hierarchical structure
shown below:

An IDAES process model begins with a process flowsheet, which is the canvas on which the representation of the
user’s process will be constructed. Each process consists of a network of unit operations which represent different
pieces of equipment within the process (such as reactors, heater and pumps) and are connected together to form the
overall process. Each unit operation in turn is made up of modular components – a unit model which describes the
behavior and performance of the piece of equipment, a thermophysical property package which represents the material
being processed by the unit operation, and a reaction package (if applicable) which represents any chemical reactions
that may occur within the unit. Each of these components can be further broken down into sub-modules:

• Unit models consist of a set of material, energy and momentum balance equations which describe how material
flows through the system, coupled with a set of performance equation which describe phenomena such as heat
and mass transfer.

• Thermophysical property packages (generally) consist of a set of ideal, pure component properties for each
component, a set of mixing rules and departure functions which describe how the mixture properties depend on
the ideal properties, and a set of equations describing phase-equilibrium phenomena.

At the other end of the spectrum, IDAES process models are designed to be general purpose and to be applicable to
a wide range of modeling activities. By providing access to a wide range of different numerical solvers and modeling
tools, IDAES process models can be applied to a wide range of different problems, such as:

• process optimization and simulation of both steady-state and dynamic applications,

• data reconciliation,

• parameter estimation and uncertainty quantification,

• optimization under uncertainty, and

• conceptual design (superstructure problems).

4.2. User Guide 15
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Modeling Components

The IDAES Integrated Platform represents each level within the hierarchy above using “modeling components”. Each
of these components represents a part of the overall model structure and form the basic building blocks of any IDAES
process model. An introduction to each of the IDAES modeling components can be found here.

Model Libraries

To provide a starting point for modelers in using the process modeling tools, the IDAES Integrated Platform contains
a library of models for common unit operations and thermophysical properties. Modelers can use these out-of-the-
box models to represent their process applications or as building blocks for developing their own models. All models
within IDAES are designed to be fully open and extensible, allowing users to inspect and modify them to suit their
needs. Documentation of the available model libraries can be found here.

Modeling Extensions

The IDAES Integrated Platform also provides users with access to a number of cutting edge tools not directly related
to process modeling. These tools are collected under the heading of Modeling Extensions, and information on them
can be found here.

4.2.3 Components

The purpose of this section of the documentation is to provide a general introduction to the top level components of
the IDAES Integrated Platform. Each component is described in greater detail with a link in their description.

Note: IDAES is based on python-based algebraic modeling language, Pyomo. The documentation for its compo-
nents (i.e. sets, parameters, variables, objectives, constraints, expressions, and suffixes) are provided in the Pyomo
documentation.

Flowsheet

Time Domain

Time domain is an essential component of the IDAES framework. When a user first declares a Flowsheet model a time
domain is created, the form of which depends on whether the Flowsheet is declared to be dynamic or steady-state (see
FlowsheetBlock). In situations where the user makes use of nested flowsheets, each sub-flowsheet refers to its parent
flowsheet for the time domain.

Different models may handle the time domain differently, but in general all IDAES models refer to the time domain
of their parent flowsheet. The only exception to this are blocks associated with Property calculations. PropertyBlocks
(i.e. StateBlocks and ReactionBlocks) represent the state of the material at a single point in space and time, and thus
do not contain the time domain. Instead, PropertyBlocks are indexed by time (and space where applicable) - i.e. there
is a separate StateBlock for each point in time. The user should keep this in mind when working with IDAES models,
as it is important for understanding where the time index appears within a model.

In order to facilitate referencing of the time domain, all Flowsheet objects have a time configuration argument which
is a reference to the time domain for that flowsheet. All IDAES models contain a flowsheet method which returns
the parent flowsheet object, thus a reference to the time domain can always be found using the following code: flow-
sheet().config.time.

16 Chapter 4. Contents
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Another important thing to note is that steady-state models do contain a time domain. While the time domain for
steady-stage models is a single point at time = 0.0, they still contain a reference to the time domain and the components
(e.g. StateBlocks) are indexed by time.

Flowsheet models are the top level of the IDAES modeling hierarchy. The flowsheet is implemented with a Flowsheet-
Block, which provides a container for other components. Flowsheet models generally contain three types of compo-
nents:

1. Unit models, representing unit operations

2. Property packages, representing the parameters and relationships for property calculations

3. Arcs, representing connections between unit models

The FlowsheetBlock is also where the time domain is implemented. While the time domain is essential for dynamic
modeling, the time domain exists even for steady state models (single point in time).

Flowsheet models may also contain additional constraints relating to how different unit models behave and interact,
such as control and operational constraints. Generally speaking, if a constraint is purely internal to a single unit, and
does not depend on information from other units in the flowsheet, then the constraint should be placed inside the relevant
unit model. Otherwise, the constraint should be placed at the flowsheet level.

Property Package

• Overview

• Units of Measurement

• Physical properties

• Reaction properties

• Component and Phase Objects

• As Needed Properties

• Generic Property Package Framework

• Generic Reaction Package Framework

Overview

Component Object

Component objects are used to identify the chemical species of interest in a property package and to contain information
describing the behavior of that component (such as properties of that component). Additional information on the
Component Class is provided in the technical specifications.

The following types of components are currently supported.

• Component - general purpose object for representing chemical species.

• Solute - component object for representing species which should be treated as a solute in a LiquidPhase.

• Solvent - component object for representing species which should be treated as a solvent in a LiquidPhase.

• Ion - general purpose component object for representing ion species (LiquidPhase only). Users should generally
use the Anion or Cation components instead.

4.2. User Guide 17



IDAES Documentation, Release 1.10.1

• Anion - component object for representing ion species with a negative charge (LiquidPhase only).

• Cation - component object for representing ion species with a positive charger(LiquidPhase only).

Component objects are intended to store all the necessary information regarding a given chemical species for use
within a process model. Examples of such information include the methods and parameters required for calculating
thermophysical properties. Additionally, certain unit operations handle components in different ways depending on
certain criteria. An example of this is Reverse Osmosis, where the driving force across the membrane is calculated
differently for solvent species and solute species.

Component objects implement the following methods for determining species behavior:

• is_solute() - returns True if species is a solute (Solute, Ion, Anion or Cation component objects), otherwise False.

• is_solvent() - returns True if species is a solvent (Solvent component object), otherwise False.

Note: The general purpose Component object does not distinguish solutes and solvents, and these methods will will
raise a TypeError instead.

Phase Object

Phase objects are used to identify the thermodynamic phases of interest in a property package and to contain informa-
tion describing the behavior of that phase (for example the equation of state which describes that phase). Additional
information on the Phase Class is provided in the technical specifications.

TThe following types of phases, along with a generic Phase object, are supported:

• LiquidPhase

• SolidPhase

• VaporPhase

In a number of unit operations, different phases behave in different ways. For example, in a Flash operation, the vapor
phase exits through the top outlet whilst liquid phase(s) (and any solids) exit through the bottom outlet. In order to
determine how a given phase should behave in these situations, each Phase object implements the following three
methods:

• is_liquid_phase()

• is_solid_phase()

• is_vapor_phase()

These methods return a boolean (True or False) indicating whether the unit operation should treat the phase as being of
the specified type in order to decide on how it should behave. Each type of phase returns True for its type and False for all
other types (e.g. LiquidPhase returns True for is_liquid_phase() and False for is_solid_phase() and is_vapor_phase().

The generic Phase object determines what to return for each method based on the user-provided name for the instance
of the Phase object as shown below:

• is_liquid_phase() returns True if the Phase name contains the string Liq, otherwise it returns False.

• is_solid_phase() returns True if the Phase name contains the string Sol, otherwise it returns False.

• is_vapor_phase() returns True if the Phase name contains the string Vap, otherwise it returns False.

Users should avoid using the generic Phase object, as this is primarily intended as a base class for the specific phase
classes and for backwards compatibility.
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Physical Parameter Block

PhysicalParameterBlocks serve as a central location for linking to a property package, and contain all the parameters
and indexing sets used by a given property package.

The role of the PhysicalParameterBlock Class is to set up the references required by the rest of the IDAES Core
Modeling Framework for constructing instances of StateBlocks and attaching these to the PhysicalParameterBlock for
ease of use. This allows other models to be pointed to the PhysicalParameterBlock in order to collect the necessary
information and to construct the necessary StateBlocks without the need for the user to do this manually.

Several attributes in the PhysicalParameterBlock are used to inform the construction of other components. These
attributes include:

• state_block_class - a pointer to the associated class that should be called when constructing StateBlocks. This
should only be set by the property package developer.

• phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

• component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

• element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species
within the mixture. This is used when doing elemental material balances.

• element_comp - (optional) a dictionary-like object which defines the elemental composition of each species in
component_list. Form: component: {element_1: value, element_2: value, . . . }.

• supported properties metadata - a dictionary of supported physical properties that the property package supports,
along with instruction to construct the associated variables and constraints, and the units of measurement used
for the property. This information is set using the add_properties attribute of the define_metadata class method.

Reaction Block

ReactionBlocks are used within IDAES UnitModels (generally within ControlVolumeBlocks) in order to calculate
reaction properties given the state of the material (provided by an associated StateBlock). ReactionBlocks are notably
different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well), and are
also not fully self contained (in that they depend upon the associated state block for certain variables). ReactionBlocks
are composed of two parts:

• ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions
on how to construct each instance of a Reaction Block.

• ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction
Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials
and examples for more information.

ReactionBlocks can be constructed directly from the associated ReactionParameterBlock by calling the
build_reaction_block() method on the ReactionParameterBlock. The parameters construction argument will be auto-
matically set, and any other arguments (including indexing sets) may be provided to the build_reaction_block method
as usual.

Additional details on ReactionBlocks are located in the technical specifications.

4.2. User Guide 19
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Reaction Parameter Block

ReactionParameterBlocks serve as a central location for linking to a property package, and contain all the parameters
and indexing sets used by a given property package.

The role of the ReactionParameterBlock Class is to set up the references required by the rest of the IDAES framework
for constructing instances of ReactionBlocks and attaching these to the ReactionParameterBlock for ease of use. This
allows other models to be pointed to the ReactionParameterBlock in order to collect the necessary information and to
construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of what needs to be
constructed when dealing with chemical reactions. In order to do this, the IDAES modeling framework looks for a
number of attributes in the ReactionParameterBlock which are used to inform the construction of other components.
These attributes include:

• reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks.
This should only be set by the property package developer.

• phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

• component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

• rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

• rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions.
Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric
coefficient for that index.

• equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of
interest.

• equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled
reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to
the stoichiometric coefficient for that index.

• supported properties metadata - a list of supported reaction properties that the property package supports, along
with instruction to construct the associated variables and constraints, and the units of measurement used for the
property. This information is set using the add_properties attribute of the define_metadata class method.

• required properties metadata - a list of physical properties that the reaction property calculations depend upon,
and must be supported by the associated StateBlock. This information is set using the add_required_properties
attribute of the define_metadata class method.

State Block

StateBlocks are used within all IDAES UnitModels (generally within ControlVolumeBlocks) in order to calculate phys-
ical properties given the state of the material. StateBlocks are notably different to other types of Blocks within IDAES
as they are always indexed by time (and possibly space as well). StateBlocks consist of two parts:

• StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to
construct each instance of a State Block.

• StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks (or to
a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples
for more information.

StateBlocks can be constructed directly from the associated PhysicalParameterBlock by calling the build_state_block()
method on the PhysicalParameterBlock. The parameters construction argument will be automatically set, and any other
arguments (including indexing sets) may be provided to the build_state_block method as usual.
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Additional details on State Blocks are located in the technical specifications.

Defining Units of Measurement

All property packages within IDAES are expected to define a metadata class as part of the package’s ParameterBlock,
which amongst other things contains a definition of the base units of measurement used by that property package. An
example of defining the default units for a property package is shown below.

from pyomo.environ import units

@classmethod
def define_metadata(cls, obj):

obj.add_default_units({'time': units.s,
'length': units.m,
'mass': units.kg,
'amount': units.mol,
'temperature': units.K})

Each property package should define a default units for 7 base quantities listed below:

• time

• length

• mass

• amount of substance

• temperature

• current (optional)

• luminous intensity (optional)

Units must be defined using Pyomo’s Units container (from pyomo.environ import units), and all quantities within the
property package must be based on the chosen set of base units. Parameters and correlations may be based on different
sets of unit as necessary (e.g. from literature sources using different base units), however the final quantity must be
converted to the set of base units defined in the metadata.

Generic Property Package Framework

Contents

Defining Property Packages

Contents

• Defining Property Packages

– Introduction

– Units of Measurement

– Property Parameters

– Config Dictionary
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– Class Definition

– Examples

Introduction

In order to create and use a property package using the IDAES Generic Property Package Framework, users must
provide a definition for the material they wish to model. The framework supports two approaches for defining the
property package, which are described below, both of which are equivalent in practice.

Units of Measurement

When defining a property package using the generic framework, users must define the base units for the property
package (see link). The approach for setting the base units depends on the approach used to define the property package,
and is discussed in more detail in each section.

The Generic Property Package Framework includes the necessary code to convert between different units of mea-
surement as required, allowing users to combine property methods with different sets of units into a single property
package. In these cases, each property method is written in its natural units (including parameters), and the final result
is automatically converted to the base units.

For example, the Antoine equation is generally written with pressure in bars and temperature in either Kelvin or Celsius
(depending on source). Using the generic property framework, the users provide the Antoine coefficients in their
original units (i.e. bar and Kelvin/Celsius) and the property calculation is written in these units. However, the final
result (saturation pressure) is then converted to the base units specified in the property package definition.

Property Parameters

Thermophysical property models all depend upon a set of parameters to describe the fundamental behavior of the
system. For the purposes of the Generic Property Framework, these parameters are grouped into three types:

1. Component-specific parameters - these are parameters that are specific to a given chemical species, and are
defined in the parameter_data argument for each component and stored in the associated Component block.
Examples of these parameters include those used to calculate the ideal, pure component properties.

2. Phase-specific parameters - these are parameters that are specific to a given phase, and are defined in the pa-
rameter_data argument for each phase and stored in the associated Phase block. These types of parameters are
relatively uncommon.

3. Package-wide parameters - these are parameters that are not necessarily confined to a single phase or species,
and are defined in the parameter_data argument of the overall property package and stored in the main Physical
Parameter block. Examples of these types of parameters include binary interaction parameters, which involve
multiple species and can be used in multiple phases.
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Config Dictionary

The most common way to use the Generic Property Package Framework is to create an instance of the GenericParam-
eterBlock component and provide it with a dictionary of configuration arguments, as shown below:

m = ConcreteModel()

m.fs = FlowsheetBlock()

m.fs.properties = GenericParameterBlock(default=config_dict)

Users need to populate config_dict with the desired options for their system as described in the other parts of this
documentation. An example of a configuration dictionary for a benzene-toluene VLE system is shown below.

Using this approach, units of measurement are defined using the base_units option in the configuration dictionary.
Users must provide units for the 5 core quantities, and may also provide units for the other 2 SI base quantities (if
required). For details on other configuration options, please see the relevant documentation.

from pyomo.environ import units as pyunits

config_dict = {
"base_units": {"time": pyunits.s,

"length": pyunits.m,
"mass": pyunits.kg,
"amount": pyunits.mol,
"temperature": pyunits.K},

"components": {
'benzene': {"type": Component,

"elemental_composition": {"C": 6, "H": 6},
"dens_mol_liq_comp": Perrys,
"enth_mol_liq_comp": Perrys,
"enth_mol_ig_comp": RPP,
"pressure_sat_comp": RPP,
"phase_equilibrium_form": {("Vap", "Liq"): fugacity},
"parameter_data": {

"mw": (78.1136E-3, pyunits.kg/pyunits.mol), # [1]
"pressure_crit": (48.9e5, pyunits.Pa), # [1]
"temperature_crit": (562.2, pyunits.K), # [1]
"dens_mol_liq_comp_coeff": {

'1': (1.0162, pyunits.kmol*pyunits.m**-3), # [2] pg. 2-98
'2': (0.2655, None),
'3': (562.16, pyunits.K),
'4': (0.28212, None)},

"cp_mol_ig_comp_coeff": {
'A': (-3.392E1, pyunits.J/pyunits.mol/pyunits.K), # [1]
'B': (4.739E-1, pyunits.J/pyunits.mol/pyunits.K**2),
'C': (-3.017E-4, pyunits.J/pyunits.mol/pyunits.K**3),
'D': (7.130E-8, pyunits.J/pyunits.mol/pyunits.K**4)},

"cp_mol_liq_comp_coeff": {
'1': (1.29E2, pyunits.J/pyunits.kmol/pyunits.K), # [2]
'2': (-1.7E-1, pyunits.J/pyunits.kmol/pyunits.K**2),
'3': (6.48E-4, pyunits.J/pyunits.kmol/pyunits.K**3),
'4': (0, pyunits.J/pyunits.kmol/pyunits.K**4),
'5': (0, pyunits.J/pyunits.kmol/pyunits.K**5)},

(continues on next page)
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(continued from previous page)

"enth_mol_form_liq_comp_ref": (
49.0e3, pyunits.J/pyunits.mol), # [3]

"enth_mol_form_vap_comp_ref": (
82.9e3, pyunits.J/pyunits.mol), # [3]

"pressure_sat_comp_coeff": {'A': (-6.98273, None), # [1]
'B': (1.33213, None),
'C': (-2.62863, None),
'D': (-3.33399, None)}}},

'toluene': {"type": Component,
"elemental_composition": {"C": 7, "H": 8},
"dens_mol_liq_comp": Perrys,
"enth_mol_liq_comp": Perrys,
"enth_mol_ig_comp": RPP,
"pressure_sat_comp": RPP,
"phase_equilibrium_form": {("Vap", "Liq"): fugacity},
"parameter_data": {

"mw": (92.1405E-3, pyunits.kg/pyunits.mol), # [1]
"pressure_crit": (41e5, pyunits.Pa), # [1]
"temperature_crit": (591.8, pyunits.K), # [1]
"dens_mol_liq_comp_coeff": {

'1': (0.8488, pyunits.kmol*pyunits.m**-3), # [2] pg. 2-98
'2': (0.26655, None),
'3': (591.8, pyunits.K),
'4': (0.2878, None)},

"cp_mol_ig_comp_coeff": {
'A': (-2.435E1, pyunits.J/pyunits.mol/pyunits.K), # [1]
'B': (5.125E-1, pyunits.J/pyunits.mol/pyunits.K**2),
'C': (-2.765E-4, pyunits.J/pyunits.mol/pyunits.K**3),
'D': (4.911E-8, pyunits.J/pyunits.mol/pyunits.K**4)},

"cp_mol_liq_comp_coeff": {
'1': (1.40E2, pyunits.J/pyunits.kmol/pyunits.K), # [2]
'2': (-1.52E-1, pyunits.J/pyunits.kmol/pyunits.K**2),
'3': (6.95E-4, pyunits.J/pyunits.kmol/pyunits.K**3),
'4': (0, pyunits.J/pyunits.kmol/pyunits.K**4),
'5': (0, pyunits.J/pyunits.kmol/pyunits.K**5)},

"enth_mol_form_liq_comp_ref": (
12.0e3, pyunits.J/pyunits.mol), # [3]

"enth_mol_form_vap_comp_ref": (
50.1e3, pyunits.J/pyunits.mol), # [3]

"pressure_sat_comp_coeff": {'A': (-7.28607, None), # [1]
'B': (1.38091, None),
'C': (-2.83433, None),
'D': (-2.79168, None)}}}},

"phases": {'Liq': {"type": LiquidPhase,
"equation_of_state": ideal},

'Vap': {"type": VaporPhase,
"equation_of_state": ideal}},

"state_definition": FcPh,
"state_bounds": {

# Note format is (lower, nominal, upper, units)
"flow_mol": (0, 100, 1000, pyunits.mol/pyunits.s),
"temperature": (273.15, 300, 450, pyunits.K),

(continues on next page)
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"pressure": (5e4, 1e5, 1e6, pyunits.Pa)},
"pressure_ref": (1e5, pyunits.Pa),
"temperature_ref": (300, pyunits.K),
"phases_in_equilibrium": [("Vap", "Liq")],
"phase_equilibrium_state": {("Vap", "Liq"): smooth_VLE},
"bubble_dew_method": IdealBubbleDew}

Data Sources:

1. The Properties of Gases and Liquids (1987), 4th edition, Chemical Engineering Series - Robert C. Reid

2. Perry’s Chemical Engineers’ Handbook 7th Ed.

3. Engineering Toolbox, https://www.engineeringtoolbox.com, Retrieved 1st December, 2019

Class Definition

Alternatively, the IDAES Generic Property Package Framework supports defining classes derived from the IDAES
GenericParameterData with methods for defining configuration options and parameters.

Users can define two methods which are called automatically when an instance of the property package is created:

1. configure, which defines the users selection of sub-models, and

2. parameters, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Property Parameter Block is shown below.

@declare_process_block_class("UserParameterBlock")
class UserParameterData(GenericParameterData):

def configure(self):
# Set configuration options
self.config.option_1 = value

def parameters(self):
# Define parameters
self.param_1 = Var(index_set, initialize=value)

Users should populate the configure and parameters methods as discussed below.

Configure

The ‘configure` method is used to assign values to the configuration arguments, using the format
self.config.option_name = value. Users will also need to set the units of measurement in the property package
metadata.
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Parameters

The parameters method is used to construct all the parameters associated with the property calculations and to specify
values for these. The list of necessary parameters is based on the configuration options and the selected methods. Each
method lists their necessary parameters in their documentation. Users need only define those parameters required by
the options they have chosen.

Examples

Examples of using the IDAES Generic Property Package Framework can be found in the
idaes/property_models/core/examples folder.

Defining Components

The first step in defining a generic property package is to describe each of the chemical species of interest within the
system, including methods for calculating the necessary thermophysical properties of the pure component. Components
are defined using IDAES Component objects, and are automatically constructed using the components configuration
argument from the GenericParameterBlock.

The components Argument

Each GenericParameterBlock has a configuration argument named components which is used to construct the Com-
ponent objects and populate them with instructions on how to calculate thermophysical properties for that component.
The components configuration argument is expected to be a dict-of-dicts, where the keys are the names for the chemical
species of interest, and the values are a dict of configuration arguments for the named component (which are passed to
the Component object as it is instantiated).

"components": {
"species_1": {options},
"species_2": {options}}

Configuration Arguments

The configuration arguments for each chemical species are used to define methods for calculating pure component
properties and defining the parameters associated with these. A full list of the supported configuration arguments for
Component objects can be found here.

Type Argument

Each component in the component argument must be assigned a valid component type from those supported by the
IDAES Framework (e.g. Component, Solvent, Solute, etc.). This should be provided using the type argument.

26 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Valid Phases

In many cases, a given chemical species can only exist in certain phases; the most common example being ionic solids
which dissociate upon dissolution (thus forming new ionic species in an aqueous phase). For each component, the
user can set a list of the valid phase types for the component (liquid, vapor and/or solid) using the valid_phase_types
configuration argument. This configuration argument should be a list containing PhaseType Enums (imported from
idaes.core.phases) indicating the types of phases in which this component can exist.

This information is used by the Generic Property Framework to automatically determine the valid phase-component
pairs for the user defined system. Users can override this automatic definition by providing a component list for a
given phase in the definition of each Phase as discussed later (note however that user-defined phase-component lists
are validated against the valid phases, and an exception will be raised if a component is assigned in a phase for which
it is not valid).

Elemental Composition

If a user wishes to use elemental balances as part of their flowsheet (e.g. a Gibbs equilibrium reactor), it is necessary
to specify the elemental composition of each Component. This can be done using the elemental_composition configu-
ration argument, which takes a dictionary where the keys are the constituent elements and the values re the number of
atoms of that element which compose the Components.

"components": {
"water": {"elemental_composition": {"H": 2, "O": 1}}}

If users specify an elemental composition for one Component, they must specify elemental compositions for all Com-
ponents. The Generic Property Package framework will then compile the list of elements composing all species and
the overall composition matrix automatically.

Pure Component Property Methods

Most methods for calculating the thermophysical properties of materials start from estimating the properties of each
component in its pure form, before applying mixing rules to determine the properties of the mixture. Pure component
properties generally take the form of empirical correlations as a function of material state (generally temperature)
derived from experimental data. Data and correlations for many components are readily available in literature. However
due to the empirical nature of these correlations and the wide range of data available, different sources use different
forms for their correlations.

Within the IDAES Generic Property Package Framework, pure component property correlations can be provided as
either Python functions or classes;

• functions are used for self-contained correlations with hard-coded parameters,

• classes are used for more generic correlations which require associated parameters.

When providing a method via the components configuration argument, users can either provide a pointer to the desired
class/method directly, or to a Python module containing a class or method with the same name as the property to be
calculated. More details on the uses of these and how to construct your own can be found in the developer documen-
tation.
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Pure Component Libraries

As a starting point for users, the IDAES Generic Property Package Framework contains a library of some common
methods for calculating properties of interest. These libraries are organized by source, and are listed below.

Note: Users should be careful about mixing-and-matching methods from different libraries, especially for the same
component. Thermodynamic properties are intrinsically coupled, thus many correlations are also linked and often
share parameters. Mixing-and-matching correlations may result in two correlations using parameters with the same
name but with different expectations.

Additionally, sources often use different approaches for defining the thermodynamic reference state of the material, thus
users need to ensure that a consistent reference state is being used when combining methods from different sources.

Constant Properties

Contents

• Constant Properties

– Source

– Ideal Liquid Molar Heat Capacity (Constant Pressure)

– Ideal Liquid Molar Enthalpy

– Ideal Liquid Molar Entropy

– Liquid Molar Density

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

Source

Methods for calculating pure component properties independent of temperature from:

Introduction to Chemical Engineering Thermodynamics, 8th Edition J.M. Smith, Hendrick Van Ness, Michael Abbott,
and Mark Swihart, 2018, McGraw-Hill

Ideal Liquid Molar Heat Capacity (Constant Pressure)

The ideal liquid molar heat capacity is defined as follows:

𝑐p liq = 𝐶1

Parameters

Symbol Parameter Name Units Description
𝐶1 cp_mol_ig_comp_coeff Units are defined based on the user’s input
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Ideal Liquid Molar Enthalpy

The equation for the ideal liquid molar enthalpy is given below:

ℎliq − ℎliq ref = 𝑐p liq × (𝑇 − 𝑇𝑟𝑒𝑓 ) + ∆ℎform, liq

Units are defined based on the user’s input.

Note: This correlation uses the same parameters as the ideal liquid heat capacity. Units of molar heat of formation
will be derived from the base units defined for the property package.

Ideal Liquid Molar Entropy

The correlation for the ideal liquid molar entropy is derived from the correlation for the molar heat capacity and is
given below:

𝑠liq − 𝑠liq ref = 𝑐p liq × 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) + 𝑠form, Liq

Units are defined based on the user’s input.

Note: This correlation uses the same parameters as the ideal liquid heat capacity. Units of molar entropy of formation
will be derived from the base units defined for the property package.

Liquid Molar Density

The liquid molar density is defined as follows:

𝜌𝑙𝑖𝑞 = 𝐶1

Parameters

Symbol Parameter Name Units Description
𝐶1 dens_mol_liq_comp_coeff Units are defined based on the user’s input

Ideal Gas Molar Heat Capacity (Constant Pressure)

The ideal gas molar heat capacity is defined as follows:

𝑐p ig = 𝐶1

Parameters

Symbol Parameter Name Units Description
𝐶1 cp_mol_ig_comp_coeff Units are defined based on the user’s input
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Ideal Gas Molar Enthalpy

The equation for the ideal gas molar enthalpy is given below:

ℎig − ℎig ref = 𝑐p ig × (𝑇 − 𝑇𝑟𝑒𝑓 ) + ∆ℎform, ig

Units are defined based on the user’s input.

Note: This correlation uses the same parameters as the ideal gas heat capacity. Units of molar heat of formation will
be derived from the base units defined for the property package.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig − 𝑠ig ref = 𝑐p ig × 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) + 𝑠form, ig

Units are defined based on the user’s input.

Note: This correlation uses the same parameters as the ideal gas heat capacity. Units of molar entropy of formation
will be derived from the base units defined for the property package.

NIST Webbook (NIST)

Contents

• NIST Webbook (NIST)

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

– Saturation (Vapor) Pressure

Source

Pure component properties as used by the NIST WebBook, https://webbook.nist.gov/chemistry/ Retrieved: September
13th, 2019
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Ideal Gas Molar Heat Capacity (Constant Pressure)

NIST uses the Shomate equation for the ideal gas molar heat capacity, which is shown below:

𝑐p ig = 𝐴+𝐵 × 𝑡+ 𝐶 × 𝑡2 +𝐷 × 𝑡3 +
𝐸

𝑡2

where 𝑡 = 𝑇
1000 . Units are J/mol·K.

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K· kK
𝐶 cp_mol_ig_comp_coeff_C J/mol·K· kK2

𝐷 cp_mol_ig_comp_coeff_D J/mol·K· kK3

𝐸 cp_mol_ig_comp_coeff_E J· kK2/mol·K
𝐹 cp_mol_ig_comp_coeff_F kJ/mol
𝐺 cp_mol_ig_comp_coeff_G J/mol·K
𝐻 cp_mol_ig_comp_coeff_H kJ/mol

Note: Due to the division of temperature by 1000 in the expression form, most temperature units are in kilo-Kelvins
and reference enthalpies (F and H) are in kJ/mol. The parameter cp_mol_ig_comp_coeff is also used when calculating
specific enthalpy and entropy and parameters ‘F’, ‘G’ and ‘H’ are only required for these properties.

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig − ℎig ref

1000
= 𝐴× 𝑡+

𝐵

2
× 𝑡2 +

𝐶

3
× 𝑡3 +

𝐷

4
× 𝑡4 + 𝐸 × 1

𝑡
+ 𝐹 −𝐻

Units are J/mol.

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K· kK
𝐶 cp_mol_ig_comp_coeff_C J/mol·K· kK2

𝐷 cp_mol_ig_comp_coeff_D J/mol·K· kK3

𝐸 cp_mol_ig_comp_coeff_E J· kK2/mol·K
𝐹 cp_mol_ig_comp_coeff_F kJ/mol
𝐺 cp_mol_ig_comp_coeff_G J/mol·K
𝐻 cp_mol_ig_comp_coeff_H kJ/mol

Note: This correlation uses the same parameters as for the ideal gas heat capacity with additional parameters F and H.
These parameters account for the enthalpy at the reference state defined by NIST, where F is the constant of integration
and H is the standard molar heat of formation. Note that the default form of the expression used by NIST subtracts the
heat of formation from the specific enthalpy. This behavior can be controlled using the global configuration argument
include_enthalpy_of_formation - if this is set to True (the default setting), then the H term is not used when calculating
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specific enthalpies. Due to the division of temperature by 1000 in the expression form, most temperature units are in
kilo-Kelvins and reference enthalpies (F and H) are in kJ/mol.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig = 𝐴× 𝑙𝑛(𝑡) +𝐵 × 𝑡+
𝐶

2
× 𝑡2 +

𝐷

3
× 𝑡3 +

𝐸

2 × 𝑡2
+𝐺

Units are J/mol·K.

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K· kK
𝐶 cp_mol_ig_comp_coeff_C J/mol·K· kK2

𝐷 cp_mol_ig_comp_coeff_D J/mol·K· kK3

𝐸 cp_mol_ig_comp_coeff_E J· kK2/mol·K
𝐹 cp_mol_ig_comp_coeff_F kJ/mol
𝐺 cp_mol_ig_comp_coeff_G J/mol·K
𝐻 cp_mol_ig_comp_coeff_H kJ/mol

Note: This correlation uses the same parameters as for the ideal gas heat capacity with additional parameter G, which
accounts for the standard entropy at the reference state defined by NIST. Users wanting to use a different reference state
will need to update G. Due to the division of temperature by 1000 in the expression form, most temperature units are
in kilo-Kelvins and reference enthalpies (F and H) are in kJ/mol.

Saturation (Vapor) Pressure

NIST uses the Antoine equation to calculate the vapor pressure of a component, which is given below:

𝑙𝑜𝑔10(𝑃𝑠𝑎𝑡) = 𝐴− 𝐵

𝑇 + 𝐶

Units are bar and Kelvin.

Parameters

Symbol Parameter Name Units Description
𝐴 pressure_sat_comp_coeff_A None
𝐵 pressure_sat_comp_coeff_B K
𝐶 pressure_sat_comp_coeff_C K
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Perry’s Chemical Engineers’ Handbook (Perrys)

Contents

• Perry’s Chemical Engineers’ Handbook (Perrys)

– Source

– Ideal Liquid Molar Heat Capacity (Constant Pressure)

– Ideal Liquid Molar Enthalpy

– Ideal Liquid Molar Entropy

– Liquid Molar Density

Source

Methods for calculating pure component properties from:

Perry’s Chemical Engineers’ Handbook, 7th Edition Perry, Green, Maloney, 1997, McGraw-Hill

Ideal Liquid Molar Heat Capacity (Constant Pressure)

Perry’s Handbook uses the following correlation for ideal liquid molar heat capacity:

𝑐p liq = 𝐶1 + 𝐶2 × 𝑇 + 𝐶3 × 𝑇 2 + 𝐶4 × 𝑇 3 + 𝐶5 × 𝑇 4

Units are J/kmol·K.

Parameters

Symbol Parameter Name Units Description
𝐶1 cp_mol_ig_comp_coeff_1 J/kmol·K
𝐶2 cp_mol_ig_comp_coeff_2 J/kmol·K2

𝐶3 cp_mol_ig_comp_coeff_3 J/kmol·K3

𝐶4 cp_mol_ig_comp_coeff_4 J/kmol·K4

𝐶5 cp_mol_ig_comp_coeff_5 J/kmol·K5

Ideal Liquid Molar Enthalpy

The correlation for the ideal liquid molar enthalpy is derived from the correlation for the molar heat capacity and is
given below:

ℎliq − ℎliq ref = 𝐶1 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐶2

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐶3

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝐶4

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) +
𝐶5

5
× (𝑇 5 − 𝑇 5

𝑟𝑒𝑓 ) + ∆ℎform, Liq

Units are J/kmol.

Parameters
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Symbol Parameter Name Units Description
𝐶1 cp_mol_ig_comp_coeff_1 J/kmol·K
𝐶2 cp_mol_ig_comp_coeff_2 J/kmol·K2

𝐶3 cp_mol_ig_comp_coeff_3 J/kmol·K3

𝐶4 cp_mol_ig_comp_coeff_4 J/kmol·K4

𝐶5 cp_mol_ig_comp_coeff_5 J/kmol·K5

∆ℎform, Liq enth_mol_form_liq_comp_ref Base units Molar heat of formation at reference state

Note: This correlation uses the same parameters as the ideal liquid heat capacity. Units of molar heat of formation
will be derived from the base units defined for the property package.

Ideal Liquid Molar Entropy

The correlation for the ideal liquid molar entropy is derived from the correlation for the molar heat capacity and is
given below:

𝑠liq − 𝑠liq ref = 𝐶1 × 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) + 𝐶2 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐶3

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐶4

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝐶5

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) + 𝑠form, Liq

Units are J/kmol·K.

Parameters

Symbol Parameter Name Units Description
𝐶1 cp_mol_ig_comp_coeff_1 J/kmol·K
𝐶2 cp_mol_ig_comp_coeff_2 J/kmol·K2

𝐶3 cp_mol_ig_comp_coeff_3 J/kmol·K3

𝐶4 cp_mol_ig_comp_coeff_4 J/kmol·K4

𝐶5 cp_mol_ig_comp_coeff_5 J/kmol·K5

𝑠form, Liq entr_mol_form_liq_comp_ref Base units Standard molar entropy of formation at reference state

Note: This correlation uses the same parameters as the ideal liquid heat capacity. Units of molar entropy of formation
will be derived from the base units defined for the property package.

Liquid Molar Density

Perry’s Handbook uses the following correlation for liquid molar density:

𝜌𝑙𝑖𝑞 =
𝐶1

𝐶
1+(1− 𝑇

𝐶3
)𝐶4

2

Units are kmol/m3.

Parameters
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Symbol Parameter Name Units Description
𝐶1 dens_mol_comp_liq_coeff_1 kmol/m3

𝐶2 dens_mol_comp_liq_coeff_2 None
𝐶3 dens_mol_comp_liq_coeff_3 K
𝐶4 dens_mol_comp_liq_coeff_4 None`

Note: Currently, only the most common correlation form from Perry’s Handbook is implemented. Some components
use different forms which are not yet supported.

Properties of Gases and Liquids 3rd edition (RPP3)

Contents

• Properties of Gases and Liquids 3rd edition (RPP3)

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

– Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 3rd Edition Reid, Prausnitz and Polling, 1977, McGraw-Hill

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

𝑐p ig = 𝐴+𝐵 × 𝑇 + 𝐶 × 𝑇 2 +𝐷 × 𝑇 3

Units are calories per gram-mole kelvin and Kelvin.

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A cal/mol·K
𝐵 cp_mol_ig_comp_coeff_B cal/mol·K2

𝐶 cp_mol_ig_comp_coeff_C cal/mol·K3

𝐷 cp_mol_ig_comp_coeff_D cal/mol·K4
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Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig − ℎig ref = 𝐴× (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐵

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐶

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝐷

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) + ∆ℎform, Vap

Units are calories per gram-mole kelvin and Kelvin.

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A cal/mol·K
𝐵 cp_mol_ig_comp_coeff_B cal/mol·K2

𝐶 cp_mol_ig_comp_coeff_C cal/mol·K3

𝐷 cp_mol_ig_comp_coeff_D cal/mol·K4

∆ℎform, Vap enth_mol_form_vap_comp_ref Base units Molar heat of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation. Units of molar heat of
formation will be derived from the base units defined for the property package.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig = 𝐴× 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) +𝐵 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐶

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐷

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) + 𝑠form, Vap

Units are calories per gram-mole kelvin and Kelvin.

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A cal/mol·K
𝐵 cp_mol_ig_comp_coeff_B cal/mol·K2

𝐶 cp_mol_ig_comp_coeff_C cal/mol·K3

𝐷 cp_mol_ig_comp_coeff_D cal/mol·K4

𝑠form, Vap entr_mol_form_vap_comp_ref Base units Standard molar entropy of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation . Units of molar entropy of
formation will be derived from the base units defined for the property package.

36 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Saturation (Vapor) Pressure

Properties of Gases and Liquids 3rd edition uses the following correlation to calculate the vapor pressure of a compo-
nent:

𝐿𝑛(𝑃𝑠𝑎𝑡) = 𝐴− 𝐵

𝑇 + 𝐶

Units are mmHg and Kelvin.

Parameters

Symbol Parameter Name Units Description
𝐴 pressure_sat_comp_coeff_A None
𝐵 pressure_sat_comp_coeff_B K
𝐶 pressure_sat_comp_coeff_C K

Properties of Gases and Liquids 4th edition (RPP4)

Contents

• Properties of Gases and Liquids 4th edition (RPP4)

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

– Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 4th Edition Reid, Prausnitz and Polling, 1987, McGraw-Hill

All methods use SI units.

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

𝑐p ig = 𝐴+𝐵 × 𝑇 + 𝐶 × 𝑇 2 +𝐷 × 𝑇 3

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K2

𝐶 cp_mol_ig_comp_coeff_C J/mol·K3

𝐷 cp_mol_ig_comp_coeff_D J/mol·K4
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Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig − ℎig ref = 𝐴× (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐵

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐶

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝐷

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) + ∆ℎform, Vap

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K2

𝐶 cp_mol_ig_comp_coeff_C J/mol·K3

𝐷 cp_mol_ig_comp_coeff_D J/mol·K4

∆ℎform, Vap enth_mol_form_vap_comp_ref Base units Molar heat of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation. Units of molar heat of
formation will be derived from the base units defined for the property package.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig = 𝐴× 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) +𝐵 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +
𝐶

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝐷

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) + 𝑠form, Vap

Parameters

Symbol Parameter Name Units Description
𝐴 cp_mol_ig_comp_coeff_A J/mol·K
𝐵 cp_mol_ig_comp_coeff_B J/mol·K2

𝐶 cp_mol_ig_comp_coeff_C J/mol·K3

𝐷 cp_mol_ig_comp_coeff_D J/mol·K4

𝑠form, Vap entr_mol_form_vap_comp_ref Base units Standard molar entropy of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation . Units of molar entropy of
formation will be derived from the base units defined for the property package.

Saturation (Vapor) Pressure

Properties of Gases and Liquids uses the following correlation to calculate the vapor pressure of a component:

𝑙𝑛(
𝑃𝑠𝑎𝑡

𝑃𝑐𝑟𝑖𝑡
) × (1 − 𝑥) = 𝐴× 𝑥+𝐵 × 𝑥1.5 + 𝐶 × 𝑥3 +𝐷 × 𝑥6

where 𝑥 = 1 − 𝑇
𝑇𝑐𝑟𝑖𝑡

.
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Symbol Parameter Name Units Description
𝐴 pressure_sat_comp_coeff_A None
𝐵 pressure_sat_comp_coeff_B None
𝐶 pressure_sat_comp_coeff_C None
𝐷 pressure_sat_comp_coeff_D None
𝑃𝑐𝑟𝑖𝑡 pressure_crit_comp Same as system pressure Critical pressure
𝑇𝑐𝑟𝑖𝑡 temperature_crit_comp Same as system temperature Critical temperature

Note: This correlation is only valid at temperatures below the critical temperature. Above this point, there is no real
solution to the equation.

Properties of Gases and Liquids 5th edition (RPP5)

Contents

• Properties of Gases and Liquids 5th edition (RPP5)

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

– Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 5th Edition Reid, Prausnitz and Polling, 2001, McGraw-Hill

All methods use SI units.

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:
𝑐p ig

𝑅
= 𝑎0 + 𝑎1 × 𝑇 + 𝑎2 × 𝑇 2 + 𝑎3 × 𝑇 3 + 𝑎4 × 𝑇 4

Parameters

Symbol Parameter Name Units Description
𝑎0 cp_mol_ig_comp_coeff_a0 None
𝑎1 cp_mol_ig_comp_coeff_a1 K−1

𝑎2 cp_mol_ig_comp_coeff_a2 K−2

𝑎3 cp_mol_ig_comp_coeff_a3 K−3

𝑎4 cp_mol_ig_comp_coeff_a4 K−4
𝑅 gas_constant Same as heat capacity Universal gas constant
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Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig − ℎig ref

𝑅
= 𝑎0 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +

𝑎1

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝑎2

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝑎3

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) +
𝑎4

5
× (𝑇 5 − 𝑇 5

𝑟𝑒𝑓 ) + ∆ℎform, Vap

Parameters

Symbol Parameter Name Units Description
𝑎0 cp_mol_ig_comp_coeff_a0 None
𝑎1 cp_mol_ig_comp_coeff_a1 K−1

𝑎2 cp_mol_ig_comp_coeff_a2 K−2

𝑎3 cp_mol_ig_comp_coeff_a3 K−3

𝑎4 cp_mol_ig_comp_coeff_a4 K−4
∆ℎform, Vap enth_mol_form_vap_comp_ref J/mol Molar heat of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig

𝑅
= 𝑎0 × 𝑙𝑛(𝑇/𝑇𝑟𝑒𝑓 ) + 𝑎1 × (𝑇 − 𝑇𝑟𝑒𝑓 ) +

𝑎2

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓 ) +
𝑎3

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓 ) +
𝑎4

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓 ) + 𝑠form, Vap

Parameters

Symbol Parameter Name Units Description
𝑎0 cp_mol_ig_comp_coeff_a0 None
𝑎1 cp_mol_ig_comp_coeff_a1 K−1

𝑎2 cp_mol_ig_comp_coeff_a2 K−2

𝑎3 cp_mol_ig_comp_coeff_a3 K−3

𝑎4 cp_mol_ig_comp_coeff_a4 K−4
𝑠form, Vap entr_mol_form_vap_comp_ref J/mol·K Standard molar entropy of formation at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation.

Saturation (Vapor) Pressure

Properties of Gases and Liquids 5th edition uses the following correlation to calculate the vapor pressure of a compo-
nent:

𝐿𝑜𝑔(𝑃𝑠𝑎𝑡) = 𝐴− 𝐵

𝑇 + 𝐶

Units are bar and Kelvin.
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Parameters

Symbol Parameter Name Units Description
𝐴 pressure_sat_comp_coeff_A None
𝐵 pressure_sat_comp_coeff_B K
𝐶 pressure_sat_comp_coeff_C K

Phase Equilibrium Formulation

For those applications involving phase equilibria, there are number of different approaches that can be taken to specify
the equilibrium condition. For example, equilibrium may be described in terms of an empirical partitioning coefficient
or in terms of fugacities in each phase. To allow users to specify the approach they wish to use, each Component object
contains a phase_equilibrium_form configuration argument.

As a given system may incorporate multiple phase equilibria, the phase_equilibrium_form argument should be a dict
with keys beings a tuple of interacting phases and values being a Python method describing how the equilibrium
condition should be defined. A simple example for a VLE system is shown below:

"phase_equilibrium_form": {("Vap", "Liq"): fugacity}

The IDAES Generic Property Package Framework contains a library of common forms for the equilibrium condition,
which is described here.

Parameter Data

Most pure component property correlations depend upon empirical parameters which need to be specified by the user.
All the in-built property libraries built these parameters automatically expect the user to provide values these parameters
via the parameter_data configuration argument. The parameter_data configuration argument should be a dict with keys
being the name of the required parameters and the values being a value or dict of values to use when initializing the
parameter (i.e. the dict must have keys which match the indexing set of the parameter).

Users can specify the units of measurement for each parameter value, which will be automatically converted to match
the set of units required by the property method. Users are encouraged to explicitly state the units of each parameter
value for clarity, which is done using a tuple with the form (value, units), as shown in the example below. Users may
choose to omit the units, providing only a value for the parameter (not as a tuple) in which case the units are assumed
to match those defined for the associated parameter.

"parameter_data": {
"property": (value, units),
"indexed_property": {

"index_1": (value, units),
"index_2: (value, units)}}

Note: A dict is used for specifying parameter values to allow users greater flexibility in defining their own methods
with custom parameters.

Additionally, the following quantities are properties of the component (i.e. not a function of state) and are included in
the component parameters.

• Molecular weight: “mw”

• Critical Pressure: “pressure_crit”
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• Critical Temperature: “temperature_crit”

Defining Phases

The second step in defining a property package using the Generic Property Package Framework is to define the phases of
interest in the system. Due to the equation-oriented nature of the IDAES modeling framework, it is necessary to define
any phases the user believes may be important a priori as it is not possible to determine what phases should be included
on-the-fly. Phases are defined using IDAES Phase objects<user_guide/components/property_package/phase:Phase
Object>, and are automatically constructed using the phases configuration argument from the GenericParameterBlock.

The phases Argument

Each GenericParameterBlock has a configuration argument named phases which is used to construct the Phase objects
and populate them with instructions on how to calculate thermophysical properties for that phase. The phases config-
uration argument is expected to be a dict where the keys are the names for the phases of interest and the values are a
configuration arguments for the named phase (which are passed to the Phase object as it is instantiated).

"phases": {
"phase_1": {

"type": Phase,
"equation_of_state": EoS,
"equation_of_state_options": {},
"parameter_data": {}},

"phase_2": {
"type": Phase,
"equation_of_state": EoS,
"equation_of_state_options": {},
"parameter_data": {}}}

Type Argument

Each phase in the phases argument must be assigned a valid phase type from those supported by the IDAES Framework
(e.g. LiquidPhase, SolidPhase, VaporPhase). This should be provided using the type argument.

Equations of State

Equations of state (or equivalent methods) describe the relationship between different thermophysical properties within
a mixture and ensure that the behavior of these are thermodynamically consistent. Each phase must be assigned an
Equation of State (or equivalent method) in the form of a Python module which will assemble the necessary variables,
constraints and expressions associated with the desired approach.

A wide range of equations of states are available in literature for different applications and levels of rigor, and the
IDAES Generic Property Package Framework provides a number of prebuilt modules for users, which are listed below.

Equation of state packages may allow for user options (e.g. choosing a specific type of cubic equation of state). The
options are set using the equation_of_state_options argument, and the options available are described in the documen-
tation of each equation of state module.
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Equation of State Libraries

Ideal Gases and Liquids (Ideal)

Contents

• Ideal Gases and Liquids (Ideal)

– Introduction

– Mass Density by Phase

– Molar Density by Phase

– Molar Enthalpy by Phase

– Component Molar Enthalpy by Phase

– Molar Entropy by Phase

– Component Molar Entropy by Phase

– Component Fugacity by Phase

– Component Fugacity Coefficient by Phase

– Molar Gibbs Energy by Phase

– Component Gibbs Energy by Phase

Introduction

Ideal behavior represents the simplest possible equation of state that ensures thermodynamic consistency between
different properties.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where 𝑝 indicates a given phase:

𝜌𝑚𝑎𝑠𝑠,𝑝 = 𝜌𝑚𝑜𝑙,𝑝 ×𝑀𝑊𝑝

where 𝑀𝑊𝑝 is the mixture molecular weight of phase 𝑝.

Molar Density by Phase

For the vapor phase, the Ideal Gas Equation is used to calculate the molar density;

𝜌𝑚𝑜𝑙,𝑉 𝑎𝑝 =
𝑃

𝑅𝑇

whilst for the liquid phase the molar density is the weighted sum of the pure component liquid densities:

𝜌𝑚𝑜𝑙,𝐿𝑖𝑞 =
∑︁
𝑗

𝑥𝐿𝑖𝑞,𝑗 × 𝜌𝐿𝑖𝑞,𝑗

where 𝑥𝐿𝑖𝑞,𝑗 is the mole fraction of component 𝑗 in the liquid phase.
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Molar Enthalpy by Phase

For both liquid and vapor phases, the molar enthalpy is calculated as the weighted sum of the component molar en-
thalpies for the given phase:

ℎ𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × ℎ𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the
property package configuration arguments.

Molar Entropy by Phase

For both liquid and vapor phases, the molar entropy is calculated as the weighted sum of the component molar entropies
for the given phase:

𝑠𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × 𝑠𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component method provided by the users in the
property package configuration arguments.

Component Fugacity by Phase

For the vapor phase, ideal behavior is assumed:

𝑓𝑉 𝑎𝑝,𝑗 = 𝑃

For the liquid phase, Raoult’s Law is used:

𝑓𝐿𝑖𝑞,𝑗 = 𝑃𝑠𝑎𝑡,𝑗

Component Fugacity Coefficient by Phase

Ideal behavior is assumed, so all 𝜑𝑝,𝑗 = 1 for all components and phases.
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Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar
Gibbs energies for the given phase:

𝑔𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × 𝑔𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

𝑔𝑚𝑜𝑙,𝑝,𝑗 = ℎ𝑚𝑜𝑙,𝑝,𝑗 − 𝑠𝑚𝑜𝑙,𝑝,𝑗 × 𝑇

Cubic Equations of State (Cubic)

Contents

• Cubic Equations of State (Cubic)

– Introduction

– General Cubic Equation of State

– Property Package Options

– Required Parameters

– Calculation of Properties

– Mass Density by Phase

– Molar Density by Phase

– Molar Enthalpy by Phase

– Component Molar Enthalpy by Phase

– Molar Entropy by Phase

– Component Molar Entropy by Phase

– Component Fugacity by Phase

– Component Fugacity Coefficient by Phase

– Molar Gibbs Energy by Phase

– Component Gibbs Energy by Phase
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Introduction

This module implements a general form of a cubic equation of state which can be used for most cubic-type equations
of state. The following forms are currently supported:

• Peng-Robinson

• Soave-Redlich-Kwong

General Cubic Equation of State

All equations come from “The Properties of Gases and Liquids, 4th Edition” by Reid, Prausnitz and Poling. The general
cubic equation of state is represented by the following equations:

𝑃 =
𝑅𝑇

𝑉 − 𝑏
− 𝑎

𝑉 2 − 𝑢𝑏𝑉 + 𝑤𝑏2

An equivalent form of the previous equation is:

0 = 𝑍3 − (1 +𝐵 − 𝑢𝐵)𝑍2 + (𝐴− 𝑢𝐵 − (𝑢− 𝑤)𝐵2)𝑍 −𝐴𝐵 − 𝑤𝐵2 − 𝑤𝐵3

𝐴 =
𝑎𝑚𝑃

𝑅2𝑇 2

𝐵 =
𝑏𝑚𝑃

𝑅𝑇

where𝑍 is the compressibility factor of the mixture, 𝑎𝑚 and 𝑏𝑚 are properties of the mixture and 𝑢 and𝑤 are parameters
which depend on the specific equation of state being used as show in the table below.

Equation 𝑢 𝑤 𝑂𝑚𝑒𝑔𝑎𝐴 𝑂𝑚𝑒𝑔𝑎𝐵 𝑎𝑙𝑝ℎ𝑎𝑗
Peng-Robinson 2 -1 0.45724 0.07780 (1 + (1− 𝑇 2

𝑟 )(0.37464 + 1.54226𝜔𝑗 − 0.26992𝜔2
𝑗 ))2

Soave-Redlich-
Kwong

1 0 0.42748 0.08664 (1 + (1 − 𝑇 2
𝑟 )(0.48 + 1.574𝜔𝑗 − 0.176𝜔2

𝑗 ))2

The properties 𝑎𝑚 and 𝑏𝑚 are calculated from component specific properties 𝑎𝑗 and 𝑏𝑗 as shown below:

𝑎𝑗 =
Ω𝐴𝑅

2𝑇 2
𝑐,𝑗

𝑃𝑐,𝑗
𝛼𝑗

𝑏𝑗 =
Ω𝐵𝑅𝑇𝑐,𝑗
𝑃𝑐,𝑗

𝑎𝑚 =
∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(𝑎𝑖𝑎𝑗)
1/2(1 − 𝜅𝑖𝑗)

𝑏𝑚 =
∑︁
𝑖

𝑦𝑖𝑏𝑖

where 𝑃𝑐,𝑗 and 𝑇𝑐,𝑗 are the component critical pressures and temperatures, 𝑦𝑗 is the mole fraction of component 𝑗, 𝜅𝑖𝑗
are a set of binary interaction parameters which are specific to the equation of state and Ω𝐴, Ω𝐵 and 𝛼𝑗 are taken from
the table above. 𝜔𝑗 is the Pitzer acentric factor of each component.

The cubic equation of state is solved for each phase via a call to an external function which automatically identifies the
correct root of the cubic and returns the value of 𝑍 as a function of 𝐴 and 𝐵 along with the first and second partial
derivatives.
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Property Package Options

When using the general cubic equation of state module, users must specify the type of cubic to use. This is done by
providing a type option in the equation_of_state_options argument in the Phase definition, as shown in the example
below.

from idaes.generic_models.properties.core.eos.ceos import Cubic, CubicType

configuration = {
"phases": {

"Liquid": {
"type": LiquidPhase,
"equation_of_state": Cubic,
"equation_of_state_options": {

"type": CubicType.PR}}}

Required Parameters

Cubic equations of state require the following parameters to be defined:

1. omega (Pitzer acentricity factor) needs to be defined for each component (in the parameter_data for each com-
ponent).

2. kappa (binary interaction parameters) needs to be defined for each component pair in the system. This parameter
needs to be defined in the general parameter_data argument for the overall property package (as it can be used
in multiple phases).

Calculation of Properties

Many thermophysical properties are calculated using an ideal and residual term, such that:

𝑝 = 𝑝0 + 𝑝𝑟

The residual term is derived from the partial derivatives of the cubic equation of state, whilst the ideal term is determined
using pure component properties for the ideal gas phase defined for each component.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where 𝑝 indicates a given phase:

𝜌𝑚𝑎𝑠𝑠,𝑝 = 𝜌𝑚𝑜𝑙,𝑝 ×𝑀𝑊𝑝

where 𝑀𝑊𝑝 is the mixture molecular weight of phase 𝑝.

4.2. User Guide 47



IDAES Documentation, Release 1.10.1

Molar Density by Phase

Molar density is calculated using the following equation

𝜌𝑚𝑜𝑙,𝑉 𝑎𝑝 =
𝑃

𝑍𝑅𝑇

Molar Enthalpy by Phase

The residual enthalpy term is given by:

ℎ𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 =

(︂
𝑇
𝑑𝑎

𝑑𝑇
− 𝑎𝑚

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃
+𝑅𝑇 (𝑍 − 1)𝑏𝑚

√︀
𝑢2 − 4𝑤

𝑑𝑎

𝑑𝑇

√
𝑇 = −𝑅

2

√︀
Ω𝐴

∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(1 − 𝑘𝑖𝑗)

(︃
𝑓𝑤,𝑗

√︃
𝑎𝑖
𝑇𝑐,𝑗
𝑃𝑐,𝑗

+ 𝑓𝑤,𝑖

√︃
𝑎𝑗
𝑇𝑐,𝑖
𝑃𝑐,𝑖

)︃
The ideal component is calculated from the weighted sum of the (ideal) component molar enthalpies.

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the
property package configuration arguments.

Molar Entropy by Phase

The residual entropy term is given by:

𝑠𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 = 𝑅 ln

𝑍 −𝐵

𝑍
𝑏𝑚
√︀
𝑢2 − 4𝑤 +𝑅 ln

𝑍𝑃 𝑟𝑒𝑓

𝑃
𝑏𝑚
√︀
𝑢2 − 4𝑤 +

𝑑𝑎

𝑑𝑇
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

The ideal component is calculated from the weighted sum of the (ideal) components molar enthalpies.

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component methods provided by the users in the
property package configuration arguments.

Component Fugacity by Phase

Fugacity is calculated from the system pressure and fugacity coefficients as follows:

𝑓𝑖,𝑝 = 𝜑𝑖,𝑝𝑃
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Component Fugacity Coefficient by Phase

The fugacity coefficient is calculated from the departure function of the cubic equation of state as shown below:

ln𝜑𝑖 =
𝑏𝑖
𝑏𝑚

(𝑍 − 1) − ln (𝑍 −𝐵) +
𝐴

𝐵
√
𝑢2 − 4𝑤

(︂
𝑏𝑖
𝑏𝑚

− 𝛿𝑖

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

𝛿𝑖 =
2𝑎

1/2
𝑖

𝑎𝑚

∑︁
𝑗

𝑥𝑗𝑎
1/2
𝑗 (1 − 𝑘𝑖𝑗)

Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar
Gibbs energies for the given phase:

𝑔𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × 𝑔𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

𝑔𝑚𝑜𝑙,𝑝,𝑗 = ℎ𝑚𝑜𝑙,𝑝,𝑗 − 𝑠𝑚𝑜𝑙,𝑝,𝑗 × 𝑇

Phase-Specific Parameter

In some cases, a property package may include parameters which are specific to a given phase. In these cases, these
parameters are stored as part of the associated Phase object and the values of these set using the parameter_data
argument when declaring the phase. This is done in the same fashion as for component specific parameters.

Phases with Partial Component Lists

In many applications a mixture will contain species that only appear in a single phase (either by nature or assump-
tion). Common examples include crystalline solids and non-condensable gases. The IDAES Generic Property Package
Framework provides support for these behaviors and allows users to specify phase-specific component lists (i.e. a list
of components which appear in a given phase).

This is done by providing a phase with a component_list argument, which provides a list of component names which
appear in the phase. The framework automatically validates the component_list argument to ensure that it is a sub-
set of the master component list for the property package, and will inform the user if an unrecognized component is
included. If a phase is not provided with a component_list argument it is assumed that all components defined in the
master component list may be present in the phase.
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State Definition

Defining State Variables

An important part of defining a set of property calculations is choosing the set of variables which will describe the
state of the material. The set of state variables needs to include information on the extensive flow, composition and
thermodynamic state of the material. However, there are many ways in which this information can be described, and
the best choice of state variables depends on many factors.

Within the IDAES Generic Property Package Framework, the definition of state variables is done using sub-modules
which create the necessary variables supporting information for the property package. A state definition sub-module
may define any set of state variables the user feel appropriate, but must define the following components as either state
variables or functions of the state variables:

• temperature (must be a Pyomo Var)

• pressure

• mole_frac_phase_comp

• phase_frac

The IDAES Generic Property Package Framework has a library of prebuilt state definition sub-modules for users to use
which are listed below.

State Definition Libraries

FTPx

Contents

• FTPx

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (𝐹 : flow_mol), overall (mixture) mole fractions (𝑥𝑗 :
mole_frac_comp), temperature (𝑇 : temperature) and pressure (𝑃 : pressure). As such, there are 3 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 state
variables, however only 2 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 are independent as the mole fraction must sum to 1.
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Application

This is the simplest approach to fully defining the state of a material, and one of the most easily accessible to the user
as it is defined in terms of variables that are easily measured and understood. However, this approach has a number of
limitations which the user should be aware of:

• If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit,
as the state definition does not contain information on multiphase flow. This increases the number of complex
equilibrium calculations that must be performed, which could be avoided by using a different state definition.

• State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature
and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FTPx module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol

• temperature

• pressure

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is
implicitly defined by the sum of mole fractions constraint.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• flow_mol_phase (𝐹𝑚𝑜𝑙,𝑝)

• mole_frac_phase_comp (𝑥𝑝,𝑗)

• phase_frac (𝜓𝑝)

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.∑︁
𝑗

𝑥𝑗 = 1

Note: The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the
inlet stream.

If the property package supports only one phase:

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝑥𝑝,𝑗 = 𝑥𝑗 for all 𝑗
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𝜓𝑝 = 1

If the property package supports only two phases, the Rachford-Rice formulation is used:∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝐹𝑚𝑜𝑙 × 𝑥𝑗 =
∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗

∑︁
𝑗

𝑥phase 1,𝑗 −
∑︁
𝑗

𝑥phase 2,𝑗 = 0

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

If the property package supports more than two phases, the following general formulation is used:

𝐹𝑚𝑜𝑙 × 𝑥𝑗 =
∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗

∑︁
𝑗

𝑥𝑝,𝑗 = 1 for all 𝑝

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy

FcTP

Contents

• FcTP

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis
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State Definition

This approach describes the material state in terms of total component flow (𝐹 : flow_mol_comp), temperature (𝑇 :
temperature) and pressure (𝑃 : pressure). As such, there are 2 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 state variables.

Application

This approach is similar to using total flow rate and mole fractions as state variable, and is generally accessible to the
user as the state variables are easily measured and understood. Compared to using total flow rate and mole fractions,
this approach changes how the bilinear terms (flow rate times mole fraction) appear in the problem structure, and may
result in improved performance for some applications. However, this approach has a number of limitations which the
user should be aware of:

• If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit,
as the state definition does not contain information on multiphase flow. This increases the number of complex
equilibrium calculations that must be performed, which could be avoided by using a different state definition.

• State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature
and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FcTP module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol_comp

• temperature

• pressure

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• flow_mol_phase (𝐹𝑚𝑜𝑙,𝑝)

• mole_frac_comp (𝑥𝑗)

• mole_frac_phase_comp (𝑥𝑝,𝑗)

• phase_frac (𝜓𝑝)
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Expressions

An Expression is created for the total flowrate such that 𝐹 =
∑︀
𝐹𝑗

Constraints

In all cases, a constraint is created to calculate component mole fractions from the component flow rates.

𝐹𝑗 = 𝑥𝑗 ×
∑︁

𝐹𝑗

Note: If only one component is present in the property package, this is simplified to 𝑥𝑗 = 1.

If the property package supports only one phase:

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝑥𝑝,𝑗 = 𝑥𝑗 for all 𝑗

𝜓𝑝 = 1

If the property package supports only two phases, the Rachford-Rice formulation is used:∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝐹𝑚𝑜𝑙,𝑗 =
∑︁
𝑝

(𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗) for all 𝑗

∑︁
𝑗

𝑥phase 1,𝑗 −
∑︁
𝑗

𝑥phase 2,𝑗 = 0

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

If the property package supports more than two phases, the following general formulation is used:

𝐹𝑚𝑜𝑙,𝑗 =
∑︁
𝑝

(𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗) for all 𝑗

∑︁
𝑗

𝑥𝑝,𝑗 = 1 for all 𝑝

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy
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FPhx

Contents

• FPhx

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (𝐹 : flow_mol), overall (mixture) mole fractions (𝑥𝑗 :
mole_frac_comp), total molar enthalpy (ℎ: enth_mol) and pressure (𝑃 : pressure). As such, there are 3 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

state variables, however only 2 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 are independent as the mole fraction must sum to 1.

Application

This approach is commonly used by other process simulation tools as it avoids the issues associated with using temper-
ature and pressure as state variables in single component systems. However, as the user generally does not know the
specific enthalpy of their feed streams, this approach requires some method to calculate this for feed streams. This can
generally be done by specifying temperature of the feed, and then solving for the specific enthalpy.

This approach suffers from the following limitation which the user should be aware of:

• If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit,
as the state definition does not contain information on multiphase flow. This increases the number of complex
equilibrium calculations that must be performed, which could be avoided by using a different state definition.

Bounds

The FPhx module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol

• enth_mol

• pressure

• temperature

Supplying bounds for temperature is supported as these are often known to greater accuracy than the enthalpy bounds,
and specifying these can help the solver find a feasible solution.

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is
implicitly defined by the sum of mole fractions constraint.
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Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• flow_mol_phase (𝐹𝑚𝑜𝑙,𝑝)

• mole_frac_phase_comp (𝑥𝑝,𝑗)

• temperature (𝑇 )

• phase_frac (𝜓𝑝)

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.∑︁
𝑗

𝑥𝑗 = 1

Note: The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the
inlet stream.

Additionally, a constraint relating the total specific enthalpy to the specific enthalpy of each phase is written.

ℎ𝑚𝑜𝑙 =
∑︁
𝑗

𝜓𝑝 × ℎ𝑚𝑜𝑙,𝑝

If the property package supports only one phase:

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝑥𝑝,𝑗 = 𝑥𝑗 for all 𝑗

𝜓𝑝 = 1

If the property package supports only two phases, the Rachford-Rice formulation is used:∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝐹𝑚𝑜𝑙 × 𝑥𝑗 =
∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗

∑︁
𝑗

𝑥phase 1,𝑗 −
∑︁
𝑗

𝑥phase 2,𝑗 = 0

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

If the property package supports more than two phases, the following general formulation is used:

𝐹𝑚𝑜𝑙 × 𝑥𝑗 =
∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗

∑︁
𝑗

𝑥𝑝,𝑗 = 1 for all 𝑝

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝
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Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy

FcPh

Contents

• FcPh

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total component flow (𝐹 : flow_mol_comp), total specific enthalpy
(ℎ: enth_mol) and pressure (𝑃 : pressure). As such, there are 2 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 state variables.

Application

This approach is similar to the FPhx formulation used by many process simulators, with the exception that component
flow rates are used in place of total flow and mole fractions. This changes where the bilinear terms (flow rate time mole
fractions) appear in the problem structure and may improve robustness in some cases. The use of pressure and enthalpy
as state variables avoids the issues related to using temperature and pressure as state variables for single component
systems. However, as the user generally does not know the specific enthalpy of their feed streams, this approach requires
some method to calculate this for feed streams. This can generally be done by specifying temperature of the feed, and
then solving for the specific enthalpy.

This approach suffers from the following limitation which the user should be aware of:

• If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit,
as the state definition does not contain information on multiphase flow. This increases the number of complex
equilibrium calculations that must be performed, which could be avoided by using a different state definition.
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Bounds

The FcPh module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol_comp

• enth_mol

• pressure

• temperature

Supplying bounds for temperature is supported as these are often known to greater accuracy than the enthalpy bounds,
and specifying these can help the solver find a feasible solution.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• flow_mol_phase (𝐹𝑚𝑜𝑙,𝑝)

• mole_frac_comp (𝑥𝑗)

• mole_frac_phase_comp (𝑥𝑝,𝑗)

• temperature (𝑇 )

• phase_frac (𝜓𝑝)

Expressions

An Expression is created for the total flowrate such that 𝐹 =
∑︀
𝐹𝑗

Constraints

In all cases, a constraint is created to calculate component mole fractions from the component flow rates.

𝐹𝑗 = 𝑥𝑗 ×
∑︁

𝐹𝑗

Note: If only one component is present in the property package, this is simplified to 𝑥𝑗 = 1.

If the property package supports only one phase:

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝑥𝑝,𝑗 = 𝑥𝑗 for all 𝑗

𝜓𝑝 = 1
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If the property package supports only two phases, the Rachford-Rice formulation is used:∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝐹𝑚𝑜𝑙,𝑗 =
∑︁
𝑝

(𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗) for all 𝑗

∑︁
𝑗

𝑥phase 1,𝑗 −
∑︁
𝑗

𝑥phase 2,𝑗 = 0

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

If the property package supports more than two phases, the following general formulation is used:

𝐹𝑚𝑜𝑙,𝑗 =
∑︁
𝑝

(𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗) for all 𝑗

∑︁
𝑗

𝑥𝑝,𝑗 = 1 for all 𝑝

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy

FpcTP

Contents

• FpcTP

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis
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State Definition

This approach describes the material state in terms of phase-component flow (𝐹𝑝,𝑗 : flow_mol_phase_comp), tempera-
ture (𝑇 : temperature) and pressure (𝑃 : pressure). As such, there are 2 + 𝑝ℎ𝑎𝑠𝑒𝑠 *𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 state variables.

Application

This approach required knowledge of the phase-equilibrium of the material in order to define the state variables. Com-
pared to using total flow rate and mole fractions, this approach contains full information on the phase equilibria within
the state variables, and thus avoids the needs for flash calculations in many cases. This can greatly reduce the com-
plexity of the problem, and results can significantly affect the tractablity of the problem. However, this approach has a
number of limitations which the user should be aware of:

• Users must have knowledge of , or calculate, the phase-component flows of all inlet streams. For sinlge phase
flows this is often known, but for streasm with potetnial two-phase behaviour this can reqruire a set of flash
calculations for the feed streasm (users can make use of Feed blocks to assist with this).

• State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature
and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FpcTP module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol_phase_comp

• temperature

• pressure

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• mole_frac_phase_comp (𝑥𝑝,𝑗)

Expressions

• flow_mol (𝐹 =
∑︀
𝐹𝑝,𝑗)

• flow_mol_phase (𝐹𝑝 =
∑︀
𝐹𝑝,𝑗𝑗)

• flow_mol_comp (𝐹𝑗 =
∑︀
𝐹𝑝,𝑗𝑝)

• mole_frac_comp (𝑥𝑗 =
∑︀

𝐹𝑝,𝑗

𝐹 )

• phase_frac (𝜓𝑝 =
𝐹𝑝

𝐹 or 𝜓𝑝 = 1 if only single phase)
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Constraints

A set of constraints is created to calculate phase-component mole fractions from the phase-component flow rates.

𝐹𝑗 = 𝑥𝑝,𝑗 ×
∑︁

𝐹𝑝 = 𝐹𝑝,𝑗

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy

Setting Bounds on State Variables

For optimization applications, it is important to specify a good initial guess and bounds on the state variables in order
to improve the robustness of the problem. Further, due to the empirical nature of most thermophysical correlations
these correlations are only valid in specific range of states. Users should set the state_bounds configuration argument
to define the bounds on the state variables of their property package.

The state_bounds configuration argument should be a dict where the keys are the names of the state variables (using
the standard naming convention) and the values should be a tuple with the form (lower, nominal, upper, units). The
lower and upper values are used to set the lower and upper bounds respectively, whilst the nominal value is used to set
the initial value for the state variable. The units value is optional, and is used to specify the units of measurement for
the values provided, which will be used to automatically convert these values to the base set of units defined for the
property package if required. If the units value is omitted, it is assumed that the values provided are in the base unit set
for the property package.

Note: Some state definitions allow for setting on additional variables beyond the chosen state variables (temperature
is a common example). See the documentation for your state definition for more information on what bounds can be
set using the state_bounds argument.

Reference State

Many thermophysical properties are relative quantities, and require the definition of a thermodynamic reference state.
Whilst some simpler models and correlations forego this or define the reference state implicitly, the IDAES Generic
Property Package requires the user to specify the thermodynamic reference state (even if it is not used explicitly).

As such, users must provide the following two configuration arguments:

• pressure_ref - pressure at reference state

• temperature_ref - temperature at reference state
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Defining Phase Equilibria

Phase equilibrium and separation is a key part of almost all chemical processes, and also represent some of the most
complex and non-linear constraints in a model, especially when dealing with systems which may cross phase bound-
aries. Systems may also include multiple interacting phases with equilibrium, which further complicates the problem.
As such, good formulations of these constraints is key to a robust and tractable model.

The IDAES Generic Property Package framework supports a range of phase equilibrium behaviors, including multiple
phases in equilibrium and different formulations for describing the equilibria. These are all optional, and users do not
need to define phase equilibria if it is not required for their system.

Setting up phase equilibrium within the framework is done using three configuration arguments as discussed below.
However, users should be aware that some of these options require definition of further properties, such as bubble and
dew point calculations.

Define Phases in Equilibrium

The first step in setting up phase equilibrium in the framework is to describe which phases are in equilibrium with each
other. In general, for phases to be in equilibrium with each other, the following conditions need to be met:

1. Phases must be in direct contact with each other, and

2. At least one component must appear in both phases (equilibria involving chemical reactions are handled by
ReactionBlocks).

In order to describe which phases are in equilibrium, the user needs to set the phase_in_equilibrium construction
argument, which should be a list of 2-tuples where each tuple describes a pair of phases which are in equilibrium. Any
component which appears in both phases in a pair is assumed to be in equilibrium.

A simple example for a VLE system is shown below.

"phases_in_equilibrium" = [("Vap", "Liq")]

Note: Users should take care not to over define their system. For example, in a VLSE system a user could potentially
write three sets of equilibrium constraints (VL, LS and VS). However, this would result in an over defined system, as
only two of these three are independent. For most situations, a user would consider only the VL and LS equilibria, with
the VS being implicitly defined.

Define Equilibrium State Formulation

Next, for each pair of phases in equilibrium, the user must define a formulation for the equilibrium state. To handle the
complexities of disappearing phases, the IDAES Generic Property Package Framework allows for phase equilibrium to
be solved at a separate equilibrium state rather than the actual state of the material. This allows for formulations which
avoid disappearing phases by limiting the equilibrium state to exist within the valid two-phase region, whilst returning
a negligible amount of any phase which is not valid at the actual material state.

The equilibrium state formulation is set using the phase_equilibrium_state configuration argument. This should be a
dict where the keys are 2-tuples of phases in equilibrium (matching those defined in the phases_in_equilibrium argu-
ment) and values are a phase equilibrium state formulation method. The IDAES Generic Property Package Framework
contains a library of methods for the formulation of the phase equilibrium state, which is shown below.
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Phase Equilibrium State Libraries

Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

Contents

• Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

– Source

– Introduction

– Formulation

Source

Burgard, A.P., Eason, J.P., Eslick, J.C., Ghouse, J.H., Lee, A., Biegler, L.T., Miller, D.C., 2018, A Smooth, Square
Flash Formulation for Equation-Oriented Flowsheet Optimization. Proceedings of the 13th International Symposium
on Process Systems Engineering – PSE 2018, July 1-5, 2018, San Diego.

Introduction

Typically, equilibrium calculations are only used when the user knows the current state is within the two-phase envelope.
For simulation only studies, the user may know a priori the condition of the stream but when the same set of equations
are used for optimization, there is a high probability that the specifications can transcend the phase envelope. In these
situations, the equilibrium calculations become trivial, thus it is necessary to find a formulation that has non-trivial
solutions at all states.

To address this, the smooth vapor-liquid equilibrium (VLE) formulation always solves the equilibrium calculations
at a condition where a valid two-phase solution exists. In situations where only a single phase is present, the phase
equilibrium is solved at the either the bubble or dew point, where the non-existent phase exists but in negligible amounts.
In this way, a non-trivial solution is guaranteed but still gives near-zero material in the non-existent phase in the single
phase regions.

Formulation

The approach used by the smooth VLE formulation is to define an “equilibrium temperature” (𝑇𝑒𝑞) at which the equi-
librium calculations will be performed. The equilibrium temperature is computed as follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇 )

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇 is the actual stream temperature, 𝑇1 is an intermediate temperature variable and 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 and 𝑇𝑑𝑒𝑤 are the
bubble and dew point temperature of mixture. In order to express the maximum and minimum operators in a tractable
form, these equations are reformulated using the IDAES smooth_max and smooth_min operators which results in the
following equations:

𝑇1 = 0.5

[︂
𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +

√︁
(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21

]︂
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𝑇𝑒𝑞 = 0.5

[︂
𝑇1 + 𝑇𝑑𝑒𝑤 −

√︁
(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22

]︂
where 𝜖1 and 𝜖2 are smoothing parameters(mutable Params named eps_1 and eps_2). The default values are 0.01 and
0.0005 respectively, and it is recommended that 𝜖1 > 𝜖2. It can be seen that if the stream temperature is less than
that of the bubble point temperature, the VLE calculations will be computed at the bubble point. Similarly, if the
stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew point
temperature. For all other conditions, the equilibrium calculations will be computed at the actual temperature.

Finally, the phase equilibrium is expressed using the following equation:

ΦVap,𝑗(𝑇𝑒𝑞) = ΦLiq,𝑗(𝑇𝑒𝑞)

where Φ𝑝,𝑗(𝑇𝑒𝑞) is the fugacity of component 𝑗 in the phase 𝑝 calculated at 𝑇𝑒𝑞 . The fugacities are calculated using
methods defined by the equation of state chosen by the user for each phase.

Necessary Properties

Next, any component which is involved in a phase equilibrium interaction (i,e, appears in both phases of an interacting
pair) must define a form for the required equilibrium constraint. There are a number of ways these constraints can be
written depending on the equation of state and scaling of the problem. This is set using the phase_equilibrium_form
configuration argument in the Component objects, and takes the form of a dict where the keys are 2-tuples of interacting
phases and the value is the formulation to use for the current component across the given phase pair. For example:

parameters.component_1.config.phase_equilibrium_form = {(phase_1, phase_2): formulation}

A library of common forms for equilibrium constraints is available, and is shown below.

Library of Common Equilibrium Forms

The IDAES Generic Property Package Framework contains a library of common forms for phase equilibrium condi-
tions.

Contents

• Library of Common Equilibrium Forms

– Fugacity (fugacity)

Fugacity (fugacity)

Fugacity of each component must be equal between interacting phases

𝑥𝑝1,𝑗 × 𝑓𝑝1,𝑗 = 𝑥𝑝2,𝑗 × 𝑓𝑝2,𝑗
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Bubble and Dew Point Calculations

Bubble and dew points are often of interest to process engineers for designing process equipment, and appear in some
calculations of other thermodynamic properties. They are also useful in getting initial guesses for states in phase
equilibrium problems, and some equilibrium state formulations rely on these properties.

Whilst calculation of the saturation pressure for single components is relatively simple, calculating the bubble and dew
points of mixtures is more challenging due to the non-linear nature of the equations. Calculation of these properties
is generally done through calculations based on the equations of state for the liquid and vapor phases, however these
calculations can be greatly simplified if ideal behavior is assumed for both phases (i.e. ideal gas and Raoult’s law). To
allow for both cases, the IDAES Generic Property Package Framework provides a library of different formulations for
the bubble and dew point calculations, which can be set using the following arguments:

• bubble_dew_method

A list of available methods is given below:

Bubble and Dew Point Methods

Contents

• Bubble and Dew Point Methods

– Ideal Assumptions (IdealBubbleDew)

∗ Ideal Bubble Pressure

∗ Ideal Bubble Temperature

∗ Ideal Dew Pressure

∗ Ideal Dew Temperature

– Equal Fugacity (log form) (LogBubbleDew)

∗ Bubble Pressure (log form)

∗ Bubble Temperature (log form)

∗ Dew Pressure (log form)

∗ Dew Temperature (log form)
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Ideal Assumptions (IdealBubbleDew)

In the case where ideal behavior can be assumed, i.e. ideal gas assumption and Raoult’s Law holds, the bubble and
dew points can be calculated directly from the saturation pressure using the following equations.

Ideal Bubble Pressure

𝑃𝑏𝑢𝑏 =
∑︁
𝑗

𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇 )

𝑥𝑗(𝑃𝑏𝑢𝑏) × 𝑃𝑏𝑢𝑏 = 𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇 )

where 𝑃𝑏𝑢𝑏 is the bubble pressure of the mixture, 𝑃𝑠𝑎𝑡,𝑗(𝑇 ) is the saturation pressure of component 𝑗 at the system
temperature, 𝑇 , 𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑃𝑏𝑢𝑏) is the mole fraction of the vapor phase at the
bubble pressure.

Ideal Bubble Temperature

∑︁
𝑗

(𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏)) − 𝑃 = 0

𝑥𝑗(𝑇𝑏𝑢𝑏) × 𝑃 = 𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏)

where 𝑃 is the system pressure, 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏) is the saturation pressure of component 𝑗 at the bubble temperature, 𝑇𝑏𝑢𝑏,
𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑇𝑏𝑢𝑏) is the mole fraction of the vapor phase at the bubble temperature.

Ideal Dew Pressure

0 = 1 − 𝑃𝑑𝑒𝑤 ×
∑︁
𝑗

𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇 )

𝑥𝑗(𝑃𝑑𝑒𝑤) × 𝑃𝑠𝑎𝑡,𝑗(𝑇 ) = 𝑥𝑗 × 𝑃𝑑𝑒𝑤

where 𝑃𝑑𝑒𝑤 is the dew pressure of the mixture, 𝑃𝑠𝑎𝑡,𝑗(𝑇 ) is the saturation pressure of component 𝑗 at the system
temperature, 𝑇 , 𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑃𝑑𝑒𝑤) is the mole fraction of the liquid phase at the dew
pressure.

Ideal Dew Temperature

𝑃 ×
∑︁
𝑗

(𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤)) − 1 = 0

𝑥𝑗(𝑇𝑑𝑒𝑤) × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤) = 𝑥𝑗 × 𝑃

where 𝑃 is the system pressure, 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤) is the saturation pressure of component 𝑗 at the dew temperature, 𝑇𝑏𝑢𝑏,
𝑥𝑗 is the overall mixture mole fraction and 𝑦𝑗(𝑇𝑑𝑒𝑤) is the mole fraction of the liquid phase at the dew temperature.
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Equal Fugacity (log form) (LogBubbleDew)

For cases where ideal behavior is insufficient, it is necessary to calculate the fugacity of each component at the relevant
transition point and enforce equality of the fugacity in each phase. As such, this methods depends upon the definition
of fugacity for each phase and component. In this formulation, the logarithm of the phase equilibrium constraint is
used.

Bubble Pressure (log form)

𝑙𝑛(𝑥𝑗) + 𝑙𝑛(𝑓𝑙𝑖𝑞𝑢𝑖𝑑,𝑗(𝑃𝑏𝑢𝑏)) = 𝑙𝑛(𝑥𝑗(𝑃𝑏𝑢𝑏)) + 𝑙𝑛(𝑓𝑣𝑎𝑝𝑜𝑟,𝑗(𝑃𝑏𝑢𝑏))

1 =
∑︁
𝑗

𝑥𝑗(𝑃𝑏𝑢𝑏)

where 𝑃𝑏𝑢𝑏 is the bubble pressure of the mixture, 𝑓𝑝,𝑗(𝑃𝑏𝑢𝑏) is the fugacity of component 𝑗 in phase 𝑝 at 𝑃𝑏𝑢𝑏, 𝑥𝑗 is
the overall mixture mole fraction and 𝑥𝑗(𝑃𝑏𝑢𝑏) is the mole fraction of the vapor phase at the bubble pressure.

Bubble Temperature (log form)

𝑙𝑛(𝑥𝑗) + 𝑙𝑛(𝑓𝑙𝑖𝑞𝑢𝑖𝑑,𝑗(𝑇𝑏𝑢𝑏)) = 𝑙𝑛(𝑥𝑗(𝑇𝑏𝑢𝑏)) + 𝑙𝑛(𝑓𝑣𝑎𝑝𝑜𝑟,𝑗(𝑇𝑏𝑢𝑏))

1 =
∑︁
𝑗

𝑥𝑗(𝑇𝑏𝑢𝑏)

where 𝑇𝑏𝑢𝑏 is the bubble temperature of the mixture, 𝑓𝑝,𝑗(𝑇𝑏𝑢𝑏) is the fugacity of component 𝑗 in phase 𝑝 at 𝑇𝑏𝑢𝑏, 𝑥𝑗
is the overall mixture mole fraction and 𝑥𝑗(𝑇𝑏𝑢𝑏) is the mole fraction of the vapor phase at the bubble temperature.

Dew Pressure (log form)

𝑙𝑛(𝑥𝑗(𝑃𝑑𝑒𝑤)) + 𝑙𝑛(𝑓𝑙𝑖𝑞𝑢𝑖𝑑,𝑗(𝑃𝑑𝑒𝑤)) = 𝑙𝑛(𝑥𝑗) + 𝑙𝑛(𝑓𝑣𝑎𝑝𝑜𝑟,𝑗(𝑃𝑑𝑒𝑤))

1 =
∑︁
𝑗

𝑥𝑗(𝑃𝑑𝑒𝑤)

where 𝑃𝑑𝑒𝑤 is the dew pressure of the mixture, 𝑓𝑝,𝑗(𝑃𝑑𝑒𝑤) is the fugacity of component 𝑗 in phase 𝑝 at 𝑃𝑑𝑒𝑤, 𝑥𝑗 is the
overall mixture mole fraction and 𝑥𝑗(𝑃𝑑𝑒𝑤) is the mole fraction of the vapor phase at the dew pressure.

Dew Temperature (log form)

𝑙𝑛(𝑥𝑗(𝑇𝑑𝑒𝑤)) + 𝑙𝑛(𝑓𝑙𝑖𝑞𝑢𝑖𝑑,𝑗(𝑇𝑑𝑒𝑤)) = 𝑙𝑛(𝑥𝑗) + 𝑙𝑛(𝑓𝑣𝑎𝑝𝑜𝑟,𝑗(𝑇𝑑𝑒𝑤))

1 =
∑︁
𝑗

𝑥𝑗(𝑇𝑑𝑒𝑤)

where 𝑇𝑑𝑒𝑤 is the dew temperature of the mixture, 𝑓𝑝,𝑗(𝑇𝑑𝑒𝑤) is the fugacity of component 𝑗 in phase 𝑝 at 𝑇𝑑𝑒𝑤, 𝑥𝑗 is
the overall mixture mole fraction and 𝑥𝑗(𝑇𝑑𝑒𝑤) is the mole fraction of the vapor phase at the dew temperature.
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Global Options

The IDAES Generic Properties Framework also includes a number of general options for further customizing how
certain properties are calculated. These options are listed below. Note that these are generally considered to be global
options and will affect all phases and components in the system. Global configuration arguments can be declared at the
top level of the property package configuration dict.

Contents

• Global Options

– Enthalpy of Formation

Enthalpy of Formation

In most process applications, it is necessary to include calculation of the enthalpy of formation for each component
in the system in order to account for latent heat due to chemical reactions or phase changes. However, in certain
circumstances, such as systems with no reactions or phase equilibria or cases where the user wishes to specify latent
heats as separate parameters, it may be desirable to exclude the heat of formation from the specific enthalpy calculations.

Users can define whether or not the heat of formation should be included in the calculation of the specific enthalpy
using the include_enthalpy_of_formation configuration argument. If this is set to True (the default behavior) then heat
of formation will be included in the calculation of the specific enthalpy, if set to False then heat of formation will be
excluded.

Developing New Property Libraries

Information on how to develop new components for the IDAES Generic Property Package Framework are given in the
following sections.

Contents

Developing Pure Component Methods

Contents

• Developing Pure Component Methods

– Naming Methods

– Method Arguments

– Method Parameters

– Method Body

– Example

The most common task developers of new property packages will need to do is writing methods for new pure compo-
nent property calculations. Most equation of state type approaches rely on a set of calculations for pure components
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under ideal conditions which are then modified to account for mixing and deviations from ideality. These pure com-
ponent property calculations tend to be empirical correlations based on experimental data (generally as functions of
temperature) and due to their empirical nature a wide range of forms have been used in literature.

In order to support different forms for these calculations, the IDAES Generic Property Package Framework uses Python
methods to define the form of pure component property calculations. This allows developers and users to easily enter
the form they wish to use for their application with a minimum amount of code.

Naming Methods

The IDAES Generic Property Package Framework supports two ways of providing pure component property methods:

1. Providing the method directly - users may directly provide their method of choice as a config argument (con-
fig.property_name) in the PropertyParameterBlock, in which case the method can use any name the user desires.

2. Providing a library module - alternatively, users can provide a module containing a library of methods as the
config argument (config.property_name), in which case the framework searches the module for a method with
the same name as the property (and the config argument). E.g., for the property enth_mol_phase_comp the
method name would be enth_mol_phase_comp (as would the associated config argument).

Method Arguments

Note: Currently, the IDAES Generic Property Package Framework assumes pure component property calculations
will be a function of only temperature. If additional functionality is required, please contact the IDAES Developers.

Currently, all pure component property methods in the IDAES Generic Property Package Framework take three argu-
ments:

1. A reference to the StateBlock where the method will be used (generally self ),

2. An element of a component list,

3. A pointer to the temperature variable to be used in the calculation. By using a pointer rather than an absolute
reference (i.e. self.temperature), this allows the method to be applied at different temperatures as necessary (e.g.
the reference temperature).

Method Parameters

Pure component property methods all depend on a number of parameters, often derived from empirical data. In order
to avoid duplication of parameters and facilitate parameter estimation studies, all property parameters are stored in the
PropertyParameterBlock and each StateBlock contains a reference to its associated parameter block (self.params).

For pure component property methods, parameter names are define in the associated methods thus developers can
choose any name they desire. However, the IDAES standard is to use the name of the property appended with _coeff
and developers are encouraged to follow this convention.
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Method Body

The body of the pure component property method should assemble an expression describing the specified quantity for
the component given in the method arguments. This expression should involve Pyomo components from the StateBlock
(i.e. self ), the associated PropertyParameterBlock (self.params) and be returned in the final step of the method.

Example

Below is an example of a pure component property method for the molar heat capacity of a component in the (ideal)
gas phase with the form 𝑐p, ig,𝑗 = 𝐴+𝐵 × 𝑇 .

def cp_mol_ig_comp(self, component, temperature):
# Method named using standard naming convention
# Arguments are self, a component and temperature

# Return an expression involving temperature and parameters
return (self.params.cp_mol_ig_comp_coeff[component, "A"] +

self.params.cp_mol_ig_comp_coeff[component, "B"]*temperature)

Note that the method only returns an expression representing the R.H.S. of the correlation.

Developing Equation of State Modules

Contents

• Developing Equation of State Modules

– Equations of State and Multiple Phases

– General Structure

– Phase Equilibrium

– Accessing Pure Component Property Methods

– Common Methods

– Mixture Property Methods

– Example

The central part of any property package are the equations of state or equivalent models which describe how the mixture
behaves under the conditions of interest. For systems with multiple phases and phase equilibrium, each phase must have
its own equation of state (or equivalent), which must provide information on phase equilibrium which is compatible
with the other phases in the system.
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Equations of State and Multiple Phases

The IDAES Generic Property Package Framework requires users to assign an equation of state module for each phase
in their system, thus equations of state can be written for specific phases (e.g. an ideal gas equation of state). In some
cases, developers may wish to write equations of state for multiple phases, and the generic framework supports this by
indexing all properties by phase.

Developers are encouraged to add checks to their methods to ensure their equations of state are only applied to phases
where they are appropriate (e.g. an ideal gas equation of state should raise an exception if the phase argument is not
“Vap”).

General Structure

Equation of State Modules in the IDAES Generic Property Package Framework are files (modules) containing a number
of methods which describe the behavior of the material. These method define how each of the properties associated
with a given phase should be calculated, and the list of properties supported for a given phase is limited by the methods
provided by the developer of the equation of state.

Phase Equilibrium

When calculating phase equilibrium, the IDAES Generic Property Package Framework uses the general form
Φ𝑒

phase 1, j = Φ𝑒
phase 2, j where Φ𝑒

𝑝,𝑗 is the fugacity of component 𝑗 in phase 𝑝 calculated at the equilibrium tempearture
(𝑇𝑒𝑞 , variable name self._teq). The equilibrium temperature is calculated using the users’ choice of phase equilibrium
formulation and determines how the property packge will handle phase transitions.

All equation of state methods should contain a method for calculating fugacity if they are to support phase equilibrium
calculations.

Accessing Pure Component Property Methods

In most cases, property calculations in the equation of state methods will require calculations of the pure
component properties for the system. These can be accessed using get_method (imported from from
idaes.property_models.core.generic.generic_property) using the form get_method(self, “property_name”). This will
return the method defined by the user in the PropertyParameterBlock for the named property, which can then be used
in the equation of state methods (note that users will need to call the method and provide it with the required arguments
- generally self, component and a pointer to temperature).

Common Methods

For equations of state that support multiple phases, there may be certain calculations and/or variables that are common
to all phases. To support this (and avoid duplication of these), equation of state methods should contain a method
named common which implements any component which are common to multiple phases. This method should also
contain checks to ensure that these components have not already been created for another phase in the system (to avoid
duplication). In cases where there are no common components, this method can pass.
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Mixture Property Methods

The main part of an equation of state method are a set of methods which describe properties of the mixture for a given
phase. Any mixture property that the property package needs to support must be defined as a method in the equation
of state module, which returns an expression for the given property (construction of the actual Pyomo component will
be handled by the core framework code).

Mixture properties can be defined in any way the developer desires, and can cross-link and reference other mixture
properties as required. Developers should recall that the State Definition method should have defined the following
properties which can be used in mixture property correlations:

• pressure

• temperature

• mole_frac_phase_comp

• phase_frac

Other state variables may have been defined by the user’s choice of State Definition, however this cannot be guaranteed.
Developers may chose to assume that certain state variables will be present, but this will limit the application of their
equation of state module to certain state definitions which should be clearly documented.

Example

Below is an example method for a method in an equation of state module for calculating molar density that supports
both liquid and vapor phases.

def dens_mol_phase(b, phase):
if phase == "Vap":

return b.pressure/(b.params.gas_const*b.temperature)
elif phase == "Liq":

return sum(b.mole_frac_phase_comp[phase, j] *
get_method(b, "dens_mol_liq_comp")(b, j, b.temperature)
for j in b.params.component_list)

else:
raise PropertyNotSupportedError("Phase not supported")

Developing State Definitions

Contents

• Developing State Definitions

– define_state(self)

∗ State Variables

∗ define_state_vars

∗ Auxiliary Variables

∗ Supporting Constraints

∗ always_flash
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∗ get_material_flow_terms(phase, comp)

∗ get_enthalpy_flow_terms(phase)

∗ get_material_density_terms(phase, component)

∗ get_energy_density_terms(phase)

∗ get_material_flow_basis()

∗ default_material_balance_type()

∗ default_energy_balance_type()

∗ define_port_members()

∗ define_display_vars()

– state_initialization(self)

– self.do_not_initialize

The primary purpose of the State Definition method is to define the state variables which will be used to describe the
state of the mixture in the property package. However, a number of other key aspects of the property package definition
are tied to the choice of state variables and must be declared here as well.

State definitions are defined as Python modules with two methods and one list, which are describe below.

define_state(self)

The first method in a State Definition module is the define_state method. This method is used to define the state
variables and associated components and methods. The define_state method must define the following things:

State Variables

The most important part of a State Definition module is the definition of the state variables that should be used in the
resulting property package. The choice of state variables is up to the module developer, however the set of variables
selected must contain sufficient information to fully define the extensive and intensive state of the material. That is,
if all the state variables are fixed, the resulting set of variables and constraints should form a square problem (i.e. 0
degrees of freedom). Beyond this requirement however, developers may choose any combination of state variables they
wish.

State variables should be defined as Pyomo Vars with names drawn from the IDAES naming standard, and should
include initial values and bounds. The Generic Property Package Framework includes an optional user input of bounds
for the state variables (config.state_bounds) which developers are encouraged to make use of when setting bounds and
initializing variables.
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define_state_vars

In order to inform the IDAES Process Modeling Framework of which variables should be considered state variable,
developers are required to define a method named define_state_vars. This method should return a dict where the keys
are a string identifier for each state variable and the values being pointers to the associated Var component. For example:

def define_state_vars_state_definition():
return {"flow_mol": self.flow_mol,

"mole_frac_comp": self.mole_frac_comp,
"pressure": self.pressure,
"temperature": self.temperature,}

self.define_state_vars = define_state_vars_state_definition

Auxiliary Variables

Whilst the developer is free to choose any set of state variable they wish to define their system, there are certain
properties/quantities associated with material state that are frequently used in process models. For example, most
property calculation methods drawn upon empirical correlations for pure component properties which are most com-
monly expressed as functions of temperature (and sometimes pressure). Additionally, multiphase systems often require
knowledge of the volume fractions of each phase present.

To ensure that these properties/quantities are available when required, it is required that State Definition modules define
the following quantities if they are not already one of the state variables chosen:

• temperature - the temperature of the mixture,

• pressure - the pressure of the mixture,

• mole_frac_phase_comp - mole fraction of the mixture by phase and component (even if only one phase is
present),

• phase_frac - volume fractions of each phase (even if only one phase is present).

These quantities can be defined as either Pyomo Vars with associated Constraints, or as Pyomo Expressions as the
developer desires. Developers may choose to include additional auxiliary variables as required by their needs (e.g.
different forms of flow rates).

Supporting Constraints

Depending upon the choice of state and auxiliary variables, developers may need to include a number of supporting
constraints in their State Definitions. Common examples include constraints for the sum of mole fractions in the system,
and relationships between different types of flow rates. Any number of constraints can be included by the developer to
suit their needs, subject to the limitations of degrees of freedom.

However, developers need ot be aware of the difference between inlet and outlet states and how this affects which con-
straints can be written. In the case of inlet states, all state variables are defined by the upstream process and thus no
constraint can be written that involves only state variables (e.g. sum of mole fractions). For outlet (and intermediate)
states however, it is often necessary to include these types of constraints to fully define the system. The IDAES Pro-
cess Modeling Framework uses the config.defined_state configuration argument to indicate situations where the state
variables should be considered fully defined (e.g. inlets) which can be used in if statements to determine whether a
constraint should be included.
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always_flash

Whilst the set of state variables chosen must be sufficient for fully defining the state of the material, depending on the
set of state variables chosen information of the phase separation (if applicable) may or may not be explicitly included.
For example, using total flow rate and composition along with pressure and specific enthalpy is sufficient to define
the state of the material, however it does not explicitly describe the phase fractions of the system. In these cases, it is
necessary to perform a flash calculation at every state in the system to determine the phase fractions. However, If the
state is defined in terms of flow rates by phase and component along with pressure and specific enthalpy, information
on the phase separation is already included in the state definition and flash calculations are not required where the state
is fully defined (i.e. config.state_defined is True).

To inform the Generic Property Package Framework of whether phase equilibrium calculations should be included
when config.state_defined is True, all State Definitions are required to include a component named always_flash which
is a boolean indicating whether equilibrium calculations should always be included (True) or only included when the
state is not fully defined (False).

get_material_flow_terms(phase, comp)

In order to automate the construction of the material balance equations, the IDAES Process Modeling Frame-
work expects property packages to provide expressions for the flow terms in these equations. This is done via the
get_material_flow_terms method which should return an expression involving variables in the StateBlock which should
be used as the flow term in the material balances.

There are many forms this expression can take depending upon the state variables chosen and how the developer wishes
to formulate the material balance equations, and the framework endeavors to support as many of these as possible.
Material flow terms are defined on a phase-component basis (i.e. a separate expression for each component in each
phase). An example of a get_material_flow_term using flow rate and mole fractions by phase is shown below.

def get_material_flow_terms_definition(phase, component):
return self.flow_mol_phase[phase] * self.mole_frac_phase_comp[phase, component]

self.get_material_flow_terms = get_material_flow_terms_definition

get_enthalpy_flow_terms(phase)

In the same way that get_material_flow_terms is used to automate construction of the material balance equations,
automating the construction of the energy balance equations requires a get_enthalpy_flow_terms method. This method
should return an expression for the enthalpy flow terms involving variables in the StateBlock.

There are many forms for the enthalpy flow terms as well, and developers may choose whichever best suits their needs.
Enthalpy flow terms are defined on a phase basis, and an example is shown below using flow rate and specific enthalpy
by phase.

def get_enthalpy_flow_terms_definition(phase):
return self.flow_mol_phase[phase] * self.enth_mol_phase[phase]

self.get_enthalpy_flow_terms = get_enthalpy_flow_terms_definiton
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get_material_density_terms(phase, component)

For dynamic system, calculation of the material holdups also requires a material density term which is defined using
the get_material_density_terms method. This method is defined in a similar fashion to the get_material_flow_terms
method and is also defined on a phase-component basis.

get_energy_density_terms(phase)

For dynamic system, calculation of the energy holdups also requires an energy density term which is defined using the
get_energy_density_terms method. This method is defined in a similar fashion to the get_enthalpy_flow_terms method
and is also defined on a phase basis. Note however that the energy density term should only include internal energy
contributions, and not the full enthalpy density (i.e. excluding the PV term).

get_material_flow_basis()

To automate generation of some terms in the balance equations, the IDAES Process Modeling Framework needs
to know the basis (mass, mole or other) of the flow terms. This is defined in the State Definition by providing a
get_material_flow_basis method which returns a MaterialFlowBasis Enum (importable from idaes.core). E.g.:

def get_material_flow_basis_definition():
return MaterialFlowBasis.molar

self.get_material_flow_basis = get_material_flow_basis_definition

default_material_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the material balance
equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly
encouraged to define a default form for the material balance equations.

To set the default material balance type, the State Definition must implement a method which returns a MaterialBal-
anceType Enum (importable from idaes.core. E.g.:

def default_material_balance_type_definition():
return MaterialBalanceType.componentTotal

self.default_material_balance_type = default_material_balance_type_definition

default_energy_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the energy balance
equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly
encouraged to define a default form for the energy balance equations.

To set the default energy balance type, the State Definition must implement a method which returns an EnergyBalance-
Type Enum (importable from idaes.core. For an example, see default_material_balance_type above.
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define_port_members()

In some situations, it is desirable to pass additional information between unit operations in a model beyond just the
state variables. In these circumstance, the developer may define a define_port_members method which describes the
information to be passed in Ports connecting units. This method should return a dict with a form similar to that of
define_state_vars. Note that developers must also ensure that any additional information passed in Ports does not result
in an over-specified problem, generally by excluding certain constraints in StateBlocks where config.defined_state is
True.

If this method is not defined, Ports will default to using the variables described in define_state_vars instead.

define_display_vars()

Developers may also define a define_display_vars method which is used by the IDAES report methods to determine
what information should be displayed for each state. The define_display_vars method should return a dict containing
the information to display with the keys being the display name for the information and value being the quantity to
display (similar to the define_state_Vars method). If this method is not defined then the define_state_vars method is
used by the report methods instead.

state_initialization(self)

The state_initialization method is called as part of the Generic Property Package Framework initialize method and is
expected to set initial guesses for any auxiliary variables defined by the State Definition based on the current values of
the state variables. Note that the state variables will have been provided with initial guesses for the current state of the
material from the process models, and thus will likely not be at their pre-defined initial conditions.

self.do_not_initialize

The do_not_initialize component is a list containing a list of Constraint names which should remain deactivated during
initialization of the StateBlock and only reactivated during the final step on initialization. Common examples of these
are those constraints that are only written for outlet Blocks (i.e. those when config.defined_state is False), such as
overall sum of mole fraction constraints.

Developing Phase Equilibrium Methods

Contents

• Developing Phase Equilibrium Methods

– phase_equil(self)

– phase_equil_initialization(self)

Handling phase equilibrium and phase transitions within an equation oriented framework can be challenging as it is
necessary to ensure that all constraints and variables has feasible solution at all states. When dealing with disappearing
phases and correlations that can become ill-defined or singular outside of the two phase envelope, it is necessary to
either bound the problem to the two-phase region or reformulate the problem.

The IDAES Generic Property Package Framework provides support for reformulating the problem by defining an “equi-
librium temperature” (self._teq) at which all phase equilibrium calculations are performed. Issues surrounding phase
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transitions can be avoided by providing a definition for the equilibrium temperature that satisfies the following con-
straints:

𝑇bubble <= 𝑇𝑒𝑞 <= 𝑇dew

The Phase Equilibrium module allows users to provide a definition for the equilibrium temperature, along with any
necessary instructions on how to initialize the components associated with this definition.

A Phase Equilibrium module consists of two methods , which are described below.

phase_equil(self)

The phase_equil method is responsible for defining the variables and constraints necessary for calculating the equilib-
rium temperature, and at a minimum must contain one constraint relating the equilibrium temperature (self._teq) to the
system temperature (self.temperature).

phase_equil_initialization(self)

This method is called by the Generic Property Package Framework initialization routine and should initialize the con-
straints associated with the phase equilibrium definition.

Note that the Generic Property Package Framework beings by deactivating all constraints in the StateBlock so the first
step in the phase_equil_initialization method should be to activate any constraints defined in phase_equil. Additionally,
this method may calculate initial values for any supporting variables defined in phase_equil based on variables that
have already been initialized (primarily temperature and bubble and dew points if used). Developers should be careful
however to fully understand the initialization sequence of the Generic Property Package Framework to understand
which variables may have been initialized at this point.

Introduction

Note: The generic property package framework is still under development. Whilst the current framework is functional,
features are still being developed and added.

The generic property package framework builds upon the existing framework for implementing property packages
within IDAES, and will not prevent the use of custom written property packages in the future. Due to the complex
nature of thermophysical property calculations, the generic property framework cannot support all possible materials
and applications. Whilst it is hoped that the generic framework will be able to handle most common applications, users
with more unusual systems or those solving computationally intensive problems may need to write custom property
packages for their cases.

Property packages represent the core of any process model, and having a suitable property package is key to successfully
modeling any process system. However, developing property packages is a significant challenge even for experienced
modelers as they involve large numbers of tightly coupled constraints and parameters. The goal of the IDAES Generic
Property Package Framework is to provide a flexible platform on which users can build property packages for common
types of systems by calling upon libraries of modular sub-models to build up complex property calculations with the
least effort possible.

The Generic Property Package Framework breaks down property packages into a number of components which can
be assembled in a modular fashion. Users need only provide those components which they require for their system of
interest, and components can be drawn from libraries of existing components or provided by the user as custom code.
Details on how to set up the definition of a property package using the generic framework are given here.

The components which make up a generic property package are as follows:
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1. Choose a base set of units of measurement for the property package.

2. Define the components which make up the material of interest, including methods for calculating the pure com-
ponent properties of interest in the system.

3. Define the phases of interest for the application, including equations of state and other phase specific decisions.

4. Choose the set of state variables you wish to use and a reference state for the system.

5. (Optional) Define any phase equilibria which occurs in the system and methods associated with calculating this.

6. (Optional) A number of global options are avaialble for further customizing behavior of certain property calcu-
lations.

The following sections will describe how to define a property package using the Generic Property Package Framework
along with the libraries of sub-models currently available. Finally, the developers section describes how to go about
defining your own custom components to use when creating custom property packages.

Note: Within most IDAES models “parameters” are in fact defined as Pyomo ‘Vars’ (i.e. variables) which are fixed
at their defined values. Whilst Params would seem to be the logical choice for these, parameter estimation problems
require the parameters being estimated to be defined as Vars so that the solver is free to vary them.

Generic Reaction Package Framework

Contents

Defining Reaction Packages

Contents

• Defining Reaction Packages

– Introduction

– Units of Measurement

– Config Dictionary

– Class Definition

Introduction

In order to create and use a property package using the IDAES Generic Reaction Package Framework, users must
provide a definition for the system they wish to model. The framework supports two approaches for defining the
property package, which are described below, both of which are equivalent in practice.
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Units of Measurement

As with generic thermophysical property packages, when defining a reaction package using the generic framework
users must define the base units for the reaction package (see link). The approach for setting the base units and units
for all parameters is the same as for thermophysical property packages and depends on the approach used to define the
reaction package.

Config Dictionary

The most common way to use the Generic Reaction Package Framework is to create an instance of the GenericReac-
tionParameterBlock component and provide it with a dictionary of configuration arguments, as shown below:

m = ConcreteModel()

m.fs = FlowsheetBlock()

m.fs.thermo_properties = PhysicalParameterBlock()

m.fs.reaction_properties = GenericReactionParameterBlock(default={"property_package": m.
→˓fs.thermo_properties, config_dict})

In the above example, the PhysicalParameterBlock object can be from any thermophysical property package suitable
for the user’s application.

Users need to populate config_dict with the desired options for their system as described in the other parts of this docu-
mentation. An example of a configuration dictionary can be found later on this page. For details on each configuration
option, please see the relevant documentation.

Using this approach, units of measurement are defined using the base_units option in the configuration dictionary.
Users must provide units for the 5 core quantities, and may also provide units for the other 2 SI base quantities (if
required). For details on other configuration options, please see the relevant documentation.

Linking to a Thermophysical Property Package

As state information is defined by thermophysical property packages in IDAES, each reaction package must be linked
to an appropriate thermophysical property package. This linkage is used by the reaction package to find the state
information required to calculate the reaction properties, and thus the thermophysical property package must support
all the properties required by the reaction package.

Setting Reaction Basis

Many reaction properties (e.g. reaction rates) can be defined on different bases, such as a mass or molar basis. All
properties within a package must use the same basis, which can be set using the “reaction_basis” configuration argument
(see below). This must be done using the MaterialFlowBasis Enum, which can be imported from idaes.core.
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Configuration Example

from pyomo.environ import units as pyunits

from idaes.core import MaterialFlowBasis

config_dict = {
"base_units": {"time": pyunits.s,

"length": pyunits.m,
"mass": pyunits.kg,
"amount": pyunits.mol,
"temperature": pyunits.K},

"rate_reactions": {
"R1": {"stoichiometry": {("Liq", "A"): -1,

("Liq", "B"): -1,
("Liq", "C"): 2},

"heat_of_reaction": constant_dh_rxn,
"rate_constant": arrhenius,
"rate_form": power_law_rate,
"concentration_form": ConcentrationForm.moleFraction,
"parameter_data": {

"dh_rxn_ref": (-10000, pyunits.J/pyunits.mol),
"arrhenius_const": (1, pyunits.mol/pyunits.m**3/pyunits.s),
"energy_activation": (1000, pyunits.J/pyunits.mol)}}},

"equilibrium_reactions": {
"R2": {"stoichiometry": {("Liq", "B"): -1,

("Liq", "C"): -1,
("Liq", "D"): 1},

"heat_of_reaction": constant_dh_rxn,
"equilibrium_constant": van_t_hoff,
"equilibrium_form": power_law_equil,
"concentration_form": ConcentrationForm.moleFraction,
"parameter_data": {

"dh_rxn_ref": (-20000, pyunits.J/pyunits.mol),
"k_eq_ref": (100, None),
"T_eq_ref": (350, pyunits.K)}}}}

Class Definition

Alternatively, the IDAES Generic Reaction Package Framework supports defining classes derived from the IDAES
GenericReactionParameterData class with methods for defining configuration options and parameters.

Users can define two methods which are called automatically when an instance of the property package is created:

1. configure, which defines the users selection of sub-models, and

2. parameters, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Reaction Parameter Block is shown below.

@declare_process_block_class("UserReactionParameterBlock")
class UserReactionParameterData(GenericReactionParameterData):

def configure(self):
(continues on next page)
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(continued from previous page)

# Set configuration options
self.config.option_1 = value

def parameters(self):
# Define parameters
self.param_1 = Var(index_set, initialize=value)

Users should populate the configure and parameters methods as discussed below.

Configure

The ‘configure` method is used to assign values to the configuration arguments, using the format
self.config.option_name = value. Users will also need to set the units of measurement in the property package
metadata.

Parameters

The parameters method is used to construct all the parameters associated with the property calculations and to specify
values for these. The list of necessary parameters is based on the configuration options and the selected methods. Each
method lists their necessary parameters in their documentation. Users need only define those parameters required by
the options they have chosen.

Defining Rate-Based Reactions

The rate_reactions Argument

Each GenericReactionParameterBlock has a configuration argument named rate_reactions which is used to define
rate-based reactions and specify how to calculate properties associated with these. The rate_reactions configuration
argument is expected to be a dict-of-dicts, where the keys are the names for the rate-based reactions, and the values are
a dict of configuration arguments for that reaction. Note that reaction names must be unique across both rate-based and
equilibrium reactions, as all reactions are indexed by name.

"rate_reactions": {
"reaction_1": {options},
"reaction_2": {options}}

Configuration Arguments

The configuration arguments for each rate-based reaction are used to define methods for calculating reaction properties
and defining the parameters associated with these. A full list of the supported configuration arguments is given below:

• stoichiometry (required)

• rate_form (required)

• concentration_form

• heat_of_reaction

• rate_constant
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Stoichiometry

The stoichiometry configuration argument is used to define which components take part in a reaction, and is a required
argument. The stoichiometry argument should be a dict where the keys are phase-component pairs and the values are
the stoichiometric coefficient for that pair. Users need only provide values for those components that take part in the
reaction - all undeclared phase-component pairs will be assumed to have a value of 0. An example of defining the
reaction stoichiometry is given below, where in phase_1 component_1 is converted to component_2 in a 1:1 ratio:

"stoichiometry": {
("phase_1", "component_1"): -1,
("phase_1", "component_2"): 1}

Concentration Form

Many common rate forms can be written using a number of different bases, such as molarity, molality or partial pres-
sure. The concentration_form configuration argument is used in these cases to determine what basis to use for the
concentration terms in the rate form and automatically write the correct expression (and determine units for the associ-
ated parameters. The concentration_form configuration argument must be an instance of a ConcentrationForm Enum
(imported from idaes.generic_models.properties.core.generic.utility), and the following forms are currently available:

• molarity: ConcentrationForm.molarity

• activity: ConcentrationForm.activity

• molality: ConcentrationForm.molality

• mole fractions: ConcentrationForm.moleFraction

• mass fractions: ConcentrationForm.massFraction

• partial pressure: ConcentrationForm.partialPressure

Other Reaction Properties

The remaining configuration arguments are used to define how different properties should be calculated for each re-
action. The rate_form argument is required, however all other properties need only be defined if needed for the user’s
application. These arguments should be provided as either Python functions or classes;

• functions are used for self-contained correlations with hard-coded parameters,

• classes are used for more generic correlations which require associated parameters.

A list of the libraries of methods available in the IDAES Framework can be found here.

Defining Equilibrium Reactions

The equilibrium_reactions Argument

Each GenericReactionParameterBlock has a configuration argument named equilibrium_reactions which is used to
define equilibrium reactions and specify how to calculate properties associated with these. The equilibrium_reactions
configuration argument is expected to be a dict-of-dicts, where the keys are the names for the equilibrium reactions,
and the values are a dict of configuration arguments for that reaction. Note that reaction names must be unique across
both rate-based and equilibrium reactions, as all reactions are indexed by name.
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"equilibrium_reactions": {
"reaction_1": {options},
"reaction_2": {options}}

Configuration Arguments

The configuration arguments for each equilibrium reaction are used to define methods for calculating reaction properties
and defining the parameters associated with these. A full list of the supported configuration arguments is given below:

• stoichiometry (required)

• equilibrium_form (required)

• concentration_form

• heat_of_reaction

• equilibrium_constant

Stoichiometry

The stoichiometry configuration argument is used to define which components take part in a reaction, and is a required
argument. The stoichiometry argument should be a dict where the keys are phase-component pairs and the values are
the stoichiometric coefficient for that pair. Users need only provide values for those components that take part in the
reaction - all undeclared phase-component pairs will be assumed to have a value of 0. An example of defining the
reaction stoichiometry is given below, where in phase_1 component_1 is converted to component_2 in a 1:1 ratio:

"stoichiometry": {
("phase_1", "component_1"): -1,
("phase_1", "component_2"): 1}

Concentration Form

See rate reaction documentation.

Other Reaction Properties

The remaining configuration arguments are used to define how different properties should be calculated for each reac-
tion. The equilibrium_form argument is required, however all other properties need only be defined if needed for the
user’s application. These arguments should be provided as either Python functions or classes;

• functions are used for self-contained correlations with hard-coded parameters,

• classes are used for more generic correlations which require associated parameters.

A list of the libraries of methods available in the IDAES Framework can be found here.
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Reaction Module Libraries

The following libaries are available for defining reaction parameters as part of the Generic Reaction Package Frame-
work.

Rate Constant Forms

Contents

• Rate Constant Forms

– Arrhenius Equation (arrhenius)

Arrhenius Equation (arrhenius)

The method uses the Arrhenius equation to calculate the rate constant.

𝑘𝑟𝑥𝑛 = 𝐴𝑒
−𝐸𝐴
𝑅𝑇

Parameters

Symbol Parameter Name Units Description
𝐴 arrhenius_const Varies, based on reaction form Pre-exponential factor
𝐸𝐴 energy_activation Base units Activation energy

Rate-Based Reaction Forms

Contents

• Rate-Based Reaction Forms

– Power Law (power_law_rate)

Power Law (power_law_rate)

The method uses a power law form using the concentration form provided to calculate the reaction rate.

𝑟𝑟𝑥𝑛 = 𝑘𝑟𝑥𝑛
∏︁
(𝑝,𝑗)

𝐶
𝑂(𝑝,𝑗)

(𝑝,𝑗)

Parameters

Symbol Parameter Name Indices Description
𝑂 reaction_order phase, component Reaction order

Providing a reaction_order dict is optional. If one is not provided, it will be assumed that this is an elementary reaction
and that the reaction order is equal to the stoichiometric coefficient for the products (i.e. for all phase-component
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pairs with a negative stoichiometric coefficient, the reaction order is equal to the absolute value of the stoichiometric
coefficient).

Equilibrium Constant Forms

Contents

• Equilibrium Constant Forms

– van ‘t Hoff Equation (van_t_hoff)

– Gibbs Energy (gibbs_energy)

van ‘t Hoff Equation (van_t_hoff)

The method uses the van ‘t Hoff equation to calculate the equilibrium constant.

𝑘𝑒𝑞 = 𝑘𝑒𝑞,𝑟𝑒𝑓𝑒
−(Δ𝐻𝑟𝑥𝑛

𝑅 )( 1
𝑇 − 1

𝑇𝑟𝑒𝑓,𝑒𝑞
)

Parameters

Sym-
bol

Parameter
Name

Units Description

𝑘𝑒𝑞,𝑟𝑒𝑓 k_eq_ref Varies, depends on equilibrium
form

Equlibrium constant at reference temperature

𝑇𝑟𝑒𝑓,𝑒𝑞 tempera-
ture_eq_ref

Base units Reference temperature for calculating equilibrium
constant

Gibbs Energy (gibbs_energy)

The method uses the thermodynamic relationship with Gibbs energy to calculate the equilibrium constant. This form is
only supported for reactions using a molarity or activity basis due to challenges associated with automatically converting
concentrations to other bases.

Note that by convention (for aqueous systems at least), the standard units of k_eq in this form are (𝑚𝑜𝑙/𝐿)𝑜𝑟𝑑𝑒𝑟, which
will be converted to the correct units automatically.

𝑘𝑒𝑞 = 𝑒−
Δ𝐻𝑟𝑥𝑛,𝑟𝑒𝑓

𝑅𝑇 +
Δ𝑆𝑟𝑥𝑛,𝑟𝑒𝑓

𝑅

Parameters

Symbol Parameter Name Units Description
∆𝐻𝑟𝑥𝑛,𝑟𝑒𝑓 dh_rxn_ref Base units Heat of reaction at reference temperature
∆𝑆𝑟𝑥𝑛,𝑟𝑒𝑓 ds_rxn_ref Base units Entropy of reaction at reference temperature
𝑇𝑟𝑒𝑓,𝑒𝑞 temperature_eq_ref Base units Reference temperature, used for calculating scaling factors
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Equilibrium Reaction Forms

Contents

• Equilibrium Reaction Forms

– Power Law (power_law_equil)

– Log Power Law (log_power_law_equil)

Power Law (power_law_equil)

The method uses a power law form using the concentration form provided to calculate the reaction rate.

𝑘𝑒𝑞 =
∏︁
(𝑝,𝑗)

𝑥
𝑂(𝑝,𝑗)

(𝑝,𝑗)

Parameters

Symbol Parameter Name Indices Description
𝑂 reaction_order phase, component Reaction order

Providing a reaction_order dict is optional. If one is not provided, it will be assumed that this is an elementary re-
action and that the reaction order is equal to the stoichiometric coefficient for all component in non-solid phases (the
contribution of solid phases is assumed to be constant and included in the equilibrium constant, thus an order of zero
is assumed).

Log Power Law (log_power_law_equil)

The method uses a log form of a power law using the concentration form provided to calculate the reaction rate.

Symbol Parameter Name Indices Description
𝑂 reaction_order phase, component Reaction order

Providing a reaction_order dict is optional. If one is not provided, it will be assumed that this is an elementary re-
action and that the reaction order is equal to the stoichiometric coefficient for all component in non-solid phases (the
contribution of solid phases is assumed to be constant and included in the equilibrium constant, thus an order of zero
is assumed).
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Heat of Reaction Forms

Contents

• Heat of Reaction Forms

– Constant Heat of Reaction (constant_dh_rxn)

Constant Heat of Reaction (constant_dh_rxn)

The simplest form for calculating the heat of reaction, this method assumes a constant value provided by the user.

∆ℎ𝑟𝑥𝑛 = ∆ℎ𝑟𝑥𝑛,𝑟𝑒𝑓

Parameters

Symbol Parameter Name Indices Description
∆ℎ𝑟𝑥𝑛,𝑟𝑒𝑓 dh_rxn_ref Heat of reaction

Introduction

Note: The generic reaction package framework is still under development. Whilst the current framework is functional,
features are still being developed and added.

The generic reaction package framework builds upon the existing framework for implementing reaction packages within
IDAES, and will not prevent the use of custom written reaction packages in the future. Whilst it is hoped that the
generic framework will be able to handle most common applications, users with more unusual systems or those solving
computationally intensive problems may need to write custom reaction packages for their cases.

The Generic Reaction Package Framework breaks down reaction packages into a number of components which can
be assembled in a modular fashion. Users need only provide those components which they require for their system of
interest, and components can be drawn from libraries of existing components or provided by the user as custom code.
Details on how to set up the definition of a reaction package using the generic framework are given here.

The components which make up a generic reaction package are as follows:

1. Choose a base set of units of measurement for the property package.

2. Associate the reaction package with an appropriate thermodynamic property package. The thermodynamic prop-
erty package must use the same set of base units of measurement,

3. Define the basis of the reaction terms for the reaction package.

4. Define the rate-based reactions of interest in the system.

5. Define the equilibrium-based reactions of interest in the system. Nore that phase equilibrium is generally handled
in the thermodynamic property package.

The following sections will describe how to define a reaction package using the Generic Reaction Package Framework
along with the libraries of sub-models currently available. Finally, the developers section describes how to go about
defining your own custom components to use when creating custom property packages.

88 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Note: Within most IDAES models “parameters” are in fact defined as Pyomo ‘Vars’ (i.e. variables) which are fixed
at their defined values. Whilst Params would seem to be the logical choice for these, parameter estimation problems
require the parameters being estimated to be defined as Vars so that the solver is free to vary them.

Property packages provide the relationships and parameters necessary to determine the properties of process streams.
They may be general in purpose, such as ideal gas equations, or specific to a certain application. Property packages are
separated into two categories:

• physical and transport properties

• chemical reaction properties

While several standard property packages are provided in the IDAES model libraries, many process modeling applica-
tions will require specific property packages. Information on developing custom property packages is provided in the
advanced user guide.

Since the effort to develop a custom property package is substantial, the IDAES modeling framework provides a Generic
Property Package Framework and Generic Reaction Package Framework to make it easier to create a package for
common property and reaction models.

Units of Measurement

One of the most important roles property packages play within the modeling framework is to define the units of mea-
surement that will be used for those models which use the property packages. Any variable which is created in a unit
model will derive its units of measurement from those defined in the associated property package in order to ensure
consistency of units.

Defining units of measurement in property packages is discussed here.

Physical properties

Almost all process models depend on physical properties to some extent, such as calculation of specific enthalpy or
internal energy for energy balances. These properties only depend on the material being considered and are independent
of the unit operations in which they are used. As such, physical property calculations can be separated from the unit
model calculations and treated as a separate submodel which is called by the unit model. Each unit model can then
create instances of these submodels as required to calculate those properties required by each unit.

Within IDAES, this is handled by StateBlock objects – these are self-contained submodels containing the calculations
for all necessary thermophysical properties for a given material at a given point in space and time. IDAES UnitModels
create instances of these StateBlocks wherever they need to calculate physical properties and link to variables within
the StateBlock within the unit model constraints.

However, physical property calculations depend on a set of parameters which are specific to a given material or mixture.
Thus, each instance of a StateBlock for a material use the same set of parameters. To avoid duplicating these parameters
in every instance of a StateBlock for a given material, these parameters are instead grouped in a PhysicalParameterBlock
for that material which the StateBlocks link to. In this way, there is a single common location for all parameters.

In summary, physical property packages consist of two parts:

• PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being mod-
eled

• StateBlocks, which contain the actual calculations of the state variables and functions
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Reaction properties

Reaction property packages represent a collection of calculations necessary to determine the reaction behavior of a
mixture at a given state. Reaction properties depend upon the state and physical properties of the material, and thus
must be linked to a StateBlock which provides the necessary state and physical property information.

Reaction property packages consist of two parts:

• ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being mod-
eled, and

• ReactionBlocks, which contain the actual calculations of the reaction behavior.

Component and Phase Objects

Property packages also rely on component and phase objects.

Component Objects are used to identify the chemical species of interest in a property package and to contain information
describing the behavior of that component (such as properties of that component).

Phase Objects are used to identify the thermodynamic phases of interest in a property package and to contain informa-
tion describing the behavior of that phase (for example the equation of state which describes that phase).

As Needed Properties

Process flow sheets often require a large number of properties to be calculate, but not all of these are required in every
unit operation. Calculating additional properties that are not required is undesirable, as it leads to larger problem sizes
and unnecessary complexity of the resulting model.

To address this, IDAES supports “as needed” construction of properties, where the variables and constraints required
to calculate a given quantity are not added to a model unless the model calls for this quantity. To designate a property
as an “as needed” quantity, a method can be declared in the associated property BlockData class (StateBlockData
or ReactionBlockData) which contains the instructions for constructing the variables and constraints associated with
the quantity (rather than declaring these within the BlockData’s build method). The name of this method can then be
associated with the property via the add_properties metadata in the property packages ParameterBlock, which indicates
that when this property is called for, the associated method should be run.

The add_properties metadata can also indicate that a property should always be present (i.e. constructed in the Block-
Data’s build method) by setting the method to None, or that it is not supported by setting the method to False.

Generic Property Package Framework

Property packages represent the core of any process model, and having a suitable property package is key to successfully
modeling any process system. However, developing property packages is a significant challenge even for experienced
modelers as they involve large numbers of tightly coupled constraints and parameters. The Generic Property Package
Framework was designed to help users build property packages with the least effort possible by levarging libraries of
modular sub-models that include common types of property calculations.
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Generic Reaction Package Framework

Similar to the Generic Property Package Framework, the Generic Reaction Package Framework helps users create
reaction property packages for common systems.

Unit Model

Control Volume

• Overview

• Common Control Volume Tasks

• Setting up the time domain

• Getting Property Package Information

• Collecting Indexing Sets for Property Package

• ControlVolume and ControlVolumeBlockData Classes

Overview

Control volumes serve as the fundamental building block of all unit operations. Control Volumes represent a single,
well-defined volume of material over which material, energy and/or momentum balances will be performed.

The IDAES ControlVolume classes are designed to facilitate the construction of these balance equations by providing
the model developer with a set of pre-built methods to perform the most common tasks in developing models of unit
operations. The ControlVolume classes contain methods for creating and linking the necessary property calculations
and writing common forms of the balance equations so that the model developer can focus their time on the aspects
that make each unit model unique.

The IDAES process modeling framework currently supports two types of ControlVolumes:

• ControlVolume0DBlock represents a single well-mixed volume of material with a single inlet and a single outlet.
This type of control volume is sufficient to model most inlet-outlet type unit operations which do not require
spatial discretization.

• ControlVolume1DBlock represents a volume with spatial variation in one dimension parallel to the material flow.
This type of control volume is useful for representing flow in pipes and simple 1D flow reactors.

Common Control Volume Tasks

All of the IDAES ControlVolume classes are built on a common core ControlVolumeBlockData which defines a set
of common tasks required for all Control Volumes. The more specific ControlVolume classes then build upon these
common tasks to provide tools appropriate for their specific application.

All ControlVolume classes begin with the following tasks:

• Determine if the ControlVolume should be steady-state or dynamic.

• Get the time domain.

• Determine whether material and energy holdups should be calculated.

• Collect information necessary for creating StateBlocks and ReactionBlocks.
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• Create references to phase_list and component_list Sets in the PhysicalParameterBlock

Setting up the time domain

The first common task the ControlVolumeBlock performs is to determine if it should be dynamic or steady-state and
to collect the time domain from the UnitModel. ControlVolumeBlocks have an argument dynamic which can be pro-
vided during construction which specifies if the Control Volume should be dynamic (dynamic=True) or steady-state
(dynamic=False). If the argument is not provided, the ControlVolumeBlock will inherit this argument from its parent
Unit model.

Finally, the ControlVolume checks that the has_holdup argument is consistent with the dynamic argument, and raises
a ConfigurationError if it is not.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument, the Control Volume first checks
to see if the unit model has a property_package argument set, and uses this if present. Otherwise, the ControlVolume-
Block begins searching up the model tree looking for an argument named default_property_package and uses the first
of these that it finds. If no default_property_package is found, a ConfigurationError is returned.

Collecting Indexing Sets for Property Package

The final common step for all ControlVolumes is to collect any required indexing sets from the physical property
package (for example component and phase lists). These are used by the Control Volume for determining what balance
equations need to be written, and what terms to create.

The indexing sets the ControlVolume looks for are:

• component_list - used to determine what components are present, and thus what material balances are required

• phase_list - used to determine what phases are present, and thus what balance equations are required

ControlVolume and ControlVolumeBlockData Classes

A key purpose of ControlVolumes is to automate as much of the task of writing a unit model as possible. For this
purpose, ControlVolumes support a number of methods for common tasks model developers may want to perform.
The specifics of these methods will be different between different types of ControlVolumes, and certain methods may
not be applicable to some types of Control Volumes (in which case a NotImplementedError will be returned). A full list
of potential methods is provided here, however users should check the documentation for the specific Control Volume
they are using for more details on what methods are supported in that specific Control Volume.

A key feature of the IDAES Core Modeling Framework is the use of ControlVolumeBlocks. ControlVolumes represent
a volume of material over which material, energy and/or momentum balances can be performed. ControlVolumeBlocks
contain methods to automate the task of writing common forms of these balance equations. ControlVolumeBlocks can
also automate the creation of StateBlocks and ReactionBlocks associated with the control volume.

Unit models represent pieces of equipment and their processes. These models contain the unit performance constraints
and associated variables for the equipment, such as:

• constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to reaction
rate and volume)

• constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints)
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• unit level efficiency constraints (e.g. relating mechanical work to fluid work)

IDAES includes libraries of UnitModel classes. These models are composed of the following components:

1. ControlVolumeBlocks, which represent volume of material over which we wish to perform material, energy
and/or momentum balances

2. StateBlocks and ReactionBlocks, which represent the thermophysical, transport and reaction properties of the
material at a specific point in space and time

3. Inlets and Outlets, which allow UnitModels to connect to other UnitModels

Data Management Framework

DMF Overview

The Data Management Framework (DMF) is used to manage all the data needed by the IDAES framework, including
flowsheets, models, and results. It stores metadata and data in persistent storage. It does not require that the user run a
server or connect to a remote service. The DMF can be accessed through its API or command-line interfaces.

• Concepts

• Configuration

• Jupyter notebook usage

• Sharing

• Reference

Concepts

The DMF is designed to allow multiple separate threads of work. These are organized in workspaces. Inside a given
workspace, all the information is represented by containers called resources. A resource describes some data in the
system in a standard way, so it can be searched and manipulated by the rest of the IDAES framework. Resources can
be connected to each other with relations such as “derived”, “contains”, “uses”, and “version”.

Below is an illustration of these components.
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Configuration

The DMF is configured with an optional global configuration file and a required per-workspace configuration file. By
default the global file is looked for as .dmf in the user’s home directory. Its main function at the moment is to set the
default workspace directory with the workspace keyword. For example:

# global DMF configuration
workspace: ~/data/workspaces/workspace1

The per-workspace configuration has more options. See the documentation in the Workspace class for details. The
configuration file is in YAML (or JSON) format. Here is an example file, with some description in comments:

settings: # Global settings
workspace: /home/myuser/ws # Path to current workspace

workspace: # Per-workspace settings
location: /home/myuser/ws # Path to this workspace
name: myws # Name of this workspace
description: my workspace # Description (if any) of this workspace
created: 2019-04-09 12:55:05 # Date workspace was created
modified: 2019-04-09 12:55:05 # Date workspace was modified
files: # Basic information about data files
count: 3 # How many files
total_size: 1.3 MB # Total size of the files

html_documentation_paths: # List of paths for HTML documentation
-: /home/myuser/idaes/docs/build

logging: # Logging configuration
idaes.dmf: # Name of the logger

level: DEBUG # Log level (Python logging constant)
output: /tmp/debug.log # File path or "_stdout_" or "_stderr_"
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This configuration file is used whether you use the DMF from the command-line, Jupyter notebook, or in a Python
program. For details see the DMF package documentation.

Jupyter notebook usage

In the Jupyter Notebook, there are some “magics” defined that make initializing the DMF pretty easy. For example:

from idaes.dmf import magics
%dmf init path/to/workspace

The code above loads the “%dmf” line magic in the first line, then uses it to initialize the DMF with the workspace at
“path/to/workspace”.

From there, other “line magics” will operate in the context of that DMF workspace.

• %dmf help - Provide help on IDAES objects and classes. See dmf-help.

• %dmf info - Provide information about DMF current state for whatever ‘topics’ are provided

• %dmf list - List resources in the current workspace

• %dmf workspaces - List DMF workspaces; you can do this before %dmf init

DMF help

The IDAES Python interfaces are documented with Sphinx. This includes automatic translation of the comments and
structure of the code into formatted and hyperlinked HTML pages. The %dmf help command lets you easily pull up
this documentation for an IDAES module, class, or object. Below are a couple of examples:

# Initialize the DMF first
from idaes.dmf import magics
%dmf init path/to/workspace create

# Get help on a module (imported)
from idaes.core import control_volume1d
%dmf help control_volume1d

# Get help on a module (by name, no import)
%dmf help idaes.core.control_volume0d

# Get help on a class
from idaes.core.control_volume1d import ControlVolume1DBlock
%dmf help ControlVolume1DBlock

# Get help on a class (by name, no import)
%dmf help idaes.core.control_volume1d.ControlVolume1DBlock

# Get help on an object (will show help for the object's class)
# This will end up showing the same help as the previous two examples
obj = control_volume1d.ControlVolume1DBlock()
%dmf help obj

The help pages will open in a new window. The location of the built documentation that they use is configured in the
per-workspace DMF configuration under the htmldocs keyword (a default value is filled in when the DMF is first
initialized).
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Sharing

The contents of a DMF workspace can be shared quite simply because the data is all contained within a directory in
the local file system. So, some ways to share (with one or many people) include:

• Put the workspace directory in a cloud/shared drive like Dropbox , Box , Google Drive , or OneDrive .

• Put the workspace directory under version control like Git and share that versioned data using Git commands
and a service like Github , BitBucket or Gitlab.

• Package up the directory with a standard archiving utility like “zip” or “tar” and share it like any other file (e.g.
attach it to an email).

Note: These modes of sharing allow users to see the same data, but are not designed for real-time collaboration
(reading and writing) of the same data. That mode of operation requires a proper database server to mediate operations
on the same data. This is in the roadmap for the DMF, but not currently implemented.

Reference

See the idaes.dmf package documentation that is generated automatically from the source code.

DMF Command-line Interface

This page lists the commands and options for the DMF command-line interface, which is a Python program called dmf.
There are several usage examples for each sub-command. These examples assume the UNIX bash shell.

• dmf

– dmf options

– dmf usage

– dmf subcommands

– usage overview

• dmf find

– dmf find options

– dmf find usage

• dmf info

– dmf info options

– dmf info usage

• dmf init

– dmf init options

– dmf init usage

• dmf ls

– dmf ls options
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– dmf ls usage

• dmf register

– dmf register options

– dmf register usage

• dmf related

– dmf related options

– dmf related usage

• dmf rm

– dmf rm options

– dmf rm usage

• dmf status

– dmf status options

– dmf status usage

dmf

Data management framework command wrapper. This base command has some options for verbosity that can be
applied to any sub-command.

dmf options

-v

--verbose

Increase verbosity. Show warnings if given once, then info, and then debugging messages.

-q

--quiet

Increase quietness. If given once, only show critical messages. If given twice, show no messages.

dmf usage

Run sub-command with logging at level “error”:

$ dmf <sub-command>

Run sub-command and log warnings:

$ dmf <sub-command>

Run sub-command and log informational / warning messages:

$ dmf -vv <sub-command>
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Run sub-command only logging fatal errors:

$ dmf -q <sub-command>

Run sub-command with no logging at all:

$ dmf -qq <sub-command>

dmf subcommands

The subcommands are listed alphabetically below. For each, keep in mind that any unique prefix of that command will
be accepted. For example, for dmf init, the user may also type dmf ini. However, dmf in will not work because
that would also be a valid prefix for dmf info.

In addition, there are some aliases for some of the sub-commands:

• dmf info => dmf resource or dmf show

• dmf ls => dmf list

• dmf register => dmf add

• dmf related => dmf graph

• dmf rm => dmf delete

• dmf status => dmf describe

usage overview

To give a feel for the context in which you might actually run these commands, below is a simple example that uses
each command:

# create a new workspace
$ dmf init ws --name workspace --desc "my workspace" --create
Configuration in '/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/config.yaml

# view status of the workspace
$ dmf status
settings:
workspace: /home/myuser/ws

workspace:
location: /home/myuser/ws
name: workspace
description: my workspace
created: 2019-04-20 08:32:59
modified: 2019-04-20 08:32:59

# add some resources from files
$ echo "one" > oldfile ; echo "two" > newfile
$ dmf register oldfile --version 0.0.1
2792c0ceb0734ed4b302c44884f2d404
$ dmf register newfile --version 0.0.2 --prev 2792c0ceb0734ed4b302c44884f2d404
6ddee9bb2bb3420ab10aaf4c74d186f6

(continues on next page)
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# list the current workspace contents
$ dmf ls
id type desc modified
2792 data oldfile 2019-04-20 15:33:11
6dde data newfile 2019-04-20 15:33:23

# look at one one resource (newfile)
$ dmf info 6dde

Resource 6ddee9bb2bb3420ab10aaf4c74d186f6
created
'2019-04-20 15:33:23'

creator
name: dang

datafiles
- desc: newfile
is_copy: true
path: newfile
sha1: 7bbef45b3bc70855010e02460717643125c3beca

datafiles_dir
/home/myuser/ws/files/8027bf92628f41a0b146a5167d147e9d

desc
newfile

doc_id
2

id_
6ddee9bb2bb3420ab10aaf4c74d186f6

modified
'2019-04-20 15:33:23'

relations
- 2792c0ceb0734ed4b302c44884f2d404 --[version]--> ME

type
data

version
0.0.2 @ 2019-04-20 15:33:23

# see relations
$ dmf related 2792
2792 data

version 6dde data -

# remove the "old" file
$ dmf rm 2792
id type desc modified
2792c0ceb0734ed4b302c44884f2d404 data oldfile 2019-04-20 15:33:11
Remove this resource [y/N]? y
resource removed

$ dmf ls
id type desc modified
6dde data newfile 2019-04-20 15:33:23
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dmf find

Search for resources by a combination of their fields. Several convenient fields are provided. At this time, a compre-
hensive capability to search on any field is not available.

dmf find options

In addition to the options below, this command also accepts all the dmf ls options, although the --color/--no-color
option is ignored for JSON output.

--output value

Output style/format. Possible values:

list (Default) Show results as a listing, as from the ls subcommand.

info Show results as individual records, as from the info subcommand.

json Show results are JSON objects

--by value

Look for “value” in the value of the creator.name field.

--created value

Use “value” as a date or date range and filter on records that have a created date in that range. Dates should be in the
form:

YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]

To indicate a date range, separate two dates with a “..”.

• 2012-03-19: On March 19, 2012

• 2012-03-19..2012-03-22: From March 19 to March 22, 2012

• 2012-03-19..: After March 19, 2012

• ..2012-03-19: Before March 19, 2012

Note that times may also be part of the date strings.

--file value

Look for “value” in the value of the desc field in one of the datafiles.

--modified value

Use “value” as a date or date range and filter on records that have a modified date in that range. See --created for
details on the date format.

--name value

Look for “value” as one of the values of the alias field.

--type value

Look for “value” as the value of the type field.
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dmf find usage

By default, find will essentially provide a filtered listing of resources. If used without options, it is basically an alias
for ls.

$ dmf ls
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59
$ dmf find
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59

The find-specific options add filters. In the example below, the find filters for files that were modified after the given
date and time.

$ dmf find --modified 2019-04-29T17:29:00..
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

dmf info

Show detailed information about a resource. This command may also be referred to as dmf show.

dmf info options

identifier

Identifier, or unique prefix thereof, of the resource. Any unique prefix of the identifier will work, but if that prefix
matches multiple identifiers, you need to add --multiple to allow multiple records in the output.

--multiple

Allow multiple records in the output (see identifier)

-f,--format value

Output format. Accepts the following values:

term Terminal output (colored, if the terminal supports it), with values that are empty left out and some values sim-
plified for easy reading.

json Raw JSON value for the resource, with newlines and indents for readability.

jsonc Raw JSON value for the resource, “compact” version with no extra whitespace added.
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dmf info usage

The default is to show, with some terminal colors, a summary of the resource:

$ dmf info 0b62

Resource 0b62d999f0c44b678980d6a5e4f5d37d
created

'2019-03-23 17:49:35'
creator

name: dang
datafiles

- desc: foo13
is_copy: true
path: foo13
sha1: feee44ad365b6b1ec75c5621a0ad067371102854

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52

desc
foo13

doc_id
4

id_
0b62d999f0c44b678980d6a5e4f5d37d

modified
'2019-03-23 17:49:35'

relations
- 1e41e6ae882b4622ba9043f4135f2143 --[derived]--> ME

type
data

version
0.0.0 @ 2019-03-23 17:49:35

The same resource in JSON format:

$ dmf info --format json 0b62
{
"id_": "0b62d999f0c44b678980d6a5e4f5d37d",
"type": "data",
"aliases": [],
"codes": [],
"collaborators": [],
"created": 1553363375.817961,
"modified": 1553363375.817961,
"creator": {
"name": "dang"

},
"data": {},
"datafiles": [
{
"desc": "foo13",
"path": "foo13",
"sha1": "feee44ad365b6b1ec75c5621a0ad067371102854",

(continues on next page)

102 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

(continued from previous page)

"is_copy": true
}

],
"datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/

→˓71d101327d224302aa8875802ed2af52",
"desc": "foo13",
"relations": [
{
"predicate": "derived",
"identifier": "1e41e6ae882b4622ba9043f4135f2143",
"role": "object"

}
],
"sources": [],
"tags": [],
"version_info": {
"created": 1553363375.817961,
"version": [
0,
0,
0,
""

],
"name": ""

},
"doc_id": 4

}

And one more time, in “compact” JSON:

$ dmf info --format jsonc 0b62
{"id_": "0b62d999f0c44b678980d6a5e4f5d37d", "type": "data", "aliases": [], "codes": [],
→˓"collaborators": [], "created": 1553363375.817961, "modified": 1553363375.817961,
→˓"creator": {"name": "dang"}, "data": {}, "datafiles": [{"desc": "foo13", "path": "foo13
→˓", "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854", "is_copy": true}], "datafiles_
→˓dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/
→˓71d101327d224302aa8875802ed2af52", "desc": "foo13", "relations": [{"predicate":
→˓"derived", "identifier": "1e41e6ae882b4622ba9043f4135f2143", "role": "object"}],
→˓"sources": [], "tags": [], "version_info": {"created": 1553363375.817961, "version":␣
→˓[0, 0, 0, ""], "name": ""}, "doc_id": 4}
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dmf init

Initialize the current workspace. Optionally, create a new workspace.

dmf init options

path

Use the provided path as the workspace path. This is required.

--create

Create a new workspace at location provided by path . Use the --name and --desc options to set the workspace name
and description, respectively. If these are not given, they will be prompted for interactively.

--name

Workspace name, used by --create

--desc

Workspace description, used by --create

dmf init usage

Note: In the following examples, the current working directory is set to /home/myuser.

This command sets a value in the user-global configuration file in .dmf, in the user’s home directory, so that all other
dmf commands know which workspace to use. With the --create option, a new empty workspace can be created.

Create new workspace in sub-directory ws, with given name and description:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml

Create new workspace in sub-directory ws, providing the name and description interactively:

$ dmf init ws --create
New workspace name: foo
New workspace description: foo workspace description
Configuration in '/home/myuser/ws/config.yaml

Switch to workspace ws2:

$ dmf init ws2

If you try to switch to a non-existent workspace, you will get an error message:

$ dmf init doesnotexist
Existing workspace not found at path='doesnotexist'
Add --create flag to create a workspace.
$ mkdir some_random_directory
$ dmf init some_random_directory
Workspace configuration not found at path='some_random_directory/'

104 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

If the workspace exists, you cannot create it:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml
$ dmf init ws --create
Cannot create workspace: path 'ws' already exists

And, of course, you can’t create workspaces anywhere you don’t have permissions to create directories:

$ mkdir forbidden
$ chmod 000 forbidden
$ dmf init forbidden/ws --create
Cannot create workspace: path 'forbidden/ws' not accessible

dmf ls

This command lists resources in the current workspace.

dmf ls options

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output.

-s,--show

Pick field to show in output table. This option can be repeated to show any known subset of fields. Also the option
value can have commas in it to hold multiple fields. Default fields, if this option is not specified at all, are “type”,
“desc”, and “modified”. The resource identifier field is always shown first.

codes List name of code(s) in resource. May be shortened with ellipses.

created Date created.

desc Description of resource.

files List names of file(s) in resource. May be shortened with ellipses.

modified Date modified.

type Name of the type of resource.

version Resource version.

You can specify other fields from the schema, as long as they are not arrays of objects, i.e. you can say --show tags
or --show version_info.version, but --show sources is too complicated for a tabular listing. To see detailed
values in a record use the dmf info command.

-S,--sort

Sort by given field; if repeated, combine to make a compound sort key. These fields are a subset of those in -s,--show,
with the addition of id for sorting by the identifier: “id”, “type”, “desc”, “created”, “modified”, and/or “version”.

--no-prefix
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By default, shown identifier is the shortest unique prefix, but if you don’t want the identifier shortened, this option will
force showing it in full.

-r,--reverse

Reverse the order of the sorting given by (or implied by absence of) the -S,--sort option.

dmf ls usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is named
ws.

Without arguments, show the resources in an arbitrary (though consistent) order:

$ dmf ls
id type desc modified
0b62 data foo13 2019-03-23 17:49:35
1e41 data foo10 2019-03-23 17:47:53
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08

Add a sort key to sort by, e.g. modified date

$ dmf ls -S modified
id type desc modified
1e41 data foo10 2019-03-23 17:47:53
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08
0b62 data foo13 2019-03-23 17:49:35
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02

Especially for resources of type “data”, showing the first (possibly only) file that is referred to by the resource is useful:

$ dmf ls -S modified -s type -s modified -s files
id type modified files
1e41 data 2019-03-23 17:47:53 foo10
e780 data 2019-03-23 17:48:11 foo11
eb60 data 2019-03-23 17:49:08 foo12
0b62 data 2019-03-23 17:49:35 foo13
6c9a data 2019-03-23 17:51:59 foo14
d3d5 data 2019-03-26 13:07:02 bar1

Note that you don’t actually have to show a field to sort by it (compare sort order with results from command above):

$ dmf ls -S modified -s type -s files
id type files
1e41 data foo10
e780 data foo11
eb60 data foo12

(continues on next page)
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0b62 data foo13
6c9a data foo14
d3d5 data bar1

Add --no-prefix to show the full identifier:

$ dmf ls -S modified -s type -s files --no-prefix
id type files
1e41e6ae882b4622ba9043f4135f2143 data foo10
e7809d25b390453487998e1f1ef0e937 data foo11
eb606172dde74aa79eea027e7eb6a1b6 data foo12
0b62d999f0c44b678980d6a5e4f5d37d data foo13
6c9a85629cb24e9796a2d123e9b03601 data foo14
d3d5981106ce4d9d8cccd4e86c2cd184 data bar1

dmf register

Register a new resource with the DMF, using a file as an input. An alias for this command is dmf add.

dmf register options

--no-copy

Do not copy the file, instead remember path to current location. Default is to copy the file under the workspace directory.

-t,--type

Explicitly specify the type of resource. If this is not given, then try to infer the resource type from the file. The default
will be ‘data’. The full list of resource types is in idaes.dmf.resource.RESOURCE_TYPES

--strict

If inferring the type fails, report an error. With --no-strict, or no option, if inferring the type fails, fall back to
importing as a generic file.

--no-unique

Allow duplicate files. The default is --unique, which will stop and print an error if another resource has a file matching
this file’s name and contents.

--contained resource

Add a ‘contained in’ relation to the given resource.

--derived resource

Add a ‘derived from’ relation to the given resource.

--used resource

Add a ‘used by’ relation to the given resource.

--prev resource

Add a ‘version of previous’ relation to the given resource.

--is-subject
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If given, reverse the sense of any relation(s) added to the resource so that the newly created resource is the subject and
the existing resource is the object. Otherwise, the new resource is the object of the relation.

--version

Set the semantic version of the resource. From 1 to 4 part semantic versions are allowed, e.g.

• 1

• 1.0

• 1.0.1

• 1.0.1-alpha

See http://semver.org and the function idaes.dmf.resource.version_list() for more details.

dmf register usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is named
ws.

Register a new file, which is a CSV data file, and use the --info option to show the created resource.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > file.csv
$ dmf reg file.csv --info
Resource 117a42287aec4c5ca333e0ff3ac89639

created
'2019-04-11 03:58:52'

creator
name: dang

datafiles
- desc: file.csv
is_copy: true
path: file.csv
sha1: f1171a6442bd6ce22a718a0e6127866740c9b52c

datafiles_dir
/home/myuser/ws/files/4db42d92baf3431ab31d4f91ab1a673b

desc
file.csv

doc_id
1

id_
117a42287aec4c5ca333e0ff3ac89639

modified
'2019-04-11 03:58:52'

type
data

version
0.0.0 @ 2019-04-11 03:58:52

If you try to register (add) the same file twice, it will be an error by default. You need to add the --no-unique option
to allow it.
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$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > timeseries.csv
$ dmf add timeseries.csv
2315bea239c147e4bc6d2e1838e4101f
$ dmf add timeseries.csv
This file is already in 1 resource(s): 2315bea239c147e4bc6d2e1838e4101f
$ dmf add --no-unique timeseries.csv
3f95851e4931491b995726f410998491

If you register a file ending in “.json”, it will be parsed (unless it is over 1MB) and, if it passes, registered as type JSON.
If the parse fails, it will be registerd as a generic file unless the --strict option is given (with this option, failure to
parse will be an error):

$ echo "totally bogus" > notreally.json
$ dmf reg notreally.json
2019-04-12 06:06:47,003 [WARNING] idaes.dmf.resource: File ending in '.json' is not␣
→˓valid JSON: treating as generic file
d22727c678a1499ab2c5224e2d83d9df
$ dmf reg --strict notreally.json
Failed to infer resource: File ending in '.json' is not valid JSON

You can explicitly specify the type of the resource with the -t,--type option. In that case, any failure to validate will
be an error. For example, if you say the resource is a Jupyter Notebook file, and it is not, it will fail. But the same file
with type “data” will be fine:

$ echo "Ceci n'est pas une notebook" > my.ipynb
$ dmf reg -t notebook my.ipynb
Failed to load resource: resource type 'notebook': not valid JSON
$ dmf reg -t data my.ipynb
0197a82abab44ecf980d6e42e299b258

You can add links to existing resources with the options --contained , --derived , --used , and --prev. For all
of these, the new resource being registered is the target of the relation and the option argument is the identifier of an
existing resource that is the subject of the relation.

For example, here we add a “shoebox” resource and then some “shoes” that are contained in it:

$ touch shoebox.txt shoes.txt closet.txt
$ dmf add shoebox.txt
755374b6503a47a09870dfbdc572e561
$ dmf add shoes.txt --contained 755374b6503a47a09870dfbdc572e561
dba0a5dc7d194040ac646bf18ab5eb50
$ dmf info 7553 # the "shoebox" contains the "shoes"

Resource 755374b6503a47a09870dfbdc572e561
created
'2019-04-11 20:16:50'

creator
name: dang

datafiles
- desc: shoebox.txt
is_copy: true
path: shoebox.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓7f3ff820676b41689bb32bc325fd2d1b (continues on next page)
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desc
shoebox.txt

doc_id
9

id_
755374b6503a47a09870dfbdc572e561

modified
'2019-04-11 20:16:50'

relations
- dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME

type
data

version
0.0.0 @ 2019-04-11 20:16:50

$ dmf info dba0 # the "shoes" are in the "shoebox"
Resource dba0a5dc7d194040ac646bf18ab5eb50

created
'2019-04-11 20:17:28'

creator
name: dang

datafiles
- desc: shoes.txt
is_copy: true
path: shoes.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓a27f98c24d1848eaba1b26e5ef87be88
desc

shoes.txt
doc_id

10
id_

dba0a5dc7d194040ac646bf18ab5eb50
modified
'2019-04-11 20:17:28'

relations
- 755374b6503a47a09870dfbdc572e561 --[contains]--> ME

type
data

version
0.0.0 @ 2019-04-11 20:17:28

To reverse the sense of the relation, add the --is-subject flag. For example, we now add a “closet” resource that
contains the existing “shoebox”. This means the shoebox now has two different “contains” type of relations.

$ dmf add closet.txt --is-subject --contained 755374b6503a47a09870dfbdc572e561
22ace0f8ed914fa3ac3e7582748924e4
$ dmf info 7553

Resource 755374b6503a47a09870dfbdc572e561
created

(continues on next page)
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'2019-04-11 20:16:50'
creator

name: dang
datafiles

- desc: shoebox.txt
is_copy: true
path: shoebox.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓7f3ff820676b41689bb32bc325fd2d1b
desc

shoebox.txt
doc_id

9
id_

755374b6503a47a09870dfbdc572e561
modified
'2019-04-11 20:16:50'

relations
- dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
- 22ace0f8ed914fa3ac3e7582748924e4 --[contains]--> ME

type
data

version
0.0.0 @ 2019-04-11 20:16:50

You can give your new resource a version with the --version option. You can use this together with the --prev
option to link between multiple versions of the same underlying data:

# note: following command stores the output of "dmf reg", which is the
# id of the new resource, in the shell variable "oldid"
$ oldid=$( dmf reg oldfile.py --type code --version 0.0.1 )
$ dmf reg newfile.py --type code --version 0.0.2 --prev $oldid
ef2d801ca29a4a0a8c6f79ee71d3fe07
$ dmf ls --show type --show version --show codes --sort version
id type version codes
44e7 code 0.0.1 oldfile.py
ef2d code 0.0.2 newfile.py
$ dmf related $oldid
44e7 code

version ef2d code -
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dmf related

This command shows resources related to a given resource.

dmf related options

-d,--direction

Direction of relationships to show / follow. The possible values are:

in Show incoming connection/relationship edges. Since all relations have a bi-directional counterpart, this effectively
only shows the immediate neighbors of the root resource. For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the incoming edge from “B” to “A” but not the edge
from “C” to “B”.

out (Default) Show the outgoing connection/relationship edges. This will continue until there are no more connections
to show, avoiding cycles. For example, if the root resource is “A”, and “A” contains “B” and “B” contains “C”,
then this option shows the outgoing edge from “A” to “B” and also from “B” to “C”.

The default value is out.

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output.

--unicode

Allow unicode drawing characters in the output. This is the default.

--no-unicode

Use only ASCII characters in the output.

dmf related usage

In the following examples, we work with 4 resources arranged as a fully connected square (A, B, C, D). This is not
currently possible just with the command-line, but the following Python code does the job:

from idaes.dmf import DMF, resource
dmf = DMF()
rlist = [resource.Resource(value={"desc": ltr, "aliases": [ltr],

"tags": ["graph"]})
for ltr in "ABCD"]

relation = resource.PR_USES
for r in rlist:

for r2 in rlist:
if r is r2:

continue
resource.create_relation_args(r, relation, r2)

for r in rlist:
dmf.add(r)

If you save that script as r4.py, then the following command-line actions will run it and verify that everything is created.
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$ python r4.py
$ dmf ls
id type desc modified
1e7f other B 2019-04-20 15:43:49
3bc5 other D 2019-04-20 15:43:49
ba67 other A 2019-04-20 15:43:49
f7e9 other C 2019-04-20 15:43:49

You can then see the connections by looking at any one of the four resource (e.g., A):

$ dmf rel ba67
ba67 other A

uses 3bc5 other D

uses f7e9 other C

uses 1e7f other B

uses ba67 other A

uses f7e9 other C

uses 3bc5 other D

uses 1e7f other B

uses ba67 other A

uses 1e7f other B

uses 3bc5 other D

uses f7e9 other C

uses ba67 other A

If you change the direction of relations, you will get much the same result, but with the arrows reversed.

dmf rm

Remove one or more resources. This also removes relations (links) to other resources.
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dmf rm options

identifier

The identifier, or identifier prefix, of the resource(s) to remove

--list,--no-list

With the –list option, which is the default, the resources to remove, or removed, will be listed as if by the dmf ls
command. With –no-list, then do not produce this output.

-y,--yes

If given, do not confirm removal of the resource(s) with a prompt. This is useful for scripts that do not want to bother
with input, or people with lots of confidence.

--multiple

If given, allow multiple resources to be selected by an identifier prefix. Otherwise, if the given identifier matches more
than one resource, the program will print a message and stop.

dmf rm usage

Note: In the following examples, there are 5 text files named “file1.txt”, “file2.txt”, .., “file5.txt”, in the workspace.
The identifiers for these files may be different in each example.

Remove one resource, by its full identifier:

$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26
$ dmf rm c20f3a6e338a40ee8a3a4972544adb74
id type desc modified
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
Remove this resource [y/N]? y
resource removed
[dmfcli-167 !?]idaes-dev$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26

Remove a single resource by its prefix:

$ dmf ls
id type desc modified
6dd5 data file2.txt 2019-04-16 18:51:10
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13

(continues on next page)
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e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm 6d
id type desc modified
6dd57ecc50a24efb824a66109dda0956 data file2.txt 2019-04-16 18:51:10
Remove this resource [y/N]? y
resource removed
$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

Remove multiple resources that share a common prefix. In this case, use the -y,--yes option to remove without
prompting.

$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm --multiple --yes 7
id type desc modified
7953e67db4a543419b9988c52c820b68 data file3.txt 2019-04-16 18:51:12
7a06435c39b54890a3d01a9eab114314 data file4.txt 2019-04-16 18:51:13
2 resources removed
$ dmf ls
id type desc modified
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

dmf status

This command shows basic information about the current active workspace and, optionally, some additional details. It
does not (yet) give any way to modify the workspace configuration. To do that, you need to edit the config.yaml file
in the workspace root directory. See Configuration.

dmf status options

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output. UNIX output streams to pipes should be detected and
have color disabled, but this option can force that behavior if detection is failing.

-s,--show info

Show one of the following types of information:

4.2. User Guide 115



IDAES Documentation, Release 1.10.1

files Count and total size of files in workspace

htmldocs Configured paths to the HTML documentation (for “%dmf help” magic in the Jupyter Notebook)

logging Configuration for logging

all Show all items above

-a,--all

This option is just an alias for “–show all”.

dmf status usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is named
ws.

Also note that the output shown below is plain (black) text. This is due to our limited understanding of how to do
colored text in our documentation tool (Sphinx). In a color-capable terminal, the output will be more colorful.

Show basic workspace status:

$ dmf status
settings:
workspace: /home/myuser/ws

workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:46:40
modified: 2019-04-09 12:46:40

Add the file information:

$ dmf status --show files
settings:
workspace: /home/myuser/ws

workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:52:49
modified: 2019-04-09 12:52:49
files:
count: 3
total_size: 1.3 MB

You can repeat the -s,--show option to add more things:

$ dmf status --show files --show htmldocs
settings:
workspace: /home/myuser/ws

workspace:
location: /home/myuser/ws

(continues on next page)
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name: myws
description: my workspace
created: 2019-04-09 12:54:10
modified: 2019-04-09 12:54:10
files:
count: 3
total_size: 1.3 MB

html_documentation_paths:
-: /home/myuser/idaes/docs/build

However, showing everything is less typing, and not overwhelming:

$ dmf status -a
settings:
workspace: /home/myuser/ws

workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:55:05
modified: 2019-04-09 12:55:05
files:
count: 3
total_size: 1.3 MB

html_documentation_paths:
-: /home/myuser/idaes/docs/build

logging:
not configured

DMF Application Programming Interface (API)

This page describes how to use the DMF when you create and save your models. For information on performing some
DMF functions from the command-line, see DMF Command-line Interface. All the modules referenced here are in the
idaes.dmf subpackage.

• Initialization

• Adding data

• Adding relations
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Initialization

You can create a new dmfbase.DMF instance quite simply:

from idaes.dmf import DMF
dmf = DMF() # new DMF instance

When initialized this way, the DMF will use the configuration it finds in a file called .dmf in the user’s home directory.
You can specify another configuration to use. The configuration of the DMF specifies where the workspace is located,
which can be retrieved through the attribute workspace_path.

Adding data

The data in the DMF is broken down into “resources”. When adding data to the DMF with the Python API, you create
resources and add them to the DMF instance. A resource describes one dataset, and contains:

• metadata about the creator, creation and modification time, version, names, and description

• provenance about the sources of the information

• data, as a references to files, embedded structured (JSON) data, or both

• codes, as references to code file locations or module paths, and optionally specific sections of that file or module

• relations, i.e. labeled connections to and from other resources. The following

To add a dataset, you first create a “resource”, which is an instance of resource.Resource (in module resource). This
class provides some convenience methods for manipulating the underlying structure of the resource, which is contained
in a Python dictionary (in an attribute called v, for “values”) and described, using JSON Schema syntax. The schema
is contained in the module variable resource.RESOURCE_SCHEMA. An example of creating a new Resource object:

from idaes.dmf.resource import Resource

r = Resource()
r.v["version_info"]["version"] = test_version
r.v["collaborators"] = [

{"name": "Clark Kent", "email": "ckent@dailyplanet.com"},
{"name": "Superman", "email": "sman@fortress.solitude.org"},

]
r.v["sources"].append(

{
"isbn": "978-0201616224",
"source": 'Hunt, A. and Thomas, D., "The Pragmatic Programmer", '
"Addison-Wesley, 1999",
"date": "1999-01-01",

}
)
r.v["codes"].append(

{
"type": "function",
"name": "test_resource_full",
"desc": "The test function",
"location": "test_files.py",
"version": test_version,

}
(continues on next page)
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)
r.v["datafiles"].append({"path": "/etc/passwd"})
r.v["aliases"] = ["test_resource_full"]
r.v["tags"] = ["test", "resource"]
r.data = {"arbitrary": {"values": [1, 2, 3]}}
return r

You can also create a resource that describes a file by using the resource.Resource.from_file() method. This
will fill in the datafiles section of the resource object.

Once you have the resource object populated, you can add it to the DMF instance (and, thus, its workspace) with the
dmfbase.DMF.add() method:

from idaes.dmf import DMF
from idaes.dmf.resource import Resource

r = Resource()
# ... create resource ...
dmf = DMF()
dmf.add(r)

You can create a resource and add it to the DMF in a single step with the dmfbase.DMF.new() method:

from idaes.dmf import DMF

dmf = DMF()
r = dmf.new(file="/path/to/breaking_news.doc",

author={"name": "Clark Kent", "email": "ckent@dailyplanet.com"})

Once a resource is added to a DMF instance, you can still modify its content, but you need to call dmfbase.DMF.
update() to synchronize those changes with the stored values. This is necessary for adding relations between two
resources, which you simply cannot do until both of them are created. But it can also be used to do things like add a
description:

from idaes.dmf import DMF

dmf = DMF()
# create and add resource
r = dmf.new(file="/path/to/breaking_news.doc")
# add a description to the resource
r.v["description"] = get_description()
# sync the description to the stored value
dmf.update()
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Adding relations

One of the main functions of the DMF is to track the relationships, or relations, between its resources. In the lingo of
graphs of objects, and in particular the Resource Description Framework (RDF) that is used as the foundation for many
provenance systems, these relations are directed edges between objects, labeled by “predicates”. In this terminology,
the resource from which the directed edge starts is called the “subject” of the relation, and the resource from which the
directed edge ends is the “object”. The DMF defines the following predicates (associated module string constants are
shown in parentheses):

• (resource.PR_DERIVED) derived: object is derived from subject

• (resource.PR_CONTAINS) contains: object contains the subject

• (resource.PR_USES) uses: object uses the subject

• (resource.PR_VERSION) version: object is a (new) version of the subject

Adding a relation between two resources is pretty straightforward. You create both resources and add them to the DMF,
then create a “triple” to describe the connection between them (with the “predicate” that labels that connection), with
the resource.create_relation() function. Then you call the dmfbase.DMF.update() function on the DMF
instance to save the relation:

from idaes.dmf import DMF
from idaes.dmf.resource import Triple, PR_DERIVED
from idaes.dmf.resource import create_relation_args

dmf = DMF()
# create and add resources
r1 = dmf.new(file="/path/to/breaking_news.doc")
r2 = dmf.new(file="/path/to/interview_notes.txt")
# create relation (news --was derived from--> notes)
create_relation(r1, PR_DERIVED, r2)
# sync the relation to the DMF
dmf.update()

Flowsheet

Flowsheet models are the top level of the modeling heirachy. Flowsheet models represent traditional process flowsheets,
containing a number of unit models connected together into a flow network and the property packages.

Property Package

Property packages are a collection of related models that represent the physical, thermodynamic, and reactive properties
of the process streams.

120 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Unit Model

Unit models represent individual pieces of equipment and their processes.

Data Management Framework

The Data Management Framework is used to manage all the data needed by the platform, including flowsheets, models,
and results. It stores metadata and data in persistent storage.

4.2.4 Conventions

• Units of Measurement and Reference States

• Standard Variable Names

– Standard Naming Format

– Constants

– Thermophysical and Transport Properties

– Reaction Properties

– Solid Properties

– Naming Examples

Units of Measurement and Reference States

Due to the flexibility provided by the IDAES Integrated Platform, there is no standard set of units of measurement or
standard reference state that should be used in models. Units of measurement are defined by the modeler for the 7
base quantities (time, length, mass, amount, temperature, current and luminous intensity) in each property package,
and the platform makes use of this and Pyomo’s Units container to automatically determine the units of all variables
and expressions within a model. Thus, all components within a model using a given property package must use units
based on the units chosen for the base quantities (to ensure consistency of units). However, flowsheets may contain
property packages which use different sets of base units, however users should be careful to ensure units are converted
correctly where property packages interact. For more detail on defining units of measurement see Defining Units of
Measurement.

Pyomo also provides convenient tools for converting between different units of measurement and checking for unit
consistency, of which a few are highlighted below:

• units.convert(var, to_units=units) - returns a Pyomo expression including the variable var and the
necessary conversion factors to convert it to the desired set of units (units). This method will return an Exception
if the units of var are not consistent with those requested by the user.

• units.assert_units_consistent(object) - checks for consistency of units in object and raises an Asser-
tionError if they are not. object may be a Block, Constraint or Expression.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by
the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been
consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.
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Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have a standard naming conven-
tion for any variable that may need to be shared between different models. Within IDAES, this occurs most frequently
when information regarding the state and properties of the material, which is calculated in specialized PropertyBlocks,
is used in others parts of the model.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a number of different ways
in which these quantities can be expressed. In order to facilitate communication between different parts of models, a
naming convention has been established to standardize the naming of variables across models. Variable names within
IDAES follow to the format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list of standard variable
names given later in this document. If a particular quantity is not included in the list of standard names, users are
encouraged to contact the IDAES developers so that it can be included in a future release. This is followed by a number
of qualifiers which further indicate the specific conditions under which the quantity is being calculated. These qualifiers
are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis, that is quantity per
unit amount of material. There are a number of different bases that can be used when expressing intensive quantities,
and a list of standard basis qualifiers are given below.

Basis Standard Name
Mass Basis mass
Molar Basis mol
Volume Basis vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the
quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed by
a Pyomo Set.

Basis Standard Name Comments
Component comp Indexed by component list
Phase phase Indexed by phase list
Phase & Component phase_comp Indexed by phase and component list
Total Mixture No state qualifier
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Phase Standard Name
Supercritical Fluid liq
Ionic Species ion
Liquid Phase liq
Solid Phase sol
Vapor Phase vap
Multiple Phases e.g. liq1

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the
system (e.g. at the critical point, or at equilibrium).

Basis Standard Name
Critical Point crit
Equilibrium State equil
Ideal Gas ideal
Reduced Properties red
Reference State ref

Constants

IDAES contains a library of common physical constants of use in process systems engineering models, which can be
imported from idaes.core.util.constants. Below is a list of these constants with their standard names and values (SI
units).

Note: It is important to note that these constants are represented as Pyomo expressions in order to include units of
measurement. As such, they can be directly included in other expressions within a model. However, if the user desires
to use their value directly (e.g. to initialize a variable), the value() method must be used to extract the value of the
constant from the expression.

Constant Standard Name Value Units
Acceleration due to Gravity acceleration_gravity 9.80665 𝑚𝑠−2

Avogadro’s Number avogadro_number 6.02214076e23 𝑚𝑜𝑙−1

Boltzmann Constant boltzmann_constant 1.38064900e-23 𝐽𝐾−1

Elementary Charge elementary_charge 1.602176634e-19 𝐶
Faraday’s Constant faraday_constant 96485.33212 𝐶𝑚𝑜𝑙−1

Gas Constant gas_constant 8.314462618 𝐽𝑚𝑜𝑙−1𝐾−1

Newtonian Constant of Gravitation gravitational_constant 6.67430e-11 𝑚3𝑘𝑔−1𝑠−2

Mass of an Electron mass_electron 9.1093837015e-31 𝑘𝑔
Pi (Archimedes’ Constant) pi 3.141592 [1]
Planck Constant planck_constant 6.62607015e-34 𝐽𝑠
Stefan-Boltzmann Constant stefan_constant 5.67037442e-8 𝑊𝑚−2𝐾−4

Speed of Light in a Vacuum speed_light 299792458 𝑚𝑠−1

[1] pi imported from the Python math library and is available to machine precision.
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Values for fundamental constants and derived constants are drawn from the definitions of SI units (https://www.bipm.
org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf) and are generally defined to 9 significant figures.

Acceleration due to gravity, gravitational constant and electron mass are sourced from NIST (https://physics.nist.gov)
and used the significant figures reported there.

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which have standardized names.

Variable Standard Name
Activity act
Activity Coefficient act_coeff
Bubble Pressure pressure_bubble
Bubble Temperature temperature_bubble
Compressibility Factor compress_fact
Concentration conc
Density dens
Dew Pressure pressure_dew
Dew Temperature temperature_dew
Diffusivity diffus
Diffusion Coefficient (binary) diffus_binary
Enthalpy enth
Entropy entr
Fugacity fug
Fugacity Coefficient fug_coeff
Gibbs Energy energy_gibbs
Heat Capacity (const. P) cp
Heat Capacity (const. V) cv
Heat Capacity Ratio heat_capacity_ratio
Helmholtz Energy energy_helmholtz
Henry’s Constant henry
Internal Energy energy_internal
Mass Fraction mass_frac
Material Flow flow
Molality molality
Molecular Weight mw
Mole Fraction mole_frac
pH pH
Pressure pressure
Speed of Sound speed_sound
Surface Tension surf_tens
Temperature temperature
Thermal Conductivity therm_cond
Vapor Pressure pressure_sat
Viscosity (dynamic) visc_d
Viscosity (kinematic) visc_k
Vapor Fraction vap_frac
Volume Fraction vol_frac
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Reaction Properties

Below is a list of all the reaction properties which have standardized names.

Variable Standard Name
Activation Energy energy_activation
Arrhenius Coefficient arrhenius
Heat of Reaction dh_rxn
Entropy of Reaction ds_rxn
Equilibrium Constant k_eq
Reaction Rate reaction_rate
Rate constant k_rxn
Solubility Constant k_sol

Solid Properties

Below is a list of all the properties of solid materials which have standardized names.

Variable Standard Name
Min. Fluidization Velocity velocity_mf
Min. Fluidization Voidage voidage_mf
Particle Size particle_dia
Pore Size pore_dia
Porosity particle_porosity
Specific Surface Area area_{basis}
Sphericity sphericity
Tortuosity tort
Voidage bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

Variable Name Meaning
enth Specific enthalpy of the entire mixture (across all phases)
flow_comp[“H2O”] Total flow of H2O (across all phases)
entr_phase[“liq”] Specific entropy of the liquid phase mixture
conc_phase_comp[“liq”, “H2O”] Concentration of H2O in the liquid phase
temperature_red Reduced temperature
pressure_crit Critical pressure
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4.2.5 Workflow

The section describes the recommended workflows for constructing and working with models on the IDAES Integrated
Platform. Below is the list of the documented workflows.

General Workflow

While IDAES offers significant freedom in how users write their models, they are encouraged to follow this general
workflow in order to make it easier for others to follow their code.

This workflow is used throughout the tutorials and examples on the examples online documentation page.

Note: It is important to note that IDAES models are constructed upon execution of each line of code, and that most
user defined options are only processed on model construction. This means that if the user wishes to make changes to
any model construction option, it is necessary to rebuild the model from the beginning. Users should not be put off by
this however, as model construction is generally very quick.

The general workflow for working with a model in IDAES is shown below:

• 1. Importing Modules

• 2. Building a Model

– 2.1 Create a Model Object

– 2.2 Add a Flowsheet to the Model

– 2.3 Add Property Packages to Flowsheet

– 2.4 Add Unit Models to Flowsheet

– 2.5 Define Unit Model Connectivity

– 2.6 Expand Arcs

– 2.7 Add Variables, Constraints and Objectives

• 3. Scaling the Model

• 4. Specifying the Model

• 5. Initializing the Model

• 6. Solving the Model

• 7. Optimizing the Model

• 8. Analyzing and Visualizing the Results
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1. Importing Modules

IDAES is built upon a modular, object-oriented platform using Python, which requires users to import the components
from the appropriate model libraries. The necessary components and libraries will vary from application to application,
and were discussed earlier in this User Guide, however some common components users will need include:

• Pyomo environment components (e.g. ConcreteModel, SolverFactory, TransformationFactory, Var, Constraint,
objective) imported from pyomo.environ

• Pyomo network components (e.g. Arc, expand_arcs) from pyomo.network

• IDAES FlowsheetBlock, from idaes.core

• Property packages for materials of interest

• Unit models for process equipment, drawn from either the IDAES model libraries and/or user-defined models

• Data visualization and analysis tools. Common tools include degrees of freedom and scaling, a full list is provided
here.

• External packages of interest to the user. Being built upon Python, users have access to the full range of Python
libraries for working with and analyzing their models.

2. Building a Model

The next step in the workflow is to create a model object which represents the problem to be solved. The steps involved
in this may vary depending on the problem being solved, but the general procedure is as follows:

2.1 Create a Model Object

The foundation of any model in IDAES is a Pyomo ConcreteModel object, which is created as follows:

m = ConcreteModel()

Note: IDAES does not support the use of Pyomo AbstractModels

2.2 Add a Flowsheet to the Model

The foundation of a process model within IDAES is the FlowsheetBlock, which forms the canvas upon which the process
will be constructed. A key aspect of the FlowsheetBlock is to define whether the model will be steady-state or dynamic,
and to define the time domain as appropriate.

m.fs = FlowsheetBlock(default={"dynamic": False}

Note: IDAES supports nested flowsheets to allow complex processes to be broken down into smaller sub-processes.
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2.3 Add Property Packages to Flowsheet

All process models depend on calculations of thermophysical and chemical reaction properties, which are represented
in IDAES using property packages. Users need to add the property packages they intend to use to the flowsheet.

m.fs.properties_1 = MyPropertyPackage.PhysicalParameterBlock()

Note: Users can add as many property packages as they need to a flowsheet, and can determine which property package
will be used for each unit operation as it is created.

2.4 Add Unit Models to Flowsheet

Next, the user can add Unit Models to their flowsheet to represent each unit operation in the process.

m.fs.unit01 = UnitModel(default={"property_package": m.fs.properties_1})

2.5 Define Unit Model Connectivity

In order to describe the flow of material between unit operations, users must declare Arcs (or streams) which connect
the outlet of each unit operation to the inlet of the next.

m.fs.arc_1 = Arc(source=m.fs.unit01.outlet, destination=m.fs.unit02.inlet)

2.6 Expand Arcs

It is important to note that Arcs only define the connectivity between unit operations, but do not create the actual model
constraints needed to describe this. Once all Arcs in a flowsheet have been defined, it is necessary to expand these Arcs
using the Pyomo TransformationFactory.

TransformationFactory("network.expand_arcs").apply_to(m)

Note: Pyomo provides a number of other Transformations and tools that may be useful to the user depending on the
application. Examples include the gdp and dae transformations.

2.7 Add Variables, Constraints and Objectives

Finally, users can add any additional variables, constraints and objectives to their model. These could include the
objective function for which they wish to optimize, additional constraints that provide limits on process performance,
or simply additional quantities that the user wishes to use in analyzing or visualizing the results.
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3. Scaling the Model

Note: The IDAES scaling tools are currently under development.

Ensuring that a model is well scaled is important for increasing the efficiency and reliability of solvers, and users should
consider model scaling as an integral part of the modeling process. IDAES provides a number of tool for assisting users
with scaling their models, and details on these can be found here.

4. Specifying the Model

Note: IDAES is in the process of developing a set of tools to assist users with working with units of measurement
when fixing and displaying values.

The next step is to specify the model by fixing variables. which can be done using the form variable_name.fix(value).
The variables that need to be fixed are application dependent, but commonly include the feed state variables.

In order to prepare the model for initialization, it is necessary to fully specify the model, such that there are no degrees of
freedom. IDAES provides a tools for counting and reporting the degrees of freedom in any model (or sub-model/block):

from idaes.core.util.model_statistics import degrees_of_freedom

print(degrees_of_freedom(m))

Note: Whilst it is not always necessary to fully define a model before initialization, it is much safer to do so as it ensures
the model is well-defined. Most IDAES initialization tools check that the model is well-defined before proceeding, and
will raise an Exception if it is not.

Note: Depending on the solver to be used during initialization, it can be better to avoid putting bounds on variables and
adding inequality constraints at this stage. For solving square problems (i.e. zero degrees of freedom), some solvers
(e.g. IPOPT) perform better without bounds on the problem. These bounds and constraints can be added later when it
comes time to optimize the problem.

5. Initializing the Model

The next step is to initialize the model. All IDAES models have established initialization methods that can be called
using model.initialize() which can be expected to take a model from its initial state to a feasible solution for a set of
initial guesses (within the models expected operating range).

IDEAS workflows generally use a sequential-modular approach to initialize flowsheets, where unit models are initial-
ized sequentially, passing the outlet state from one unit as the initial state for the next. An automated sequential-modular
tool is available through Pyomo and demonstrated in the tutorials.
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6. Solving the Model

Important: The sequential-modular approach initializes each unit model individually, thus it is important to do a
final solve of the overall flowsheet/model in order to complete the initialization process. In most cases, this final solve
should only take a few iterations, as the state of each unit model should be at or near the final solution already.

In order to solve the model, it is necessary to create a solve object and set any desired solver options (such as tolerances,
iteration limits etc.).

solver = SolverFactory('solver_name')
solver.options = {'tol': 1d-6}

results = solver.solve(m)

Users should check the output from the solver to ensure a feasible solution was found using the following:

print(results.solver.termination_condition)

Different problems will require different solvers, and users will need to experiment to find those that work best for
their problems. The default solver for most IDAES applications is IPOPT, which can be downloaded using the idaes
get-extensions command line.

7. Optimizing the Model

Once an initial solution has been found, users can proceed to solving the optimization problem of interest. This proce-
dure will vary by application but generally involves the following steps:

7.1) Unfix some degrees of freedom to provide the problem with decision variables, variable_name.unfix().

7.2) Add bounds to variables and inequality constraints to constrain solution space, variable_name.setlb(value) and
var_name.setub(value)

7.3) Call a solver and check the termination conditions, see step 6 Solving the Model.

Note: Users may wish/need to use different solvers for initialization and optimization. IDAES and Pyomo support the
use of multiple solvers as part of the same workflow for solving different types of problems.

8. Analyzing and Visualizing the Results

One of the benefits of the IDAES Integrated Platform is that it operates in a fully featured programming language, which
provides users a high degree of flexibility in analyzing their models. For example, users can automate the simulation
of the model across multiple objectives or a range of parameters, store and save results from one or multiple solutions.
Users also have access to a wide range of tools for manipulating, plotting and visualizing the results.
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Data Reconciliation and Parameter Estimation

This workflow generally describes features of the IDAES framework that are useful for data reconciliation and parameter
estimation. Many of these features can be used for any task where plant data is to be used in conjunction with a process
model. It is assumed that the user is familiar with the IDAES modeling platform and Pyomo. See the General Workflow
for more information on how to set up a model.

This provides general information about IDAES functionality laid out in terms of typical use cases. See Tutorials and
Examples, for specific complete examples of data reconciliation and parameter estimation examples. Relevant tutorials
can be found in tutorials/advanced/data_recon_and_parameter_estimation.

Data Management

IDAES has functions to read and mange process data process data. Data management functions are contained in the
idaes.dmf.model_data module.

Reading Data

A set of process data can be stored in two files, a data file and a metadata file. The data file is a CSV file where the
first column contains a data point index, usually a timestamp. The first row contains a header with the measurement
tag names. The rest of the files contains measurement data. The data file format is shown in the table below.

index tag (optional) tag 1 tag 2 . . .
index 1 data(1,1) data(1,2) . . .
index 2 data(2,1) data(2,2) . . .
. . . . . . . . . . . .

Metadata is provided for each tag in a separate CSV file. The metadata file has no header row, and aside from the tag
name, any column my be blank. In the metadata csv file, the first column is the measurement tag name, the second
column is a string that maps the tag to a specific model quantity, the third column is a description of the tag, and the
fourth column is a for units of measure. Any columns past the fourth column are ignored and can be used to store any
additional information.

tag 1 model reference string 1 description 1 units of measure 1
tag 2 model reference string 2 description 2 units of measure 1
. . . . . . . . . . . .

The unit strings should be interpretable by pint, with the additional unit strings given in Unit String Information. The
model reference string is the a string to reverence a model quantity. In the reference string the top-level model is always
represented by m. For example, the reference string for a heater block outlet temperature could be m.flowsheet.
heater.control_volume.properties_out[:].temperature. This reference will be indexed by time.

Reading data can be done with the idaes.dmf.model_data.read_data() function.

idaes.dmf.model_data.read_data(csv_file, csv_file_metadata, model=None, rename_mapper=None,
unit_system=None, ambient_pressure=1.0, ambient_pressure_unit='atm')

Read CSV data into a Pandas DataFrame.

The data should be in a form where the first row contains column headings where each column is labeled with
a data tag, and the first column contains data point labels or time stamps. The metadata should be in a csv file
where the first column is the tag name, the second column is the model reference ( which can be empty), the third
column is the tag description, and the fourth column is the unit of measure string. Any additional information
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can be added to columns after the fourth column and will be ignored. The units of measure should be something
that is recognized by pint, or in the aliases defined in this file. Any tags not listed in the metadata will be dropped.

The function returns two items a pandas.DataFrame containing process data, and a dictionary with tag metadata.
The metadata dictionary keys are tag name, and the values are dictionaries with the keys: “reference_string”,
“description”, “units”, and “reference”.

Parameters

• csv_file (str) – Path of file to read

• csv_file_metadata (str) – Path of csv file to read column metadata from

• model (pyomo.environ.ConcreteModel) – Optional model to map tags to

• rename_mapper (Callable) – Optional function to rename tags

• unit_system (str) – Optional system of units to atempt convert to

• ambient_pressure (float, numpy.array, pandas.series, str) – Optional pres-
sure to use to convert gauge pressure to absolute. If a string is supplied, the corresponding
data tag is assumed to be ambient pressure.

• ambient_pressure_unit (str) – Optional ambient pressure unit, should be a unit recog-
nized by pint.

Returns (pandas.DataFrame, dict)

Binning Data

Process data can be divided into bins based on some criteria. This allows for estimating measurement uncertainty when
no better information is available, and provides a way to look at how different process measurements vary for operating
conditions that should be similar in some way. As an example, power plant data could be binned by power output, and
assuming that operating procedures are standard, it could be assumed that measurements in each bin should be about
the same. The variance of a measurement in a bin could be used a an approximation of uncertainty. Binning the data
by load and time could show how process measurements change over time and be useful for things like fault detection
and equipment degradation.

Adding bin information to a data frame is done with the idaes.dmf.model_data.bin_data() function.

idaes.dmf.model_data.bin_data(df, bin_by, bin_no, bin_nom, bin_size, min_value=None, max_value=None)
Sort data into bins by a column value. If the min or max are given and the value in bin_by for a row is out of the
range [min, max], the row is dropped from the data frame.

Parameters

• df (pandas.DataFrame) – Data frame to add bin information to

• bin_by (str) – A column for values to bin by

• bin_no (str) – A new column for bin number

• bin_nom (str) – A new column for the mid-point value of bin_by

• bin_size (float) – size of a bin

• min_value (in {float, None}) – Smallest value to keep or None for no lower

• max_value (in (float, None}) – Largest value to keep or None for no upper

Returns

returns the data frame, and a dictionary with the number of rows in each bin.
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Return type (dict)

The idaes.dmf.model_data.bin_stdev() function can be used to calculate the standard deviation for each mea-
surement in each bin.

idaes.dmf.model_data.bin_stdev(df, bin_no, min_data=4)
Calculate the standard deviation for each column in each bin.

Parameters

• df (pandas.DataFrame) – pandas data frame that is a bin number column

• bin_no (str) – Column to group by, usually contains bin number

• min_data (int) – Minimum number of data points requitred to calculate standard deviation
for a bin (default=4)

Returns

key is the bin number and the value is a pandas.Serries with column standard deviations

Return type dict

The function idaes.dmf.model_data.data_plot_book() creates a multipage PDF containing box plots for all the
measurements based on the bins.

idaes.dmf.model_data.data_plot_book(df, bin_nom, file='data_plot_book.pdf', tmp_dir='tmp_plots',
xlabel=None, metadata=None, cols=None, skip_cols=[])

Make box and whisker plots from process data based on bins from the bin_data() function.

Parameters

• df – data frame

• bin_nom – bin mid-point value column

• file – path for generated pdf

• tmp_dir – a directory to store temporary plots in

• xlabel – Label for x axis

• metadata – tag meta data dictionary

Returns None

To compare reconciled data to original measurements the idaes.dmf.data_rec_plot_book() is used. For each bin
there are two box plots one for the original data and one for reconciled data.

idaes.dmf.model_data.data_rec_plot_book(df_data, df_rec, bin_nom, file='data_rec_plot_book.pdf',
tmp_dir='tmp_plots', xlabel=None, metadata=None, cols=None,
skip_cols=[])

Make box and whisker plots from process data compared to data rec results based on bins from the bin_data()
function. The df_data and df_rec data frames should have the same index set and the df_data data frame contains
the bin data. This will plot the intersection of columns containg numerical data.

Parameters

• df_data – data frame with original data

• df_rec – data frame with reconciled data

• bin_nom – bin mid-point value column

• file – path for generated pdf

• tmp_dir – a directory to store temporary plots in
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• xlabel – Label for x axis

• metadata – tag meta data dictionary

• cols – List of columns to plot, if None plot all

• skip_cols – List of columns not to plot, this overrides cols

Returns None

Tagging the Model

Mapping process data to a model is typically done by creating model tag dictionaries. Where the dictionary key is a
measurement tag and the value is a reference to a model variable, expression, or parameter. The tags may be process
measurement tags, or any other convenient string. IDAES has some utilities to help facilitate tagging of models.

If model reference strings where provided in the tag metadata file, the tag metadata from the idaes.dmf.model_data.
read_data() will contain model references. These references can be accessed in the metadata dictionary as
metadata[tag]["reference"].

The reference strings are optional in the tag metadata file and can be added after reading the
data. To add a reference string to the metadata, you can update the metadata dictionary like
metadata[tag]["reference_string"] = reference_string. If you update the reference string, the
idaes.dmf.model_data.upadate_metadata_model_references()`` function can be used to update the references in the
tag metadata.

idaes.dmf.model_data.upadate_metadata_model_references(model, metadata)
Create model references from refernce strings in the metadata. This updates the ‘reference’ field in the metadata.

Parameters

• model (pyomo.environ.Block) – Pyomo model

• metadata (dict) – Tag metadata dictionary

Returns None

An easy way to create a new tag dictionary from tag metadata is to use dictionary comprehension like so: data_tags
= {k:v["reference"][0] for k, v in metadata.items() if v["reference"] is not None}

Often data reconciliation is performed using process data as the first step of parameter estimation or model validation.
Data reconciliation can often fill in information for many unmeasured quantities. Most of this data can be associated
with process streams. To make managing proliferation of data tags easier, it is often desirable to create a new set of
tags based on stream (Arc) names that can be automatically obtained from the model.

The first step to creating a new set of tags based on streams is to get a dictionary of streams and their associated state
blocks, with can be done with the idaes.core.util.tables.arcs_to_stream_dict() function.

idaes.core.util.tables.arcs_to_stream_dict(blk, additional=None, descend_into=True, sort=False,
prepend=None, s=None)

Creates a stream dictionary from the Arcs in a model, using the Arc names as keys. This can be used to
automate the creation of the streams dictionary needed for the create_stream_table_dataframe() and
stream_states_dict() functions.

Parameters

• blk (pyomo.environ._BlockData) – Pyomo model to search for Arcs

• additional (dict) – Additional states to add to the stream dictionary, which aren’t repre-
sented by arcs in blk, for example feed or product streams without Arcs attached or states
internal to a unit model.
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• descend_into (bool) – If True, search subblocks for Arcs as well. The default is True.

• sort (bool) – If True sort keys and return an OrderedDict

• prepend (str) – Prepend a string to the arc name joined with a ‘.’. This can be useful to
prevent conflicting names when sub blocks contain Arcs that have the same names when
used in combination with descend_into=False.

• s (dict) – Add streams to an existing stream dict.

Returns Dictionary with Arc names as keys and the Arcs as values.

The stream dictionary can be converted to a corresponding dictionary of state at a specific time with the idaes.core.
util.tables.stream_states_dict() function.

idaes.core.util.tables.stream_states_dict(streams, time_point=0)
Method to create a dictionary of state block representing stream states. This takes a dict with stream name keys
and stream values.

Parameters

• streams – dict with name keys and stream values. Names will be used as display names for
stream table, and streams may be Arcs, Ports or StateBlocks.

• time_point – point in the time domain at which to generate stream table (default = 0)

Returns A pandas DataFrame containing the stream table data.

With the dictionary of states, a tag dictionary can be created automatically with the idaes.core.util.tables.
stream_states_dict() function.

idaes.core.util.tables.stream_states_dict(streams, time_point=0)
Method to create a dictionary of state block representing stream states. This takes a dict with stream name keys
and stream values.

Parameters

• streams – dict with name keys and stream values. Names will be used as display names for
stream table, and streams may be Arcs, Ports or StateBlocks.

• time_point – point in the time domain at which to generate stream table (default = 0)

Returns A pandas DataFrame containing the stream table data.

Objective Function

For either parameter estimation or data reconciliation the objective function is often written in the form:

min
∑︁
𝑖

(𝑥data,𝑖 − 𝑥model,𝑖)
2

𝜎2
𝑖

To add the data to be used in the objective standard practice has been to add a mutable parameter for data and standard
deviation indexed by measurement tags. The parameter values can be set from the measurement data frame to a specific
index.

The following code snippet exemplifies the use of data parameters in a model.

# df is from reading process data into a pandas.DataFrame. bin_stdev comes
# from binning the data and calculating the standard deviations, as described
# in the Data Management section.

(continues on next page)
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(continued from previous page)

# Add data parameters
m.data = pyo.Param(data_tags, mutable=True)
m.data_stdev = pyo.Param(data_tags, mutable=True)

# A function to set the data parameters from measurement data
def set_data(m, df, data_tags, index=None):
m.bin_no = df.iloc[index]["bin_no"]
for t in data_tags:

m.data[t] = df.iloc[index][t]
m.data_stdev[t] = bin_stdev[m.bin_no][t]

# Expressions for error in the objective function
@m.Expression(data_tags)
def err(m, i):

return (m.data[i] - data_tags[i])/m.data_stdev[i]

Parameter Estimation

For parameter estimation and data reconciliation, it is recommended to use Paramest. If more control is needed a user
can also set up their own parameter estimation problem, by combining multiple process models into a larger parameter
estimation model.

APPENDIX: Unit String Information

This section provides additional detail about units strings that can be used to read data with the read_data() function.

Temperature Differences

The unit conversion for temperatures with offsets (C and F) are deferent depending on whether a measurement is
temperature or temperature difference. It is important to ensure the temperature units are correctly specified before
reading data. The units “delta_degC and delta_degF” are defined to handle temperature differences.

Units Not Converted

The following units are not affected by unit conversion.

• percent

• ppm

• ppb

• pH

• VAR

• MVAR

• H2O

• percent open

• percent closed
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Gauge Pressure

The table below shows a list of unit string that are taken to be gauge pressure when data is read. Gauge pressures are
converted to absolute pressure in the unit conversion process.

Gauge Pressure Unit Absolute Pressure Unit
psig psi
in water gauge in water
in hg gauge in hg

Additional Unit Definitions

Some units are common enough in process data that the read_data() function will recognize them and convert them
to standard Pint unit strings. Unit strings are case sensitive to handle things like milli (m) and mega (M) prefixes.

The table below shows the additional units.

Unit String Pint Unit String
Pressure
PSI psi
PSIA psi
psia psi
PSIG psig
INWC in water
IN WC in water
IN/WC in water
” H2O in water
INHG in hg
IN HG in hg
IN/HG in hg
HGA in hg
IN HGA in hg
Fraction
PCT percent
pct percent
PERCT percent
PERCT. percent
PCNT percent
PPM ppm
PPB ppb
% OPEN percent open
% CLSD percent closed
% CLOSED percent closed
Length
IN in
INS in
INCHES in
Inches in
FT ft
FEET ft

continues on next page
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Table 2 – continued from previous page
Unit String Pint Unit String
FOOT ft
Feet ft
MILS minch
Speed
MPH mile/hr
IPS in/s
Volume
KGAL kgal
Vol Flow
GPM gal/min
gpm gal/min
CFM ft^3/min
KCFM ft^3/mmin
SCFM ft^3/min
KSCFM ft^3/mmin
Angle
DEG deg
Angular Speed
RPM rpm
Frequency
HZ hz
Temperature
DEG F degF
Deg F degF
deg F degF
DEG C degC
Deg C degC
deg C degC
DEGF degF
DegF degF
DEGC degC
DegC degC
Temperature Difference
DELTA DEG F delta_degF
DETLA Deg F delta_degF
DETLA deg F delta_degF
DETLA DEG C delta_degC
DETLA Deg C delta_degC
DELTA deg C delta_degC
DELTA DEGF delta_degF
DELTA DegF delta_degF
DELTA degF delta_degF
DELTA DEGC delta_degC
DELTA DegC delta_degC
DELTA degC delta_degC
Delta DEG F delta_degF
Delta Deg F delta_degF
Delta deg F delta_degF
Delta DEG C delta_degC

continues on next page
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Table 2 – continued from previous page
Unit String Pint Unit String
Delta Deg C delta_degC
Delta deg C delta_degC
Delta DEGF delta_degF
Delta DegF delta_degF
Delta degF delta_degF
Delta DEGC delta_degC
Delta DegC delta_degC
Delta degC delta_degC
delta DEG F delta_degF
delta Deg F delta_degF
delta deg F delta_degF
delta DEG C delta_degC
delta Deg C delta_degC
delta deg C delta_degC
delta DEGF delta_degF
delta DegF delta_degF
delta degF delta_degF
delta DEGC delta_degC
delta DegC delta_degC
delta degC delta_degC
Energy
MBTU kbtu
Mass
MLB klb
K LB klb
K LBS klb
lb. lb
Mass flow
TPH ton/hr
tph ton/hr
KLB/HR klb/hr
KPPH klb/hr
Current
AMP amp
AMPS amp
Amps amp
Amp amp
AMP AC amp
pH
PH pH
VARS (volt-amp reactive)
VARS VAR
MVARS MVAR
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4.2.6 Command-line interface

The IDAES PSE Toolkit includes a command-line tool that can be invoked by typing idaes in a UNIX or Mac OSX
shell, or Windows Powershell, that is in an installed IDAES environment. For the most part, this means that wherever
you installed IDAES will have this command available.

This section of the documentation describes the capabilities of this command-line program.

idaes command

The base idaes command does not do anything by itself, besides set some shared configuration values. All the real
work is done by one of the subcommands, each of which is described on a separate page below.

idaes bin-directory: Show IDAES executable file directory

This page lists the options for the idaes “bin-directory” bin-directory. This is invoked like:

idaes [general options] bin-directory [bin-directory options]

general options

The following general options from the idaes base command affect the bin-directory bin-directory. They should be
placed before the “bin-directory” bin-directory, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes bin-directory

This subcommand shows the IDAES executable file directory.

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.
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idaes copyright: Show IDAES copyright information

This page lists the options for the idaes “copyright” subcommand. This is invoked like:

idaes [general options] copyright [subcommand options]

general options

The following general options from the idaes base command affect the copyright subcommand. They should be placed
before the “copyright” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes copyright

This subcommand prints the IDAES copyright notice to standard output.

options

--help
Show the help message and exit.

idaes data-directory: Show IDAES data directory

This page lists the options for the idaes “data-directory” subcommand. This is invoked like:

idaes [general options] data-directory [subcommand options]

general options

The following general options from the idaes base command affect the data-directory subcommand. They should be
placed before the “data-directory” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.
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idaes data-directory

This subcommand shows the IDAES data directory.

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.

idaes get-examples: Fetch example scripts and Jupyter Notebooks

This page lists the options for the idaes “get-examples” subcommand. This is invoked like:

idaes [general options] get-examples [subcommand options]

general options

The following general options from the idaes base command affect the get-examples subcommand. They should be
placed before the “get-examples” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes get-examples

This subcommand fetches example scripts and Jupyter Notebooks from a given release in Github. and puts them in a
directory of the users’ choosing. If the user does not specify a directory, the default is examples.

options

--help
Show the help message and exit.

-d,--dir TEXT

Select the installation target directory. See example usage for several examples of this option.

-I, --no-install

Do not install examples into ‘idaes_examples’ package. Examples are installed by default so they can be imported
directly from Python. Not installing them might cause some tests, which import the examples, to fail.

-l, --list-releases
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List all available released versions, and stop. This lets people browse the releases and select one. By default, the release
that matches the version of the currently installed “idaes” package is used. See also the –unstable option.

-N, --no-download

Do not download anything. If the –no-install option is also given, this means the command will essentially do nothing.
Or, looked at another way, this option means that only action will be the installation of the “idaes_examples” package
from the selected directory.

-U, --unstable

Allow and list unstable/pre-release versions. This applies to both download and the –list-releases option. Unstable
releases are marked with “rcN” or similar suffixes.

-V, --version TEXT

Version of examples to download. The default version, which is shown for the –help option, is the same as the version
of the IDAES PSE toolkit for which the idaes command is installed. If the version to install is unstable (ends with
“rcN”) then you will need to add the –unstable option to avoid errors.

example usage

idaes get-examples Download examples from release matching release for the idaes command, install them in the
examples subdirectory of this directory, and install the modules found under examples/src as a package named
idaes_examples. The examples directory must not exist, i.e. the program will refuse to overwrite the contents of
an existing directory.

idaes get-examples -d /tmp/examples Same as above, but put downloaded code in /tmp/examples instead.

idaes get-examples -d /tmp/examples -I Download to /tmp/examples, but do not install.

idaes get-examples -d /tmp/examples -N Install the examples found under /tmp/examples.

idaes get-examples –version 1.4.2-pre Download examples from release 1.4.2-pre, install them in the examples sub-
directory of this directory, and install the modules found under examples/src as a package named idaes_examples.

idaes get-examples –list-releases List available releases of the examples in Github repository, idaes/examples-pse.
Do not attempt to download or install anything.

idaes get-examples –list-releases –unstable Same as above, but include non-stable releases.

idaes get-extensions: Get solvers and libraries

This page lists the options for the idaes “get-extensions” subcommand. This is invoked like:

idaes [general options] get-extensions [subcommand options]

general options

The following general options from the idaes base command affect the get-extensions subcommand. They should be
placed before the “get-extensions” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See idaes command for details.
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idaes get-extensions

This subcommand gets the compiled solvers and libraries from a remote repository, and installs them locally.

options

--help
Show the help message and exit.

--url
URL from which to download the solvers/libraries.

idaes lib-directory: Show IDAES library file directory

This page lists the options for the idaes “lib-directory” subcommand. This is invoked like:

idaes [general options] lib-directory [subcommand options]

general options

The following general options from the idaes base command affect the lib-directory subcommand. They should be
placed before the “lib-directory” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes lib-directory

This subcommand shows the IDAES library file directory.

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.
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IDAES Versioning

The IDAES Python package is versioned according to the general guidelines of semantic versioning, following the
recommendations of PEP 440 with respect to extended versioning descriptors (alpha, beta, release candidate, etc.).

Basic usage

You can see the version of the package at any time interactively by printing out the __version__ variable in the top-level
package:

import idaes
print(idaes.__version__)
# prints a version like "1.2.3"

Advanced usage

This section describes the module’s variables and classes.

Overview

The API in this module is mostly for internal use, e.g. from ‘setup.py’ to get the version of the package. But Version
has been written to be usable as a general versioning interface.

Example of using the class directly:

>>> from idaes.ver import Version
>>> my_version = Version(1, 2, 3)
>>> print(my_version)
1.2.3
>>> tuple(my_version)
(1, 2, 3)
>>> my_version = Version(1, 2, 3, 'alpha')
>>> print(my_version)
1.2.3.a
>>> tuple(my_version)
(1, 2, 3, 'alpha')
>>> my_version = Version(1, 2, 3, 'candidate', 1)
>>> print(my_version)
1.2.3.rc1
>>> tuple(my_version)
(1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then simply inherit from HasVersion and initialize it with the
same arguments you would give the Version constructor:

>>> from idaes.ver import HasVersion
>>> class MyClass(HasVersion):
... def __init__(self):
... super(MyClass, self).__init__(1, 2, 3, 'alpha')
...

(continues on next page)
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(continued from previous page)

>>> obj = MyClass()
>>> print(obj.version)
1.2.3.a

idaes.ver.__version__ = '1.10.1'
Package’s version as a simple string

idaes.ver.package_version = <idaes.ver.Version object>
Package’s version as an object

Version class

The versioning semantics are encapsulated in a class called Version.

class idaes.ver.Version(major, minor, micro, releaselevel='final', serial=None, label=None)
This class attempts to be compliant with a subset of PEP 440.

Note: If you actually happen to read the PEP, you will notice that pre- and post- releases, as well as “release
epochs”, are not supported.

__init__(major, minor, micro, releaselevel='final', serial=None, label=None)
Create new version object.

Provided arguments are stored in public class attributes by the same name.

Parameters

• major (int) – Major version

• minor (int) – Minor version

• micro (int) – Micro (aka patchlevel) version

• releaselevel (str) – Optional PEP 440 specifier

• serial (int) – Optional number associated with releaselevel

• label (str) – Optional local version label

__iter__()
Return version information as a sequence.

__str__()
Return version information as a string.

HasVersion class

For adding versions to other classes in a simple and standard way, you can use the HasVersion mixin class.

class idaes.ver.HasVersion(*args)
Interface for a versioned class.

__init__(*args)
Constructor creates a version attribute that is an instance of Version initialized with the provided args.

Parameters *args – Arguments to be passed to Version constructor.
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shared configuration

--help

See a list of subcommands and options, or get help for a specific subcommand.

-v

--verbose

Increase verbosity. Show warnings if given once, then info, and then debugging messages.

-q

--quiet

Increase quietness. If given once, only show critical messages. If given twice, show no messages.

4.2.7 IDAES Flowsheet Visualizer

Contents

• IDAES Flowsheet Visualizer

– Introduction

– Guide

– Reference

Introduction

The IDAES Flowsheet Visualizer, or IFV for short, is a web-based user interface (UI) that lets you:

• View any IDAES flowsheet as a process engineering diagram

• Export flowsheet diagrams as images (SVG format)

• View and export the “stream table” for the flowsheet

• Rearrange the flowsheet diagram to your taste and save the arrangement for next time

• Dynamically refresh the displayed values to reflect changes in the underlying IDAES model

To use the IFV, first install IDAES. The IFV can be invoked from a Jupyter Notebook or a Python script. It does not
require that you run any other application. Currently the IFV is only for viewing the flowsheet on your own computer.
1

Starting and stopping the IFV is fast and does not consume many resources.
1 But, since it is a web application, a shared service for viewing flowsheets stored remotely is definitely possible.
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Guide

This guide describes how to invoke (i.e., start) and use the IFV.

Invocation

The IFV visualizes flowsheets. To get started with creating a flowsheet with IDAES, see the Flowsheet models docu-
mentation page. Once you have created your flowsheet, simply call the visualize method on that object, passing some
parameters to give it a name and optional file for saving changes:

# First, create your IDAES model, "m", which has an attribute ".fs" for the flowsheet
# Then, invoke the `visualize` method
m.fs.visualize("My Flowsheet")

The invocation of the visualize method will pop up a browser tab or window with the UI, displaying the flowsheet and,
if the information is available, the stream table. In the notebook or script, you can continue to run more code and the
UI will continue to work in the background. You can close the UI at any time. If you exit the script or notebook while
the UI is running, you can still manipulate the diagram and stream table, but you will not be able to save or refresh,
since these require communication with the Python process that no longer exists.

There are three ways to invoke the visualize functionality, which in the end do the same thing and have the same
arguments.

1. Use the visualize method of a flowsheet (as above)

2. Call the visualize function from the package idaes.ui.fsvis, passing it a flowsheet object

3. Call the same visualize function from the module idaes.ui.fsvis.fsvis, passing it a flowsheet object

In all cases, the arguments and behavior are the same. See the visualize function documentation for details on parameters
to this function.

Note: You can continue to modify and use your model and flowsheet after calling visualize(). This may update the
visualization, but nothing you do in the IFV will affect the Python model; it is read-only.

User Interface

This section describes how to use the graphical web user interface. We start with a screenshot of the UI, with the main
areas highlighted. Then we zoom in on each area and describe how to use it.

Top bar

The top bar has a title bar, which contains the IDAES logo and the name of the flowsheet being visualized, and a menu.
The menu items are:

• Refresh: Update the view with any changes made to the flowsheet from the Python side. This also has the effect
of saving the current layout.

• Save: Save the current layout to the data store that was specified with the visualization was launched. Note that
this does not update with any changes made to the flowsheet in Python (use Refresh for that). Neither does it
have any effect on the Python flowsheet values, as the IFV cannot modify the underlying flowsheet.

• Export: Save the flowsheet or stream table as a file.
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Fig. 1: Screenshot of the main window of the IFV UI

Fig. 2: Screenshot of the top bar of the IFV UI
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– Flowsheet: Save the flowsheet as a Scalable Vector Graphics (SVG) file, a common format for images
that consist of “vector” elements like boxes, lines, and text. SVG files can be viewed like images by most
programs that allow image viewing, and even edited with a program like Inkscape. You will get a preview of
the image and a “Download” button that will save in a file named for the flowsheet, with a “.svg” extension.

– Stream table: Save the flowsheet as comma-separated values. The result will be a text file, called “ex-
port.csv”, that contains the data.

• View: Toggle the visibility of the flowsheet (diagram) area and the stream table area.

• Help: Load this documentation page.

Back to main window screenshot

Diagram

Fig. 3: Screenshot of the main diagram (or flowsheet) area of the IFV UI

The diagram (or flowsheet) area lets you rearrange the flowsheet as you need and zoom in on particular sections. You
can interact with the components on the diagram:

Shapes Geometric shapes on the flowsheet represent unit models, inlets and outlets, and other IDAES components.
They are connected by lines, and each has a name. All shapes can be moved by clicking and dragging them. If
you right-click on a shape, it will rotate 90 degrees.

Lines The lines connecting units can be manipulated by clicking and dragging. You can click on a line to create a new
segment that can be used for routing the line around objects. You can eliminate a segment by clicking on the dot
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that appears as you hover over the line. There are also pill-shaped handles that appear on the lines for moving
them. The endpoints of the lines are determined by the flowsheet and cannot be changed. For the same reason,
you also cannot add or remove lines.

Labels Both the shapes and lines have associated values that can be shown, which pop up over the lines if you toggle
the “Show labels” control. See the Diagram Controls section for details.

More details on mouse and keyboard actions for the diagram are available in the documentation of the underlying
Rappid toolkit.

Back to main window screenshot

Diagram Controls

Fig. 4: Screenshot of the diagram controls area of the IFV UI

The diagram controls allow you to affect some global properties of the diagram/flowsheet area.

View actions

• Labels: Toggle visibility of the information (labels) shown for each stream. This is the same information
that appears in the Stream Table.

• Grid: Toggle a background “grid”

• : Zoom in by 25%

• : Zoom out by 25%

• : Fit the diagram into the current area

Back to main window screenshot

Stream Table

The IFV will show a stream table with variables defined for each stream in the flowsheet, if these values exist and the
flowsheet adheres to the IDAES conventions for naming the inlet and outlet streams. An example of a stream table is
shown below.

There are a number of ways of manipulating this table:

• The “Hide Fields” pull-down menu provides a list of stream names. Select a name to hide/show that column in
the table.

• Click on the column header and drag it left or right to change its order in the table.

• Resize a column by hovering over a column border until you see the mouse pointer change, then drag it to resize.

You can also export the entire table as a file of comma-separated values. See the Export documentation for details.

Back to main window screenshot
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Fig. 5: Screenshot of an example stream table

Reference

idaes.ui.fsvis.visualize(flowsheet, name='flowsheet', save=None, save_dir=None, overwrite=False,
browser=True, port=None, log_level=30, quiet=False, loop_forever=False)

Visualize the flowsheet in a web application.

The web application is started in a separate thread and this function returns immediately.

Also open a browser window to display the visualization app. The URL is printed unless quiet is True.

Parameters

• flowsheet – IDAES flowsheet to visualize

• name (str) – Name of flowsheet to display as the title of the visualization

• save (Optional[Union[pathlib.Path, str, bool]]) – Where to save the current
flowsheet layout and values. If this argument is not specified, “name.json” will be used
(if this file already exists, a “-<version>” number will be added between the name and the
extension). If the value given is the boolean ‘False’, then nothing will be saved. The boolean
‘True’ value is treated the same as unspecified.

• save_dir (Optional[pathlib.Path]) – If this argument is given, and save is not given
or a relative path, then it will be used as the directory to save the default or given file. The
current working directory is the default. If save is given and an absolute path, this argument
is ignored.

• overwrite (bool) – If True, and the file given by save exists, overwrite instead of creating
a new numbered file.

• browser (bool) – If true, open a browser

• port (Optional[int]) – Start listening on this port. If not given, find an open port.

• log_level (int) – An IDAES logging level, which is a superset of the built-in logging
module levels. See the idaes.logger module for details

• quiet (bool) – If True, suppress printing any messages to standard output (console)

• loop_forever (bool) – If True, don’t return but instead loop until a Control-C is received.
Useful when invoking this function at the end of a script.
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Returns See VisualizeResult

Raises

• idaes.ui.fsvis.errors.VisualizerSaveError – if the data storage at ‘save_as’ can’t
be opened

• idaes.ui.fsvis.errors.VisualizerError – Any other errors

• RuntimeError – If too many versions of the save file already exist. See
MAX_SAVED_VERSIONS.

Return type idaes.ui.fsvis.fsvis.VisualizeResult

idaes.ui.fsvis.VisualizeResult = <class 'idaes.ui.fsvis.fsvis.VisualizeResult'>
VisualizeResult(store, port, server)

Software notes

This section provides some additional details for developers or users more interested in the programming details.

Client/server architecture

The visualize() command works by starting an HTTP server in a separate thread, and serving requests from the UI
(or any other requester). The server only responds to requests from your computer, not the internet. When you exit the
script or Jupyter Notebook that called visualize then you will also stop the server – and the associated IFV page will
no longer be able to save or refresh the flowsheet. The architecture diagram is shown below.

+-------------------+ +--------------------+
| | | Web browser |
| 'Python script' | +--------------------+
| 'or Jupyter' | +---------------+ | IFV web interface |
| 'Notebook' | | 'HTTP server' | +--------------------+
| | | 'running in' | | +--+ |
| | | 'a separate' | | +--+ |
| | | 'thread' | | | +--+ |
| | | <---> +----> +--+ |
| m.fs.visualize +----> Load/Save | | |
| | | | | |
+-------------------+ +-----^---------+ +--------------------+

|
|

+------v--------------+
| Local Storage |
+---------------------+
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Persistence architecture

The saving of the model uses the the module idaes.ui.fsvis.persist. This module implements the well-known
“”, which makes it easy to extend by adding a new DataStore sub-class and updating the logic in the factory method,
create(), to create and return instances of that class for a given input type. The input in this case comes from the
save_as argument to the visualize() method.

4.2.8 IDAES Model Libraries

The documentation for the models are found in the technical specifications linked below.

• Generic IDAES Model Library

• Power Generation Model Library

• Gas Solid Contactors Model Library

4.2.9 Configuration

Some behavior of IDAES is configurable through the IDAES global ConfigBlock. IDAES’s configuration is obtained
by first setting everything to internal defaults; then loading a global config file, if it exists; then loading a config file from
the current working directory, if it exists. After the idaes module is imported, the idaes ConfigBlock can be accessed
at idaes.cfg. Some configuration options can be changed after importing idaes by calling idaes.reconfig().

Configuration files are in JSON format. The default configuration is shown below and can be used as a template to
create new configuration files. To get the IDAES default configuration the command idaes config-write --file
idaes.conf --default can be used.

Command Line Tools

See idaes --help for information about command line configuration tools. These tools help manage configuration
files.

Global Configuration Files

IDAES configuration files are named idaes.conf. The easiest way to find where the global configuration file should
be placed is to run the command idaes data-directory. A global configuration file won’t exist unless a user creates
one. The default configuration above can be used as a start.

Windows

On Windows the global configuration file is located at %LOCALAPPDATA%\idaes\idaes.conf.
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UNIX-Like

On Unix-like systems the global configuration files is located at $HOME/.idaes/idaes.conf.

Other

On systems that have neither an %LOCALAPPDATA% or $HOME environment variable, global config files are not currently
supported.

Local Configuration Files

Local configuration files are also named idaes.conf and can be placed in the working directory, which is the directory
you launch Python from. You can also use the Python command chdir() to change the working directory before
importing idaes.

In addition to reading local configuration files when idaes is imported, you can read a configuration file anytime by
calling idaes.read_config(path). Reading a configuration file will automatically apply any resulting configuration
changes.

Changing the Configuration in a Script or Interactive Session

The idaes configuration can be changed anytime after the idaesmodule is imported. The standard ConfigBlock options
are described in detail below. For example to change whether you want to use the solvers provided by idaes or ones you
have installed elsewhere, you would first use the command idaes.cfg["use_idaes_solvers"] = False then to
make the change take effect use idaes.reconfig(). Not all option changes require idaes.reconfig(), so whether
they do or don’t is provided in the options descriptions below.

Important Configuration Entries

The ConfigBlock has several options, but they are not all important to end-users. This section lists the commonly used
entries.

logging

This section of the file configures IDAES loggers. Once the configuration is read, Python’s standard logging.config.
dictConfig() is used to set the logger configuration. See Python’s logging documentation for more information.

IDAES has four main loggers defined in the standard configuration, although additional loggers can be added if desired.
The standard loggers are:

1. idaes, this is the root logger of most IDAES logging, unless otherwise noted.

2. idaes.init, this is the root of IDAES initialization loggers.

3. idaes.solve, this is the root of IDAES solver loggers and solver information.

4. idaes.model, this is the root of model loggers. Model loggers are usually used by models written using the IDAES
framework, but not part of the idaes package.

If changes to the logger configuration dictionary are made after importing idaes a call to idaes.reconfig() is
required for it to take effect.
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use_idaes_solvers

This option can be set to False (false in JSON) to direct the IDAES framework not to use solvers obtained with the
idaes get-extensions command before using the solvers that may have been otherwise installed by the user. This
can be used if a user would prefer to use solver versions they have installed apart from IDAES.

Changes require idaes.reconfig(). The default setting is True.

logger_capture_solver

If a solver call is done from inside a solver logging context, this setting will send the solver output to the logger if True,
and not capture the solver output for the logger if False. If solver output is not captured it will be sent to the screen,
and not be logged.

Changes do not require idaes.reconfig(). The default setting is True.

logger_tags

Loggers created with the idaes.logging module can be assigned tags. Output from these loggers is recorded if the
loggers tag is in the logger_tags set. The default behavior can be configured in a configuration file. The tag set can
also be modified at any time via functions in the idaes.logging module. This is a subset of valid_log_tags.

Changes do not require idaes.reconfig(). The default setting is: ["framework", "model", "flowsheet",
"unit", "control_volume", "properties", "reactions"].

valid_log_tags

When setting logger tags for idaes.logging loggers they are compared against a list of valid tags. This is done to
guard against spelling errors. If the default set of defined tags is not sufficient tags can be added.

Changes do not require idaes.reconfig(). The default setting is: ["framework", "model", "flowsheet",
"unit", "control_volume", "properties", "reactions", "ui"].

ipopt

This is a config block that provides default configuration for the ipopt solver. These options are used for ipopt solvers
by default when the IDAES SolverFactory wrapper is used. Currently only solver options can be configured in the
options sub-ConfigBlock.

For example to set the default NLP scaling method for ipopt to use idaes-provided scaling factors, use the command
idaes.cfg["ipopt"]["options"]["nlp_scaling_method"] = "user-scaling"

Any ipopt solver options that can be passed via command line argument to the ipopt AMPL executable solver can be
set under idaes.cfg["ipopt"]["options"] or equivalently in a configuration file.

Changes do not require idaes.reconfig(). The default options are: {"nlp_scaling_method":
"gradient-based"}.

156 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

4.2.10 Logging

IDAES provides some logging extensions to provide finer control over information logging and to allow solver output
to be logged. Logging can be a useful tool for debugging.

Getting Loggers

There are four main roots of IDAES loggers (idaes, idaes.model, idaes.init, idaes.solve). All of these loggers
are standard Python loggers, and can be used as such. The main differences between using the IDAES logging functions
to get the loggers and plain Python methods are that the IDAES functions make it a little easier to get loggers that fit
into IDAES’s standard logging hierarchy, and the IDAES loggers have a few additional named logging levels, which
allow for finer control over the information displayed. Logging levels are described in detail later.

A tag can also be specified and used to filter logging records. By default the tag is None and log records won’t be fil-
tered. Valid tags are in the set {None, "framework", "model", "flowsheet", "unit", "control_volume",
"properties", "reactions"}. Users may add to the set of valid names. To see how to control which logging tags
are logged, see section “Tags” below. To avoid filtering out import warning and error messages, records logged at the
WARNING level and above are not filtered out regardless of tag.

idaes Logger

Loggers descending from idaes (other than idaes.init, idaes.model, or idaes.solve) are used for general
IDAES framework logging. Typically the module name __name__ is used for the logger name. Modules in the idaes
package already start with idaes, but if an IDAES logger is requested for a module outside of the idaes package
idaes. is prepended to the name.

idaes.logger.getLogger(name, level=None, tag=None)
Return an idaes logger.

Parameters

• name – usually __name__

• level – standard IDAES logging level (default use IDAES config)

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__, tag="framework")

idaes.init Loggers

The init logger will always descend from “idaes.init”. This logger is used in IDAES model initialization methods,
and can be used in user models as well. Initialization methods are usually attached to a Pyomo Block. Blocks have a
name attribute. So the logger name is usually given as the block name, and the getInitLogger() function prepends
idaes.init.. The advantage of using the block name over the module name is that users can see exactly which model
instance the initialization log messages are coming from.

idaes.logger.getInitLogger(name, level=None, tag=None)
Get a model initialization logger
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Parameters

• name – Object name (usually Pyomo Component name)

• level – Log level

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

class DummyBlock(object):
"""A dummy block for demonstration purposes"""
def __init__(name):
self.name = name

def initialize(outlvl=idaeslog.INFO):
init_log = idaeslog.getInitLogger(self.name, level=outlvl, tag="unit")

idaes.model Loggers

The model logger is used to provide a standard way to produce log messages from user models that are not part of the
idaes package. The logger name has idaes.model prepended to the name provided by the user. This is convenient
because it provides a way to use a standard configuration system for user model loggers. The user can choose any name
they like for these loggers.

idaes.logger.getModelLogger(name, level=None, tag=None)
Get a logger for an IDAES model. This function helps users keep their loggers in a standard location and use the
IDAES logging config.

Parameters

• name – Name (usually __name__). Any starting ‘idaes.’ is stripped off, so if a model is part
of the idaes package, ‘idaes’ won’t be repeated.

• level – Standard Python logging level (default use IDAES config)

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getModelLogger("my_model", level=idaeslog.DEBUG, tag="model")
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idaes.solve Loggers

The solve logger will always descend from “idaes.solve”. This logger is used to log solver output. Since solvers may
produce a lot of output, it can be useful to specify different handlers for the solve logger to direct it to a separate file.

idaes.logger.getSolveLogger(name, level=None, tag=None)
Get a solver logger

Parameters

• name – logger name is “idaes.solve.” + name (if name starts with “idaes.” it is removed before
creating the logger name)

• level – Log level

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Tags

Logger tags are provided to allow control over what types of log records to display. The logger tag is just a string that
gets attached to a logger, which specifies that a logger generates records of a certain type. You can then specify what
tags you want to see information from. A filter removes any tags that are not in the list of tags to display at levels below
WARNING.

The set of tags to display information from is a global setting in the idaes.logger module. When getting a logger, you
can set its tag by providing the tag argument, see “Getting Loggers” above.

The following functions can be used to specify which logging tags to display:

idaes.logger.log_tags()
Returns a set of logging tags to be logged.

Returns (set) tags to be logged

idaes.logger.set_log_tags(tags)
Specify a set of tags to be logged

Parameters tags (iterable of str) – Tags to log

Returns None

idaes.logger.add_log_tag(tag)
Add a tag to the list of tags to log.

Parameters tag (str) – Tag to log

Returns None

idaes.logger.remove_log_tag(tag)
Remove a tag from the list of tags to log.

Parameters tag (str) – Tag to no longer log

Returns None

The tags are validated against a list of valid tags to provide error checking for typos and to enforce some standard tag
names. To provide more flexibility, users can add to the list of valid tag names, but cannot remove names.

idaes.logger.valid_log_tags()
Returns a set of valid logging tag names.

Returns (set) valid tag names
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idaes.logger.add_valid_log_tag(tag)
Add a tag name to the list of valid names.

Parameters tag (str) – A tag name

Returns None

Levels

Several logging level constants are defined in the idaes.logger module. These include the standard Python Levels.
The following levels are provided for IDAES loggers. The additional levels of info provide finer control over the amount
of logging information produced by IDAES loggers.

Constant Name Value Name Log Method
CRITICAL 50 CRITICAL critial()
ERROR 40 ERROR error(), exception()
WARNING 30 WARNING warning()
INFO_LOW 21 INFO info_low()
INFO 20 INFO info()
INFO_HIGH 19 INFO info_high()
DEBUG 10 DEBUG debug()
NOTSET 0 NOTSET –

Utility Functions

There are some additional utility functions to perform logging tasks that are common in the IDAES framework.

idaes.logger.condition(res)
Get the solver termination condition to log. This isn’t a specifc value that you can really depend on, just a message
to pass on from the solver for the user’s benefit. Sometimes the solve is in a try-except, so we’ll handle None and
str for those cases, where you don’t have a real result.

Logging Solver Output

The solver output can be captured and directed to a logger using the idaes.logger.solver_log(logger, level)
context manager, which uses pyomo.common.tee.capture_output() to temporarily redirect sys.stdout and
sys.stderr to a string buffer. The logger argument is the logger to log to, and the level argument is the level
at which records are sent to the logger. The output is logged by a separate logging thread, so output can be logged as it
is produced instead of after the solve completes. If the solver_log() context manager is used, it can be turned on and
off by using the idaes.logger.solver_capture_on() and idaes.logger.solver_capture_off() functions.
If the capture is off solver output won’t be logged and it will go to standard output as usual.

The solver_log context yields an object with tee and thread attributes. thread is the logging thread, which is
not needed for most uses. The tee attribute should be passed to the tee argument of the solve method. Tee tells the
Pyomo solver to display solver output. The solver log context can provide this argument by determining if the solver
output would be logged at the given level.

Example

import idaes.logger as idaeslog
import pyomo.environ as pyo

solver = pyo.SolverFactory("ipopt")
(continues on next page)
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(continued from previous page)

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var()
model.x.fix(3)
model.c = pyo.Constraint(expr=model.y==model.x**2)

log = idaeslog.getSolveLogger("solver.demo")
log.setLevel(idaeslog.DEBUG)

with idaeslog.solver_log(log, idaeslog.DEBUG) as slc:
res = solver.solve(model, tee=slc.tee)

4.2.11 Modeling Extensions

The IDAES platform includes several modeling extensions that provide additional capabilities including surrogate
modeling, material design, and control. A brief description of each is provided below.

Surrogate modeling

ALAMOPY: ALAMO Python

ALAMOPY.ALAMO Options

This page lists in more detail the ALAMOPY options and the relation of ALAMO and ALAMOPY.

Contents

• ALAMOPY.ALAMO Options

– Basic ALAMOPY.ALAMO options

∗ Data Arguments

∗ Available Basis Functions

∗ ALAMO Regression Options

∗ Validation Capabilities

∗ File Options

– ALAMOPY results dictionary

∗ Output models

∗ Fitness metrics

∗ Regression description

∗ Performance specs

– Advanced user options in depth

∗ Custom Basis Functions
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∗ Custom Constraints

∗ Basis Function Groups and Constraints

Basic ALAMOPY.ALAMO options

Data Arguments

• xmin, xmax: minimum/maximum values of inputs, if not given they are calculated

• zmin, zmax: minimum/maximum values of outputs, if not given they are calculated

• xlabels: user-specified labels given to the inputs

• zlabels: user-specified labels given to the outputs

alamo(x_inputs, z_outputs, xlabels=['x1','x2'], zlabels=['z1','z2'])
alamo(x_inputs, z_outputs, xmin=(-5,0),xmax=(10,15))

Available Basis Functions

• linfcns, expfcns, logfcns, sinfcns, cosfcns: 0-1 option to include linear, exponential, logarithmic, sine, and
cosine transformations. For example

linfcns = 1, expfcns = 1, logfcns = 1, sinfcns = 1, cosfcns = 1

This results in basis functions = x1, exp(x1), log(x1), sin(x1), cos(x1) * monomialpower, multi2power, multi3power:
list of monomial, binomial, and trinomial powers. For example

monomialpower = (2,3,4), multi2power = (1,2,3), multi3power = (1,2,3)

This results in the following basis functions:

• Monomial functions = x^2, x^3, x^4

• Binomial functions = x1*x2, (x1*x2)^2, (x1*x2)^3

• Trinomial functions = (x1*x2*x3), (x1*x2*x3)^2, (x1*x2*x3)^3

• ratiopower: list of ratio powers. For example

ratiopower = (1,2,3)

This results in basis functions = (x1/x2), (x1/x2)^2, (x1/x2)^3

alamo(x_inputs, z_outputs, linfcns=1, logfcns=1, expfcns=1)
alamo(x_inputs, z_outputs, linfcns=1, multi2power=(2,3))

Note: Custom basis functions are discussed in the Advanced User Section.
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ALAMO Regression Options

• showalm: print ALAMO output to the screen

• expandoutput: add a key to the output dictionary for multiple outputs

• solvemip, builder, linearerror: A 01 indicator to solve with an optimizer (GAMSSOLVER), use a greedy
heuristic, or use a linear objective instead of squared error.

• modeler: Fitness metric to beused for model building (1-8)

– 1. BIC: Bayesian infromation criterion

– 2. Cp: Mallow’s Cp

– 3. AICc: the corrected Akaike’s information criterion

– 4. HQC: the Hannan-Quinn information criterion

– 5. MSE: mean square error

– 6. SSEp: sum of square error plus a penalty proportional to the model size (Note: convpen is the weight
of the penalty)

– 7. RIC: the risk information criterion

– 8. MADp: the maximum absolute eviation plus a penalty proportional to model size (Note: convpen is
the weight of the penalty)

• regularizer: Regularization method used to reduce the number of potential basis functions before optimization
of the selected fitness metric. Possible values are 0 and 1, corresponding to no regularization and regularization
with the lasso, respectively.

• maxterms: Maximum number of terms to be fit in the model

• convpen: When MODELER is set to 6 or 8 the size of the model is weighted by CONVPEN.

• almopt: name of the alamo option file

• simulator: a python function to be used as a simulator for ALAMO, a variable that is a python function (not a
string)

• maxiter: max iteration of runs

Validation Capabilities

• xval, zval: validation input/output variables

• loo: leave-one-out evaluation

• lmo: leave-many-out evaluation

• cvfun: cross-validation function (True/False)
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File Options

• almname: specify a name for the .alm file

• savescratch: saves .alm and .lst

• savetrace: saves tracefile

• saveopt: save .opt options file

• savegams: save the .gms gams file

ALAMOPY results dictionary

The results from alamopy.alamo are returned as a python dictionary. The data can be accessed by using the dictionary
keys listed below. For example

regression_results = doalamo(x_input, z_output, **kargs)
model = regression_results['model']

Output models

• f(model): A callable function

• pymodel: name of the python model written

• model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported
and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Fitness metrics

• size: number of terms chosen in the regression

• R2: R2 value of the regression

• Objective value metrics: ssr, rmse, madp

Regression description

• version: Version of ALAMO

• xlabels, zlabels: The labels used for the inputs/outputs

• xdata, zdata: array of xdata/zdata

• ninputs, nbas: number of inputs/basis functions
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Performance specs

There are three types of regression problems that are used: ordinary linear regression (olr), classic linear regression
(clr), and a mixed integer program (mip). Performance metrics include the number of each problems and the time spent
on each type of problem. Additionally, the time spent on other operations and the total time are included.

• numolr, olrtime, numclr, clrtime, nummip, miptime: number of type of regression problems solved and time

• othertime: Time spent on other operations

• totaltime: Total time spent on the regression

Advanced user options in depth

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods
in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups.
These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. In ALAMO,
this can be done with the following syntax

NCUSTOMBAS #
BEGIN_CUSTOMBAS
x1^2 * x2^2
END_CUSTOMBAS

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is
controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied
to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

CRNCUSTOM #
BEGIN_CUSTOMCON
1 z1 - x1 + x2 + 1
END_CUSTOMCON

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])
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Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints
on groups of selected basis functions. This can be accomplished using NGROUPS and identifying groups of basis
functions. For ALAMO, this is achieved by first defining the groups with

NGROUPS 3
BEGIN_GROUPS
# Group-id Member-type Member-indices <Powers>
1 LIN 1 2
2 MONO 1 2
3 GRP 1 2
END_GROUPS

To add groups to ALAMOPY, you can use the following methods. Each Basis group has an index number that will be
used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-type
are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL
(at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members
in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id
number of excluded or required basis functions.

BEGIN_GROUPCON
# Group-id Output-id Constraint-type Integer-parameter
3 1 NMT 1
END_GROUPCON

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

The purpose of ALAMOPY (Automatic Learning of Algebraic MOdels PYthon wrapper) is to provide a wrapper
for the software ALAMO which generates algebraic surrogate models of black-box systems for which a simulator or
experimental setup is available. Consider a system for which the outputs z are an unknown function f of the system
inputs x. The software identifies a function f, i.e., a relationship between the inputs and outputs of the system, that best
matches data (pairs of x and corresponding z values) that are collected via simulation or experimentation.
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Basic Usage

ALAMOPY’s main function is alamopy.alamo. Data can be read in or simulated using available python packages.
The main arguments of the alamopy.alamo python function are inputs and outputs, which are 2D arrays of data. For
example

regression_results =alamopy.alamo(x_inputs, z_outputs, **kargs)

where **kargs is a set of named keyword arguments than can be passed to the alamo python function to customize the
basis function set, names of output files, and other options available in ALAMO.

Warning: The alamopy.doalamo function is deprecated. It is being replaced with alamopy.alamo

Options for alamopy.alamo

Possible arguments to be passed to ALAMO through do alamo and additional arguments that govern the behavior of
doalamo.

• xlabels - list of strings to label the input variables

• zlabels - list of strings to label the output variables

• functions - logfcns, expfcns, cosfcns, sinfcns, linfcns, intercept. These are ‘0-1’ options to activate these func-
tions

• monomialpower, multi2power, multi3power, ratiopower. List of terms to be used in the respective basis functions

• modeler - integer 1-7 determines the choice of fitness metrice

• solvemip - ‘0-1’ option that will force the solving of the .gms file

These options are specific to alamopy and will not change the behavior of the underlying .alm file.

• expandoutput - ‘0-1’ option that can be used to collect more information from the ALAMO .lst and .trc file

• showalm - ‘0-1’ option that controlif the ALAMO output is printed to screen

• almname - A string that will assign the name of the .alm file

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

• savetrace - ‘0-1’ option that controls the status of the trace file

• savescratch - ‘0-1’ option to save the .alm and .lst files

• almopt - A string option that will append a text file of the same name to the end of each .alm fille to faciliate
advanced user access in an automated fashion
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ALAMOPY Output

There are mutliple outputs from the running alamopy.alamo. Outputs include:

• f(model): A callable function

• pymodel: name of the python model written

• model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported
and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Additional Results

After the regression of a model, ALAMOPY provides confidence interval analysis and plotting capabilities using the
results output.

Plotting

The plotting capabilities of ALAMOPY are available in the almplot function. Almplot will plot the function based on
one of the inputs.

result = alamopy.alamo(x_in, z_out, kargs)
alamopy.almplot(result)

Confidence intervals

Confidence intervals can similarly be calculated for the weighting of selected basis functions using the almconfidence
function.

This adds conf_inv (confidence intervals) and covariance (covariance matrix) to the results dictionary. This also gets
incorporated into the plotting function if it is available.

result = alamopy.alamo(x_in, z_out, kargs)
result = alamopy.almconfidence(result)
alamopy.almplot(result)
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Advanced Regression Capabilities

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods
in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups.
These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. To use this
advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to
the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is
controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied
to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])
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Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints
on groups of selected basis functions. To define groups in ALAMOPY, you can use the following methods. Each Basis
group has an index number that will be used as reference in the group constraints. The groups are defined by three
or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO,
GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL
(at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members
in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id
number of excluded or required basis functions.

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

ALAMOPY Examples

Three examples are included with ALMAOPY. These examples demonstrate different use cases, and provide a template
for utilizing user-defined mechanisms.

• ackley.py

• branin.py

• camel6.py with a Jupyter notebok

RIPE: Reaction Identification and Parameter Estimation

The RIPE module provides tools for reaction network identification. RIPE uses reactor data consisting of concentration,
or conversion, values for multiple species that are obtained dynamically, or at multiple process conditions (temperatures,
flow rates, working volumes) to identify probable reaction kinetics. The RIPE module also contains tools to facilitate
adaptive experimental design. The experimental design tools in RIPE require the use of the python package RBFopt.
More information for RBFopt is availible at www.github.com/coin-or/rbfopt
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Basic Usage

RIPE can be used to build models for static datasets through the function ripe.ripemodel

ripe_results = ripe.ripemodel(data, kwargs)

• data is provided to RIPE as one, two, or three dimensional python data structures, where the first axis corresponds
to observations at different process conditions, the second axis corresponds to observations of different chemical
species, and the third axis corresponds to dynamic observation of a chemical species at a specified process
condition.

RIPE adaptive experimental design can be accessed using ripe.ems

[proposed_x, errors] = ripe.ems(ripe_results, simulator, l_bounds, u_bounds, n_species,␣
→˓kwargs)

• ripe_results - The results from ripe.ripemodel, additional information provided in the results section

• simulator - a black-box simulator for the unknown process.

• l_bounds/u_bounds - lower and upper bounds for the input variables in the adaptive design

• nspecies - the number of chemical species present in the black-box system

Reaction stoichiometries and mechanisms are provided explicitly to ripemodel through the keyword arguments mech-
anisms and stoichiometry. Detailed explanations of the forms of these arguments are provided in the stoiciometry and
mechanism specification section. Additional keyword arguments can be found in the additional options section.

RIPE Output

By default, one file will be generated

• riperesults.txt - a file containing the selected reactions and parameter estimates

Reaction Stiochiometry and Mechanism Specification

Considered reaction stiochiometries are provided through keyword arguments.

Stoichiometry

Considered reaction stoichiometries are defiend as a list of list, where reactants and products are defined as negative
and positive integers , respectively, according to their stoichiometric coefficeints. A set of considered reaction stoi-
chiometries must be provided. If process data consists of species conversion, a positive coefficient should be specified.

Mechanisms

Considered reaction mechanisms are provided explicitly to RIPE through q keyword argument. If no kinetic mecha-
nisms are specified, mass action kinetics are ascribed to every considered stoichiometry. RIPE contains kinetic mech-
anisms defined internally, and called through ripe.mechs.<mechanism>. The availible mechanisms include:

• massact - mass action kinetics, order informed by reaction stoichiometry

19 empirical rate forms included relate specifically to catalyst conversion in chemical looping combustion reactors
include:

• Random nucleation

• Power law models

• Avrami-Erofeev models
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These internal kinetics can be specified by calling ripe.mechs.massact or ripe.mechs.clcforms respectively. User-
defined kinetic mechanisms can also be supplied to RIPE as python functions. An example is provided in the file
crac.py.

Additional Results and Options

In addition to the arguments stoichiometry and mechanism, a number of other optional arguments are availible, includ-
ing:

Arguments relating to process conditions

• x0 - initial concentration at each process condition for every species

• time - time associated with dynamic samples for every process condition

• temp - temperature associated with every process condition

• flow - flow rate at every process condition for every species

• vol - reactor volume at every process condition

Arguments related to RIPE algorithmic function

• tref - reference termpeature for reformulated Arrhenius models

• ccon - specified cardinality constraint instead of BIC objective

• sigma - expected variance of noise, estimated if not provided

• onemechper - one mechanism per stoichiometry in selected model, true by default

Additional arguments

• minlp_path - path to baron or other minlp solver, can also be set in shared.py

• alamo_path - path to alamo, can also be set in shared.py

• expand_output - provide estimates for noise variance in model resutls

• zscale - linear scaling of observed responses between -1 and 1

• ascale - linear scaling of activities between -1 and 1

• hide_output - surpress output to terminal

• keepfiles - keep scratch files for debugging

• showpyomo - show pyomo output to terminal, false by default

RIPE Examples

Three examples are included with RIPE. These examples demonstrate different use cases, and provide a template for
utilizing user-defined mechanisms.

• clc.py - a chemical looping combustion example in which catalyst conversion is observed over time

• isoT.py - an example that utilizes both ripe.ripemodel and ripe.ems

• crac.py - an example that utilizes user-defined reaction mechanisms

All of these examples are built for Linux machines. They can be called from the command line by calling python
directly, or can be called from inside a python environment using execfile().
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HELMET: HELMholtz Energy Thermodynamics

The purpose of HELMET (HELMholtz Energy Thermodynamics) is to provide a framework for regressing multi-
parameter equations of state that identify an equation for Helmholtz energy and multiple thermodynamic properties
simultaneously. HELMET uses best subset selection to simultaneously model various thermodynamic properties based
on the properties thermodynamic relation to Helmholtz energy. The generated model is a function of reduced density
and inverse reduced temperature and uses partial derivatives to calculate the different properties. Constraints are placed
on the regression to maintain thermodynamically feasible values and improve extrapolation and behavior of the model
based on physical restrictions.

Warning: This is the first public release of HELMET. Future work will include mixtures, regression using Pyomo
models, and increased plotting and preprocessing capabilities.

Basic Usage

Warning: To use this software, ALAMOPY and the solver BARON are required.

For the basic use of HELMET, the main regression steps can be imported from helmet.HELMET. These functions
provide general capabilities of HELMET for new users.

import helmet.Helmet as Helmet

The methods available in helmet.Helmet peform the necessary steps of the regression properties.

1. initialize(**kargs)

Initializes key thermodynamic constants, the location of data and sampling, properties to be fit, and optimization
settings

• molecule - name of the chemical of interest, directs naming of files and where the data should exist

• fluid_data - a tuple containing key thermodynamic constants (critical temperature, critical pressure, critical
density, molecular weight, triple point, accentric factor)

• filename - used for location of data

• gamsname - used for naming of files

• max_time - max time used for the solver

• props - list of thermodynamic properties to be fit

Supported thermodynamic properties are

– Pressure: ‘PVT’

– Isochoric heat capacity: ‘CV’

– Isobaric heat capacity: ‘CP’

– Speed of Sound: ‘SND’

• sample - sample ratio, ex. sample = 3 then a third of datapoints will be used

2. prepareAncillaryEquations(plot=True)

Fits equations to saturated vapor and liquid density and vapor pressure. The keyword argument plot defaults
to False
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3. viewPropertyData()

Plots the different thermodynamic properties available and a way to check that the importing of data is
successful

4. setupRegression(numTerms = 12, gams=True)

Writes the optimization program for modelling the thermodynamic properties. Currently this is through
GAMS but in the future it can also be solved using Pyomo.

5. runRegression()

Begins the modelling of the multiparameter equation

6. viewResults(filename)

Based on the optimization settings, the solution of the regression is parsed and fitness metrics are calcu-
lated. The results can be visualized with different plots.

HELMET Output

The output for HELMET is a single equation representing Helmholtz energy. Partial derivatives of this equation will
give you the fit thermodynamic properties as well as other properties related to Helmholtz energy.

HELMET Examples

The provided HELMET example uses data modified for this application and made available by the IAPWS orgnization
at http://www.iapws.org/95data.html for IAPWS Formulation 1995 for Thermodynamic Properties of Odrinary Water
Substance for General and Scientific Use.

PySMO: Python-based Surrogate Modelling Objects

The PySMO toolbox provides tools for generating different types of reduced order models. It provides IDAES users
with a set of surrogate modeling tools which supports flowsheeting and direct integration into an equation-oriented
modeling framework. It allows users to directly integrate reduced order models with algebraic high-fidelity process
models within an single IDAES flowsheet.

PySMO provides two sets of tools necessary for sampling and surrogate model generation.

Surrogate Generation

PySMO offers tools for generating three types of surrogates:

Generating Polynomial Models with PySMO

The pysmo.polynomial_regression method learns polynomial models from data. Presented with a small number of
samples generated from experiments or computer simulations, the approach determines the most accurate polynomial
approximation by comparing the accuracy and performance of polynomials of different orders and basis function forms.

pysmo.polynomial_regression considers three types of basis functions

• univariate polynomials,

• second-degree bivariate pilynomials, and
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• user-specified basis functions.

Thus, for a problem with 𝑚 sample points and 𝑛 input variables, the resulting polynomial is of the form

𝑦𝑘 =

𝑛∑︁
𝑖=1

𝛽𝑖𝑥
𝛼
𝑖𝑘 +

𝑛∑︁
𝑖,𝑗>𝑖

𝛽𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘 + 𝛽ΦΦ (𝑥𝑖𝑘) 𝑖, 𝑗 = 1, . . . , 𝑛; 𝑖 ̸= 𝑗; 𝑘 = 1, . . . ,𝑚;𝛼 ≤ 10 (4.1)

Basic Usage

To generate a polynomial model with PySMO, the pysmo.polynomial_regression class is first initialized, and then the
method training is called on the initialized object:

# Required imports
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

# Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

# Initialize the PolynomialRegression class, extract the list of features and train the␣
→˓model
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_
→˓polynomial_order=3, *kwargs)
>>> features = pr_init.get_feature_vector()
>>> pr_init.training()

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

• maximum_polynomial_order refers to the maximum polynomial order to be considered when training the
surrogate.

Optional Arguments

• multinomials - boolean option which determines whether bivariate terms are considered in polynomial genera-
tion.

• training_split - option which determines fraction of training data to be used for training (the rest will be for
testing). Default is 0.8.

• number_of_crossvalidations - Number of cross-validations during training. Default number is 3.
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pysmo.polynomial_regression Output

The result of the pysmo.polynomial_regression method is a python object containing information about the prob-
lem set-up, the final optimal polynomial order, the polynomial coefficients and different error and quality-of-fit metrics
such as the mean-squared-error (MSE) and the 𝑅2 coefficient-of-fit. A Pyomo expression can be generated from the
object simply passing a list of variables into the function generate_expression:

# Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])
# Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(pr_init.generate_expression(list_vars))

Prediction with pysmo.polynomial_regression models

Once a polynomial model has been trained, predictions for values at previously unsampled points :math:x_unsampled
can be evaluated by calling the predict_output() method on the unsampled points:

# Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = pr_init.predict_output(x_unsampled)

The confidence intervals for the regression paramaters may be viewed using the method confint_regression.

Flowsheet Integration

The result of the polynomial training process can be passed directly into a process flowsheet as an objective or a
constraint. The following code snippet demonstrates how an output polynomial model may be integrated directly into
a Pyomo flowsheet as an objective:

# Required imports
>>> import pyomo.environ as pyo
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

# Create a Pyomo model
>>> m = pyo.ConcreteModel()
>>> i = pyo.Set(initialize=[1, 2])

# Create a Pyomo variable with indexed by the 2D-set i with initial values {0, 0}
>>> init_x = {1: 0, 2: 0}
>>> def x_init(m, i):
>>> return (init_x[i])
>>> m.x = pyo.Var(i, initialize=x_init)

# Train a simple polynomial model on data available in csv format, resulting in the␣
→˓Python object polyfit
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_
→˓polynomial_order=3)
>>> features = pr_init.get_feature_vector()

(continues on next page)
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(continued from previous page)

>>> polyfit = pr_init.training()

# Use the resulting polynomial as an objective, passing in the Pyomo variable x
>>> m.obj = pyo.Objective(expr=polyfit.generate_expression([m.x[1], m.x[2]]))

# Solve the model
>>> instance = m
>>> opt = pyo.SolverFactory("ipopt")
>>> result = opt.solve(instance, tee=True)

Further details about pysmo.polynomial_regression may be found by consulting the examples or reading the paper [. . . ]

Available Methods

class idaes.surrogate.pysmo.polynomial_regression.FeatureScaling
A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling
and data_unscaling

static data_scaling(data)
data_scaling performs column-wise minimax scaling on the input dataset.

Parameters data – The input data set to be scaled. Must be a numpy array or dataframe.

Returns

tuple containing:

• scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be
between [0, 1].

• data_minimum : A 2-D row vector containing the column-wise minimums of the input
data.

• data_maximum : A 2-D row vector containing the column-wise maximums of the input
data.

Return type (tuple)

Raises TypeError – Raised when the input data is not a numpy array or dataframe

static data_unscaling(x_scaled, x_min, x_max)
data_unscaling performs column-wise un-scaling on the a minmax-scaled input dataset.

Parameters

• x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and
1.

• x_min (NumPy vector) – 𝑛 × 1 vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

• x_max (NumPy vector) –𝑛×1 vector vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

Returns A 2-D numpy array containing the scaled data, 𝑥𝑚𝑖𝑛 + 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 * (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

Return type NumPy Array

Raises IndexError – Raised when the dimensions of the arrays are inconsistent.
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class idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression(original_data_input,
regression_data_input,
maxi-
mum_polynomial_order,
num-
ber_of_crossvalidations=None,
no_adaptive_samples=None,
training_split=None,
max_fraction_training_samples=None,
max_iter=None,
solution_method=None,
multinomials=None,
fname=None,
overwrite=False)

The PolynomialRegression class performs polynomial regression on a training data set.

The class must first be initialized by calling PolynomialRegression. Regression is then carried out by calling
training.

For a given dataset with 𝑛 features 𝑥1, 𝑥2, . . . , 𝑥𝑛, Polyregression is able to consider three types of basis functions:

(a) Mononomial terms (𝑥𝑝𝑖 , 𝑝 ≤ 10) for all individual features. The maximum degree to be considered
can be set by the user (maximum_polynomial_order)

(b) All first order interaction terms 𝑥1𝑥2, 𝑥1𝑥3 etc. This can be turned on or off by the user (set multino-
mials)

(c) User defined input features, e.g. sin(𝑥1). These must be Pyomo functions and should be provided as
a list by the user calling set_additional_terms method before the polynomial training is done.

Example:

# Initialize the class and set additional terms
>>> d = PolynomialRegression(full_data, training_data, maximum_polynomial_order=2,␣
→˓max_iter=20, multinomials=1, solution_method='pyomo')
>>> p = d.get_feature_vector()
>>> d.set_additional_terms([...extra terms...])

# Train polynomial model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

Parameters

• regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for re-
gression training. It is expected to contain the features (X) and output (Y) data, with the
output values (Y) in the last column.

• original_data_input (NumPy Array of Pandas Dataframe) – If regres-
sion_data_input was drawn from a larger dataset by some sampling approach, the
larger dataset may be provided here. When additional data is not available, the same data
supplied for training_data can be supplied - this tells the algorithm not to carry out adaptive
sampling.

• maximum_polynomial_order (int) – The maximum polynomial order to be considered.

Further details about the optional inputs may be found under the __init__ method.
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__init__(original_data_input, regression_data_input, maximum_polynomial_order,
number_of_crossvalidations=None, no_adaptive_samples=None, training_split=None,
max_fraction_training_samples=None, max_iter=None, solution_method=None,
multinomials=None, fname=None, overwrite=False)

Initialization of PolynomialRegression class.

Parameters

• regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for
regression training. It is expected to contain features and output data, with the output
values (Y) in the last column.

• original_data_input (NumPy Array of Pandas Dataframe) – If regres-
sion_data_input was drawn from a larger dataset by some sampling approach, the
larger dataset may be provided here.

• maximum_polynomial_order (int) – The maximum polynomial order to be considered.

Keyword Arguments

• number_of_crossvalidations (int) – The number of polynomial fittings and cross-
validations to be carried out for each polynomial function/expression. Must be a positive,
non-zero integer. Default=3.

• training_split (float) – The training/test split to be used for regression_data_input.
Must be between 0 and 1. Default = 0.75

• solution_method (str) – The method to be used for solving the least squares optimiza-
tion problem for polynomial regression. Three options are available:

(a) ”MLE” : The mle (maximum likelihood estimate) method solves the least squares prob-
lem using linear algebra. Details of the method may be found in Forrester et al.

(b) ”BFGS” : This approach solves the least squares problem using scipy’s BFGS algorithm.

(c) ”pyomo”: This option solves the optimization problem in pyomo with IPOPT as solver.
This is the default option.

• multinomials (bool) – This option determines whether or not multinomial terms are
considered during polynomial fitting. Takes 0 for No and 1 for Yes. Default = 1.

Returns self object containing all the input information.

Raises

• ValueError –

– The input datasets (original_data_input or regression_data_input) are of the wrong
type (not Numpy arrays or Pandas Dataframes)

• Exception –

– maximum_polynomial_order is not a positive, non-zero integer or maxi-
mum_polynomial_order is higher than the number of training samples available

• Exception –

– solution_method is not ‘mle’, ‘pyomo’ or ‘bfgs

• Exception –

– multinomials is not binary (0 or 1)

• Exception –

– training_split is not between 0 and 1
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• Exception –

– number_of_crossvalidations is not a positive, non-zero integer

• Exception –

– max_fraction_training_samples is not between 0 and 1

• Exception –

– no_adaptive_samples is not a positive, non-zero integer

• Exception –

– max_iter is not a positive, non-zero integer

• warnings.warn –

– When the number of cross-validations is too high, i.e. number_of_crossvalidations > 10

confint_regression(confidence=0.95)
The confint_regression method prints the confidence intervals for the regression patamaters.

Parameters confidence – Required confidence interval level, default = 0.95 (95%)

generate_expression(variable_list)
The generate_expression method returns the Pyomo expression for the polynomial model trained.

The expression is constructed based on a supplied list of variables variable_list and the output of
training.

Parameters variable_list (list) – List of input variables to be used in generating expres-
sion. This can be the a list generated from the results of get_feature_vector. The user
can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the polynomial model based on the variables provided in vari-
able_list.

Return type Pyomo Expression

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers of
the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

Example:

# Create a small dataframe with three columns ('one', 'two', 'three') and two rows␣
→˓(A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],␣
→˓orient='index', columns=['one', 'two', 'three'])

# Initialize the **PolynomialRegression** class and print the column headers␣
→˓for the variables
>>> f = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=1,␣
→˓multinomials=True, training_split=0.8)
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two
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predict_output(x_data)
The predict_output method generates output predictions for input data x_data based a previously gen-
erated polynomial fitting.

Parameters x_data – Numpy array of designs for which the output is to be evaluated/predicted.

Returns Output variable predictions based on the polynomial fit.

Return type Numpy Array

set_additional_terms(term_list)
set_additional_terms accepts additional user-defined features for consideration during regression.

Parameters term_list (list) – List of additional terms to be considered as regression features.
Each term in the list must be a Pyomo-supported intrinsic function.

Example:

# To add the sine and cosine of a variable with header 'X1' in the dataset as␣
→˓additional regression features:
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],␣
→˓orient='index', columns=['X1', 'X2', 'Y'])
>>> A = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=5)
>>> p = A.get_feature_vector()
>>> A.set_additional_terms([ pyo.sin(p['X1']) , pyo.cos(p['X1']) ])

training()
The trainingmethod trains a polynomial model to an input dataset. It calls the core method which is called
in the PolynomialRegression class (polynomial_regression_fitting). It accepts no user input, inheriting the
information passed in class initialization.

Returns

Python Object (results) containing the results of the polynomial regression process including:

• the polynomial order (self.final_polynomial_order)

• polynomial coefficients (self.optimal_weights_array), and

• MAE and MSE errors as well as the 𝑅2 (results.errors).

Return type tuple

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470770801
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Generating Radial Basis Function (RBF) models with PySMO

The pysmo.radial_basis_function package has the capability to generate different types of RBF surrogates from data
based on the basis function selected. RBFs models are usually of the form where

𝑦𝑘 =

Ω∑︁
𝑗=1

𝑤𝑗𝜓 (‖𝑥𝑘 − 𝑧𝑗‖) 𝑘 = 1, . . . ,𝑚 (4.2)

where 𝑧𝑗 are basis function centers (in this case, the training data points), 𝑤𝑗 are the radial weights associated with
each center 𝑧𝑗 , and 𝜓 is a basis function transformation of the Euclidean distances.

PySMO offers a range of basis function transformations 𝜓, as shown in the table below.

Table 3: List of available RBF basis transformations, 𝑑 =‖ 𝑥𝑘 − 𝑧𝑗 ‖
Transformation type PySMO option name 𝜓(𝑑)
Linear ‘linear’ 𝑑
Cubic ‘cubic’ 𝑑3

Thin-plate spline ‘spline’ 𝑑2 ln(𝑑)

Gaussian ‘gaussian’ 𝑒(−𝑑2𝜎2)

Multiquadric ‘mq’
√︁

1 + (𝜎𝑑)
2

Inverse mMultiquadric ‘imq’ 1/

√︁
1 + (𝜎𝑑)

2

Selection of parametric basis functions increase the flexibility of the radial basis function but adds an extra parameter
(𝜎)to be estimated.

Basic Usage

To generate an RBF model with PySMO, the pysmo.radial_basis_function class is first initialized, and then the function
training is called on the initialized object:

# Required imports
>>> from idaes.surrogates.pysmo import radial_basis_function
>>> import pandas as pd

# Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

# Initialize the RadialBasisFunctions class, extract the list of features and train the␣
→˓model
>>> rbf_init = radial_basis_function.RadialBasisFunctions(xy_data, *kwargs)
>>> features = rbf_init.get_feature_vector()
>>> rbf_fit = rbf_init.training()

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

Optional Arguments
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• basis_function - option to specify the type of basis function to be used in the RBF model. Default is ‘gaussian’.

• regularization - boolean which determines whether regularization of the RBF model is considered. Default is
True.

– When regularization is turned on, the resulting model is a regressing RBF model.

– When regularization is turned off, the resulting model is an interpolating RBF model.

pysmo.radial_basis_function Output

The result of pysmo.radial_basis_function (rbf_fit in above example) is a python object containing information about
the problem set-up, the optimal radial basis function weights 𝑤𝑗 and different error and quality-of-fit metrics such as
the mean-squared-error (MSE) and the 𝑅2 coefficient-of-fit. A Pyomo expression can be generated from the object
simply passing a list of variables into the function generate_expression:

# Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

# Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(rbf_init.generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the generate_expression function can be passed into
an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.radial_basis_function models

Once an RBF model has been trained, predictions for values at previously unsampled points x_unsampled can be
evaluated by calling the predict_output() function on the unsampled points:

# Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = rbf_init.predict_output(x_unsampled)

Further details about pysmo.radial_basis_function module may be found by consulting the examples or reading the
paper [. . . ]

Available Methods

class idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
A class for scaling and unscaling input and output data. The class contains two main methods:
data_scaling_minmax and data_unscaling_minmax

static data_scaling_minmax(data)
data_scaling_minmax performs column-wise min-max scaling on the input dataset.

Parameters data – The input data set to be scaled. Must be a numpy array or dataframe.

Returns

tuple containing:

• scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be
between [0, 1].
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• data_minimum : A 2-D row vector containing the column-wise minimums of the input
data.

• data_maximum : A 2-D row vector containing the column-wise maximums of the input
data.

Return type (tuple)

Raises TypeError – Raised when the input data is not a numpy array or dataframe

static data_unscaling_minmax(x_scaled, x_min, x_max)
data_unscaling_minmax performs column-wise un-scaling on the a minmax-scaled input dataset.

Parameters

• x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and
1.

• x_min (NumPy vector) – 𝑛 × 1 vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

• x_max (NumPy vector) –𝑛×1 vector vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

Returns A 2-D numpy array containing the scaled data, 𝑥𝑚𝑖𝑛 + 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 * (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

Return type NumPy Array

Raises IndexError – Raised when the dimensions of the arrays are inconsistent.

class idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions(XY_data,
basis_function=None,
solution_method=None,
regularization=None,
fname=None,
overwrite=False)

The RadialBasisFunctions class generates a radial basis function fitting for a training data set.

The class must first be initialized by calling RadialBasisFunctions. Regression is then carried out by calling
the method training.

For a given dataset with n features 𝑥1, . . . , 𝑥𝑛, RadialBasisFunctions is able to consider six types of basis transformations:

• Linear (‘linear’)

• Cubic (‘cubic’)

• Gaussian (‘gaussian’)

• Multiquadric (‘mq’)

• Inverse multiquadric (‘imq’)

• Thin-plate spline (‘spline’)

training selects the best hyperparameters (regularization parameter 𝜆 and shape parameter 𝜎, where necessary)
by evaluating the leave-one-out cross-validation error for each (𝜆, 𝜎) pair.

It should be noted that the all the training points are treated as centres for the RBF, resulting in a square system.

Example:
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# Initialize the class
>>> d = RadialBasisFunctions(training_data, basis_function='gaussian', solution_
→˓method='pyomo', regularization=True))
>>> p = d.get_feature_vector()

# Train RBF model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

Parameters XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training.
XY_data is expected to contain the features (X) and output (Y) data, with the output values
(Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

__init__(XY_data, basis_function=None, solution_method=None, regularization=None, fname=None,
overwrite=False)

Initialization of RadialBasisFunctions class.

Parameters XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training.
XY_data is expected to contain feature and output information, with the output values (y) in
the last column.

Keyword Arguments

• basis_function (str) – The basis function transformation to be applied to the training
data. Two classes of basis transformations are available for selection:

– Fixed basis transformations, which require no shape parameter 𝜎 :

(a) ’cubic’ : Cubic basis transformation

(b) ’linear’ : Linear basis transformation

(c) ’spline’ : Thin-plate spline basis transformation

– Parametric basis transformations which require a shape parameter:

(a) ’gaussian’ : Gaussian basis transformation (Default)

(b) ’mq’ : Multiquadric basis transformation

(c) ’imq’ : Inverse multiquadric basis transformation

• solution_method (str) – The method to be used for solving the RBF least squares op-
timization problem. Three options are available:

(a) ’algebraic’ : The explicit algebraic method solves the least squares problem using linear
algebra.

(b) ’BFGS’ : This approach solves the least squares problem using SciPy’s BFGS algorithm.

(c) ’pyomo’ : This option solves the optimization problem in Pyomo with IPOPT as solver.
This is the default.

• regularization (bool) – This option determines whether or not the regularization pa-
rameter 𝜆 is considered during RBF fitting. Default setting is True.

Returns self object with the input information

Raises
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• ValueError – The input dataset is of the wrong type (not a NumPy array or Pandas
Dataframe)

• Exception –

– basis_function entry is not valid.

• Exception –

– solution_method is not ‘algebraic’, ‘pyomo’ or ‘bfgs’.

• Exception –

– 𝜆 is not boolean.

Example:

# Specify the gaussian basis transformation
>>> d = RadialBasisFunctions(XY_data, basis_function='gaussian')

generate_expression(variable_list)
The generate_expression method returns the Pyomo expression for the RBF model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the
previous RBF training process.

Parameters variable_list (list) – List of input variables to be used in generating expres-
sion. This can be the a list generated from the output of get_feature_vector. The user
can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the RBF model based on the variables provided in variable_list

Return type Pyomo Expression

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers of
the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

Example:

# Create a small dataframe with three columns ('one', 'two', 'three') and two rows␣
→˓(A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],␣
→˓orient='index', columns=['one', 'two', 'three'])

# Initialize the **RadialBasisFunctions** class with a linear kernel and print␣
→˓the column headers for the variables
>>> f = RadialBasisFunctions(xy_data, basis_function='linear')
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

predict_output(x_data)
The predict_output method generates output predictions for input data x_data based a previously gen-
erated RBF fitting.
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Parameters x_data (NumPy Array) – Designs for which the output is to be evaluated/predicted.

Returns Output variable predictions based on the rbf fit.

Return type Numpy Array

static r2_calculation(y_true, y_predicted)
r2_calculation returns the 𝑅2 as a measure-of-fit between the true and predicted values of the output
variable.

Parameters

• y_true (NumPy Array) – Vector of actual values of the output variable

• y_predicted (NumPy Array) – Vector of predictions for the output variable based on the
surrogate

Returns 𝑅2 measure-of-fit between actual and predicted data

Return type float

training()
Main function for RBF training.

To train the RBF:

(1) The best values of the hyperparameters (𝜎, 𝜆) are selected via LOOCV.

(2) The necessary basis transformation at the optimal hyperparameters is generated.

(3) The condition number for the transformed matrix is calculated.

(4) The optimal radial weights are evaluated using the selected optimization method.

(5) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling
the methods error_calculation and r2_calculation

(6) A results object is generated by calling the ResultsReport class.

The LOOCV error for each (𝜎, 𝜆) pair is evaluated by calling the function
loo_error_estimation_with_rippa_method.

The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000,
while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

Returns

self object (results) containing the all information about the best RBF fitting obtained, including:

• the optimal radial weights (results.radial_weights),

• when relevant, the optimal shape parameter found 𝜎 (results.sigma),

• when relevant, the optimal regularization parameter found 𝜆 (results.regularization),

• the RBF predictions for the training data (results.output_predictions), and

• the 𝑅2 value on the training data (results.R2)

Return type tuple
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Generating Kriging Models with PySMO

The pysmo.kriging trains Ordinary Kriging models. Interpolating kriging models assume that the outputs 𝑦 ∈ R𝑚×1

are correlated and may be treated as a normally distributed stochastic process. For a set of input measurements 𝑋 =
{𝑥1, 𝑥2, . . . , 𝑥𝑚} ;𝑥𝑖 ∈ R𝑛, the output 𝑦 is modeled as the sum of a mean (𝜇) and a Gaussian process error,

𝑦𝑘 = 𝜇+ 𝜖 (𝑥𝑘) 𝑘 = 1, . . . ,𝑚 (4.3)

Kriging models assume that the errors in the outputs 𝜖 are correlated proportionally to the distance between corre-
sponding points,

cor [𝜖 (𝑥𝑗) , 𝜖 (𝑥𝑘)] = exp

(︃
−

𝑛∑︁
𝑖=1

𝜃𝑖 | 𝑥𝑖𝑗 − 𝑥𝑖𝑘 |𝜏𝑖
)︃

𝑗, 𝑘 = 1, . . . ,𝑚; 𝜏𝑖 ∈ [1, 2] ; 𝜃𝑖 ≥ 0 (4.4)

The hyperparameters of the Kriging model
(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛, 𝜏1, . . . , 𝜏𝑛

)︀
are selected such that the concentrated log

likelihood function is maximized.

Basic Usage

To generate a Kriging model with PySMO, the pysmo.kriging class is first initialized, and then the function training is
called on the initialized object:

# Required imports
>>> from idaes.surrogates.pysmo import kriging
>>> import pandas as pd

# Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

# Initialize the KrigingModel class, extract the list of features and train the model
(continues on next page)
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(continued from previous page)

>>> krg_init = kriging.KrigingModel(xy_data, *kwargs)
>>> features = krg_init.get_feature_vector()
>>> krg_init.training()

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

Optional Arguments

• numerical_gradients: Whether or not numerical gradients should be used in training. This choice determines
the algorithm used to solve the problem.

– True: The problem is solved with BFGS using central differencing with ∆ = 10−6 to evaluate numerical
gradients.

– False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

• regularization - Boolean option which determines whether or not regularization is considered during Kriging
training. Default is True.

– When regularization is turned on, the resulting model is a regressing kriging model.

– When regularization is turned off, the resulting model is an interpolating kriging model.

pysmo.kriging Output

The result of pysmo.kriging is a python object containing information about the optimal Kriging hyperparameters(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛

)︀
and different error and quality-of-fit metrics such as the mean-squared-error (MSE) and the 𝑅2

coefficient-of-fit. A Pyomo expression can be generated from the object simply passing a list of variables into the
function generate_expression:

# Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

# Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(krg_init.generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the generate_expression function can be passed into
an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.kriging models

Once a Kriging model has been trained, predictions for values at previously unsampled points x_unsampled can be
evaluated by calling the predict_output() function on the unsampled points:

# Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = kriging_init.predict_output(x_unsampled)

Further details about pysmo.kriging module may be found by consulting the examples or reading the paper [. . . ]
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Available Methods

class idaes.surrogate.pysmo.kriging.KrigingModel(XY_data, numerical_gradients=True,
regularization=True, fname=None,
overwrite=False)

The KrigingModel class trains a Kriging model for a training data set.

The class must first be initialized by calling KrigingModel. Model training is then carried out by calling the
training method.

KrigingModel is able to generate either an interpolating or a regressing Kriging model depending on the settings
used during initialization..

Example:

# Initialize the class
>>> d = KrigingModel(training_data, numerical_gradients=True, regularization=True))
>>> p = d.get_feature_vector()

# Train Kriging model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

Parameters XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging training.
XY_data is expected to contain both the features (X) and output (Y) information, with the output
values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

__init__(XY_data, numerical_gradients=True, regularization=True, fname=None, overwrite=False)
Initialization of KrigingModel class.

Parameters XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging
training. XY_data is expected to contain feature and output data, with the output values
(y) in the last column.

Keyword Arguments

• numerical_gradients (bool) – Whether or not numerical gradients should be used in
training. This choice determines the algorithm used to solve the problem.

– numerical_gradients = True: The problem is solved with BFGS using central differenc-
ing with a step size of 10−6 to evaluate numerical gradients.

– numerical_gradients = False: The problem is solved with Basinhopping, a stochastic
optimization algorithm.

• regularization (bool) – This option determines whether or not regularization is con-
sidered during Kriging training. Default is True.

– When regularization is turned off, the model generates an interpolating kriging model.

Returns self object with the input information and settings.

Raises

• ValueError –

– The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

• Exception –
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– numerical_gradients is not boolean

• Exception –

– regularization is not boolean

Example:

# Initialize Kriging class with no numerical gradients - solution algorithm␣
→˓will be Basinhopping
>>> d = KrigingModel(XY_data, numerical_gradients=False)

generate_expression(variable_list)
The generate_expression method returns the Pyomo expression for the Kriging model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the
previous Kriging training process.

Parameters variable_list (list) – List of input variables to be used in generating expres-
sion. This can be the a list generated from the output of get_feature_vector. The user
can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the Kriging model based on the variables provided in variable_list

Return type Pyomo Expression

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers of
the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

predict_output(x_pred)
The predict_outputmethod generates output predictions for input data x_pred based a previously trained
Kriging model.

Parameters x_pred (NumPy Array) – Array of designs for which the output is to be evalu-
ated/predicted.

Returns Output variable predictions based on the Kriging model.

Return type NumPy Array

static r2_calculation(y_true, y_predicted)
r2_calculation returns the 𝑅2 as a measure-of-fit between the true and predicted values of the output
variable.

Parameters

• y_true (NumPy Array) – Vector of actual values of the output variable

• y_predicted (NumPy Array) – Vector of predictions for the output variable based on the
surrogate

Returns 𝑅2 measure-of-fit between actual and predicted data

Return type float

training()
Main function for Kriging training.

To train the Kriging model:

(1) The Kriging exponent 𝜏𝑖 is fixed at 2.
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(2) The optimal Kriging hyperparameters
(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛

)︀
are evaluated by calling the

optimal_parameter_evaluation method using either BFGS or Basinhopping.

(3) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling
the functions error_calculation and self.r2_calculation

(4) A results object is generated by calling the ResultsReport class.

Returns

self object (results) containing the all information about the best Kriging model obtained, including:

• the Kriging model hyperparameters (results.optimal_weights),

• when relevant, the optimal regularization parameter found 𝜆
(results.regularization_parameter),

• the Kriging mean (results.optimal_mean),

• the Kriging variance (results.optimal_variance),

• the Kriging model regularized co-variance matrix
(results.optimal_covariance_matrix),

• the inverse of the co-variance matrix (results.covariance_matrix_inverse),

• the RBF predictions for the training data (results.output_predictions),

• the RMSE of the training output predictions (results.training_rmse), and

• the 𝑅2 value on the training data (results.R2)

Return type tuple

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470770801

[2] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimiza-
tion, https://link.springer.com/article/10.1023%2FA%3A1012771025575

Sampling

The PySMO package offers five common sampling methods for one-shot design:

Latin Hypercube Sampling (LHS)

LHS is a stratified random sampling method originally developed for efficient uncertainty assessment. LHS partitions
the parameter space into bins of equal probability with the goal of attaining a more even distribution of sample points
in the parameter space that would be possible with pure random sampling.

The pysmo.sampling.LatinHypercubeSampling method carries out Latin Hypercube sampling. This can be done
in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.
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Available Methods

class idaes.surrogate.pysmo.sampling.LatinHypercubeSampling(data_input,
number_of_samples=None,
sampling_type=None)

A class that performs Latin Hypercube Sampling. The function returns LHS samples which have been selected
randomly after sample space stratification.

It should be noted that no minimax criterion has been used in this implementation, so the LHS samples selected
will not have space-filling properties.

To use: call class with inputs, and then run sample_points method.

Example:

# To select 10 LHS samples from "data"
>>> b = rbf.LatinHypercubeSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of LatinHypercubeSampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data set or
range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a posi-
tive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects samples
from an existing dataset (“selection”) or attempts to generate sample from a supplied range
(“creation”). Default is “creation”.

Returns self function containing the input information

Raises

• ValueError – The input data (data_input) is the wrong type.

• Exception – When number_of_samples is invalid (not an integer, too large, zero, or
negative)

sample_points()
sample_points generates or selects Latin Hypercube samples from an input dataset or data range. When
called, it:

1. generates samples points from stratified regions by calling the lhs_points_generation,

2. generates potential sample points by random shuffling, and

3. when a dataset is provided, selects the closest available samples to the theoretical sample points from
within the input data.
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Returns A numpy array or Pandas dataframe containing number_of_samples points selected or
generated by LHS.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

[3] Swiler, Laura and Slepoy, Raisa and Giunta, Anthony: “Evaluation of sampling methods in constructing response
surface approximations” https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827

Full-Factorial Sampling

The pysmo.sampling.UniformSampling method carries out Uniform (full-factorial) sampling. This can be done in
two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

Available Methods

class idaes.surrogate.pysmo.sampling.UniformSampling(data_input, list_of_samples_per_variable,
sampling_type=None, edges=None)

A class that performs Uniform Sampling. Depending on the settings, the algorithm either returns samples from
an input dataset which have been selected using Euclidean distance minimization after the uniform samples have
been generated, or returns samples from a supplied data range.

Full-factorial samples are based on dividing the space of each variable randomly and then generating all possible
variable combinations.

• The number of points to be sampled per variable needs to be specified in a list.

To use: call class with inputs, and then sample_points function

Example:

# To select 50 samples on a (10 x 5) grid in a 2D space:
>>> b = rbf.UniformSampling(data, [10, 5], sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)
Initialization of UniformSampling class. Three inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data set or
range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

194 Chapter 4. Contents

https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
http://planning.cs.uiuc.edu/node210.html
https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827
https://docs.python.org/3/library/stdtypes.html#list


IDAES Documentation, Release 1.10.1

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• list_of_samples_per_variable (list) – The list containing the number of subdivi-
sions for each variable. Each dimension (variable) must be represented by a positive integer
variable greater than 1.

• sampling_type (str) – Option which determines whether the algorithm selects samples
from an existing dataset (“selection”) or attempts to generate sample from a supplied range
(“creation”). Default is “creation”.

Keyword Arguments edges (bool) – Boolean variable representing bow the points should be
selected. A value of True (default) indicates the points should be equally spaced edge to edge,
otherwise they will be in the centres of the bins filling the unit cube

Returns self function containing the input information

Raises

• ValueError – The data_input is the wrong type

• ValueError – When list_of_samples_per_variable is of the wrong length, is not a list or
contains elements other than integers

• Exception – When edges entry is not Boolean

sample_points()
sample_points generates or selects full-factorial designs from an input dataset or data range.

Returns A numpy array or Pandas dataframe containing the sample points generated or selected
by full-factorial sampling.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

Halton Sampling

Halton sampling is a low-discrepancy sampling method. It is a deterministic sampling method based on the Halton
sequence, a sequence constructed by a set of co-prime bases. The Halton sequence is an n-dimensional extension of
the Van der Corput sequence; each individual Halton sequence is based on a radix inverse function defined on a prime
number.

The pysmo.sampling.HaltonSampling method carries out Halton sampling. This can be done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The Halton sampling method is only available for low-dimensional problems 𝑛 ≤ 10. At higher dimensions, the
performance of the sampling method has been shown to degrade.
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Available Methods

class idaes.surrogate.pysmo.sampling.HaltonSampling(data_input, number_of_samples=None,
sampling_type=None)

A class that performs Halton Sampling.

Halton samples are based on the reversing/flipping the base conversion of numbers using primes.

To generate n samples in a 𝑝-dimensional space, the first 𝑝 prime numbers are used to generate the samples.

Note: Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher
dimensions, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

# For the first 10 Halton samples in a 2-D space:
>>> b = rbf.HaltonSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of HaltonSampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data set or
range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a posi-
tive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects samples
from an existing dataset (“selection”) or attempts to generate sample from a supplied range
(“creation”). Default is “creation”.

Returns self function containing the input information.

Raises

• ValueError – The data_input is the wrong type.

• Exception – When the number_of_samples is invalid (not an integer, too large, zero or
negative.)

sample_points()
The sample_points method generates the Halton samples. The steps followed here are:

1. Determine the number of features in the input data.

2. Generate the list of primes to be considered by calling prime_number_generator from the sampling
superclass.
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3. Create the first number_of_samples elements of the Halton sequence for each prime.

4. Create the Halton samples by combining the corresponding elements of the Halton sequences for each
prime.

5. When in “selection” mode, determine the closest corresponding point in the input dataset using Eu-
clidean distance minimization. This is done by calling the nearest_neighbours method in the sam-
pling superclass.

Returns A numpy array or Pandas dataframe containing number_of_samples Halton sample
points.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

Hammersley Sampling

Hammersley sampling is a low-discrepancy sampling method based on the Hammersley sequence. The Hammersley
sequence is the same as the Halton sequence except in the first dimension where points are located equidistant from
each other.

The pysmo.sampling.HammersleySampling method carries out Hammersley sampling. This can be done in two
modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The Hammersley sampling method is only available for low-dimensional problems 𝑛 ≤ 10. At higher dimensions, the
performance of the sampling method has been shown to degrade.

Available Methods

class idaes.surrogate.pysmo.sampling.HammersleySampling(data_input, number_of_samples=None,
sampling_type=None)

A class that performs Hammersley Sampling.

Hammersley samples are generated in a similar way to Halton samples - based on the reversing/flipping the base
conversion of numbers using primes.

To generate 𝑛 samples in a 𝑝-dimensional space, the first (𝑝− 1) prime numbers are used to generate the samples.
The first dimension is obtained by uniformly dividing the region into no_samples points.

Note: Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher
dimensionalities, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:
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# For the first 10 Hammersley samples in a 2-D space:
>>> b = rbf.HammersleySampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of HammersleySampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data set or
range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a posi-
tive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects samples
from an existing dataset (“selection”) or attempts to generate sample from a supplied range
(“creation”). Default is “creation”.

• Returns – self function containing the input information.

• Raises – ValueError: When data_input is the wrong type.

Exception: When the number_of_samples is invalid (not an integer, too large, zero, neg-
ative)

sample_points()
The sampling_type method generates the Hammersley sample points. The steps followed here are:

1. Determine the number of features 𝑛𝑓 in the input data.

2. Generate the list of (𝑛𝑓 − 1) primes to be considered by calling prime_number_generator.

3. Divide the space [0,**number_of_samples**-1] into number_of_samples places to obtain the first
dimension for the Hammersley sequence.

4. For the other (𝑛𝑓 − 1) dimensions, create first number_of_samples elements of the Hammersley
sequence for each of the (𝑛𝑓 − 1) primes.

5. Create the Hammersley samples by combining the corresponding elements of the Hammersley se-
quences created in steps 3 and 4

6. When in “selection” mode, determine the closest corresponding point in the input dataset using Eu-
clidean distance minimization. This is done by calling the nearest_neighbours method in the sam-
pling superclass.

Returns A numpy array or Pandas dataframe containing number_of_samples Hammersley sam-
ple points.

Return type NumPy Array or Pandas Dataframe
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References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

[3] Holger Dammertz’s webpage titled “Hammersley Points on the Hemisphere” which discusses Hammersley point
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Centroidal voronoi tessellation (CVT) sampling

In CVT, the generating point of each Voronoi cell coincides with its center of mass; CVT sampling locates the design
samples at the centroids of each Voronoi cell in the input space. CVT sampling is a geometric, space-filling sampling
method which is similar to k-means clustering in its simplest form.

The pysmo.sampling.CVTSampling method carries out CVT sampling. This can be done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The CVT sampling algorithm implemented here is based on McQueen’s method which involves a series of random
sampling and averaging steps, see http://kmh-lanl.hansonhub.com/uncertainty/meetings/gunz03vgr.pdf.

Available Methods

class idaes.surrogate.pysmo.sampling.CVTSampling(data_input, number_of_samples=None,
tolerance=None, sampling_type=None)

A class that constructs Centroidal Voronoi Tessellation (CVT) samples.

CVT sampling is based on the generation of samples in which the generators of the Voronoi tessellations and the
mass centroids coincide.

To use: call class with inputs, and then sample_points function.

Example:

# For the first 10 CVT samples in a 2-D space:
>>> b = rbf.CVTSampling(data_bounds, 10, tolerance = 1e-5, sampling_type="creation")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, tolerance=None, sampling_type=None)
Initialization of CVTSampling class. Two inputs are required, while an optional option to control the
solution accuracy may be specified.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data set or
range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.
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– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a posi-
tive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects samples
from an existing dataset (“selection”) or attempts to generate sample from a supplied range
(“creation”). Default is “creation”.

Keyword Arguments tolerance (float) – Maximum allowable Euclidean distance between
centres from consectutive iterations of the algorithm. Termination condition for algorithm.

• The smaller the value of tolerance, the better the solution but the longer the algorithm
requires to converge. Default value is 10−7.

Returns self function containing the input information.

Raises

• ValueError – When data_input is the wrong type.

• Exception – When the number_of_samples is invalid (not an integer, too large, zero,
negative)

• Exception – When the tolerance specified is too loose (tolerance > 0.1) or invalid

• warnings.warn – when the tolerance specified by the user is too tight (tolerance < 10−9)

sample_points()
The sample_points method determines the best/optimal centre points (centroids) for a data set based on
the minimization of the total distance between points and centres.

Procedure based on McQueen’s algorithm: iteratively minimize distance, and re-position centroids. Centre
re-calculation done as the mean of each data cluster around each centre.

Returns A numpy array or Pandas dataframe containing the final number_of_samples centroids
obtained by the CVT algorithm.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Centroidal Voronoi Tessellations: Applications and Algorithms by Qiang Du, Vance Faber, and Max Gunzburger
https://doi.org/10.1137/S0036144599352836

[3] D. G. Loyola, M. Pedergnana, S. G. García, “Smart sampling and incremental function learning for very large high
dimensional data” https://www.sciencedirect.com/science/article/pii/S0893608015001768?via%3Dihub
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More Information about PySMO’s Sampling Methods

The sampling methods are able to generate samples based from variable bounds or select samples from a user-
provided dataset. To use any of the method, the class is first initialized with the required parameters, and then the
sample_points method is called.

Examples

The following code snippet shows basic usage of the package for generating samples from a set of bounds:

# Required imports
>>> from idaes.surrogates.pysmo import sampling as sp

# Declaration of lower and upper bounds of 3D space to be sampled
>>> bounds = [[0, 0, 0], [1.2, 0.1, 1]]

# Initialize the Halton sampling method and generate 10 samples
>>> space_init = sp.HaltonSampling(bounds_list, sampling_type='creation', number_of_
→˓samples=10)
>>> samples = space_init.sample_points()

The following code snippet shows basic usage of the package for selecting sample points from an existing dataset:

# Required imports
>>> from idaes.surrogates.pysmo import sampling as sp
>>> import pandas as pd

# Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

# Initialize the CVT sampling method and generate 25 samples
>>> space_init = sp.CVTSampling(xy_data, sampling_type='selection', number_of_samples=25)
>>> samples = space_init.sample_points()

Note: The results of the sampling process will be a Numpy array or Pandas dataframe, depending on the format of
the input data.

Characteristics of sampling methods available in PySMO

Table 4: Characteristics of the different sampling methods
Deterministic Stochastic Low-discrepancy Space-filling Geometric

LHS X X
Full-factorial X X
Halton X X
Hammersley X X
CVT X X X

Further information about the sampling tools and their input options may be found by accessing the individual sampling
methods. Examples and details of the characteristics of the sampling methods may be found at More Information about
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PySMO’s Sampling Methods.

ALAMOpy, RIPE, and HELMET are data driven machine learning (ddm-learning) tools. They are regression tools
for the development of property models for kinetics and thermodynamics of a system. The provided tools include both
ALAMOpy and RIPE that can access ALAMO and other solvers through the Python API.

Python-based Surrogate Modeling Objects (PySMO) is a framework for general-purpose surrogate modeling tech-
niques, integrated with the Pyomo mathematical optimization framework (on which IDAES is also based).

MatOpt: Nanomaterials Optimization

The MatOpt module provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used
to design crystalline nanostructured materials, including but not limited to particles, wires, surfaces, and periodic bulk
structures.

The main goals of this package are as follows:

• To automate many of the steps that are necessary for utilizing mathematical optimization to design materials,
speeding up the development of new mathematical models and accelerating new materials discovery.

• To simplify the representation of nanostructured materials and their structure-function relationships as Pyomo
objects, streamlining the creation of materials optimization problems in the Pyomo modeling language.

• To provide a simple interface so that users need not handle the details of casting efficient mathematical optimiza-
tion models, invoking mathematical optimization solvers, or utilizing specialized Pyomo syntax to do this.

Thank you for your interest in MatOpt. We would love to hear your feedback! Please report any thoughts, questions or
bugs to: gounaris@cmu.edu

If you are using MatOpt, please consider citing:

• Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2021. MatOpt: A Python package for nanomaterials
discrete optimization.
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Basic Usage

There are two main sub-modules contained in the package serving two distinct purposes:

• The matopt.materials module contains objects and methods for efficiently representing and manipulating a
nanomaterial and its design space.

• The matopt.opt module contains objects and methods for speeding up the casting of a Mixed-integer Linear
Programming (MILP) model with simplified modeling syntax and automatic model formulation.

Dependencies

User access to the MILP solver CPLEX through Pyomo is assumed. For users who do not have access to CPLEX, the
use of NEOS-CPLEX is suggested as an alternative.

Define design canvas

Several pieces of information about the material and design space need to be specified in order to formulate a materials
optimization problem. To fulfill this need, the matopt.materials module defines generic and simple objects for
describing the type of material to be designed and its design space, also referred to as a “canvas”.

Some key objects are listed as follows:

class idaes.apps.matopt.materials.lattices.lattice.Lattice
A class used to represent crystal lattice locations.

The class encodes methods for determining which Cartesian coordinates to consider as sites on an infinite crystal
lattice. A Lattice can be constructed from a point on the lattice (i.e., a shift from the origin), an alignment
(i.e., rotation from a nominal orientation), and appropriate scaling factors. With these attributes, we generally
support the translation, rotation, and rescaling of lattices. Additionally, Lattice objects include a method for
determining which sites should be considered neighbors.

class idaes.apps.matopt.materials.canvas.Canvas(Points=None, NeighborhoodIndexes=None,
DefaultNN=0)

A class for combining geometric points and neighbors.

This class contains a list of Cartesian points coupled with a graph of nodes for sites and arcs for bonds. A Canvas
object establishes a mapping from the abstract, mathematical modeling of materials as graphs to the geometry
of the material lattice. The list of points and neighbor connections necessary to create a Canvas object can be
obtained from the combination of Lattice, Shape, and Tiling objects.

class idaes.apps.matopt.materials.design.Design(Canvas_=None, Contents=None)
A class used to represent material designs.

This class combines a Canvas objects and a list of contents. It assigns an element (possibly None) to each point
in the Canvas. This generally works for any type of content, but it is intended to work with Atom objects and
can be used to generate CFG, PDB, POSCAR, and XYZ files.

Build model via descriptors

The material type and design space specified provide indices, sets, and parameters for the optimization model. Using
simple syntax, inspired by materials-related terminology, MatOpt users define a MatOptModel object, which will be
translated into a Pyomo ConcreteModel object automatically.

MatOpt uses MaterialDescriptor objects to represent variables, constraints, and objectives. A MatOptModel object
holds lists of MaterialDescriptor objects. By default, several universal site descriptors are pre-defined in the model.
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Descriptor Explanation
Yik Presence of a building block of type k at site i
Yi Presence of any type of building block at site i
Xijkl Presence of a building block of type k at site i and a building block of type l at site j
Xij Presence of any building block at site i and any building block at site j
Cikl Count of neighbors of type l next to a building block of type k at site i
Ci Count of any type of neighbors next to a building block at site i

User-specified descriptors are defined by DescriptorRule objects in conjunction with Expr expression objects. Avail-
able expressions include:

Expression Explanation
LinearExpr Multiplication and addition of coefficients to distinct descriptors
SiteCombination Summation of site contributions from two sites
SumNeighborSites Summation of site contributions from all neighboring sites
SumNeighborBonds Summation of bond contributions to all neighboring sites
SumSites Summation across sites
SumBonds Summation across bonds
SumSiteTypes Summation across site types
SumBondTypes Summation across bond types
SumSitesAndTypes Summation across sites and site types
SumBondsAndTypes Summation across bonds and bond types
SumConfs Summation across conformation types
SumSitesAndConfs Summation across sites and conformation types

Several types of DescriptorRules are available.

Rule Explanation
LessThan Descriptor less than or equal to an expression
EqualTo Descriptor equal to an expression
GreaterThan Descriptor greater than or equal to an expression
FixedTo Descriptor fixed to a scalar value
PiecewiseLinear Descriptor equal to the evaluation of a piecewise linear function
Implies Indicator descriptor that imposes other constraints if equal to 1
NegImplies Indicator descriptor that imposes other constraints if equal to 0
ImpliesSiteCombination Indicator bond-indexed descriptor that imposes constraints on the two sites
ImpliesNeighbors Indicator site-indexed descriptor that imposes constraints on neighboring sites

From the combination of the above pre-defined descriptors, expressions, and rules, a user can specify a wide variety of
other descriptors, as necessary.

class idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor(name, canv=None, atoms=None,
confDs=None, bounds=(None, None),
integer=False, binary=False,
rules=[], **kwargs)

A class to represent material geometric and energetic descriptors.

This class holds the information to define mathematical optimization variables for the properties of materials.
Additionally, each descriptor has a ‘rules’ list to which the user can append rules defining the descriptor and
constraining the design space.

name
A unique (otherwise Pyomo will complain) name
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Type string

canv
The canvas that the descriptor will be indexed over

Type Canvas

atoms
The building blocks to index the descriptor over.

Type list<BBlock>

confDs
The designs for conformations to index over.

Type list<Design>

integer
Flag to indicate if the descriptor takes integer values.

Type bool

binary
Flag to indicate if the descriptor takes boolean values.

Type bool

rules
List of rules to define and constrain the material descriptor design space.

Type list<DescriptorRules>

bounds
If tuple, the lower and upper bounds on the descriptor values across all indices. If dict, the bounds can be
individually set for each index.

Type tuple/dict/func

See IndexedElem for more information on indexing. See DescriptorRule for information on defining de-
scriptors.

Solve optimization model

Once the model is fully specified, the user can optimize it in light of a chosen descriptor to serve as the objective to be
maximized or minimized, as appropriate. Several functions are provided for users to choose from.

class idaes.apps.matopt.opt.mat_modeling.MatOptModel(canv, atoms=None, confDs=None)
A class for the specification of a materials optimization problem.

Once all the material information is specified, we use this class to specify the material design problem of interest.
This class is intended to be interpretable without mathematical optimization background while the conversion to
Pyomo optimization models happens automatically.

canv
The canvas of the material design space

Type Canvas

atoms
The list of building blocks to consider. Note: This list does not need to include a void-atom type. We use
‘None’ to represent the absence of any building block at a given site.

Type list<BBlock>

confDs
The list of conformations to consider.
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Type list<Design>

maximize(func, **kwargs)
Method to maximize a target functionality of the material model.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• **kwargs – Arguments to MatOptModel.optimize

Returns (Design/list<Design>) Optimal designs.

Raises pyomo.common.errors.ApplicationError` if MatOpt can not find usable
solver (CPLEX or NEOS-CPLEX –

See MatOptModel.optimize method for details.

minimize(func, **kwargs)
Method to minimize a target functionality of the material model.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• **kwargs – Arguments to MatOptModel.optimize

Returns (Design/list<Design>) Optimal designs.

Raises pyomo.common.errors.ApplicationError` if MatOpt can not find usable
solver (CPLEX or NEOS-CPLEX –

See MatOptModel.optimize method for details.

optimize(func, sense, nSolns=1, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None,
solver='cplex')

Method to create and optimize the materials design problem.

This method automatically creates a new optimization model every time it is called. Then, it solves the
model via Pyomo with the CPLEX solver.

If multiple solutions (called a ‘solution pool’) are desired, then the nSolns argument can be provided and
the populate method will be called instead.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• sense (int) – flag to indicate the choice to minimize or maximize the functionality of
interest. Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

• nSolns (int) – Optional, number of Design objects to return. Default: 1 (See
MatOptModel.populate for more information)

• tee (bool) – Optional, flag to turn on solver output. Default: True

• disp (int) – Optional, flag to control level of MatOpt output. Choices: 0: No MatOpt
output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output
for solution pool & individual solns. Default: 1

• keepfiles (bool) – Optional, flag to save temporary pyomo files. Default: True

• tilim (float) – Optional, solver time limit (in seconds). Default: 3600

• trelim (float) – Optional, solver tree memeory limit (in MB). Default: None (i.e., Py-
omo/CPLEX default)
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• solver (str) – Solver choice. Currently only cplex or neos-cplex are supported Default:
cplex

Returns (Design/list<Design>) Optimal design or designs, depending on the number of solu-
tions requested by argument nSolns.

Raises pyomo.common.errors.ApplicationError` if MatOpt can not find usable
solver (CPLEX or NEOS-CPLEX –

populate(func, sense, nSolns, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None, solver='cplex')
Method to a pool of solutions that optimize the material model.

This method automatically creates a new optimization model every time it is called. Then, it solves the
model via Pyomo with the CPLEX solver.

The populate method iteratively solves the model, interprets the solution as a Design object, creates a
constraint to disallow that design, and resolves to find the next best design. We build a pool of Designs that
are gauranteed to be the nSolns-best solutions in the material design space.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• sense (int) – flag to indicate the choice to minimize or maximize the functionality of
interest. Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

• nSolns (int) – Optional, number of Design objects to return. Default: 1 (See
MatOptModel.populate for more information)

• tee (bool) – Optional, flag to turn on solver output. Default: True

• disp (int) – Optional, flag to control level of MatOpt output. Choices: 0: No MatOpt
output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output
for solution pool & individual solns. Default: 1

• keepfiles (bool) – Optional, flag to save temporary pyomo files. Default: True

• tilim (float) – Optional, solver time limit (in seconds). Default: 3600

• trelim (float) – Optional, solver tree memeory limit (in MB). Default: None (i.e., Py-
omo/CPLEX default)

• solver (str) – Solver choice. Currently only cplex or neos-cplex are supported Default:
cplex

Returns (list<Design>) A list of optimal Designs in order of decreasing optimality.

Raises pyomo.common.errors.ApplicationError` if MatOpt can not find usable
solver (CPLEX or NEOS-CPLEX –

MatOpt Output

The results of the optimization process will be loaded into Design objects automatically. Users can then save material
design(s) into files for further analysis and visualization using suitable functions provided. MatOpt provides interfaces
to several standard crystal structure file formats, including CFG, PDB, POSCAR, and XYZ.
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MatOpt Examples

Several case studies are provided to illustrate the detailed usage of MatOpt. In each case, a Jupyter notebook with
explanations as well as an equivalent Python script is provided.

References

• Hanselman, C.L. and Gounaris, C.E., 2016. A mathematical optimization framework for the design of nanopat-
terned surfaces. AIChE Journal, 62(9), pp.3250-3263.

• Hanselman, C.L., Alfonso, D.R., Lekse, J.W., Matranga, C., Miller, D.C. and Gounaris, C.E., 2019. A frame-
work for optimizing oxygen vacancy formation in doped perovskites. Computers & Chemical Engineering, 126,
pp.168-177.

• Hanselman, C.L., Zhong, W., Tran, K., Ulissi, Z.W. and Gounaris, C.E., 2019. Optimization-based design of
active and stable nanostructured surfaces. The Journal of Physical Chemistry C, 123(48), pp.29209-29218.

• Isenberg, N.M., Taylor, M.G., Yan, Z., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. Identifi-
cation of optimally stable nanocluster geometries via mathematical optimization and density-functional theory.
Molecular Systems Design & Engineering.

• Yin, X., Isenberg, N.M., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2021. A mathematical
optimization-based design framework for identifying stable bimetallic nanoclusters. In preparation.

• Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2021. MatOpt: A Python package for nanomaterials
discrete optimization.

Caprese

Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is control strategy in which control inputs are determined by the solution
of an optimization problem every time the plant is sampled.

Optimization Problem

An explanation of the optimization problem solved in this implementation of NMPC is forthcoming.

Available Methods

Class for performing NMPC simulations of IDAES flowsheets

class idaes.apps.caprese.nmpc.NMPCSim(plant_model=None, plant_time_set=None,
controller_model=None, controller_time_set=None,
inputs_at_t0=None, measurements=None, sample_time=None,
**kwargs)

This is a user-facing class to perform NMPC simulations with Pyomo models for both plant and controller. The
user must provide the models to use for each, along with sets to treat as “time,” inputs in the plant model, and
measurements in the controller model. Its functionality is primarily to ensure that these components (as defined
by the names relative to the corresponding provided models) exist on both models.
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Moving Horizon Estimation

Caprese is actively under development. A module for MHE is forthcoming.

Caprese is a module for simulation of IDAES flowsheets with nonlinear program (NLP)-based control and estimation
strategies, namely Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE).

Uncertainty Propagation Toolbox

The uncertainty_propagation module quantifies and propagates parametric uncertainties through optimization and sim-
ulation problem based on IDAES models. The module has two core features:

1. Given a parameter estimation model and data, calculate the least squares best fit parameter values and estimate
their covariance.

2. Given a process model and the covariance for its parameters, estimate the variance of the optimal solution and
the objective function.

Consider the optimization problem:

minimize 𝑓(𝑥, 𝑝)

s.t. 𝑐(𝑥, 𝑝) = 0

𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑢𝑏

Here 𝑥 ∈ R𝑛 × 1 are the decision variables, 𝑝 ∈ R𝑚 × 1 are the parameters, 𝑓(𝑥, 𝑝) : R𝑛 × 1 × R𝑚 × 1 → R is the
objective function, 𝑐(𝑥, 𝑝) = {𝑐1(𝑥, 𝑝), . . . , 𝑐𝑘(𝑥, 𝑝)} : R𝑛 × 1 × R𝑚 × 1 → R𝑘 × 1 are the constraints, and 𝑥𝑙𝑏 and
𝑥𝑢𝑏 are the lower and upper bounds, respectively.

Let 𝑥* represent the optimal solution given parameters 𝑝*. In many process systems engineering problems, 𝑝* is
estimated from data and has some uncertainty represented with covariance matrix Σ𝑝. This toolbox estimates the
uncertainty in the optimal solution 𝑥* and objective function value 𝑓(𝑥*, 𝑝*) induced by uncertainty in 𝑝*.

Based on a first-order error propagation formula, the variance of the objective function is:

Var[𝑓(𝑥*, 𝑝*)] =

(︂
𝜕𝑓

𝜕𝑝
+
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑝

)︂
Σ𝑝

(︂
𝜕𝑓

𝜕𝑝
+
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑝

)︂𝑇

Likewise, the variance in constraint 𝑘 is:

Var[𝑐𝑘(𝑥*, 𝑝*)] =

(︂
𝜕𝑐𝑘
𝜕𝑝

+
𝜕𝑐𝑘
𝜕𝑥

𝜕𝑥

𝜕𝑝

)︂
Σ𝑝

(︂
𝜕𝑐𝑘
𝜕𝑝

+
𝜕𝑐𝑘
𝜕𝑥

𝜕𝑥

𝜕𝑝

)︂𝑇

Note that Var[𝑐𝑘(𝑥*, 𝑝*)] ≈ 0 because the constraints remain feasible for a small perturbation in 𝑝, i.e., 𝑐(𝑥, 𝑝) = 0.

All gradients are calculated with k_aug [1]. More specifically, 𝜕𝑓
𝜕𝑝 ,

𝜕𝑓
𝜕𝑥 ,

𝜕𝑐1
𝜕𝑝 ,

𝜕𝑐1
𝜕𝑥 , . . . ,

𝜕𝑐𝑘
𝜕𝑝 ,

𝜕𝑐𝑘
𝜕𝑥 evaluated at (𝑥*, 𝑝) are

computed via automatic differentiation whereas 𝜕𝑥
𝜕𝑝 are computed via nonlinear programming sensitivity theory.

4.2. User Guide 209

https://github.com/dthierry/k_aug


IDAES Documentation, Release 1.10.1

The covariance matrix Σ𝑝 is either user supplied or obtained via regression (with Pyomo.ParmEst).

Dependencies

k_aug [1] is required to use uncertainty_propagation module. The k_aug solver executable is easily installed via the
idaes get-extensions command.

Basic Usage

This toolbox has two core functions:

1. propagate_uncertainty: Given an IDAES (Pyomo) process model with parameters 𝑝 and covariance Σ𝑝, esti-
mate Var[𝑓(𝑥*, 𝑝)].

2. quantify_propagate_uncertainty: Given an IDAES (Pyomo) regression model and data, first estimate param-
eters 𝑝 and covariance Σ𝑝. Then given a second IDAES (Pyomo) process model, estimate Var[𝑓(𝑥*, 𝑝)].

The following example shows the usage of quantify_propagate_uncertainty for a reaction kinetic problem from
Rooney and Biegler [2]. Consider the mathematical model:

𝑦𝑖(𝜃1, 𝜃2, 𝑡𝑖) = 𝜃1(1 − 𝑒−𝜃2𝑡𝑖), 𝑖 = 1, ..., 𝑛

Here 𝑦𝑖 is the concentration of the chemical product at time 𝑡𝑖 and 𝑝 = (𝜃1, 𝜃2) are the fitted model parameters.

# Required imports
>>> from idaes.apps.uncertainty_propagation.uncertainties import quantify_propagate_
→˓uncertainty
>>> import pyomo.environ as *
>>> import pandas as pd

# Define rooney_biegler_model
>>> def rooney_biegler_model(data):

model = ConcreteModel()
model.asymptote = Var(initialize = 15)
model.rate_constant = Var(initialize = 0.5)

def response_rule(m, h):
expr = m.asymptote * (1 - exp(-m.rate_constant * h))
return expr

model.response_function = Expression(data.hour, rule = response_rule)

return model

# Define rooney_biegler_model_opt
>>> def rooney_biegler_model_opt(data):

model = ConcreteModel()
model.asymptote = Var(initialize = 15)
model.rate_constant = Var(initialize = 0.5)
model.obj = Objective(expr=model.asymptote*(1-exp(-model.rate_constant*10))

, sense=minimize)
return model

# Define data
>>> data = pd.DataFrame(data=[[1,8.3],[2,10.3],[3,19.0],[4,16.0],[5,15.6],[7,19.8]],

columns=['hour', 'y'])
(continues on next page)
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(continued from previous page)

# Define variable_name
>>> variable_name = ['asymptote', 'rate_constant']

# Define SSE_obj_function
>>> def SSE_obj_function(model, data):

expr = sum((data.y[i] - model.response_function[data.hour[i]])**2 for i in data.
→˓index)

return expr

# Run quantify_propagate_uncertainty
>>> results = quantify_propagate_uncertainty(rooney_biegler_model, rooney_biegler_model_
→˓opt,

data, variable_name, obj_function)

The Python function rooney_biegler_model generates a Pyomo regression model using the input Pandas DataFrame
data. This model contains the attributes asymptote and rate_constant which are the parameters 𝑝 to be estimated
by minimizing the sum of squared errors (SSE). The list variable_name contains strings with these attribute names.

Similarly, the Python function rooney_biegler_model_opt returns a concrete Pyomo model which is the process opti-
mization problem. This specific example has no degrees of freedom once 𝑝 is specified; the objective function computes
the product concentration at time 𝑡 = 10.

The function quantify_propagate_uncertainty returns the object results which contains several important attributes:

• results.theta_names contains the names of parameters 𝑝

• results.theta contains the estimate values for parameters 𝑝

• results.gradient_f contains the gradient 𝜕𝑓
𝜕𝑥 ,

𝜕𝑓
𝜕𝑝

• results.gradient_c contains the Jacobians 𝜕𝑐
𝜕𝑥 ,

𝜕𝑐
𝜕𝑝

• results.dsdp contains the Jacobians 𝜕𝑥
𝜕𝑝 ,

𝜕𝑝
𝜕𝑝

• results.propagation_f contains the estimate variance of the objective function

Important Notes:

1. The uncertain parameters 𝑝 should be declared as Var in Pyomo.

2. The uncertain parameters 𝑝 should not be fixed in Pyomo. Instead, set the upper and lower bounds equal. If they
are fixed, k_aug will give an error message that the optimization problem has too few degrees of freedom.

Available Functions

idaes.apps.uncertainty_propagation.uncertainties.quantify_propagate_uncertainty(model_function,
model_uncertain,
data,
theta_names,
obj_function=None,
tee=False,
diagnos-
tic_mode=False,
solver_options=None)

This function calculates error propagation of the objective function and constraints. The parmest uses
‘model_function’ to estimate uncertain parameters. The uncertain parameters in ‘model_uncertain’ are fixed
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with the estimated values. The function ‘quantify_propagate_uncertainty’ calculates error propagation of objec-
tive function and constraints in the ‘model_uncertain’.

The following terms are used to define the output dimensions: Ncon = number of constraints Nvar = number of
variables (Nx + Ntheta) Nx = the number of decision (primal) variables Ntheta = number of uncertain parameters.

Parameters

• model_function (function) – A python Function that generates an instance of the Pyomo
model using ‘data’ as the input argument

• model_uncertain (function or Pyomo ConcreteModel) – Function is a python/
Function that generates an instance of the Pyomo model

• data (pandas DataFrame, list of dictionary, or list of json file
names) – Data that is used to build an instance of the Pyomo model and build the
objective function

• theta_names (list of strings) – List of Var names to estimate

• obj_function (function, optional) – Function used to formulate parameter estima-
tion objective, generally sum of squared error between measurements and model variables,
by default None

• tee (bool, optional) – Indicates that ef solver output should be teed, by default False

• diagnostic_mode (bool, optional) – If True, print diagnostics from the solver, by de-
fault False

• solver_options (dict, optional) – Provides options to the solver (also the name of an
attribute), by default None

Returns

results object containing the all information including

• results.obj: float Real number. Objective function value for the given obj_function

• results.theta: dict Size Ntheta python dictionary. Estimated parameters

• results.theta_names: list Size Ntheta list. Names of parameters

• results.cov: numpy.ndarray Ntheta by Ntheta matrix. Covariance of theta

• results.gradient_f: numpy.ndarray Length Nvar array. Gradient vector of the objective
function with respect to the (decision variables, parameters) at the optimal solution

• results.gradient_c: scipy.sparse.csr.csr_matrix Ncon by Nvar size sparse matrix. Gra-
dient vector of the constraints with respect to the (decision variables, parameters) at the
optimal solution.

• results.dsdp: scipy.sparse.csr.csr_matrix Ntheta by Nvar size sparse matrix. Gradient
vector of the (decision variables, parameters) with respect to paramerters (=theta_name).
number of rows = len(theta_name), number of columns= len(col)

• results.propagation_c: numpy.ndarray Length Ncon array. Error propagation in the con-
straints, dc/dp*cov_p*dc/dp + (dc/dx*dx/dp)*cov_p*(dc/dx*dx/dp)

• results.propagation_f: numpy.float64 Real number. Error propagation in the objective
function, df/dp*cov_p*df/dp + (df/dx*dx/dp)*cov_p*(df/dx*dx/dp)

• results.col: list Size Nvar. List of variable names. Note that variables names includes both
decision variable and uncertain parameter names. The order can be mixed.

• results.row: list Size Ncon+1. List of constraints and objective function names
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Return type tuple

Raises

• TypeError – When tee entry is not Boolean

• TypeError – When diagnostic_mode entry is not Boolean

• TypeError – When solver_options entry is not None and a Dictionary

• Warnings – When an element of theta_names includes a space

idaes.apps.uncertainty_propagation.uncertainties.propagate_uncertainty(model_uncertain, theta,
cov, theta_names,
tee=False,
solver_options=None)

This function calculates gradient vector, expectation, and variance of the objective function and constraints of
the model for given estimated optimal parameters and covariance matrix of parameters. It calculates error prop-
agation of the objective function and constraints by using gradient vector and covariance matrix.

The following terms are used to define the output dimensions: Ncon = number of constraints Nvar = number of
variables (Nx + Ntheta) Nx = the number of decision (primal) variables Np = number of uncertain parameters.

Parameters

• model_uncertain (function or Pyomo ConcreteModel) – Function is a python/
Function that generates an instance of the Pyomo model

• theta (dict) – Size Ntheta python dictionary. Estimated parameters

• cov (numpy.ndarray) – Ntheta by Ntheta matrix. Covariance matrix of parameters

• theta_names (list of strings) – Size Ntheta. List of estimated l theta names

• tee (bool, optional) – Indicates that ef solver output should be teed, by default False

• solver_options (dict, optional) – Provides options to the solver (also the name of an
attribute), by default None

Returns

results object containing the all information including

• results.gradient_f: numpy.ndarray Length Nvar array. Gradient vector of the objective
function with respect to the (decision variables, parameters) at the optimal solution

• results.gradient_c: scipy.sparse.csr.csr_matrix Ncon by Nvar size sparse matrix. Gra-
dient vector of the constraints with respect to the (decision variables, parameters) at the
optimal solution.

• results.dsdp: scipy.sparse.csr.csr_matrix Ntheta by Nvar size sparse matrix. Gradient
vector of the (decision variables, parameters) with respect to paramerters (=theta_name).
number of rows = len(theta_name), number of columns= len(col)

• results.propagation_c: numpy.ndarray Length Ncon array. Error propagation in the con-
straints, dc/dp*cov_p*dc/dp + (dc/dx*dx/dp)*cov_p*(dc/dx*dx/dp)

• results.propagation_f: numpy.float64 Real number. Error propagation in the objective
function, df/dp*cov_p*df/dp + (df/dx*dx/dp)*cov_p*(df/dx*dx/dp)

• results.col: list Size Nvar. List of variable names. Note that variables names includes both
decision variable and uncertain parameter names. The order can be mixed.

• results.row: list Size Ncon+1. List of constraints and objective function names

Return type tuple
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Raises Exception – if model_uncertain is neither ‘ConcreteModel’ nor ‘function’.

idaes.apps.uncertainty_propagation.uncertainties.clean_variable_name(theta_names)
This function removes all ‘ and spaces in theta_names. Note that the current theta_est(calc_cov=True) of parmest
in Pyomo doesn’t allow ‘ and spaces in the variable names. Once a future version of Parmest fixes this issue, this
function can be depreciated.

Parameters theta_names (list of strings) – List of Var names

Returns

• It returns the following variables

• - theta_names_out (list of strings) – List of Var names after removing all ‘ and spaces

• - var_dic (dict) – Dictionary with keys converted theta_names and values origianl
theta_names

Examples

Two examples are provided to illustrate the detailed usage of uncertainty_propagation. In each case, a Jupyter notebook
with explanations as well as an equivalent Python script is provided.

References

[1] David Thierry (2020). k_aug, https://github.com/dthierry/k_aug

[2] Rooney, W. C. and Biegler, L. T. (2001). Design for model parameter uncertainty using nonlinear confidence
regions. AIChE Journal, 47(8), 1794-1804.

Degeneracy Hunter

Degeneracy Hunter is a collection of tools for diagnostics of mathematical programs. The core ideas behind Degeneracy
Hunter are explained here: https://www.sciencedirect.com/science/article/pii/B9780444635785501304

Degeneracy Hunter is currently included in IDAES for beta testing purposes. This page will be updated as part of the
official release. If you would like to help test Degeneracy Hunter, please look at the example notebook available here:
https://github.com/IDAES/examples-pse/pull/21 Please report any thoughts, questions or bugs to: adowling@nd.edu

ALAMOPY: ALAMO Python

ALAMOPY provides a wrapper for the software ALAMO which generates algebraic surrogate models of black-box
systems for which a simulator or experimental setup is available.

RIPE: Reaction Identification and Parameter Estimation

RIPE provides tools for reaction network identification. RIPE uses reactor data consisting of concentration, or con-
version, values for multiple species that are obtained dynamically, or at multiple process conditions (temperatures,
flow rates, working volumes) to identify probable reaction kinetics. The RIPE module also contains tools to facilitate
adaptive experimental design.
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HELMET: HELMholtz Energy Thermodynamics

HELMET provides a framework for regressing multiparameter equations of state that identify an equation for Helmholtz
energy and multiple thermodynamic properties simultaneously.

PySMO: Python-based Surrogate Modelling Objects

PySMO provides tools for generating different types of reduced order models. It provides IDAES users with a set
of surrogate modeling tools which supports flowsheeting and direct integration into an equation-oriented modeling
framework. It allows users to directly integrate reduced order models with algebraic high-fidelity process models
within an single IDAES flowsheet.

MatOpt: Nanomaterials Optimization

MatOpt provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used to design
crystalline nanostructured materials, including but not limited to particles, wires, surfaces, and periodic bulk structures.
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Caprese

Caprese is a module for the simulation of IDAES flowsheets with nonlinear program (NLP)-based control and estima-
tion strategies, namely Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE).

Uncertainty Propagation Toolbox

uncertainty_propagation is a module for quantifying and propagating parametric uncertainty through an optimization
or simulation problem based on an IDAES model.

Degeneracy Hunter

Degeneracy Hunter is coming soon!

4.3 Advanced User Guide

4.3.1 Advanced User Installation

Advanced users who plan to develop their own models or tools are encouraged to install IDAES using Git and GitHub
as described in this section, rather than using the instructions in the getting started section. These advanced users will
greatly benefit from improved version control and code integration capabilities.

• Git and GitHub Basics

• Installation with GitHub

– Github Setup

– Fork the Repository

– Clone Your Fork

– Add Upstream Remote
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– Create the Python Environment

– Finish the Installation

– Update IDAES

Git and GitHub Basics

Git is a distributed version control system that keeps track of changes in a set of files, while GitHub is a hosting service
for Git repositories that adds many other features that are useful for collaborative software development.

Both Git and GitHub are widely used and there are excellent tutorials and resources for each. See Atlassian Github
tutorials , GitHub help, and Git documentation.

A limited reference for Git and GitHub terminology and commands is provided here, users that are new to Git and
GitHub are strongly encouraged to use the more detailed resources above.

Terminology and Commands

This section gives a high-level introduction to Git and GitHub terminology and commands.

More details resources include Atlassian Github tutorials , GitHub help, and Git documentation.

• Terminology

– Summary

– Branches

– Forks

– Pull Requests

• Git Commands

Terminology

Summary

branch A name for a series of commits. See Branches.

fork Copy of a repository in GitHub. See Forks.

pull request (PR) A request to compare and merge code in a GitHub repository. See Pull Requests.
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Branches

A branch is a series of commits that allows you to separate the code development from the main code. There is a good
description of what Git branches are and how they work here. Understanding this takes a little study, but this pays off
by making Git’s behavior much less mysterious. The short, practical version is that a branch is a name for a series of
commits that you want to group together, and keep separable from other series of commits. From Git’s perspective, the
branch is just a name for the first commit in that series.

It is recommended that you create new branches on which to develop your work, and reserve the “main” branch for
merging in work that has been completed and approved on GitHub. One way to do this is to create branches that
correspond directly to issues on GitHub, and include the issue number in the branch name.

Forks

A fork is a copy of a repository, in the GitHub shared space (a copy of a repository from GitHub down to your local disk
is called a “clone”). In this context, that means a copy of the “idaes-dev” repository from the IDAES organization (https:
//github.com/IDAES/idaes-dev) to your own user space, e.g., https://github.com/myname/idaes-dev). The mechanics
of creating and using forks on GitHub are given here.

Pull Requests

A fundamental procedure in the development lifecycle is what is called a “pull request”. Understanding what these are,
and do, is important for participating fully in the software development process. First, understand that pull requests
are for collaborative development (GitHub) and not part of the core revision control functionality that is offered by
Git. The official GitHub description of pull requests is here. However, it gets technical rather quickly, so a higher-level
explanation may be helpful:

Pull requests are a mechanism that GitHub provides to look at what the code on some branch from your fork of the
repository would be like if it were merged with the main branch in the main (e.g., idaes-pse/idaes-dev) repository. You
can think of it as a staging area where the code is merged and all the tests are run, without changing the target repository.
Everyone on the team can see a pull request, comment on it, and review it.

Git Commands

The Git tool has many different commands, but there are several really important ones that tend to get used as verbs in
software development conversations, and therefore are good to know:

add Put a file onto the list of “things I want to commit” (see “commit”), called “staging” the file.

commit Save the changes in “staged” files into Git (since the last time you did this), along with a user-provided de-
scription of what the changes mean (called the “commit message”).

push Move local committed changes to the GitHub-hosted “remote” repository by “pushing” them across the network.

pull Update your local files with changes from the GitHub-hosted “remote” repository by “pulling” them across the
network.

Note that the push and pull commands require GitHub (or some other service that can host a remote copy of the
repository).
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Installation with GitHub

The main IDAES GitHub repository is idaes-pse. This repository includes the core framework, model libraries, and
integrated tools. It contains all of the release versions of IDAES and is frequently updated with new features.

The following instructions describe how to install and update the idaes-pse repository.

Github Setup

In order to use GitHub, you need to create a login on GitHub.

Fork the Repository

You use a “fork” of a repository (or “repo” for short) to create a space where you have complete control and can make
changes without directly affecting the main repository.

Fig. 6: Figure 1. Screenshot showing where to click to fork the Github repo

You should first
visit the idaes-pse
repo on Github at
https://github.com/
IDAES/idaes-pse/.
Then you should
click on the fork icon
in the top right and
click on your user-
name. These steps
will have created
your own fork of the
repo with the same name under your username.

Clone Your Fork

A “clone” is a copy of a Github repository on your local machine. This is what you need to do in order to actually edit
and change the files. To make a clone of the fork you created in the previous step, change to a directory where you want
to put the source code and run the command:

git clone https://github.com/MYNAME/idaes-pse.git
cd idaes-pse

Of course, replace MYNAME with your username. This will download all the files in the latest version of the repository
onto your local disk.

Note: After the git clone, subsequent Git commands should be performed from the “idaes-pse” directory.
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Add Upstream Remote

In order to guarantee that your fork can be synchronized with the “main” idaes-pse repo in the GitHub IDAES orga-
nization, you need to add a pointer to that repository as a remote. This repository will be called upstream and linked
with the following command:

git remote add upstream https://github.com/IDAES/idaes-pse.git

To check to see if you added the remote correctly use the following command:

git remote -v

You should see that there are two remotes, origin and upstream. Both have two lines showing the remote name, the url,
and the access (fetch or push). Origin is the pointer to your fork and was automatically added with the clone command,
while upstream is the pointer to the main idaes-pse repo that you just added.

Create the Python Environment

Once you have the repo cloned, you can change into that directory (by default, it will be called “idaes-pse” like the
repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and running. We use a Python packaging
system called Conda and we specifically use its minimal version Miniconda. If you do not already have Conda, please
follow the installation instructions for your operating system in getting started.

After Miniconda is installed, we recommend creating a separate conda environment for IDAES. If you are unfamil-
iar with environments, a good starting guide is here. Create and activate a conda environment for the new IDAES
installation with the following commands (we officially support python 3.7, but you may choose a version you prefer):

conda create -n idaes python=3.7
conda activate idaes

Note: When setting up a conda environment like this, you must conda activate idaes whenever you open a fresh
terminal window and wish to use IDAES.

Finish the Installation

Now that conda and pip are installed, and you are in the “idaes” conda environment, you can run the following com-
mands to install the requirements for IDAES and get the extensions (e.g. binaries for the solver IPOPT and other
external function calls):

pip install -r requirements-dev.txt
idaes get-extensions

Warning: The IDAES binary extensions are not yet supported on Mac/OSX

Note: This pip install command would override any package within the conda environment, so if you would
like to use a specific version of a package (e.g. a local clone of the Pyomo git repository), you should look at the
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requirements-dev.txt file and use it as a reference to either install the individual packages manually, or create a
separate requirements file customized to your development use case.

You can test that everything is installed properly by running the tests with Pytest:

pytest -m "not integration"

The not integration tag skips some tests that are slow. If you like, you can run all of the tests with just pytest.

Update IDAES

The main branch of idaes-pse is frequently updated and a new IDAES release occurs quarterly. It is recommended that
you update your fork and local repositories and conda environment periodically.

pip install -U idaes-pse
pip install -U .

4.3.2 Developer Documentation

This section of the documentation is intended for developers, and much of it is targeted at the IDAES internal team.
Hopefully many of the principles and ideas are also applicable to external contributors.

Developer Contents

IDAES Contributor Guide

About

This page tries to give all the essential information needed to contribute software to the IDAES project. It is designed
to be useful to both internal and external collaborators.

Code and other file locations

Source code The main Python package is under the idaes/ directory. Sub-directories, aka subpackages, should be
documented elsewhere. If you add a new directory in this tree, be sure to add a __init__.py in that directory so
Python knows it is a subpackage with Python modules. Code that is not part of the core package is under apps/.
This code can have any layout that the creator wants.

Documentation The documentation for the core package is under docs.

Examples Examples are under the examples/ directory. Tutorials from workshops are under the examples/workshops/
subdirectory.
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Developer environment

Development of IDAES will require an extra set of required package not needed by regular users. To install those
extra developer tools use the command pip install -r requirements-dev.txt rather than pip install -r
requirements.txt

Code style

The code style is not entirely consistent. But some general guidelines are:

• follow the PEP8 style (or variants such as Black)

• use Google-style docstrings on classes, methods, and functions

• format your docstrings as reStructuredText so they can be nicely rendered as HTML by Sphinx

• add logging to your code by creating and using a global log object named for the module, which can be created
like: _log = logging.getLogger(__name__)

• take credit by adding a global author variable: __author__ = 'yourname'

Tests

For general information about writing tests in Python, see Testing.

There are three types of tests:

Python source code The Python tests are integrated into the Python source code directories. Every package (directory
with .py modules and an __init__.py file) should also have a tests/ sub-package, in which are test files. These,
by convention are named test_<something>.py.

Doctests With some special reStructuredText “directives” (see “Writing tests”), the documentation can contain tests.
This is particularly useful for making sure examples in the documentation still run without errors.

Jupyter notebook tests (coming soon)

Writing tests

We use pytest to run our tests. The main advantage of this framework over the built-in unittest that comes with Python
is that almost no boilerplate code is required. You write a function named test_<something>() and, inside it, use the
(pytest-modified) assert keyword to check that things are correct.

Writing the Python unit tests in the tests/ directory is, hopefully, quite straightforward. Here is an example (out of
context) that tests a couple of things related to configuration in the core unit model library:

def test_config_block():
m = ConcreteModel()

m.u = Unit()

assert len(m.u. config) == 2
assert m.u.config.dynamic == useDefault

See the existing tests for many more examples.

For tests in the documentation, you need to wrap the test itself in a directive called testcode. Here is an example:
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.. testcode::

from pyomo.environ import *
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class("MyBlock")
class MyBlockData(ProcessBlockData):

CONFIG = ProcessBlockData.CONFIG()
CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
def build(self):

super(MyBlockData, self).build()
self.x = Var(initialize=self.config.xinit)
self.y = Var(initialize=self.config.yinit)

First, note that reStructuredText directive and indented Python code. The indentation of the Python code is important.
You have to write an entire program here, so all the imports are necessary (unless you use the testsetup and testcleanup
directives, but honestly this isn’t worth it unless you are doing a lot of tests in one file). Then you write your Python
code as usual.

Running tests

Running all tests is done by, at the top directory, running the command: pytest.

The documentation test code will actually be run by a special hook in the pytest configuration that treats the Makefile
like a special kind of test. As a result, when you run pytest in any way that includes the “docs/” directory (including
the all tests mode), then all the documentation tests will run, and errors/etc. will be reported through pytest. A useful
corollary is that, to run documentation tests, do: pytest docs/Makefile

You can run specific tests using the pytest syntax, see its documentation or pytest -h for details.

Documentation

The documentation is built from its sources with a tool called Sphinx. The sources for the documentation are:

• hand-written text files, under docs/, with the extension “.rst” for reStructuredText.

• the Python source code

• selected Jupyter Notebooks

Building documentation

Note: To build the documentation locally, you will need to have the Sphinx tools installed. This will be done for you
by running pip install requirements-dev.txt (“developer” setup) as opposed to the regular pip install
requirements.txt (“user” setup).

To build the documentation locally, use our custom build.py script.

cd docs python build.py
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The above commands will do a completely clean build to create HTML output.

If the command succeeds, the final line will look like:

=== SUCCESS

If it fails, it will instead print something like:

*** ERROR in 'html'
***
*** message about the command that failed
*** and any additional info
***

If you want to see the commands actually being run, add -v to the command line.

By default the build command removes all existing built files before running the Sphinx commands. To turn this off,
and rebuild only “new” things, add –dirty to the command line.

Previewing documentation

The generated documentation can be previewed locally by opening the generated HTML files in a web browser. The
files are under the docs/build/ directory, so you can open the file docs/build/index.html to get started.

Github Repository Overview

This section describes the layout of the Github repositories. Later sections will give guidelines for contributing code
to these repositories.

Repositories

Repository
name

Pub-
lic?

Description

idaes-pse Yes Main public repository, including core framework and integrated tools
idaes-dev No Main private repository, where code is contributed before being “mirrored” to the public

ideas-pse repository
workspace No Repository for code that does not belong to any particular CRADA or NDA, but also is

never intended to be released open-source

The URL for an IDAES repository, e.g. “some-repo”, will be https://github.com/IDAES/some-repo.

Public vs. Private

All these repositories except for “idaes-pse” will only be visible on Github, on the web, for people who have been added
to the IDAES developer team in the IDAES “organization” (See About Github organizations). If you are a member of
the IDAES team and not in the IDAES Github organization, please contact one of the core developers. The idaes-pse
repository will be visible to anyone, even people without a Github account.
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Collaborative Software Development

This page gives guidance for all developers on the project.

Note: Many details here are targeted at members of the IDAES project team. However, we strongly believe in the
importance of transparency in the project’s software practices and approaches. Also, understanding how we develop
the software internally should be generally useful to understand the review process to expect for external contributors.

Although the main focus of this project is developing open source software (OSS), it is also true that some of the
software may be developed internally or in coordination with industry under a CRADA or NDA.

It is the developer’s responsibility, for a given development effort, to keep in mind what role you must assume and thus
which set of procedures must be followed.

CRADA/NDA If you are developing software covered by a CRADA, NDA, or other legal agreement that does not
explicitly allow the data and/or code to be released as open-source under the IDAES license, then you must
follow procedures under Developing Software with Proprietary Content.

Internal If you are developing non-CRADA/NDA software, which is not intended to be part of the core framework or
(ever) released as open-source then follow procedures under Developing Software for Internal Use.

Core/open-source If you are developing software with no proprietary data or code, which is intended to be released
as open-source with the core framework, then follow procedures under Developing software for Open-source
Release.

Developing Software with Proprietary Content

Proprietary content is not currently being kept on Github, or any other collaborative version control platform. When
this changes, this section will be updated.

Developing Software for Internal Use

Software for internal use should be developed in the workspace repository of the IDAES github organization. The
requirements for reviews and testing of this code are not as strict as for the idaes-dev repository, but otherwise the
procedures are the same as outlined for open-source development.

Developing software for Open-source Release

We can break the software development process into five distinct phases, illustrated in Figure 1 and summarized below:

1. Setup: Prepare your local system for collaborative development
2. Initiate: Notify collaborators of intent to make some changes
3. Develop: Make local changes
4. Collaborate: Push the changes to Github, get feedback and merge

The rest of this page describes the what and how of each of these phases.
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Fig. 7: Figure 1. Overview of software development workflow

1. Setup

Before you can start developing software collaboratively, you need to make sure you are set up in Github and set up
your local development environment.

Github setup

To work within the project, you need to create a login on Github. You also need to make sure that this login has been
added to the IDAES organization by contacting one of the core developers.

If these steps are successful, you should be able to login to Github, visit the IDAES Github organization, and see
“Private” repositories such as idaes-dev and workspace.

Fork the repo

You use a “fork” of a repository (or “repo” for short) to create a space where you can save changes without directly
affecting the main repository. Then, as we will see, you request that these changes be incorporated (after review).

This section assumes that the repository in question is idaes-dev, but the idea is the same for any other repo.

You should first visit the repo on Github by pointing your browser to https://github.com/IDAES/idaes-dev/. Then you
should fork the repo into a repo of the same name under your name.

Fig. 8: Figure 2. Screenshot showing where to click to fork the Github repo

Clone your fork

A “clone” is a copy
of a Github repos-
itory on your local
machine. This is
what you need to do
in order to actually
edit and change the
files. To make a
clone of the fork you
created in the pre-
vious step, change
to a directory where
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you want to put the
source code and run
the command:

git clone␣
→˓git@github.
→˓com:MYNAME/
→˓idaes-dev.git
cd idaes-dev

Of course, replace
MYNAME with
your login name.
This will download
all the files in the
latest version of the
repository onto your
local disk.

Note: After the git clone, subsequent git commands should be performed from the “idaes-dev” directory.

Add upstream remote

In order to guarantee
that your fork can
be synchronized
with the “main”
idaes-dev repo in
the Github IDAES
organization, you
need to add a pointer
to that repository
as a remote. This
repository is called
upstream (changes
made there by the
whole team flow
down to your fork), so we will use that name for it in our command:

git remote␣
→˓add upstream␣
→˓git@github.
→˓com:IDAES/
→˓idaes-dev.git
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Create the Python environment

Once you have the
repo cloned, you
can change into
that directory (by
default, it will be
called “idaes-dev”
like the repo) and
install the Python
packages.

But before you do
that, you need to get
the Python package
manager fully up and
running. We use
a Python packaging
system called Conda.
Below are instruc-
tions for installing a
minimal version of
Conda, called Mini-
conda. The full ver-
sion installs a large
number of scientific
analysis and visualization libraries that are not required by the IDAES framework.

wget␣
→˓https://repo.
→˓anaconda.com/
→˓miniconda/
→˓Miniconda3-
→˓latest-Linux-
→˓x86_64.sh
bash␣
→˓Miniconda3-
→˓latest-Linux-
→˓x86_64.sh

Create and activate
a conda environment
(along with its own
copy of pip) for
the new IDAES
installation (you
will need to conda
activate idaes
when you open
a fresh terminal
window and wish
to use IDAES):
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conda create␣
→˓-n idaes pip
conda activate␣
→˓idaes

Now that conda and
pip are installed,
and you are in the
“idaes” conda en-
vironment, you can
run the standard
steps for installing
a Python package in
development mode:

pip install -r␣
→˓requirements.
→˓txt
python setup.
→˓py develop

You can test that ev-
erything is installed
properly by running
the tests with Pytest:

pytest

2. Initiate

We will call a set of
changes that belong
together, e.g. be-
cause they depend on
each other to work,
a “topic”. This sec-
tion describes how to
start work on a new
topic. The workflow
for initiating a topic
is shown in Figure 3
below.
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Fig. 9: Figure 3. Initiate topic workflow

Create an issue on Github

To create an issue on Github,
simply navigate to the repos-
itory page and click on the
“Issues” tab. Then click on
the “Issues” button and fill
in a title and brief descrip-
tion of the issue. You do not
need to list details about sub-
steps required for the issue,
as this sort of information is
better put in the (related) pull
request that you will create
later. Assign the issue to the
appropriate people, which is
often yourself.

There is one more important
step to take, that will allow
the rest of the project to eas-
ily notice your issue: add
the issue to the “Priorities”
project. The screenshot be-
low shows where you need to
click to do this.

Fig. 10: Figure 4. Screenshot for creating an issue on Github

Create a branch on your fork

It is certainly pos-
sible to do your
work on your fork in
the “main” branch.
The problem that
can arise here is if
you need to do two
unrelated things at
the same time, for
example working on
a new feature and
fixing a bug in the
current code. This
can be quite tricky to
manage as a single
set of changes, but
very easy to handle
by putting each
new set of changes
in its own branch,
which we call a topic
branch. When all
the changes in the
branch are done and merged, you can delete it both locally and in your fork so you don’t end up with a bunch of old
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branches cluttering up your git history.

The command for
doing this is simple:

git␣
→˓checkout -b␣
→˓<BRANCH-NAME>

The branch name
should be one word,
with dashes or un-
derscores as needed.
One convention
for the name that
can be helpful is to
include the Issue
number at the end,
e.g. git co -b
mytopic-issue42.
This is especially
useful later when
you are cleaning up
old branches, and
you can quickly see
which branches are
related to issues that
are completed.

Make local edits and push changes

A new branch, while
it feels like a change,
is not really a change
in the eyes of Git
or Github, and by it-
self will not allow
you to start a new
pull request (which
is the goal of this
whole phase). The
easiest thing to do
is a special “empty”
commit:

git commit -
→˓-allow-empty␣
→˓-m 'Empty␣
→˓commit␣
→˓so I can␣
→˓open a PR'

Since this is your
first “push” to this
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branch, you are
going to need to set
an upstream branch
on the remote that
should receive the
changes. If this
sounds complicated,
it’s OK because
git actually gives
you cut-and-paste
instructions. Just
run the git push
command with no
other arguments:

$ git push
fatal:␣
→˓The current␣
→˓branch␣
→˓mybranch-
→˓issue3000␣
→˓has␣
→˓no upstream␣
→˓branch.
To push␣
→˓the current␣
→˓branch␣
→˓and set the␣
→˓remote as␣
→˓upstream, use

git push --
→˓set-upstream␣
→˓origin␣
→˓mybranch-
→˓issue3000

Cut and paste the
suggested command,
and you’re ready to
go. Subsequent calls
to “push” will not re-
quire any additional
arguments to work.

232 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Start a new Pull Request on Github

Finally, you are
ready to initiate
the pull request.
Right after you
perform the push
command above,
head to the reposi-
tory URL in Github
(https://github.com/
IDAES/idaes-dev)
and you should see
a highlighted bar
below the tabs, as
in Figure 5 below,
asking if you want to
start a pull-request.

Fig. 11: Figure 5. Screenshot for starting a Pull Request on Github

Click on this and fill
in the requested in-
formation. Remem-
ber to link to the is-
sue you created ear-
lier.

Depending on the
Github plan, there
may be a pull-down
menu for creating
the pull request that
lets you create a
“draft” pull request.
If that is not present,
you can signal this
the old-fashioned
way by adding
“[WIP]” (for Work-in-Progress) at the beginning of the pull request title.

Either way, create the pull request. Do not assign reviewers until you are done making your changes (which is probably
not now). This way the assigning of reviewers becomes an unambiguous signal that the PR is actually ready for review.

Note: Avoid having pull requests that take months to complete. It is better to divide up the work, even artificially, into
a piece that can be reviewed and merged into the main repository within a week or two.
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3. Develop

The development process is a loop of adding code, testing and debugging, and committing and pushing to Github. You
may go through many (many!) iterations of this loop before the code is ready for review. This workflow is illustrated
in Figure 6.

Fig. 12: Figure 6. Software development workflow

Running tests

After significant edits, you
should make sure you have
tests for the new/changed
functionality. This involves
writing Unit tests as well as
running the test suite and ex-
amining the results of the
Code coverage.

This project uses Pytest to
help with running the unit
tests. From the top-level di-
rectory of the working tree,
type:

pytest

Alternatively users of an IDE
like PyCharm can run the
tests from within the IDE.

Commit changes

The commands: git add, git
status, and git commit are all
used in combination to save
a snapshot of a Git project’s
current state.1.

The commit command is the
equivalent of “saving” your
changes. But unlike edit-
ing a document, the set of
changes may cover multiple
files, including newly created
files. To allow the user flex-
ibility in specifying exactly
which changes to save with
each commit, the add com-
mand is used first to indicate
files to “stage” for the next
commit command. The sta-
tus command is used to show

1 Git has an additional saving mechanism called ‘the stash’. The stash is an ephemeral storage area for changes that are not ready to be committed.
The stash operates on the working directory and has extensive usage options.* See the documentation for git stash for more information.
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the current status of the work-
ing tree.

A typical workflow goes like
this:

$ ls
file1 file2
$ echo 'a' > file1 #␣
→˓edit existing file
$ echo '1' > file3␣
→˓# create new file
$ git status␣
→˓--short # shows␣
→˓changed/unstaged␣
→˓and unknown file
M file1
?? file3
$ git add file1␣
→˓file3 # stage file1,
→˓ file3 for commit
$ git␣
→˓status --short #␣
→˓M=modified, A=added
M file1
A file3
$ git commit -m␣
→˓"made some changes"
[main 067c16e]␣
→˓made some changes
2 files changed,
→˓ 2 insertions(+)
create␣
→˓mode 100644 file3

Of course, in most IDEs you
could use built-in commands
for committing and adding
files. The basic flow would
be the same.

Synchronize with upstream changes

Hopefully you are not the
only one on the team do-
ing work, and therefore you
should expect that the main
repository may have new and
changed content while you
are in the process of work-
ing. To synchronize with the
latest content from the “up-
stream” (IDAES organiza-
tion) repository, you should
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periodically run one of the
two following commands:

git pull
# OR -- explicit
git fetch --all
git␣
→˓merge upstream/main

You’ll notice that this merge
command is using the name
of the “upstream” remote that
you created earlier.

Push changes to Github

Once changes are tested and
committed, they need to be
synchronized up to Github.
This is done with the git
push command, which typ-
ically takes no options (as-
suming you have set up your
fork, etc., as described so
far):

git push

The output of this command
on the console should be an
informative, if slightly cryp-
tic, statement of how many
changes were pushed and,
at the bottom, the name of
your remote fork and the lo-
cal/remote branches (which
should be the same). For ex-
ample:

Counting␣
→˓objects: 5, done.
Delta␣
→˓compression using␣
→˓up to 8 threads.
Compressing objects:␣
→˓100% (5/5), done.
Writing objects: 100%␣
→˓(5/5), 528 bytes |␣
→˓528.00 KiB/s, done.
Total 5 (delta 4),
→˓ reused 0 (delta 0)
remote: Resolving␣
→˓deltas: 100% (4/
→˓4), completed with␣
→˓4 local objects.

(continues on next page)
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(continued from previous page)

To github.
→˓com:dangunter/
→˓idaes-dev.git

d535552..fe61fcc␣
→˓ devdocs-issue65␣
→˓-> devdocs-issue65

4. Collaborate

The collaboration phase
of our journey, shown in
Figure 7, is mostly about
communicating what you
did to the other developers.
Through the Github “review”
mechanism, people will be
able to suggest changes
and improvements. You
can make changes to the
code (other people can also
make changes, see Shared
forks), and then push those
changes up into the same
Pull Request. When you get
enough approving reviews,
the code is merged into the
main repository. At this
point, you can delete the
“topic branch” used for the
pull request, and go back
to initiate your next set of
changes.

Fig. 13: Figure 7. Collaborate phase workflow

Request review

To
request
review
of a
pull
request,
navi-
gate to
the pull
request
in the
main
(e.g.,
“idaes-
dev”)
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repos-
itory
and
select
some
names
in the
“Re-
view-
ers”
pull-
down
on the
right-
hand
side. You need to have two approving reviews. The reviewers should get an email, but you can also “@” people in a
comment in the pull request to give them a little extra nudge.

See
the full
code
review
proce-
dure for
more
details.

Make changes

You
need
to
keep
track
of
the
com-
ments
and
re-
views,
and
make
changes
accord-
ingly.
Think
of a
pull
request
as a
discus-
sion.
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Nor-
mally,
the
person
who
made
the pull request will make any requested edits. Occasionally, it may make sense for one or more other developers to
jump in and make edits too, so how to do this is covered in the sub-section below.

Changes
made
while
the
code is
being
re-
viewed
use the
normal
De-
velop
work-
flow.

Shared forks

Other
de-
vel-
op-
ers
can
also
make
changes
in your
fork.
All they
need
to do
is git
clone
your
fork
(not the
main
repos-
itory),
switch
to the
correct
topic
branch,
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and
then
git
push work directly to that branch. Note since this does not use the whole pull-request mechanism, all developers
working on the same branch this way need to make sure the git pull to synchronize with updates from the other
developers.

For
ex-
am-
ple,
if
Jack
wants
to
make
some
ed-
its
on
Rose’s
fork,
on
a
topic
branch
called
“changes-
issue51”
he
could
do the
follow-
ing:

→˓$␣
→˓git␣
→˓clone␣
→˓https:/
→˓/
→˓github.
→˓com/
→˓rose/
→˓idaes-
→˓dev␣
→˓

→˓#␣
→˓clone␣
→˓Rose
→˓'s␣
→˓fork

→˓$␣
→˓git␣
→˓checkout␣
→˓changes-
→˓issue51␣
→˓␣
→˓

→˓#␣
→˓checkout␣
→˓the␣
→˓topic␣
→˓branch

(continues on next page)
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(continued from previous page)

→˓$␣
→˓echo␣
→˓

→˓"Hello
→˓"␣
→˓>
→˓>
→˓␣
→˓README.
→˓txt␣
→˓␣
→˓

→˓#␣
→˓make␣
→˓some␣
→˓important␣
→˓changes

→˓$␣
→˓pytest␣
→˓

→˓#␣
→˓always␣
→˓run␣
→˓tests!
→˓!

→˓$␣
→˓git␣
→˓add␣
→˓README.
→˓txt␣
→˓;
→˓␣
→˓git␣
→˓commit␣
→˓-
→˓m␣
→˓

→˓"important␣
→˓changes
→˓"

→˓$␣
→˓git␣
→˓push␣
→˓

→˓#␣
→˓push␣
→˓changes␣
→˓to␣
→˓the␣
→˓fork

(continues on next page)
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(continued from previous page)

Hope-
fully
it also
is ob-
vious
that
devel-
opers
work-
ing
this
way
have
less
safe-
guards
for
over-
writing
each
other’s
work,
and
thus
should
make
an
ef-
fort
to
communicate clearly and in a timely manner.

Merge

Once
all the
tests
pass
and
you
have
enough
ap-
proving
re-
views,
it’s
time to
merge
the
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code!
This
is the
easy
part:
go to
the
bottom
of the
Pull
Request
and hit
the big
green
“merge” button.

Be-
fore
you
close
the
lap-
top
and
go
down
to
the
pub,
you
should
tidy
up.
First,
delete
your
lo-
cal
branch
(you
can
also
delete
that
branch
on
Github):

git␣
→˓checkout␣
→˓main␣
→˓

→˓#␣
→˓switch␣
→˓back␣
→˓to␣
→˓main␣
→˓branch

(continues on next page)
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(continued from previous page)

git␣
→˓branch␣
→˓-
→˓d␣
→˓mychanges-
→˓issue3000

Next,
you
should
make
sure
your
main
reflects
the
current
state of
the up-
stream
main
branch,
i.e. go
back
and
syn-
chro-
nize
with
the up-
stream
remote,
i.e. run
git
pull.

Now
you can
go and
enjoy
a tasty
bev-
erage.
Cheers!
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Developer Standards

Contents

•
Developer
Stan-
dards

– Model
For-
matting
and
Gen-
eral
Stan-
dards

∗
Headers
and
Meta-
data

∗ Coding
Stan-
dard

∗ Model
Organi-
zation

∗
Commenting

– Units
of Mea-
sure-
ment
and
Refer-
ence
States

–
Standard
Vari-
able
Names

– Testing

4.3. Advanced User Guide 245



IDAES Documentation, Release 1.10.1

Model Formatting and General Standards

The
sec-
tion
de-
scribes
the
rec-
om-
mended
for-
mat-
ting
used
within
the
IDAES
frame-
work.
Users
are
strongly
encour-
aged to
follow
these
stan-
dards in
devel-
oping
their
models in order to improve readability of their code.

Headers and Meta-data

Model
devel-
opers
are
encour-
aged to
include
some
docu-
men-
tation
in the
header
of their
model
files
which
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pro-
vides
a brief
de-
scrip-
tion of
the pur-
pose
of the
model
and
how
it was
developed. Some suggested information to include is:

• Model
name,

• Model
publi-
cation
date,

• Model
author

• Any
nec-
essary
licens-
ing and
dis-
claimer
infor-
mation
(see
below).

• Any ad-
ditional
infor-
mation
the
mod-
eler
feels
should
be in-
cluded.
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Coding Standard

All
code
devel-
oped as
part of
IDAES
should
con-
form
to the
PEP-8
stan-
dard.

Model Organization

Whilst
the
overall
IDAES
mod-
eling
frame-
work
en-
forces
a hier-
archical
struc-
ture on
models,
model
devel-
opers
are still
encour-
aged to
arrange
their
models
in a
logical
fashion
to aid
other
users
in understanding the model. Model constraints should be grouped with similar constraints, and each grouping of
constraints should be clearly commented.

For
prop-
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erty
pack-
ages,
it
is
rec-
om-
mended
that
all
the
equa-
tions
nec-
es-
sary
for
cal-
cu-
lat-
ing
a
given
prop-
erty
be
grouped
to-
gether, clearly separated and identified by using comments.

Addi-
tion-
ally,
model
devel-
opers
are
encour-
aged
to con-
sider
break-
ing
their
model
up into
a num-
ber of
smaller
meth-
ods
where
this
makes
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sense.
This
can fa-
cilitate
modifi-
cation
of the code by allowing future users to inherit from the base model and selectively overload sub-methods where
desired.

Commenting

To
help
other
mod-
el-
ers
and
users
un-
der-
stand
the
how
a
model
works,
model
builders
are
strongly
encour-
aged to
com-
ment
their
code. It
is sug-
gested
that
every
constraint should be commented with a description of the purpose of the constraint, and if possible/necessary a
reference to a source or more detailed explanation. Any deviations from standard units or formatting should be clearly
identified here. Any initialization procedures, or other procedures required to get the model to converge should be
clearly commented and explained where they appear in the code. Additionally, modelers are strongly encouraged to
add additional comments explaining how their model works to aid others in understanding the model.
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Units of Measurement and Reference States

Due
to the
flexi-
bility
pro-
vided
by the
IDAES
mod-
eling
frame-
work,
there is
no stan-
dard set
of units
of mea-
sure-
ment
or stan-
dard
refer-
ence
state
that
should
be
used in
models.
This
places the onus on the user to understand the units of measurement being used within their models and to ensure that
they are consistent.

The
stan-
dard
units
and ref-
erence
states
are de-
scribed
in the
user
guide.
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Standard Variable Names

The
stan-
dard
vari-
able
names
are de-
scribed
in the
user
guide.

Testing

The
testing
stan-
dards
are in-
cluded
here.

Testing

Testing
is es-
sential
to the
process
of cre-
ating
soft-
ware.
“If it
isn’t
tested,
it
doesn’t
work”
is a
good
rule of
thumb.

For
some
specific
advice
for
adding
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new
tests
in the
IDAES
code,
see
IDAES
Con-
tributor
Guide.

There
are
dif-
ferent
kinds
of
tests:
func-
tional,
accep-
tance,
perfor-
mance,
us-
ability.
We
will
pri-
marily
con-
cern
our-
selves
with
func-
tional
test-
ing
here,
i.e.
whether the thing being tested produces correct outputs for expected inputs, and gracefully handles everything else.
Within functional testing, we can classify the testing according to the axes of time, i.e. how long the test takes to
run, and scope, i.e. the amount of the total functionality being tested. Along these two axes we will pick out just two
points, as depicted in Figure 1. The main tests you will write are “unit tests”, which run very quickly and test a focused
amount of functionality. But sometimes you need something more involved (e.g. running solvers, using data on disk),
and here we will label that kind of test “integration tests”.
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Fig. 14: Figure 1. Conceptual space of functional testing

Unit tests

Testing individual pieces of functional-
ity, including the ability to report the
correct kind of errors from bad inputs.
Unit tests must always run quickly. If
it takes more than 10 seconds, it is not
a unit test, and it is expected that most
unit tests take well under 1 second. The
reason for this is that the entire unit test
suite is run on every change in a Pull Re-
quest, and should also be run relatively
frequently on local developer machines.
If this suite of hundreds of tests takes
more than a couple of minutes to run,
it will introduce a significant bottleneck
in the development workflow.

For Python code, we use the pytest test-
ing framework. This is compatible with
the built-in Python unittest framework,
but has many nice features that make it
easier and more powerful.

The best
way to
learn how
to use
pytest is
to look
at exist-
ing unit
tests, e.g.
the file
“idaes/core/tests/test_process_block.py”.
Test files are found in a directory named
“test/” in every Python package (di-
rectory with an “__init__.py”). The
tests are named “test_{something}.py”;
this naming convention is important
so pytest can automatically find all the
tests.

When writing your own tests, make sure
to remember to keep each test focused
on a single piece of functionality. If a
unit test fails, it should be obvious which
code is causing the problem.
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Tagging tests

Since we use pytest for our testing, we
have access to the very nice pytest “tag”
feature, which uses Python decorators to
add labels to tests.

An example of a test with a tag is (as-
sume import pytest at the top of ev-
ery test module):

@pytest.mark.unit
def test_something():

assert 2. + 2. == 4.

Every test should be decorated with
@pytest.mark.<level> where
<level> has one of three values:

• unit Test runs quickly (under 2 seconds) and
has no network/system dependencies.
Uses only libraries installed by default
with the software

• component Test may run more slowly (un-
der 10 seconds, or so), e.g. it may run
a solver or create a bunch of files. Like
unit tests, it still shouldn’t depend on
special libraries or dependencies.

• integration Test may take a long time to run,
and may have complex dependencies.

The expectation is that unit tests should
be run by developers rather frequently,
component tests should be run by the
continuous integration system before
running code, and integration tests are
run across the codebase regularly, but
infrequently (e.g. daily).

Sometimes you may also want to run
tests on only a particular platform.
We currently support Windows, Linux,
and (to a lesser extent) MacOS. To
restrict a test to one or more of
these platforms, typically Linux-only,
use @pytest.mark.<platform>, or
@pytest.mark.no<platform> where
<platform> has one of three values:

• linux / nolinux Linux systems, regardless of
distribution, e.g. CentOS, Ubuntu, De-
bian, et al.

• win32 / nowin32 Windows 10

• darwin / nodarwin Mac OSX
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As you may have guessed, the
“no<platform>” version means that
any operating system except “<plat-
form>” will run the test. You can
combine these tags as you wish, though
until we have more than three options it
is not necessary.

Here are a few examples:

@pytest.mark.unit
def test_something():

print(
→˓"unit test, all platforms")

@pytest.mark.unit
@pytest.mark.nowin32
def test_something():

print("unit test, all␣
→˓platforms except Windows")

@pytest.mark.component
@pytest.mark.linux
def test_something():

print("component␣
→˓test, linux-only")

@pytest.mark.integration
@pytest.mark.nodarwin
def test_something():

print("integration test,␣
→˓all platforms except MacOS")

Mocking

Mocking is a common, but impor-
tant, technique for avoiding dependen-
cies that make your tests slow, frag-
ile, and harder to understand. The
basic idea is to replace dependencies
with fake, or “mock”, versions of them
that will provide just enough realism
for the test. Python provides a library,
unittest.mock, to help with this process
by providing objects that can report how
they were used, and easily pretend to
have certain functionality (returning, for
example, fixed values). To make this all
more concrete, consider a simple prob-
lem where you want to test a function
that makes a system call (in this case,
os.remove):
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# file: mymodule.py
import os
def rm(filename):

os.remove(filename)

Normally, to test this you would create
a temporary file, and then see if it got
removed. However, with mocking you
can take a different approach entirely:

# file: test_mymodule.py
from mymodule import rm
from unittest import mock

@mock.patch('mymodule.os')
def test_rm(mock_os):

rm("any path")
# test␣

→˓that rm called os.remove␣
→˓with the right parameters

mock_os.remove.assert_
→˓called_with("any path")

Here, we have “patched” the os mod-
ule that got imported into “mymodule”
(note: had to do mymodule.os instead
of simply os, or the one mymodule uses
would not get patched) so that when rm
calls os.remove, it is really calling a
fake method in mock_os that does noth-
ing but record how it was called. The
patched module is passed in to the test
as an argument so you can examine it.
So, now, you are not doing any OS oper-
ations at all! You can imagine how this
is very useful with large files or external
services.

Integration tests

Integration tests exercise an end-to-end
slice of the overall functionality. At
this time, the integration tests are all
housed in Jupyter Notebooks, which
serve double-duty as examples and tu-
torials for end users. We execute these
notebooks and verify that they run cor-
rectly to completion at least once before
each new release of the software.
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Code coverage

The “coverage” of the code refers to
what percentage of the code (“lines cov-
ered” divided by total lines) is executed
by the automated tests. This is impor-
tant because passing automated tests is
only meaningful if the automated tests
cover the majority of the code’s behav-
ior. This is not a perfect measure, of
course, since simply executing a line of
code under one condition does not mean
it would execute correctly under all con-
ditions. The code coverage is evaluated
locally and then integrated with Github
through a tool called Coveralls.

Code Review

“It’s a simple 3-step process. Step one:
Fix! Step two: It! Step three: Fix it!” –
Oscar Rogers (Kenan Thompson), Sat-
urday Night Live, 2/2009

Code review is the last line of defense
between a mistake that the IDAES team
will see and a mistake the whole world
will see. In the case of that mistake be-
ing a leak of proprietary information,
the entire project is jeopardized, so we
need to take this process seriously.

Summary

Warning: This section is an incom-
plete set of notes

Every piece of code must be reviewed by
at least two people.

In every case, one of those people will
be a designated “gatekeeper” and the
one or more others will be “technical re-
viewers”.

The technical reviewers are expected to
consider various aspects of the proposed
changes (details below), and engage the
author in a discussion on any aspects
that are deemed lacking or missing.
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The gatekeeper is expected to make sure
all criteria have been met, and actually
merge the PR.

Assigning Roles

The gatekeeper is a designated person,
who will always be added to review a
Pull Request (PR)

Gatekeeper is a role that will be one (?)
person for some period like a week or
two weeks

The role should rotate around the team,
it’s expected to be a fair amount of work
and should be aligned with availability
and paper deadlines, etc.

The originator of the PR will add as re-
viewers the gatekeeper and 1+ technical
reviewers.

Originator responsibilities

The originator of the PR should include
in the PR itself information about where
to find:

Changes to code/data

Tests of the changes

Documentation of the changes

The originator should be responsive to
the reviewers

Technical reviewer responsibilities

The technical reviewer(s) should look at
the proposed changes for

Technical correctness (runs properly,
good style, internal code documenta-
tion, etc.)

Tests

Documentation

No proprietary / sensitive information

Until they approve, the conversation in
the PR is between the technical review-
ers and the originator (the gatekeeper
is not required to participate, assuming
they have many PRs to worry about)

Gatekeeper responsibilities

The gatekeeper does not need to engage
until there is at least one approving tech-
nical review.
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Once there is, they should verify that:

Changes do not contain proprietary data

Tests are adequate and do not fail

Documentation is adequate

Once everything is verified, the gate-
keeper merges the PR

Automated Checks

The first level of code review is a set of
automated checks that must pass before
the code is ready for people to review it.
These checks will run on the initiation
of a pull request and on every new com-
mit to that pull request that is pushed to
Github (thus the name “continuous inte-
gration”).

The “continuous integration” of the
code is hosted by an online service – we
use CircleCI – that can automatically re-
run the tests after every change (in this
case, every new Pull Request or update
to the code in an existing Pull Request)
and report the results back to Github for
display in the web pages. This status
information can then be used as an au-
tomatic gatekeeper on whether the code
can be merged into the main branch – if
tests fail, then no merge is allowed. Fol-
lowing this procedure, it is not possible
for the main branch to ever be failing its
own tests.

Docker Container

This page documents information
needed by developers for working with
the IDAES docker container.

As is expected by Docker, the main file
for creating the Docker image is the
“Dockerfile” in the top-level directory.
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docker-idaes script

You can build new Docker images using
the create option to the docker-idaes
script. For example:

./docker-idaes create

You need to have the IDAES installation
activated. The script will automatically
find the current version and attempt to
build a Docker image with the same ver-
sion. If it detects an existing image,
it will skip the image build. Next, the
script will try to use docker save to
save the image as a compressed archive.
This will also be skipped if an existing
image file, with the same version as the
“idaes” Python package, is detected.

Pushing an image to S3

The Docker images are stored on Ama-
zon S3. Before you can upload a
new image, you need to be part of the
“IDAES-admin” group that is part of
Amazon’s IAM (Identity Access Man-
agement) system. Please contact one of
the core developers to learn how to join
this IAM group.

Once you have the IAM keys, you need
to create a file ~/.aws/credentials
that has the access key id and key from
the IAM account. It will look like this:

[default]
aws_access_key_id = IDGOESHERE
aws_secret_access_
→˓key = accesskeygoeshere

The values for the ID and Access key are
available from the AWS “IAM” service
console.

Next you need to use the AWS
command-line tools to copy the local
image up to Amazon S3. For example,
if the image was version “1.0.1”, you
would use the following command:

aws s3 cp␣
→˓idaes-pse-docker-1.0.1.tgz \

s3://idaes/idaes-pse/
→˓idaes-pse-docker-1.0.1.tgz (continues on next page)
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If the new image should be the latest,
you also need to do an S3 -> S3 copy
to create a new latest image:

aws␣
→˓s3 cp s3://idaes/idaes-pse/
→˓idaes-pse-docker-1.0.1.tgz \
␣

→˓ s3://idaes/idaes-pse/
→˓idaes-pse-docker-latest.tgz

Glossary

API Acronym for “Application Programming
Interface”, this is the set of functions
used by an external program to invoke
the functionality of a library or appli-
cation. For IDAES, it usually refers to
Python functions and classes/methods
in a Python module. By analogy, the
APIs are to the IDAES library what a
steering wheel, gearshift and pedals are
to a car.

CRADA Cooperative Research and Develop-
ment Agreement. A legal agreement be-
tween two or more parties that involves a
statement of work and terms for sharing
non-public data.

NDA Non-Disclosure Agreement. A legal
agreement between two or more par-
ties that involves terms for sharing non-
public data.

4.3.3 Developing Custom
Models

It is difficult to build a single model li-
brary that will suit all modeling needs,
and thus users will inevitably encounter
situations where they need to create new
models to represent their processes. The
IDAES Process Modeling Framework
has been developed with this in mind,
and all components of the framework
have been designed to be fully accessi-
ble and modifiable. This section of the
documentation will explain how users
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can develop new models, or modify ex-
isting models, for use within the IDAES
modeling environment.

• Creating New Modeling Components

• Defining New Model Classes

• Inheriting from Existing Models

• Config Blocks

• The build Method

• Types of Models

Creating New Modeling Components

All models within the IDAES Process
Modeling Framework, be they models
of unit operations of thermodynamic
properties, are constructed in the same
way and user defined models follow the
same structure. Each model component
is a set of instructions on how to assem-
ble a Pyomo ‘Block’ containing the nec-
essary variables, expressions and con-
straints to describe the desired process.
These instructions are contained within
Python classes which can be written and
modified by the user.

Details on what is required when con-
structing custom models of different
types will be provided in subsequent
sections of this documentation, how-
ever there are some steps common to all
types of models which will be discussed
here.

Defining New Model Classes

There is a significant amount of work
that has to be done behind the scenes in
order to create a new model component
and integrate it into the IDAES model-
ing framework. Rather than force the
user to understand and implement this
themselves, IDAES provides a number
of standard tools which users can use to
automate this when creating new mod-
els. These tools are used when declaring
new components, and should be used in
most cases when a user is creating a new
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model (exceptions are mentioned in the
detailed documentation for each type of
model).

An example of declaring new model
(named NewModel) is shown below:

@declare_process_
→˓block_class("NewModel")
class NewModelData(BaseClass):

The first part of the declaration is the
declare_process_block_class decorator,
which automates all the code required to
create a new type of Pyomo Block. This
decorator needs to be provided with a
name for the new model (NewModel).
Understanding the details of class deco-
ration within Python and the function of
the declare_process_block_class deco-
rator are not necessary for developing
new models, however users who wish to
read more can see the technical specifi-
cations.

The second part of the declaration cre-
ates a NewModelData class which in-
herits from an existing BaseClass. The
NewModelData class needs to contain
the instructions necessary for building
the desired model and must be popu-
lated by the user. In practice, each type
of model (unit operation, thermophysi-
cal properties, etc.) has a set of com-
mon tasks which appear in most models
of that type. To assist users with devel-
oping new model and reduce the need
for them to rewrite these common tasks,
IDAES provides a set of base classes
which contain many of these common
instructions. Model developers can use
these base classes as a foundation for
their new models using what is referred
to as “inheritance”, as shown in the ex-
ample above. In doing so, the new
model class automatically gains access
to all of the common instructions in the
base class which can be used in con-
structing the new model.
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Inheriting from Existing Models

In addition to inheriting from the IDAES
base classes, it is also possible to in-
herit from existing models, which pro-
vides an easy way to build off an existing
model instead of starting afresh. When
inheriting from an existing model, you
gain access to all the instructions writ-
ten for constructing that model and can
then add to or modify those instructions
as needed. All of the models in the core
IDAES model library were written with
this in mind, and were designed to pro-
vide a core model representing the sim-
plest representation of each piece of pro-
cess equipment possible to allow users
to easily build upon these as a founda-
tion.

A useful concept when modifying exist-
ing models through inheritance is “over-
loading” of methods. Any method de-
fined by the inherited class can be over-
loaded and replaced by a new method of
the same name defined in the new class.
Thus, it is possible to selectively modify
and replace parts of the existing model
if they were defined using methods. For
example, suppose there is an existing
model that meets most of a user’s needs,
but the user would like to use a different
equation for efficiency. If the existing
model defined a method specifically for
writing the efficiency constraint, then
this can be replaced by inheriting the ex-
isting model and writing a new method
for efficiency with the desired equation.
This will overload the method in the
original model, creating a new model
which uses the desired equation. This
requires little effort on the part of the
user, but does require the original model
to use modular methods for each performance equation however.
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Config Blocks

Whilst the model class contains the in-
structions necessary to build a model
object, it is often necessary to provide
additional information when creating an
instance of a model. One example of
this is informing a unit model of which
property package to use for a given in-
stance. When creating a new model
class, it is necessary to define the infor-
mation that a user may pass to the class
when creating an instance of the new
model, which is done using configura-
tion blocks (config blocks for short) –
this is where the information in the “de-
fault” keyword is sent when an instance
of a model is created.

Configuration blocks are defined by
declaring a CONFIG object for each
new model data class, as shown in the
example below. The CONFIG object
should be an instance of a Pyomo Con-
figBlock.

@declare_process_
→˓block_class("NewModel")
class NewModelData(BaseClass):

CONFIG = BaseClass.CONFIG()

Each type of model has a set of expected
inputs (or arguments) which are deter-
mined by the type of model and can
be inherited from the appropriate base
class (as shown above). Users may also
add custom configuration arguments to
their models as needed by declaring new
entries to the CONFIG block as shown
below:

from pyomo.common.
→˓config import ConfigValue

@declare_process_
→˓block_class("NewModel")
class NewModelData(BaseClass):
␣

→˓ CONFIG = BaseClass.CONFIG()
CONFIG.declare(

→˓"new_argument", ConfigValue(
default = #␣

→˓default value for argument,
(continues on next page)
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domain = # condition␣
→˓input must satisfy,

description = "short␣
→˓description of argument",

doc = "longer␣
→˓description of argument"))

Note: Configuration arguments are set when an instance of a model is created and are generally only used at build-time.
That is, once a model has been constructed changing a configuration argument has no effect on the model structure.

The build Method

Finally, the core of any IDAES model
class is the build method, which con-
tains the set of instructions to be ex-
ecuted when a model is created. The
build method acts as the rule for con-
structing the resulting Pyomo Block,
and needs to contain the instructions
necessary for constructing the variable,
expressions and constraints which de-
scribe the model. The build method
is written in Python code and should
construct the necessary Pyomo com-
ponents, and may make use of sub-
methods to modularize the model con-
struction.

In almost all cases, the first instruc-
tion in a build method should be to call
the build method of the inherited (base)
class. This is necessary to execute the
instructions in the base class, and can be
done with the following line of code:

super().build()

Types of Models

Custom Unit Models

• UnitModelBlockData

• Unit Model Configuration

• Unit Model build Method

– Control Volumes
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• Unit Model Initialization

• Unit Model Report

• Tutorials

UnitModelBlockData

The starting point for all unit models
within the IDAES Process Modeling
Framework is the UnitModelBlockData
base class. This class contains a number
of methods to assist users with creating
new unit models including:

• checking and validating the “dynamic”
and “has_holdup” configuration argu-
ments to ensure consistency,

• adding Port objects to the model,

• creating simple material balances be-
tween states (equal flow of each compo-
nent in each phase), and,

• a method for initializing simple unit
models.

More details on the UnitModelBlock-
Data class can be found in the technical
specifications.

Unit Model Configuration

Configuration arguments in unit models
allow model developers to provide the
end-user with the ability to configure the
model to suit the needs of the flowsheet
they are simulating. The most common
aspects that need to be configured are:

• whether the model should be dynamic or
steady-state, and

• what property package to use when cal-
culating thermophysical properties.

The UnitModelBlockData class con-
tains a simple configuration block which
includes two configuration arguments;
“dynamic” and “has_holdup”. These
arguments are required for any model
which is expected to be used in both
steady-state and dynamic flowsheets and
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are used to determine whether accumu-
lation and holdup terms should be con-
structed and included in the material
balance equations. There are some situ-
ations whoever where a model is inher-
ently steady-state (even if it is included
in a dynamic flowsheet), notably those
where outlet conditions are a function
solely of the inlet conditions. Examples
of these include:

• unit operations involving equilibrium
where the outlet condition can be calcu-
lated directly from the inlet condition.

• unit operations with negligible holdup
where (total) flow out of the unit is al-
ways equal to the (total) flow in.

In general, a unit model is not writ-
ten with a specific flowsheet or set of
thermophysical property calculations in
mind, thus it is necessary to provide a
configuration argument (or arguments
in cases where multiple streams inter-
act) to allow the end-user to specify a
property package to use with the model.
The example below shows how to de-
clare a configuration argument for a sin-
gle property package, along with a sec-
ond argument that allows users to pass
configuration arguments to the instances
of the property packages when they are
created.

@declare_process_
→˓block_class("NewUnit")
class␣
→˓NewUnitDataData(UnitModelBlockData):

CONFIG =␣
→˓UnitModelBlockData.CONFIG()

CONFIG.declare("property_
→˓package", ConfigValue(

default=useDefault,
domain=is_

→˓physical_parameter_block,
description=

→˓"Property package␣
→˓to use for control volume",

␣
→˓ doc="""Property parameter␣
→˓object used to define␣
→˓property calculations."""))

(continues on next page)
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CONFIG.declare("property_
→˓package_args", ConfigBlock(

implicit=True,
␣

→˓ description="Arguments␣
→˓to use for constructing␣
→˓property packages",

doc="""A␣
→˓ConfigBlock with arguments␣
→˓to be passed to a property␣
→˓block(s) and used when␣
→˓constructing these."""))

For unit models involving multiple
property packages, or those that include
reaction packages, additional pairs of
configuration arguments are required for
each of these. Model developers must
provide unique names for each config-
uration argument, and are encourage to
use meaningful names to assist end-
users in understanding what package
should be linked to each argument.

Model developers may also declare ad-
ditional configuration arguments to give
end-users the ability to change the be-
havior of different parts of the model.
For example, the core IDAES Unit
Model Library makes use of these to
provide flexibility in the form of the
balance equations. Use of additional
configuration arguments is entirely op-
tional.

Unit Model build Method

The build method for a unit model must
include all the instructions necessary for
constructing the representation of the
unit operation. This generally involves
the following steps:

1. Calling super().build() to trigger the
behind-the-scenes code.

2. Adding any variables and constraints re-
quired to describe the system geometry.

3. Adding State Blocks to the model to rep-
resent each of the material states in the
system.

4. Adding the necessary material balances
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and associated variable to describe the
flow of material between each state.

5. Adding the necessary energy balances
and associated variable to describe the
flow of energy between each state.

6. Adding the necessary momentum bal-
ances and associated variable to de-
scribe the flow of momentum between
each state.

7. Adding any additional performance
equations and associated variable
that govern the behavior of the unit
operation.

8. Adding the required inlet and outlet
Ports to allow the unit model to be in-
cluded in a flowsheet.

For some applications, not all of these
steps will be required (e.g. a process in
which pressure drop is negligible may
be able to skip adding momentum bal-
ances).

The above steps represent a signifi-
cant amount of work, and in many
cases require a detailed understanding
of how the IDAES framework is struc-
tured. To reduce the effort and knowl-
edge required to create new models, the
framework provides a number of tools
to automate these steps for common
cases. Users are encouraged to familiar-
ize themselves with the methods avail-
able in UnitModelBlockData and the use
of control volumes.

Control Volumes

The IDAES Process Modeling Frame-
work includes tools to assist users with
creating new models in the form of the
Control Volume libraries. These li-
braries contain methods for performing
the common task associated with build-
ing unit models, such as creating ma-
terial, energy and momentum balances.
Users are free to choose whether or not
to use these libraries, but are encouraged
to understand what is available in these
as they can greatly reduce the amount of
effort required by the user.
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The IDAES Process Modeling Frame-
work currently includes two types of
Control Volumes:

1. ControlVolume0D for inlet-outlet type
models where spatial variation are not
significant.

2. ControlVolume1D for models where
spatial variation in one-dimension are
required.

Unit Model Initialization

Whilst the UnitModelBlockData class
contains a pre-built initialize method,
this method is relatively simple and is
unlikely to work for more complex mod-
els. For these situations, model develop-
ers will need to write their own initialize
methods as part of their new unit model.

To create a custom initialization routine,
model developers must create an initial-
ize method as part of their model, and
provide a sequence of steps intended to
build up a feasible solution. Developing
initialization routines is one of the hard-
est aspects of model development, and
generally involves starting with a sim-
plified form of the model and progres-
sively adding complexity. Initializa-
tion routines generally make use of Py-
omo’s tools for activating and deactivat-
ing constraints and often involve solv-
ing multiple sub-problems whilst build-
ing up an initial state.

The example below shows the general
form used when declaring a new initial-
ization method:

def initialize(blk,
→˓ state_args=None,
→˓ outlvl=idaeslog.NOTSET,

solver='ipopt
→˓', optarg={'tol': 1e-6}):

• blk – local name for the block to be ini-
tialized.

• state_args – initial guesses for the state
variables. The form of this may vary de-
pending on the number and type of inlets
to the unit model.
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• outlvl – optional argument to allow users
to control the amount of diagnostic out-
put from the initialization procedure.
His requires the use of the IDAES logger
tools to function.

• solver – allows the user to set a solver to
use for initialization.

• optarg – dict of options to pass to the
solver; used to adjust solver behavior.

Unit Model Report

Users are likely already aware of the re-
port method which is available in all
IDAES models and prints a summary of
the current state of a given model. This
functionality is also part of UnitMod-
elBlockData and is thus included in all
custom unit models, however model de-
velopers need to define what informa-
tion should be included in the output.

The report method will automatically
search for and identify all Ports in the
model to be included in the summary
stream table, however model develop-
ers must identify any performance vari-
ables they wish to include in the sum-
mary. This is done by declaring a
_get_performance_contents method as
shown in the example below:

def _get_
→˓performance_contents(self,
→˓ time_point=0):

var_dict = {"display␣
→˓name": self.var[time_point]}

expr_dict = {"display name
→˓": self.expr[time_point]}
␣

→˓ param_dict = {"display name
→˓": self.param[time_point]}

return {"vars
→˓": var_dict, "exprs": expr_
→˓dict, "params": param_dict}

The _get_performance_contents
method should take two arguments,
the first being the model object and
the second being a time point at
which to report the model state. The
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method should return a dictionary-of-
dictionaries with one to three keys;
“vars”, “exprs” and “params”. The en-
tries from these will be included in the
model summary under the headings of
Variables, Expressions and Parameters
respectively.

Tutorials

Tutorials demonstrating how to create
custom unit models are found here.

Custom Property Packages

• Property Package Classes

• Build-on-Demand Properties

• The Physical Parameter Block

– Physical Parameter Block Configura-
tion

– The Physical Parameter Block build
Method

– Defining Property Metadata

∗ Setting Default Units

∗ Setting Properties Metadata

• The State Block

– The State Block Data class

∗ State Block Data Configuration Argu-
ments

∗ The State Block build Method

∗ State Variables and Properties

∗ Required Methods

– The State Block Methods class

∗ Declaration and Base Class

∗ The initialize and release_state Methods

• Tutorials

Warning: This section is currently be-
ing developed
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Physical property packages form the
core of all IDAES process models, and
the ability for users to develop their own
property formulations is a key aspect of
the IDAES modeling paradigm. In order
to support the flexibility of the IDAES
Process Modeling Framework, property
packages define a number of key as-
pects that inform the eventual structure
of the final process model. This however
places the burden of making these deci-
sions on the developer of each property
package, which are implemented as part
of the property package classes.

Property Package Classes

As users of the IDAES Process Model-
ing Framework, you are likely already
aware that property packages (of both
types) consist of two related model com-
ponents; in this case the Physical Param-
eter Block and the State Block. How-
ever, when creating a new thermophys-
ical property package, developers need
to define three (rather than two) new
classes.

The first of these classes is a Physical-
ParameterBlock class, which is respon-
sible for constructing the Physical Pa-
rameter Block. However, two classes
are required for defining the State Block;
a StateBlockMethods class and a State-
BlockData class. The reason for this is
because State Blocks are always indexed
(by time and occasionally by space) .
The StateBlockData class represents an
individual state at a point in space and
time (i.e. one element of the indexed
StateBlock), and as such contains a set of
state variables and the constraints neces-
sary for calculating the desired thermo-
physical properties at that state. How-
ever, we often want to perform actions
on the entire set of states (i.e. State-
BlockDatas) in one go, such as during
initialization. Whilst we could initialize
each state individually, as the process for
each state is generally identical except
for values, it is much more efficient to
perform the same set of instructions on all state simultaneously. The StateBlockMethods serves this purpose by defin-
ing the methods that should be applied to multiple StateBlockDatas simultaneously. When a model requires a State
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Block, these two classes are combined to produce the final model. The distinction and use of the StateBlockMethods
and StateBlockData classes will be discussed further later in this documentation.

Build-on-Demand Properties

Before moving onto a discussion of the
contents of each of the three classes,
it is important to introduce the concept
of build-on-demand properties. Prop-
erty packages generally tend to include
methods for a number of properties, but
not all of these will be required by ev-
ery unit model. In order to reduce
model complexity and avoid calculating
properties which are not required for a
given unit operation, the IDAES frame-
work supports the concept of build-on-
demand properties, where the variables
and constraints related to a given prop-
erty are only constructed if called for in
a given state.

It must be noted that this is an ad-
vanced feature and is entirely optional.
Whilst it can reduce the complexity of
individual models, it also increases the
complexity of the model instructions
and can increase the chance of errors
during model constructions. Property
package developers should decide up
front if they wish to implement build-
on-demand properties for their property
packages, and which properties this will
be implemented for (i.e. it is possible
to use the build-on-demand infrastruc-
ture) for a subset of the properties within
a package.

The Physical Parameter Block

The first part of the physical property
package is the PhysicalParameterBlock,
which defines the global parameters and
components of the property package.
This includes:

• a reference to the StateBlock class
associated with the PhysicalParame-
terBlock,

• the chemical species or components in
the material,

• the thermodynamic phases of interest,
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• the base units of measurement for the
property packages,

• the thermophysical properties supported
by the property package, and

• the parameters required to calculate the
thermophysical properties.

The starting point for creating a new
PhysicalParameterBlock is shown in the
example below. The model developer
needs to declare a new class which in-
herits from the PhysicalParameterBlock
base class, decorated using the de-
clare_process_block_class decorator.

@declare_process_block_class(
→˓"NewPhysicalParameterBlock")
class␣
→˓NewPhysicalParameterData(PhysicalParameterBlock):

def build(self):
super().build()

@classmethod
def␣

→˓define_metadata(cls, obj):
obj.add_

→˓properties({# properties}})
obj.

→˓add_default_units({# units})

The NewPhysicalParameterData class
needs to contain a build method, and
may also include a configuration block
and a define_metadata classmethod as
shown above. These methods and their
contents will be explained below.

Physical Parameter Block Configuration

Like all IDAES models, Physical Pa-
rameter Blocks can have configuration
arguments which can be used to adjust
the form of the resulting model. The de-
fault configuration block which comes
from the PhysicalParameterBlock base
class contains a single configuration ar-
gument:

• “default_arguments” - this configura-
tion argument allows users to specify a
set of default configuration arguments
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that will be passed to all StateBlocks cre-
ated from an instance of a parameter
block.

The Physical Parameter Block build Method

The build method in the NewPhysical-
ParameterBlock class is responsible for
constructing the various modeling com-
ponents that will be required by the as-
sociated StateBlocks, such as the sets
components and phases that make up the
material, and the various parameters re-
quired by the property calculations. The
build method is also responsible for set-
ting up the underlying infrastructure of
the property package and making a link
to the associated StateBlock class so that
the modeling framework can automate
the construction and linking of these.

The first step in the build method is to
call super().build() to trigger the con-
struction of the underlying infrastruc-
ture using the base class’ build method.

Next, the user must declare an attribute
named “_state_block_class” which is
a pointer to the associated StateBlock
class (creation of this will be discussed
later). An example of this is shown be-
low, where the associated State Block is
named NewStateBlock.

def build(self):

super().build()
self._state_

→˓block_class = NewStateBlock

The next step in the build method is to
define the chemical species and phases
necessary to describe the material of in-
terest. This is done by adding Compo-
nent and Phase objects, as shown below.

def build(self):
self.benzene = Component()
self.toluene = Component()

␣
→˓ self.liquid = LiquidPhase()

self.vapor = VaporPhase()
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Note: The IDAES Process Modeling Framework supports a number of different types of Component and Phases
objects, as discussed in the associated documentation. Users should use the type most appropriate for their applications.
Also note that whilst Component and Phase objects contain configuration arguments, these are primarily for use by the
Generic Property Package framework, and are not required for custom property packages.

Finally, the build method needs to de-
clare all the global parameters that will
be used by the property calculations. By
declaring these in a single central lo-
cation rather than in each State Block,
this reduces the number of parameters
present in the model (thus reducing
memory requirements) and also facili-
tates parameter estimation studies using
these parameters.

Note: Whilst we generally use the term “parameters” to describe these global coefficients used in property correlations,
it is often better to declare these as Pyomo Var objects with fixed values (rather than as Param objects). The reason for
this is because, despite the name, it is not possible to estimate the value of Params using parameter estimation tools (as
their value is concrete and cannot be changed).

Defining Property Metadata

The last part of creating a new Physical
Parameter block is to define the meta-
data associated with it. The properties
metadata serves three purposes:

1. The default units metadata is used by
the framework to automatically deter-
mine the units of measurement of the
resulting property model, and automati-
cally convert between different unit sets
where appropriate.

2. The properties metadata is used to set up
any build-on-demand properties,

3. The metadata is also used by the Data
Management Framework to index the
available property packages to create a
searchable index for users.
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Setting Default Units

The most important part of defining the
metadata for a property package is to
set the default units of measurement
for each of the 7 base quantities (time,
length, mass, amount, temperature, cur-
rent (optional) and luminous intensity
(optional)). These units are used by the
modeling framework to determine the
units of measurement for all other quan-
tities in the process that are related to
this property package. Units must be
defined using Pyomo Units components,
as shown in the example below:

from␣
→˓pyomo.environ import units

@classmethod
def define_metadata(cls, obj):

obj.add_default_
→˓units({'time': units.s,

␣
→˓ 'length': units.m,

␣
→˓ 'mass': units.kg,

␣
→˓ 'amount': units.mol,

␣
→˓ 'temperature': units.K})

Setting Properties Metadata

The primary purpose of the proper-
ties metadata is to set up the build-on-
demand system used to selectively con-
struct only those properties required by a
given unit operation. In order to do this,
the user needs to add each property they
wish to build-on-demand along with the
name of a method that will be called
whenever the property is required (this
method will be created later as part of
the StateBlockData class). Users are
also encouraged to list all properties
supported by their property packages
here, setting None as the method asso-
ciated with the property for those which
are always constructed. An example for
both uses is shown below:
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@classmethod
def define_metadata(cls, obj):

obj.add_properties({
'property_1':␣

→˓{'method': method_name}, ␣
→˓# a build-on-demand property

␣
→˓ 'property_2': {'method':␣
→˓None}}) # a property that␣
→˓will always be constructed

Note: The name of a property in the metadata dictionary must match the name of the property component (normally
a variable) that will be called for. These names should be drawn form the standard naming conventions.

The State Block

The second part of a thermophysi-
cal property package is the StateBlock
class, which as mentioned earlier is
defined using two user-written classes;
the StateBlockData class and the State-
BlockMethods class. Declaration of
the StateBlock class is similar to that
of other modeling classes, but makes
use of a special aspect of the de-
clare_process_block_class decorator as
shown in the example below.

@declare_process_
→˓block_class("NewStateBlock",

␣
→˓ block_
→˓class=NewStateBlockMethods)
class␣
→˓NewStateBlockData(StateBlockData):

def build(self):
super().build()

As can be seen, the declaration of
the new StateBlock class (NewState-
Block) looks similar to that of other
modeling class declarations, where the
declare_process_block_class is applied
to a user defined NewStateBlockData
class. However, in this case we also
provide an additional argument to the
decorator; the “block_class” argument
allows us to attach a set of meth-
ods declared in a user-defined class (in
this case NewStateBlockMethods) to the

4.3. Advanced User Guide 281



IDAES Documentation, Release 1.10.1

NewStateBlock class, which can be ap-
plied across all members of an indexed
NewStateBlock (methods in the New-
StateBlockData class can only be ap-
plied to a single indexed element).

The State Block Data class

As part of the core of the IDAES Pro-
cess Modeling Framework, the State-
BlockData class is responsible not only
for defining the variables, expressions
and constraints which describe the ther-
mophysical properties of the material
in question, but also providing informa-
tion to the rest of the Process Model-
ing Framework on how the higher levels
models should be formulated. As such,
StateBlockData classes need to define
more methods than any other compo-
nent class. The base class for develop-
ing new StateBlockData classes is State-
BlockData, which includes a configu-
ration block with a number of critical
configuration arguments as well as the
code necessary for supporting “build-
on-demand properties”.

State Block Data Configuration Arguments

The StateBlockData base class configu-
ration contains three configuration argu-
ments that are expected by the model-
ing framework and must be included in
and user defined StateBlockData. These
configuration arguments are:

• “parameters” – this argument is used to
provide a link back to the associated
PhysicalParameterBlock, and is gener-
ally automatically passed to the State-
Block when it is constructed.

• “defined_state” – this argument is used
to indicate whether this state repre-
sents a point in the process where all
state variables are defined. The most
common case for this is for inlets to
unit models, where all inlets states are
known from the outlet of the previous
unit model. In these cases, it is not pos-
sible to write certain constraints, such as
the sum of mole fractions, without over
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specifying the system of equations; this
argument identifies these cases so that
generation of these constraints can be
automatically skipped.

• “has_phase_equilibrium” – this argu-
ment indicates whether phase equilib-
rium will be considered for this state.
Phase equilibrium constraints decrease
the degrees of freedom in the system
thus it is important to determine when
and where these constraints should be
written. Note that equilibrium con-
straints can never be written for cases
where the state is fully defined (as
above), thus both this and the de-
fined_state arguments must be consid-
ered when determining whether to in-
clude equilibrium constraints.

The State Block build Method

As with all IDAES components, the
build method forms the core of a State-
BlockData class, and contains the in-
structions on how to construct the vari-
ables, expressions and constraints re-
quired by the thermophysical model. As
usual, the first step in the build method
should be to call super().build() to trig-
ger the construction of the underlying
components required for State Blocks to
function.

State Variables and Properties

The most important part of the construc-
tion of a State Block is defining the nec-
essary set of variables, expression and
constraints that make up the property
model. There are many different ways
in which these can be defined and for-
mulated, and there is no single “best”
way to do this; different approaches may
work better for different applications.
However, there are some general rules
that should be followed when defining
the variables which make up a State
Block.

1. All state variables and properties should
use the IDAES naming conventions.
Standard names allow linking between
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different types of models to be auto-
mated, as no cross-referencing of names
is required.

2. All properties within a property package
should use a consistent set of base units.
This is most easily accomplished by se-
lecting a set of units for the 7 base SI
quantities (time, length, mass, amount,
temperature, current and luminous in-
tensity) and deriving units for all quan-
tities from these. Modelers should also
select units based solely on convenience
or ease of use – scaling of variables and
equations is better handled separately
using the IDAES scaling tools.

Beyond these requirements, modelers
are free to choose the form of their
model to best suit theirs needs and make
the most tractable problem possible.
Modelers are also free to combine vari-
able and constraints with expression for
some quantities as needed. The IDAES
Process Modeling Framework is con-
cerned only that the expected quanti-
ties are present (i.e. the expected vari-
able/expression names), not their exact
form or how they are calculated.

As described throughout this page,
IDAES supports “build-on-demand” for
property correlations. Details on how to
define methods for building properties
on demand is demonstrated in the tuto-
rials (see link at bottom of page).

Required Methods

As the foundation of the entire Process
Modeling Framework, the definition of
a new StateBlockData class needs to
include a number of methods that the
framework relies on for determining the
formulation of the higher level models.

Below is a list of the required methods,
along with a short description.

• get_material_flow_basis(block) – this
method is used to define the basis on
which material balance terms will be
expressed. This is used by the frame-
work to automatically convert between
mass and mole basis if required, and the
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method needs to return a MaterialFlow-
Basis Enum.

• get_material_flow_terms(block, phase,
component) – this method is used to de-
termine the form of the material flow
terms that are constructed as part of the
material balance equations in each unit
model. This method needs to take three
arguments; a reference to the current
state block, a phase name and a compo-
nent name, and must return an expres-
sion for the material flow term for the
given phase and component.

• get_material_density_terms(block,
phase, component) – similar to the
get_material_flow_terms method, this
method is used to determine the form
of the density term which should be
used when constructing material holdup
terms in the material balances. This
method also needs to take three argu-
ments; a reference to the current state
block, a phase name and a component
name, and must return an expression for
the material density term for the given
phase and component.

• get_material_diffusion_terms(block,
phase, component) – Support for this is
not currently implemented.

• get_enthalpy_flow_terms(block, phase)
– this method is used to determine the
form of the enthalpy flow terms that are
constructed as part of the energy bal-
ance equations in each unit model. This
method needs to take two arguments; a
reference to the current state block and a
phase name, and must return an expres-
sion for the enthalpy flow term for the
given phase and component.

• get_energy_density_terms(block,
phase) – this method is used to deter-
mine the form of the energy density
terms that are required for the holdup
terms in the energy balance equations.
This method needs to take two argu-
ments; a reference to the current state
block and a phase name, and must return
an expression for the energy density
term for the given phase and compo-
nent. Note that the holdup/density term
needs to be in terms of internal energy,
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not enthalpy.

• get_energy_diffusion_terms(block,
phase) – Support for this is not cur-
rently implemented.

• default_material_balance_type(block)
– this method is used to set a default
for the type of material balance to be
written by a Control Volume if the
user does not specify which type to
use. This method needs to return a
MaterialBalanceType Enum.

• default_energy_balance_type(block) –
this method is used to set a default for
the type of energy balance to be written
by a Control Volume if the user does not
specify which type to use. This method
needs to return a EnergyBalanceType
Enum.

• define_state_vars(block) – this method
is used to define the set of state vari-
ables which should be considered the
state variables for the property package,
and is used in a number of methods as-
sociated with model initialization to de-
termine which variables should be fixed.
This method must return a Python dict,
where the keys are the variable name as
a string, and the values are the variables.

• define_port_members(block) – similar
to the define_state_vars method, this
method is used to define what variables
should be part of the inlet/outlet ports of
a unit model. In many cases, these vari-
ables are equivalent to the state variables
of the property package and if so this
method can be skipped (if undefined de-
fine_state_vars is called instead). This
method is similar to the one in the above
method, however in this case the key
names can be defined by the user for im-
proved readability (instead of having to
be the variable name).

• define_display_vars(block) – similar
again to the define_state_vars method,
this method is used to define a set of
variables which should be used when
generating the output of the report
method for this property package.
Again, this is often the same as the
state variables, but allows modelers to
include additional variables beyond just
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the state variables (or port members).
Similarly to the define_port_members
method, this method can be skipped
(in which case it defaults to de-
fine_state_vars) and the key names in
the dict can be defined by the user.

The State Block Methods class

The purpose of the StateBlockMethods
class is to define methods which can be
applied to to an entire set of indexed
StateBlocks simultaneously. Whilst the
StateBlockData class contain the in-
structions for how to build the variables
and constraints that describe the state of
a material at a single point in space and
time, the StateBlockMethods class de-
fined methods for interacting with multi-
ple states across space and time simulta-
neously. The most common application
for this is during initialization of State-
Blocks, where the same set of instruc-
tions needs to to be performed on each
indexed state; whilst this could be done
by iterating over each state and perform-
ing the set of instructions, it is generally
more efficient to apply the instructions
simultaneously across all states.

Declaration and Base Class

Due to the way the StateBlock-
Methods class is provided to the
declare_process_block_class decorator
on the NewStateBlockData class, this is
one of the few cases where the decorator
is not required when declaring a class
within IDAES. An example of declaring
a new StateBlockMethods class is shown
below, using the StateBlock base class:

class␣
→˓NewStateBlockMethods(StateBlock):

As the StateBlockMethods class is de-
signed to contain methods that can
be applied to multiple existing State-
BlockData object, rather than construct
a model itself, the StateBlockMethods
class does not need a build method
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either, nor is it necessary to call su-
per().build() as is normal for other mod-
eling components.

Instead, the StateBlockMethods class
should contain a set of methods which
can be called and applied to an indexed
StateBlock as required. The two meth-
ods that must be declared are:

• initialize

• release_state

The initialize and release_state Methods

When initializing a unit model, most
IDAES models use a hierarchical ap-
proach where each state in the model
(i.e. each StateBlockData) is first ini-
tialized at some initial state, after which
the unit model attempts to build up and
solve the material, energy and momen-
tum balances, etc. The purpose of the
initialize method is to provide a set of in-
structions which can take a state from its
initial state to a solvable final state at the
set of initial conditions (provided as ar-
guments to the initialize method). This
is generally done by:

1. fixing the state variables at the initial
conditions,

2. performing a series of steps to build up
the final solution,

3. solving the full state model, and

4. unfixing the state variables (unless they
were already fixed when the process be-
gan).

However, in order to fully initialize the
unit operation (which contains these
material state) it is necessary for the unit
model to be fully defined (with zero de-
grees of freedom, i.e. a square model).
In order for this to be true however, it
is necessary for the inlet states to re-
main fixed until the unit model has fin-
ished initializing. This requires step 4
above to be postponed for inlet states
until the unit model has finished initial-
izing, thus the above process is broken
into two methods.
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1. The initialize method covers steps 1-3
above, and is called at the beginning of
the unit model initialization process.

2. The release_state method covers step
4; for inlet states this is called when
the unit model has finished initializa-
tion, whilst for all other states it is called
immediately by the initialize methods
when it finishes.

More details on writing initialization
methods will be provided elsewhere in
the documentation of tutorials.

Tutorials

Tutorials demonstrating how to create
custom property packages are being de-
veloped. Once they are created, they
will be found here.

Custom Reaction Packages

• What Belongs in a Reaction Package?

• Reaction Package Classes

• Build-on-Demand Properties

• The Reaction Parameter Block

– Reaction Parameter Block Configura-
tion

– The Reaction Parameter Block build
Method

– Defining Reaction Metadata

∗ Setting Default Units

∗ Setting Reaction Metadata

• The Reaction Block

– The Reaction Block Data Class

∗ Reaction Block Data Configuration Ar-
guments

∗ The Reaction Block build Method

∗ Variables and Properties

∗ Required Methods

– The Reaction Block Methods Class
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∗ The initialize Method

• Tutorials

Warning: This section is currently be-
ing developed

Chemical reactions are a fundamental
part of most processes, and models for
these come in a wide range of differ-
ent forms. Much like thermophysical
property packages, the ability for users
to define custom reaction formulations
is a key aspect of the IDAES modeling
paradigm.

Reaction packages within IDAES share
many similarities with thermophysical
property packages, both in form and
content. Rather than repeat much of that
documentation here, users should start
by reading the thermophysical property
package documentation, as this docu-
ment will focus on the content of the re-
action package.

What Belongs in a Reaction Package?

Chemical reactions are fundamentally
governed by the same laws of thermo-
dynamics as thermophysical properties,
thus the separation of these into thermo-
physical and reaction packages is some-
what arbitrary. In IDAES, this sepa-
ration between thermophysical and re-
action packages was based on their ex-
pected frequency of use. All unit op-
erations require some set of property
calculations (e.g. enthalpy) and these
types of calculations were grouped in
the thermophysical package, whereas
only a small subset of unit operations
have chemical reactions and these types
of calculations were grouped in the re-
action package. This separation benefits
the user in that they only need to be con-
cerned about reactions in the unit oper-
ations that require them.

Important: For the context of IDAES, chemical reactions are defined as phenomena where one chemical species is
converted into another. This includes both rate limited and equilibrium reactions.
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On the other hand, phase equilibrium
phenomena (where a chemical species
changes phase) are handled via the ther-
mophysical property package.

However, users should note that reaction
properties are fundamentally linked to
the thermophysical properties, and that
a reaction package should only be used
with the thermophysical property pack-
age they were developed with (in the-
ory at least). Due to this, when a reac-
tions package is added to a model it must
be coupled to a thermophysical prop-
erty package. The modeling framework
performs some limited checks to ensure
the two packages are compatible (e.g.
same set of base units) and that each
reaction packages is only used in con-
junction with its coupled thermophysi-
cal property package in unit models.

Reaction Package Classes

Like thermophysical property packages,
reaction property packages consist of
two related model components; the Re-
action Parameter Block and the Re-
action Block, which are analogous to
the Physical Parameter Block and State
Block components. Similarly, when cre-
ating a custom reaction package users
need to declare three new classes; the
Reaction Parameter Block Data class,
the Reaction Block Data class and the
Reaction Block Methods class.
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Build-on-Demand Properties

IDAES reaction packages also support
build-on-demand properties using the
same approach as for thermophysical
properties.

The Reaction Parameter Block

The first part of the reaction package is
the ReactionParameterBlock, which de-
fines the global parameters and compo-
nents of the property package. This in-
cludes:

• a reference to the ReactionBlock class
associated with the ReactionParame-
terBlock,

• a Pyomo Set listing names for all rate-
based reactions,

• a dict defining stoichiometric coeffi-
cients for all rate-based reactions,

• a Pyomo Set listing names for all equi-
librium reactions,

• a dict defining stoichiometric coeffi-
cients for all equilibrium reactions,

• the base units of measurement for the
property packages,

• the reaction properties supported by the
property package, and

• the parameters required to calculate the
reaction properties.

The starting point for creating a new
ReactionParameterBlock is shown in
the example below. The model de-
veloper needs to declare a new class
which inherits from the ReactionParam-
eterBlock base class, decorated using
the declare_process_block_class deco-
rator.

@declare_process_block_class(
→˓"NewReactionParameterBlock")
class␣
→˓NewReactionParameterData(ReactionParameterBlock):

def build(self):
super().build()

(continues on next page)
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(continued from previous page)

@classmethod
def␣

→˓define_metadata(cls, obj):
obj.add_

→˓properties({# properties}})
obj.

→˓add_default_units({# units})

The NewReactionParameterData class
needs to contain a build method, and
may also include a configuration block
and a define_metadata classmethod as
shown above. These methods and their
contents will be explained below.

Reaction Parameter Block Configuration

The ReactionParameterBlock configu-
ration block must contain the following
two arguments:

• “property_package” - this configuration
argument contains a pointer to the as-
sociated thermophysical property pack-
age (via an instance of a PhysicalPa-
rameterBlock), and is used for validat-
ing the link between thermophysical and
reaction properties (e.g. confirming that
both packages use the same set of base
units).

• “default_arguments” - this configura-
tion argument allows users to specify a
set of default configuration arguments
that will be passed to all ReactionBlocks
created from an instance of a parameter
block.

The Reaction Parameter Block build Method

The build method in the NewReaction-
ParameterBlock class is responsible for
constructing the various modeling com-
ponents that will be required by the as-
sociated ReactionBlocks. This includes
the indexing sets which will be used to
identify individual reactions and the sto-
ichiometry of each of these. The build
method is also responsible for setting
up the underlying infrastructure of the
property package and making a link to
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the associated ReactionBlock class so
that the modeling framework can au-
tomate the construction and linking of
these.

The first step in the build method is to
call super().build() to trigger the con-
struction of the underlying infrastruc-
ture using the base class’ build method.

Next, the user must declare an attribute
named “_reaction_block_class” which
is a pointer to the associated Reaction-
Block class (creation of this will be dis-
cussed later). An example of this is
shown below, where the associated Re-
action Block class is named NewReac-
tionBlock.

def build(self):

super().build()
self._reaction_block_

→˓class = NewReactionBlock

Next, the build method must create two
indexing sets which provide names for
the rate- and equilibrium-based reaction
respectively. These indexing sets must
be named rate_reaction_idx and equi-
librium_reaction_idx. These indexing
sets will be used by the unit models and
control volumes when creating reaction
terms in material balance equations.

self.rate_reaction_
→˓idx = Set(initialize=[
→˓"rate_rxn_1", "rate_rxn_2"])
self.equilibrium_reaction_idx␣
→˓= Set(initialize=["equil_
→˓rxn_1", "equil_rxn_2"])

Note: Users only need to define indexing sets and stoichiometry dicts for the types of reaction which they wish to
model. E.g. users do not need to declare rate_reaction_idx and rate_reaction_stoichiometry if there are no rate-based
reactions in their system.

The build method also needs to
create stoichiometry dicts for the
rate- and equilibrium-based re-
actions present in the system.
These dicts should be named
“rate_reaction_stoichiometry” and
“equilibrium_reaction_stoichiometry”
and have keys with the form (reac-
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tion_index, phase, component) and
values equal to the stoichiometric
coefficient for the given reaction,
phase and component. A positive
stoichiometric coefficient indicates a
product of the reaction (i.e. generation)
whilst a negative coefficient indicates
a reactant (i.e. consumption). An
example for defining the stoichiometry
for rate-based reactions is shown below.

self.rate_
→˓reaction_stoichiometry = {

("rate_rxn_
→˓1", "phase_1", "component_
→˓1"): -1, # Component␣
→˓1 in phase 1 is a reactant

("rate_rxn_
→˓1", "phase_2", "component_
→˓1"): 0, # Reaction␣
→˓1 does no occur is phase 2

("rate_rxn_
→˓1", "phase_1", "component_
→˓2"): 2, # Component␣
→˓2 in phase 1 is a product

("rate_rxn_1", "phase_
→˓2", "component_2"): 0,

("rate_rxn_2", "phase_
→˓1", "component_1"): 0,

("rate_rxn_2", "phase_
→˓2", "component_1"): -1,

("rate_rxn_2", "phase_
→˓1", "component_2"): 0,

("rate_rxn_2", "phase_2",
→˓ "component_2"): -1} # etc.

Important: Stoichiometry dicts must contain a key for every reaction-phase-component combination, even if the
stoichiometric coefficient is zero.

Finally, the build method needs to de-
clare all the global parameters that will
be used by the reaction calculations.
Similar to thermophysical property pa-
rameters, users are encouraged to de-
clare these as Pyomo Vars rather than
Params to facilitate parameter estima-
tion studies.
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Defining Reaction Metadata

The last part of creating a new Reaction
Parameter block is to define the meta-
data associated with it. The reactions
metadata serves four purposes:

1. The default units metadata is used by
the framework to automatically deter-
mine the units of measurement of the
resulting property model, and automati-
cally convert between different unit sets
where appropriate.

2. The properties metadata is used to set up
any build-on-demand properties,

3. The metadata is also used by the Data
Management Framework to index the
available property packages to create a
searchable index for users.

4. The units metadata is compared to that
of the associated thermophysical prop-
erty package (when an instance of the
Reaction Parameter Block is declared),
and an exception is raised if they do not
match.

Setting Default Units

As with thermophysical property pack-
ages, the most important part of defining
the metadata for a property package is
to set the default units of measurement
for each of the 7 base quantities (time,
length, mass, amount, temperature, cur-
rent (optional) and luminous intensity
(optional)). These units are used by
the modeling framework to determine
the units of measurement for all other
quantities in the process that are related
to this property package. More impor-
tantly, the units metadata is used to de-
termine if a reaction package is compa-
rable with a given thermophysical prop-
erty package when they are declared –
if the units metadata does not match,
an exception will be raised and the two
packages cannot be used together.

Units must be defined using Pyomo
Units components, as shown in the ex-
ample below:
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from␣
→˓pyomo.environ import units

@classmethod
def define_metadata(cls, obj):

obj.add_default_
→˓units({'time': units.s,

␣
→˓ 'length': units.m,

␣
→˓ 'mass': units.kg,

␣
→˓ 'amount': units.mol,

␣
→˓ 'temperature': units.K})

Setting Reaction Metadata

Similar to thermophysical property
packages, reaction packages allow
users to specify the set of reaction
properties supported by a given reaction
package. This is also used to set up
the build-on-demand properties system
in the same way as thermophysical
properties. For more information, see
the documentation for thermophysical
properties metadata.

The Reaction Block

The second part of a reaction prop-
erty package is the ReactionBlock class.
Similarly to StateBlock classes this is
defined using two user-written classes;
the ReactionBlockData class and the Re-
actionBlockMethods class.

@declare_process_block_
→˓class("NewReactionBlock",
␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓ block_
→˓class=NewReactionBlockMethods)

(continues on next page)
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(continued from previous page)

class␣
→˓NewReactionBlockData(ReactionBlockData):

def build(self):
super().build()

The Reaction Block Data Class

One important difference between Re-
action Blocks and State Blocks is
that while State Blocks are fully self-
contained and can be solved in isolation,
Reaction Blocks depend upon the State
Block for the definition of the state vari-
ables. This means that Reaction Blocks
do not need to redefine the state vari-
ables (which are needed for the reac-
tion properties), but at the cost of not
being independent, self-contained mod-
els. This is one of the reasons why reac-
tion packages are so closely tied to ther-
mophysical property packages within
IDAES.

The purpose of the Reaction Block Data
class is to define the reaction properties
that will be required by the unit mod-
els using this package. The three main
properties required for material and en-
ergy balances are:

• rate terms for rate-based reactions,

• equilibrium constraints for equilibrium-
based reactions, and

• heats of reaction (if required, see note
below).

These properties may in turn depend on
other reaction properties such as equi-
librium and rate constants. All of these
properties may be constructed using the
build-on-demand framework.

All reaction properties depend upon the
state of the material, which is defined
in the State Block; thus it is necessary
to reference the associated State Block
whenever these are needed. In order
to facilitate this, the ReactionBlockData
base class establishes a reference to the
associated State Block which users can
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use to obtain state variables and proper-
ties from the State Block. For example,
temperature can be referenced from the
state block as shown below:

temperature␣
→˓= self.state_ref.temperature

Note: There are multiple ways in which heat of reaction may be included in a model, and users should consider which
is most suitable for their application. The two most common approaches are to include an explicit heat of reaction term
in the energy balance equations, or to incorporate heat of reaction into the specific enthalpy terms (generally via heats
of formation). The IDAES Process Modeling Framework supports both of these approaches.

Reaction Block Data Configuration Arguments

The ReactionBlockData base class de-
fines three configuration arguments that
are required for all Reaction Block Data
classes.

• “parameters” – this argument is used to
provide a link back to the associated Re-
actionParameterBlock, and is generally
automatically passed to the Reaction-
Block when it is constructed.

• “state_block” – this argument is used to
provide a link to the State Block associ-
ated with this Reaction Block, as is gen-
erally passed to the ReactionBlock by
the unit model when it is constructed.
This argument is used to the state_ref
attribute shown above for referencing
properties from the State Block.

• “has_equilibrium” – this argument indi-
cates whether equilibrium reaction will
be considered for this state. In most
cases, this argument will always be
True, however this allows users the abil-
ity to turn off equilibrium reactions if
they desire.
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The Reaction Block build Method

As with all IDAES components, the
build method forms the core of a Re-
actionBlockData class, and contains the
instructions on how to construct the
variables, expressions and constraints
required by the reaction model. As
usual, the first step in the build method
should be to call super().build() to trig-
ger the construction of the underly-
ing components required for Reaction
Blocks to function.

Variables and Properties

The same set of guidelines for defining
thermophysical properties apply to reac-
tion properties, which can be found here.

Required Methods

In addition to the build method, Re-
action Blocks require one additional
method which is used to define the ba-
sis for the reaction terms.

• get_reaction_rate_basis - must return a
MaterialFlowBasis Enum, and is used
to automatically convert reaction terms
between mass and mole basis in control
volumes.

The Reaction Block Methods Class

The Reaction Block Methods class is
very similar to the State Block Meth-
ods class. The Reaction Block Meth-
ods class needs to contain an initial-
ize method (however a release_state
method is not required as Reaction
Blocks do not contain state variables).
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The initialize Method

Initialization of Reaction Blocks is com-
plicated by the fact that they depend
upon the State Block for the state vari-
ables, and thus cannot be solved as a
stand-alone model. Within the wider
IDAES modeling framework, this is
handled by initializing the Reaction
Block after the State Block initializa-
tion method has been called (and thus
all state variables and properties are
initialized) but before the release_State
method is called (thus all state variables
are fixed). Thus, the Reaction Block can
assume that the state is fully defined and
initialized (although it may not be possi-
ble to use a solver as part of the Reaction
Block’s initialization procedure).

However, Reaction Blocks also tend to
be much simpler than State Blocks, in-
volving fewer properties which are gen-
erally much less tightly coupled (most
reaction properties are functions solely
of the state variables), which simplifies
the requirements of initializing the sub-
model.

Tutorials

Tutorials demonstrating how to create
custom reaction packages are being de-
veloped. Once they are created, they
will be found here.

4.4 Tutorials and Ex-
amples

4.4.1 Viewing online

Tutorials and examples for IDAES are
located on the examples online docu-
mentation page. If you are new to
IDAES, it is strongly recommended to
start with the tutorials. There are
also pre-recorded tutorial videos on the
IDAES page on YouTube.
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4.4.2 Running locally

To run and use the examples on your
own computer, once you have in-
stalled IDAES, you should run idaes
get-examples in a command-line
shell. Please see this page for details on
how to use this program.

Once you have installed the examples,
change the directory where you down-
loaded them and run the following
command1

jupyter notebook␣
→˓notebook_index.ipynb

This will open a descriptive Jupyter
Notebook with links that allow you to
open and run any of the other tutorial
and example notebooks. Happy model-
ing!
1 If you have installed JupyterLab, you
can use it by simply substituting “jupyter
lab” for “jupyter notebook” in the given
command.

4.4.3 Additional informa-
tion

The sources for the tutorials and exam-
ples are maintained on the IDAES exam-
ples repository.

If you want to develop custom unit and
property models, please refer to the ad-
vanced user guide.

4.5 Technical Specifi-
cations

4.5.1 Core

Process Block

Example

ProcessBlock is used to simplify inher-
itance of Pyomo’s Block. The code be-
low provides an example of how a new
ProcessBlock class can be implemented.
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The new ProcessBlock class has a Con-
figBlock that allows each element of the
block to be passed configuration options
that affect how a block is built. Process-
Blocks have a rule set by default that
calls the build method of the contained
ProcessBlockData class.

from pyomo.environ import *
from pyomo.common.
→˓config import ConfigValue
from idaes.core␣
→˓import ProcessBlockData,
→˓ declare_process_block_class

@declare_process_
→˓block_class("MyBlock")
class␣
→˓MyBlockData(ProcessBlockData):

CONFIG␣
→˓= ProcessBlockData.CONFIG()

CONFIG.declare("xinit
→˓", ConfigValue(default=1001,
→˓ domain=float))

CONFIG.declare("yinit
→˓", ConfigValue(default=1002,
→˓ domain=float))
def build(self):

super(MyBlockData,
→˓ self).build()

self.
→˓x = Var(initialize=self.
→˓config.xinit)

self.
→˓y = Var(initialize=self.
→˓config.yinit)

The following example demonstrates
creating a scalar instance of the new
class. The default key word argument
is used to pass information on the the
MyBlockData ConfigBlock.

m = ConcreteModel()
m.b = MyBlock(default=
→˓{"xinit":1, "yinit":2})

The next example creates an indexed
MyBlock instance. In this case, each
block is configured the same, using the
default argument.

m = ConcreteModel()
m.b = MyBlock([0,
→˓1,2,3,4], default=
→˓{"xinit":1, "yinit":2})

(continues on next page)

4.5. Technical Specifications 303



IDAES Documentation, Release 1.10.1

(continued from previous page)

The next example uses the initialize
argument to override the configuration
of the first block. Initialize is a dictio-
nary of dictionaries where the key of the
top level dictionary is the block index
and the second level dictionary is argu-
ments for the config block.

m = ConcreteModel()
m.b = MyBlock([0,
→˓1,2,3,4], default=
→˓{"xinit":1, "yinit":2},

initialize=
→˓{0:{"xinit":1, "yinit":2}})

The next example shows a more com-
plicated configuration where there are
three configurations, one for the first
block, one for the last block, and one
for the interior blocks. This is accom-
plished by providing the idx_map argu-
ment to MyBlock, which is a function
that maps a block index to a index in
the initialize dictionary. In this case 0
is mapped to 0, 4 is mapped to 4, and all
elements between 0 and 4 are mapped to
1. A lambda function is used to convert
the block index to the correct index in
initialize.

m = ConcreteModel()
m.b = MyBlock(

[0,1,2,3,4],
idx_map = lambda i:␣

→˓1 if i > 0 and i < 4 else i,
initialize={0:{

→˓"xinit":2001, "yinit":2002},
1:{

→˓"xinit":5001, "yinit":5002},
4:{"xinit

→˓":7001, "yinit":7002}})
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The build method

The core part of any IDAES Block is
the build method, which contains the in-
structions on how to construct the vari-
ables, constraints and other components
that make up the model. The build
method serves as the default rule for
constructing an instance of an IDAES
Block, and is triggered automatically
whenever an instance of an IDAES
Block is created unless a custom rule is
provided by the user.

ProcessBlock Class

idaes.core.process_block.declare_process_block_class(name, block_class=<class
'idaes.core.process_block.ProcessBlock'>,
doc='')

Declare a new ProcessBlock subclass.

This is a decorator function for a class
definition, where the class is derived
from Pyomo’s _BlockData. It creates
a ProcessBlock subclass to contain the
decorated class. The only requirment is
that the subclass of _BlockData contain
a build() method. The purpose of this
decorator is to simplify subclassing Py-
omo’s block class.

Parameters

• name – name of class to create

• block_class – ProcessBlock or a sub-
class of ProcessBlock, this allows you
to use a subclass of ProcessBlock if
needed. The typical use case for Sub-
classing ProcessBlock is to impliment
methods that operate on elements of an
indexed block.

• doc – Documentation for the class. This
should play nice with sphinx.

Returns Decorator function

class idaes.core.process_block.ProcessBlock(*args, **kwds)

ProcessBlock is a Pyomo Block that is
part of a system to make Pyomo Block
easier to subclass. The main differ-
ence between a Pyomo Block and Pro-
cessBlock from the user perspective is
that a ProcessBlock has a rule assigned
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by default that calls the build() method
for the contained ProcessBlockData ob-
jects. The default rule can be overrid-
den, but the new rule should always call
build() for the ProcessBlockData object.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ProcessBlock) New instance

classmethod base_class_module()

Return module of the associated Pro-
cessBase class.

Returns (str) Module of the class.

Raises AttributeError, if no base
class module was set, e.g.
this class – was not wrapped by the
declare_process_block_class decorator.

classmethod base_class_name()

Name given by the user to the Process-
Base class.

Returns (str) Name of the class.

Raises AttributeError, if no base
class name was set, e.g. this
class – was not wrapped by the
declare_process_block_class decorator.

306 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError


IDAES Documentation, Release 1.10.1

class idaes.core.process_base.ProcessBlockData(component)

Base class for most IDAES process
models and classes.

The primary purpose of this class is to
create the local config block to handle
arguments provided by the user when
constructing an object and to ensure that
these arguments are stored in the config
block.

Additionally, this class contains a num-
ber of methods common to all IDAES
classes.

build()

The build method is called by the default
ProcessBlock rule. If a rule is sepecified
other than the default it is important to
call ProcessBlockData’s build method
to put information from the “default”
and “initialize” arguments to a Process-
Block derived class into the BlockData
object’s ConfigBlock.

The the build method should usually
be overloaded in a subclass derived
from ProcessBlockData. This method
would generally add Pyomo compo-
nents such as variables, expressions, and
constraints to the object. It is important
for build() methods implimented in de-
rived classes to call build() from the su-
per class.

Parameters None –

Returns None

fix_initial_conditions(state='steady-state')

This method fixes the initial conditions
for dynamic models.

Parameters state – initial state to use for
simulation (default = ‘steady-state’)

Returns : None

flowsheet()

This method returns the components
parent flowsheet object, i.e. the flow-
sheet component to which the model is
attached. If the component has no par-
ent flowsheet, the method returns None.

Parameters None –
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Returns Flowsheet object or None

serialize_contents(time_point=0)

Return the performance contents and
stream table

NOTE: There is the possiblity of a Con-
figurationError because the names of the
inlets and outlets of the unit model may
not be standard. If this occurs then re-
turn an empty dataframe

Parameters time_point – The time

Returns Pandas dataframe with the perfor-
mance contents stream_table: Pandas
dataframe with the stream table for a
unit model

Return type performance_contents

unfix_initial_conditions()

This method unfixed the initial condi-
tions for dynamic models.

Parameters None –

Returns : None

Flowsheet Block

Default Property Packages

Flowsheet Blocks may assign a property
package to use as a default for all Unit-
Models within the Flowsheet. If a spe-
cific property package is not provided as
an argument when constructing a Unit-
Model, the UnitModel will search up the
model tree until it finds a default prop-
erty package declared. The UnitModel
will use the first default property pack-
age it finds during the search, and will
return an error if no default is found.
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Flowsheet Configuration Arguments

Flowsheet blocks have three configura-
tion arguments which are stored within a
Config block (flowsheet.config). These
arguments can be set by passing argu-
ments when instantiating the class, and
are described below:

• dynamic - indicates whether the flow-
sheet should be dynamic or steady-state.
If dynamic = True, the flowsheet is de-
clared to be a dynamic flowsheet, and
the time domain will be a Pyomo Con-
tinuousSet. If dynamic = False, the
flowsheet is declared to be steady-state,
and the time domain will be an ordered
Pyomo Set. For top level Flowsheets,
dynamic defaults to False if not pro-
vided. For lower level Flowsheets, the
dynamic will take the same value as that
of the parent model if not provided. It
is possible to declare steady-state sub-
Flowsheets as part of dynamic Flow-
sheets if desired, however the reverse
is not true (cannot have dynamic Flow-
sheets within steady-state Flowsheets).

• time - a reference to the time domain
for the flowsheet. During flowsheet cre-
ation, users may provide a Set or Con-
tinuousSet that the flowsheet should use
as the time domain. If not provided, then
the flowsheet will look for a parent flow-
sheet and set this equal to the parent’s
time domain, otherwise a new time do-
main will be created and assigned here.

• time_units - used to specify the units
of the time domain, and must be a
Pyomo Unit object (cannot be a com-
pound unit). This is necessary for dy-
namic flowsheets, but can be neglected
in steady-state cases. In cases where the
time domain is inherited from a parent
flowsheet, the time units will also be in-
herited.

• time_set - used to initialize the time do-
main in top-level Flowsheets. When
constructing the time domain in top-
level Flowsheets, time_set is used to ini-
tialize the ContinuousSet or Set created.
This can be used to set start and end
times, and to establish points of inter-
est in time (e.g. times when distur-
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bances will occur). If dynamic = True,
time_set defaults to [0.0, 1.0] if not pro-
vided, if dynamic = False time_set de-
faults to [0.0]. time_set is not used in
sub-Flowsheets and will be ignored.

• default_property_package - can be used
to assign the default property package
for a Flowsheet. Defaults to None if not
provided.

Flowsheet Classes

class idaes.core.flowsheet_model.FlowsheetBlockData(component)

The FlowsheetBlockData Class forms
the base class for all IDAES process
flowsheet models. The main purpose of
this class is to automate the tasks com-
mon to all flowsheet models and ensure
that the necessary attributes of a flow-
sheet model are present.

The most signfiicant role of the Flow-
sheetBlockData class is to automatically
create the time domain for the flowsheet.

build()

General build method for Flowsheet-
BlockData. This method calls a num-
ber of sub-methods which automate the
construction of expected attributes of
flowsheets.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

get_costing(module=<module 'idaes.core.util.unit_costing' from
'/home/docs/checkouts/readthedocs.org/user_builds/idaes-
pse/checkouts/1.10.1/idaes/core/util/unit_costing.py'>, year=None,
integer_n_units=False)

Creates a new block called ‘costing’ at
the flowsheet level. This block builds
global parameters used in costing meth-
ods (power plant costing and generic
costing).

Parameters

• - idaes flowsheet (self ) –
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• year – used to build parameter
CE_index (Chemical Engineering),

• parameter is the same for
all costing blocks in the
flowsheet (this) –

• integer_n_units – flag to define vari-
able domain (True: domain is

• Integer numbers (within) – domain
is NonNegativeReals).

• False – domain is NonNegativeReals).

Returns None

is_flowsheet()

Method which returns True to indicate
that this component is a flowsheet.

Parameters None –

Returns True

model_check()

This method runs model checks on all
unit models in a flowsheet.

This method searches for objects which
inherit from UnitModelBlockData and
executes the model_check method if it
exists.

Parameters None –

Returns None

stream_table(true_state=False, time_point=0, orient='columns')

Method to generate a stream table by it-
erating over all Arcs in the flowsheet.

Parameters

• true_state – whether the state vari-
ables (True) or display variables (False,
default) from the StateBlocks should be
used in the stream table.

• time_point – point in the time domain
at which to create stream table (default
= 0)

• orient – whether stream should be
shown by columns (“columns”) or rows
(“index”)

Returns A pandas dataframe containing
stream table information
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visualize(model_name, **kwargs)

Starts up a flask server that serializes the
model and pops up a webpage with the
visualization

Parameters model_name – The name of
the model that flask will use as an argu-
ment for the webpage

Keyword Arguments **kwargs – Addi-
tional keywords for idaes.ui.fsvis.
visualize()

Returns None

class idaes.core.flowsheet_model.FlowsheetBlock(*args, **kwds)

FlowsheetBlock is a specialized Pyomo
block for IDAES flowsheet models, and
contains instances of FlowsheetBlock-
Data.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic, default - useDefault.
Valid values: { useDefault - get flag
from parent or False, True - set as a dy-
namic model, False - set as a steady-
state model.}

time Pointer to the time domain for the
flowsheet. Users may provide an exist-
ing time domain from another flowsheet,
otherwise the flowsheet will search for
a parent with a time domain or create a
new time domain and reference it here.

time_set Set of points for initializing time
domain. This should be a list of floating
point numbers, default - [0].

time_units Pyomo Units object describ-
ing the units of the time domain. This
must be defined for dynamic simula-
tions, default = None.
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default_property_package Indicates the
default property package to be used by
models within this flowsheet if not oth-
erwise specified, default - None. Valid
values: { None - no default property
package, a ParameterBlock object.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (FlowsheetBlock) New instance

0D Control Volume Class

Contents

• 0D Control Volume Class

– ControlVolume0DBlock Equations

The ControlVolume0DBlock block is
the most commonly used Control Vol-
ume class, and is used for systems
where there is a well-mixed volume of
fluid, or where variations in spatial do-
mains are considered to be negligible.
ControlVolume0DBlock blocks gener-
ally contain two StateBlocks - one for the
incoming material and one for the mate-
rial within and leaving the volume - and
one StateBlocks.

class idaes.core.control_volume0d.ControlVolume0DBlock(*args, **kwds)

ControlVolume0DBlock is a spe-
cialized Pyomo block for IDAES
non-discretized control volume blocks,
and contains instances of ControlVol-
ume0DBlockData.

ControlVolume0DBlock should be used
for any control volume with a defined
volume and distinct inlets and out-
lets which does not require spatial dis-
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cretization. This encompases most ba-
sic unit models used in process model-
ing.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic, default - useDefault.
Valid values: { useDefault - get flag
from parent, True - set as a dynamic
model, False - set as a steady-state
model}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True,
default - False. Valid values: { True -
construct holdup terms, False - do not
construct holdup terms}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
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{ see reaction package for documenta-
tion.}

auto_construct If set to True, this ar-
gument will trigger the auto_construct
method which will attempt to construct
a set of material, energy and momentum
balance equations based on the parent
unit’s config block. The parent unit must
have a config block which derives from
CONFIG_Base, default - False. Valid
values: { True - use automatic con-
struction, False - do not use automatic
construciton.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ControlVolume0DBlock) New in-
stance

class idaes.core.control_volume0d.ControlVolume0DBlockData(component)

0-Dimensional (Non-Discretised) Con-
trolVolume Class

This class forms the core of all non-
discretized IDAES models. It provides
methods to build property and reaction
blocks, and add mass, energy and mo-
mentum balances. The form of the
terms used in these constraints is speci-
fied in the chosen property package.

add_geometry()

Method to create volume Var in Con-
trolVolume.

Parameters None –

Returns None

add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 0D ma-
terial balances indexed by time, phase
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and component.

Parameters

• has_rate_reactions – whether de-
fault generation terms for rate reactions
should be included in material balances

• has_equilibrium_reactions –
whether generation terms should for
chemical equilibrium reactions should
be included in material balances

• has_phase_equilibrium – whether
generation terms should for phase equi-
librium behaviour should be included in
material balances

• has_mass_transfer – whether
generic mass transfer terms should be
included in material balances

• custom_molar_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
molar basis. Expression must be in-
dexed by time, phase list and component
list

• custom_mass_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
mass basis. Expression must be indexed
by time, phase list and component list

Returns Constraint object representing ma-
terial balances

add_phase_energy_balances(*args, **kwargs)

Method for adding energy balances
(including kinetic energy) indexed by
phase to the control volume.

See specific control volume documenta-
tion for details.

add_phase_enthalpy_balances(*args, **kwargs)

Method for adding enthalpy balances in-
dexed by phase to the control volume.

See specific control volume documenta-
tion for details.

add_phase_momentum_balances(*args, **kwargs)

Method for adding momentum balances
indexed by phase to the control volume.

See specific control volume documenta-
tion for details.
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add_phase_pressure_balances(*args, **kwargs)

Method for adding pressure balances in-
dexed by phase to the control volume.

See specific control volume documenta-
tion for details.

add_reaction_blocks(has_equilibrium=None)

This method constructs the reaction
block for the control volume.

Parameters

• has_equilibrium – indicates whether
equilibrium calculations will be re-
quired in reaction block

• package_arguments – dict-like object
of arguments to be passed to reaction
block as construction arguments

Returns None

add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)

This method constructs the inlet and
outlet state blocks for the control vol-
ume.

Parameters

• information_flow – a FlowDirection
Enum indicating whether information
flows from inlet-to-outlet or outlet-to-
inlet

• has_phase_equilibrium – indicates
whether equilibrium calculations will be
required in state blocks

• package_arguments – dict-like object
of arguments to be passed to state blocks
as construction arguments

Returns None

add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 0D
material balances indexed by time and
component.

Parameters

• - whether default
generation terms for rate
(has_rate_reactions) – reactions
should be included in material balances
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• - whether generation
terms should for
(has_equilibrium_reactions)
– chemical equilibrium reactions
should be included in material balances

• - whether generation
terms should for phase
(has_phase_equilibrium) – equilib-
rium behaviour should be included in
material balances

• - whether generic mass
transfer terms should be
(has_mass_transfer) – included
in material balances

• - a Pyomo Expression
representing custom terms to
(custom_mass_term) – be included
in material balances on a molar basis.
Expression must be indexed by time,
phase list and component list

• - a Pyomo Expression
representing custom terms
to – be included in material balances
on a mass basis. Expression must
be indexed by time, phase list and
component list

Returns Constraint object representing ma-
terial balances

add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_elemental_term=None)

This method constructs a set of 0D ele-
ment balances indexed by time.

Parameters

• - whether default
generation terms for rate
(has_rate_reactions) – reactions
should be included in material balances

• - whether generation
terms should for
(has_equilibrium_reactions)
– chemical equilibrium reactions
should be included in material balances

• - whether generation
terms should for phase
(has_phase_equilibrium) – equilib-
rium behaviour should be included in
material balances
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• - whether generic mass
transfer terms should be
(has_mass_transfer) – included
in material balances

• - a Pyomo Expression
representing custom
(custom_elemental_term) – terms
to be included in material balances on a
molar elemental basis. Expression must
be indexed by time and element list

Returns Constraint object representing ma-
terial balances

add_total_energy_balances(*args, **kwargs)

Method for adding a total energy bal-
ance (including kinetic energy) to the
control volume.

See specific control volume documenta-
tion for details.

add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False,
has_work_transfer=False, has_enthalpy_transfer=False,
custom_term=None)

This method constructs a set of 0D en-
thalpy balances indexed by time and
phase.

Parameters

• - whether terms for
heat of reaction should
(has_heat_of_reaction) – be
included in enthalpy balance

• - whether terms for
heat transfer should be
(has_heat_transfer) – included
in enthalpy balances

• - whether terms for
work transfer should be
(has_work_transfer) – included
in enthalpy balances

• - whether terms for
enthalpy transfer due to
(has_enthalpy_transfer) – mass
transfer should be included in enthalpy
balance. This should generally be
the same as the has_mass_transfer
argument in the material balance
methods

• - a Pyomo Expression
representing custom terms
to (custom_term) – be included in
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enthalpy balances. Expression must be
indexed by time and phase list

Returns Constraint object representing en-
thalpy balances

add_total_material_balances(*args, **kwargs)

Method for adding a total material bal-
ance to the control volume.

See specific control volume documenta-
tion for details.

add_total_momentum_balances(*args, **kwargs)

Method for adding a total momentum
balance to the control volume.

See specific control volume documenta-
tion for details.

add_total_pressure_balances(has_pressure_change=False, custom_term=None)

This method constructs a set of 0D pres-
sure balances indexed by time.

Parameters

• - whether terms for
pressure change should be
(has_pressure_change) – included
in enthalpy balances

• - a Pyomo Expression
representing custom terms
to (custom_term) – be included in
pressure balances. Expression must be
indexed by time

Returns Constraint object representing
pressure balances

build()

Build method for ControlVol-
ume0DBlock blocks.

Returns None

initialize(state_args=None, outlvl=0, optarg=None, solver=None, hold_state=True)

Initialization routine for 0D control vol-
ume.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).
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• outlvl – sets output log level of initial-
ization routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None)

• hold_state – flag indicating whether
the initialization routine should unfix
any state variables fixed during initial-
ization, default - True. Valid values:
True - states variables are not unfixed,
and a dict of returned containing flags
for which states were fixed during ini-
tialization, False - state variables are un-
fixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a
dict containing flags for which states
were fixed during initialization.

model_check()

This method executes the model_check
methods on the associated state blocks
(if they exist). This method is gener-
ally called by a unit model as part of the
unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)

Method to release state variables fixed
during initialization.

Keyword Arguments

• flags – dict containing information of
which state variables were fixed during
initialization, and should now be un-
fixed. This dict is returned by initialize
if hold_state = True.

• outlvl – sets output level of logging

Returns None
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ControlVolume0DBlock Equations

This section documents the variables
and constraints created by each of the
methods provided by the ControlVol-
ume0DBlock class.

• 𝑡 indicates time index

• 𝑝 indicates phase index

• 𝑗 indicates component index

• 𝑒 indicates element index

• 𝑟 indicates reaction name index

add_geometry

The add_geometry method creates a sin-
gle variable within the control volume
named volume indexed by time (allow-
ing for varying volume over time). A
number of other methods depend on this
variable being present, thus this method
should generally be called first.

Variables

Variable Name Symbol Indices Conditions
volume 𝑉𝑡 t None

Constraints

No additional constraints

add_phase_component_balances

Material balances are written for each
component in each phase (e.g. separate
balances for liquid water and steam).
Physical property packages may in-
clude information to indicate that cer-
tain species do not appear in all phases,
and material balances will not be writ-
ten in these cases (if has_holdup is True
holdup terms will still appear for these
species, however these will be set to 0).

Variables
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Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑝,𝑗 t, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 t, p, j dynamic = True
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 t, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 t, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 t, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 t, r has_equilibrium_reactions = True
phase_equilibrium_generation 𝑁𝑝𝑒,𝑡,𝑝,𝑗 t, p ,j has_phase_equilibrium = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 t, p ,j has_mass_transfer = True

Constraints

material_balances(t, p, j):

𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡
= 𝐹𝑖𝑛,𝑡,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 +𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 +𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 +𝑁𝑝𝑒,𝑡,𝑝,𝑗 +𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑝,𝑗

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑝,𝑗 term allows the user
to provide custom terms (variables or
expressions) in both mass and molar ba-
sis which will be added into the mate-
rial balances, which will be converted as
necessary to the same basis as the mate-
rial balance (by multiplying or dividing
by the component molecular weight).
The basis of the material balance is de-
termined by the physical property pack-
age, and if undefined (or not mass or
mole basis), an Exception will be re-
turned.

If has_holdup is True, mate-
rial_holdup_calculation(t, p, j):

𝑀𝑡,𝑝,𝑗 = 𝜌𝑡,𝑝,𝑗 × 𝑉𝑡 × 𝜑𝑡,𝑝

where 𝜌𝑡,𝑝,𝑗 is the density of component
𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 , will be performed by
Pyomo.DAE.

If has_rate_reactions
is True,
rate_reaction_stoichiometry_constraint(t,
p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).
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If has_equilibrium_reactions
argument
is True,
equilib-
rium_reaction_stoichiometry_constraint(t,
p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).

add_total_component_balances

Material balances are written for each
component across all phases (e.g. one
balance for both liquid water and steam).
Most terms in the balance equations are
still indexed by both phase and compo-
nent however. Physical property pack-
ages may include information to in-
dicate that certain species do not ap-
pear in all phases, and material balances
will not be written in these cases (if
has_holdup is True holdup terms will
still appear for these species, however
these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑝,𝑗 t, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 t, p, j dynamic = True
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 t, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 t, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 t, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 t, r has_equilibrium_reactions = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 t, p ,j has_mass_transfer = True

Constraints

material_balances(t, j):∑︁
𝑝

𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡
=
∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑗 −
∑︁
𝑝

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑝𝑒,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑗

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑗 term allows the user to
provide custom terms (variables or ex-
pressions) in both mass and molar ba-
sis which will be added into the mate-
rial balances, which will be converted as
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necessary to the same basis as the mate-
rial balance (by multiplying or dividing
by the component molecular weight).
The basis of the material balance is de-
termined by the physical property pack-
age, and if undefined (or not mass or
mole basis), an Exception will be re-
turned.

If has_holdup is True, mate-
rial_holdup_calculation(t, p, j):

𝑀𝑡,𝑝,𝑗 = 𝜌𝑡,𝑝,𝑗 × 𝑉𝑡 × 𝜑𝑡,𝑝

where 𝜌𝑡,𝑝,𝑗 is the density of component
𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 , will be performed by
Pyomo.DAE.

If has_rate_reactions
is True„
rate_reaction_stoichiometry_constraint(t,
p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).

If has_equilibrium_reactions
argument
is True,
equilib-
rium_reaction_stoichiometry_constraint(t,
p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).
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add_total_element_balances

Material balances are written for each
element in the mixture.

Variables

Variable Name Symbol Indices Conditions
element_holdup 𝑀𝑡,𝑒 t, e has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
element_accumulation 𝜕𝑀𝑡,𝑒

𝜕𝑡 t, e dynamic = True
elemental_mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑒 t, e has_mass_transfer = True

Expressions

elemental_flow_in(t, p, e):

𝐹𝑖𝑛,𝑡,𝑝,𝑒 =
∑︁
𝑗

𝐹𝑖𝑛,𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

elemental_flow_out(t, p, e):

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑒 =
∑︁
𝑗

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝑛𝑗,𝑒 is the number of moles of el-
ement 𝑒 in component 𝑗.

Constraints

element_balances(t, e):

𝜕𝑀𝑡,𝑒

𝜕𝑡
=
∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑒 −
∑︁
𝑝

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑒 +
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑒 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒 term allows the user to
provide custom terms (variables or ex-
pressions) which will be added into the
material balances.

If has_holdup is True, elemen-
tal_holdup_calculation(t, e):

𝑀𝑡,𝑒 = 𝑉𝑡 ×
∑︁
𝑝,𝑗

𝜑𝑡,𝑝 × 𝜌𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝜌𝑡,𝑝,𝑗 is the density of component
𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑒

𝜕𝑡 , will be performed by
Pyomo.DAE.
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add_total_enthalpy_balances

A single enthalpy balance is written for
the entire mixture.

Variables

Variable Name Symbol Indices Conditions
energy_holdup 𝐸𝑡,𝑝 t, p has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
energy_accumulation 𝜕𝐸𝑡,𝑝

𝜕𝑡 t, p dynamic = True
heat 𝑄𝑡 t has_heat_transfer = True
work 𝑊𝑡 t has_work_transfer = True
enthalpy_transfer 𝐻𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡 t has_enthalpy_transfer = True

Expressions

heat_of_reaction(t):

𝑄𝑟𝑥𝑛,𝑡 = 𝑠𝑢𝑚𝑟𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟 + 𝑠𝑢𝑚𝑟𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟

where 𝑄𝑟𝑥𝑛,𝑡 is the total enthalpy re-
leased by both kinetic and equilibrium
reactions, and ∆𝐻𝑟𝑥𝑛,𝑟 is the specific
heat of reaction for reaction 𝑟.

Parameters

Parameter Name Symbol Default Value
scaling_factor_energy 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 1E-6

Constraints

enthalpy_balance(t):

𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×
∑︁
𝑝

𝜕𝐸𝑡,𝑝

𝜕𝑡
= 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×

∑︁
𝑝

𝐻𝑖𝑛,𝑡,𝑝 − 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×
∑︁
𝑝

𝐻𝑜𝑢𝑡,𝑡,𝑝 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑄𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑊𝑡 + +𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝐻𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑄𝑟𝑥𝑛,𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡

The 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡 term allows the user to
provide custom terms which will be
added into the energy balance.

If has_holdup is True, en-
thalpy_holdup_calculation(t, p):

𝐸𝑡,𝑝 = 𝑢𝑡,𝑝 × 𝑉𝑡 × 𝜑𝑡,𝑝

where 𝑢𝑡,𝑝 is the internal energy density
(specific internal energy) of phase 𝑝 at
time 𝑡

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝐸𝑡,𝑝

𝜕𝑡 , will be performed by
Pyomo.DAE.
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add_total_pressure_balances

A single pressure balance is written for
the entire mixture.

Variables

Variable Name Symbol Indices Conditions
deltaP ∆𝑃𝑡 t has_pressure_change = True

Parameters

Parameter Name Symbol Default Value
scaling_factor_pressure 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1E-4

Constraints

pressure_balance(t):

0 = 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑃𝑖𝑛,𝑡 − 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑃𝑜𝑢𝑡,𝑡 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × ∆𝑃𝑡 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡

The ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡 term allows the user
to provide custom terms which will be
added into the pressure balance.

1D Control Volume Class

Contents

• 1D Control Volume Class

– ControlVolume1DBlock Equations

The ControlVolume1DBlock block is
used for systems with one spatial di-
mension where material flows paral-
lel to the spatial domain. Examples
of these types of unit operations in-
clude plug flow reactors and pipes.
ControlVolume1DBlock blocks are dis-
cretized along the length domain and
contain one StateBlock and one Reac-
tionBlock (if applicable) at each point in
the domain (including the inlet and out-
let).

class idaes.core.control_volume1d.ControlVolume1DBlock(*args, **kwds)

ControlVolume1DBlock is a specialized
Pyomo block for IDAES control vol-
ume blocks discretized in one spatial di-
rection, and contains instances of Con-
trolVolume1DBlockData.
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ControlVolume1DBlock should be used
for any control volume with a defined
volume and distinct inlets and outlets
where there is a single spatial domain
parallel to the material flow direction.
This encompases unit operations such as
plug flow reactors and pipes.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic, default - useDefault.
Valid values: { useDefault - get flag
from parent, True - set as a dynamic
model, False - set as a steady-state
model}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True,
default - False. Valid values: { True -
construct holdup terms, False - do not
construct holdup terms}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}
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reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

auto_construct If set to True, this ar-
gument will trigger the auto_construct
method which will attempt to construct
a set of material, energy and momentum
balance equations based on the parent
unit’s config block. The parent unit must
have a config block which derives from
CONFIG_Base, default - False. Valid
values: { True - use automatic con-
struction, False - do not use automatic
construciton.}

area_definition Argument defining
whether area variable should be
spatially variant or not. default -
DistributedVars.uniform. Valid val-
ues: { DistributedVars.uniform - area
does not vary across spatial domian,
DistributedVars.variant - area can vary
over the domain and is indexed by time
and space.}

transformation_method Method to use
to transform domain. Must be a method
recognised by the Pyomo Transforma-
tionFactory.

transformation_scheme Scheme to use
when transforming domain. See Pyomo
documentation for supported schemes.

finite_elements Number of finite ele-
ments to use in transformation (equiva-
lent to Pyomo nfe argument).

collocation_points Number of colloca-
tion points to use (equivalent to Pyomo
ncp argument).

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
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ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ControlVolume1DBlock) New in-
stance

class idaes.core.control_volume1d.ControlVolume1DBlockData(component)

1-Dimensional ControlVolume Class

This class forms the core of all 1-D
IDAES models. It provides methods to
build property and reaction blocks, and
add mass, energy and momentum bal-
ances. The form of the terms used in
these constraints is specified in the cho-
sen property package.

add_geometry(length_domain=None, length_domain_set=None, flow_direction=<FlowDirection.forward:
1>)

Method to create spatial domain and
volume Var in ControlVolume.

Parameters

• - (length_domain_set) – domain for
the ControlVolume. If not provided, a
new ContinuousSet will be created (de-
fault=None). ContinuousSet should be
normalized to run between 0 and 1.

• - – a new ContinuousSet if
length_domain is not provided (de-
fault = [0.0, 1.0]).

• - argument indicating
direction of material flow
(flow_direction) –

relative to length domain. Valid values:

– FlowDirection.forward (default), flow
goes from 0 to 1.

– FlowDirection.backward, flow goes
from 1 to 0

Returns None

add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 1D ma-
terial balances indexed by time, length,
phase and component.

Parameters

• has_rate_reactions – whether de-
fault generation terms for rate reactions
should be included in material balances
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• has_equilibrium_reactions –
whether generation terms should for
chemical equilibrium reactions should
be included in material balances

• has_phase_equilibrium – whether
generation terms should for phase equi-
librium behaviour should be included in
material balances

• has_mass_transfer – whether
generic mass transfer terms should be
included in material balances

• custom_molar_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
molar basis. Expression must be in-
dexed by time, length domain, phase list
and component list

• custom_mass_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
mass basis. Expression must be indexed
by time, length domain, phase list and
component list

Returns Constraint object representing ma-
terial balances

add_phase_energy_balances(*args, **kwargs)

Method for adding energy balances
(including kinetic energy) indexed by
phase to the control volume.

See specific control volume documenta-
tion for details.

add_phase_enthalpy_balances(*args, **kwargs)

Method for adding enthalpy balances in-
dexed by phase to the control volume.

See specific control volume documenta-
tion for details.

add_phase_momentum_balances(*args, **kwargs)

Method for adding momentum balances
indexed by phase to the control volume.

See specific control volume documenta-
tion for details.

add_phase_pressure_balances(*args, **kwargs)

Method for adding pressure balances in-
dexed by phase to the control volume.
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See specific control volume documenta-
tion for details.

add_reaction_blocks(has_equilibrium=None)

This method constructs the reaction
block for the control volume.

Parameters

• has_equilibrium – indicates whether
equilibrium calculations will be re-
quired in reaction block

• package_arguments – dict-like object
of arguments to be passed to reaction
block as construction arguments

Returns None

add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)

This method constructs the state blocks
for the control volume.

Parameters

• information_flow – a FlowDirection
Enum indicating whether information
flows from inlet-to-outlet or outlet-to-
inlet

• has_phase_equilibrium – indicates
whether equilibrium calculations will be
required in state blocks

• package_arguments – dict-like object
of arguments to be passed to state blocks
as construction arguments

Returns None

add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 1D ma-
terial balances indexed by time length
and component.

Parameters

• has_rate_reactions – whether de-
fault generation terms for rate reactions
should be included in material balances

• has_equilibrium_reactions –
whether generation terms should for
chemical equilibrium reactions should
be included in material balances

• has_phase_equilibrium – whether
generation terms should for phase equi-
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librium behaviour should be included in
material balances

• has_mass_transfer – whether
generic mass transfer terms should be
included in material balances

• custom_molar_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
molar basis. Expression must be in-
dexed by time, length domain and com-
ponent list

• custom_mass_term – a Pyomo Ex-
pression representing custom terms to
be included in material balances on a
mass basis. Expression must be indexed
by time, length domain and component
list

Returns Constraint object representing ma-
terial balances

add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_elemental_term=None)

This method constructs a set of 1D el-
ement balances indexed by time and
length.

Parameters

• - whether default
generation terms for rate
(has_rate_reactions) – reactions
should be included in material balances

• - whether generation
terms should for
(has_equilibrium_reactions)
– chemical equilibrium reactions
should be included in material balances

• - whether generation
terms should for phase
(has_phase_equilibrium) – equilib-
rium behaviour should be included in
material balances

• - whether generic mass
transfer terms should be
(has_mass_transfer) – included
in material balances

• - a Pyomo Expression
representing custom
(custom_elemental_term) – terms
to be included in material balances on a
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molar elemental basis. Expression must
be indexed by time, length and element
list

Returns Constraint object representing ma-
terial balances

add_total_energy_balances(*args, **kwargs)

Method for adding a total energy bal-
ance (including kinetic energy) to the
control volume.

See specific control volume documenta-
tion for details.

add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False,
has_work_transfer=False, has_enthalpy_transfer=False,
custom_term=None)

This method constructs a set of 1D en-
thalpy balances indexed by time and
phase.

Parameters

• - whether terms for
heat of reaction should
(has_heat_of_reaction) – be
included in enthalpy balance

• - whether terms for
heat transfer should be
(has_heat_transfer) – included
in enthalpy balances

• - whether terms for
work transfer should be
(has_work_transfer) – included
in enthalpy balances

• - whether terms for
enthalpy transfer due to
(has_enthalpy_transfer) – mass
transfer should be included in enthalpy
balance. This should generally be
the same as the has_mass_transfer
argument in the material balance
methods

• - a Pyomo Expression
representing custom terms
to (custom_term) – be included in
enthalpy balances. Expression must be
indexed by time, length and phase list

Returns Constraint object representing en-
thalpy balances
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add_total_material_balances(*args, **kwargs)

Method for adding a total material bal-
ance to the control volume.

See specific control volume documenta-
tion for details.

add_total_momentum_balances(*args, **kwargs)

Method for adding a total momentum
balance to the control volume.

See specific control volume documenta-
tion for details.

add_total_pressure_balances(has_pressure_change=False, custom_term=None)

This method constructs a set of 1D pres-
sure balances indexed by time.

Parameters

• - whether terms for
pressure change should be
(has_pressure_change) – included
in enthalpy balances

• - a Pyomo Expression
representing custom terms
to (custom_term) – be included in
pressure balances. Expression must be
indexed by time and length domain

Returns Constraint object representing
pressure balances

apply_transformation()

Method to apply DAE transformation
to the Control Volume length domain.
Transformation applied will be based on
the Control Volume configuration argu-
ments.

build()

Build method for ControlVol-
ume1DBlock blocks.

Returns None

initialize(state_args=None, outlvl=0, optarg=None, solver=None, hold_state=True)

Initialization routine for 1D control vol-
ume.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
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documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None)

• hold_state – flag indicating whether
the initialization routine should unfix
any state variables fixed during initial-
ization, default - True. Valid values:
True - states variables are not unfixed,
and a dict of returned containing flags
for which states were fixed during ini-
tialization, False - state variables are un-
fixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a
dict containing flags for which states
were fixed during initialization else the
release state is triggered.

model_check()

This method executes the model_check
methods on the associated state blocks
(if they exist). This method is gener-
ally called by a unit model as part of the
unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)

Method to release state variables fixed
during initialization.

Keyword Arguments

• flags – dict containing information of
which state variables were fixed during
initialization, and should now be un-
fixed. This dict is returned by initialize
if hold_state = True.

• outlvl – sets output level of logging

Returns None

report(time_point=0, dof=False, ostream=None, prefix='')

No report method defined for Con-
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trolVolume1D class. This is due to
the difficulty of presenting spatially dis-
cretized data in a readable form without
plotting.

ControlVolume1DBlock Equations

This section documents the variables
and constraints created by each of the
methods provided by the ControlVol-
ume0DBlock class.

• 𝑡 indicates time index

• 𝑥 indicates spatial (length) index

• 𝑝 indicates phase index

• 𝑗 indicates component index

• 𝑒 indicates element index

• 𝑟 indicates reaction name index

Most terms within the balance equations
written by ControlVolume1DBlock are
on a basis of per unit length (e.g.
𝑚𝑜𝑙/𝑚 · 𝑠).

add_geometry

The add_geometry method creates the
normalized length domain for the con-
trol volume (or a reference to an exter-
nal domain). All constraints in Con-
trolVolume1DBlock assume a normal-
ized length domain, with values be-
tween 0 and 1.

This method also adds variables and
constraints to describe the geometry
of the control volume. ControlVol-
ume1DBlock does not support varying
dimensions of the control volume with
time at this stage.

Variables

Variable Name Symbol Indices Conditions
length_domain 𝑥 None None
volume 𝑉 None None
area 𝐴 None None
length 𝐿 None None

Constraints
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geometry_constraint:

𝑉 = 𝐴× 𝐿

add_phase_component_balances

Material balances are written for each
component in each phase (e.g. separate
balances for liquid water and steam).
Physical property packages may in-
clude information to indicate that cer-
tain species do not appear in all phases,
and material balances will not be writ-
ten in these cases (if has_holdup is True
holdup terms will still appear for these
species, however these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑥,𝑝,𝑗 t, x, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 t, x, p, j dynamic = True
_flow_terms 𝐹𝑡,𝑥,𝑝,𝑗 t, x, p, j None
material_flow_dx 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥 t, x, p, j None
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 t, x, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 t, x, r has_equilibrium_reactions = True
phase_equilibrium_generation 𝑁𝑝𝑒,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_phase_equilibrium = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

𝐿× 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡
= 𝑓𝑑× 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥
+ 𝐿×𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑝𝑒,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑝,𝑗

𝑓𝑑 is a flow direction term, which allows
for material flow to be defined in either
direction. If material flow is defined as
forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑝,𝑗 term allows the user
to provide custom terms (variables or
expressions) in both mass and molar ba-
sis which will be added into the mate-
rial balances, which will be converted as
necessary to the same basis as the mate-
rial balance (by multiplying or dividing
by the component molecular weight).
The basis of the material balance is de-
termined by the physical property pack-
age, and if undefined (or not mass or
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mole basis), an Exception will be re-
turned.

material_flow_linking_constraints(t, x,
p, j):

This constraint is an internal constraint
used to link the extensive material flow
terms in the StateBlocks into a single
indexed variable. This is required as
Pyomo.DAE requires a single indexed
variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, mate-
rial_holdup_calculation(t, x, p, j):

𝑀𝑡,𝑥,𝑝,𝑗 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of compo-
nent 𝑗 in phase 𝑝 at time 𝑡 and location
𝑥.

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed
by Pyomo.DAE.

If has_rate_reactions
is True,
rate_reaction_stoichiometry_constraint(t,
x, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).

If has_equilibrium_reactions
argument
is True,
equilib-
rium_reaction_stoichiometry_constraint(t,
x, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).
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add_total_component_balances

Material balances are written for each
component across all phases (e.g. one
balance for both liquid water and steam).
Physical property packages may in-
clude information to indicate that cer-
tain species do not appear in all phases,
and material balances will not be writ-
ten in these cases (if has_holdup is True
holdup terms will still appear for these
species, however these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑥,𝑝,𝑗 t, x, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 t, x, p, j dynamic = True
_flow_terms 𝐹𝑡,𝑥,𝑝,𝑗 t, x, p, j None
material_flow_dx 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥 t, x, p, j None
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 t, x, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 t, x, r has_equilibrium_reactions = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

𝐿×
∑︁
𝑝

𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡
= 𝑓𝑑×

∑︁ 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥
+ 𝐿×

∑︁
𝑝

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 + 𝐿×
∑︁
𝑝

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 + 𝐿×
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑗

𝑓𝑑 is a flow direction term, which allows
for material flow to be defined in either
direction. If material flow is defined as
forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑗 term allows the user
to provide custom terms (variables or
expressions) in both mass and molar ba-
sis which will be added into the mate-
rial balances, which will be converted as
necessary to the same basis as the mate-
rial balance (by multiplying or dividing
by the component molecular weight).
The basis of the material balance is de-
termined by the physical property pack-
age, and if undefined (or not mass or
mole basis), an Exception will be re-
turned.

material_flow_linking_constraints(t, x,
p, j):
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This constraint is an internal constraint
used to link the extensive material flow
terms in the StateBlocks into a single
indexed variable. This is required as
Pyomo.DAE requires a single indexed
variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, mate-
rial_holdup_calculation(t, x, p, j):

𝑀𝑡,𝑥,𝑝,𝑗 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of compo-
nent 𝑗 in phase 𝑝 at time 𝑡 and location
𝑥.

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed
by Pyomo.DAE.

If has_rate_reactions
is True,
rate_reaction_stoichiometry_constraint(t,
x, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).

If has_equilibrium_reactions
argument
is True,
equilib-
rium_reaction_stoichiometry_constraint(t,
x, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coeffi-
cient of component 𝑗 in phase 𝑝 for reac-
tion 𝑟 (as defined in the PhysicalParam-
eterBlock).
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add_total_element_balances

Material balances are written for each
element in the mixture.

Variables

Variable Name Symbol Indices Conditions
element_holdup 𝑀𝑡,𝑥,𝑒 t, x, e has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
element_accumulation 𝜕𝑀𝑡,𝑥,𝑒

𝜕𝑡 t, x, e dynamic = True
elemental_mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑒 t, x, e has_mass_transfer = True
elemental_flow_term 𝐹𝑡,𝑥,𝑒 t, x, e None

Constraints

elemental_flow_constraint(t, x, e):

𝐹𝑡,𝑥,𝑒 =
∑︁
𝑝

∑︁
𝑗

𝐹𝑡,𝑥,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝑛𝑗,𝑒 is the number of moles of el-
ement 𝑒 in component 𝑗.

element_balances(t, x, e):

𝐿× 𝜕𝑀𝑡,𝑥,𝑒

𝜕𝑡
= 𝑓𝑑× 𝜕𝐹𝑡,𝑥,𝑒

𝜕𝑥
+ 𝐿×𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒

𝑓𝑑 is a flow direction term, which allows
for material flow to be defined in either
direction. If material flow is defined as
forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑒 term allows the user
to provide custom terms (variables or
expressions) which will be added into
the material balances.

If has_holdup is True, elemen-
tal_holdup_calculation(t, x, e):

𝑀𝑡,𝑥,𝑒 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of compo-
nent 𝑗 in phase 𝑝 at time 𝑡 and location
𝑥.

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed
by Pyomo.DAE.
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add_total_enthalpy_balances

A single enthalpy balance is written for
the entire mixture at each point in the
spatial domain.

Variables

Variable Name Symbol Indices Conditions
energy_holdup 𝐸𝑡,𝑥,𝑝 t, x, p has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
energy_accumulation 𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡 t, x, p dynamic = True
_enthalpy_flow 𝐻𝑡,𝑥,𝑝 t, x, p None
enthalpy_flow_dx 𝜕𝐻𝑡,𝑥,𝑝

𝜕𝑥 t, x, p None
heat 𝑄𝑡,𝑥 t, x has_heat_transfer = True
work 𝑊𝑡,𝑥 t, x has_work_transfer = True
enthalpy_transfer 𝐻𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥 t, x has_enthalpy_transfer = True

Expressions

heat_of_reaction(t, x):

𝑄𝑟𝑥𝑛,𝑡,𝑥 = 𝑠𝑢𝑚𝑟𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟 + 𝑠𝑢𝑚𝑟𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟

where 𝑄𝑟𝑥𝑛,𝑡,𝑥 is the total enthalpy re-
leased by both kinetic and equilibrium
reactions, and ∆𝐻𝑟𝑥𝑛,𝑟 is the specific
heat of reaction for reaction 𝑟.

Parameters

Parameter Name Symbol Default Value
scaling_factor_energy 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 1E-6

Constraints

enthalpy_balance(t):

𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×
∑︁
𝑝

𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡
= 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑓𝑑 𝑡𝑖𝑚𝑒𝑠

∑︁
𝑝

𝜕𝐻𝑡,𝑥,𝑝

𝜕𝑥
+ 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑄𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑊𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝐻𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑄𝑟𝑥𝑛,𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿× 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥

𝑓𝑑 is a flow direction term, which allows
for material flow to be defined in either
direction. If material flow is defined as
forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥 term allows the user
to provide custom terms which will be
added into the energy balance.

enthalpy_flow_linking_constraints(t, x,
p):

This constraint is an internal constraint
used to link the extensive enthalpy flow
terms in the StateBlocks into a single
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indexed variable. This is required as
Pyomo.DAE requires a single indexed
variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, en-
thalpy_holdup_calculation(t, x, p):

𝐸𝑡,𝑥,𝑝 = 𝑢𝑡,𝑥,𝑝 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝑢𝑡,𝑥,𝑝 is the internal density (spe-
cific internal energy) of phase 𝑝 at time
𝑡 and location 𝑥.

If dynamic is True:

Numerical discretization of the deriva-
tive terms, 𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡 , will be performed by
Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for
the entire mixture at all points in the spa-
tial domain.

Variables

Variable Name Symbol Indices Conditions
pressure 𝑃𝑡,𝑥 t, x None
pressure_dx 𝜕𝑃𝑡,𝑥

𝜕𝑥 t, x None
deltaP ∆𝑃𝑡,𝑥 t, x has_pressure_change = True

Parameters

Parameter Name Symbol Default Value
scaling_factor_pressure 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1E-4

Constraints

pressure_balance(t, x):

0 = 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑓𝑑× 𝜕𝑃𝑡,𝑥

𝜕𝑥
+ 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝐿× ∆𝑃𝑡,𝑥 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝐿× ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥

𝑓𝑑 is a flow direction term, which allows
for material flow to be defined in either
direction. If material flow is defined as
forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥 term allows the user
to provide custom terms which will be
added into the pressure balance.

pressure_linking_constraint(t, x):
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This constraint is an internal constraint
used to link the pressure terms in the
StateBlocks into a single indexed vari-
able. This is required as Pyomo.DAE re-
quires a single indexed variable to create
the associated DerivativeVars and their
numerical expansions.

Physical Property Package Classes

Contents

• Physical Property Package Classes

– Physical Parameter Blocks

– State Blocks

Physical property packages represent a
collection of calculations necessary to
determine the state properties of a given
material. Property calculations form a
critical part of any process model, and
thus property packages form the core of
the IDAES modeling framework.

Physical property packages consist of
two parts:

• PhysicalParameterBlocks, which con-
tain a set of parameters associated with
the specific material(s) being modeled,
and

• StateBlocks, which contain the actual
calculations of the state variables and
functions.

Physical Parameter Blocks

Physical Parameter blocks serve as a
central location for linking to a property
package, and contain all the parameters
and indexing sets used by a given prop-
erty package.
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PhysicalParameterBlock Class

The role of the PhysicalParameterBlock
class is to set up the references re-
quired by the rest of the IDAES frame-
work for constructing instances of State-
Blocks and attaching these to the Physi-
calParameter block for ease of use. This
allows other models to be pointed to
the PhysicalParameter block in order to
collect the necessary information and
to construct the necessary StateBlocks
without the need for the user to do this
manually.

Physical property packages form the
core of any process model in the IDAES
modeling framework, and are used by
all of the other modeling components to
inform them of what needs to be con-
structed. In order to do this, the IDAES
modeling framework looks for a num-
ber of attributes in the PhysicalParam-
eter block which are used to inform the
construction of other components.

• state_block_class - a pointer to the asso-
ciated class that should be called when
constructing StateBlocks. This should
only be set by the property package de-
veloper.

• phase_list - a Pyomo Set object defining
the valid phases of the mixture of inter-
est.

• component_list - a Pyomo Set defin-
ing the names of the chemical species
present in the mixture.

• element_list - (optional) a Pyomo Set
defining the names of the chemical el-
ements that make up the species within
the mixture. This is used when doing el-
emental material balances.

• element_comp - (optional) a dict-like
object which defines the elemental com-
position of each species in compo-
nent_list. Form: component: {ele-
ment_1: value, element_2: value, . . . }.

• supported properties metadata - a list
of supported physical properties that the
property package supports, along with
instruction to the framework on how to
construct the associated variables and
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constraints, and the units of measure-
ment used for the property. This infor-
mation is set using the add_properties
attribute of the define_metadata class
method.

Physical Parameter Configuration Arguments

Physical Parameter blocks have one
standard configuration argument:

• default_arguments - this allows the user
to provide a set of default values for con-
struction arguments in associated State-
Blocks, which will be passed to all
StateBlocks when they are constructed.

class idaes.core.property_base.PhysicalParameterBlock(component)

This is the base class for thermophysical
parameter blocks. These are blocks that
contain a set of parameters associated
with a specific thermophysical property
package, and are linked to by all in-
stances of that property package.

build()

General build method for Property-
ParameterBlocks. Inheriting models
should call super().build.

Parameters None –

Returns None

build_state_block(*args, **kwargs)

Methods to construct a StateBlock
assoicated with this PhysicalParame-
terBlock. This will automatically set
the parameters construction argument
for the StateBlock.

Returns StateBlock

get_component(comp)

Method to retrieve a Component ob-
ject based on a name from the compo-
nent_list.

Parameters comp – name of Component
object to retrieve

Returns Component object
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get_default_scaling(attrbute, index=None)

Returns a default scale factor for a prop-
erty

Parameters

• attribute – property attribute name

• index – optional index for indexed
properties

Returns None

get_phase(phase)

Method to retrieve a Phase object based
on a name from the phase_list.

Parameters phase – name of Phase object
to retrieve

Returns Phase object

get_phase_component_set()

Method to get phase-component set for
property package. If a phase- compo-
nent set has not been constructed yet,
this method will construct one.

Parameters None –

Returns Phase-Component Set object

set_default_scaling(attrbute, value, index=None)

Set a default scaling factor for a prop-
erty.

Parameters

• attribute – property attribute name

• value – default scaling factor

• index – for indexed properties, if this
is not provied the scaling factor default
applies to all indexed elements where
specific indexes are no specifcally spec-
ified.

Returns None

unset_default_scaling(attrbute, index=None)

Remove a previously set default value

Parameters

• attribute – property attribute name

• index – optional index for indexed
properties

Returns None
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State Blocks

State Blocks are used within all IDAES
Unit models (generally within Con-
trolVolume Blocks) in order to calcu-
late physical properties given the state
of the material. State Blocks are no-
tably different to other types of Blocks
within IDAES as they are always in-
dexed by time (and possibly space as
well). There are two base Classes asso-
ciated with State Blocks:

• StateBlockData forms the base class for
all StateBlockData objects, which con-
tain the instructions on how to construct
each instance of a State Block.

• StateBlock is used for building classes
which contain methods to be applied to
sets of Indexed State Blocks (or to a sub-
set of these). See the documentation
on declare_process_block_class and the
IDAES tutorials and examples for more
information.

State Block Construction Arguments

State Blocks have the following con-
struction arguments:

• parameters - a reference to the asso-
ciated Physical Parameter block which
will be used to make references to all
necessary parameters.

• defined_state - this argument indicates
whether the State Block should expect
the material state to be fully defined by
another part of the flowsheet (such as by
an upstream unit operation). This argu-
ment is used to determine whether con-
straints such as sums of mole fractions
should be enforced.

• has_phase_equilibrium - indicates
whether the associated Control Volume
or Unit model expects phase equilib-
rium to be enforced (if applicable).
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Constructing State Blocks

State Blocks can be constructed directly
from the associated Physical Parameter
Block by calling the build_state_block()
method on the Physical Parameter
Block. The parameters construction
argument will be automatically set,
and any other arguments (including
indexing sets) may be provided to the
build_state_block method as ususal.

StateBlockData Class

StateBlockData contains the code
necessary for implementing the as
needed construction of variables and
constraints.

class idaes.core.property_base.StateBlockData(*args, **kwargs)

This is the base class for state block data
objects. These are blocks that contain
the Pyomo components associated with
calculating a set of thermophysical and
transport properties for a given material.

build()

General build method for StateBlock-
Datas.

Parameters None –

Returns None

calculate_bubble_point_pressure(*args, **kwargs)

Method which computes the bubble
point pressure for a multi- component
mixture given a temperature and mole
fraction.

calculate_bubble_point_temperature(*args, **kwargs)

Method which computes the bubble
point temperature for a multi- compo-
nent mixture given a pressure and mole
fraction.

calculate_dew_point_pressure(*args, **kwargs)

Method which computes the dew point
pressure for a multi- component mixture
given a temperature and mole fraction.
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calculate_dew_point_temperature(*args, **kwargs)

Method which computes the dew point
temperature for a multi- component
mixture given a pressure and mole frac-
tion.

define_display_vars()

Method used to specify components to
use to generate stream tables and other
outputs. Defaults to define_state_vars,
and developers should overload as re-
quired.

define_port_members()

Method used to specify components to
populate Ports with. Defaults to de-
fine_state_vars, and developers should
overload as required.

define_state_vars()

Method that returns a dictionary of state
variables used in property package. Im-
plement a placeholder method which re-
turns an Exception to force users to over-
load this.

get_energy_density_terms(*args, **kwargs)

Method which returns a valid expression
for enthalpy density to use in the energy
balances.

get_energy_diffusion_terms(*args, **kwargs)

Method which returns a valid expression
for energy diffusion to use in the energy
balances.

get_enthalpy_flow_terms(*args, **kwargs)

Method which returns a valid expression
for enthalpy flow to use in the energy
balances.

get_material_density_terms(*args, **kwargs)

Method which returns a valid expression
for material density to use in the mate-
rial balances .

get_material_diffusion_terms(*args, **kwargs)

Method which returns a valid expression
for material diffusion to use in the mate-
rial balances.

get_material_flow_basis(*args, **kwargs)
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Method which returns an Enum indicat-
ing the basis of the material flow term.

get_material_flow_terms(*args, **kwargs)

Method which returns a valid expression
for material flow to use in the material
balances.

is_property_constructed(attr)

Returns True if the attribute attr al-
ready exists, or false if it would be added
in __getattr__, or does not exist.

Parameters attr (str) – Attribute name
to check

Returns True if the attribute is already con-
structed, False otherwise

lock_attribute_creation_context()

Returns a context manager that does not
allow attributes to be created while in
the context and allows attributes to be
created normally outside the context.

StateBlock Class

class idaes.core.property_base.StateBlock(*args, **kwds)

This is the base class for state block ob-
jects. These are used when construct-
ing the SimpleBlock or IndexedBlock
which will contain the PropertyData ob-
jects, and contains methods that can be
applied to multiple StateBlockData ob-
jects simultaneously.

initialize(*args, **kwargs)

This is a default initialization routine
for StateBlocks to ensure that a routine
is present. All StateBlockData classes
should overload this method with one
suited to the particular property package

Parameters None –

Returns None

report(index=0, true_state=False, dof=False, ostream=None, prefix='')

Default report method for StateBlocks.
Returns a Block report populated with
either the display or state variables de-
fined in the StateBlockData class.
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Parameters

• index – tuple of Block indices indicat-
ing which point in time (and space if ap-
plicable) to report state at.

• true_state – whether to report the
display variables (False default) or the
actual state variables (True)

• dof – whether to show local degrees of
freedom in the report (default=False)

• ostream – output stream to write report
to

• prefix – string to append to the begin-
ning of all output lines

Returns Printed output to ostream

Reaction Property Package Classes

Contents

• Reaction Property Package Classes

– Consistency with Thermophysical Prop-
erties

– Reaction Parameter Blocks

– Reaction Blocks

Reaction property packages represent a
collection of calculations necessary to
determine the reaction behavior of a
mixture at a given state. Reaction prop-
erties depend upon the state and physi-
cal properties of the material, and thus
must be linked to a StateBlock which
provides the necessary state and physi-
cal property information.

Reaction property packages consist of
two parts:

• ReactionParameterBlocks, which con-
tain a set of parameters associated with
the specific reaction(s) being modeled,
and

• ReactionBlocks, which contain the ac-
tual calculations of the reaction behav-
ior.
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Consistency with Thermophysical Properties

Within the IDAES modeling frame-
work, all reaction packages are coupled
with a thermophysical property pack-
age. The thermophysical property pack-
age contains the state variables required
for calculating reaction properties, and
in some cases may also provide thermo-
physical properties required by reaction
calculations. Due to this, reaction pack-
ages must be consistent with the ther-
mophysical property package they are
linked to and the modeling framework
performs some checks to ensure this.
Notably, the default units of measure-
ment defined for the reaction package
and the thermophysical property pack-
age must match.

Reaction Parameter Blocks

Reaction Parameter blocks serve as a
central location for linking to a reac-
tion property package, and contain all
the parameters and indexing sets used by
a given reaction package.

ReactionParameterBlock Class

The role of the ReactionParameterBlock
class is to set up the references required
by the rest of the IDAES framework
for constructing instances of Reaction-
Blocks and attaching these to the Re-
actionParameter block for ease of use.
This allows other models to be pointed
to the ReactionParameter block in or-
der to collect the necessary information
and to construct the necessary Reaction-
Blocks without the need for the user to
do this manually.

Reaction property packages are used by
all of the other modeling components to
inform them of what needs to be con-
structed when dealing with chemical re-
actions. In order to do this, the IDAES
modeling framework looks for a num-
ber of attributes in the ReactionParam-
eter block which are used to inform the
construction of other components.
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• reaction_block_class - a pointer to the
associated class that should be called
when constructing ReactionBlocks.
This should only be set by the property
package developer.

• phase_list - a Pyomo Set object defining
the valid phases of the mixture of inter-
est.

• component_list - a Pyomo Set defin-
ing the names of the chemical species
present in the mixture.

• rate_reaction_idx - a Pyomo Set defin-
ing a list of names for the kinetically
controlled reactions of interest.

• rate_reaction_stoichiometry - a dict-like
object defining the stoichiometry of the
kinetically controlled reactions. Keys
should be tuples of (rate_reaction_idx,
phase_list, component_list) and values
equal to the stoichiometric coefficient
for that index.

• equilibrium_reaction_idx - a Pyomo Set
defining a list of names for the equilib-
rium controlled reactions of interest.

• equilibrium_reaction_stoichiometry - a
dict-like object defining the stoichiom-
etry of the equilibrium controlled reac-
tions. Keys should be tuples of (equi-
librium_reaction_idx, phase_list, com-
ponent_list) and values equal to the sto-
ichiometric coefficient for that index.

• supported properties metadata - a list
of supported reaction properties that the
property package supports, along with
instruction to the framework on how to
construct the associated variables and
constraints, and the units of measure-
ment used for the property. This infor-
mation is set using the add_properties
attribute of the define_metadata class
method.

• required properties metadata - a list
of physical properties that the reac-
tion property calculations depend upon,
and must be supported by the associ-
ated StateBlock. This information is
set using the add_required_properties
attribute of the define_metadata class
method.
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Reaction Parameter Configuration Arguments

Reaction Parameter blocks have two
standard configuration arguments:

• property_package - a pointer to a Phys-
icalParameterBlock which will be used
to construct the StateBlocks to which as-
sociated ReactionBlocks will be linked.
Reaction property packages must be tied
to a single Physical property package,
and this is used to validate the connec-
tions made later when constructing Re-
actionBlocks.

• default_arguments - this allows the user
to provide a set of default values for con-
struction arguments in associated Re-
actionBlocks, which will be passed to
all ReactionBlocks when they are con-
structed.

class idaes.core.reaction_base.ReactionParameterBlock(*args, **kwargs)

This is the base class for reaction param-
eter blocks. These are blocks that con-
tain a set of parameters associated with a
specific reaction package, and are linked
to by all instances of that reaction pack-
age.

build()

General build method for Reaction-
ParameterBlocks. Inheriting models
should call super().build.

Parameters None –

Returns None

build_reaction_block(*args, **kwargs)

Methods to construct a ReactionBlock
assoicated with this ReactionParame-
terBlock. This will automatically set
the parameters construction argument
for the ReactionBlock.

Returns ReactionBlock

get_default_scaling(attrbute, index=None)

Returns a default scale factor for a prop-
erty

Parameters

• attribute – property attribute name
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• index – optional index for indexed
properties

Returns None

set_default_scaling(attrbute, value, index=None)

Set a default scaling factor for a prop-
erty.

Parameters

• attribute – property attribute name

• value – default scaling factor

• index – for indexed properties, if this
is not provied the scaling factor default
applies to all indexed elements where
specific indexes are no specifcally spec-
ified.

Returns None

unset_default_scaling(attrbute, index=None)

Remove a previously set default value

Parameters

• attribute – property attribute name

• index – optional index for indexed
properties

Returns None

Reaction Blocks

Reaction Blocks are used within IDAES
Unit models (generally within Con-
trolVolume Blocks) in order to calcu-
late reaction properties given the state of
the material (provided by an associated
StateBlock). Reaction Blocks are no-
tably different to other types of Blocks
within IDAES as they are always in-
dexed by time (and possibly space as
well), and are also not fully self con-
tained (in that they depend upon the
associated state block for certain vari-
ables). There are two bases Classes as-
sociated with Reaction Blocks:

• ReactionBlockDataBase forms the base
class for all ReactionBlockData objects,
which contain the instructions on how
to construct each instance of a Reaction
Block.
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• ReactionBlockBase is used for build-
ing classes which contain methods
to be applied to sets of Indexed
Reaction Blocks (or to a subset of
these). See the documentation on
declare_process_block_class and the
IDAES tutorials and examples for more
information.

Reaction Block Construction Arguments

Reaction Blocks have the following con-
struction arguments:

• parameters - a reference to the asso-
ciated Reaction Parameter block which
will be used to make references to all
necessary parameters.

• state_block - a reference to the associ-
ated StateBlock which will provide the
necessary state and physical property in-
formation.

• has_equilibrium - indicates whether the
associated Control Volume or Unit
model expects chemical equilibrium to
be enforced (if applicable).

Constructing Reaction Blocks

Reaction Blocks can be constructed
directly from the associated Reac-
tion Parameter Block by calling the
build_reaction_block() method on
the Reaction Parameter Block. The
parameters construction argument will
be automatically set, and any other ar-
guments (including indexing sets) may
be provided to the build_reaction_block
method as ususal.

ReactionBlockDataBase Class

ReactionBlockDataBase contains the
code necessary for implementing the
as needed construction of variables and
constraints.

class idaes.core.reaction_base.ReactionBlockDataBase(*args, **kwargs)

This is the base class for reaction block
data objects. These are blocks that con-
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tain the Pyomo components associated
with calculating a set of reacion proper-
ties for a given material.

build()

General build method for Property-
BlockDatas. Inheriting models should
call super().build.

Parameters None –

Returns None

get_reaction_rate_basis()

Method which returns an Enum indicat-
ing the basis of the reaction rate term.

is_property_constructed(attr)

Returns True if the attribute attr al-
ready exists, or false if it would be added
in __getattr__, or does not exist.

Parameters attr (str) – Attribute name
to check

Returns True if the attribute is already con-
structed, False otherwise

lock_attribute_creation_context()

Returns a context manager that does not
allow attributes to be created while in
the context and allows attributes to be
created normally outside the context.

ReactionBlockBase Class

class idaes.core.reaction_base.ReactionBlockBase(*args, **kwds)

This is the base class for reaction block
objects. These are used when construct-
ing the SimpleBlock or IndexedBlock
which will contain the PropertyData ob-
jects, and contains methods that can be
applied to multiple ReactionBlockData
objects simultaneously.

initialize(*args)

This is a default initialization routine
for ReactionBlocks to ensure that a rou-
tine is present. All ReactionBlockData
classes should overload this method
with one suited to the particular reaction
package

Parameters None –
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Returns None

Unit Model Class

The UnitModelBlock is class is de-
signed to form the basis of all IDAES
Unit Models, and contains a number of
methods which are common to all Unit
Models.

UnitModelBlock Construction Arguments

The UnitModelBlock class by default
has only one construction argument,
which is listed below. However,
most models inheriting from UnitMod-
elBlock should declare their own set
of configuration arguments which con-
tain more information on how the model
should be constructed.

• dynamic - indicates whether the Unit
model should be dynamic or steady-
state, and if dynamic = True, the unit
is declared to be a dynamic model.
dynamic defaults to useDefault if not
provided when instantiating the Unit
model (see below for more details). It
is possible to declare steady-state Unit
models as part of dynamic Flowsheets
if desired, however the reverse is not
true (cannot have dynamic Unit models
within steady-state Flowsheets).

Collecting Time Domain

The next task of the UnitModelBlock
class is to establish the time domain
for the unit by collecting the necessary
information from the parent Flowsheet
model. If the dynamic construction ar-
gument is set to useDefault then the Unit
model looks to its parent model for the
dynamic argument, otherwise the value
provided at construction is used.

Finally, if the Unit model has a construc-
tion argument named “has_holdup” (not
part of the base class), then this is
checked to ensure that if dynamic = True
then has_holdup is also True. If this
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check fails then a ConfigurationError
exception will be thrown.

Modeling Support Methods

The UnitModelBlock class also contains
a number of methods designed to facil-
itate the construction of common com-
ponents of a model, and these are de-
scribed below.

Build Inlets Method

All (or almost all) Unit Models will
have inlets and outlets which allow ma-
terial to flow in and out of the unit
being modeled. In order to save the
model developer from having to write
the code for each inlet themselves, Unit-
ModelBlock contains a method named
build_inlet_port which can automati-
cally create an inlet to a specified Con-
trolVolume block (or linked to a spec-
ified StateBlock). The build_inlet_port
method is described in more detail in the
documentation below.

Build Outlets Method

Similar to build_inlet_port, UnitMod-
elBlock also has a method named
build_outlet_port for constructing
outlets from Unit models. The
build_outlet_port method is described
in more detail in the documentation
below.

Model Check Method

In order to support the IDAES Model
Check tools, UnitModelBlock contains
a simple model_check method which as-
sumes a single Holdup block and calls
the model_check method on this block.
Model developers are encouraged to cre-
ate their own model_check methods for
their particular applications.
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Initialization Routine

All Unit Models need to have an ini-
tialization routine, which should be cus-
tomized for each Unit model, In order
to ensure that all Unit models have at
least a basic initialization routine, Unit-
ModelBlock contains a generic initial-
ization procedure which may be suffi-
cient for simple models with only one
Holdup Block. Model developers are
strongly encouraged to write their own
initialization routines rather than relying
on the default method.

UnitModelBlock Classes

class idaes.core.unit_model.UnitModelBlockData(component)

This is the class for process unit oper-
ations models. These are models that
would generally appear in a process
flowsheet or superstructure.

add_inlet_port(name=None, block=None, doc=None)

This is a method to build inlet Port ob-
jects in a unit model and connect these
to a specified control volume or state
block.

The name and block arguments are op-
tional, but must be used together. i.e. ei-
ther both arguments are provided or nei-
ther.

Keyword Arguments

• name – name to use for Port object (de-
fault = “inlet”).

• block – an instance of a ControlVol-
ume or StateBlock to use as the source
to populate the Port object. If a Con-
trolVolume is provided, the method will
use the inlet state block as defined by
the ControlVolume. If not provided,
method will attempt to default to an ob-
ject named control_volume.

• doc – doc string for Port object (default
= “Inlet Port”)

Returns A Pyomo Port object and associ-
ated components.
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add_outlet_port(name=None, block=None, doc=None)

This is a method to build outlet Port ob-
jects in a unit model and connect these
to a specified control volume or state
block.

The name and block arguments are op-
tional, but must be used together. i.e. ei-
ther both arguments are provided or nei-
ther.

Keyword Arguments

• name – name to use for Port object (de-
fault = “outlet”).

• block – an instance of a ControlVol-
ume or StateBlock to use as the source
to populate the Port object. If a Con-
trolVolume is provided, the method will
use the outlet state block as defined by
the ControlVolume. If not provided,
method will attempt to default to an ob-
ject named control_volume.

• doc – doc string for Port object (default
= “Outlet Port”)

Returns A Pyomo Port object and associ-
ated components.

add_port(name=None, block=None, doc=None)

This is a method to build Port objects in
a unit model and connect these to a spec-
ified StateBlock.

Keyword Arguments

• name – name to use for Port object.

• block – an instance of a StateBlock to
use as the source to populate the Port ob-
ject

• doc – doc string for Port object

Returns A Pyomo Port object and associ-
ated components.

add_state_material_balances(balance_type, state_1, state_2)

Method to add material balances linking
two State Blocks in a Unit Model. This
method is not intended to replace Con-
trol Volumes, but to automate writing
material balances linking isolated State
Blocks in those models where this is re-
quired.

Parameters
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• - a MaterialBalanceType
Enum indicating the type
(balance_type) – of material balances
to write

• - first State Block to be
linked by balances (state_1) –

• - second State Block to be
linked by balances (state_2) –

Returns None

build()

General build method for UnitModel-
BlockData. This method calls a num-
ber of sub-methods which automate the
construction of expected attributes of
unit models.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

initialize(state_args=None, outlvl=0, solver=None, optarg=None)

This is a general purpose initialization
routine for simple unit models. This
method assumes a single ControlVol-
ume block called controlVolume, and
first initializes this and then attempts to
solve the entire unit.

More complex models should overload
this method with their own initialization
routines,

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default IDAES solver)

Returns None
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model_check()

This is a general purpose initialization
routine for simple unit models. This
method assumes a single ControlVol-
ume block called controlVolume and
tries to call the model_check method of
the controlVolume block. If an Attribu-
teError is raised, the check is passed.

More complex models should overload
this method with a model_check suited
to the particular application, especially
if there are multiple ControlVolume
blocks present.

Parameters None –

Returns None

class idaes.core.unit_model.UnitModelBlock(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.
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• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (UnitModelBlock) New instance

Component Class

This is a general purpose Compo-
nent object, and is suitable for general
cases where the user is not concerned
about distinguishing solutes from sol-
vents (is_solute() and is_solvent() will
both raise TypeErrors). This also forms
the base class for all other Component
types.

class idaes.core.components.Component(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

valid_phase_types List of valid Phase-
Types (Enums) for this Component.

elemental_composition Dict containing
elemental composition in the form ele-
ment : stoichiometry

henry_component Dict indicating
phases in which component follows
Herny’s Law (keys) with values indicat-
ing form of law.

dens_mol_liq_comp Method to use to
calculate liquid phase molar density

cp_mol_liq_comp Method to calculate
liquid component specific heats

cp_mol_ig_comp Method to calculate
ideal gas component specific heats
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enth_mol_liq_comp Method to calculate
liquid component molar enthalpies

enth_mol_ig_comp Method to calculate
ideal gas component molar enthalpies

entr_mol_liq_comp Method to calculate
liquid component molar entropies

entr_mol_ig_comp Method to calculate
ideal gas component molar entropies

has_vapor_pressure Flag indicating
whether component has a vapor
pressure

pressure_sat_comp Method to use to cal-
culate saturation pressure

relative_permittivity_liq_comp Method
to use to calculate liquid phase relative
permittivity

phase_equilibrium_form Form of phase
equilibrium constraints for component

parameter_data Dict containing initial-
ization data for parameters

_component_list_exists Internal config
argument indicating whether compo-
nent_list needs to be populated.

_electrolyte Internal config argument in-
dicating whether electrolyte compo-
nent_lists needs to be populated.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Component) New instance
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Solute Class

The component object is suitable for
species which should be treated as so-
lutes in a LiquidPhase. The only differ-
ence between this and a general Compo-
nent is that is_solute() returns True and
is_solvent() returns False.

Solvent Class

The component object is suitable for
species which should be treated as sol-
vents in a LiquidPhase. The only differ-
ence between this and a general Compo-
nent is that is_solute() returns False and
is_solvent() returns True.

Ion Class

The Ion class is suitable for ionic species
which appear in LiquidPhases. This
is similar to the Solute class, in that
is_solute() returns True and is_solvent()
returns False. Additionally, Ion ob-
jects have a charge configuration argu-
ment for recording the charge on the ion
(must be an integer) and do not have
a valid_phase_types argument (as it is
assumed they can only exist in Liquid-
Phases).

Note: Users are encouraged to use the Anion and Cation classes instead of the generic Ion class, as these validate that
sign of the charge configuration argument.

Anion Class

The Anion class is suitable for anionic
species (i.e. negatively charged) which
appear in LiquidPhases. This is a sub-
class of Ion, which enforces that the sign
on the charge configuration argument be
negative.
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Cation Class

The Cation class is suitable for cationic
species (i.e. positively charged) which
appear in LiquidPhases. This is a sub-
class of Ion, which enforces that the sign
on the charge configuration argument be
positive.

Phase Class

class idaes.core.phases.Phase(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

component_list List of components
which are present in phase. This is used
to construct the phase-component Set
for the property package.

equation_of_state A valid Python class
with the necessary methods for con-
structing the desired equation of state
(or similar model).

equation_of_state_options A dict or
ConfigBlock of options to be used when
setting up equation of state for phase.

parameter_data Dict containing initial-
ization data for parameters

_phase_list_exists Internal config ar-
gument indicating whether phase_list
needs to be populated.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
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and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Phase) New instance

Phase Type Enum

In some cases, it is useful to be able to
indicate a given type of phase, rather
than an instance specific Phase class;
an example would be indicating the set
of valid phases for a given chemical
species. In these cases, the PhaseType
Enum can be used, which enumerates
the different types of phases recognized
by the IDAES framework.

The PhaseType Enum has the following
possible values:

• liquidPhase (1)

• vaporPhase (2)

• solidPhase (3)

Utility Methods

Utilities for Dynamic Flowsheets

These are utility functions for working
with dynamic IDAES flowsheets.

Methods

This module contains utility functions
for dynamic IDAES models.

idaes.core.util.dyn_utils.copy_non_time_indexed_values(fs_tgt, fs_src, copy_fixed=True, outlvl=0)

Function to set the values of all variables
that are not (implicitly or explicitly) in-
dexed by time to their values in a differ-
ent flowsheet.

Parameters

• fs_tgt – Flowsheet into which values
will be copied.

• fs_src – Flowsheet from which values
will be copied.
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• copy_fixed – Bool marking whether
or not to copy over fixed variables in the
target flowsheet.

• outlvl – Outlevel for the IDAES log-
ger.

Returns None

idaes.core.util.dyn_utils.copy_values_at_time(fs_tgt, fs_src, t_target, t_source, copy_fixed=True,
outlvl=0)

Function to set the values of all (explic-
itly or implicitly) time-indexed variables
in a flowsheet to similar values (with
the same name) but at different points in
time and (potentially) in different flow-
sheets.

Parameters

• fs_tgt – Target flowsheet, whose vari-
ables’ values will get set

• fs_src – Source flowsheet, whose vari-
ables’ values will be used to set those of
the target flowsheet. Could be the target
flowsheet

• t_target – Target time point

• t_source – Source time point

• copy_fixed – Bool of whether or not to
copy over fixed variables in target model

• outlvl – IDAES logger output level

Returns None

idaes.core.util.dyn_utils.deactivate_constraints_unindexed_by(b, time)

Searches block b for and constraints not
indexed by time and deactivates them.

Parameters

• b – Block to search

• time – Set with respect to which to find
unindexed constraints

Returns List of constraints deactivated

idaes.core.util.dyn_utils.deactivate_model_at(b, cset, pts, outlvl=0)

Finds any block or constraint in block
b, indexed explicitly (and not implicitly)
by cset, and deactivates it at points spec-
ified. Implicitly indexed components
are excluded because one of their parent
blocks will be deactivated, so deactivat-
ing them too would be redundant.
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Parameters

• b – Block to search

• cset – ContinuousSet of interest

• pts – Value or list of values, in Contin-
uousSet, to deactivate at

Returns A dictionary mapping points in pts
to lists of component data that have been
deactivated there

idaes.core.util.dyn_utils.find_comp_in_block(tgt_block, src_block, src_comp, allow_miss=False)

This function finds a component in a
source block, then uses the same local
names and indices to try to find a cor-
responding component in a target block.
This is used when we would like to ver-
ify that a component of the same name
exists in the target block, as in model
predictive control where certain vari-
ables must be correllated between plant
and controller model.

Parameters

• tgt_block – Target block that will be
searched for component

• src_block – Source block in which the
original component is located

• src_comp – Component whose name
will be searched for in target block

• allow_miss – If True, will ignore at-
tribute and key errors due to searching
for non-existant components in the tar-
get model

Returns Component with the same name in
the target block

idaes.core.util.dyn_utils.find_comp_in_block_at_time(tgt_block, src_block, src_comp, time, t0,
allow_miss=False)

This function finds a component in a
source block, then uses the same local
names and indices to try to find a cor-
responding component in a target block,
with the exception of time index in the
target component, which is replaced by
a specified time point. This is used for
validation of a component by its name
in the case where blocks may differ by
at most time indices, for example vali-
dating a steady-state model or a model
with a different time discretization.

Parameters
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• tgt_block – Target block that will be
searched for component

• src_block – Source block in which the
original component is located

• src_comp – Component whose name
will be searched for in target block

• time – Set whose index will be replaced
in the target component

• t0 – Index of the time set that will be
used in the target component

• allow_miss – If True, will ignore at-
tribute and key errors due to searching
for non-existant components in the tar-
get model

idaes.core.util.dyn_utils.fix_vars_unindexed_by(b, time)

Searches block b for variables not in-
dexed by time and fixes them.

Parameters

• b – Block to search

• time – Set with respect to which to find
unindexed variables

Returns List of variables fixed

idaes.core.util.dyn_utils.get_activity_dict(b)

Function that builds a dictionary telling
whether or not each ConstraintData and
BlockData object in a model is active.
Uses the objects’ ids as the hash.

Parameters b – A Pyomo Block to be
searched for active components

Returns A dictionary mapping id of con-
straint and block data objects to a bool
indicating if they are active

idaes.core.util.dyn_utils.get_derivatives_at(b, time, pts)

Finds derivatives with respect to time at
points specified. No distinction made
for multiple derivatives or mixed par-
tials.

Parameters

• b – Block to search for derivatives

• time – ContinuousSet to look for
derivatives with respect to

• pts – Value or list of values in time set
at which to return derivatives
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Returns Dictionary mapping time points to
lists of derivatives at those points

idaes.core.util.dyn_utils.get_fixed_dict(b)

Function that builds a dictionary telling
whether or not each VarData object in a
model is fixed. Uses the objects’ ids as
the hash.

Parameters b – A Pyomo block to be
searched for fixed variables

Returns A dictionary mapping id of Var-
Data objects to a bool indicating if they
are fixed

idaes.core.util.dyn_utils.get_implicit_index_of_set(comp, wrt)

For some data object contained (at some
level of the hierarchy) in a block indexed
by wrt, returns the index corresponding
to wrt in that block.

Parameters

• comp – Component data object whose
(parent blocks’) indices will be searched

• wrt – Set whose index will be searched
for

Returns Value of the specified set

idaes.core.util.dyn_utils.get_index_of_set(comp, wrt)

For some data object of an indexed com-
ponent, gets the value of the index corre-
sponding to some 1-dimensional pyomo
set.

Parameters

• comp – Component data object whose
index will be searched

• wrt – Set whose index will be searched
for

Returns Value of the specified set in the
component data object

idaes.core.util.dyn_utils.get_location_of_coordinate_set(setprod, subset)

For a SetProduct and some 1-
dimensional coordinate set of that
SetProduct, returns the location of an
index of the coordinate set within the
index of the setproduct.

Parameters
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• setprod – SetProduct containing the
subset of interest

• subset – 1-dimensional set whose lo-
cation will be found in the SetProduct

Returns Integer location of the subset
within the SetProduct

idaes.core.util.dyn_utils.path_from_block(comp, blk, include_comp=False)

Returns a list of tuples with (lo-
cal_name, index) pairs required to lo-
cate comp from blk

Parameters

• comp – Component(Data) object to lo-
cate

• blk – Block(Data) to locate comp from

• include_comp – Bool of whether or
not to include the local_name, index of
the component itself

Returns A list of string, index tuples that
can be used to locate comp from blk

Homotopy Meta-Solver

The IDAES homotopy meta-solver is
useful for cases where a user has a
feasible solution to a well-defined (i.e.
square) problem at one set of condi-
tions (i.e. value of fixed variables), and
wishes to find a feasible solution to the
same problem at a different set of con-
ditions. In many situations this can be
achieved by directly changing the values
of the fixed variables to their new val-
ues and solving the problem, but cases
exist where this is challenging. Homo-
topy solvers try to find a feasible path
to the new solution by taking smaller
steps in the value of the fixed variables
to progressively find a solution at the
new point.

Note: A homotopy solver should not be considered a fix to a poorly posed or ill-conditioned problem, and users should
first consider whether their problem can be reformulated for better performance.
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Homotopy Routine

The IDAES homotopy routine starts
from a feasible solution to the problem
at the initial values for the fixed vari-
ables (𝑣0) and a set of target values for
these (𝑡). The routine then calculates
a set of new values for the fixed vari-
ables during the first homotopy evalua-
tion based on an initial step size 𝑠0 such
that:

𝑣1 = 𝑡× 𝑠0 + 𝑣0 × (1 − 𝑠0)

The problem is then passed to Ipopt to
try to find a solution at the current val-
ues for the fixed variables. Based on the
success or failure of the solver step, the
following occurs:

1. If the solver returns an optimal solu-
tion, the step is accepted and the solu-
tion to the current state of the model is
saved (to provide a feasible point to re-
vert to in case a future step fails). If
the current meta-solver progress is 1 (i.e.
it has converged to the target values),
the meta-solver terminates otherwise the
meta-solver progress (𝑝𝑖) is then up-
dated, 𝑝𝑖 = 𝑝𝑖−1+𝑠𝑖, and the size of the
next homotopy step is then calculated
based on an adaptive step size method
such that:

𝑠𝑖+1 = 𝑠𝑖 ×
(︂

1 + 𝑎×
[︂
𝐼𝑡
𝐼𝑎

− 1

]︂)︂
where 𝐼𝑎 is the number of solver itera-
tions required in the current homotopy
step, 𝐼𝑡 is the desired number of solver
iterations per homotopy step (an input
parameter to the homotopy routine) and
𝑎 is a step size acceleration factor (an-
other input parameter). As such, the size
of the homotopy step is adjusted to try to
achieve a desired number of solver iter-
ations per step as a proxy for difficulty
in solving each step. If new step would
overshoot the target values, then the step
size is cut back to match the target val-
ues. The user can also specify a max-
imum and/or minimum size for the ho-
motopy which can be used to limit the
homotopy step.

A new set of values for the fixed vari-
ables is calculated using 𝑣𝑖+1 = 𝑡 ×
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(𝑝𝑖 + 𝑠𝑖+1) + 𝑣0 × (1 − (𝑝𝑖 + 𝑠𝑖+1))
and the process repeated.

2. If the solver fails to find an optimal so-
lution (for any reason), the current step
is rejected and solution to the previous
successful step is reloaded. If the last
homotopy step was equal to the min-
imum homotopy step size, the meta-
solver terminates, otherwise, a reduced
homotopy step is calculated using:

𝑠𝑖+1 = 𝑠𝑖 × 𝑐

where 𝑐 is a step cut factor (an input pa-
rameter between 0.1 and 0.9). If the new
step homotopy step is less than the min-
imum homotopy step size, the minimum
step is used instead.

A new set of fixed variable values are
then calculated and another attempt to
solve the problem is made.

Possible Termination Conditions

The homotopy meta-solver has the fol-
lowing possible termination conditions
(using the Pyomo TerminationCondi-
tion Enum):

• TerminationCondition.optimal - meta-
solver successfully converged at the tar-
get values for the fixed variables.

• TerminationCondition.other - the meta-
solver successfully converged at the tar-
get values for the fixed variables, but
with regularization of during final step.
Users are recommended to discard this
solution.

• TerminationCondition.minStepLength -
the meta-solver was unable to find a fea-
sible path to the target values, as the
solver failed to find a solution using the
minimum homotopy step size.

• TerminationCondition.maxEvaluations
- the meta-solver terminated due to
reaching the maximum allowed number
of attempted homotopy steps

• TerminationCondition.infeasible -
could not find feasible solution to the
problem at the initial values for the
fixed variables.
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Available Methods

IDAES Homotopy meta-solver routine.

idaes.core.util.homotopy.homotopy(model, variables, targets, max_solver_iterations=50,
max_solver_time=10, step_init=0.1, step_cut=0.5, iter_target=4,
step_accel=0.5, max_step=1, min_step=0.05, max_eval=200)

Homotopy meta-solver routine using
Ipopt as the non-linear solver. This rou-
tine takes a model along with a list of
fixed variables in that model and a list
of target values for those variables. The
routine then tries to iteratively move the
values of the fixed variables to their tar-
get values using an adaptive step size.

Parameters

• model – model to be solved

• variables – list of Pyomo Var objects
to be varied using homotopy. Variables
must be fixed.

• targets – list of target values for each
variable

• max_solver_iterations – maxi-
mum number of solver iterations per
homotopy step (default=50)

• max_solver_time – maximum cpu
time for the solver per homotopy step
(default=10)

• step_init – initial homotopy step size
(default=0.1)

• step_cut – factor by which to reduce
step size on failed step (default=0.5)

• step_accel – acceleration factor for
adjusting step size on successful step
(default=0.5)

• iter_target – target number of solver
iterations per homotopy step (default=4)

• max_step – maximum homotopy step
size (default=1)

• min_step – minimum homotopy step
size (default=0.05)

• max_eval – maximum number of ho-
motopy evaluations (both successful
and unsuccessful) (default=200)

Returns
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A Pyomo TerminationCondition Enum indicating
how the meta-solver terminated (see
documentation)

Solver Progress [a fraction indication how
far the solver progressed] from the initial
values to the target values

Number of Iterations [number of homo-
topy evaluations before solver] termi-
nated

Return type Termination Condition

Initialization Methods

The IDAES toolset contains a number of
utility functions to assist users with ini-
tializing models.

Available Methods

This module contains utility functions
for initialization of IDAES models.

idaes.core.util.initialization.fix_state_vars(blk, state_args=None)

Method for fixing state variables within
StateBlocks. Method takes an optional
argument of values to use when fixing
variables.

Parameters

• blk – An IDAES StateBlock object in
which to fix the state variables

• state_args – a dict containing values
to use when fixing state variables. Keys
must match with names used in the de-
fine_state_vars method, and indices of
any variables must agree.

Returns A dict keyed by block index,
state variable name (as defined by de-
fine_state_variables) and variable index
indicating the fixed status of each vari-
able before the fix_state_vars method
was applied.

idaes.core.util.initialization.initialize_by_time_element(fs, time, **kwargs)

Function to initialize Flowsheet fs
element-by-element along Contin-
uousSet time. Assumes sufficient
initialization/correct degrees of free-
dom such that the first finite element
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can be solved immediately and each
subsequent finite element can be solved
by fixing differential and derivative
variables at the initial time point of that
finite element.

Parameters

• fs – Flowsheet to initialize

• time – Set whose elements will be
solved for individually

• solver – Pyomo solver object initial-
ized with user’s desired options

• outlvl – IDAES logger outlvl

• ignore_dof – Bool. If True, checks for
square problems will be skipped.

Returns None

idaes.core.util.initialization.propagate_state(stream, direction='forward')

This method propagates values between
Ports along Arcs. Values can be propa-
gated in either direction using the direc-
tion argument.

Parameters

• stream – Arc object along which to
propagate values

• direction – direction in which to
propagate values. Default = ‘forward’
Valid value: ‘forward’, ‘backward’.

Returns None

idaes.core.util.initialization.revert_state_vars(blk, flags)

Method to revert the fixed state of the
state variables within an IDAES State-
Block based on a set of flags of the pre-
vious state.

Parameters

• blk – an IDAES StateBlock

• flags – a dict of bools indicating pre-
vious state with keys in the form (State-
Block index, state variable name (as de-
fined by define_state_vars), var indices).

Returns None

idaes.core.util.initialization.solve_indexed_blocks(solver, blocks, **kwds)

This method allows for solving of In-
dexed Block components as if they were
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a single Block. A temporary Block ob-
ject is created which is populated with
the contents of the objects in the blocks
argument and then solved.

Parameters

• solver – a Pyomo solver object to use
when solving the Indexed Block

• blocks – an object which inherits from
Block, or a list of Blocks

• kwds – a dict of argumnets to be passed
to the solver

Returns A Pyomo solver results object

Miscellaneous Utility Methods

Contents

• Miscellaneous Utility Methods

– get_solver

– Variable-Like Expressions

– Other Utility Methods

get_solver

The get_solver method is primarily in-
tended for use when a solver object
is required in a general model. The
get_solver method takes two optional ar-
guments which allow the user to specify
a specific solver and/or solver options
if required, or to use the default solver
specified in the IDAES Configuration if
no arguments are provided.

idaes.core.util.misc.get_solver(solver=None, options=None)

General method for getting a solver
object which defaults to the standard
IDAES solver (defined in the IDAES
configuration).

Parameters

• solver – string name for desired solver.
Default=None, use default solver

• options – dict of solver options to
use, overwrites any settings provided by
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IDAES configuration. Default = None,
use default solver options.

Returns A Pyomo solver object

Variable-Like Expressions

There are a number of cases within
IDAES where a modeler may wish to
use an Expression in place of a Var to
reduce the complexity of their model. A
common example of this is in the ideal
Separator unit where the outlet Ports
use Expressions for the state variable in
order to reduce the number of variables
(and thus constraints) in the model.

In these cases, it is possible that a user
might mistake the Expression for a Var
and attempt to use methods such as fix()
on it. In order to provide the user with
a useful error message informing them
that this will not work, IDAES has cre-
ated a derived VarLikeExpression com-
ponent for these situations. This com-
ponent derives directly from Pyomo’s
Expression component and implements
common methods associated with Vars
which will return an error message in-
forming the user that the component is
an Expression, and a suggestion on how
to proceed.

class idaes.core.util.misc.VarLikeExpression(*args, **kwds)

A shared var-like expression container,
which may be defined over a index.

Constructor Arguments: initialize: A Py-
omo expression or dictionary of expres-
sions used to initialize this object.

expr: A synonym for initialize.

rule: A rule function used to initialize
this object.

class idaes.core.util.misc.SimpleVarLikeExpression(*args, **kwds)

add(index, expr)

Add an expression with a given index.

class idaes.core.util.misc.IndexedVarLikeExpression(*args, **kwds)

4.5. Technical Specifications 383



IDAES Documentation, Release 1.10.1

add(index, expr)

Add an expression with a given index.

class idaes.core.util.misc._GeneralVarLikeExpressionData(expr=None, component=None)

An object derived from _GeneralEx-
pressionData which implements meth-
ods for common APIs on Vars.

Constructor Arguments: expr: The Pyomo
expression stored in this expression.

component: The Expression object that
owns this data.

Public Class Attributes: expr: The expres-
sion owned by this data.

Private class attributes: _component: The
expression component.

property value
DEPRECATED.

Deprecated since version 4.3.11323:
The .value property getter on _General-
ExpressionDataImpl is deprecated. Use
the .expr property getter instead

Other Utility Methods

This library also contains a number of
other utility methods that do not fall un-
der another category.

idaes.core.util.misc.add_object_reference(self, local_name, remote_object)

Method to create a reference in the local
model to a remote Pyomo object. This
method should only be used where Py-
omo Reference objects are not suitable
(such as for referencing scalar Pyomo
objects where the None index is unde-
sirable).

Parameters

• local_name – name to use for local ref-
erence (str)

• remote_object – object to make a ref-
erence to

Returns None

idaes.core.util.misc.copy_port_values(destination=None, source=None, arc=None)

Copy the variable values in the source
port to the destination port. The ports
must containt the same variables.
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Parameters

• destination (Port) – Port to copy
values to or None if specifying arc

• source (Port) – Port to copy values
from or None if specifying arc

• arc (Arc) – If arc is provided, use arc to
define source and destination

Returns None

idaes.core.util.misc.extract_data(data_dict)

General method that returns a rule to ex-
tract data from a python dictionary. This
method allows the param block to have
a database for a parameter but extract a
subset of this data to initialize a Pyomo
param object.

idaes.core.util.misc.set_param_from_config(b, param, config=None, index=None)

Utility method to set parameter value
from a config block. This allows
for converting units if required. This
method directly sets the value of the pa-
rameter.

Parameters

• - block on which parameter and
config block are defined (b) –

• - name of parameter as str.
Used to find param and config
arg (param) –

• - units of param object (units)
–

• - (index) – unset, assumes b.config.

• - – property may have multiple param-
eters associated with it.

Returns None

idaes.core.util.misc.TagReference(s, description='')

Create a Pyomo reference with an added
description string attribute to describe
the reference. The intended use for these
references is to create a time-indexed
reference to variables in a model corre-
sponding to plant measurment tags.

Parameters

• s – Pyomo time slice of a variable or ex-
pression
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• description (str) – A description the
measurment

Returns A Pyomo Reference object with an
added doc attribute

idaes.core.util.misc.svg_tag(tags, svg, outfile=None, idx=None, tag_map=None, show_tags=False,
byte_encoding='utf-8', tag_format=None, tag_format_default='{:.4e}')

Replace text in a SVG with tag values
for the model. This works by looking
for text elements in the SVG with IDs
that match the tags or are in tag_map.

Parameters

• tags – A dictionary where the key is the
tag and the value is a Pyomo Reference.
The reference could be indexed. In typ-
ical IDAES applications the references
would be indexed by time.

• svg – a file pointer or a string continaing
svg contents

• outfile – a file name to save the re-
sults, if None don’t save

• idx – if None not indexed, otherwise an
index in the indexing set of the reference

• tag_map – dictionary with svg id keys
and tag values, to map svg ids to tags

• show_tags – Put tag labels of the dia-
gram instead of numbers

• byte_encoding – If svg is given as a
byte-array, use this encoding to convert
it to a string.

• tag_format – A dictionary of format-
ting strings. If the formatting string is
a callable, it should be a function that
takes the value to display and returns a
formatting string.

• tag_format_default – The de-
fault formatting if not explicitly by
tag_format. If the formatting string is
a callable, it should be a function that
takes the value to display and returns a
formatting string.

Returns SVG String
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Model State Serialization

The IDAES framework has some util-
ity functions for serializing the state of
a Pyomo model. These functions can
save and load attributes of Pyomo com-
ponents, but cannot reconstruct the Py-
omo objects (it is not a replacement
for pickle). It does have some advan-
tages over pickle though. Not all Py-
omo models are picklable. Serializa-
tion and deserialization of the model
state to/from json is more secure in that
it only deals with data and not exe-
cutable code. It should be safe to use the
from_json() function with data from
untrusted sources, while, unpickling an
object from an untrusted source is not
secure. Storing a model state using
these functions is also probably more ro-
bust against Python and Python package
version changes, and possibly more suit-
able for long-term storage of results.

Below are a few example use cases for
this module.

• Some models are very complex and may
take minutes to initialize. Once a model
is initialized it’s state can be saved. For
future runs, the initialized state can be
reloaded instead of rerunning the initial-
ization procedure.

• Results can be stored for later evalua-
tion without needing to rerun the model.
These results can be archived in a data
management system if needed later.

• These functions may be useful in writ-
ing initialization procedures. For exam-
ple, a model may be constructed and
ready to run but first it may need to
be initialized. Which components are
active and which variables are fixed
can be stored. The initialization can
change which variables are fixed and
which components are active. The orig-
inal state can be read back after initial-
ization, but where only values of vari-
ables that were originally fixed are read
back in. This is an easy way to en-
sure that whatever the initialization pro-
cedure may do, the result is exactly the
same problem (with only better initial
values for unfixed variables).
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• These functions can be used to send and
receive model data to/from JavaScript
user interface components.

Examples

This section provides a few very simple
examples of how to use these functions.

Example Models

This section provides some boilerplate
and functions to create a couple simple
test models. The second model is a little
more complicated and includes suffixes.

from pyomo.environ import *
from␣
→˓idaes.core.util import to_
→˓json, from_json, StoreSpec

def setup_model01():
model = ConcreteModel()
model.b = Block([1,2,3])
a =␣

→˓model.b[1].a = Var(bounds=(-
→˓100, 100), initialize=2)

b =␣
→˓model.b[1].b = Var(bounds=(-
→˓100, 100), initialize=20)

model.b[1].
→˓c = Constraint(expr=b==10*a)

a.fix(2)
return model

def setup_model02():
model = ConcreteModel()
a␣

→˓= model.a = Param(default=1,
→˓ mutable=True)

b␣
→˓= model.b = Param(default=2,
→˓ mutable=True)

c = model.
→˓c = Param(initialize=4)

x = model.x =␣
→˓Var([1,2], initialize={1:1.
→˓5, 2:2.5}, bounds=(-10,10))

model.
→˓f = Objective(expr=(x[1]␣
→˓- a)**2 + (x[2] - b)**2)

(continues on next page)
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model.
→˓g = Constraint(expr=x[1]␣
→˓+ x[2] - c >= 0)

model.dual␣
→˓= Suffix(direction=Suffix.
→˓IMPORT)

model.ipopt_zL_out␣
→˓= Suffix(direction=Suffix.
→˓IMPORT)

model.ipopt_zU_out␣
→˓= Suffix(direction=Suffix.
→˓IMPORT)
return model

Serialization

These examples can be appended to the
boilerplate code above.

The first example creates a model, saves
the state, changes a value, then reads
back the initial state.

model = setup_model01()
to_json(model,
→˓ fname="ex.json.gz
→˓", gz=True, human_read=True)
model.b[1].a = 3000.4
from_json(model,␣
→˓fname="ex.json.gz", gz=True)
print(value(model.b[1].a))

2

This next example show how to save
only suffixes.

model = setup_model02()
# Suffixes here␣
→˓are read back from solver,
→˓ so to have suffix data,
# need to solve first
solver␣
→˓= SolverFactory("ipopt")
solver.solve(model)
store_
→˓spec = StoreSpec.suffix()
to_json(model, fname=
→˓"ex.json", wts=store_spec)
# Do something and␣
→˓now I want my suffixes back

(continues on next page)
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from_json(model, fname=
→˓"ex.json", wts=store_spec)

to_json

Despite the name of the to_json func-
tion it is capable of creating Python dic-
tionaries, json files, gzipped json files,
and json strings. The function docu-
mentation is below. A StoreSpec ob-
ject provides the function with details on
what to store and how to handle special
cases of Pyomo component attributes.

idaes.core.util.model_serializer.to_json(o, fname=None, human_read=False, wts=None,
metadata=None, gz=None, return_dict=False,
return_json_string=False)

Save the state of a model to a Python
dictionary, and optionally dump it to a
json file. To load a model state, a model
with the same structure must exist. The
model itself cannot be recreated from
this.

Parameters

• o – The Pyomo component object to
save. Usually a Pyomo model, but could
also be a subcomponent of a model (usu-
ally a sub-block).

• fname – json file name to save model
state, if None only create python dict

• gz – If fname is given and gv is True
gzip the json file. The default is True if
the file name ends with ‘.gz’ otherwise
False.

• human_read – if True, add indents and
spacing to make the json file more read-
able, if false cut out whitespace and
make as compact as possilbe

• metadata – A dictionary of addtional
metadata to add.

• wts – is What To Save, this is a Store-
Spec object that specifies what object
types and attributes to save. If None, the
default is used which saves the state of
the compelte model state.

• metadata – addtional metadata to save
beyond the standard format_version,
date, and time.
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• return_dict – default is False if true
returns a dictionary representation

• return_json_string – default is
False returns a json string

Returns If return_dict is True returns a dic-
tionary serialization of the Pyomo com-
ponent. If return_dict is False and re-
turn_json_string is True returns a json
string dump of the dict. If fname is given
the dictionary is also written to a json
file. If gz is True and fname is given,
writes a gzipped json file.

from_json

The from_json function puts data from
Python dictionaries, json files, gzipped
json files, and json strings back into a
Pyomo model. The function documen-
tation is below. A StoreSpec object pro-
vides the function with details on what
to read and how to handle special cases
of Pyomo component attributes.

idaes.core.util.model_serializer.from_json(o, sd=None, fname=None, s=None, wts=None, gz=None,
root_name=None)

Load the state of a Pyomo component
state from a dictionary, json file, or json
string. Must only specify one of sd,
fname, or s as a non-None value. This
works by going through the model and
loading the state of each sub-compoent
of o. If the saved state contains extra in-
formation, it is ignored. If the save state
doesn’t contain an enetry for a model
component that is to be loaded an error
will be raised, unless ignore_missing =
True.

Parameters

• o – Pyomo component to for which to
load state

• sd – State dictionary to load, if None,
check fname and s

• fname – JSON file to load, only used if
sd is None

• s – JSON string to load only used if both
sd and fname are None

• wts – StoreSpec object specifying what
to load
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• gz – If True assume the file specified by
fname is gzipped. The default is True if
fname ends with ‘.gz’ otherwise False.

Returns Dictionary with some perfo-
mance information. The keys are
“etime_load_file”, how long in sec-
onds it took to load the json file
“etime_read_dict”, how long in sec-
onds it took to read models state
“etime_read_suffixes”, how long in
seconds it took to read suffixes

StoreSpec

StoreSpec is a class for objects that
tell the to_json() and from_json()
functions how to read and write Pyomo
component attributes. The default ini-
tialization provides an object that would
load and save attributes usually needed
to save a model state. There are several
other class methods that provide canned
objects for specific uses. Through ini-
tialization arguments, the behavior is
highly customizable. Attributes can be
read or written using callback functions
to handle attributes that can not be di-
rectly read or written (e.g. a variable
lower bound is set by calling setlb()).
See the class documentation below.

class idaes.core.util.model_serializer.StoreSpec(classes=((<class 'pyomo.core.base.param.Param'>,
('_mutable', )), (<class 'pyomo.core.base.var.Var'>,
()), (<class
'pyomo.core.base.expression.Expression'>, ()),
(<class 'pyomo.core.base.component.Component'>,
('active', ))), data_classes=((<class
'pyomo.core.base.var._VarData'>, ('fixed', 'stale',
'value', 'lb', 'ub')), (<class
'pyomo.core.base.param._ParamData'>, ('value', )),
(<class 'int'>, ('value', )), (<class 'float'>, ('value',
)), (<class
'pyomo.core.base.expression._ExpressionData'>, ()),
(<class
'pyomo.core.base.component.ComponentData'>,
('active', ))), skip_classes=(<class
'pyomo.core.base.external.ExternalFunction'>,
<class 'pyomo.core.base.set.Set'>, <class
'pyomo.network.port.Port'>, <class
'pyomo.core.base.expression.Expression'>, <class
'pyomo.core.base.set.RangeSet'>),
ignore_missing=True, suffix=True,
suffix_filter=None)
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A StoreSpec object tells the serializer
functions what to read or write. The de-
fault settings will produce a StoreSpec
configured to load/save the typical at-
tributes required to load/save a model
state.

Parameters

• classes – A list of classes to save.
Each class is represented by a list (or
tupple) containing the following ele-
ments: (1) class (compared using isin-
stance) (2) attribute list or None, an
emptry list store the object, but none of
its attributes, None will not store objects
of this class type (3) optional load fil-
ter function. The load filter function re-
turns a list of attributes to read based on
the state of an object and its saved state.
The allows, for example, loading values
for unfixed variables, or only loading
values whoes current value is less than
one. The filter function only applies
to load not save. Filter functions take
two arguments (a) the object (current
state) and (b) the dictionary containing
the saved state of an object. More spe-
cific classes should come before more
general classes. For example if an obe-
jct is a HeatExchanger and a UnitModel,
and HeatExchanger is listed first, it will
follow the HeatExchanger settings. If UnitModel is listed first in the classes list, it will follow the UnitModel settings.

• data_classes – This takes the same
form as the classes argument. This is for
component data classes.

• skip_classes – This is a list of classes
to skip. If a class appears in the skip
list, but also appears in the classes ar-
gument, the classes argument will over-
ride skip_classes. The use for this is
to specifically exclude certain classes
that would get caught by more general
classes (e.g. UnitModel is in the class
list, but you want to exclude HeatEx-
changer which is derived from Unit-
Model).

• ignore_missing – If True will ig-
nore a component or attribute that ex-
ists in the model, but not in the stored
state. If false an excpetion will be raised
for things in the model that should be
loaded but aren’t in the stored state. Ex-
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tra items in the stored state will not raise
an exception regaurdless of this argu-
ment.

• suffix – If True store suffixes and com-
ponent ids. If false, don’t store suffixes.

• suffix_filter – None to store all sif-
fixes if suffix=True, or a list of suffixes
to store if suffix=True

classmethod bound()

Returns a StoreSpec object to store vari-
able bounds only.

get_class_attr_list(o)

Look up what attributes to save/load for
an Component object. :param o: Object
to look up attribute list for.

Returns A list of attributes and a filter func-
tion for object type

get_data_class_attr_list(o)

Look up what attributes to save/load for
an ComponentData object. :param o:
Object to look up attribute list for.

Returns A list of attributes and a filter func-
tion for object type

classmethod isfixed()

Returns a StoreSpec object to store if
variables are fixed.

set_read_callback(attr, cb=None)

Set a callback to set an attribute, when
reading from json or dict.

set_write_callback(attr, cb=None)

Set a callback to get an attribute, when
writing to json or dict.

classmethod value()

Returns a StoreSpec object to store vari-
able values only.

classmethod value_isfixed(only_fixed)

Return a StoreSpec object to store vari-
able values and if fixed.

Parameters only_fixed – Only load fixed
variable values
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classmethod value_isfixed_isactive(only_fixed)

Retur a StoreSpec object to store vari-
able values, if variables are fixed and if
components are active.

Parameters only_fixed – Only load fixed
variable values

Structure

Python dictionaries, json strings, or json
files are generated, in any case the struc-
ture of the data is the same. The current
data structure version is 3.

The example json below shows
the top-level structure. The
"top_level_component" would
be the name of the Pyomo component
that is being serialized. The top level
component is the only place were the
component name does not matter when
reading the serialized data.

{
"__metadata__": {

"format_version": 3,
"date": "2018-12-21",

␣
→˓ "time": "11:34:39.714323",

"other": {
},
"__performance__": {

␣
→˓ "n_components": 219,

␣
→˓ "etime_make_dict": 0.003}

},
"top_level_component":{
"...": "..."

},
}

The data structure of a Pyomo
component is shown below. Here
"attribute_1" and "attribute_2"
are just examples the actual attributes
saved depend on the “wts” argument
to to_json(). Scalar and indexed
components have the same struc-
ture. Scalar components have one
entry in "data" with an index of
"None". Only components derived
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from Pyomo’s _BlockData have a
"__pyomo_components__" field,
and components appearing there are
keyed by thier name. The data structure
duplicates the hierarchical structure of
the Pyomo model.

Suffixes store extra attributes for Pyomo
components that are not stored on the
components themselves. Suffixes are a
Pyomo structure that comes from the
AMPL solver interface. If a component
is a suffix, keys in the data section are
the serial integer component IDs gener-
ated by to_json(), and the value is the
value of the suffix for the corresponding
component.

{
"__type_

→˓_": "<class 'some.class'>",
"__id__": 0,
"data":{
"index_1":{

"__type_
→˓_":"<usually a component␣
→˓class but for params␣
→˓could be float, int, ...>",

"__id__": 1,
␣

→˓ "__pyomo_components__":{
␣

→˓ "child_component_1": {
"...": "..."

}
},

␣
→˓ "attribute_1": "... could␣
→˓be any number of attributes␣
→˓like 'value': 1.0,",

"attribute_2": "..."
}

},
"attribute_1": "... could␣

→˓be any number of attributes␣
→˓like 'active': true,",

"attribute_2": "..."
}

As a more concrete example, here is the
json generated for example model 2 in
Examples. This code can be appended
to the example boilerplate above. To
generate the example json shown.

396 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

model = setup_model02()
solver␣
→˓= SolverFactory("ipopt")
solver.solve(model)
to_
→˓json(model, fname="ex.json")

The resulting json is shown below. The
top-level component in this case is given
as “unknown,” because the model was
not given a name. The top level object
name is not needed when reading back
data, since the top level object is speci-
fied in the call to from_json(). Types
are not used when reading back data,
they may have some future application,
but at this point they just provide a little
extra information.

{
"__metadata__":{
"format_version":3,
"date":"2019-01-02",
"time":"10:22:25.833501",
"other":{
},
"__performance__":{
"n_components":18,
"etime_make_

→˓dict":0.000955581665039062
}

},
"unknown":{
"__type_

→˓_":"<class 'pyomo.core.base.
→˓PyomoModel.ConcreteModel'>",
"__id__":0,
"active":true,
"data":{
"None":{
"__type_

→˓_":"<class 'pyomo.core.base.
→˓PyomoModel.ConcreteModel'>",

"__id__":1,
"active":true,

␣
→˓ "__pyomo_components__":{

"a":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":2,
"_mutable":true,

(continues on next page)
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"data":{
"None":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":3,
"value":1

}
}

},
"b":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":4,
"_mutable":true,
"data":{
"None":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":5,
"value":2

}
}

},
"c":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":6,
"_mutable":false,
"data":{
"None":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.param.SimpleParam'>",

"__id__":7,
"value":4

}
}

},
"x":{
␣

→˓ "__type__":"<class 'pyomo.
→˓core.base.var.IndexedVar'>",

"__id__":8,
"data":{
"1":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.var._GeneralVarData'>",

(continues on next page)
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"__id__":9,
"fixed":false,
"stale":false,
"value":1.5,
"lb":-10,
"ub":10

},
"2":{
"__

→˓type__":"<class 'pyomo.core.
→˓base.var._GeneralVarData'>",

"__id__":10,
"fixed":false,
"stale":false,
"value":2.5,
"lb":-10,
"ub":10

}
}

},
"f":{

␣
→˓ "__type__":"<class␣
→˓'pyomo.core.base.objective.
→˓SimpleObjective'>",

"__id__":11,
"active":true,
"data":{
␣

→˓ "None":{"__type__":"<class␣
→˓'pyomo.core.base.objective.
→˓SimpleObjective'>",

"__id__":12,
"active":true
}

}
},
"g":{

␣
→˓ "__type__":"<class␣
→˓'pyomo.core.base.constraint.
→˓SimpleConstraint'>",

"__id__":13,
"active":true,
"data":{
"None":{

␣
→˓ "__type__":"<class␣
→˓'pyomo.core.base.constraint.
→˓SimpleConstraint'>",

"__id__":14,
"active":true

(continues on next page)

4.5. Technical Specifications 399



IDAES Documentation, Release 1.10.1

(continued from previous page)

}
}

},
"dual":{

␣
→˓ "__type__":"<class 'pyomo.
→˓core.base.suffix.Suffix'>",

"__id__":15,
"active":true,
"data":{

␣
→˓ "14":0.9999999626149493

}
},
"ipopt_zL_out":{

␣
→˓ "__type__":"<class 'pyomo.
→˓core.base.suffix.Suffix'>",

"__id__":16,
"active":true,
"data":{
␣

→˓ "9":2.1791814146763388e-10,
␣

→˓ "10":2.004834508495852e-10
}

},
"ipopt_zU_out":{

␣
→˓ "__type__":"<class 'pyomo.
→˓core.base.suffix.Suffix'>",

"__id__":17,
"active":true,
"data":{
␣

→˓ "9":-2.947875485096964e-10,
␣

→˓"10":-3.3408951850535573e-10
}

}
}

}
}

}
}
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Model Statistics Methods

The IDAES toolset contains a number
of utility functions which are useful
for quantifying model statistics such as
the number of variable and constraints,
and calculating the available degrees of
freedom in a model. These methods
can be found in idaes.core.util.
model_statistics.

The most commonly used meth-
ods are degrees_of_freedom and
report_statistics, which are
described below.

Degrees of Freedom Method

The degrees_of_freedom method
calculates the number of degrees of
freedom available in a given model.
The calcuation is based on the number
of unfixed variables which appear in
active constraints, minus the number of
active equality constraints in the model.
Users should note that this method does
not consider inequality or deactived
constraints, or variables which do not
appear in active equality constraints.

idaes.core.util.model_statistics.degrees_of_freedom(block)

Method to return the degrees of freedom
of a model.

Parameters block – model to be studied

Returns Number of degrees of freedom in
block.

Report Statistics Method

The report_statistics method pro-
vides the user with a summary of
the contents of their model, includ-
ing the degrees of freedom and a
break down of the different Variables,
Constraints, Objectives, Blocks
and Expressions. This method also
includes numbers of deactivated compo-
nents for the user to use in debugging
complex models.
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Note: This method only considers Pyomo components in activated Blocks. The number of deactivated Blocks is
reported, but any components within these Blocks are not included.

Example Output

Model Statistics

Degrees of Freedom: 0

Total No. Variables: 52

No. Fixed Variables: 12

No. Unused Variables: 0 (Fixed: 0)

No. Variables only in Inequalities: 0
(Fixed: 0)

Total No. Constraints: 40

No. Equality Constraints: 40 (Deacti-
vated: 0)

No. Inequality Constraints: 0 (Deacti-
vated: 0)

No. Objectives: 0 (Deactivated: 0)

No. Blocks: 14 (Deactivated: 0)

No. Expressions: 2

idaes.core.util.model_statistics.report_statistics(block, ostream=None)

Method to print a report of the model
statistics for a Pyomo Block

Parameters

• block – the Block object to report
statistics from

• ostream – output stream for printing
(defaults to sys.stdout)

Returns Printed output of the model statis-
tics

Other Statistics Methods

In addition to the methods discussed
above, the model_statistics module
also contains a number of methods for
quantifying model statistics which may
be of use to the user in debugging mod-
els. These methods come in three types:

402 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

• Number methods (start with number_)
return the number of components which
meet a given criteria, and are useful
for quickly quantifying differnt types of
components within a model for deter-
mining where problems may exist.

• Set methods (end with _set) return a
Pyomo ComponentSet containing all
components which meet a given criteria.
These methods are useful for determin-
ing where a problem may exist, as the
ComponentSet indicates which compo-
nents may be causing a problem.

• Generator methods (end with
_generator) contain Python
generators which return all compo-
nents which meet a given criteria.

Available Methods

This module contains utility functions
for reporting structural statistics of
IDAES models.

idaes.core.util.model_statistics.activated_block_component_generator(block, ctype)

Generator which returns all the compo-
nents of a given ctype which exist in ac-
tivated Blocks within a model.

Parameters

• block – model to be studied

• ctype – type of Pyomo component to
be returned by generator.

Returns A generator which returns all com-
ponents of ctype which appear in acti-
vated Blocks in block

idaes.core.util.model_statistics.activated_blocks_set(block)

Method to return a ComponentSet of all
activated Block components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all ac-
tivated Block components in block (in-
cluding block itself)

idaes.core.util.model_statistics.activated_constraints_generator(block)

Generator which returns all activated
Constraint components in a model.

Parameters block – model to be studied
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Returns A generator which returns all acti-
vated Constraint components block

idaes.core.util.model_statistics.activated_constraints_set(block)

Method to return a ComponentSet of
all activated Constraint components in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all ac-
tivated Constraint components in block

idaes.core.util.model_statistics.activated_equalities_generator(block)

Generator which returns all activated
equality Constraint components in a
model.

Parameters block – model to be studied

Returns A generator which returns all ac-
tivated equality Constraint components
block

idaes.core.util.model_statistics.activated_equalities_set(block)

Method to return a ComponentSet of
all activated equality Constraint compo-
nents in a model.

Parameters block – model to be studied

Returns A ComponentSet including all ac-
tivated equality Constraint components
in block

idaes.core.util.model_statistics.activated_inequalities_generator(block)

Generator which returns all activated
inequality Constraint components in a
model.

Parameters block – model to be studied

Returns A generator which returns all acti-
vated inequality Constraint components
block

idaes.core.util.model_statistics.activated_inequalities_set(block)

Method to return a ComponentSet of all
activated inequality Constraint compo-
nents in a model.

Parameters block – model to be studied

Returns A ComponentSet including all ac-
tivated inequality Constraint compo-
nents in block
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idaes.core.util.model_statistics.activated_objectives_generator(block)

Generator which returns all activated
Objective components in a model.

Parameters block – model to be studied

Returns A generator which returns all acti-
vated Objective components block

idaes.core.util.model_statistics.activated_objectives_set(block)

Method to return a ComponentSet of all
activated Objective components which
appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all ac-
tivated Objective components which ap-
pear in block

idaes.core.util.model_statistics.active_variables_in_deactivated_blocks_set(block)

Method to return a ComponentSet of
any Var components which appear
within an active Constraint but belong
to a deacitvated Block in a model.

Parameters block – model to be studied

Returns A ComponentSet including any
Var components which belong to a deac-
itvated Block but appear in an activate
Constraint in block

idaes.core.util.model_statistics.deactivated_blocks_set(block)

Method to return a ComponentSet of
all deactivated Block components in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all de-
activated Block components in block
(including block itself)

idaes.core.util.model_statistics.deactivated_constraints_generator(block)

Generator which returns all deactivated
Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all deac-
tivated Constraint components block

idaes.core.util.model_statistics.deactivated_constraints_set(block)

Method to return a ComponentSet of all
deactivated Constraint components in a
model.
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Parameters block – model to be studied

Returns A ComponentSet including all
deactivated Constraint components in
block

idaes.core.util.model_statistics.deactivated_equalities_generator(block)

Generator which returns all deactivated
equality Constraint components in a
model.

Parameters block – model to be studied

Returns A generator which returns all deac-
tivated equality Constraint components
block

idaes.core.util.model_statistics.deactivated_equalities_set(block)

Method to return a ComponentSet of all
deactivated equality Constraint compo-
nents in a model.

Parameters block – model to be studied

Returns A ComponentSet including all de-
activated equality Constraint compo-
nents in block

idaes.core.util.model_statistics.deactivated_inequalities_generator(block)

Generator which returns all deactivated
inequality Constraint components in a
model.

Parameters block – model to be studied

Returns A generator which returns all in-
deactivated equality Constraint compo-
nents block

idaes.core.util.model_statistics.deactivated_inequalities_set(block)

Method to return a ComponentSet of all
deactivated inequality Constraint com-
ponents in a model.

Parameters block – model to be studied

Returns A ComponentSet including all de-
activated inequality Constraint compo-
nents in block

idaes.core.util.model_statistics.deactivated_objectives_generator(block)

Generator which returns all deactivated
Objective components in a model.

Parameters block – model to be studied

Returns A generator which returns all deac-
tivated Objective components block
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idaes.core.util.model_statistics.deactivated_objectives_set(block)

Method to return a ComponentSet of
all deactivated Objective components
which appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all de-
activated Objective components which
appear in block

idaes.core.util.model_statistics.derivative_variables_set(block)

Method to return a ComponentSet of
all DerivativeVar components which ap-
pear in a model. Users should note
that DerivativeVars are converted to or-
dinary Vars when a DAE transformation
is applied. Thus, this method is useful
for detecting any DerivativeVars which
were do transformed.

Parameters block – model to be studied

Returns A ComponentSet including all
DerivativeVar components which ap-
pear in block

idaes.core.util.model_statistics.expressions_set(block)

Method to return a ComponentSet of all
Expression components which appear in
a model.

Parameters block – model to be studied

Returns A ComponentSet including all Ex-
pression components which appear in
block

idaes.core.util.model_statistics.fixed_unused_variables_set(block)

Method to return a ComponentSet of all
fixed Var components which do not ap-
pear within any activated Constraint in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all
fixed Var components which do not ap-
pear within any Constraints in block

idaes.core.util.model_statistics.fixed_variables_generator(block)

Generator which returns all fixed Var
components in a model.

Parameters block – model to be studied
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Returns A generator which returns all fixed
Var components block

idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set(block)

Method to return a ComponentSet of
all fixed Var components which appear
within an equality Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all
fixed Var components which appear
within activated equality Constraints in
block

idaes.core.util.model_statistics.fixed_variables_only_in_inequalities(block)

Method to return a ComponentSet of
all fixed Var components which appear
only within activated inequality Con-
straints in a model.

Parameters block – model to be studied

Returns A ComponentSet including all
fixed Var components which appear
only within activated inequality Con-
straints in block

idaes.core.util.model_statistics.fixed_variables_set(block)

Method to return a ComponentSet of all
fixed Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all
fixed Var components in block

idaes.core.util.model_statistics.large_residuals_set(block, tol=1e-05,
return_residual_values=False)

Method to return a ComponentSet of all
Constraint components with a residual
greater than a given threshold which ap-
pear in a model.

Parameters

• block – model to be studied

• tol – residual threshold for inclusion in
ComponentSet

• return_residual_values – boolean,
if true return dictionary with residual
values

Returns A ComponentSet including all
Constraint components with a residual
greater than tol which appear in block
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(if return_residual_values is false) resid-
ual_values: dictionary with constraint
as key and residual (float) as value (if re-
turn_residual_values is true)

Return type large_residual_set

idaes.core.util.model_statistics.number_activated_blocks(block)

Method to return the number of acti-
vated Block components in a model.

Parameters block – model to be studied

Returns Number of activated Block compo-
nents in block (including block itself)

idaes.core.util.model_statistics.number_activated_constraints(block)

Method to return the number of ac-
tivated Constraint components in a
model.

Parameters block – model to be studied

Returns Number of activated Constraint
components in block

idaes.core.util.model_statistics.number_activated_equalities(block)

Method to return the number of acti-
vated equality Constraint components in
a model.

Parameters block – model to be studied

Returns Number of activated equality Con-
straint components in block

idaes.core.util.model_statistics.number_activated_inequalities(block)

Method to return the number of acti-
vated inequality Constraint components
in a model.

Parameters block – model to be studied

Returns Number of activated inequality
Constraint components in block

idaes.core.util.model_statistics.number_activated_objectives(block)

Method to return the number of acti-
vated Objective components which ap-
pear in a model.

Parameters block – model to be studied

Returns Number of activated Objective
components which appear in block

idaes.core.util.model_statistics.number_active_variables_in_deactivated_blocks(block)

Method to return the number of Var
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components which appear within an ac-
tive Constraint but belong to a deacit-
vated Block in a model.

Parameters block – model to be studied

Returns Number of Var components which
belong to a deacitvated Block but appear
in an activate Constraint in block

idaes.core.util.model_statistics.number_deactivated_blocks(block)

Method to return the number of deacti-
vated Block components in a model.

Parameters block – model to be studied

Returns Number of deactivated Block com-
ponents in block (including block itself)

idaes.core.util.model_statistics.number_deactivated_constraints(block)

Method to return the number of de-
activated Constraint components in a
model.

Parameters block – model to be studied

Returns Number of deactivated Constraint
components in block

idaes.core.util.model_statistics.number_deactivated_equalities(block)

Method to return the number of deacti-
vated equality Constraint components in
a model.

Parameters block – model to be studied

Returns Number of deactivated equality
Constraint components in block

idaes.core.util.model_statistics.number_deactivated_inequalities(block)

Method to return the number of deacti-
vated inequality Constraint components
in a model.

Parameters block – model to be studied

Returns Number of deactivated inequality
Constraint components in block

idaes.core.util.model_statistics.number_deactivated_objectives(block)

Method to return the number of deacti-
vated Objective components which ap-
pear in a model.

Parameters block – model to be studied

Returns Number of deactivated Objective
components which appear in block

410 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

idaes.core.util.model_statistics.number_derivative_variables(block)

Method to return the number of Deriva-
tiveVar components which appear in a
model. Users should note that Deriva-
tiveVars are converted to ordinary Vars
when a DAE transformation is applied.
Thus, this method is useful for detecting
any DerivativeVars which were do trans-
formed.

Parameters block – model to be studied

Returns Number of DerivativeVar compo-
nents which appear in block

idaes.core.util.model_statistics.number_expressions(block)

Method to return the number of Ex-
pression components which appear in a
model.

Parameters block – model to be studied

Returns Number of Expression compo-
nents which appear in block

idaes.core.util.model_statistics.number_fixed_unused_variables(block)

Method to return the number of fixed
Var components which do not appear
within any activated Constraint in a
model.

Parameters block – model to be studied

Returns Number of fixed Var components
which do not appear within any acti-
vated Constraints in block

idaes.core.util.model_statistics.number_fixed_variables(block)

Method to return the number of fixed
Var components in a model.

Parameters block – model to be studied

Returns Number of fixed Var components
in block

idaes.core.util.model_statistics.number_fixed_variables_in_activated_equalities(block)

Method to return the number of fixed
Var components which appear within
activated equality Constraints in a
model.

Parameters block – model to be studied

Returns Number of fixed Var components
which appear within activated equality
Constraints in block
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idaes.core.util.model_statistics.number_fixed_variables_only_in_inequalities(block)

Method to return the number of fixed
Var components which only appear
within activated inequality Constraints
in a model.

Parameters block – model to be studied

Returns Number of fixed Var components
which only appear within activated in-
equality Constraints in block

idaes.core.util.model_statistics.number_large_residuals(block, tol=1e-05)

Method to return the number Constraint
components with a residual greater than
a given threshold which appear in a
model.

Parameters

• block – model to be studied

• tol – residual threshold for inclusion in
ComponentSet

Returns Number of Constraint components
with a residual greater than tol which ap-
pear in block

idaes.core.util.model_statistics.number_total_blocks(block)

Method to return the number of Block
components in a model.

Parameters block – model to be studied

Returns Number of Block components in
block (including block itself)

idaes.core.util.model_statistics.number_total_constraints(block)

Method to return the total number of
Constraint components in a model.

Parameters block – model to be studied

Returns Number of Constraint components
in block

idaes.core.util.model_statistics.number_total_equalities(block)

Method to return the total number of
equality Constraint components in a
model.

Parameters block – model to be studied

Returns Number of equality Constraint
components in block
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idaes.core.util.model_statistics.number_total_inequalities(block)

Method to return the total number of
inequality Constraint components in a
model.

Parameters block – model to be studied

Returns Number of inequality Constraint
components in block

idaes.core.util.model_statistics.number_total_objectives(block)

Method to return the number of Ob-
jective components which appear in a
model

Parameters block – model to be studied

Returns Number of Objective components
which appear in block

idaes.core.util.model_statistics.number_unfixed_variables(block)

Method to return the number of unfixed
Var components in a model.

Parameters block – model to be studied

Returns Number of unfixed Var compo-
nents in block

idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities(block)

Method to return the number of un-
fixed Var components which appear
within activated equality Constraints in
a model.

Parameters block – model to be studied

Returns Number of unfixed Var compo-
nents which appear within activated
equality Constraints in block

idaes.core.util.model_statistics.number_unused_variables(block)

Method to return the number of Var
components which do not appear within
any activated Constraint in a model.

Parameters block – model to be studied

Returns Number of Var components which
do not appear within any activagted
Constraints in block

idaes.core.util.model_statistics.number_variables(block)

Method to return the number of Var
components in a model.

Parameters block – model to be studied
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Returns Number of Var components in
block

idaes.core.util.model_statistics.number_variables_in_activated_constraints(block)

Method to return the number of Var
components that appear within active
Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which
appear within active Constraints in
block

idaes.core.util.model_statistics.number_variables_in_activated_equalities(block)

Method to return the number of Var
components which appear within acti-
vated equality Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which
appear within activated equality Con-
straints in block

idaes.core.util.model_statistics.number_variables_in_activated_inequalities(block)

Method to return the number of Var
components which appear within acti-
vated inequality Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which
appear within activated inequality Con-
straints in block

idaes.core.util.model_statistics.number_variables_near_bounds(block, tol=0.0001)

Method to return the number of all Var
components in a model which have a
value within tol (relative) of a bound.

Parameters

• block – model to be studied

• tol – relative tolerance for inclusion in
generator (default = 1e-4)

Returns Number of components block that
are close to a bound

idaes.core.util.model_statistics.number_variables_only_in_inequalities(block)

Method to return the number of Var
components which appear only within
activated inequality Constraints in a
model.

Parameters block – model to be studied
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Returns Number of Var components which
appear only within activated inequality
Constraints in block

idaes.core.util.model_statistics.total_blocks_set(block)

Method to return a ComponentSet of all
Block components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all
Block components in block (including
block itself)

idaes.core.util.model_statistics.total_constraints_set(block)

Method to return a ComponentSet of all
Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all
Constraint components in block

idaes.core.util.model_statistics.total_equalities_generator(block)

Generator which returns all equality
Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all
equality Constraint components block

idaes.core.util.model_statistics.total_equalities_set(block)

Method to return a ComponentSet of
all equality Constraint components in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all
equality Constraint components in block

idaes.core.util.model_statistics.total_inequalities_generator(block)

Generator which returns all inequality
Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all in-
equality Constraint components block

idaes.core.util.model_statistics.total_inequalities_set(block)

Method to return a ComponentSet of all
inequality Constraint components in a
model.

Parameters block – model to be studied
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Returns A ComponentSet including all in-
equality Constraint components in block

idaes.core.util.model_statistics.total_objectives_generator(block)

Generator which returns all Objective
components in a model.

Parameters block – model to be studied

Returns A generator which returns all Ob-
jective components block

idaes.core.util.model_statistics.total_objectives_set(block)

Method to return a ComponentSet of all
Objective components which appear in
a model.

Parameters block – model to be studied

Returns A ComponentSet including all Ob-
jective components which appear in
block

idaes.core.util.model_statistics.unfixed_variables_generator(block)

Generator which returns all unfixed Var
components in a model.

Parameters block – model to be studied

Returns A generator which returns all un-
fixed Var components block

idaes.core.util.model_statistics.unfixed_variables_in_activated_equalities_set(block)

Method to return a ComponentSet of all
unfixed Var components which appear
within an activated equality Constraint
in a model.

Parameters block – model to be studied

Returns A ComponentSet including all un-
fixed Var components which appear
within activated equality Constraints in
block

idaes.core.util.model_statistics.unfixed_variables_set(block)

Method to return a ComponentSet of all
unfixed Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all un-
fixed Var components in block

idaes.core.util.model_statistics.unused_variables_set(block)

Method to return a ComponentSet of
all Var components which do not ap-
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pear within any activated Constraint in
a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components which do not appear within
any Constraints in block

idaes.core.util.model_statistics.variables_in_activated_constraints_set(block)

Method to return a ComponentSet of all
Var components which appear within a
Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components which appear within acti-
vated Constraints in block

idaes.core.util.model_statistics.variables_in_activated_equalities_set(block)

Method to return a ComponentSet of all
Var components which appear within an
equality Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components which appear within acti-
vated equality Constraints in block

idaes.core.util.model_statistics.variables_in_activated_inequalities_set(block)

Method to return a ComponentSet of all
Var components which appear within an
inequality Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components which appear within acti-
vated inequality Constraints in block

idaes.core.util.model_statistics.variables_near_bounds_generator(block, tol=0.0001,
relative=True, skip_lb=False,
skip_ub=False)

Generator which returns all Var com-
ponents in a model which have a value
within tol (default: relative) of a bound.

Parameters

• block – model to be studied

• tol – (relative) tolerance for inclusion
in generator (default = 1e-4)

• relative – Boolean, use relative toler-
ance (default = True)
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• skip_lb – Boolean to skip lower bound
(default = False)

• skip_ub – Boolean to skip upper bound
(default = False)

Returns A generator which returns all Var
components block that are close to a
bound

idaes.core.util.model_statistics.variables_near_bounds_set(block, tol=0.0001, relative=True,
skip_lb=False, skip_ub=False)

Method to return a ComponentSet of all
Var components in a model which have
a value within tol (relative) of a bound.

Parameters

• block – model to be studied

• tol – relative tolerance for inclusion in
generator (default = 1e-4)

• relative – Boolean, use relative toler-
ance (default = True)

• skip_lb – Boolean to skip lower bound
(default = False)

• skip_ub – Boolean to skip upper bound
(default = False)

Returns A ComponentSet including all Var
components block that are close to a
bound

idaes.core.util.model_statistics.variables_only_in_inequalities(block)

Method to return a ComponentSet
of all Var components which appear
only within inequality Constraints in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components which appear only within
inequality Constraints in block

idaes.core.util.model_statistics.variables_set(block)

Method to return a ComponentSet of all
Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var
components in block
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Phase Equilibria

The IDAES toolset contains methods for
generating and displaying phase equilib-
ria data.

Available Methods

The phase equilibria methods in-
clude methods to calculate bubble
and dew temperatures ( Txy_data())
and include this data in a read-
able Class (TXYDataClass). This
class can be used in the method
build_txy_diagrams() to create
T-x-y diagrams.

idaes.core.util.phase_equilibria.Txy_data(model, component_1, component_2, pressure,
num_points=20, temperature=298.15, print_level=0,
solver=None, solver_op=None)

Function to generate T-x-y data. The
function builds a state block and extracts
bubble and dew temperatures at P pres-
sure for N number of compositions. As
N is increased increase the time of the
calculation will increase and create a
smoother looking plot.

Parameters

• component_1 – Component 1

• component_2 – Component 2

• pressure – Pressure at which the bub-
ble and drew temperatures will be cal-
culates

• temperature – Temperature at which
to initialize state block

• num_points – Number of data point to
be calculated

• model – Model wit intialized Property
package which contains data to calculate

• and dew temperatures for
component 1 and component 2
(bubble) –

• print_level – printing level from ini-
tialization

• solver – solver to use (default=None,
use IDAES default solver)

• solver_op – solver options
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Returns A class containing the T-x-y data

Return type (Class)

idaes.core.util.phase_equilibria.TXYDataClass(component_1, component_2, Punits, Tunits, pressure)

Write data needed for
build_txy_diagrams() into a class.
The class can be obtained by running
Txy_data() or by assigining values to
the class.

idaes.core.util.phase_equilibria.build_txy_diagrams(txy_data, figure_name=None,
print_legend=True, include_pressure=False)

Parameters

• txy_data – Txy data class includes
components bubble and dew

• temperatures –

• compositions –

• components –

• pressure –

• units. (and) –

• figure_name – if a figure name is in-
cluded the plot will save with the name

• figure_name.png –

• print_legend (bool) – = If True,
include legend to distinguish between
Bubble and dew temperature. The de-
fault is True.

• include_pressure (bool) –

• in legends. The default is
False. (calculated) –

Returns t-x-y plot

The methods also include
Txy_diagram() which is a method
that calculates the data and creates the
plots automatically.

idaes.core.util.phase_equilibria.Txy_diagram(model, component_1, component_2, pressure,
num_points=20, temperature=298.15,
figure_name=None, print_legend=True,
include_pressure=False, print_level=0, solver=None,
solver_op=None)

This method generates T-x-y plots.
Given the components, pressure and
property dictionary this function calls
Txy_data() to generate T-x-y data and
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once the data has been generated calls
build_txy_diagrams() to create a plot.

Parameters

• component_1 – Component which
composition will be plotted in x axis

• component_2 – Component which
composition will decrease in x axis

• pressure – Pressure at which the bub-
ble and drew temperatures will be cal-
culated

• temperature – Temperature at which
to initialize state block

• num_points – Number of data point to
be calculated

• properties – property package which
contains parameters to calculate bubble

• dew temperatures for the
mixture of the compnents
specified. (and) –

• figure_name – if a figure name is in-
cluded the plot will save with the name

• figure_name.png –

• print_legend (bool) – = If True,
include legend to distinguish between
Bubble and dew temperature. The de-
fault is True.

• include_pressure (bool) –

• in legends. The default is
False. (calculated) –

• print_level – printing level from ini-
tialization

• solver – solver to use (default=None,
use IDAES default solver)

• solver_op – solver options

Returns Plot
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Scaling Methods

This section describes scaling utility
functions and methods.

Context

Creating well scaled models is impor-
tant for increasing the efficiency and re-
liability of solvers. Depending on prop-
erty package units of measure and pro-
cess scale, variables and constraints are
often badly scaled.

Scaling factors can be specified for any
variable or constraint. Pyomo and many
solvers support the scaling_factor
suffix. To eliminate the possibil-
ity of defining conflicting scaling fac-
tors in various places in the model,
the IDAES standard is to define the
scaling_factor suffixes in the same
block as the variable or constraint that
they are scaling. This ensures that each
scale factor is defined in only one place,
and is organized based on the model
block structure.

Scaling factors in IDAES (and Pyomo)
are multiplied by the variable or con-
straint they scale. For example, a Pres-
sure variable in Pa units may be ex-
pected to have a magnitude of around
106 for a specific process. To scale the
variable to a more reasonable magni-
tude, the scale factor for the variable
could be defined to be 1 × 10−5.

While many scaling factors should
be give good default values in the
property packages, some (e.g. flow
rates or material holdups) must be given
scale factors by the user for a specific
process model. Still other scale factors
can be calculated from supplied scale
factors, for example, mass balance scale
factors could be determined from flow
rate scale factors. To calculate scale
factors, models may have a standard
calculate_scaling_factors()
method. For more specific scaling
information, see the model documenta-
tion.
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For much of the core IDAES framework,
model constraints are automatically
scaled via a simple transformation
where both sides of the constraint are
multiplied by a scale factor determined
based on supplied variable and expres-
sion scaling factors. The goal of this
is to ensure that solver tolerances are
meaningful for each constraint. A con-
straint violation of 1 × 10−8 should be
acceptable, but not too tight to achieve
given machine precision limits. IDAES
model constraints should conform
approximately to this guideline after
the calculate_scaling_factors()
method is executed. Users should
follow this guideline for constraints
they write. The scaling of constraints
for reasonable residual tolerances is
done as a constraint transformation
independent of the scaling factor suffix.
Scaling factors for constraints can still
be set based on other methods such as
reducing very large Jacobian matrix entries.

Specifying Scaling

Suffixes are used to specify scaling fac-
tors for IDAES models. These suffixes
are created when needed by calling
the set_scaling_factor() function.
Using the set_scaling_factor(),
get_scaling_factor(), and
unset_scaling_factor() elim-
inates the need to deal directly with
scaling suffixes, and ensures that scaling
factors are stored in the IDAES standard
location.

idaes.core.util.scaling.set_scaling_factor(c, v, data_objects=True)

Set a scaling factor for a model com-
ponent. This function creates the scal-
ing_factor suffix if needed.

Parameters

• c – component to supply scaling factor
for

• v – scaling factor

• data_objects – set scaling factors for
indexed data objects (default=True)

Returns None
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idaes.core.util.scaling.get_scaling_factor(c, default=None, warning=False, exception=False,
hint=None)

Get a component scale factor.

Parameters

• c – component

• default – value to return if no scale
factor exists (default=None)

• warning – whether to log a warning
if a scaling factor is not found (de-
fault=False)

• exception – whether to riase an Ex-
ception if a scaling factor is not found
(default=False)

• hint – (str) a string to add to the warn-
ing or exception message to help loacate
the source.

Returns scaling factor (float)

idaes.core.util.scaling.unset_scaling_factor(c, data_objects=True)

Delete a component scaling factor.

Parameters c – component

Returns None

Constraint Transformation

As mentioned previously, constraints in
the IDAES framework are transformed
such that 1 × 10−8 is a reasonable cri-
teria for convergence before any other
scaling factors are applied. There are a
few utility functions for scaling transfor-
mation of constraints. When transform-
ing constraints with these functions, the
scaling applies to the original constraint,
not combined with any previous trans-
formation.

idaes.core.util.scaling.constraint_scaling_transform(c, s, overwrite=True)

This transforms a constraint by the ar-
gument s. The scaling factor applies to
original constraint (e.g. if one where to
call this twice in a row for a constraint
with a scaling factor of 2, the original
constraint would still, only be scaled by
a factor of 2.)

Parameters

• c – Pyomo constraint
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• s – scale factor applied to the constraint
as originally written

• overwrite – overwrite existing scaling
factors if present (default=True)

Returns None

idaes.core.util.scaling.constraint_scaling_transform_undo(c)

The undoes the scaling transforms pre-
viously applied to a constraint.

Parameters c – Pyomo constraint

Returns None

idaes.core.util.scaling.get_constraint_transform_applied_scaling_factor(c, default=None)

Get a the scale factor that was used to
transform a constraint.

Parameters

• c – constraint data object

• default – value to return if no scaling
factor exists (default=None)

Returns The scaling factor that has been
used to transform the constraint or the
default.

Calculation in Model

Some scaling factors may also be
calculated by a call to a model’s
calculate_scaling_factors()
method. For more information see
specific model documentation.

Sometimes a scaling factor may be set
on an indexed component and proro-
gated to it’s data objects later can be use-
ful for example in models that use the
DAE transformation, not all data objects
exist until after the transformation.

idaes.core.util.scaling.propagate_indexed_component_scaling_factors(blk, typ=None,
overwrite=False,
descend_into=True)

Use the parent component scaling factor
to set all component data object scaling
factors.

Parameters

• blk – The block on which to search for
components
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• typ – Component type(s) (default=(Var,
Constraint, Expression, Param))

• overwrite – if a data object already has
a scaling factor should it be overwrittten
(default=False)

• descend_into – descend into child
blocks (default=True)

Constraint Auto-Scaling

Constraints
can be
scaled to au-
tomati-
cally re-
duce very
large en-
tries in
the Jaco-
bian ma-
trix with
the constraint_autoscale_large_jac()
function.

idaes.core.util.scaling.constraint_autoscale_large_jac(m, ignore_constraint_scaling=False,
ignore_variable_scaling=False,
max_grad=100, min_scale=1e-06,
no_scale=False)

Automatically scale constraints based
on the Jacobian. This function imi-
tates Ipopt’s default constraint scaling.
This scales constraints down to avoid
extremely large values in the Jacobian.
This function also returns the unscaled
and scaled Jacobian matrixes and the
Pynumero NLP which can be used to
identify the constraints and variables
corresponding to the rows and com-
lumns.

Parameters

• m – model to scale

• ignore_constraint_scaling – ig-
nore existing constraint scaling

• ignore_variable_scaling – ignore
existing variable scaling

• max_grad – maximum value in Jaco-
bian after scaling, subject to minimum
scaling factor restriction.
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• min_scale – minimum scaling factor
allowed, keeps constraints from being
scaled too much.

• no_scale – just calculate the Jacobian
and scaled Jacobian, don’t scale any-
thing

Returns unscaled Jacobian CSR from,
scaled Jacobian CSR from, Pynumero
NLP

Inspect Scaling

Models
can be
large, so
it is of-
ten diffi-
cult to iden-
tify where
scaling
is needed
and where
the prob-
lem may be
poorly scaled.
The func-
tions be-
low may
be help-
ful in in-
specting
a mod-
els scal-
ing. Ad-
ditionally
constraint_autoscale_large_jac() described above can provide Jacobian information at the current vari-
able values.

idaes.core.util.scaling.badly_scaled_var_generator(blk, large=10000.0, small=0.001, zero=1e-10,
descend_into=True, include_fixed=False)

This provides a rough check for vari-
ables with poor scaling based on their
current scale factors and values. For
each potentially poorly scaled variable
it returns the var and its current scaled
value.

Parameters

• blk – pyomo block

• large – Magnitude that is considered to
be too large
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• small – Magnitude that is considered to
be too small

• zero – Magnitude that is considered to
be zero, variables with a value of zero
are okay, and not reported.

Yields variable data object, current absolute
value of scaled value

idaes.core.util.scaling.unscaled_variables_generator(blk, descend_into=True, include_fixed=False)

Generator for unscaled variables

Parameters block –

Yields variables with no scale factor

idaes.core.util.scaling.unscaled_constraints_generator(blk, descend_into=True)

Generator for unscaled constraints

Parameters block –

Yields constraints with no scale factor

idaes.core.util.scaling.map_scaling_factor(iter, default=1, warning=False, func=<built-in function
min>, hint=None)

Map get_scaling_factor to an iterable of
Pyomo components, and call func on the
result. This could be use, for example, to
get the minimum or maximum scaling
factor of a set of components.

Parameters

• iter – Iterable yielding Pyomo compo-
nents

• default – The default value used when
a scaling factor is missing. The default
is default=1.

• warning – Log a warning for missing
scaling factors

• func – The function to call on the re-
sulting iterable of scaling factors. The
default is min().

• hint – Paired with warning=True, this
is a string to indicate where the miss-
ing scaling factor was being accessed, to
easier diagnose issues.

Returns The result of func on the set of scal-
ing factors

idaes.core.util.scaling.min_scaling_factor(iter, default=1, warning=True, hint=None)

Map get_scaling_factor to an iterable of
Pyomo components, and get the mini-
mum scaling factor.
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Parameters

• iter – Iterable yielding Pyomo compo-
nents

• default – The default value used when
a scaling factor is missing. If None,
this will raise an exception when scal-
ing factors are missing. The default is
default=1.

• warning – Log a warning for missing
scaling factors

• hint – Paired with warning=True, this
is a string to indicate where the miss-
ing scaling factor was being accessed, to
easier diagnose issues.

Returns Minimum scaling factor of the
components in iter

idaes.core.util.scaling.get_jacobian(m, scaled=True)

Get the Jacobian matrix at the current
model values. This function also returns
the Pynumero NLP which can be used
to identify the constraints and variables
corresponding to the rows and com-
lumns.

Parameters

• m – model to get Jacobian from

• scaled – if True return scaled Jacobian,
else get unscaled

Returns Jacobian matrix in Scipy CSR for-
mat, Pynumero nlp

idaes.core.util.scaling.jacobian_cond(m=None, scaled=True, ord=None, pinv=False, jac=None)

Get the condition number of the scaled
or unscaled Jacobian matrix of a model.

Parameters

• m – calculate the condition number of
the Jacobian from this model.

• scaled – if True use scaled Jacobian,
else use unscaled

• ord – norm order, None = Frobenius,
see scipy.sparse.linalg.norm for more

• pinv – Use pseudoinverse, works for
non-square matrixes

• jac – (optional) perviously calculated
jacobian
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Returns (float) Condition number

Applying Scaling

Scale factor suffixes can be passed di-
rectly to a solver. How the scale factors
are used may vary by solver. Pyomo also
contains tools to transform a problem to
a scaled version.

Ipopt is the standard solver in IDAES.
To use scale factors with Ipopt, the
nlp_scaling_method option should
be set to user-scaling. Be aware that
this deactivates any NLP automatic scal-
ing.

Table Methods

The IDAES toolset contains a number
of methods for generating and display-
ing summary tables of data in the form
of pandas DataFrames.

Available Methods

idaes.core.util.tables.arcs_to_stream_dict(blk, additional=None, descend_into=True, sort=False,
prepend=None, s=None)

Creates a
stream dic-
tionary
from the
Arcs in a
model, us-
ing the
Arc names
as keys.
This can
be used
to auto-
mate the
creation
of the
streams dic-
tionary
needed
for the
create_stream_table_dataframe()
and stream_states_dict() func-
tions.

Parameters
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• blk (pyomo.environ._BlockData) –
Pyomo model to search for Arcs

• additional (dict) – Additional states
to add to the stream dictionary, which
aren’t represented by arcs in blk, for ex-
ample feed or product streams without
Arcs attached or states internal to a unit
model.

• descend_into (bool) – If True, search
subblocks for Arcs as well. The default
is True.

• sort (bool) – If True sort keys and re-
turn an OrderedDict

• prepend (str) – Prepend a string to the
arc name joined with a ‘.’. This can
be useful to prevent conflicting names
when sub blocks contain Arcs that have
the same names when used in combina-
tion with descend_into=False.

• s (dict) – Add streams to an existing
stream dict.

Returns Dictionary with Arc names as keys
and the Arcs as values.

idaes.core.util.tables.create_stream_table_dataframe(streams, true_state=False, time_point=0,
orient='columns')

Method to create a stream table in the
form of a pandas dataframe. Method
takes a dict with name keys and stream
values. Use an OrderedDict to list the
streams in a specific order, otherwise the
dataframe can be sorted later.

Parameters

• streams – dict with name keys and
stream values. Names will be used
as display names for stream table, and
streams may be Arcs, Ports or State-
Blocks.

• true_state – indicated whether the
stream table should contain the dis-
play variables define in the StateBlock
(False, default) or the state variables
(True).

• time_point – point in the time domain
at which to generate stream table (de-
fault = 0)

• orient – orientation of stream table.
Accepted values are ‘columns’ (default)
where streams are displayed as columns,
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or ‘index’ where stream are displayed as
rows.

Returns A pandas DataFrame containing
the stream table data.

idaes.core.util.tables.generate_table(blocks, attributes, heading=None, exception=True)

Create a Pandas DataFrame that con-
tains a list of user-defined attributes
from a set of Blocks.

Parameters

• blocks (dict) – A dictionary with
name keys and BlockData objects for
values. Any name can be associated
with a block. Use an OrderedDict to
show the blocks in a specific order, oth-
erwise the dataframe can be sorted later.

• attributes (list or tuple of
strings) – Attributes to report from
a Block, can be a Var, Param, or Ex-
pression. If an attribute doesn’t exist
or doesn’t have a valid value, it will be
treated as missing data.

• heading (list or tuple of
srings) – A list of strings that
will be used as column headings. If
None the attribute names will be used.

• exception (bool) – If True, raise ex-
ceptions releated to invalid or missing
indexes. If false missing or bad indexes
are ignored and None is used for the ta-
ble value. Setting this to False allows
tables where some state blocks have the
same attributes with differnt indexing.
(default is True)

Returns A Pandas dataframe containing a
data table

Return type (DataFrame)

idaes.core.util.tables.stream_states_dict(streams, time_point=0)

Method to create a dictionary of state
block representing stream states. This
takes a dict with stream name keys and
stream values.

Parameters

• streams – dict with name keys and
stream values. Names will be used
as display names for stream table, and
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streams may be Arcs, Ports or State-
Blocks.

• time_point – point in the time domain
at which to generate stream table (de-
fault = 0)

Returns A pandas DataFrame containing
the stream table data.

idaes.core.util.tables.stream_table_dataframe_to_string(stream_table, **kwargs)

Method to print a stream table from a
dataframe. Method takes any argument
understood by DataFrame.to_string

idaes.core.util.tables.tag_state_quantities(blocks, attributes, labels, exception=False)

Take a stream states dictionary, and re-
turn a tag dictionary for stream quanti-
ties. This takes a dictionary (blk) that
has state block labels as keys and state
blocks as values. The attributes are a
list of attributes to tag. If an element of
the attribute list is list-like, the fist ele-
ment is the attribute and the remaining
elements are indexes. Lables provides a
list of attribute lables to be used to cre-
ate the tag. Tags are blk_key + label for
the attribute.

Parameters

• blocks (dict) – Dictionary of state
blocks. The key is the block label to be
used in the tag, and the value is a state
block.

• attributes (list-like) – A list of
attriutes to tag. It is okay if a particular
attribute does not exist in a state bock.
This allows you to mix state blocks with
differnt sets of attributes. If an attribute
is indexed, the attribute can be specified
as a list or tuple where the first element is
the attribute and the remaining elements
are indexes.

• labels (list-like) – These are at-
tribute lables. The order corresponds to
the attribute list. They are used to create
the tags. Tags are in the form blk.key +
label.

• exception (bool) – If True, raise ex-
ceptions releated to invalid or missing
indexes. If false missing or bad indexes
are ignored and None is used for the ta-
ble value. Setting this to False allows
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tables where some state blocks have the
same attributes with differnt indexing.
(default is True)

Returns

Dictionary where the keys are tags and the values are model
attributes, usually Pyomo component
data objects.

Return type (dict)

Unit Model Costing

The IDAES Process Modeling Frame-
work includes support for incorporating
costing of unit operations into a flow-
sheet to allow for calculation and opti-
mization of process costs. Cost Correla-
tions are implemented using unit costing
sub-modules to allow users to easily de-
velop and incorporate their own costing
models.

Contents

• Unit Model Costing

– Introduction

– Example

– Units

– IDAES Costing Module

∗ Heat Exchanger Cost

∗ Pressure Changer Cost

· Turbine Cost Model

· Pump Cost Model

· Mover (Compressor, Fan, Blower)

∗ Fired Heater

∗ Cost of Pressure Vessels and Towers for
Distillation

· Vessel Cost

· Base Cost of Platforms and ladders

· Purchase Cost of Plates
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Introduction

All unit models within the core IDAES
model library include a get_costing
method which can be called to include
cost correlations for an instance of that
unit. The get_costing method for each
unit takes a number of arguments used to
specify the basis for costing each piece
of equipment. Details are given for each
unit model later in this documentation,
however, all get_costing methods take
the following two arguments:

• module - this argument specifies the
costing module to use when construct-
ing the constraints and associated vari-
ables. if not provided, this defaults to
the standard IDAES costing module.

• year - this argument sets the year to
which all costs should be normalized
(CE index 2010 to 2019)

When get_costing is called on an in-
stance of a unit model, a new sub-block
is created on that unit named costing
(i.e. flowsheet.unit.costing). All vari-
ables and constraints related to cost-
ing will be constructed within this new
block (see detailed documentation for
each unit for details on these variables
and constraints).

In addition, the first time get_costing is
called for a unit operation within a flow-
sheet, an additional costing block is cre-
ated on the flowsheet object (i.e. flow-
sheet.unit.costing) in order to hold any
global parameters relating to costing.
The most common of these paramters is
the cost normalization parameter based
on the year selected by the user.

The unit costing module also contains
an initialize method which can be used
to estimate initial values for costing vari-
ables based on the current state of the
associated unit model. This method can
be called directly from the unit_costing
module to initialize a specific costing
block, or can be incorporated into a unit
model initialization procedure. This
method has been incorporated into the
initialize method of all the models in
the core unit model library. There-
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fore, if get_costing() is called before
unit.initialize(), the initialize method
will deactivate the costing block, initial-
ize the unit model as normal, and then
activate the costing block and initialize
costing block.

Note: The global paramters are created when the first instance of get_costing is called and use the values provided
there for initialization. Subsequent get_costing calls use the existing paramters, and do not change the initialized values.
i.e. any “year” argument provided to a get_costing call after the first will be ignored.

Table 1. Main Variables added to the
unit block (“self.costing”).

Variable Symbol Units Notes
Purchase cost 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 dol-

lars
Purchase cost

Base cost per
unit

𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡𝑝𝑒𝑟𝑢𝑛𝑖𝑡 unit-
less

Base cost per unit

Base cost 𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 unit-
less

Base cost (base cost per unit * number of units)

Number of
units

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠 unit-
less

Number of units to be costed (to take advantage of the economics
of scale)

Note: number of units by default is fixed to 1 and the user must unfix this variable to optimize the number of units.
Also, number of units can be built as a continuous variable or an integer variable. If latest, the user must provide an
mip solver. Use the global costing argument for this purpose (integer_n_units=True or False).

Example

Below is a simple example of how to add
cost correlations to a flowsheet includ-
ing a heat exchanger using the default
IDAES costing module.

from pyomo.environ␣
→˓import (ConcreteModel,
→˓ SolverFactory)
from pyomo.util.calc_
→˓var_value import calculate_
→˓variable_from_constraint
from idaes.
→˓core import FlowsheetBlock
from idaes.
→˓generic_models.unit_models.
→˓heat_exchanger import \

(HeatExchanger,
→˓ HeatExchangerFlowPattern)
from idaes.generic_models.
→˓properties import iapws95 (continues on next page)
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(continued from previous page)

from idaes.
→˓core.util.model_statistics␣
→˓import degrees_of_freedom

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})

m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()

m.fs.unit␣
→˓= HeatExchanger(default={

␣
→˓ "shell": {"property_
→˓package": m.fs.properties},
␣

→˓ "tube": {"property_
→˓package": m.fs.properties},

"flow_pattern
→˓": HeatExchangerFlowPattern.
→˓countercurrent})
# set inputs
m.fs.unit.shell_inlet.flow_
→˓mol[0].fix(100) # mol/s
m.fs.unit.shell_inlet.enth_
→˓mol[0].fix(3500) # j/s
m.fs.unit.
→˓shell_inlet.pressure[0].
→˓fix(101325) # Pa

m.fs.unit.tube_
→˓inlet.flow_mol[0].fix(100)
m.fs.unit.tube_
→˓inlet.enth_mol[0].fix(4000)
m.fs.unit.tube_inlet.
→˓pressure[0].fix(101325.0)

m.fs.unit.area.fix(1000) # m2
m.fs.unit.overall_
→˓heat_transfer_coefficient.
→˓fix(100) # W/m2K

m.fs.unit.
→˓get_costing(module=costing,
→˓ length_factor='12ft')

m.fs.unit.initialize()

opt = SolverFactory('ipopt')
opt.options = {
→˓'tol': 1e-6, 'max_iter': 50}

(continues on next page)
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(continued from previous page)

results␣
→˓= opt.solve(m, tee=True)

Units

It is important to highlight that the cost-
ing method interrogates the property
package to determine the units of this
model, if the user provided the correct
units in the metadata dictionary (see
property models for additional informa-
tion), the model units will be converted
to the right units. For example: in this
example area is in m^2, while the cost
correlations for heat exchangers require
units to be in ft^2. Therefore, the cost-
ing method will convert the units to ft^2.
The use of Pyomo-unit conversion tools
is under development.

IDAES Costing Module

A default costing module has been de-
veloped primarily based on base cost
and purchase cost correlations from the
following reference with some excep-
tions (noted in the documentation as ap-
propiate).

Process and Product Design Principles:
Synthesis, Analysis, and Evaluation.
Seider, Seader, Lewin, Windagdo, 3rd
Ed. John Wiley and Sons. Chapter 22.
Cost Accounting and Capital Cost Esti-
mation

Users should refer to the reference above
for details of the costing correlations,
however, a summary of this methods is
provided below.

Table 2. Cost basis for each unit model.

Unit Model Basis Units
heat exchanger 𝑎𝑟𝑒𝑎 ft^2
pump 𝑓𝑙𝑢𝑖𝑑𝑤𝑜𝑟𝑘 ft^3/s
compressor 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘 hp
turbine 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘 hp
vessels 𝐷𝑎𝑛𝑑𝐿 ft
fired heaters ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦 BTU/hr
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Heat Exchanger Cost

The purchse cost is computed based on
the base unit cost and three correction
factors (Eq. 22.43 in Seider et al.). The
base cost is computed depending on the
heat exchanger type selected by the user:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝐿_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 * (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 = exp (𝛼1 − 𝛼2 * log 𝑎𝑟𝑒𝑎 * ℎ𝑥_𝑜𝑠+ 𝛼3 * (log 𝑎𝑟𝑒𝑎 * ℎ𝑥_𝑜𝑠)2)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑎𝑟𝑒𝑎 = 𝑠𝑒𝑙𝑓.𝑎𝑟𝑒𝑎/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

where:

• pressure_factor - is the pressure design
correction factor

• material_factor - is the construction ma-
terial correction factor

• length_factor - is the tube length correc-
tion factor

• CE_index - is a global parameter for
Chemical Enginering cost index for
years 2010-2019

• hx_os - heat exchanger oversize factor
(default = 1)

• area is a reference object and (self.area
is the model variable)

The heat exchanger costing method has
three arguments, hx_type = heat ex-
changer type, FM_Mat = construction
material factor, and FL = tube length
factor.

• hx_type : ‘floating_head’, ‘fixed_head’,
‘U-tube’*, ‘Kettle_vap’

• material factor (Mat_factor):
‘stain_steel’*, ‘carb_steel’

• tube length (length_factor): ‘8ft’,
‘12ft’*, ‘16ft’, ‘20ft’

where ‘*’ corresponds to the default op-
tions, FL and FM_MAT are pyomo-
mutable parameters fixed based on user
selection.

Table 3. Base cost factors for heat ex-
changer type.

4.5. Technical Specifications 439



IDAES Documentation, Release 1.10.1

Tube Length (ft) 𝛼1 𝛼2 𝛼3

floating_head 11.9052 0.8709 0.09005
fixed_head 11.2927 0.8228 0.09861
U-tube 11.3852 0.9186 0.09790
Kettle_vap 12.2052 0.8709 0.09005

Table 4. Tube-Length correction factor.

Tube Length (ft) FL
8 1.25
12 1.12
16 1.05
20 1.00

Construction material correction factor
(FM_Mat) can be computed with Eq.
22.44 (Seider et al.)

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑎+ (
𝑎𝑟𝑒𝑎

100
)𝑏

Table 5. Materials of construction fac-
tors.

Materials of Construction
Shell / Tube a b
carbon steel/carbon steel 0.00 0.00
carbon steel/brass 1.08 0.05
carbon steel/stainless steel 1.75 0.13
carbon steel/monel 2.1 0.13
carbon steel/titanium 5.2 0.16
carbon steel/Cr-Mo steel 1.55 0.05
Cr-Mo steel/Cr-Mo steel 1.7 0.07
stainless steel/stainless steel 2.7 0.07
monel/monel 3.3 0.08
titanium/titanium 9.6 0.06

Note that Mat_factor argument should
be provided a string, for example:
Mat_factor:’carbon steel/carbon steel’.

Pressure Changer Cost

The costing of a pressure changer unit
model is more complicated, because the
pressure changer model can be imported
into the flowsheet object representing a
pump, turbine, compressor, or a sim-
ply pressure changer (fan, blower, etc.).
The get_costing method currently sup-
ports costing of pumps, turbines, and
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compressors. The method authomati-
cally interrogates the flowsheet object to
determine if the unit is being used as a
pump, turbine, or compressor.

The get_costing method authomatically
determines if the unit model is being
used as a pump, turbine, or compressor
based on the compressor and thermody-
namic_assumption configuration argu-
ments provided by the user where cre-
ating the unit model. A summary of the
decision logic is shown below.

Unit Type compressor thermodynamic_assumption
Turbine False Any
Pump True pump
Mover True not pump

Additionally, some unit types have dif-
ferent sub-types which can be costed ap-
propiately. In these cases, an additional
argument is provided to get_costing to
identify the sub-type to use which is de-
tailed below.

Turbine Cost Model

The turbine cost is based on the mechan-
ical work of unit (work_mechanical),
this correlation has been obtained using
the NETL Report (DOE/NETL 2015).

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 580 * (𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘)0.81

DOE/NETL, 2015, report. Cost and
performance Baseline for Fossil Energy
Plants. Volume 1a: Bituminous Coal
(PC) and Natural Gas to Electricity. Re-
vision 3

Pump Cost Model

Three subtypes are supported for cost-
ing of pumps, which can be set using the
“pump_type” argument.

1) Centrifugal pumps
(pump_type=’centrifugal’)

2) External gear pumps
(pump_type=’external’)
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3) Reciprocating Plunger pumps
(pump_type=’reciprocating’)

Centrifugal Pump

The centrifugal pump cost has two main
components, the cost of the pump and
the cost of the motor. The pump cost
is based on the fluid work (work_fluid),
pump head, and size factor. Additional
arguments are required:

• pump_type_factor = ‘1.4’ (see Table 6)

• pump_motor_type_factor = ‘open’, ‘en-
closed’, ‘explosion_proof’

Based on user’s inputs the get_costing
method builds base_cost and pur-
chase_cost for both the pump and
the motor. The unit purchase cost is
obtained by adding the motor and pump
costs.

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡+ 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑚𝑜𝑡𝑜𝑟_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡

To compute the purchase cost of the cen-
trifugal pump, first we obtain the pump
size factor (S) with Eq. 22.13, then we
obtain the base cost with Eq. 22.14. Fi-
nally, the purchase cost of the pump is
obtained in Eq. 22.15. (Seider et al.)

𝑆 = 𝑄𝐻0.5

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 = exp (9.7171 − 0.6019 * log𝑆 + 0.0519 * (log𝑆)2)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝐹𝑇 *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 * (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Note: the same number of units have been considered for pumps and the pump motor

where:

• S is the pump size factor
(self.costing.size_factor)

• Q is the volumetric flowrate in
gpm (depending on the model
this variable can be found as
self.unit.properties_in.flow_vol)
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• H is the head of the pump in ft
(self.pump_head; which is defined as
𝐻 = ∆𝑃/𝜌𝑙𝑖𝑞)

• FT is a parameter fixed based on
the pump_type_factor argument (users
must wisely select this factor based on
the pump size factor, pump head range,
and maximum motor hp)

• material_factor is the material factor for
the pump

Table 6. Pump Type factor (Table 22.20
in Seider et al.).

Case FT factor # stages Shaft rpm Case-split Pump Head range (ft) Maximum Motor Hp
‘1.1’ 1.00 1 3600 VSC 50 - 900 75
‘1.2’ 1.50 1 1800 VSC 50 - 3500 200
‘1.3’ 1.70 1 3600 HSC 100 - 1500 150
‘1.4’ 2.00 1 1800 HSC 250 - 5000 250
‘2.1’ 2.70 2 3600 HSC 50 - 1100 250
‘2.2’ 8.90 2+ 3600 HSC 100 - 1500 1450

For more details on how to select the FT
factor, please see Seider et al.

Table 7. Materials of construction fac-
tors for centrifugal pumps and external
gear pumps.

Material Factor FM_MAT
cast iron 1.00
ductile iron 1.15
cast steel 1.35
bronze 1.90
stainless steel 2.00
hastelloy C 2.95
monel 3.30
nickel 3.50
titanium 9.70

Electric Motor:

A centrifugal pump is usually
driven by an electric motor, the
self.costing.motor_purchase_cost is
calculated based on the power con-
sumption.

𝑠𝑒𝑙𝑓.𝑚𝑜𝑡𝑜𝑟𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑐𝑜𝑠𝑡 = 𝐹𝑇 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑚𝑜𝑡𝑜𝑟_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 * (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500)(𝐸𝑞.22.20)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑚𝑜𝑡𝑜𝑟_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑚𝑜𝑡𝑜𝑟_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠
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𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑚𝑜𝑡𝑜𝑟_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 = exp (5.8259 + 0.13141 log𝑃𝐶 + 0.053255(log𝑃𝐶)2 + 0.028628(log𝑃𝐶)3 − 0.0035549(log𝑃𝐶)4)(𝐸𝑞.22.19)

𝑃𝐶 =
𝑃𝑇

𝜂𝑃 𝜂𝑀
=
𝑃𝐵

𝜂𝑀
=

𝑄𝐻𝜌

33000𝜂𝑃 𝜂𝑀
(𝐸𝑞.22.16)

𝜂𝑃 = −0.316 + 0.24015 * log𝑄− 0.01199(log𝑄)2(𝐸𝑞.22.17)

𝜂𝑀 = 0.80 + 0.0319 log𝑃𝐵 − 0.00182(log𝑃𝐵)2(𝐸𝑞.22.18)

Efficiencies are valid for PB in the range of 1 to 1500Hp and Q in the range of 50 to 5000 gpm

where:

• motor_FT is the motor type correction
factor

• PC is the power consumption in hp
(self.power_consumption_hp; coded as
a pyomo expression)

• Q is the volumetric flowrate in gpm
(self.Q_gpm)

• H is the pump head in ft
(self.pump_head)

• PB is the pump brake hp (self.work)

• nP is the fractional efficiency of the
pump

• nM is the fractional efficiency of the mo-
tor

• 𝜌 is the liquid density in lb/gal

Table 8. FT Factors in Eq.(22.20) and
Ranges for electric motors.

Type Motor Enclosure 3600rpm 1800rpm
Open, drip-proof enclosure, 1 to 700Hp 1.0 0.90
Totally enclosed, fan-cooled, 1 to 250Hp 1.4 1.3
Explosion-proof enclosure, 1 to 25Hp 1.8 1.7

External Gear Pumps

External gear pumps are not as com-
mon as the contrifugal pump, and var-
ious methods can be used to correlate
base cost. Eq. 22.21 in Seider et al.
Here the purchase cost is computed as a
function of the volumetric flowrate (Q)
in gpm Eq. 22.22 in Seider et al.

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 * (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

. math::
self.costing.self.costing.pump_base_cost_perunit
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= exp{(7.6964 + 0.1986log{Q} +
0.0291(log{Q})^{2})}

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Reciprocating Plunger Pumps

The cost correlation method used here is
based on the brake horsepower (PB).

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 * (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500)(𝐸𝑞.22.22)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑚𝑝_𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟 = exp (7.8103 + 0.26986 log𝑃𝐵 + 0.06718(log𝑃𝐵)2)(𝐸𝑞.22.23)

𝑃𝐵 = 𝑓(𝑄)

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Table 9. Materials of construction fac-
tors for reciprocating plunger pumps.

Material Mat_factor
ductile iron 1.00
Ni-Al-Bronze 1.15
carbon steel 1.50
stainless steel 2.20

Mover (Compressor, Fan, Blower)

If the unit represents a “Mover”, the user
can select to cost it as a compressor, fan,
or blower. Therefore, the user must set
the “mover_type” argument.

• mover_type= ‘compressor’ or ‘fan’ or
‘blower’ (uper/lower case sensitive)

Compressor Cost

The compressor cost is based on the me-
chanical work of the unit. Additional ar-
guments are required to estimate the cost
such as compressor type, driver mover
type, and material factor (Mat_factor).

• compressor_type = ‘centrifugal’, ‘recip-
rocating’, ‘screw’

• driver_mover_type = ‘electri-
cal_motor’, ‘steam_turbine’,
‘gas_turbine’
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• Mat_factor = ‘carbon_steel’,
‘stain_steel’, ‘nickel_alloy’

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500) * 𝐹𝐷 *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (𝛼1 + 𝛼2 * log𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘)

𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘 = 𝑠𝑒𝑙𝑓.𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙𝑤𝑜𝑟𝑘/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

where:

• FD is the driver mover type factor and
FM is the construction material factor.

Table 10. Compressor type factors.

Compressor type 𝛼1 𝛼2

Centrifugal 7.5800 0.80
Reciprocating 7.9661 0.80
Screw Compressor 8.1238 0.7243

Table 11. Driver mover type (for com-
pressors only).

Mover type FD (mover_type)
Electric Mover 1.00
Steam Turbine 1.15
Gas Turbine 1.25

Table 12. Material of construction fac-
tor (for compressors only).

Material Mat_factor
Cast iron 1.00
Stainless steel 1.15
Nickel alloy 1.25

Fan Cost

The fan cost is a function of the
actual cubic feet per minute (Q)
entering the fan. Additional argu-
ments are required to estimate the
fan cost such as mover_type=’fan’,
fan_head_factor, fan_type, and material
factor (Mat_factor).

• fan_type = ‘centrifugal_backward’,
‘centrifugal_straight’, ‘vane_axial’,
‘tube_axial’

• fan_head_factor = see table 14
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• Mat_factor = ‘carbon_steel’, ‘fiber-
glass’, ‘stain_steel’, ‘nickel_alloy’

To select the correct fan type users must
calculate the total head in inH2O and se-
lect the proper fan type from table 13.
Additionally, the user must select the
head factor (head_factor) from table 14.

Table 13. Typical Operating Ranges of
Fans

Fan type Flow rate (ACFM) Total head inH2O
ACFM^a inH2O
Centrifugal backward curved 1000-100000 1-40
Centrifugal straight radial 1000-20000 1-30
Vane axial 1000-800000 0.02-16
Tube axial 2000-800000 0.00-10

Finally, the purchase cost of the fan is
given by base cost, material factor, and
fan head factor. While, the base cost is
given as a function of the ACFM (Q).

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500) * ℎ𝑒𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (𝛼1 − 𝛼2 * log𝑄+ 𝛼3 * (log𝑄)2)

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Table 14. Head Factor, FH, for fans

Head (in H2O) Centrifugal backward curved Centrifugal straight radial Vane axial Tube Axial
5-8 1.15 1.15 1.15 1.15
9-15 1.30 1.30 1.30
16-30 1.45 1.45
31-40 1.55

Table 15. Materials of construction fac-
tor

Material Factor FM
carbon_steel 1
fiberglass 1.8
stain_steel 2.5
nickel_alloy 5.0
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Blower Cost

The blower cost is based on the brake
horsepower, which can be calculated
with the inlet volumetric flow rate and
pressure (cfm and lbf/in^2, respectiv-
elly). Additional arguments are re-
quired to estimate the blower cost such
as mover_type=’blower’, blower_type,
and material of construction factor
(Mat_factor).

• blower_type = ‘centrifugal’, ‘rotary’

• Mat_factor = ‘carbon_steel’, ‘alu-
minum’, ‘fiberglass’, ‘stain_steel’,
‘nickel_alloy’

where the material factors given in table
15 for the fans can be used. In addition,
centrifugal blowers are available with
cast aluminum blades with Mat_factor =
0.60.

The purchase cost is given by the mate-
rial factor and base cost. While, the base
cost is given by the power consumption
in horsepower (Pc).

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Centrigugal turbo blower (valid from PC
= 5 to 1000 Hp):

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (6.8929 + 0.7900 * log𝑃𝑐)

Rotary straight-lobe blower (valid from
PC = 1 to 1000 Hp):

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (7.59176 + 0.79320 * log𝑃𝑐− 0.012900 * (log𝑃𝑐)2)

𝑃𝑐 = 𝑓(𝑄)

𝑄 = 𝑠𝑒𝑙𝑓.𝑄/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Fired Heater

Indirect fired heaters, also called fired
heaters, process heaters, and furnaces,
are used to heat or vaporize process
streams at elevated temperatures (be-
yond where steam is usually employed).
This method computes the purchase cost
of the fired heater based on the heat

448 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

duty, fuel used (fired_type), pressure
design, and materials of construction
(Mat_factor).

• fuel_type = ‘fuel’, ‘reformer’, ‘pyroly-
sis’, ‘hot_water’, ‘salts’, ‘dowtherm_a’,
‘steam_boiler’

• Mat_factor = see table 16

Table 16. Materials of construction fac-
tor

Material Factor (FM)
carbon_steel 1
Cr-Mo_alloy 1.4
stain_steel 1.7

The pressure design factor is given by
(where P is pressure in psig and it is
valid between 500 to 3000 psig):

𝑠𝑒𝑙𝑓.𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 == 0.986 − 0.0035 * (𝑃/500.00) + 0.0175 * (𝑃/500.00)2

The base cost changes depending on the
fuel type: fuel:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (0.32325 + 0.766 * log ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦)

reformer:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = 0.859 * ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦0.81

pyrolysis:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = 0.650 * ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦0.81

hot_water:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (9.593 − 0.3769 * log ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦 + 0.03434 * (log ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦)2)

salts:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = 12.32 * ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦0.64

dowtherm_a:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = 12.74 * ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦0.65

steam_boiler:

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = 0.367 * ℎ𝑒𝑎𝑡_𝑑𝑢𝑡𝑦0.77

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

Finally, the purchase cost is given by:

𝑠𝑒𝑙𝑓.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500) * 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑑𝑒𝑠𝑖𝑔𝑛 *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡
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Cost of Pressure Vessels and Towers for Distillation

Pressure vessels cost is based on the
weight of the vessel, the cost of plat-
forms and ladders can be included, and
the cost of internal packing or trays can
be calculated as well. This method
constructs by defaul the cost of pres-
sure vessels with platforms and lad-
ders, and trays cost can be calculated
if trays=True. This method requires a
few arguments to build the cost of ves-
sel. We recommend using this method
to cost reactors (CSTR or PFR), flash
tanks, vessels, and distillation columns.

• alignment = ‘horizontal’, ‘vertical’

• Mat_factor = ‘carbon_steel’

• weight_limit = ‘option1’, ‘option2’ (op-
tion 1: 1000 to 920,000 lb, option 2:
9000 to 2.5M lb only for vertical vessels)

• L_D_range = ‘option1’, ‘option2’ (op-
tion 1: 3 < D < 21, 12 < L < 40; option
2: 3 < D < 24, 27 < L < 170; all in ft
D: diameter, L: length) only for vertical
vessels

• PL=’True’, ‘False’: to build platforms
and ladders cost

• plates = ‘True’, ‘False’: to build tray cost
for distillation columns

• tray_mat_factor = ‘carbon_steel’ see ta-
ble 18

• tray_type = ‘sieve’

• number_tray = 10

• ref_parameter_diameter=None

• ref_parameter_length=None

By adding reference parameter, the
method can be constructed in any
pyomo costing block. Since the
generic models do not include the
variables required to cost these type
of units, the user must create the
blocks and variables. For example:
m.fs.unit = Block(), m.fs.unit.diameter
= Var(), m.fs.unit.length = Var().
Then m.fs.unit.costing = pyo.Block()
and call vessel_costing method =
vessel_costing(m.fs.unit.costing, args).
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Table 17. Materials of construction fac-
tor and material density

Material Factor (FM) methal density (lb/in^3)
carbon_steel 1 0.284
low_alloy_steel 1.2 0.271
stain_steel_304 1.7 0.270
stain_steel_316 2.1 0.276
carpenter_20CB-3 3.2 0.292
nickel_200 5.4 0.3216
monel_400 3.6 0.319
inconel_600 3.9 0.3071
incoloy_825 3.7 0.2903
titanium 7.7 0.1628

Vessel Cost

The weight of the unit is calcu-
lated based on the methal density,
length, Diameter, and shell thickness.
shel_thickness is a parameter initialized
to 1.25, however, the user must calcu-
late the shell wall minimum thickness
computd from the ASME pressure
vessel code (tp) add the average vessel
thickness, the necessary wall thick-
ness (tE), and select the appropriate
shell_thickness.

𝑠𝑒𝑙𝑓.𝑤𝑒𝑖𝑔ℎ𝑡 == 𝜋 * ((𝐷 * 12) + 𝑠𝑒𝑙𝑓.𝑠ℎ𝑒𝑙𝑙_𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) * ((𝐿 * 12) + (0.8 *𝐷 * 12)) * 𝑠𝑒𝑙𝑓.𝑠ℎ𝑒𝑙𝑙_𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 * 𝑠𝑒𝑙𝑓.𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑑𝑒𝑛𝑠𝑖𝑡𝑦

The base cost of the vessel is given by:
Horizontal vessels (option1: 1000 < W
< 920,000 lb):

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (8.9552 − 0.2330 * log𝑤𝑒𝑖𝑔ℎ𝑡+ 0.04333 * (log𝑤𝑒𝑖𝑔ℎ𝑡)2)

Vertical vessels (option1: 4200 < W <
1M lb):

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (8.9552 − 0.2330 * log𝑤𝑒𝑖𝑔ℎ𝑡+ 0.04333 * (log𝑤𝑒𝑖𝑔ℎ𝑡)2)

Vertical vessels (option2: 9,000 < W < 2.5M lb):

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 = exp (7.2756 − 0.18255 * log𝑤𝑒𝑖𝑔ℎ𝑡+ 0.02297 * (log𝑤𝑒𝑖𝑔ℎ𝑡)2)

𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑢𝑛𝑖𝑡 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑠𝑒𝑙𝑓.𝑤𝑒𝑖𝑔ℎ𝑡/𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠

The vessel purchase cost is given by:

𝑠𝑒𝑙𝑓.𝑣𝑒𝑠𝑠𝑒𝑙_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500) *𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡+ (𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑙𝑎𝑡𝑓_𝑙𝑎𝑑𝑑𝑒𝑟𝑠 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠)
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note that if PL = ‘False’, the cost of platforms and ladders is not included.

The final purchase cost is given by:

𝑠𝑒𝑙𝑓.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡 = 𝑠𝑒𝑙𝑓.𝑣𝑒𝑠𝑠𝑒𝑙_𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡+ (𝑠𝑒𝑙𝑓.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑡𝑟𝑎𝑦𝑠 * 𝑠𝑒𝑙𝑓.𝑐𝑜𝑠𝑡𝑖𝑛𝑔.𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑢𝑛𝑖𝑡𝑠)

note that if plates=’False’, the cost of
trays is not included.

Base Cost of Platforms and ladders

The cost of platforms and ladders is
based on the diamter and length in ft.
Horizontal vessels (option1: 3 < D < 12
ft):

𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑙𝑎𝑡𝑓_𝑙𝑎𝑑𝑑𝑒𝑟𝑠 = 20059 *𝐷0.20294

Vertical vessels (option1: 3 < D < 12 ft
and 12 < L < 40 ft):

𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑙𝑎𝑡𝑓_𝑙𝑎𝑑𝑑𝑒𝑟𝑠 = 361.8 *𝐷0.73960 * 𝐿0.70684

Vertical vessels (option2: 3 < D < 24 ft
and 27 < L < 170 ft):

𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑝𝑙𝑎𝑡𝑓_𝑙𝑎𝑑𝑑𝑒𝑟𝑠 = 300.9 *𝐷0.63316 * 𝐿0.80161

Purchase Cost of Plates

The cost of plates is based on the
number or trays, the type of trays
used, and materials of construction.
Tray type factor (tray_factor) is 1.0 for
sieve trays, 1.18 for valve trays (valve),
and 1.87 for bubble cap trays (bub-
ble_cap). The number of trays factor
(number_tray_factor) is equal to 1 if the
number of trays is greater than 20. How-
ever, if the number of trays is less than
20, the number_tray_factor is given by:

𝑠𝑒𝑙𝑓.𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑟𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 =
2.25

1.0414𝑁𝑇

The materials of construction factor is
calculated using the following equation:

𝛼1 + 𝛼2 *𝐷

where alphas for different materials of
construction are given in table 18.

Table 18. Materials of construction fac-
tor
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Material alpha1 alpha2
carbon_steel 1 0
stain_steel_303 1.189 0.0577
stain_steel_316 1.401 0.0724
carpenter_20CB-3 1.525 0.0788
monel_400 2.306 0.1120

The tray base cost is then calculated as:

𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑡𝑟𝑎𝑦𝑠 = 468.00 * exp (0.1739 *𝐷)

The purchase cost of the trays is given
by:

𝑠𝑒𝑙𝑓.𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑡𝑟𝑎𝑦𝑠 = (𝐶𝐸𝑖𝑛𝑑𝑒𝑥/500) * 𝑠𝑒𝑙𝑓.𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑟𝑎𝑦𝑠 * 𝑠𝑒𝑙𝑓.𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑟𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑡𝑦𝑝𝑒_𝑡𝑟𝑎𝑦_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑡𝑟𝑎𝑦_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑓𝑎𝑐𝑡𝑜𝑟 * 𝑠𝑒𝑙𝑓.𝑏𝑎𝑠𝑒_𝑐𝑜𝑠𝑡_𝑡𝑟𝑎𝑦𝑠

4.5.2 Model Libaries

Generic IDAES Model Library

This library contains a suite of generic
models that are applicable across most
process applications. This library also
forms the foundation for many of the
specialized application libraries which
build off these models.

Property Models

Cubic Equations of State

This property package implements a
general form of a cubic equation of
state which can be used for most cubic-
type equations of state. This package
supports phase equilibrium calculations
with a smooth phase transition formu-
lation that makes it amenable for equa-
tion oriented optimization. The follow-
ing equations of state are currently sup-
ported:

• Peng-Robinson

• Soave-Redlich-Kwong

Flow basis: Molar

Units: SI units

State Variables:

The state block uses the following state
variables:
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Inputs

When instantiating the parameter block
that uses this particular state block, 1 op-
tional argument can be passed:

The valid_phase argument denotes
the valid phases for a given set of in-
let conditions. For example, if the user
knows a priori that the it will only be a
single phase (for example liquid only),
then it is best not to include the com-
plex flash equilibrium constraints in the
model. If the user does not specify any
option, then the package defaults to a 2
phase assumption meaning that the con-
straints to compute the phase equilib-
rium will be computed.

Degrees of Freedom

In general, the general cubic equation of
state has a number of degrees of free-
dom equal to 2 + the number of compo-
nents in the system (total flow rate, tem-
perature, pressure and N-1 mole frac-
tions). In some cases (primarily inlets
to units), this is increased by 1 due to
the removal of a constraint on the sum
of mole fractions.

General Cubic Equation of State

All equations come from “The Prop-
erties of Gases and Liquids, 4th Edi-
tion” by Reid, Prausnitz and Poling. The
general cubic equation of state is repre-
sented by the following equations:

0 = 𝑍3 − (1 +𝐵 − 𝑢𝐵)𝑍2 + (𝐴− 𝑢𝐵 − (𝑢− 𝑤)𝐵2)𝑍 −𝐴𝐵 − 𝑤𝐵2 − 𝑤𝐵3

𝐴 =
𝑎𝑚𝑃

𝑅2𝑇 2

𝐵 =
𝑏𝑚𝑃

𝑅𝑇

where 𝑍 is the compressibility factor of
the mixture, 𝑎𝑚 and 𝑏𝑚 are properties of
the mixture and 𝑢 and 𝑤 are parameters
which depend on the specific equation
of state being used as show in the table
below.
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Equation 𝑢 𝑤 𝑂𝑚𝑒𝑔𝑎𝐴 𝑂𝑚𝑒𝑔𝑎𝐵 𝑘𝑎𝑝𝑝𝑎𝑗
Peng-Robinson 2 -1 0.45724 0.07780 (1 + (1− 𝑇 2

𝑟 )(0.37464 + 1.54226𝜔𝑗 − 0.26992𝜔2
𝑗 ))2

Soave-Redlich-
Kwong

1 0 0.42748 0.08664 (1 + (1 − 𝑇 2
𝑟 )(0.48 + 1.574𝜔𝑗 − 0.176𝜔2

𝑗 ))2

The properties 𝑎𝑚 and 𝑏𝑚 are calculated
from component specific properties 𝑎𝑗
and 𝑏𝑗 as shown below:

𝑎𝑗 =
Ω𝐴𝑅

2𝑇 2
𝑐,𝑗

𝑃𝑐,𝑗
𝜅𝑗

𝑏𝑗 =
Ω𝐵𝑅𝑇𝑐,𝑗
𝑃𝑐,𝑗

𝑎𝑚 =
∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(𝑎𝑖𝑎𝑗)
1/2(1 − 𝑘𝑖𝑗)

𝑏𝑚 =
∑︁
𝑖

𝑦𝑖𝑏𝑖

where 𝑃𝑐,𝑗 and 𝑇𝑐,𝑗 are the compo-
nent critical pressures and temperatures,
𝑦𝑗 is the mole fraction of component
:math`j`, 𝑘𝑖𝑗 are a set of binary inter-
action parameters which are specific to
the equation of state and Ω𝐴, Ω𝐵 and
𝜅𝑗 are taken from the table above. 𝜔𝑗 is
the Pitzer acentric factor of each compo-
nent.

The cubic equation of state is solved for
each phase via a call to an external func-
tion which automatically identifies the
correct root of the cubic and returns the
value of 𝑍 as a function of 𝐴 and 𝐵
along with the first and second partial
derivatives.

VLE Model with Smooth Phase Transition

The flash equations consists of the fol-
lowing equations:

𝐹 𝑖𝑛 = 𝐹 𝑙𝑖𝑞 + 𝐹 𝑣𝑎𝑝

𝑧𝑖𝑛𝑖 𝐹
𝑖𝑛 = 𝑥𝑙𝑖𝑞𝑖 𝐹 𝑙𝑖𝑞 + 𝑦𝑣𝑎𝑝𝑖 𝐹 𝑣𝑎𝑝

At the equilibrium condition, the fugac-
ity of the vapor and liquid phase are de-
fined as follows:

ln 𝑓𝑣𝑎𝑝𝑖 = ln 𝑓 𝑙𝑖𝑞𝑖

𝑓𝑝ℎ𝑎𝑠𝑒𝑖 = 𝑦𝑝ℎ𝑎𝑠𝑒𝑖 𝜑𝑝ℎ𝑎𝑠𝑒𝑖 𝑃
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ln𝜑𝑖 =
𝑏𝑖
𝑏𝑚

(𝑍 − 1) − ln (𝑍 −𝐵) +
𝐴

𝐵
√
𝑢2 − 4𝑤

(︂
𝑏𝑖
𝑏𝑚

− 𝛿𝑖

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

𝛿𝑖 =
2𝑎

1/2
𝑖

𝑎𝑚

∑︁
𝑗

𝑥𝑗𝑎
1/2
𝑗 (1 − 𝑘𝑖𝑗)

The cubic equation of state is solved to find 𝑍 for each phase subject to the composition of that phase. Typically, the
flash calculations are computed at a given temperature, 𝑇 . However, the flash calculations become trivial if the given
conditions do not fall in the two phase region. For simulation only studies, the user may know a priori the condition of
the stream but when the same set of equations are used for optimization, there is a high probability that the specifications
can transcend the phase envelope and hence the flash equations included may be trivial in the single phase region (i.e.
liquid or vapor only). To circumvent this problem, property packages in IDAES that support VLE will compute the
flash calculations at an “equilibrium” temperature 𝑇𝑒𝑞 . The equilibrium temperature is computed as follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇 )

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇𝑒𝑞 is the equilibrium temperature at which flash calculations are computed, 𝑇 is the stream temperature, 𝑇1 is
the intermediate temperature variable, 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 is the bubble point temperature of mixture, and 𝑇𝑑𝑒𝑤 is the dew point
temperature of the mixture. Note that, in the above equations, approximations are used for the max and min functions
as follows:

𝑇1 = 0.5[𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +
√︁

(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21]

𝑇𝑒𝑞 = 0.5[𝑇1 + 𝑇𝑑𝑒𝑤 −
√︁

(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22]

where 𝜖1 and 𝜖2 are smoothing parameters (mutable). The default values are 0.01 and 0.0005 respectively. It is recom-
mended that 𝜖1 > 𝜖2. Please refer to reference 4 for more details. Therefore, it can be seen that if the stream temperature
is less than that of the bubble point temperature, the VLE calculations will be computed at the bubble point. Similarly,
if the stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew
point temperature. For all other conditions, the equilibrium calculations will be computed at the actual temperature.

Other Constraints

Additional constraints are included in
the model to compute the thermody-
namic properties based on the cubic
equation of state, such as enthalpies
and entropies. Please note that, these
constraints are added only if the vari-
able is called for when building the
model. This eliminates adding unnec-
essary constraints to compute properties
that are not needed in the model.

All thermophysical properties are calcu-
lated using an ideal and residual term,
such that:

𝑝 = 𝑝0 + 𝑝𝑟

The residual term is derived from the
partial derivatives of the cubic equation
of state, whilst the ideal term is deter-
mined using empirical correlations.
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Enthalpy

The ideal enthalpy term is given by:

ℎ0𝑖 =

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3)𝑑𝑇 + ∆ℎ298.15𝐾𝑓𝑜𝑟𝑚

The residual enthalpy term is given by:

ℎ𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 =

(︂
𝑇
𝑑𝑎

𝑑𝑇
− 𝑎𝑚

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃
+𝑅𝑇 (𝑍 − 1)𝑏𝑚

√︀
𝑢2 − 4𝑤

𝑑𝑎

𝑑𝑇

√
𝑇 = −𝑅

2

√︀
Ω𝐴

∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(1 − 𝑘𝑖𝑗)

(︃
𝑓𝑤,𝑗

√︃
𝑎𝑖
𝑇𝑐,𝑗
𝑃𝑐,𝑗

+ 𝑓𝑤,𝑖

√︃
𝑎𝑗
𝑇𝑐,𝑖
𝑃𝑐,𝑖

)︃

Entropy

The ideal entropy term is given by:

𝑠0𝑖 =

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3)

𝑇
𝑑𝑇 + ∆𝑠298.15𝐾𝑓𝑜𝑟𝑚

The residual entropy term is given by:

𝑠𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 = 𝑅 ln

𝑍 −𝐵

𝑍
𝑏𝑚
√︀
𝑢2 − 4𝑤 +𝑅 ln

𝑍𝑃 𝑟𝑒𝑓

𝑃
𝑏𝑚
√︀
𝑢2 − 4𝑤 +

𝑑𝑎

𝑑𝑇
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

Fugacity

Fugacity is calculated from the system
pressure, mole fractions and fugacity
coefficients as follows:

𝑓𝑖,𝑝 = 𝑥𝑖,𝑝𝜑𝑖,𝑝𝑃

Fugacity Coefficient

The fugacity coefficient is calculated
from the departure function of the cubic
equation of state as shown below:

ln𝜑𝑖 =
𝑏𝑖
𝑏𝑚

(𝑍 − 1) − ln (𝑍 −𝐵) +
𝐴

𝐵
√
𝑢2 − 4𝑤

(︂
𝑏𝑖
𝑏𝑚

− 𝛿𝑖

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

𝛿𝑖 =
2𝑎

1/2
𝑖

𝑎𝑚

∑︁
𝑗

𝑥𝑗𝑎
1/2
𝑗 (1 − 𝑘𝑖𝑗)
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Gibbs Energy

The Gibbs energy of the system is cal-
culated using the definition of Gibbs en-
ergy:

𝑔𝑖 = ℎ𝑖 − 𝑇∆𝑠𝑖

List of Variables

Variable Name Description Units
flow_mol Total molar flow rate mol/s
mole_frac_comp Mixture mole fraction indexed by component None
temperature Temperature K
pressure Pressure Pa
flow_mol_phase Molar flow rate indexed by phase mol/s
mole_frac_phase_comp Mole fraction indexed by phase and component None
pressure_sat Saturation or vapor pressure indexed by component Pa
dens_mol_phase Molar density indexed by phase mol/m3
dens_mass_phase Mass density indexed by phase kg/m3
enth_mol_phase Molar enthalpy indexed by phase J/mol
enth_mol Molar enthalpy of mixture J/mol
entr_mol_phase Molar entropy indexed by phase J/mol.K
entr_mol Molar entropy of mixture J/mol.K
fug_phase_comp Fugacity indexed by phase and component Pa
fug_coeff_phase_comp Fugacity coefficient indexed by phase and component None
gibbs_mol_phase Molar Gibbs energy indexed by phase J/mol
mw Molecular weight of mixture kg/mol
mw_phase Molecular weight by phase kg/mol
temperature_bubble Bubble point temperature K
temperature_dew Dew point temperature K
pressure_bubble Bubble point pressure Pa
pressure_dew Dew point pressure Pa
_teq Temperature at which the VLE is calculated K
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List of Parameters

Parameter
Name

Description Units

cubic_type Type of cubic equation of state to use, from CubicEoS Enum None
pressure_ref Reference pressure Pa
temperature_ref Reference temperature K
omega Pitzer acentricity factor None
kappa Binary interaction parameters for EoS (note that parameters are specific for a given

EoS
None

mw_comp Component molecular weights kg/mol
cp_ig Parameters for calculating component heat capacities varies
dh_form Component standard heats of formation (used for enthalpy at reference state) J/mol
ds_form Component standard entropies of formation (used for entropy at reference state) J/mol.K
antoine Component Antoine coefficients (used to initialize bubble and dew point calcula-

tions)
bar, K

Config Block Documentation

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData(component)

General Property Parameter Block
Class

build()

Callable method for Block construction.

classmethod define_metadata(obj)

Define properties supported and units.

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlock(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

parameters A reference to an instance of
the Property Parameter Block associ-
ated with this property package.

defined_state Flag indicating whether the
state should be considered fully defined,
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and thus whether constraints such as
sum of mass/mole fractions should be
included, default - False. Valid values:
{ True - state variables will be fully de-
fined, False - state variables will not be
fully defined.}

has_phase_equilibrium Flag indicating
whether phase equilibrium constraints
should be constructed in this state block,
default - True. Valid values: { True -
StateBlock should calculate phase equi-
librium, False - StateBlock should not
calculate phase equilibrium.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (CubicStateBlock) New instance

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData(*args,
**kwargs)

An general property package for cubic
equations of state with VLE.

build()

Callable method for Block construction.

define_display_vars()

Method used to specify components to
use to generate stream tables and other
outputs. Defaults to define_state_vars,
and developers should overload as re-
quired.

define_state_vars()

Define state vars.

get_energy_density_terms(p)

Create energy density terms.

get_enthalpy_flow_terms(p)

Create enthalpy flow terms.
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get_material_density_terms(p, j)

Create material density terms.

get_material_flow_basis()

Method which returns an Enum indicat-
ing the basis of the material flow term.

get_material_flow_terms(p, j)

Create material flow terms for control
volume.

model_check()

Model checks for property block.

Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

This property package supports phase
equilibrium calucations with a smooth
phase transition formulation that makes
it amenable for equation oriented opti-
mization. The gas phase is assumed to
be ideal and for the liquid phase, the
package supports an ideal liquid or a
non-ideal liquid using an activity coeffi-
cient model. To compute the activity co-
efficient, the package currently supports
the Non Random Two Liquid Model
(NRTL) or the Wilson model. There-
fore, this property package supports the
following combinations for gas-liquid
mixtures for VLE calculations:

1. Ideal (vapor) - Ideal (liquid)

2. Ideal (vapor) - NRTL (liquid)

3. Ideal (vapor) - Wilson (liquid)

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following
two sets of state variables:

Option 1 - “FTPz”:

Option 2 - “FcTP”:

The user can specify the choice of state
variables while instantiating the param-
eter block. See the Inputs section for
more details.
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Support for other combinations of state
variables will be made available in the
future.

Inputs

When instantiating the parameter block
that uses this particular state block, 2 ar-
guments can be passed:

The valid_phase argument denotes
the valid phases for a given set of in-
let conditions. For example, if the user
knows a priori that the it will only be a
single phase (for example liquid only),
then it is best not to include the com-
plex flash equilibrium constraints in the
model. If the user does not specify any
option, then the package defaults to a 2
phase assumption meaning that the con-
straints to compute the phase equilib-
rium will be computed.

The activity_coeff_model denotes
the liquid phase assumption to be used.
If the user does not specify any option,
then the package defaults to asuming an
ideal liquid assumption.

The state_vars denotes the preferred
set of state variables to be used. If the
user does not specify any option, then
the package defaults to using the total
flow, mixture mole fraction, tempera-
ture and pressure as the state variables.

Degrees of Freedom

The number of degrees of freedom that
need to be fixed to yield a square prob-
lem (i.e. degrees of freedom = 0) de-
pends on the options selected. The fol-
lowing table provides a summary of the
variables to be fixed and also the corre-
sponding variable names in the model.
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Property Model Type State variables Additional
Variables

Total number of variables

Ideal (vapor) - Ideal (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

None 3 + 𝑁𝑐

Ideal (vapor) - NRTL (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

alpha,
tau

3 + 𝑁𝑐 + 2𝑁2
𝑐

Ideal (vapor) - Wilson (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

vol_mol_comp,
tau

3 + 𝑁𝑐 + 2𝑁2
𝑐

Please refer to reference 3 for recom-
mended values for tau.

VLE Model with Smooth Phase Transition

The flash equations consists of the
following equations depending on the
choice of state variables selected by the
user.

If the state variables are total flow,
mole fraction, temperature, and pres-
sure, then the following constraints are
implemented:

𝐹 𝑖𝑛 = 𝐹 𝑙𝑖𝑞 + 𝐹 𝑣𝑎𝑝

𝑧𝑖𝑛𝑖 𝐹
𝑖𝑛 = 𝑥𝑙𝑖𝑞𝑖 𝐹 𝑙𝑖𝑞 + 𝑦𝑣𝑎𝑝𝑖 𝐹 𝑣𝑎𝑝

If the state variables are component
flow rates, temperature, and pressure,
then the following constraints are imple-
mented:

𝐹 𝑖𝑛
𝑖 = 𝐹 𝑙𝑖𝑞

𝑖 + 𝐹 𝑣𝑎𝑝
𝑖

The equilibrium condition, the fugacity
of the vapor and liquid phase are defined
as follows:

𝑓𝑣𝑎𝑝𝑖 = 𝑓 𝑙𝑖𝑞𝑖

𝑓𝑣𝑎𝑝𝑖 = 𝑦𝑖𝜑𝑖𝑃

𝑓 𝑙𝑖𝑞𝑖 = 𝑥𝑖𝑝
𝑠𝑎𝑡
𝑖 𝜈𝑖

The equilibrium constraint is written as a generic constraint such that it can be extended easily for non-ideal gases and
liquids. As this property package only supports an ideal gas, the fugacity coefficient (𝜑𝑖) for the vapor phase is 1 and
hence the expression reduces to 𝑦𝑖𝑃 . For the liquid phase, if the ideal option is selected then the activity coefficient
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(𝜈𝑖) is 1. If an activity coefficient model is selected then corresponding constraints are added to compute the activity
coefficient.

Typically, the flash calculations are
computed at a given temperature, 𝑇 .
However, the flash calculations become
trivial if the given conditions do not fall
in the two phase region. For simula-
tion only studies, the user may know a
priori the condition of the stream but
when the same set of equations are used
for optimization, there is a high prob-
ablity that the specifications can tran-
scend the phase envelope and hence the
flash equations included may be trivial
in the single phase region (i.e. liquid or
vapor only). To circumvent this prob-
lem, property packages in IDAES that
support VLE will compute the flash cal-
culations at an “equilibrium” tempera-
ture 𝑇𝑒𝑞 . The equilibrium temperature
is computed as follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇 )

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇𝑒𝑞 is the equilibrium temperature at which flash calculations are computed, 𝑇 is the stream temperature, 𝑇1 is
the intermediate temperature variable, 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 is the bubble point temperature of mixture, and 𝑇𝑑𝑒𝑤 is the dew point
temperature of the mixture. Note that, in the above equations, approximations are used for the max and min functions
as follows:

𝑇1 = 0.5[𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +
√︁

(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21]

𝑇𝑒𝑞 = 0.5[𝑇1 + 𝑇𝑑𝑒𝑤 −
√︁

(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22]

where 𝜖1 and 𝜖2 are smoothing parameters(mutable). The default values are 0.01 and 0.0005 respectively. It is recom-
mended that 𝜖1 > 𝜖2. Please refer to reference 4 for more details. Therefore, it can be seen that if the stream temperature
is less than that of the bubble point temperature, the VLE calucalations will be computed at the bubble point. Similarly,
if the stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew
point temperature. For all other conditions, the equilibrium calcualtions will be computed at the actual temperature.

Additional constraints are included in
the model to compute the thermody-
namic properties such as component
saturation pressure, enthalpy, specific
heat capacity. Please note that, these
constraints are added only if the vari-
able is called for when building the
model. This eliminates adding unnec-
essary constraints to compute properties
that are not needed in the model.

The saturation or vapor pressure
(pressure_sat) for component 𝑖
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is computed using the following
correlation[1]:

log
𝑃 𝑠𝑎𝑡

𝑃𝑐
=
𝐴𝑥+𝐵𝑥1.5 + 𝐶𝑥3 +𝐷𝑥6

1 − 𝑥

𝑥 = 1 − 𝑇𝑒𝑞
𝑇𝑐

where 𝑃𝑐 is the critical pressure, 𝑇𝑐 is
the critical temperature of the compo-
nent and 𝑇𝑒𝑞 is the equilibrium temper-
ature at which the saturation pressure is
computed. Please note that when using
this expression, 𝑇𝑒𝑞 < 𝑇𝑐 is required
and when violated it results in a negative
number raised to the power of a fraction.

The specific enthalpy
(enthalpy_comp_liq) for component
𝑖 is computed using the following
expression for the liquid phase:

ℎ𝑙𝑖𝑞𝑖 = ∆ℎ𝑓𝑜𝑟𝑚,𝐿𝑖𝑞,𝑖 +

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4)𝑑𝑇

The specific enthalpy
(enthalpy_comp_vap) for component
𝑖 is computed using the following
expression for the vapor phase:

ℎ𝑣𝑎𝑝𝑖 = ∆ℎ𝑓𝑜𝑟𝑚,𝑉 𝑎𝑝,𝑖 +

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4)𝑑𝑇

The mixture specific enthapies
(enthalpy_liq & enthalpy_vap)
are computed using the following
expressions for the liquid and vapor
phase respectively:

𝐻 𝑙𝑖𝑞 =
∑︁
𝑖

ℎ𝑙𝑖𝑞𝑖 𝑥𝑖

𝐻𝑣𝑎𝑝 =
∑︁
𝑖

ℎ𝑣𝑎𝑝𝑖 𝑦𝑖

Similarly, specific entropies are calcuated as follows. The specific entropy (entropy_comp_liq) for component 𝑖 is
computed using the following expression for the liquid phase:

𝑠𝑙𝑖𝑞𝑖 = ∆𝑠𝑓𝑜𝑟𝑚,𝐿𝑖𝑞,𝑖 +

∫︁ 𝑇

298.15

(𝐴/𝑇 +𝐵 + 𝐶𝑇 +𝐷𝑇 2 + 𝐸𝑇 3)𝑑𝑇

The specific entropy (entropy_comp_vap) for component 𝑖 is computed using the following expression for the vapor
phase:

𝑠𝑣𝑎𝑝𝑖 = ∆𝑠𝑓𝑜𝑟𝑚,𝑉 𝑎𝑝,𝑖 +

∫︁ 𝑇

298.15

(𝐴/𝑇 +𝐵 + 𝐶𝑇 +𝐷𝑇 2 + 𝐸𝑇 3)𝑑𝑇

Please refer to references 1 and 2 to get parameters for different components.
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Activity Coefficient Model - NRTL

The activity coefficient for component 𝑖
is computed using the following equa-
tions when using the Non-Random Two
Liquid model [3]:

log 𝛾𝑖 =

∑︀
𝑗 𝑥𝑗𝜏𝑗𝐺𝑗𝑖∑︀
𝑘 𝑥𝑘𝐺𝑘𝑖

+
∑︁
𝑗

𝑥𝑗𝐺𝑖𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

[𝜏𝑖𝑗 −
∑︀

𝑚 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

]

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

where 𝛼𝑖𝑗 is the non-randomness pa-
rameter and 𝜏𝑖𝑗 is the binary interaction
parameter for the NRTL model. Note
that in the IDAES implementation, these
are declared as variables that allows for
more flexibility and the ability to use
these in a parameter estimation problem.
These NRTL model specific variables
need to be either fixed for a given com-
ponent set or need to be estimated from
VLE data.

The bubble point is computed by enforc-
ing the following condition:∑︁

𝑖

[𝑧𝑖𝑝
𝑠𝑎𝑡
𝑖 (𝑇𝑏𝑢𝑏𝑏𝑙𝑒)𝜈𝑖] − 𝑃 = 0

Activity Coefficient Model - Wilson

The activity coefficient for component 𝑖
is computed using the following equa-
tions when using the Wilson model [3]:

log 𝛾𝑖 = 1 − log
∑︁
𝑗

𝑥𝑗𝐺𝑗𝑖 −
∑︁
𝑗

𝑥𝑗𝐺𝑖𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

𝐺𝑖𝑗 = (𝑣𝑖/𝑣𝑗) exp(−𝜏𝑖𝑗)

where 𝑣𝑖 is the molar volume of com-
ponent 𝑖 and 𝜏𝑖𝑗 is the binary interaction
parameter. These are Wilson model spe-
cific variables that either need to be fixed
for a given component set or need to be
estimated from VLE data.

The bubble point is computed by enforc-
ing the following condition:∑︁

𝑖

[𝑧𝑖𝑝
𝑠𝑎𝑡
𝑖 (𝑇𝑏𝑢𝑏𝑏𝑙𝑒)𝜈𝑖] − 𝑃 = 0

466 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

List of Variables

Variable Name Description Units
flow_mol Total molar flow rate mol/s
mole_frac_comp Mixture mole fraction indexed by component None
temperature Temperature K
pressure Pressure Pa
flow_mol_phase Molar flow rate indexed by phase mol/s
mole_frac_phase_comp Mole fraction indexed by phase and component None
pressure_sat Saturation or vapor pressure indexed by component Pa
density_mol_phase Molar density indexed by phase mol/m3
ds_vap Molar entropy of vaporization J/mol.K
enthalpy_comp_liq Liquid molar enthalpy indexed by component J/mol
enthalpy_comp_vap Vapor molar enthalpy indexed by component J/mol
enthalpy_liq Liquid phase enthalpy J/mol
enthalpy_vap Vapor phase enthalpy J/mol
entropy_comp_liq Liquid molar entropy indexed by component J/mol
entropy_comp_vap Vapor molar entropy indexed by component J/mol
entrolpy_liq Liquid phase entropy J/mol
entropy_vap Vapor phase entropy J/mol
temperature_bubble Bubble point temperature K
temperature_dew Dew point temperature K
_temperature_equilibrium Temperature at which the VLE is calculated K

Table 5: NRTL model specific variables
Variable Name Description Units
alpha Non-randomness parameter indexed by component and component None
tau Binary interaction parameter indexed by component and component None
activity_coeff_comp Activity coefficient indexed by component None

Table 6: Wilson model specific variables
Variable Name Description Units
vol_mol_comp Molar volume of component indexed by component None
tau Binary interaction parameter indexed by component and component None
activity_coeff_comp Activity coefficient indexed by component None

Initialization

Config Block Documentation

class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffParameterBlock(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().
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• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

default_arguments Default arguments to
use with Property Package

activity_coeff_model Flag indicating the
activity coefficient model to be used
for the non-ideal liquid, and thus cor-
responding constraints should be in-
cluded, default - Ideal liquid. Valid val-
ues: { “NRTL” - Non Random Two
Liquid Model, “Wilson” - Wilson Liq-
uid Model,}

state_vars Flag indicating the choice for
state variables to be used for the state
block, and thus corresponding con-
straints should be included, default -
FTPz Valid values: { “FTPx” - Total
flow, Temperature, Pressure and Mole
fraction, “FcTP” - Component flow,
Temperature and Pressure}

valid_phase Flag indicating the valid
phase for a given set of conditions, and
thus corresponding constraints should
be included, default - (“Vap”, “Liq”).
Valid values: { “Liq” - Liquid only,
“Vap” - Vapor only, (“Vap”, “Liq”)
- Vapor-liquid equilibrium, (“Liq”,
“Vap”) - Vapor-liquid equilibrium,}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ActivityCoeffParameterBlock)
New instance
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class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlock(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

parameters A reference to an instance of
the Property Parameter Block associ-
ated with this property package.

defined_state Flag indicating whether the
state should be considered fully defined,
and thus whether constraints such as
sum of mass/mole fractions should be
included, default - False. Valid values:
{ True - state variables will be fully de-
fined, False - state variables will not be
fully defined.}

has_phase_equilibrium Flag indicating
whether phase equilibrium constraints
should be constructed in this state block,
default - True. Valid values: { True -
StateBlock should calculate phase equi-
librium, False - StateBlock should not
calculate phase equilibrium.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ActivityCoeffStateBlock) New in-
stance

class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData(*args,
**kwargs)
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An example property package for ideal
VLE.

build()

Callable method for Block construction.

define_state_vars()

Define state vars.

get_energy_density_terms(p)

Create enthalpy density terms.

get_enthalpy_flow_terms(p)

Create enthalpy flow terms.

get_material_density_terms(p, j)

Create material density terms.

get_material_flow_basis()

Declare material flow basis.

get_material_flow_terms(p, j)

Create material flow terms for control
volume.

model_check()

Model checks for property block.

References

1. “The properties of gases and liquids by
Robert C. Reid”

2. “Perry’s Chemical Engineers Handbook
by Robert H. Perry”.

3. H. Renon and J.M. Prausnitz, “Local
compositions in thermodynamic excess
functions for liquid mixtures.”, AIChE
Journal Vol. 14, No.1, 1968.

4. AP Burgard, JP Eason, JC Eslick, JH
Ghouse, A Lee, LT Biegler, DC Miller.
“A Smooth, Square Flash Formulation
for Equation Oriented Flowsheet Opti-
mization”, Computer Aided Chemical
Engineering 44, 871-876, 2018
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Pure Component Helmholtz EoS

The Helmholtz Equation of State (EoS)
classes serve as a common core for pure
component property packages where
very accurate and thermodynamically
consistent pure component properties
are required. This contains general in-
formation. Thermodynamic properties
for all Helmholtz EoS packages are cal-
culated by the core class only the param-
eters differ between specific component
implementation. Specific implementa-
tions may also contain additional prop-
erties such as viscosity and thermal con-
ductivity. For specific property pack-
ages details see the pages below.

International Association of the Properties of Water and Steam IAPWS-95

Accurate and thermodynamically con-
sistent steam properties are provided
for the IDAES framework by imple-
menting the International Association
for the Properties of Water and Steam’s
“Revised Release on the IAPWS For-
mulation 1995 for the Thermodynamic
Properties of Ordinary Water Substance
for General and Scientific Use.” Non-
analytic terms designed to improve ac-
curacy very near the critical point were
omitted, because they cause a singu-
larity at the critical point, a feature
which is undesirable in optimization
problems. The IDAES implementa-
tion provides features which make the
water and steam property calculations
amenable to rigorous mathematical op-
timization.

Please see the general Helmholtz docu-
mentation for more information.
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Example

The Heater unit model example, pro-
vides a simple example for using water
properties.

from idaes.generic_models.
→˓properties import iapws95
import pyomo.environ␣
→˓as pe # Pyomo environment
from idaes.
→˓core import FlowsheetBlock,
→˓ MaterialBalanceType
from idaes.generic_models.
→˓unit_models import Heater

# Create an␣
→˓empty flowsheet and steam␣
→˓property parameter block.
model = pe.ConcreteModel()
model.
→˓fs = FlowsheetBlock(default=
→˓{"dynamic": False})
model.
→˓fs.
→˓properties␣
→˓=␣
→˓iapws95.
→˓Iapws95ParameterBlock(default=
→˓{
"phase_presentation

→˓":iapws95.PhaseType.LG,
"state_

→˓vars":iapws95.StateVars.PH})

# Add a Heater␣
→˓model to the flowsheet.
model.
→˓fs.heater = Heater(default={
"property_package

→˓": model.fs.properties,
"material_balance_

→˓type": MaterialBalanceType.
→˓componentTotal})

# Setup␣
→˓the heater model by fixing␣
→˓the inputs and heat duty
model.fs.heater.
→˓inlet[:].enth_mol.fix(4000)
model.fs.heater.
→˓inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].
→˓pressure.fix(101325) (continues on next page)

472 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

(continued from previous page)

model.fs.heater.
→˓heat_duty[:].fix(100*20000)

# Initialize the model.
model.fs.heater.initialize()

Since all properties except the state vari-
ables are Pyomo Expressions in the wa-
ter properties module, after solving the
problem any property can be calculated
in any state block. Continuing from the
heater example, to get the viscosity of
both phases, the lines below could be
added.

mu_l␣
→˓= pe.value(model.fs.heater.
→˓control_volume.properties_
→˓out[0].visc_d_phase["Liq"])
mu_v␣
→˓= pe.value(model.fs.heater.
→˓control_volume.properties_
→˓out[0].visc_d_phase["Vap"])

For more information about how State-
Blocks and PropertyParameterBlocks
work see the StateBlock documentation.

Expressions

The IAPWS-95 property package con-
tains the standard expressions described
in the general Helmholtz documenta-
tion, but it also defines expressions for
transport properties.

Expression Description
therm_cond_phase[phase] Thermal conductivity of phase (W/K/m)
visc_d_phase[phase] Viscosity of phase (Pa/s)
visc_k_phase[phase] Kinimatic viscosity of phase (m2/s)
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Convenience Functions

idaes.generic_models.properties.iapws95.htpx(T=None, P=None, x=None)

Convenience function to calculate steam
enthalpy from temperature and either
pressure or vapor fraction. This function
can be used for inlet streams and initial-
ization where temperature is known in-
stead of enthalpy. User must provided
values for two of T, P, or x.

Parameters

• T – Temperature with units (between
200 and 3000 K)

• P – Pressure with units (between 1 and
1e9 Pa), None if saturated vapor

• x – Vapor fraction [mol vapor/mol total]
(between 0 and 1), None if

• or subcooled (superheated) –

Returns Total molar enthalpy [J/mol].

Iapws95StateBlock Class

class idaes.generic_models.properties.iapws95.Iapws95StateBlock(*args, **kwds)

This is some placeholder doc.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

parameters A reference to an instance of
the Property Parameter Block associ-
ated with this property package.

defined_state Flag indicating whether the
state should be considered fully defined,
and thus whether constraints such as
sum of mass/mole fractions should be
included, default - False. Valid values:
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{ True - state variables will be fully de-
fined, False - state variables will not be
fully defined.}

has_phase_equilibrium Flag indicating
whether phase equilibrium constraints
should be constructed in this state block,
default - True. Valid values: { True -
StateBlock should calculate phase equi-
librium, False - StateBlock should not
calculate phase equilibrium.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Iapws95StateBlock) New instance

Iapws95StateBlockData Class

class idaes.generic_models.properties.iapws95.Iapws95StateBlockData(*args, **kwargs)

This is a property package for calculat-
ing thermophysical properties of water.

build(*args)

Callable method for Block construction

Iapws95ParameterBlock Class

class idaes.generic_models.properties.iapws95.Iapws95ParameterBlock(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

4.5. Technical Specifications 475

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


IDAES Documentation, Release 1.10.1

• default (dict) – Default Process-
BlockData config

Keys

default_arguments Default arguments to
use with Property Package

phase_presentation Set the way phases
are presented to models. The MIX op-
tion appears to the framework to be a
mixed phase containing liquid and/or
vapor. The mixed option can simplify
calculations at the unit model level since
it can be treated as a single phase, but
unit models such as flash vessels will
not be able to treat the phases indepen-
dently. The LG option presents as two
separate phases to the framework. The L
or G options can be used if it is known
for sure that only one phase is present.
default - PhaseType.MIX Valid values:
{ PhaseType.MIX - Present a mixed
phase with liquid and/or vapor, Phase-
Type.LG - Present a liquid and vapor
phase, PhaseType.L - Assume only liq-
uid can be present, PhaseType.G - As-
sume only vapor can be present}

state_vars The set of state variables to
use. Depending on the use, one state
variable set or another may be bet-
ter computationally. Usually pressure
and enthalpy are the best choice be-
cause they are well behaved during
a phase change. default - State-
Vars.PH Valid values: { StateVars.PH
- Pressure-Enthalpy, StateVars.TPX -
Temperature-Pressure-Quality}

temperature_bounds This is an optional
tuple providing default temperature
bounds. The elements of the tuple
should include units of temperature,
for example, if pyomo units is im-
ported as pyunits, (270*pyunits.K,
1000*pyunits.K).

pressure_bounds This is an optional tu-
ple providing default pressure bounds.
The elements of the tuple should include
units of pressure, for example, if pyomo
units is imported as pyunits, (1*pyu-
nits.kPa, 1e6*pyunits.kPa).

enthalpy_mol_bounds This is an
optional tuple providing default
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enthalpy per mole bounds. The el-
ements of the tuple should include
units of energy per mole, for exam-
ple, if pyomo units is imported as
pyunits, (1*pyunits.J/pyunits.mol,
1e5*pyunits.J/pyunits.mol).

enthalpy_mass_bounds This is an
optional tuple providing default
enthalpy per mass bounds. The el-
ements of the tuple should include
units of energy per mass, for ex-
ample, if pyomo units is imported
as pyunits, (1*pyunits.J/pyunits.kg,
1e5*pyunits.J/pyunits.kg).

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Iapws95ParameterBlock) New in-
stance

Iapws95ParameterBlockData Class

class idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData(component)

build()

General build method for Property-
ParameterBlocks. Inheriting models
should call super().build.

Parameters None –

Returns None
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Span-Wager CO2

This implements the Span-Wagner
equation of state for CO2 “Span-
Wagner equation of state for CO2”
Please see the general Helmholtz
documentation for more information.

478 Chapter 4. Contents

http://iapws.org/relguide/IAPWS95-2016.pdf
http://iapws.org/relguide/IAPWS95-2016.pdf
http://iapws.org/relguide/ThCond.pdf
http://iapws.org/relguide/visc.pdf
http://iapws.org/relguide/visc.pdf


IDAES Documentation, Release 1.10.1

Example

The Heater unit model example, pro-
vides a simple example for using water
properties.

from idaes.generic_models.
→˓properties import swco2
from pyomo.environ␣
→˓import ConcreteModel, units␣
→˓as pyunits, SolverFactory␣
→˓# Pyomo environment
from␣
→˓idaes.generic_models.unit_
→˓models import Compressor
from idaes.
→˓core import FlowsheetBlock

model = ConcreteModel()
model.
→˓fs = FlowsheetBlock(default=
→˓{"dynamic": False})
model.fs.properties =␣
→˓swco2.SWCO2ParameterBlock()
model.fs.
→˓unit = Compressor(default=
→˓{"property_package
→˓": model.fs.properties})
F = 1000
Tin = 500
Pin = 10000
Pout = 20000
hin␣
→˓= swco2.htpx(T=Tin*pyunits.
→˓K, P=Pin*pyunits.Pa)

model.fs.unit.
→˓inlet.flow_mol[0].fix(F)
model.fs.unit.
→˓inlet.enth_mol[0].fix(hin)
model.fs.unit.
→˓inlet.pressure[0].fix(Pin)
model.fs.
→˓unit.deltaP.fix(Pout - Pin)
model.fs.unit.efficiency_
→˓isentropic.fix(0.9)
model.
→˓fs.unit.initialize(optarg=
→˓{'tol': 1e-6})

solver␣
→˓= SolverFactory("ipopt")
solver.solve(model)
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For more information about how State-
Blocks and PropertyParameterBlocks
work see the StateBlock documentation.

Expressions

The Span-Wager property package con-
tains the standard expressions described
in the general Helmholtz documenta-
tion, but it also defines expressions for
transport properties.

Expression Description
therm_cond_phase[phase] Thermal conductivity of phase (W/K/m)
visc_d_phase[phase] Viscosity of phase (Pa/s)
visc_k_phase[phase] Kinimatic viscosity of phase (m2/s)

Convenience Functions

idaes.generic_models.properties.swco2.htpx(T=None, P=None, x=None)

Convenience function to calculate en-
thalpy from temperature and either pres-
sure or vapor fraction. This function can
be used for inlet streams and initializa-
tion where temperature is known instead
of enthalpy. User must provided values
for two of T, P, or x.

Parameters

• T – Temperature with units (between
200 and 3000 K)

• P – Pressure with units (between 1 and
1e9 Pa), None if saturated vapor

• x – Vapor fraction [mol vapor/mol total]
(between 0 and 1), None if superheated
or subcooled

Returns Total molar enthalpy [J/mol].

SWCO2StateBlock Class

class idaes.generic_models.properties.swco2.SWCO2StateBlock(*args, **kwds)

This is some placeholder doc.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().
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• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

parameters A reference to an instance of
the Property Parameter Block associ-
ated with this property package.

defined_state Flag indicating whether the
state should be considered fully defined,
and thus whether constraints such as
sum of mass/mole fractions should be
included, default - False. Valid values:
{ True - state variables will be fully de-
fined, False - state variables will not be
fully defined.}

has_phase_equilibrium Flag indicating
whether phase equilibrium constraints
should be constructed in this state block,
default - True. Valid values: { True -
StateBlock should calculate phase equi-
librium, False - StateBlock should not
calculate phase equilibrium.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (SWCO2StateBlock) New instance
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SWCO2StateBlockData Class

class idaes.generic_models.properties.swco2.SWCO2StateBlockData(*args, **kwargs)

This is a property package for calculat-
ing thermophysical properties of water.

build(*args)

Callable method for Block construction

SWCO2ParameterBlock Class

class idaes.generic_models.properties.swco2.SWCO2ParameterBlock(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

default_arguments Default arguments to
use with Property Package

phase_presentation Set the way phases
are presented to models. The MIX op-
tion appears to the framework to be a
mixed phase containing liquid and/or
vapor. The mixed option can simplify
calculations at the unit model level since
it can be treated as a single phase, but
unit models such as flash vessels will
not be able to treat the phases indepen-
dently. The LG option presents as two
separate phases to the framework. The L
or G options can be used if it is known
for sure that only one phase is present.
default - PhaseType.MIX Valid values:
{ PhaseType.MIX - Present a mixed
phase with liquid and/or vapor, Phase-
Type.LG - Present a liquid and vapor
phase, PhaseType.L - Assume only liq-
uid can be present, PhaseType.G - As-
sume only vapor can be present}
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state_vars The set of state variables to
use. Depending on the use, one state
variable set or another may be bet-
ter computationally. Usually pressure
and enthalpy are the best choice be-
cause they are well behaved during
a phase change. default - State-
Vars.PH Valid values: { StateVars.PH
- Pressure-Enthalpy, StateVars.TPX -
Temperature-Pressure-Quality}

temperature_bounds This is an optional
tuple providing default temperature
bounds. The elements of the tuple
should include units of temperature,
for example, if pyomo units is im-
ported as pyunits, (270*pyunits.K,
1000*pyunits.K).

pressure_bounds This is an optional tu-
ple providing default pressure bounds.
The elements of the tuple should include
units of pressure, for example, if pyomo
units is imported as pyunits, (1*pyu-
nits.kPa, 1e6*pyunits.kPa).

enthalpy_mol_bounds This is an
optional tuple providing default
enthalpy per mole bounds. The el-
ements of the tuple should include
units of energy per mole, for exam-
ple, if pyomo units is imported as
pyunits, (1*pyunits.J/pyunits.mol,
1e5*pyunits.J/pyunits.mol).

enthalpy_mass_bounds This is an
optional tuple providing default
enthalpy per mass bounds. The el-
ements of the tuple should include
units of energy per mass, for ex-
ample, if pyomo units is imported
as pyunits, (1*pyunits.J/pyunits.kg,
1e5*pyunits.J/pyunits.kg).

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.
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Returns (SWCO2ParameterBlock) New in-
stance

SWCO2ParameterBlockData Class

class idaes.generic_models.properties.swco2.SWCO2ParameterBlockData(component)

build()

General build method for Property-
ParameterBlocks. Inheriting models
should call super().build.

Parameters None –

Returns None
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The basic Helmholtz EoS is described
“Revised Release on the IAPWS For-
mulation 1995 for the Thermodynamic
Properties of Ordinary Water Substance
for General and Scientific Use.”. The
Helmholtz EoS as used in the IAPWS-
95 contains non-analytic terms to im-
prove accuracy near the critical point.
These terms, however cause a singular-
ity at the critical point and can causes
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computational difficulty, so the non-
analytic where omitted in the IDAES
implementation.

The IDAES implementation is of the
Helmholtz EoS makes use of exter-
nal function for many of the proper-
ties. Solving the VLE and changing
state variables require solution of non-
linear equations with multiple solutions,
so solving then externally provides a
method of decomposition where it can
be guaranteed that the nonlinear equa-
tions associated with the Helmholtz EoS
are solved correctly. The external func-
tions provide first and second deriva-
tives, and are compatible with advanced
optimization solvers. Phase change
does cause problems to be non-smooth,
but, as a practical matter, problem us-
ing the IDAES implementation of the
Helmholtz EoS, still seem to solve well
even with phase change.

Units

The iapws95 property module uses SI
units (m, kg, s, J, mol) for all public
variables and expressions. Temperature
is in K. Note that this means molecular
weight is in the unusual unit of kg/mol.

A few expressions intended used inter-
nally and all external function calls use
units of kg, kJ, kPa, and K. These gen-
erally are not needed by the end user.

Phase Presentation

The property package wrapper can
present fluid phase information to the
IDAES framework in different ways.
For specifics on how to set the options
see a specific implementation page.

The PhaseType.MIX option causes to
modeling framework to view water and
steam as a single mixed liquid and va-
por phase. This generally reduces model
complexity. Phase equilibrium is still
calculated and vapor_frac and indi-
vidual phase properties are available,
just are they would be with the two-
phase presentation. The mixed-phase
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presentation can be used with most stan-
dard unit models that do not provide
phase separation. If phase separation is
required, either use the two-phase pre-
sentation or create a custom model.

The PhaseType.LG option appears to
the IDAES framework to be two phases
“Vap” and “Liq”. This option requires
one of two unit model options to be
set. You can use the total material bal-
ance option for unit models, to spec-
ify that only one material balance equa-
tion should be written not one per phase.
The other possible option is to specify
has_phase_equlibrium=True. This
will write a material balance per phase,
but will add a phase generation term to
the model. For Helmholtz EoS pack-
ages, it is generally recommended that
specifying total material balances is best
because it results in a problem with
fewer variables, and phase equilibrium
is always calculated by the property
package.

There are two single phase options
PhaseType.L and PhaseType.G; these
present a single phase “Liq” or “Vap”
to the framework. The vapor fraction
will also always return 0 or 1 as ap-
propriate. These options can be used
when the phase of a fluid is know for
certain to only be liquid or only be
vapor. For the temperature-pressure-
vapor fraction formulation, this elim-
inates the complementarity constraint,
but for the enthalpy-pressure formula-
tion, where the vapor fraction is al-
ways calculated, the single phase op-
tions probably do not provide any real
benefit.

State Variables

There is a choice of state variables,
pressure-enthalpy and temperature-
pressure-vapor fraction. In general
the enthalpy-pressure form is prefer-
able. Both the pressure and enthalpy
variables are smooth and sufficient
to define the fluid state. For systems
where two-phases may be present, it is
expected that pressure-enthalpy is the
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best choice of state variables.

The temperature-pressure-vapor frac-
tion form is more convenient, since
temperature is directly measurable and
more familiar than enthalpy. Com-
plementarity constraints are used to
deal with the vapor fraction variable,
but the additional complimentary con-
straints may make the problem less ro-
bust. Temperature-pressure is often a
good choice of state variables where
there is only a single known phase.

Pressure-Enthalpy Formulation

The advantage of this choice of state
variables is that it is more robust when
phase changes occur, and is especially
useful when it is not known if a phase
change will occur. The disadvantage
of this choice of state variables is that
for equations like heat transfer equa-
tions that are highly dependent on tem-
perature, a model could be harder to
solve near regions with phase change.
Temperature is a non-smooth function
with non-smoothness when transition-
ing from the single-phase to the two-
phase region. Temperature also has a
zero derivative with respect to enthalpy
in the two-phase region, so near the two-
phase region solving a constraint that
specifies a specific temperature may be
difficult.

The variables for this form are
flow_mol (mol/s), pressure (Pa), and
enth_mol (J/mol).

Since temperature and vapor fraction are
not state variables in this formulation,
they are provided by expressions, and
cannot be fixed. For example, to set a
temperature to a specific value, a con-
straint could be added which says the
temperature expression equals a fixed
value.

These expressions are specific to the P-
H formulation:

temperature Expression that calculates
temperature by calling an External-
Function of enthalpy and pressure. This
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expression is non-smooth in the tran-
sition from single-phase to two-phase
and has a zero derivative with respect
to enthalpy in the two-phase region.

vapor_frac Expression that calculates va-
por fraction by calling an ExternalFunc-
tion of enthalpy and pressure. This ex-
pression is non-smooth in the transi-
tion from single-phase to two-phase and
has a zero derivative with respect to en-
thalpy in the single-phase region, where
the value is 0 (liquid) or 1 (vapor).

Temperature-Pressure-Vapor Fraction

This formulation uses temperature (K),
pressure (Pa), and vapor fraction as state
variables. When a single phase option is
given, the vapor fraction is fixed to the
appropriate value and the complemen-
tarity constraint is deactivated.

A complementarity constraint is re-
quired for the T-P-x formulation when
two-phases may be present. First, two
expressions are defined below where
𝑃− is pressure under saturation pressure
and 𝑃+ is pressure over saturation pres-
sure. The max() function is provided
as an IDAES utility which provides a
smooth max expression.

𝑃− = max(0, 𝑃sat − 𝑃 )

𝑃+ = max(0, 𝑃 − 𝑃sat)

With the “pressure over” and “pressure
under” expressions a complementarity
constraint can be written. If the pressure
under saturation is more than zero, only
vapor exists. If the pressure over satu-
ration is greater than zero only a liquid
exists. If both are about zero two phases
can exist. The saturation pressure func-
tion maxes out at the critical pressure and any temperature above the critical temperature will yield a saturation pressure
that is the critical pressure, so supercritical fluids will be classified as liquids as is the convention for this property pack-
age.

0 = 𝑥𝑃+ − (1 − 𝑥)𝑃−

Assuming the vapor fraction (𝑥) is positive and noting that only one of 𝑃+ and 𝑃− can be nonzero (approximately),
the complementarity equation above requires 𝑥 to be 0 when 𝑃+ is not zero (liquid) or 𝑥 to be 1 when 𝑃− is not zero
(vapor). When both 𝑃+ and 𝑃− are about 0, the complementarity constraint says nothing about x, but it basically
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reduces another constraint, that 𝑃 = 𝑃sat. When two phases are present 𝑥 is found by the unit model energy balance,
where the temperature will be 𝑇sat (because 𝑃 = 𝑃sat).

An alternative approach is sometimes
useful to simplify the problem when it
is certain that there are two phases. The
complementarity constraint can be de-
activated and a 𝑃 = 𝑃sat or 𝑇 = 𝑇sat
constraint can be added.

Using the T-P-x formulation requires
better initial guesses than the P-H form.
It is not strictly necessary but it is best
to try to get an initial guess that is in the
correct phase region for the expected re-
sult model.

Expressions

Unless otherwise noted, the property ex-
pressions are common to both the T-P-x
and P-H formulations. For phase spe-
cific properties, valid phase indexes are
"Liq" and "Vap". Even when using
the mixed phase version of the property
package, both liquid and vapor proper-
ties are available.

Expression Description
mw Molecular weight (kg/mol)
tau Critical temperature divided by temperature (unitless)
temperature Temperature (K) if PH form
temperature_red Reduced temperature, temperature divided by critical temperature (unitless)
temperature_sat Saturation temperature (K)
tau_sat Critical temperature divided by saturation temperature (unitless)
pressure_sat Saturation pressure (Pa)
dens_mass_phase[phase] Density phase (kg/m3)
dens_phase_red[phase] Phase reduced density (𝛿), mass density divided by critical density (unitless)
dens_mass Total mixed phase mass density (kg/m3)
dens_mol Total mixed phase mole density (kg/m3)
flow_vol Total volumetric flow rate (m3/s)
enth_mass Mass enthalpy (J/kg)
enth_mol_sat_phase[phase] Saturation enthalpy of phase, enthalpy at P and Tsat (J/mol)
enth_mol Molar enthalpy (J/mol) if TPx form
enth_mol_phase[phase] Molar enthalpy of phase (J/mol)
energy_internal_mol molar internal energy (J/mol)
energy_internal_mol_phase[phase] Molar internal energy of phase (J/mol)
entr_mol_phase Molar entropy of phase (J/mol/K)
entr_mol Total mixed phase entropy (J/mol/K)
cp_mol_phase[phase] Constant pressure molar heat capacity of phase (J/mol/K)
cv_mol_phase[phase] Constant pressure volume heat capacity of phase (J/mol/K)
cp_mol Total mixed phase constant pressure heat capacity (J/mol/K)

continues on next page
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Table 7 – continued from previous page
Expression Description
cv_mol Total mixed phase constant volume heat capacity (J/mol/K)
heat_capacity_ratio cp_mol/cv_mol
speed_sound_phase[phase] Speed of sound in phase (m/s)
dens_mol_phase[phase] Mole density of phase (mol/m3)
vapor_frac Vapor fraction, if PH form
phase_frac[phase] Phase fraction
flow_mol_comp["H2O"] Same as total flow since only water (mol/s)
P_under_sat Pressure under saturation pressure (kPa)
P_over_sat Pressure over saturation pressure (kPa)

ExternalFunctions

This provides a list of ExternalFuctions
available in the wrapper. These func-
tions do not use SI units and are not
usually called directly. If these func-
tions are needed, they should be used
with caution. Some of these are used in
the property expressions, some are just
provided to allow easier testing with a
Python framework.

All of these functions provide first
and second derivative and are gen-
erally suited to optimization (includ-
ing the ones that return derivatives
of Helmholtz free energy). Some
functions may have non-smoothness at
phase transitions. The delta_vap and
delta_liq functions return the same
values in the critical region. They will
also return real values when a phase
doesn’t exist, but those values do not
necessarily have physical meaning.

There are a few variables that are com-
mon to a lot of these functions, so they
are summarized here 𝜏 is the critical
temperature divided by the temperature
𝑇𝑐

𝑇 , 𝛿 is density divided by the critical
density 𝜌

𝜌𝑐
, and 𝜑 is Helmholtz free en-

ergy divided by the ideal gas constant
and temperature 𝑓

𝑅𝑇 .

Object C Function Returns Arguments
func_p p pressure (kPa) 𝛿, 𝜏
func_p_stau p_stau pressure (kPa) s (kJ/kg/K), 𝜏
func_u u internal energy (kJ/kg) 𝛿, 𝜏
func_s s entropy (kJ/K/kg) 𝛿, 𝜏
func_h h enthalpy (kJ/kg) 𝛿, 𝜏

continues on next page
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Table 8 – continued from previous page
Object C Function Returns Arguments
func_hvpt hvpt vapor enthalpy (kJ/kg) P (kPa), 𝜏
func_hlpt hlpt liquid enthalpy (kJ/kg) P (kPa), 𝜏
func_svpt svpt vapor entropy (kJ/kg/K) P (kPa), 𝜏
func_slpt slpt liquid entropy (kJ/kg/K) P (kPa), 𝜏
func_uvpt uvpt vapor internal energy (kJ/kg) P (kPa), 𝜏
func_ulpt ulpt liquid internal energy (kJ/kg) P (kPa), 𝜏
func_tau tau 𝜏 (unitless) h (kJ/kg), P (kPa)
func_tau_sp tau_sp 𝜏 (unitless) s (kJ/kg/K), P (kPa)
func_tau_up tau_up 𝜏 (unitless) u (kJ/kg), P (kPa)
func_vf vf vapor fraction (unitless) h (kJ/kg), P (kPa)
func_vfs vfs vapor fraction (unitless) s (kJ/kg/K), P (kPa)
func_vfu vfu vapor fraction (unitless) u (kJ/kg), P (kPa)
func_g g Gibbs free energy (kJ/kg) 𝛿, 𝜏
func_f f Helmholtz free energy (kJ/kg) 𝛿, 𝜏
func_cv cv const. volume heat capacity (kJ/K/kg) 𝛿, 𝜏
func_cp cp const. pressure heat capacity (kJ/K/kg) 𝛿, 𝜏
func_w w speed of sound (m/s) 𝛿, 𝜏
func_delta_liq delta_liq liquid 𝛿 (unitless) P (kPa), 𝜏
func_delta_vap delta_vap vapor 𝛿 (unitless) P (kPa), 𝜏
func_delta_sat_l delta_sat_l sat. liquid 𝛿 (unitless) 𝜏
func_delta_sat_v delta_sat_v sat. vapor 𝛿 (unitless) 𝜏
func_p_sat p_sat sat. pressure (kPa) 𝜏
func_tau_sat tau_sat sat. 𝜏 (unitless) P (kPa)
func_phi0 phi0 𝜑 idaes gas part (unitless) 𝛿, 𝜏

func_phi0_delta phi0_delta 𝜕𝜑0

𝜕𝛿 𝛿

func_phi0_delta2 phi0_delta2 𝜕2𝜑0

𝜕𝛿2 𝛿

func_phi0_tau phi0_tau 𝜕𝜑0

𝜕𝜏 𝜏

func_phi0_tau2 phi0_tau2 𝜕2𝜑0

𝜕𝜏2 𝜏
func_phir phir 𝜑 real gas part (unitless) 𝛿, 𝜏

func_phir_delta phir_delta 𝜕𝜑𝑟

𝜕𝛿 𝛿, 𝜏

func_phir_delta2 phir_delta2 𝜕2𝜑𝑟

𝜕𝛿2 𝛿, 𝜏

func_phir_tau phir_tau 𝜕𝜑𝑟

𝜕𝜏 𝛿, 𝜏

func_phir_tau2 phir_tau2 𝜕2𝜑𝑟

𝜕𝜏2 𝛿, 𝜏

func_phir_delta_tau phir_delta_tau 𝜕2𝜑𝑟

𝜕𝛿𝜕𝜏 𝛿, 𝜏

Initialization

The IAPWS-95 property functions do
provide initialization functions for gen-
eral compatibility with the IDAES
framework, but as long as the state vari-
ables are specified to some reasonable
value, initialization is not required. All
required solves are handled by external
functions.
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Property Interrogator Tool

When preparing to model a process
flowsheet, it is necessary to specify
models for all the thermophysical and
kinetic properties that will be required
by the different unit operations to sim-
ulate the process. However, it is often
difficult to know what properties will be
required a priori. The IDAES Property
Interrogator tool allows a user to define a
general flowsheet structure and interro-
gate it for the full list of properties that
will be required, thus informing them of
what methods they will need to define in
their property package(s).
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Tool Usage

The IDAES Properties Interrogator tool
consists of two classes; a PropertiesIn-
terrogatorBlock and a ReactionInter-
rogatorBlock. These blocks are used
in place of the normal PhysicalParam-
eterBlock and ReactionParameterBlock
whilst declaring a flowsheet, however
rather than constructing a solvable flow-
sheet they record all calls for properties
made whilst constructing the flowsheet.
These Blocks then contain a number of
methods for reporting the logged prop-
erty calls for the user.

An example of how Property Interroga-
tor tool is used is shown below:

import pyomo.environ␣
→˓as pyo # Pyomo environment
from idaes.
→˓core import FlowsheetBlock
from idaes.generic_models.
→˓unit_models import CSTR
from idaes.
→˓generic_models.properties.
→˓interrogator import␣
→˓PropertyInterrogatorBlock,
→˓ ReactionInterrogatorBlock

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": True})

m.fs.params =␣
→˓PropertyInterrogatorBlock()
m.fs.rxn_params␣
→˓= ReactionInterrogatorBlock(

default={"property_
→˓package": m.fs.params})

m.fs.R01␣
→˓= CSTR(default={"property_
→˓package": m.fs.params,

␣
→˓ "reaction_
→˓package": m.fs.rxn_params,

"has_
→˓heat_of_reaction": True})

Note: Flowsheets constructed using the Property Interrogator tools are not solvable flowsheets, and will result in errors
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if sent to a solver.

Output and Display Methods

Both the PropertiesInterrogatorBlock
and ReactionInterrogatorBlock support
the following methods for reporting
the results of the flowsheet interroga-
tion. The PropertiesInterrogatorBlock
will contain a summary of all thermo-
physical properties expected of a State-
Block in the flowsheet, whilst the Re-
actionInterrogatorBlock will contain a
summary of all reaction related proper-
ties required of a ReactionBlock.

• list_required_properties() - returns a list
containing all properties called for by
the flowsheet.

• print_required_properties() - prints a
summary of the required properties

• list_models_requiring_property(property)
- returns a list of unit models within
the flowsheet that require the given
property

• print_models_requiring_property(property)
- prints the name of all unit models
within the flowsheet that require the
given property

• list_properties_required_by_model(model)
- returns a list of all properties required
by a given unit model in the flowsheet

• print_properties_required_by_model(model)
- prints a summary of all properties
required by a given unit model in the
flowsheet

For more details on these methods, see
the detailed class documentation below.

Additionally, the PropertiesInter-
rogatorBlock and ReactionInter-
rogatorBlock contain a dict named
required_properties which stores the
data regarding the properties required
by the model. The keys of this dict are
the names of all the properties required
(as strings) and the values are a list of
names for the unit models requiring the
given property.
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Class Documentation

class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorBlock(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

default_arguments Default arguments to
use with Property Package

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (PropertyInterrogatorBlock) New
instance

class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData(component)

Interrogator Parameter Block Class

This class contains the methods and at-
tributes for recording and displaying the
properties requried by the flowsheet.

build()

Callable method for Block construction.

classmethod define_metadata(obj)

Set all the metadata for properties and
units.

This method should be implemented by
subclasses. In the implementation, they
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should set information into the object
provided as an argument.

Parameters pcm
(PropertyClassMetadata) – Add
metadata to this object.

Returns None

list_models_requiring_property(prop)

Method to list all models in the flow-
sheet requiring the given property.

Parameters prop – the property of interest

Returns A list of unit model names which
require prop

list_properties_required_by_model(model)

Method to list all thermophysical prop-
erties required by a given unit model.

Parameters model – the unit model of in-
terest. Can be given as either a model
component or the unit name as a string

Returns A list of thermophysical properties
required by model

list_required_properties()

Method to list all thermophysical prop-
erties required by the flowsheet.

Parameters None –

Returns A list of properties required

print_models_requiring_property(prop, ostream=None)

Method to print a summary of the mod-
els in the flowsheet requiring a given
property.

Parameters

• prop – the property of interest.

• ostream – output stream to print to. If
not provided will print to sys.stdout

Returns None

print_properties_required_by_model(model, ostream=None)

Method to print a summary of the ther-
mophysical properties required by a
given unit model.

Parameters

• model – the unit model of interest.
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• ostream – output stream to print to. If
not provided will print to sys.stdout

Returns None

print_required_properties(ostream=None)

Method to print a summary of the ther-
mophysical properties required by the
flowsheet.

Parameters ostream – output stream to
print to. If not provided will print to
sys.stdout

Returns None

class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorBlock(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

property_package Reference to associ-
ated PropertyPackageParameter object

default_arguments Default arguments to
use with Property Package

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (ReactionInterrogatorBlock) New
instance

class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData(*args,
**kwargs)

Interrogator Parameter Block Class

4.5. Technical Specifications 497

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


IDAES Documentation, Release 1.10.1

This class contains the methods and at-
tributes for recording and displaying the
reaction properties requried by the flow-
sheet.

build()

Callable method for Block construction.

classmethod define_metadata(obj)

Set all the metadata for properties and
units.

This method should be implemented by
subclasses. In the implementation, they
should set information into the object
provided as an argument.

Parameters pcm
(PropertyClassMetadata) – Add
metadata to this object.

Returns None

list_models_requiring_property(prop)

Method to list all models in the flow-
sheet requiring the given property.

Parameters prop – the property of interest

Returns A list of unit model names which
require prop

list_properties_required_by_model(model)

Method to list all reaction properties re-
quired by a given unit model.

Parameters model – the unit model of in-
terest. Can be given as either a model
component or the unit name as a string

Returns A list of reaction properties re-
quired by model

list_required_properties()

Method to list all reaction properties re-
quired by the flowsheet.

Parameters None –

Returns A list of properties required

print_models_requiring_property(prop, ostream=None)

Method to print a summary of the mod-
els in the flowsheet requiring a given
property.

Parameters
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• prop – the property of interest.

• ostream – output stream to print to. If
not provided will print to sys.stdout

Returns None

print_properties_required_by_model(model, ostream=None)

Method to print a summary of the reac-
tion properties required by a given unit
model.

Parameters

• model – the unit model of interest.

• ostream – output stream to print to. If
not provided will print to sys.stdout

Returns None

print_required_properties(ostream=None)

Method to print a summary of the re-
action properties required by the flow-
sheet.

Parameters ostream – output stream to
print to. If not provided will print to
sys.stdout

Returns None

Unit Models

Compressor

The Compressor model is a Pres-
sureChanger, where the configuration is
set so that the “compressor” option can
only be True, and the default “thermody-
namic_assumption” is “isentropic.” See
the PressureChanger documentation for
details.

Example

The example below demonstrates the
basic Compressor model usage:

import pyomo.environ as pyo
from idaes.
→˓core import FlowsheetBlock
from␣
→˓idaes.generic_models.unit_
→˓models import Compressor

(continues on next page)
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(continued from previous page)

from idaes.generic_models.
→˓properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.
→˓unit = Compressor(default=
→˓{"property_
→˓package": m.fs.properties})

m.fs.unit.
→˓inlet.flow_mol[0].fix(100)
m.fs.unit.
→˓inlet.enth_mol[0].fix(4000)
m.fs.unit.inlet.
→˓pressure[0].fix(101325)

m.fs.unit.deltaP.fix(50000)
m.fs.unit.efficiency_
→˓isentropic.fix(0.9)

Continuous Stirred Tank Reactor

The IDAES CSTR model represents a
unit operation where a material stream
undergoes some chemical reaction(s) in
a well-mixed vessel.

Degrees of Freedom

CSTRs generally have one degree of
freedom. Typically, the fixed variable is
reactor volume.

Model Structure

The core CSTR unit model consists
of a single ControlVolume0D (named
control_volume) with one Inlet Port
(named inlet) and one Outlet Port
(named outlet).
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Additional Constraints

CSTR units write the following addi-
tional Constraints beyond those written
by the ControlVolume Block.

𝑋𝑡,𝑟 = 𝑉𝑡 × 𝑟𝑡,𝑟

where 𝑋𝑡,𝑟 is the extent of reaction of
reaction 𝑟 at time 𝑡, 𝑉𝑡 is the volume of
the reacting material at time 𝑡 (allows for
varying reactor volume with time) and
𝑟𝑡,𝑟 is the volumetric rate of reaction of
reaction 𝑟 at time 𝑡 (from the outlet prop-
erty package).

Variables

CSTR units add the following additional
Variables beyond those created by the
ControlVolume Block.

Vari-
able

Name Notes

𝑉𝑡 vol-
ume

If has_holdup = True this is a reference to control_volume.volume, otherwise a Var at-
tached to the Unit Model

𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat

CSTR Class

class idaes.generic_models.unit_models.cstr.CSTR(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
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True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
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balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_heat_of_reaction Indicates whether
terms for heat of reaction terms should
be constructed, default - False. Valid
values: { True - include heat of reac-
tion terms, False - exclude heat of reac-
tion terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
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eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (CSTR) New instance

CSTRData Class

class idaes.generic_models.unit_models.cstr.CSTRData(component)

Standard CSTR Unit Model Class

build()

Begin building model (pre-DAE trans-
formation). :param None:

Returns None

Equilibrium Reactor

The IDAES Equilibrium reactor model
represents a unit operation where a ma-
terial stream undergoes some chemical
reaction(s) to reach an equilibrium state.
This model is for systems with reaction
with equilibrium coefficients - for Gibbs
energy minimization see Gibbs reactor
documentation.
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Degrees of Freedom

Equilibrium reactors generally have 1
degree of freedom.

Typical fixed variables are:

• reactor heat duty (has_heat_transfer =
True only).

Model Structure

The core Equilibrium reactor unit model
consists of a single ControlVolume0D
(named control_volume) with one In-
let Port (named inlet) and one Outlet
Port (named outlet).

Additional Constraints

Equilibrium reactors units write the fol-
lowing additional Constraints beyond
those written by the Control Volume if
rate controlled reactions are present.

𝑟𝑡,𝑟 = 0

where 𝑟𝑡,𝑟 is the rate of reaction for re-
action 𝑟 at time 𝑡. This enforces equi-
librium in any reversible rate controlled
reactions which are present. Any non-
reversible reaction that may be present
will proceed to completion.

Variables

Equilibrium reactor units add the
following additional Variables beyond
those created by the Control Volume.

Vari-
able

Name Notes

𝑉𝑡 vol-
ume

If has_holdup = True this is a reference to control_volume.volume, otherwise a Var at-
tached to the Unit Model

𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat
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EquilibriumReactor Class

class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactor(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Equilibrium Reactors do not support dy-
namic behavior.

has_holdup Indicates whether holdup
terms should be constructed or not.
default - False. Equilibrium reactors
do not have defined volume, thus this
must be False.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
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Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_rate_reactions Indicates whether
terms for rate controlled reactions
should be constructed, along with con-
straints equating these to zero, default
- True. Valid values: { True - include
rate reaction terms, False - exclude rate
reaction terms.}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default - True.
Valid values: { True - include phase
equilibrium term, False - exclude phase
equlibirum terms.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_heat_of_reaction Indicates whether
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terms for heat of reaction terms should
be constructed, default - False. Valid
values: { True - include heat of reac-
tion terms, False - exclude heat of reac-
tion terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (EquilibriumReactor) New in-
stance
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EquilibriumReactorData Class

class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData(component)

Standard Equilibrium Reactor Unit
Model Class

build()

Begin building model.

Parameters None –

Returns None

Feed Block

Feed Blocks are used to represent
sources of material in Flowsheets. Feed
blocks do not calculate phase equilib-
rium of the feed stream, and the compo-
sition of the material in the outlet stream
will be exactly as specified in the input.
For applications where the users wishes
the outlet stream to be in phase equilib-
rium, see the Feed_Flash unit model.

Degrees of Freedom

The degrees of freedom of Feed blocks
depends on the property package be-
ing used and the number of state vari-
ables necessary to fully define the sys-
tem. Users should refer to documenta-
tion on the property package they are us-
ing.

Model Structure

Feed Blocks consists of a single State-
Block (named properties), each with
one Outlet Port (named outlet). Feed
Blocks also contain References to the
state variables defined within the State-
Block

4.5. Technical Specifications 509



IDAES Documentation, Release 1.10.1

Additional Constraints

Feed Blocks write no additional con-
straints to the model.

Variables

Feed blocks add no additional Variables.

Feed Class

class idaes.generic_models.unit_models.feed.Feed(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Feed blocks are always steady-state.

has_holdup Feed blocks do not contain
holdup, thus this must be False.

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
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are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Feed) New instance

FeedData Class

class idaes.generic_models.unit_models.feed.FeedData(component)

Standard Feed Block Class

build()

Begin building model.

Parameters None –

Returns None

initialize(state_args=None, outlvl=0, solver=None, optarg=None)

This method calls the initialization
method of the state block.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None
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Feed Block with Flash

Feed Blocks are used to represent
sources of material in Flowsheets. In
some cases, users may have a situation
where a feed stream may be in a multi-
phase state, but may not know the full
details of the equilibrium state. The
IDAES Feed Block with Flash (Feed-
Flash) allows users to define a feed block
where the outlet is in phase equilibrium
based on calculations from the chosen
property package and a sufficient set of
state variables prior to being passed to
the first unit operation. The phase equi-
librium is performed assuming an iso-
baric and isothermal flash operation.

A Feed Block with Flash is only re-
quired in cases where the feed may be
in phase equilibrium AND the chosen
property package uses a state definition
that includes phase separations. Some
property packages support phase equi-
librium, but use a state definition that in-
volves only total flows - in these cases a
flash calculation is performed at the inlet
of every unit and thus it is not necessary
to perform a flash calculation at the feed
block.

Degrees of Freedom

The degrees of freedom of FeedFlash
blocks depends on the property package
being used and the number of state vari-
ables necessary to fully define the sys-
tem. Users should refer to documenta-
tion on the property package they are us-
ing.

Model Structure

FeedFlash Blocks contain a sin-
gle ControlVolume0D (named
control_volume) with one Outlet
Port (named outlet). FeedFlash
Blocks also contain References to
the state variables defined within the
inlet StateBlock of the ControlVolume
(representing the unflashed state of the
feed).
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FeedFlash Blocks do not write a set of
energy balances within the Control Vol-
ume - instead a constraint is written
which enforces an isothermal flash.

Additional Constraints

The FeedFlash Block writes one addi-
tional constraint to enforce isothermal
behavior.

𝑇𝑖𝑛,𝑡 = 𝑇𝑜𝑢𝑡,𝑡

where 𝑇𝑖𝑛,𝑡 and 𝑇𝑜𝑢𝑡,𝑡 are the tempera-
tures of the material before and after the
flash operation.

Variables

FeedFlash blocks add no additional
Variables.

FeedFlash Class

class idaes.generic_models.unit_models.feed_flash.FeedFlash(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Feed units do not support dy-
namic behavior.

has_holdup Feed units do not have de-
fined volume, thus this must be False.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
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default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

flash_type Indicates what type of flash
operation should be used. default -
FlashType.isothermal. Valid values: {
FlashType.isothermal - specify tem-
perature, FlashType.isenthalpic - spec-
ify enthalpy.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (FeedFlash) New instance
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FeedFlashData Class

class idaes.generic_models.unit_models.feed_flash.FeedFlashData(component)

Standard Feed block with phase equilib-
rium

build()

Begin building model.

Parameters None –

Returns None

Flash Unit

The IDAES Flash model represents a
unit operation where a single stream
undergoes a flash separation into two
phases. The Flash model supports mu-
tile types of flash operations, includ-
ing pressure changes and addition or re-
moval of heat.

Degrees of Freedom

Flash units generally have 2 degrees of
freedom.

Typical fixed variables are:

• heat duty or outlet temperature (see
note),

• pressure change or outlet pressure.

Note: When set-
ting the out-
let temepra-
ture of
a Flash
unit, it
is best to
set con-
trol_volume.properties_out[t].temperature.
Setting the temperature in one of the
outlet streams directly results in a much
harder problme to solve, and may be
degenerate or unbounded in some cases.
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Model Structure

The core Flash unit model consists of a
single ControlVolume0DBlock (named
control_volume) with one Inlet Port
(named inlet) connected to a Separator
unit model with two outlet Ports named
‘vap_outlet’ and ‘liq_outlet’. The Flash
model utilizes the separator unit model
in IDAES to split the outlets by phase
flows to the liquid and vapor outlets re-
spectively.

The Separator unit model supports both
direct splitting of state variables and
writting of full splitting constraints via
the ideal_separation construction argu-
ment. Full details on the Separator unit
model can be found in the documenta-
tion for that unit. To support direct split-
ting, the property package must use one
of a specified set of state variables and
support a certain set of property calacu-
ations, as outlined in the table below.

State Variables Required Properties
Material flow and composition
flow_mol & mole_frac flow_mol_phase & mole_frac_phase
flow_mol_phase & mole_frac_phase flow_mol_phase & mole_frac_phase
flow_mol_comp flow_mol_phase_comp
flow_mol_phase_comp flow_mol_phase_comp
flow_mass & mass_frac flow_mass_phase & mass_frac_phase
flow_mass_phase & mass_frac_phase flow_mass_phase & mass_frac_phase
flow_mass_comp flow_mass_phase_comp
flow_mass_phase_comp flow_mass_phase_comp
Energy state
temperature temperature
enth_mol enth_mol_phase
enth_mol_phase enth_mol_phase
enth_mass enth_mass_phase
enth_mass_phase enth_mass_phase
Pressure state
pressure pressure
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Construction Arguments

Flash units have the following construc-
tion arguments:

• property_package - property package to
use when constructing Property Blocks
(default = ‘use_parent_value’). This
is provided as a Property Parameter
Block by the Flowsheet when creating
the model. If a value is not provided, the
Holdup Block will try to use the default
property package if one is defined.

• property_package_args - set of argu-
ments to be passed to the Property
Blocks when they are created.

Additionally, Flash units have the fol-
lowing construction arguments which
are passed to the Holdup Block for deter-
mining which terms to construct in the
balance equations.

Argument Default Value
dynamic False
include_holdup False
material_balance_type MaterialBalanceType.componentPhase
energy_balance_type EnergyBalanceType.enthalpyTotal
momentum_balance_type MomentumBalanceType.pressureTotal
has_phase_equilibrium True
has_heat_transfer True
has_pressure_change True

Finally, Flash units also have the follow-
ing arguments which are passed to the
Separator block for determining how to
split to two-phase mixture.

Argument Default Value
ideal_separation True
energy_split_basis EnergySplittingType.equal_temperature

Additional Constraints

Flash units write no additional Con-
straints beyond those written by the
ControlVolume0DBlock and the Sepa-
rator block.
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Variables

Name Notes
heat_duty Reference to control_volume.heat
deltaP Reference to control_volume.deltaP

Flash Class

class idaes.generic_models.unit_models.flash.Flash(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Flash units do not support dynamic be-
havior.

has_holdup Indicates whether holdup
terms should be constructed or not.
default - False. Flash units do not have
defined volume, thus this must be False.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}
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energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

energy_split_basis Argument indi-
cating basis to use for splitting
energy this is not used for when
ideal_separation == True. default - En-
ergySplittingType.equal_temperature.
Valid values: { EnergySplitting-
Type.equal_temperature - outlet
temperatures equal inlet EnergyS-
plittingType.equal_molar_enthalpy
- oulet molar enthalpies equal inlet,
EnergySplittingType.enthalpy_split -
apply split fractions to enthalpy flows.}

ideal_separation Argument indicating
whether ideal splitting should be used.
Ideal splitting assumes perfect separa-
tion of material, and attempts to avoid
duplication of StateBlocks by directly
partitioning outlet flows to ports, de-
fault - True. Valid values: { True -
use ideal splitting methods. Cannot be

4.5. Technical Specifications 519



IDAES Documentation, Release 1.10.1

combined with has_phase_equilibrium
= True, False - use explicit splitting
equations with split fractions.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - True. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Flash) New instance

520 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict


IDAES Documentation, Release 1.10.1

FlashData Class

class idaes.generic_models.unit_models.flash.FlashData(component)

Standard Flash Unit Model Class

build()

Begin building model (pre-DAE trans-
formation).

Parameters None –

Returns None

Gibbs Reactor

The IDAES Gibbs reactor model repre-
sents a unit operation where a material
stream undergoes some set of reactions
such that the Gibbs energy of the result-
ing mixture is minimized. Gibbs reac-
tors rely on conservation of individual
elements within the system, and thus re-
quire element balances, and make use
of Lagrange multipliers to find the min-
imum Gibbs energy state of the system.

Configuration Arguments

The Gibbs Reactor unit model allows
users to specify a list of components
which should be considered to be inerts
within the reactor. This is done using the
“inert_species” configuration argument,
which should be a list of valid compo-
nent names. These components will be
considered inert, such that flows in and
out of the unit for those components in
each phase are equal.

Degrees of Freedom

Gibbs reactors generally have between 0
and 2 degrees of freedom, depending on
construction arguments.

Typical fixed variables are:

• reactor heat duty (has_heat_transfer =
True only).

• reactor pressure change
(has_pressure_change = True only).
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Model Structure

The core Gibbs reactor unit model con-
sists of a single ControlVolume0DBlock
(named control_volume) with one Inlet
Port (named inlet) and one Outlet Port
(named outlet).

Variables

Gibbs reactor units add the following
additional Variables beyond those cre-
ated by the Control Volume Block.

Variable Name Symbol Notes
lagrange_mult 𝐿𝑡,𝑒 Lagrange multipliers
heat_duty 𝑄𝑡 Only if has_heat_transfer = True, reference
deltaP ∆𝑃𝑡 Only if has_pressure_change = True, reference

Parameters

The Gibbs reactor unit model includes
a scaling parameter for the Gibbs en-
ergy minimization constraint, which is
named “gibbs_scaling”. The default
value is 1 and users may adjust the value
of this parameter is required.

Constraints

Gibbs reactor models write the follow-
ing additional constraints to calculate
the state that corresponds to the mini-
mum Gibbs energy of the system.

gibbs_minimization(time, phase, com-
ponent):

0 = ×𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 + ×
∑︁
𝑒

(𝐿𝑡,𝑒 × 𝛼𝑗,𝑒)

where 𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 is the partial molar
Gibbs energy of component 𝑗 at time 𝑡,
𝐿𝑡,𝑒 is the Lagrange multiplier for ele-
ment 𝑒 at time 𝑡 and 𝛼𝑗,𝑒 is the num-
ber of moles of element 𝑒 in one mole
of component 𝑗. 𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 and 𝛼𝑗,𝑒

come from the outlet StateBlock. 𝑡, 𝑒𝑝𝑠
is the gibbs_scaling parameter. In cases
where inert species are present, these are
excluded from the 𝑠𝑢𝑚𝑒 term.
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In cases where inerts are present, the fol-
lowing additional constraint is written
for each inert component and phase:

0 = 𝐹𝑖𝑛,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗

GibbsReactor Class

class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactor(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Gibbs reactors do not support
dynamic models, thus this must be
False.

has_holdup Gibbs reactors do not have
defined volume, thus this must be False.

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
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tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

inert_species List of species which do not
take part in reactions.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (GibbsReactor) New instance
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GibbsReactorData Class

class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData(component)

Standard Gibbs Reactor Unit Model
Class

This model assume all possible reac-
tions reach equilibrium such that the
system partial molar Gibbs free energy
is minimized. Since some species mole
flow rate might be very small, the nat-
ural log of the species molar flow rate
is used. Instead of specifying the sys-
tem Gibbs free energy as an objective
function, the equations for zero par-
tial derivatives of the grand function
with Lagrangian multiple terms with
repect to product species mole flow rates
and the multiples are specified as con-
straints.

build()

Begin building model (pre-DAE trans-
formation).

Parameters None –

Returns None

Heater

The Heater model is a simple 0D model
that adds or removes heat from a mate-
rial stream.

Example

import pyomo.environ␣
→˓as pe # Pyomo environment
from idaes.core import␣
→˓FlowsheetBlock, StateBlock
from idaes.generic_models.
→˓unit_models import Heater
from idaes.generic_models.
→˓properties import iapws95

# Create an␣
→˓empty flowsheet and steam␣
→˓property parameter block.
model = pe.ConcreteModel()
model.
→˓fs = FlowsheetBlock(default=
→˓{"dynamic": False})

(continues on next page)
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(continued from previous page)

model.fs.properties = iapws95.
→˓Iapws95ParameterBlock()

# Add a Heater␣
→˓model to the flowsheet.
model.
→˓fs.heater = Heater(default=
→˓{"property_package
→˓": model.fs.properties})

# Setup␣
→˓the heater model by fixing␣
→˓the inputs and heat duty
model.fs.heater.
→˓inlet[:].enth_mol.fix(4000)
model.fs.heater.
→˓inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].
→˓pressure.fix(101325)
model.fs.heater.
→˓heat_duty[:].fix(100*20000)

# Initialize the model.
model.fs.heater.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heater
model usually has one degree of free-
dom, which is the heat duty.

Model Structure

A heater model contains one Con-
trolVolume0DBlock block.
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Variables

The heat_duty variable is a reference
to control_volume.heat.

Constraints

A heater model contains no additional
constraints beyond what are contained in
a ControlVolume0DBlock model.

Heater Class

class idaes.generic_models.unit_models.heater.Heater(*args, **kwds)

Simple 0D heater/cooler model.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
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material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
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terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Heater) New instance

HeaterData Class

class idaes.generic_models.unit_models.heater.HeaterData(component)

Simple 0D heater unit. Unit model to
add or remove heat from a material.

build()

Building model

Parameters None –

Returns None
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HeatExchanger (0D)

The HeatExchanger model can
be imported from idaes.
generic_models.unit_models,
while additional rules and utility
functions can be imported from idaes.
generic_models.unit_models.
heat_exchanger.

Example

The example below demonstrates how
to initialize the HeatExchanger model,
and override the default temperature dif-
ference calculation.

import pyomo.environ␣
→˓as pe # Pyomo environment
from idaes.core import␣
→˓FlowsheetBlock, StateBlock
from␣
→˓idaes.generic_models.unit_
→˓models import HeatExchanger
from idaes.
→˓generic_models.unit_models.
→˓heat_exchanger import delta_
→˓temperature_amtd_callback
from idaes.generic_models.
→˓properties import iapws95

# Create an␣
→˓empty flowsheet and steam␣
→˓property parameter block.
model = pe.ConcreteModel()
model.
→˓fs = FlowsheetBlock(default=
→˓{"dynamic": False})
model.fs.properties = iapws95.
→˓Iapws95ParameterBlock()

# Add a Heater␣
→˓model to the flowsheet.
model.fs.heat_exchanger␣
→˓= HeatExchanger(default={

"delta_
→˓temperature_callback":delta_
→˓temperature_amtd_callback,

␣
→˓ "shell":{"property_package
→˓": model.fs.properties},

␣
→˓ "tube":{"property_package
→˓": model.fs.properties}})

(continues on next page)
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(continued from previous page)

model.fs.heat_
→˓exchanger.area.fix(1000)
model.fs.heat_exchanger.
→˓overall_heat_transfer_
→˓coefficient[0].fix(100)
model.fs.heat_exchanger.shell_
→˓inlet.flow_mol.fix(100)
model.fs.heat_exchanger.shell_
→˓inlet.pressure.fix(101325)
model.fs.heat_exchanger.shell_
→˓inlet.enth_mol.fix(4000)
model.fs.heat_exchanger.
→˓tube_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.tube_
→˓inlet.pressure.fix(101325)
model.fs.heat_exchanger.tube_
→˓inlet.enth_mol.fix(3000)

# Initialize the model
model.fs.
→˓heat_exchanger.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat
exchanger model usually has two de-
grees of freedom, which can be fixed for
it to be fully specified. Things that are
frequently fixed are two of:

• heat transfer area,

• heat transfer coefficient, or

• temperature approach.

The user may also provide constants to
calculate the heat transfer coefficient.

Model Structure

The HeatExchanger model contains
two ControlVolume0DBlock blocks.
By default the hot side is named shell
and the cold side is named tube. These
names are configurable. The sign con-
vention is that duty is positive for heat
flowing from the hot side to the cold
side. Aside from the sign convention
there is no requirement that the hot side
be hotter than the cold side.
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The control volumes are configured the
same as the ControlVolume0DBlock
in the Heater model. The
HeatExchanger model contains
additional constraints that calculate the
amount of heat transferred from the hot
side to the cold side.

The HeatExchanger has two inlet ports
and two outlet ports. By default
these are shell_inlet, tube_inlet,
shell_outlet, and tube_outlet. If
the user supplies different hot and cold
side names the inlet and outlets are
named accordingly.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 t Heat transferred from hot side to the cold side
area 𝐴 None Heat transfer area
heat_transfer_coefficient 𝑈 t Heat transfer coefficient
delta_temperature ∆𝑇 t Temperature difference, defaults to LMTD

Note: delta_temperature may be ei-
ther a variable or expression depending
on the callback used. If the specified
cold side is hotter than the specified hot
side this value will be negative.

Constraints

The default constants can be overrid-
den by providing alternative rules for
the heat transfer equation, temperature
difference, and heat transfer coefficient.
The section describes the default con-
straints.

Heat transfer from shell to tube:

𝑄 = 𝑈𝐴∆𝑇

Temperature difference is an expression:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
The heat transfer coefficient is a vari-
able with no associated constraints by
default.
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Class Documentation

Note: The hot_side_config and cold_side_config can also be supplied using the name of the hot and cold sides
(shell and tube by default) as in the example.

class idaes.generic_models.unit_models.heat_exchanger.HeatExchanger(*args, **kwds)

Simple 0D heat exchanger model.

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

hot_side_name Hot side name, sets con-
trol volume and inlet and outlet names

cold_side_name Cold side name, sets
control volume and inlet and outlet
names

hot_side_config A config block used to
construct the hot side control volume.
This config can be given by the hot side
name instead of hot_side_config.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
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default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
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ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

cold_side_config A config block used to
construct the cold side control volume.
This config can be given by the cold side
name instead of cold_side_config.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
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EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

delta_temperature_callback Call-
back for for temperature difference
calculations

flow_pattern Heat exchanger flow
pattern, default - HeatExchanger-
FlowPattern.countercurrent. Valid
values: { HeatExchangerFlowPat-
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tern.countercurrent - countercur-
rent flow, HeatExchangerFlowPat-
tern.cocurrent - cocurrent flow, Hea-
tExchangerFlowPattern.crossflow -
cross flow, factor times countercurrent
temperature difference.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HeatExchanger) New instance

class idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData(component)

Simple 0D heat exchange unit. Unit
model to transfer heat from one material
to another.

build()

Building model

Parameters None –

Returns None

initialize(state_args_1=None, state_args_2=None, outlvl=0, solver=None, optarg=None, duty=None)

Heat exchanger initialization method.

Parameters

• state_args_1 – a dict of arguments to
be passed to the property initialization
for the hot side (see documentation of
the specific property package) (default =
{}).

• state_args_2 – a dict of arguments to
be passed to the property initialization
for the cold side (see documentation of
the specific property package) (default =
{}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

4.5. Technical Specifications 537

https://docs.python.org/3/library/stdtypes.html#dict


IDAES Documentation, Release 1.10.1

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

• duty – an initial guess for the amount of
heat transfered. This should be a tuple in
the form (value, units), (default = (1000
J/s))

Returns None

Callbacks

A selection of functions for con-
structing the delta_temperature
variable or expression are provided
in the idaes.generic_models.
unit_models.heat_exchanger
module. The user may also provide
their own function. These callbacks
should all take one argument (the
HeatExchanger block). With the block
argument, the function can add any
additional variables, constraints, and ex-
pressions needed. The only requirement
is that either a variable or expression
called delta_temperature must be
added to the block.

Defined Callbacks for the delta_temperature_callback Option

These callbacks provide expressions for
the temperature difference used in the
heat transfer equations.

idaes.generic_models.unit_models.heat_exchanger.delta_temperature_lmtd_callback(b)

This is a callback for a temperature
difference expression to calculate
∆𝑇 in the heat exchanger model
using log-mean temperature differ-
ence (LMTD). It can be supplied to
“delta_temperature_callback” HeatEx-
changer configuration option.

idaes.generic_models.unit_models.heat_exchanger.delta_temperature_amtd_callback(b)

This is a callback for a tempera-
ture difference expression to calculate
∆𝑇 in the heat exchanger model us-
ing arithmetic-mean temperature differ-
ence (AMTD). It can be supplied to
“delta_temperature_callback” HeatEx-
changer configuration option.
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idaes.generic_models.unit_models.heat_exchanger.delta_temperature_underwood_callback(b)

This is a callback for a tempera-
ture difference expression to calculate
∆𝑇 in the heat exchanger model us-
ing log-mean temperature difference
(LMTD) approximation given by Un-
derwood (1970). It can be supplied to
“delta_temperature_callback” HeatEx-
changer configuration option. This uses
a cube root function that works with
negative numbers returning the real neg-
ative root. This should always evaluate
successfully.

Heat Exchangers (1D)

Heat Exchanger models represents a
unit operation with two material streams
which exchange heat. The IDAES 1-D
Heat Exchanger model is used for de-
tailed modeling of heat exchanger units
with variations in one spatial dimension.
For a simpler representation of a heat ex-
changer unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7
degrees of freedom.

Typical fixed variables are:

• shell length and diameter,

• tube length and diameter,

• number of tubes,

• heat transfer coefficients (at all spatial
points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model
unit model consists of two ControlVol-
ume1DBlock Blocks (named shell and
tube), each with one Inlet Port (named
shell_inlet and tube_inlet) and one
Outlet Port (named shell_outlet and
tube_outlet).
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Construction Arguments

1-D Heat Exchanger units have con-
struction arguments specific to the shell
side, tube side and for the unit as a
whole.

Arguments that are applicable to the
heat exchanger unit are as follows:

• flow_type - indicates the flow arrange-
ment within the unit to be modeled. Op-
tions are:

– ‘co-current’ - (default) shell and tube
both flow in the same direction (from
x=0 to x=1)

– ‘counter-current’ - shell and tube flow
in opposite directions (shell from x=0 to
x=1 and tube from x=1 to x=0).

• finite_elements - sets the number of fi-
nite elements to use when discretizing
the spatial domains (default = 20). This
is used for both shell and tube side do-
mains.

• collocation_points - sets the number of
collocation points to use when discretiz-
ing the spatial domains (default = 5, col-
location methods only). This is used for
both shell and tube side domains.

• has_wall_conduction - option to enable a model for heat conduction across the tube wall:

– ‘none’ - 0D wall model

– ‘1D’ - 1D heat conduction equation
along the thickness of the tube wall

– ‘2D’ - 2D heat conduction equation
along the length and thickness of the
tube wall

Arguments that are applicable to the
shell side:

• property_package - property pack-
age to use when constructing shell
side Property Blocks (default =
‘use_parent_value’). This is provided
as a Physical Parameter Block by the
Flowsheet when creating the model. If
a value is not provided, the ControlVol-
ume Block will try to use the default
property package if one is defined.
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• property_package_args - set of argu-
ments to be passed to the shell side Prop-
erty Blocks when they are created.

• transformation_method - argument to
specify the DAE transformation method
for the shell side; should be compatible
with the Pyomo DAE Transformation-
Factory

• transformation_scheme - argument to
specify the scheme to use for the
selected DAE transformation method;
should be compatible with the Pyomo
DAE TransformationFactory

Arguments that are applicable to the
tube side:

• property_package - property pack-
age to use when constructing tube
side Property Blocks (default =
‘use_parent_value’). This is provided
as a Property Parameter Block by the
Flowsheet when creating the model. If
a value is not provided, the ControlVol-
ume Block will try to use the default
property package if one is defined.

• property_package_args - set of argu-
ments to be passed to the tube side Prop-
erty Blocks when they are created.

• transformation_method - argument to
specify the DAE transformation method
for the tube side; should be compatible
with the Pyomo DAE Transformation-
Factory

• transformation_scheme - argument to
specify the scheme to use for the
selected DAE transformation method;
should be compatible with the Pyomo
DAE TransformationFactory

Additionally, 1-D Heat Exchanger units
have the following construction argu-
ments which are passed to the Con-
trolVolume1DBlock Block for deter-
mining which terms to construct in the
balance equations for the shell and tube
side.
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Argument Default Value
dynamic useDefault
has_holdup False
material_balance_type ‘componentTotal’
energy_balance_type ‘enthalpyTotal’
momentum_balance_type ‘pressureTotal’
has_phase_equilibrium False
has_heat_transfer True
has_pressure_change False

Additional Constraints

1-D Heat Exchanger models write the
following additional Constraints to de-
scribe the heat transfer between the two
sides of the heat exchanger. Firstly, the
shell- and tube-side heat transfer is cal-
culated as:

𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 = −𝑁𝑡𝑢𝑏𝑒𝑠 × (𝜋 × 𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 ×𝐷𝑡𝑢𝑏𝑒,𝑜𝑢𝑡𝑒𝑟 × (𝑇𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 − 𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥))

where 𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 is the shell-side heat
duty at point 𝑥 and time 𝑡,𝑁𝑡𝑢𝑏𝑒𝑠 𝐷𝑡𝑢𝑏𝑒

are the number of and diameter of the
tubes in the heat exchanger, 𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥

is the shell-side heat transfer coefficient,
and 𝑇𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 and 𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 are the shell-
side and tube wall temperatures respec-
tively.

𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 = 𝑁𝑡𝑢𝑏𝑒𝑠 × (𝜋 × 𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 ×𝐷𝑡𝑢𝑏𝑒,𝑖𝑛𝑛𝑒𝑟 × (𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 − 𝑇𝑡𝑢𝑏𝑒,𝑡,𝑥))

where 𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 is the tube-side heat
duty at point𝑥 and time 𝑡,𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 is the
tube-side heat transfer coefficient and
𝑇𝑡𝑢𝑏𝑒,𝑡,𝑥 is the tube-side temperature.

If a OD wall model is used for the
tube wall conduction, the following con-
straint is implemented to connect the
heat terms on the shell and tube side:

𝑁𝑡𝑢𝑏𝑒𝑠 ×𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 = −𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥

Finally, the following Constraints are
written to describe the unit geometry:

4 ×𝐴𝑡𝑢𝑏𝑒 = 𝜋 ×𝐷2
𝑡𝑢𝑏𝑒

4 ×𝐴𝑠ℎ𝑒𝑙𝑙 = 𝜋 × (𝐷2
𝑠ℎ𝑒𝑙𝑙 −𝑁𝑡𝑢𝑏𝑒𝑠 ×𝐷2

𝑡𝑢𝑏𝑒)

where𝐴𝑠ℎ𝑒𝑙𝑙 and𝐴𝑡𝑢𝑏𝑒 are the shell and
tube areas respectively and 𝐷𝑠ℎ𝑒𝑙𝑙 and
𝐷𝑡𝑢𝑏𝑒 are the shell and tube diameters.
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Variables

1-D Heat Exchanger units add the
following additional Variables beyond
those created by the ControlVol-
ume1DBlock Block.

Variable Name Notes
𝐿𝑠ℎ𝑒𝑙𝑙 shell_length Reference to shell.length
𝐴𝑠ℎ𝑒𝑙𝑙 shell_area Reference to shell.area
𝐷𝑠ℎ𝑒𝑙𝑙 d_shell
𝐿𝑡𝑢𝑏𝑒 tube_length Reference to tube.length
𝐴𝑡𝑢𝑏𝑒 tube_area Reference to tube.area
𝐷𝑡𝑢𝑏𝑒 d_tube
𝑁𝑡𝑢𝑏𝑒𝑠 N_tubes
𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 temperature_wall
𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 shell_heat_transfer_coefficient
𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 tube_heat_transfer_coefficient

HeatExchanger1dClass

class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1D(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

shell_side shell side config arguments
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dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
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tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

has_phase_equilibrium Argument to en-
able phase equilibrium on the shell side.
- True - include phase equilibrium term -
False - do not include phase equilibrium
term

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

transformation_method Discretization
method to use for DAE transforma-
tion. See Pyomo documentation for
supported transformations.

transformation_scheme Discretization
scheme to use when transformating
domain. See Pyomo documentation for
supported schemes.

tube_side tube side config arguments

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}
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has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
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- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

has_phase_equilibrium Argument to en-
able phase equilibrium on the shell side.
- True - include phase equilibrium term -
False - do not include phase equilibrium
term

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

transformation_method Discretization
method to use for DAE transforma-
tion. See Pyomo documentation for
supported transformations.

transformation_scheme Discretization
scheme to use when transformating
domain. See Pyomo documentation for
supported schemes.

finite_elements Number of finite ele-
ments to use when discretizing length
domain (default=20)

collocation_points Number of colloca-
tion points to use per finite element
when discretizing length domain (de-
fault=3)

flow_type Flow configuration of heat
exchanger - HeatExchangerFlowPat-
tern.cocurrent: shell and tube flows
from 0 to 1 (default) - HeatExchanger-
FlowPattern.countercurrent: shell side
flows from 0 to 1 tube side flows from
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1 to 0

has_wall_conduction Argument to
enable type of wall heat conduc-
tion model. - WallConduction-
Type.zero_dimensional - 0D wall
model (default), - WallConduction-
Type.one_dimensional - 1D wall model
along the thickness of the tube, -
WallConductionType.two_dimensional
- 2D wall model along the lenghth and
thickness of the tube

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HeatExchanger1D) New instance

HeatExchanger1dDataClass

class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData(component)

Standard Heat Exchanger 1D Unit
Model Class.

build()

Begin building model (pre-DAE trans-
formation).

Parameters None –

Returns None

initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver=None, optarg=None)

Initialization routine for the unit.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine
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• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

Mixer

The IDAES Mixer unit model represents
operations where multiple streams of
material are combined into a single flow.
The Mixer class can be used to create ei-
ther a stand-alone mixer unit, or as part
of a unit model where multiple streams
need to be mixed.

Degrees of Freedom

Mixer units have zero degrees of free-
dom.

Model Structure

The IDAES Mixer unit model does not
use ControlVolumes, and instead writes
a set of material, energy and momentum
balances to combine the inlet streams
into a single mixed stream. Mixer mod-
els have a user-defined number of inlet
Ports (by default named inlet_1, inlet_2,
etc.) and one outlet Port (named outlet).

Mixed State Block

If a mixed state block is provided in
the construction arguments, the Mixer
model will use this as the StateBlock for
the mixed stream in the resulting bal-
ance equations. This allows a Mixer unit
to be used as part of a larger unit opera-
tion by linking multiple inlet streams to
a single existing StateBlock.
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Variables

Mixer units have the following variables
(𝑖 indicates index by inlet):

Variable Name Sym-
bol

Notes

phase_equilibrium_generation 𝑋𝑒𝑞,𝑡,𝑟 Only if has_phase_equilibrium = True, Generation term for phase equi-
librium

minimum_pressure 𝑃𝑚𝑖𝑛,𝑡,𝑖 Only if momentum_mixing_type = MomemntumMixingType.minimize

Parameters

Mixer units have the following parame-
ters:

Variable
Name

Sym-
bol

Notes

eps_pressure 𝜖 Only if momentum_mixing_type = MomemntumMixingType.minimize, smooth mini-
mum parameter

Constraints

The constraints written by the Mixer
model depend upon the construction ar-
guments chosen.

If material_mixing_type is extensive:

• If material_balance_type is component-
Phase:

material_mixing_equations(t, p, j):

0 =
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟

• If material_balance_type is component-
Total:

material_mixing_equations(t, j):

0 =
∑︁
𝑝

(
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟)

• If material_balance_type is total:

material_mixing_equations(t):

0 =
∑︁
𝑝

∑︁
𝑗

(
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟)

where 𝑛𝑟,𝑝,𝑗 is the stoichiometric coef-
ficient of component 𝑗 in phase 𝑝 in re-
action 𝑟.
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If ‘energy_mixing_type` is extensive:

enthalpy_mixing_equations(t):

0 =
∑︁
𝑖

∑︁
𝑝

𝐻𝑖𝑛,𝑖,𝑝 −
∑︁
𝑝

𝐻𝑜𝑢𝑡,𝑝

If ‘momentum_mixing_type` is mini-
mize, a series of smooth minimum op-
erations are performed:

minimum_pressure_constraint(t, i):

For the first inlet:

𝑃𝑚𝑖𝑛,𝑡,𝑖 = 𝑃𝑡,𝑖

Otherwise:

𝑃𝑚𝑖𝑛,𝑡,𝑖 = 𝑠𝑚𝑖𝑛(𝑃𝑚𝑖𝑛,𝑡,𝑖−1, 𝑃𝑡,𝑖, 𝑒𝑝𝑠)

Here,𝑃𝑡,𝑖 is the pressure in inlet 𝑖 at time
𝑡, 𝑃𝑚𝑖𝑛,𝑡,𝑖 is the minimum pressure in
all inlets up to inlet 𝑖, and 𝑠𝑚𝑖𝑛 is the
smooth minimum operator (see IDAES
Utility Function documentation).

The minimum pressure in all inlets is
then:

mixture_pressure(t):

𝑃𝑚𝑖𝑥,𝑡 = 𝑃𝑚𝑖𝑛,𝑡,𝑖=𝑙𝑎𝑠𝑡

If momentum_mixing_type is equality,
the pressure in all inlets and the outlet
are equated.

Note: This may result in an over-specified problem if the user is not careful.

pressure_equality_constraints(t, i):

𝑃𝑚𝑖𝑥,𝑡 = 𝑃𝑡,𝑖

Often the minimum inlet pressure con-
straint is useful for sequential modular
type initialization, but the equal pres-
sure constants are required for pressure-
driven flow models. In these cases
it may be convenient to use the mini-
mum pressure constraint for some ini-
tialization steps, them deactivate it
and use the equal pressure constraints.
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The momentum_mixing_type is mini-
mum_and_equality this will create the
constraints for both with the minimum
pressure constraint being active.

The mix-
ture_pressure(t)
and pres-
sure_equality_constraints(t,
i) can be
directly
activated
and de-
activated,
but only
one set
of con-
straints should
be ac-
tive at
a time.
The use_minimum_inlet_pressure_constraint()
and use_equal_pressure_constraint()
methods are also provided to switch
between constant sets.

Mixer Class

class idaes.generic_models.unit_models.mixer.Mixer(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Mixer blocks are always steady-state.

has_holdup Mixer blocks do not contain
holdup, thus this must be False.

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
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values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

inlet_list A list containing names of in-
lets, default - None. Valid values: {
None - use num_inlets argument, list -
a list of names to use for inlets.}

num_inlets Argument indicating number
(int) of inlets to construct, not used if in-
let_list arg is provided, default - None.
Valid values: { None - use inlet_list arg
instead, or default to 2 if neither argu-
ment provided, int - number of inlets to
create (will be named with sequential in-
tegers from 1 to num_inlets).}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

has_phase_equilibrium Argument in-
dicating whether phase equilibrium
should be calculated for the resulting
mixed stream, default - False. Valid
values: { True - calculate phase equi-
librium in mixed stream, False - do not
calculate equilibrium in mixed stream.}

energy_mixing_type Argument indicat-
ing what method to use when mixing
energy flows of incoming streams, de-
fault - MixingType.extensive. Valid
values: { MixingType.none - do not
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include energy mixing equations, Mix-
ingType.extensive - mix total enthalpy
flows of each phase.}

momentum_mixing_type Argument
indicating what method to use when
mixing momentum/ pressure of incom-
ing streams, default - MomentumMix-
ingType.minimize. Valid values: {
MomentumMixingType.none - do not
include momentum mixing equations,
MomentumMixingType.minimize -
mixed stream has pressure equal to the
minimimum pressure of the incoming
streams (uses smoothMin operator),
MomentumMixingType.equality -
enforces equality of pressure in mixed
and all incoming streams., Momentum-
MixingType.minimize_and_equality
- add constraints for pressure equal to
the minimum pressure of the inlets and
constraints for equality of pressure in
mixed and all incoming streams. When
the model is initially built, the equality
constraints are deactivated. This option
is useful for switching between flow
and pressure driven simulations.}

mixed_state_block An existing state
block to use as the outlet stream from
the Mixer block, default - None. Valid
values: { None - create a new State-
Block for the mixed stream, StateBlock
- a StateBock to use as the destination
for the mixed stream.}

construct_ports Argument indicating
whether model should construct Port
objects linked to all inlet states and
the mixed state, default - True. Valid
values: { True - construct Ports for all
states, False - do not construct Ports.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.
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Returns (Mixer) New instance

MixerData Class

class idaes.generic_models.unit_models.mixer.MixerData(component)

This is a general purpose model for a
Mixer block with the IDAES modeling
framework. This block can be used ei-
ther as a stand-alone Mixer unit opera-
tion, or as a sub-model within another
unit operation.

This model creates a number of State-
Blocks to represent the incoming
streams, then writes a set of phase-
component material balances, an overall
enthalpy balance and a momentum bal-
ance (2 options) linked to a mixed-state
StateBlock. The mixed-state StateBlock
can either be specified by the user (al-
lowing use as a sub-model), or created
by the Mixer.

When being used as a sub-model, Mixer
should only be used when a set of new
StateBlocks are required for the streams
to be mixed. It should not be used to
mix streams from mutiple ControlVol-
umes in a single unit model - in these
cases the unit model developer should
write their own mixing equations.

add_energy_mixing_equations(inlet_blocks, mixed_block)

Add energy mixing equations (total en-
thalpy balance).

add_inlet_state_blocks(inlet_list)

Construct StateBlocks for all inlet
streams.

Parameters of strings to use as
StateBlock names (list) –

Returns list of StateBlocks

add_material_mixing_equations(inlet_blocks, mixed_block, mb_type)

Add material mixing equations.

add_mixed_state_block()

Constructs StateBlock to represent
mixed stream.

Returns New StateBlock object
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add_port_objects(inlet_list, inlet_blocks, mixed_block)

Adds Port objects if required.

Parameters

• list of inlet StateBlock
objects (a) –

• mixed state StateBlock object
(a) –

Returns None

add_pressure_equality_equations(inlet_blocks, mixed_block)

Add pressure equality equations. Note
that this writes a number of constraints
equal to the number of inlets, enforcing
equality between all inlets and the mixed
stream.

add_pressure_minimization_equations(inlet_blocks, mixed_block)

Add pressure minimization equations.
This is done by sequential comparisons
of each inlet to the minimum pressure so
far, using the IDAES smooth minimum
fuction.

build()

General build method for MixerData.
This method calls a number of sub-
methods which automate the construc-
tion of expected attributes of unit mod-
els.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

create_inlet_list()

Create list of inlet stream names based
on config arguments.

Returns list of strings

get_mixed_state_block()

Validates StateBlock provided in user
arguments for mixed stream.

Returns The user-provided StateBlock or
an Exception

initialize(outlvl=0, optarg=None, solver=None, hold_state=False)

Initialization routine for mixer.
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Keyword Arguments

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

• hold_state – flag indicating whether
the initialization routine should unfix
any state variables fixed during initial-
ization, default - False. Valid values:
True - states variables are not unfixed,
and a dict of returned containing flags
for which states were fixed during ini-
tialization, False - state variables are un-
fixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a
dict containing flags for which states
were fixed during initialization.

model_check()

This method executes the model_check
methods on the associated state blocks
(if they exist). This method is gener-
ally called by a unit model as part of the
unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)

Method to release state variables fixed
during initialization.

Keyword Arguments

• flags – dict containing information of
which state variables were fixed during
initialization, and should now be un-
fixed. This dict is returned by initialize
if hold_state = True.

• outlvl – sets output level of logging

Returns None

use_equal_pressure_constraint()

Deactivate the mixer pressure = mim-
imum inlet pressure constraint and ac-
tivate the mixer pressure and all inlet
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pressures are equal constraints. This
should only be used when momen-
tum_mixing_type == MomentumMix-
ingType.minimize_and_equality.

use_minimum_inlet_pressure_constraint()

Activate the mixer pressure = mimi-
mum inlet pressure constraint and de-
activate the mixer pressure and all in-
let pressures are equal constraints. This
should only be used when momen-
tum_mixing_type == MomentumMix-
ingType.minimize_and_equality.

Plug Flow Reactor

The IDAES Plug Flow Reactor (PFR)
model represents a unit operation where
a material stream passes through a linear
reactor vessel whilst undergoing some
chemical reaction(s). This model re-
quires modeling the system in one spa-
tial dimension.

Degrees of Freedom

PFRs generally have at least 2 degrees
of freedom.

Typical fixed variables are:

• 2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a
single ControlVolume1DBlock (named
control_volume) with one Inlet Port
(named inlet) and one Outlet Port
(named outlet).

Variables

PFR units add the following additional
Variables:
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Variable Name Notes
𝐿 length Reference to control_volume.length
𝐴 area Reference to control_volume.area
𝑉 volume Reference to control_volume.volume
𝑄𝑡,𝑥 heat Only if has_heat_transfer = True, reference to holdup.heat
∆𝑃𝑡,𝑥 deltaP Only if has_pressure_change = True, reference to holdup.deltaP

Constraints

PFR units write the following additional
Constraints at all points in the spatial do-
main:

𝑋𝑡,𝑥,𝑟 = 𝐴× 𝑟𝑡,𝑥,𝑟

where 𝑋𝑡,𝑥,𝑟 is the extent of reaction of
reaction 𝑟 at point 𝑥 and time 𝑡, 𝐴 is the
cross-sectional area of the reactor and
𝑟𝑡,𝑟 is the volumetric rate of reaction of
reaction 𝑟 at point 𝑥 and time 𝑡 (from the
outlet StateBlock).

PFR Class

class idaes.generic_models.unit_models.plug_flow_reactor.PFR(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
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get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}
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has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_heat_of_reaction Indicates whether
terms for heat of reaction terms should
be constructed, default - False. Valid
values: { True - include heat of reac-
tion terms, False - exclude heat of reac-
tion terms.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
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with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

length_domain_set A list of values to be
used when constructing the length do-
main of the reactor. Point must lie be-
tween 0.0 and 1.0, default - [0.0, 1.0].
Valid values: { a list of floats}

transformation_method Method to
use to transform domain. Must be
a method recognised by the Pyomo
TransformationFactory, default -
“dae.finite_difference”.

transformation_scheme Scheme to use
when transformating domain. See
Pyomo documentation for supported
schemes, default - “BACKWARD”.

finite_elements Number of finite ele-
ments to use when transforming length
domain, default - 20.

collocation_points Number of colloca-
tion points to use when transforming
length domain, default - 3.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (PFR) New instance

PFRData Class

class idaes.generic_models.unit_models.plug_flow_reactor.PFRData(component)

Standard Plug Flow Reactor Unit Model
Class

build()

Begin building model (pre-DAE trans-
formation).
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Parameters None –

Returns None

Pressure Changer

The IDAES Pressure Changer model
represents a unit operation with a single
stream of material which undergoes a
change in pressure due to the application
of a work. The Pressure Changer model
contains support for a number of differ-
ent thermodynamic assumptions regard-
ing the working fluid.

Degrees of Freedom

Pressure Changer units generally have
one or more degrees of freedom, de-
pending on the thermodynamic assump-
tion used.

Typical fixed variables are:

• outlet pressure, 𝑃𝑟𝑎𝑡𝑖𝑜 or ∆𝑃 ,

• unit efficiency (isentropic or pump as-
sumption).

Model Structure

The core Pressure Changer unit model
consists of a single ControlVolume0D
(named control_volume) with one
Inlet Port (named inlet) and one
Outlet Port (named outlet). Ad-
ditionally, if an isentropic pressure
changer is used, the unit model con-
tains an additional StateBlock named
properties_isentropic at the unit
model level.

Variables

Pressure Changers contain the following
Variables (not including those contained
within the control volume Block):
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Variable Name Notes
𝑃𝑟𝑎𝑡𝑖𝑜 ratioP
𝑉𝑡 volume Only if has_rate_reactions = True, reference to con-

trol_volume.rate_reaction_extent
𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 work_mechanical Reference to control_volume.work
𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 work_fluid Pump assumption only
𝜂𝑝𝑢𝑚𝑝,𝑡 efficiency_pump Pump assumption only
𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 work_isentropic Isentropic assumption only
𝜂𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 effi-

ciency_isentropic
Isentropic assumption only

Isentropic Pressure Changers also have
an additional Property Block named
properties_isentropic (attached to the
Unit Model).

Constraints

In addition to the Constraints written
by the Control Volume block, Pressure
Changer writes additional Constraints
which depend on the thermodynamic as-
sumption chosen. All Pressure Chang-
ers add the following Constraint to cal-
culate the pressure ratio:

𝑃𝑟𝑎𝑡𝑖𝑜,𝑡 × 𝑃𝑖𝑛,𝑡 = 𝑃𝑜𝑢𝑡,𝑡

Isothermal Assumption

The isothermal assumption writes one
additional Constraint:

𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛

Adiabatic Assumption

The isothermal assumption writes one
additional Constraint:

𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛
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Isentropic Assumption

The isentropic assumption creates
an additional set of Property Blocks
(indexed by time) for the isentropic
fluid calculations (named proper-
ties_isentropic). This requires a set of
balance equations relating the inlet state
to the isentropic conditions, which are
shown below:

𝐹𝑖𝑛,𝑡,𝑝,𝑗 = 𝐹𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡,𝑝,𝑗

𝑠𝑖𝑛,𝑡 = 𝑠𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡

𝑃𝑖𝑛,𝑡 × 𝑃𝑟𝑎𝑡𝑖𝑜,𝑡 = 𝑃𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡

where 𝐹𝑡,𝑝,𝑗 is the flow of component 𝑗
in phase 𝑝 at time 𝑡 and 𝑠 is the specific
entropy of the fluid at time 𝑡.

Next, the isentropic work is calculated
as follows:

𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 =
∑︁
𝑝

𝐻𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡,𝑝 −
∑︁
𝑝

𝐻𝑖𝑛,𝑡,𝑝

where 𝐻𝑡,𝑝 is the total energy flow of
phase 𝑝 at time 𝑡. Finally, a constraint
which relates the fluid work to the actual
mechanical work via an efficiency term
𝜂.

If compressor is True, 𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 =
𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 × 𝜂𝑡

If compressor is False, 𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 ×
𝜂𝑡 = 𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption
writes two additional constraints.
Firstly, a Constraint is written which
relates fluid work to the pressure change
of the fluid.

𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 = (𝑃𝑜𝑢𝑡,𝑡 − 𝑃𝑖𝑛,𝑡) × 𝐹𝑣𝑜𝑙,𝑡

where 𝐹𝑣𝑜𝑙,𝑡 is the total volumetric
flowrate of material at time 𝑡 (from the
outlet Property Block). Secondly, a con-
straint which relates the fluid work to the
actual mechanical work via an efficiency
term 𝜂.
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If compressor is True, 𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 =
𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 × 𝜂𝑡

If compressor is False, 𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 × 𝜂𝑡 =
𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡

Performance Curves

Isentropic pressure changers support
optional performance curve constraints.
The exact form of these constraints is
left to the user, but generally the con-
straints take the form of one or two equa-
tions which provide a correlation be-
tween head, efficiency, or pressure ratio
and mass or volumetric flow. Additional
variables such as compressor or turbine
speed can be added if needed.

Performance curves should be added
to the performance_curve sub-block
rather than adding them elsewhere be-
cause it allows them to be integrated into
the unit model initialization. It also pro-
vides standardization for users and pro-
vides a convenient way to turn the per-
formance equations on and off by acti-
vating and deactivating the block.

Usually there are one or two perfor-
mance curve constraints. Either di-
rectly or indirectly, these curves spec-
ify an efficiency and pressure drop, so
in adding performance curves the effi-
ciency and/or pressure drop should be
freed as appropriate.

Performance equations generally are in a
simple form (e.g. efficiency = f(flow)),
where no special initialization is needed.
Performance curves also are specific to
a particular property package selection
and pressure changer, which allows the
performance curve equations to be writ-
ten in a well-scaled way since units of
measure and magnitudes are known.

To add per-
formance
curves to
an isen-
tropic pres-
sure changer,
simply sup-
ply the
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"support_isentropic_performance_curves":
True options in the pressure changer
config dict. This will create a
performance_curve sub-block of
the pressure changer model. By default
this block will have the expressions
head and heat_isentropic for
convenience, as these quantities often
appear in performance curves.

Two examples are provided below that
demonstrate two ways to add perfor-
mance curves. The first does not use a
callback the second does.

from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory, units, value
from idaes.
→˓core import FlowsheetBlock
from idaes.generic_
→˓models.unit_models.pressure_
→˓changer import Turbine
from idaes.generic_models.
→˓properties import iapws95
import pytest

solver␣
→˓= SolverFactory('ipopt')
m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.unit = Turbine(default={

"property_
→˓package": m.fs.properties,

"support_isentropic_
→˓performance_curves":True})

# Add performance curves
@m.fs.unit.performance_curve.
→˓Constraint(m.fs.config.time)
def pc_isen_eff_eqn(b, t):

#␣
→˓main pressure changer block␣
→˓parent of performance_curve

prnt = b.parent_block()
return prnt.efficiency_

→˓isentropic[t] == 0.9
@m.fs.unit.performance_curve.
→˓Constraint(m.fs.config.time)
def pc_isen_head_eqn(b, t):

# divide both␣
→˓sides by 1000 for scaling (continues on next page)
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(continued from previous page)

␣
→˓return b.head_isentropic[t]/
→˓1000 == -75530.
→˓8/1000*units.J/units.kg

# set inputs
m.fs.unit.inlet.flow_
→˓mol[0].fix(1000) # mol/s
Tin = 500 # K
Pin = 1000000 # Pa
Pout = 700000 # Pa
hin = iapws95.htpx(Tin*units.
→˓K, Pin*units.Pa)
m.fs.unit.
→˓inlet.enth_mol[0].fix(hin)
m.fs.unit.
→˓inlet.pressure[0].fix(Pin)

m.fs.unit.initialize()
solver.solve(m, tee=False)

assert␣
→˓value(m.fs.unit.efficiency_
→˓isentropic[0]) ==␣
→˓pytest.approx(0.9, rel=1e-3)
assert value(m.fs.
→˓unit.deltaP[0]) == pytest.
→˓approx(-3e5, rel=1e-3)

The next example shows how to use a
callback to add performance curves.

from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory, units, value
from idaes.
→˓core import FlowsheetBlock
from idaes.generic_
→˓models.unit_models.pressure_
→˓changer import Turbine
from idaes.generic_models.
→˓properties import iapws95
import pytest

solver␣
→˓= SolverFactory('ipopt')
m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()

(continues on next page)
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(continued from previous page)

def perf_callback(blk):
# This␣

→˓callback adds constraints␣
→˓to the performance_
→˓cruve block. blk is the
# performance_curve␣

→˓block, but we also want to␣
→˓use quantities from the main
# pressure changer model,

→˓ which is the parent block.
prnt = blk.parent_block()
# this is the␣

→˓pressure changer model block
@blk.

→˓Constraint(m.fs.config.time)
def pc_isen_eff_eqn(b, t):

␣
→˓ return prnt.efficiency_
→˓isentropic[t] == 0.9
@blk.

→˓Constraint(m.fs.config.time)
␣

→˓ def pc_isen_head_eqn(b, t):
␣

→˓return b.head_isentropic[t]/
→˓1000 == -75530.
→˓8/1000*units.J/units.kg

m.fs.unit = Turbine(default={
"property_

→˓package": m.fs.properties,
"support_isentropic_

→˓performance_curves":True,
"isentropic_performance_

→˓curves": {"build_
→˓callback": perf_callback}})

# set inputs
m.fs.unit.inlet.flow_
→˓mol[0].fix(1000) # mol/s
Tin = 500 # K
Pin = 1000000 # Pa
Pout = 700000 # Pa
hin = iapws95.htpx(Tin*units.
→˓K, Pin*units.Pa)
m.fs.unit.
→˓inlet.enth_mol[0].fix(hin)
m.fs.unit.
→˓inlet.pressure[0].fix(Pin)

m.fs.unit.initialize()
solver.solve(m, tee=False)

(continues on next page)
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(continued from previous page)

assert␣
→˓value(m.fs.unit.efficiency_
→˓isentropic[0]) ==␣
→˓pytest.approx(0.9, rel=1e-3)
assert value(m.fs.
→˓unit.deltaP[0]) == pytest.
→˓approx(-3e5, rel=1e-3)

PressureChanger Class

class idaes.generic_models.unit_models.pressure_changer.PressureChanger(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
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component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

compressor Indicates whether this unit
should be considered a compressor
(True (default), pressure increase) or an
expander (False, pressure decrease).

thermodynamic_assumption Flag to set
the thermodynamic assumption to use
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for the unit. - ThermodynamicAssump-
tion.isothermal (default) - Thermody-
namicAssumption.isentropic - Thermo-
dynamicAssumption.pump - Thermo-
dynamicAssumption.adiabatic

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

support_isentropic_performance_curves
Include a block for perfor-
mance curves, configure via isen-
tropic_performance_curves.

isentropic_performance_curves
Configuration dictionary for the perfor-
mance curve block.

build_callback Optional callback to add
performance curve constraints

build_head_expressions If true
add expressions for ‘head’ and
‘head_isentropic’. These expres-
sions can be used in performance curve
constraints.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (PressureChanger) New instance
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PressureChangerData Class

class idaes.generic_models.unit_models.pressure_changer.PressureChangerData(component)

Standard Compressor/Expander Unit
Model Class

add_adiabatic()

Add constraints for adiabatic assump-
tion.

Parameters None –

Returns None

add_isentropic()

Add constraints for isentropic assump-
tion.

Parameters None –

Returns None

add_isothermal()

Add constraints for isothermal assump-
tion.

Parameters None –

Returns None

add_pump()

Add constraints for the incompressible
fluid assumption

Parameters None –

Returns None

build()

Parameters None –

Returns None

init_adiabatic(state_args, outlvl, solver, optarg)

Initialization routine for adiabatic pres-
sure changers.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).
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• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default={})

• solver – str indicating which solver
to use during initialization (default =
None)

Returns None

init_isentropic(state_args, outlvl, solver, optarg)

Initialization routine for isentropic pres-
sure changers.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default={})

• solver – str indicating which solver
to use during initialization (default =
None)

Returns None

initialize(state_args=None, routine=None, outlvl=0, solver=None, optarg=None)

General wrapper for pressure changer
initialization routines

Keyword Arguments

• routine – str stating which initial-
ization routine to execute * None
- use routine matching thermody-
namic_assumption * ‘isentropic’ -
use isentropic initialization routine *
‘isothermal’ - use isothermal initializa-
tion routine

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine
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• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

model_check()

Check that pressure change matches
with compressor argument (i.e. if com-
pressor = True, pressure should increase
or work should be positive)

Parameters None –

Returns None

Product Block

Product Blocks are used to represent
sinks of material in Flowsheets. These
can be used as a conventient way to mark
the final destination of a material stream
and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero de-
grees of freedom.

Model Structure

Product Blocks consists of a single
StateBlock (named properties), each
with one Inlet Port (named inlet). Prod-
uct Blocks also contain References to
the state variables defined within the
StateBlock

Additional Constraints

Product Blocks write no additional con-
straints to the model.
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Variables

Product blocks add no additional Vari-
ables.

Product Class

class idaes.generic_models.unit_models.product.Product(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Product blocks are always steady- state.

has_holdup Product blocks do not con-
tain holdup, thus this must be False.

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
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be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Product) New instance

ProductData Class

class idaes.generic_models.unit_models.product.ProductData(component)

Standard Product Block Class

build()

Begin building model.

Parameters None –

Returns None

initialize(state_args=None, outlvl=0, solver=None, optarg=None)

This method calls the initialization
method of the state block.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

Pump

The Pump model is a PressureChanger,
where the configuration is set so that
the “compressor” option can only
be True, and the default “thermody-
namic_assumption” is “pump.” See the
PressureChanger documentation for
details.
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Example

The example below demonstrates the
basic Pump model usage:

import pyomo.environ as pyo
from idaes.
→˓core import FlowsheetBlock
from idaes.generic_models.
→˓unit_models import Pump
from idaes.generic_models.
→˓properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.unit␣
→˓= Pump(default={"property_
→˓package": m.fs.properties})

m.fs.unit.
→˓inlet.flow_mol[0].fix(100)
m.fs.unit.
→˓inlet.enth_mol[0].fix(2000)
m.fs.unit.inlet.
→˓pressure[0].fix(101325)

m.fs.unit.deltaP.fix(100000)
m.fs.unit.
→˓efficiency_pump.fix(0.8)

Separator

The IDAES Separator unit model repre-
sents operations where a single stream
is split into multiple flows. The Separa-
tor model supports separation using split
fractions, or by ideal separation of flows.
The Separator class can be used to create
either a stand-alone separator unit, or as
part of a unit model where a flow needs
to be separated.
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Degrees of Freedom

Separator units have a number of de-
grees of freedom based on the separa-
tion type chosen.

• If split_basis = ‘phaseFlow’, degrees
of freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠−
1) × 𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠

• If split_basis = ‘componentFlow’,
degrees of freedom are generally
(𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠− 1) × 𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

• If split_basis = ‘phaseComponent-
Flow’, degrees of freedom are generally
(𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠 − 1) × 𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠 ×
𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

• If split_basis = ‘totalFlow’, degrees of
freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠 −
1) × 𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠× 𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

Typical fixed variables are:

• split fractions.

Model Structure

The IDAES Separator unit model does
not use ControlVolumes, and instead
writes a set of material, energy and
momentum balances to split the inlet
stream into a number of outlet streams.
Separator models have a single inlet Port
(named inlet) and a user-defined number
of outlet Ports (by default named out-
let_1, outlet_2, etc.).

Mixed State Block

If a mixed state block is provided in
the construction arguments, the Mixer
model will use this as the StateBlock for
the mixed stream in the resulting bal-
ance equations. This allows a Mixer unit
to be used as part of a larger unit opera-
tion by linking to an existing StateBlock.
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Ideal Separation

The IDAES Separator model supports
ideal separations, where all of a given
subset of the mixed stream is sent to
a single outlet (i.e. split fractions are
equal to zero or one). In these cases, no
Constraints are necessary for perform-
ing the separation, as the mixed stream
states can be directly partitioned to the
outlets.

Ideal separations will not work for all
choices of state variables, and thus will
not work for all property packages. To
use ideal separations, the user must pro-
vide a map of what part of the mixed
flow should be partitioned to each outlet.
The ideal_split_map should be a dict-
like object with keys as tuples matching
the split_basis argument and values in-
dicating which outlet this subset should
be partitioned to.

Variables

Separator units have the following vari-
ables (𝑜 indicates index by outlet):

Variable Name Symbol Notes
split_fraction 𝜑𝑡,𝑜,* Indexing sets depend upon split_basis

Constraints

Separator units have the following Con-
straints, unless ideal_separation is True.

• If material_balance_type is component-
Phase:

material_splitting_eqn(t, o, p, j):

𝐹𝑖𝑛,𝑡,𝑝,𝑗 = 𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

• If material_balance_type is component-
Total:

material_splitting_eqn(t, o, j):∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑗 =
∑︁
𝑝

𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

• If material_balance_type is total:
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material_splitting_eqn(t, o):∑︁
𝑝

∑︁
𝑗

𝐹𝑖𝑛,𝑡,𝑝,𝑗 =
∑︁
𝑝

∑︁
𝑗

𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

If energy_split_basis is
equal_temperature:

temperature_equality_eqn(t, o):

𝑇𝑖𝑛,𝑡 = 𝑇𝑡,𝑜

If energy_split_basis is
equal_molar_enthalpy:

molar_enthalpy_equality_eqn(t, o):

ℎ𝑖𝑛,𝑡 = ℎ𝑡,𝑜

If energy_split_basis is enthalpy_split:

molar_enthalpy_splitting_eqn(t, o):

𝑠𝑢𝑚𝑝ℎ𝑖𝑛,𝑡,𝑝 * 𝑠𝑓𝑡,𝑜,𝑝 = 𝑠𝑢𝑚𝑝ℎ𝑡,𝑜,𝑝

pressure_equality_eqn(t, o):

𝑃𝑖𝑛,𝑡 = 𝑃𝑡,𝑜

Separator Class

class idaes.generic_models.unit_models.separator.Separator(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default = False.
Product blocks are always steady- state.

has_holdup Product blocks do not con-
tain holdup, thus this must be False.
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property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

outlet_list A list containing names of out-
lets, default - None. Valid values: {
None - use num_outlets argument, list -
a list of names to use for outlets.}

num_outlets Argument indicating num-
ber (int) of outlets to construct, not
used if outlet_list arg is provided, de-
fault - None. Valid values: { None
- use outlet_list arg instead, or default
to 2 if neither argument provided, int
- number of outlets to create (will be
named with sequential integers from 1
to num_outlets).}

split_basis Argument indicating basis
to use for splitting mixed stream, de-
fault - SplittingType.totalFlow. Valid
values: { SplittingType.totalFlow -
split based on total flow (split fraction
indexed only by time and outlet),
SplittingType.phaseFlow - split based
on phase flows (split fraction indexed
by time, outlet and phase), Splitting-
Type.componentFlow - split based
on component flows (split fraction in-
dexed by time, outlet and components),
SplittingType.phaseComponentFlow
- split based on phase-component flows
( split fraction indexed by both time,
outlet, phase and components).}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
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Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

has_phase_equilibrium Argument in-
dicating whether phase equilibrium
should be calculated for the resulting
mixed stream, default - False. Valid
values: { True - calculate phase equi-
librium in mixed stream, False - do not
calculate equilibrium in mixed stream.}

energy_split_basis Argument indi-
cating basis to use for splitting
energy this is not used for when
ideal_separation == True. default - En-
ergySplittingType.equal_temperature.
Valid values: { EnergySplitting-
Type.equal_temperature - outlet
temperatures equal inlet EnergyS-
plittingType.equal_molar_enthalpy
- oulet molar enthalpies equal inlet,
EnergySplittingType.enthalpy_split -
apply split fractions to enthalpy flows.
Does not work with component or
phase-component splitting.}

ideal_separation Argument indicating
whether ideal splitting should be used.
Ideal splitting assumes perfect speara-
tion of material, and attempts to avoid
duplication of StateBlocks by directly
partitioning outlet flows to ports, de-
fault - False. Valid values: { True -
use ideal splitting methods. Cannot be
combined with has_phase_equilibrium
= True, False - use explicit splitting
equations with split fractions.}

ideal_split_map Dictionary containing
information on how extensive variables
should be partitioned when using ideal
splitting (ideal_separation = True).
default - None. Valid values: { dict
with keys of indexing set members
and values indicating which outlet
this combination of keys should be
partitioned to. E.g. {(“Vap”, “H2”):
“outlet_1”}}

mixed_state_block An existing state
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block to use as the source stream
from the Separator block, default -
None. Valid values: { None - create
a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the
source for the mixed stream.}

construct_ports Argument indicating
whether model should construct Port
objects linked the mixed state and all
outlet states, default - True. Valid
values: { True - construct Ports for all
states, False - do not construct Ports.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Separator) New instance

SeparatorData Class

class idaes.generic_models.unit_models.separator.SeparatorData(component)

This is a general purpose model for a
Separator block with the IDAES model-
ing framework. This block can be used
either as a stand-alone Separator unit
operation, or as a sub-model within an-
other unit operation.

This model creates a number of
StateBlocks to represent the outgoing
streams, then writes a set of phase-
component material balances, an
overall enthalpy balance (2 options),
and a momentum balance (2 options)
linked to a mixed-state StateBlock. The
mixed-state StateBlock can either be
specified by the user (allowing use as a
sub-model), or created by the Separator.

When being used as a sub-model, Sep-
arator should only be used when a set
of new StateBlocks are required for the
streams to be separated. It should not be
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used to separate streams to go to mutiple
ControlVolumes in a single unit model -
in these cases the unit model developer
should write their own splitting equa-
tions.

add_energy_splitting_constraints(mixed_block)

Creates constraints for splitting the en-
ergy flows - done by equating tempera-
tures in outlets.

add_inlet_port_objects(mixed_block)

Adds inlet Port object if required.

Parameters mixed state StateBlock
object (a) –

Returns None

add_material_splitting_constraints(mixed_block)

Creates constraints for splitting the ma-
terial flows

add_mixed_state_block()

Constructs StateBlock to represent
mixed stream.

Returns New StateBlock object

add_momentum_splitting_constraints(mixed_block)

Creates constraints for splitting the mo-
mentum flows - done by equating pres-
sures in outlets.

add_outlet_port_objects(outlet_list, outlet_blocks)

Adds outlet Port objects if required.

Parameters list of outlet
StateBlock objects (a) –

Returns None

add_outlet_state_blocks(outlet_list)

Construct StateBlocks for all outlet
streams.

Parameters of strings to use as
StateBlock names (list) –

Returns list of StateBlocks

add_split_fractions(outlet_list, mixed_block)

Creates outlet Port objects and tries to
partiton mixed stream flows between
these
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Parameters

• representing the mixed flow to
be split (StateBlock) –

• list of names for outlets (a) –

Returns None

build()

General build method for Separator-
Data. This method calls a number of
sub-methods which automate the con-
struction of expected attributes of unit
models.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

create_outlet_list()

Create list of outlet stream names based
on config arguments.

Returns list of strings

get_mixed_state_block()

Validates StateBlock provided in user
arguments for mixed stream.

Returns The user-provided StateBlock or
an Exception

initialize(outlvl=0, optarg=None, solver=None, hold_state=False)

Initialization routine for separator

Keyword Arguments

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

• hold_state – flag indicating whether
the initialization routine should unfix
any state variables fixed during initial-
ization, default - False. Valid values:
True - states variables are not unfixed,
and a dict of returned containing flags
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for which states were fixed during ini-
tialization, False - state variables are un-
fixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a
dict containing flags for which states
were fixed during initialization.

model_check()

This method executes the model_check
methods on the associated state blocks
(if they exist). This method is gener-
ally called by a unit model as part of the
unit’s model_check method.

Parameters None –

Returns None

partition_outlet_flows(mb, outlet_list)

Creates outlet Port objects and tries to
partiton mixed stream flows between
these

Parameters

• representing the mixed flow to
be split (StateBlock) –

• list of names for outlets (a) –

Returns None

release_state(flags, outlvl=0)

Method to release state variables fixed
during initialization.

Keyword Arguments

• flags – dict containing information of
which state variables were fixed during
initialization, and should now be un-
fixed. This dict is returned by initialize
if hold_state = True.

• outlvl – sets output level of logging

Returns None
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StateJunction Block

The IDAES StateJunction block repre-
sents a pass-through unit or simple pipe
with no holdup. The primary use for this
unit is in conceptual design applications
for linking Arcs to/from different pro-
cess alternatives.

Degrees of Freedom

StateJunctions have no degrees of free-
dom.

Model Structure

A StateJunction consists of a single
StateBlock with two Ports (inlet and out-
let), where the state variables in the state
block are simultaneously connected to
both Ports.

Additional Constraints

StateJunctions write no additional con-
straints beyond those in the StateBlock.

Variables

StateJunctions have no additional vari-
ables.

StateJunction Class

class idaes.generic_models.unit_models.statejunction.StateJunction(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config
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Keys

dynamic Indicates whether this unit will
be dynamic or not, default = False.

has_holdup Indicates whether holdup
terms should be constructed or not.
default - False. StateJunctions do not
have defined volume, thus this must be
False.

property_package Property parameter
object used to define property state
block, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (StateJunction) New instance

StateJunctionData Class

class idaes.generic_models.unit_models.statejunction.StateJunctionData(component)

Standard StateJunction Unit Model
Class

build()

Begin building model. :param None:

Returns None

initialize(state_args=None, outlvl=0, solver=None, optarg=None)

This method initializes the StateJunc-
tion block by calling the initialize
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method on the property block.

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor
model represents a unit operation where
a single material stream undergoes
some chemical reaction(s) subject to a
set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have
degrees of freedom equal to the number
of reactions + 1.

Typical fixed variables are:

• reaction extents or yields (1 per reac-
tion),

• reactor heat duty (has_heat_transfer =
True only).

Model Structure

The core Stoichiometric reactor unit
model consists of a single ControlVol-
ume0DBlock (named control_volume)
with one Inlet Port (named inlet) and
one Outlet Port (named outlet).
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Variables

Stoichiometric reactors units add the
following variables:

Variable Name Notes
𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat
𝑑𝑒𝑙𝑡𝑎𝑃𝑡 pressure change Only if has_pressure_change = True, reference to control_volume.deltaP

Constraints

Stoichiometric reactor units write no ad-
ditional Constraints beyond those writ-
ten by the control_volume Block.

StoichiometricReactor Class

class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactor(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
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constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_heat_of_reaction Indicates whether
terms for heat of reaction terms should
be constructed, default - False. Valid
values: { True - include heat of reac-
tion terms, False - exclude heat of reac-
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tion terms.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

4.5. Technical Specifications 593

https://docs.python.org/3/library/stdtypes.html#dict


IDAES Documentation, Release 1.10.1

Returns (StoichiometricReactor) New in-
stance

StoichiometricReactorData Class

class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData(component)

Standard Stoichiometric Reactor Unit
Model Class This model assumes that
all given reactions are irreversible,
and that each reaction has a fixed
rate_reaction extent which has to be
specified by the user.

build()

Begin building model (pre-DAE trans-
formation). :param None:

Returns None

Translator Block

Translator blocks are used in complex
flowsheets where the user desires to use
different property packages for differ-
ent parts of the flowsheet. In order to
link two streams using different property
packages, a translator block is required.

The core translator block provides a gen-
eral framework for constructing Trans-
lator Blocks, however users need to add
constraints to map the incoming states to
the outgoing states as required by their
specific application.

Degrees of Freedom

The degrees of freedom of Translator
blocks depends on the property pack-
ages being used, and the user should
write a sufficient number of constraints
mapping inlet states to outlet states to
satisfy these degrees of freedom.
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Model Structure

The core Translator Block
consists of two State Blocks,
names properties_in and
properties_out, which are linked to
two Ports names inlet and outlet
respectively.

Additional Constraints

The core Translator Block writes no ad-
ditional constraints. Users should add
constraints to their instances as required.

Variables

Translator blocks add no additional
Variables.

Translator Class

class idaes.generic_models.unit_models.translator.Translator(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Translator blocks are always
steady-state.

has_holdup Translator blocks do not con-
tain holdup.

outlet_state_defined Indicates whether
unit model will fully define outlet state.
If False, the outlet property package
will enforce constraints such as sum of
mole fractions and phase equilibrium.
default - True. Valid values: { True -
outlet state will be fully defined, False -
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outlet property package should enforce
sumation and equilibrium constraints.}

has_phase_equilibrium Indicates
whether outlet property package should
enforce phase equilibrium constraints.
default - False. Valid values: { True
- outlet property package should cal-
culate phase equilibrium, False - outlet
property package should notcalculate
phase equilibrium.}

inlet_property_package Property pa-
rameter object used to define property
calculations for the incoming stream,
default - None. Valid values: {
PhysicalParameterObject - a Physi-
calParameterBlock object.}

inlet_property_package_args A Con-
figBlock with arguments to be passed
to the property block associated with
the incoming stream, default - None.
Valid values: { see property package
for documentation.}

outlet_property_package Property
parameter object used to define prop-
erty calculations for the outgoing
stream, default - None. Valid val-
ues: { PhysicalParameterObject - a
PhysicalParameterBlock object.}

outlet_property_package_args A Con-
figBlock with arguments to be passed to
the property block associated with the
outgoing stream, default - None. Valid
values: { see property package for doc-
umentation.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Translator) New instance
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TranslatorData Class

class idaes.generic_models.unit_models.translator.TranslatorData(component)

Standard Translator Block Class

build()

Begin building model.

Parameters None –

Returns None

initialize(state_args_in=None, state_args_out=None, outlvl=0, solver=None, optarg=None)

This method calls the initialization
method of the state blocks.

Keyword Arguments

• state_args_in – a dict of arguments
to be passed to the inlet property pack-
age (to provide an initial state for ini-
tialization (see documentation of the
specific property package) (default =
None).

• state_args_out – a dict of arguments
to be passed to the outlet property pack-
age (to provide an initial state for ini-
tialization (see documentation of the
specific property package) (default =
None).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

Turbine

The Turbine model is a Pres-
sureChanger, where the configura-
tion is set so that the “compressor”
option can only be False, and the de-
fault “thermodynamic_assumption” is
“isentropic.” See the PressureChanger
documentation for details.
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Example

The example below demonstrates the
basic Turbine model usage:

import pyomo.environ as pyo
from idaes.
→˓core import FlowsheetBlock
from idaes.generic_models.
→˓unit_models import Turbine
from idaes.generic_models.
→˓properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.unit =␣
→˓Turbine(default={"property_
→˓package": m.fs.properties})

m.fs.unit.
→˓inlet.flow_mol[0].fix(1000)
m.fs.unit.inlet.
→˓enth_mol[0].fix(iapws95.
→˓htpx(T=800*pyo.units.
→˓K, P=1e7*pyo.units.Pa))
m.fs.unit.
→˓inlet.pressure[0].fix(1e7)
m.fs.unit.deltaP.fix(-2e6)
m.fs.unit.efficiency_
→˓isentropic.fix(0.9)

Valve

This section describes the generic adi-
abatic valve model. By default the
model is based on molar flow, but the
pressure-flow equation and the flow ba-
sis is configurable. This model inher-
its the PressureChanger model with the
adiabatic options. Beyond the base pres-
sure changer model this provides a pres-
sure flow relation as a function of the
valve opening fraction.
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Example

from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory,
→˓ TransformationFactory

from idaes.
→˓core import FlowsheetBlock
from idaes.generic_models.
→˓unit_models import Valve
from idaes.generic_models.
→˓properties import iapws95
import idaes.
→˓core.util.scaling as iscale

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.valve␣
→˓= Valve(default={"property_
→˓package": m.fs.properties})
fin = 900 # mol/s
pin = 200000 # Pa
pout = 100000 # Pa
tin = 300 # K
hin␣
→˓= iapws95.htpx(T=tin*units.
→˓K, P=pin*units.Pa) # J/mol
# Calculate the␣
→˓flow coefficient to give␣
→˓1000 mol/s flow with given P
cv = 1000/
→˓math.sqrt(pin - pout)/0.5
# set inlet
m.fs.valve.
→˓inlet.enth_mol[0].fix(hin)
m.fs.valve.
→˓inlet.flow_mol[0].fix(fin)
m.fs.valve.
→˓inlet.flow_mol[0].unfix()
m.fs.valve.
→˓inlet.pressure[0].fix(pin)
m.fs.valve.
→˓outlet.pressure[0].fix(pout)
m.fs.valve.Cv.fix(cv)
m.fs.
→˓valve.valve_opening.fix(0.5)
iscale.
→˓calculate_scaling_factors(m)

(continues on next page)
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(continued from previous page)

m.fs.
→˓valve.initialize(outlvl=1)

solver␣
→˓= pyo.SolverFactory("ipopt")
solver.
→˓options = {"nlp_scaling_
→˓method": "user-scaling"}
solver(m, tee=True)

Variables

Variable Symbol Index Sets Doc
Cv 𝐶𝑣 None Valve coefficient
valve_opening 𝑥 time The fraction that the valve is open from 0 to 1

The Cv variable is highly recommended
but can be omitted in custom pressure-
flow relations.

Expressions

Expression Sym-
bol

Index
Sets

Doc

valve_function 𝑓(𝑥) time This is a valve function that describes how the fraction open affects
flow.

Built-in Valve Functions

Standard valve functions can
be specified by providing a
ValveFunctionType enumerated type
to the valve_function_callback
argument. Standard functions are given
below.

ValveFunctionType.linear

𝑓(𝑥) = 𝑥

ValveFunctionType.
quick_opening

𝑓(𝑥) =
√
𝑥

ValveFunctionType.
equal_percentage

𝑓(𝑥) = 𝛼𝑥−1
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For the equal-percentage valve function
an additional variable alpha is defined
which by default is fixed and set to 100.

Custom Valve Functions

In general, the valve opening should be
restricted to range from 0 to 1. The
valve function should be a named ex-
pression attached to the valve model
called valve_function which takes
the valve opening and computes a value
that goes from approximately zero when
valve opening is 0 to 1 when the valve
opening is one. The valve function can
have parameters as needed, so custom
valve functions are defined using a call-
back function.

The callback function should take an
object of the Valve class as an ar-
gument and add the valve_function
named expression. Any additional pa-
rameters can also be added. The
standard equal-percentage valve func-
tion is provided below as an example.
The callback can be provided for the
valve_function_callback configu-
ration option.

def equal_percentage_cb(b):
"""
Equal percentage␣

→˓valve function callback.
"""
# Parameters can be␣

→˓defined as Var or Param. ␣
→˓If Var is used the parameter
# can␣

→˓be included in a parameter␣
→˓estimation problem.

b.alpha =␣
→˓pyo.Var(initialize=100, doc=
→˓"Valve function parameter")

b.alpha.fix()
@b.Expression(b.

→˓flowsheet().config.time)
def valve_function(b2, t):

return b2.alpha␣
→˓** (b2.valve_opening[t] - 1)
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Constraints

The pressure flow relation is added to
the inherited constraints from the Pres-
sureChanger model.

The default pressure-flow relation is
given below where 𝐹 is the molar flow.
The default valve function assumes an
incompressible fluid of constant density.
In this case the fluid specific gravity is
included in the flow coefficient. For rig-
orous modeling of valves with gases, it
is recommended that a custom pressure-
flow equation be specified.

𝐹 2 = 𝐶2
𝑣 (𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡) 𝑓(𝑥)2

Custom Pressure Flow Relations

Other pressure-flow equations can
be specified via callback supplied
to the unit configuration option
pressure_flow_callback. The
callback allows both the form and flow
basis of the pressure-flow equation to
be specified.

The callback can add parame-
ters and variables as needed. It
is recommended that only the
pressure_flow_equation be speci-
fied as additional constraints would not
be scaled by the valve model’s scaling
routines. The pressure flow relation
generally should be written in the form
below to facilitate scaling where 𝐹 is
flow variable.

𝑓1(𝐹 ) = 𝑓2(𝑃𝑖𝑛, 𝑃𝑜𝑢𝑡)

The callback takes a Valve model
object as an argument. There
are three attributes that the
pressure_flow_callback should
define: 1. flow_var a time indexed
reference to the flow variable basis, 2.
pressure_flow_equation_scale
a function that takes flow_var and
defines the form of the flow term
3. pressure_flow_equation the
pressure flow relation constraint.

The first two items, flow_var and
pressure_flow_equation_scale,
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are not directly used in the model, but
are used by the model scaling routine.

The example callback below is the
model default pressure-flow equation.

def pressure_
→˓flow_default_callback(b):
"""
Add the default pressure␣

→˓flow relation constraint.
→˓ This will be used in the
valve model, a␣

→˓custom callback is provided.
"""
umeta = b.

→˓config.property_package.get_
→˓metadata().get_derived_units

b.Cv = pyo.Var(
initialize=0.1,
␣

→˓doc="Valve flow coefficent",
units=umeta(

→˓"amount")/umeta("time
→˓")/umeta("pressure")**0.5

)
b.Cv.fix()

b.flow_var = pyo.
→˓Reference(b.control_volume.
→˓properties_in[:].flow_mol)

b.pressure_flow_equation_
→˓scale = lambda x : x**2

@b.Constraint(b.
→˓flowsheet().config.time)
def pressure_

→˓flow_equation(b2, t):
␣

→˓ Po = b2.control_volume.
→˓properties_out[t].pressure
␣

→˓ Pi = b2.control_volume.
→˓properties_in[t].pressure

F = b2.control_volume.
→˓properties_in[t].flow_mol

Cv = b2.Cv
␣

→˓ fun = b2.valve_function[t]
return F ** 2 == Cv␣

→˓** 2 * (Pi - Po) * fun ** 2
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Initialization

This just calls the initialization routine
from PressureChanger. Either an outlet
pressure value or deltaP can be specified
to aid the initialization.

Valve Class

class idaes.generic_models.unit_models.valve.Valve(*args, **kwds)

Adiabatic valves

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
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total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

compressor Indicates whether this unit
should be considered a compressor
(True (default), pressure increase) or an
expander (False, pressure decrease).

thermodynamic_assumption Flag to set
the thermodynamic assumption to use
for the unit. - ThermodynamicAssump-
tion.isothermal (default) - Thermody-
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namicAssumption.isentropic - Thermo-
dynamicAssumption.pump - Thermo-
dynamicAssumption.adiabatic

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

support_isentropic_performance_curves
Include a block for perfor-
mance curves, configure via isen-
tropic_performance_curves.

isentropic_performance_curves
Configuration dictionary for the perfor-
mance curve block.

build_callback Optional callback to add
performance curve constraints

build_head_expressions If true
add expressions for ‘head’ and
‘head_isentropic’. These expres-
sions can be used in performance curve
constraints.

valve_function_callback This takes
either an enumerated valve function
type in: { ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom} or a call-
back function that takes a valve model
object as an argument and adds a time-
indexed valve_function expression to
it. Any additional required variables,
expressions, or constraints required can
also be added by the callback.

pressure_flow_callback This callback
function takes a valve model object as
an argument and adds a time-indexed
valve_function expression to it. Any
additional required variables, expres-
sions, or constraints required can also
be added by the callback.
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• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (Valve) New instance

ValveData Class

class idaes.generic_models.unit_models.valve.ValveData(component)

build()

Parameters None –

Returns None

calculate_scaling_factors()

Calculate pressure flow constraint scal-
ing from flow variable scale.

initialize(state_args=None, outlvl=0, solver=None, optarg=None)

Initialize the valve based on a deltaP
guess.

Parameters

• state_args (dict) – Initial state for
property initialization

• outlvl – sets output level of initializa-
tion routine

• solver (str) – Solver to use for initial-
ization

• optarg (dict) – Solver arguments dic-
tionary
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Control Models

This section contains documentation for
core IDAES control models.

Contents

Proportional-Integral-Derivative (PID) Controller

The IDAES framework contains a ba-
sic PID control implementation, which
is described in this section.

Example

The following code demonstrated the
creation of a PIDBlock, but for simplic-
ity, it does not create a dynamic process
model. A full example of a dynamic
process with PID control is being pre-
pared for the IDAES examples reposi-
tory and will be referenced here once
completed.

The valve opening is the controlled out-
put variable and pressure “1” is the mea-
sured variable. The controller output for
the valve opening is restricted to be be-
tween 0 and 1. The measured and out-
put variables should be indexed only by
time. Fortunately there is no need to cre-
ate new variables if the variables are in
a property block or not indexed only by
time. Pyomo’s Reference objects can be
use to create references to existing vari-
ables with the proper indexing as shown
in the example.

The calculate_initial_integral
option calculates the integral error in the
first time step to match the initial con-
troller output. This keeps the controller
output from immediately jumping to a
new value. Unless the initial integral er-
ror is known, this option should usually
be True.

The controller should be added after the
DAE expansion is done. There are sev-
eral variables in the controller that are
usually meant to be fixed; as shown in
the example, they are gain, time_i,
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time_d, and setpoint. For more in-
formation about the variables, expres-
sions, and parameters in the PIDBlock,
model see Variables and Expressions.

from idaes.
→˓generic_models.control␣
→˓import PIDBlock, PIDForm
from idaes.
→˓core import FlowsheetBlock
import pyomo.environ as pyo

m = pyo.ConcreteModel(name=
→˓"PID Example")
m.fs = FlowsheetBlock(default=
→˓{"dynamic
→˓":True, "time_set":[0,10]})

m.fs.valve_
→˓opening = pyo.Var(m.fs.
→˓time, doc="Valve opening")
m.fs.pressure = pyo.
→˓Var(m.fs.time, [1,2], doc=
→˓"Pressure in unit 1 and 2")

pyo.TransformationFactory(
→˓'dae.finite_
→˓difference').apply_to(

m.fs,
nfe=10,
wrt=m.fs.time,
scheme='BACKWARD',

)

m.fs.measured_
→˓variable = pyo.Reference(m.
→˓fs.pressure[:,1])

m.fs.ctrl = PIDBlock(
default={

␣
→˓"pv":m.fs.measured_variable,

␣
→˓"output":m.fs.valve_opening,

"upper":1.0,
"lower":0.0,
"calculate_

→˓initial_integral":True,
␣

→˓"pid_form":PIDForm.velocity,
}

)

(continues on next page)
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(continued from previous page)

m.fs.ctrl.gain.fix(1e-6)
m.fs.ctrl.time_i.fix(0.1)
m.fs.ctrl.time_d.fix(0.1)
m.fs.ctrl.setpoint.fix(3e5)

Controller Windup

The current PID controller model has no
integral windup prevention. This will be
added to the model in the near future.

Class Documentation

class idaes.generic_models.control.pid_controller.PIDBlock(*args, **kwds)

This is a PID controller block. The PID
Controller block must be added after the
DAE transformation.

Args: rule (function): A rule function or
None. Default rule calls build(). con-
crete (bool): If True, make this a
toplevel model. Default - False. ctype
(str): Pyomo ctype of the block. De-
fault - “Block” default (dict): Default
ProcessBlockData config

Keys

pv A Pyomo Var, Expression, or Refer-
ence for the measured process variable.
Should be indexed by time.

output A Pyomo Var, Expression, or Ref-
erence for the controlled process vari-
able. Should be indexed by time.

upper The upper limit for the controller
output, default=1

lower The lower limit for the controller
output, default=0

calculate_initial_integral Calculate the
initial integral term value if true, oth-
erwise provide a variable err_i0, which
can be fixed, default=True

pid_form Velocity or standard form

initialize (dict): ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are
dictionaries described under the
“default” argument above.
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idx_map (function): Function to take the index of a BlockData element and
return the index in the initialize dict
from which to read arguments. This
can be provided to overide the default
behavior of matching the BlockData
index exactly to the index in initialize.

Returns: (PIDBlock) New instance

class idaes.generic_models.control.pid_controller.PIDBlockData(component)

build()

Build the PID block

Variables and Expressions

Symbol Name in Model Description
𝑣𝑠𝑝(𝑡) setpoint[t] Setpoint variable (usually fixed)
𝑣𝑚𝑣(𝑡) pv[t] Measured process variable reference
𝑢(𝑡) output[t] Controller output variable reference
𝐾𝑝(𝑡) gain[t] Controller gain (usually fixed)
𝑇𝑖(𝑡) time_i[t] Integral time (usually fixed)
𝑇𝑑(𝑡) time_d[t] Derivative time (usually fixed)
𝑒(𝑡) err[t] Error expression (setpoint - pv)
– err_d[t] Derivative error expression
– err_i[t] Integral error expression (standard form)
– err_d0 Initial derivative error value (fixed)
𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(0) err_i0 Initial integral error value (fixed)
– err_i_end Last initial integral error expression
– limits["h"] Upper limit of output parameter
– limits["l"] Lower limit of output parameter
– smooth_eps Smooth min/max parameter

Formulation

There are two forms of the PID con-
troller equation. The standard formu-
lation can result in equations with very
large summations. In the velocity form
of the equation the controller output can
be calculated based only on the previous
state.

The two forms of the equations are
equivalent, but the choice of form will
affect robustness and solution time. It
is not necessarily clear that the veloc-
ity form of the equation is always more
numerically favorable, however it would
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usually be the default choice. Both
forms are provided in case the standard
form works better in some situations.

Standard Formulation

The PID controller equations are given
by the following equations

𝑒(𝑡) = 𝑣𝑠𝑝(𝑡) − 𝑣𝑚𝑣(𝑡)

𝑢(𝑡) = 𝐾𝑝

[︂
𝑒(𝑡) +

1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡)

d𝑡

]︂
The PID equation now must be dis-
cretized.

𝑢(𝑡𝑖) = 𝐾𝑝

⎡⎣𝑒(𝑡𝑖) +
𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(0)

𝑇𝑖
+

1

𝑇𝑖

𝑖−1∑︁
𝑗=0

∆𝑡𝑗
𝑒(𝑡𝑗) + 𝑒(𝑡𝑗+1)

2
+ 𝑇𝑑

𝑒(𝑡𝑖) − 𝑒(𝑡𝑖−1)

∆𝑡𝑖−1

⎤⎦

Velocity Formulation

The velocity formulation of the PID
equation may also be useful. The way
the equations are written in the PID
model, the integral term is a summa-
tion expression and as time increases the
integral term will build up an increas-
ing number of terms potentially becom-
ing very large. This potentially has two
affects, increasing round off error and
computation time. The velocity formu-
lation allows the controller output to be
calculated based on the previous output.

First the usual PID controller equation
can be rearranged to solve for the inte-
gral error.

1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠 =
𝑢(𝑡)

𝐾𝑝
− 𝑒(𝑡) − 𝑇𝑑

d𝑒(𝑡)
d𝑡

The PID equation for some time (𝑡+∆𝑡)
is

𝑢(𝑡+ ∆𝑡) = 𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡+ ∆𝑡)

d𝑡

]︃

𝑢(𝑡+ ∆𝑡) = 𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

𝑡

𝑒(𝑠)d𝑠+
1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡+ ∆𝑡)

d𝑡

]︃

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

𝑡

𝑒(𝑠)d𝑠+ 𝑇𝑑

(︂
d𝑒(𝑡+ ∆𝑡)

d𝑡
− d𝑒(𝑡)

d𝑡

)︂]︃
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Now we can discretize the equation us-
ing the trapezoid rule for the integral.

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︂
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

∆𝑡

𝑇𝑖

(︂
𝑒(𝑡+ ∆𝑡) + 𝑒(𝑡)

2

)︂
+ 𝑇𝑑

(︂
d𝑒(𝑡+ ∆𝑡)

d𝑡
− d𝑒(𝑡)

d𝑡

)︂]︂
Since the derivative error term will re-
quire the error at the previous time step to calculate, this form will still result in a large summation being formed since
in the model there is no derivative error variable. To avoid this problem, the derivative error term can equivalently be
replaced with the derivative of the negative measured process variable.

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︂
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

∆𝑡

𝑇𝑖

(︂
𝑒(𝑡+ ∆𝑡) + 𝑒(𝑡)

2

)︂
+ 𝑇𝑑

(︂
d𝑣𝑚𝑣(𝑡+ ∆𝑡)

d𝑡
− d𝑣𝑚𝑣(𝑡)

d𝑡

)︂]︂
Now the velocity form of the PID controller equation can be calculated at each time point from just the state at the
previous time point.

Substitution

In both the proportional and inte-
gral terms, error can be replaced with
the negative measured process variable
yielding equivalent results. This substi-
tution is provided by the PID class and
is done by default.

Output Limits

Smooth min and smooth max expres-
sions are used to keep the controller out-
put between a minimum and maximum
value.

Power Generation Model Library

The IDAES Process Modeling Frame-
work contains a library of models
specifically developed for modeling
power generation systems. These mod-
els all built off of the core IDAES mod-
eling framework and model libraries.

Unit Models

Feedwater Heater (0D)

The FWH0D model is a 0D feedwater
heater model suitable for steady state
modeling. It is intended to be used
primarily with the IAWPS95 property
package. The feedwater heater is split
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into three sections the condensing sec-
tion is required while the desuperheat-
ing and drain cooling sections are op-
tional. There is also an optional mixer
for adding a drain stream from another
feedwater heater to the condensing sec-
tion. The figure below shows the layout
of the feedwater heater. All but the con-
densing section are optional.

Fig. 15: Feedwater Heater

Example

The example below shows how to setup
a feedwater heater with all three sec-
tions. The feedwater flow rate, steam
conditions, heat transfer coefficients and
areas are not necessarily realistic.

import pyomo.environ as pyo
from idaes.
→˓core import FlowsheetBlock
from idaes.
→˓generic_models.unit_models.
→˓heat_exchanger import (

delta_temperature_
→˓underwood_callback,

delta_
→˓temperature_lmtd_callback)
from idaes.generic_models.
→˓properties import iapws95
from idaes.power_generation.
→˓unit_models import FWH0D

def make_fwh_model():
␣

→˓ model = pyo.ConcreteModel()
model.fs␣

→˓= FlowsheetBlock(default={
"dynamic": False,
"default_

→˓property_package": iapws95.
→˓Iapws95ParameterBlock()})

model.fs.properties␣
→˓= model.fs.config.
→˓default_property_package

model.
→˓fs.fwh = FWH0D(default={
␣

→˓ "has_desuperheat":True,
(continues on next page)
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(continued from previous page)

␣
→˓ "has_drain_cooling":True,
␣

→˓ "has_drain_mixer":True,
"property_package

→˓":model.fs.properties})

model.fs.fwh.desuperheat.
→˓inlet_1.flow_mol.fix(100)

model.fs.fwh.desuperheat.
→˓inlet_1.flow_mol.unfix()

model.fs.fwh.desuperheat.
→˓inlet_1.pressure.fix(201325)

model.fs.fwh.desuperheat.
→˓inlet_1.enth_mol.fix(60000)

model.fs.fwh.drain_
→˓mix.drain.flow_mol.fix(1)

model.fs.fwh.drain_mix.
→˓drain.pressure.fix(201325)

model.fs.fwh.drain_mix.
→˓drain.enth_mol.fix(20000)

model.fs.fwh.cooling.
→˓inlet_2.flow_mol.fix(400)

model.fs.fwh.cooling.
→˓inlet_2.pressure.fix(101325)

model.fs.fwh.cooling.
→˓inlet_2.enth_mol.fix(3000)

model.fs.
→˓fwh.condense.area.fix(1000)

model.fs.fwh.condense.
→˓overall_heat_transfer_
→˓coefficient.fix(100)

model.fs.fwh.
→˓desuperheat.area.fix(1000)

model.fs.fwh.
→˓desuperheat.overall_heat_
→˓transfer_coefficient.fix(10)

model.fs.
→˓fwh.cooling.area.fix(1000)

model.
→˓fs.fwh.cooling.overall_heat_
→˓transfer_coefficient.fix(10)

model.fs.fwh.initialize()
return(model)

# create a feedwater heater␣
→˓model with all optional␣
→˓units and initialize
model = make_fwh_model()
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Model Structure

The condensing section uses the FWH-
Condensing0D model to calculate a
steam flow rate such that all steam is
condensed in the condensing section.
This allows turbine steam extraction
rates to be calculated. The other sec-
tions are regular HeatExchanger mod-
els. The table below shows the unit
models which make up the feedwater
heater, and the option to include or ex-
clude them.

Unit Option Doc
condense – Condensing section (FWHCondensing0D)
desuperheat has_desuperheat Desuperheating section (HeatExchanger)
cooling has_drain_cooling Drain cooling section (HeatExchanger)
drain_mix has_drain_mixer Mixer for steam and other FWH drain (Mixer)

Degrees of Freedom

The area
and overall_heat_transfer_coefficient
should be
fixed or con-
straints
should be
provided
to cal-
culate overall_heat_transfer_coefficient.
If the inlets are also fixed except for
the inlet steam flow rate (inlet_1.
flow_mol), the model will have 0
degrees of freedom.

See FWH0D and FWH0DData for full
Python class details.

Feedwater Heater (Condensing Section 0D)

The condensing feedwater heater is the
same as the HeatExchanger model with
one additional constraint to calculate the
inlet flow rate such that all the entering
steam is condensed. This model is suit-
able for steady state modeling, and is
intended to be used with the IAWPS95
property package. For dynamic mod-
eling, the 1D feedwater heater models
should be used (not yet publicly avail-
able).
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Degrees of Freedom

Usually
area and
overall_heat_transfer_coefficient
are fixed
or con-
straints
are pro-
vided to
calculate
overall_heat_transfer_coefficient.
If the inlets are also fixed except for
the inlet steam flow rate (inlet_1.
flow_mol), the model will have 0
degrees of freedom.

Variables

The variables are the same as HeatEx-
changer.

Constraints

In addition to the HeatExchanger
constraints, there is one additional
constraint to calculate the inlet
steam flow such that all steam con-
denses. The constraint is called
extraction_rate_constraint, and
is defined below.

ℎ𝑠𝑡𝑒𝑎𝑚,𝑜𝑢𝑡 = ℎ𝑠𝑎𝑡,𝑙𝑖𝑞𝑢𝑖𝑑(𝑃 )

Where ℎ is molar enthalpy, and the sat-
urated liquid enthalpy is a function of
pressure.

FWHCondensing0D Class

class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0D(*args, **kwds)

Feedwater Heater Condensing Section
The feedwater heater condensing sec-
tion model is a normal 0D heat ex-
changer model with an added constraint
to calculate the steam flow such that the
outlet of shell is a saturated liquid.

Args: rule (function): A rule function or
None. Default rule calls build(). con-
crete (bool): If True, make this a
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toplevel model. Default - False. ctype
(str): Pyomo ctype of the block. De-
fault - “Block” default (dict): Default
ProcessBlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

hot_side_name Hot side name, sets con-
trol volume and inlet and outlet names

cold_side_name Cold side name, sets
control volume and inlet and outlet
names

hot_side_config A config block used to
construct the hot side control volume.
This config can be given by the hot side
name instead of hot_side_config.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
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balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}
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cold_side_config A config block used to
construct the cold side control volume.
This config can be given by the cold side
name instead of cold_side_config.

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
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balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

delta_temperature_callback Call-
back for for temperature difference
calculations

flow_pattern Heat exchanger flow
pattern, default - HeatExchanger-
FlowPattern.countercurrent. Valid
values: { HeatExchangerFlowPat-
tern.countercurrent - countercur-
rent flow, HeatExchangerFlowPat-
tern.cocurrent - cocurrent flow, Hea-
tExchangerFlowPattern.crossflow -
cross flow, factor times countercurrent
temperature difference.}

initialize (dict): ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are
dictionaries described under the
“default” argument above.

idx_map (function): Function to take the index of a BlockData element and
return the index in the initialize dict
from which to read arguments. This
can be provided to overide the default
behavior of matching the BlockData
index exactly to the index in initialize.
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Returns: (FWHCondensing0D) New
instance

FWHCondensing0DData Class

class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData(component)

build()

Building model

Parameters None –

Returns None

initialize(*args, **kwargs)

Use the regular heat exchanger initial-
ization, with the extraction rate con-
straint deactivated; then it activates the
constraint and calculates a steam inlet
flow rate.

Turbine (Isentropic)

This is
a steam
power gen-
eration tur-
bine model
for the ba-
sic isen-
tropic tur-
bine cal-
culations.
It is the
basis of
the Tur-
bineInlet-
Stage, Tur-
bineOut-
letStage
<techni-
cal_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Outlet Stage)>,
and, Tur-
bineOutlet-
Stage <techni-
cal_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine (Stage)> models.
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Variables

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]
ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure

(︁
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁

Expressions

This model provides two expressions
that are not available in the pressure
changer model.

Expression Symbol Index Sets Doc
h_is ℎ𝑖𝑠 time Isentropic outlet molar enthalpy [J/mol]
delta_enth_isentropic ∆ℎ𝑖𝑠 time Isentropic enthalpy change (ℎ𝑖𝑠 − ℎ𝑖𝑛) [J/mol]
work_isentropic 𝑤𝑖𝑠 time Isentropic work (W)

Constraints

In addition to the mass and energy bal-
ances provided by the control volume
the following equation is used to calcu-
late the outlet enthalpy, so work comes
from the control volume energy balance.

ℎ𝑜𝑢𝑡 = ℎ𝑖𝑛 − 𝜂𝑖𝑠 (ℎ𝑖𝑛 − ℎ𝑖𝑠)

Initialization

To initialize the turbine model, a rea-
sonable guess for the inlet condition and
deltaP and efficiency should be set by
setting the appropriate variables.

TurbineStage Class

class idaes.power_generation.unit_models.helm.turbine.HelmIsentropicTurbine(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.
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• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}
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momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

has_work_transfer True if model a has
work transfer term.

has_heat_transfer True if model has a
heat transfer term.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.
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• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmIsentropicTurbine) New in-
stance

TurbineStageData Class

class idaes.power_generation.unit_models.helm.turbine.HelmIsentropicTurbineData(component)

Basic isentropic 0D turbine model. This
inherits the heater block to get a lot of
unit model boilerplate and the mass bal-
ance, enegy balance and pressure equa-
tions. This model is intended to be
used only with Helmholtz EOS property
pacakges in mixed or single phase mode
with P-H state vars.

Since this inherits BalanceBlockData,
and only operates in steady-state or
pseudo-steady-state (for dynamic mod-
els) the following mass, energy and
pressure equations are implicitly writen.

1) Mass Balance: 0 = flow_mol_in[t] -
flow_mol_out[t]

2) Energy Balance: 0 =
(flow_mol[t]*h_mol[t])_in -
(flow_mol[t]*h_mol[t])_out + Q_in +
W_in

3) Pressure: 0 = P_in[t] + deltaP[t] - P_out[t]

build()

Add model equations to the unit model.
This is called by a default block con-
strunction rule when the unit model is
created.

initialize(outlvl=0, solver=None, optarg=None)

For simplicity this initialization requires
you to set values for the efficency, in-
let, and one of pressure ratio, pressure
change or outlet pressure.
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Turbine (Inlet Stage)

This is
a steam
power gen-
eration tur-
bine model
for the in-
let stage.
It inher-
its HelmIsen-
tropicTur-
bine <tech-
nical_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Isentropic)>.

The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam
Turbine Including Partial Arc Admis-
sion for Use in a Process Simulation
Software Environment.” Journal of En-
gineering for Gas Turbines and Power.
v136.

Example

from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory,␣
→˓TransformationFactory, units
from idaes.
→˓core import FlowsheetBlock
from idaes.power_
→˓generation.unit_models.helm␣
→˓import HelmTurbineInletStage
from idaes.generic_models.
→˓properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.
→˓fs.
→˓turb␣
→˓=␣
→˓HelmTurbineInletStage(default=
→˓{"property_
→˓package": m.fs.properties})
hin␣
→˓= iapws95.htpx(T=880*units.
→˓K, P=2.4233e7*units.Pa) (continues on next page)
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(continued from previous page)

# set inlet
m.fs.turb.
→˓inlet[:].enth_mol.fix(hin)
m.fs.turb.inlet[:].
→˓flow_mol.fix(26000/4.0)
m.fs.turb.inlet[:].
→˓pressure.fix(2.4233e7)
m.fs.turb.eff_nozzle.fix(0.95)
m.fs.
→˓turb.blade_reaction.fix(0.9)
m.fs.turb.
→˓flow_coeff.fix(1.053/3600.0)
m.fs.turb.
→˓blade_velocity.fix(110.0)
m.fs.turb.
→˓efficiency_mech.fix(0.98)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet
stream minus flow rate plus discharge
pressure are fixed. There are also a few
variables which are turbine parameters
and are usually fixed, like flow coef-
ficients. See the variables section for
more information.

Model Structure

The tur-
bine in-
let stage
model con-
tains one
ControlVol-
ume0DBlock
block called con-
trol_volume
and inher-
its HelmIsen-
tropicTur-
bine <tech-
nical_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Isentropic)>.
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Variables

The variables below are defined in the
HelmIsentropicTurbine model.

Variable Sym-
bol

Index
Sets

Doc

blade_reaction 𝑅 None Blade reaction
eff_nozzle 𝜂𝑛𝑜𝑧𝑧𝑙𝑒 None Nozzle efficiency
efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical Efficiency (accounts for losses in bearings. . . )
flow_coeff 𝐶𝑓𝑙𝑜𝑤 None Turbine stage flow coefficient [kg*C^0.5/Pa/s]
blade_velocity 𝑉𝑟𝑏𝑙 None Turbine blade velocity (should be constant while running)

[m/s]
delta_enth_isentropic ∆ℎ𝑖𝑠𝑒𝑛 time Isentropic enthalpy change through stage [J/mol]

The table below shows important
variables inherited from the pressure
changer model.

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]
ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure

(︁
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁

Expressions

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss [W]
power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bear-

ings. . . ) [W]
steam_entering_velocity𝑉0 time Steam velocity entering stage [m/s]

The expression defined below provides
a calculation for steam velocity entering
the stage, which is used in the efficiency
calculation.

𝑉0 = 1.414

√︃
−(1 −𝑅)∆ℎ𝑖𝑠𝑒𝑛
𝑊𝑇𝑖𝑛𝜂𝑛𝑜𝑧𝑧𝑒𝑙
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Constraints

In addi-
tion to
the con-
straints
inherited
from the
HelmTur-
bineStage
<techni-
cal_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Stage)>, this model contains two more
constraints, one to estimate efficiency
and one pressure-flow relation. From
the isentropic pressure changer model,
these constraints eliminate the need to
specify efficiency and either inlet flow
or outlet pressure.

The isentropic efficiency is given by:

𝜂𝑖𝑠𝑒𝑛 = 2
𝑉𝑟𝑏𝑙
𝑉0

⎡⎣(︂√1 −𝑅− 𝑉𝑟𝑏𝑙
𝑉0

)︂
+

√︃(︂√
1 −𝑅− 𝑉𝑟𝑏𝑙

𝑉0

)︂2

+𝑅

⎤⎦
The pressure-flow relation is given by:

�̇� = 𝐶𝑓𝑙𝑜𝑤
𝑃𝑖𝑛√

𝑇𝑖𝑛 − 273.15

⎯⎸⎸⎷ 𝛾

𝛾 − 1

[︃(︂
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︂ 2
𝛾

−
(︂
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︂ 𝛾+1
𝛾

]︃

Initialization

The initialization method for this model
will save the current state of the model
before commencing initialization and
reloads it afterwards. The state of the
model will be the same after initial-
ization, only the initial guesses for un-
fixed variables will be changed and op-
tionally a flow coefficient value can be
calculated. To initialize this model,
provide a starting value for the in-
let port variables. Then provide a
guess for one of: discharge pressure,
deltaP, or ratioP. Since it can be
hard to determine a proper flow coeffi-
cient, the calculate_cf argument of
the initialize()method can be set to
True, and the deltaP guess will be used
to calculate and set a corresponding flow
coefficient.
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The model should initialize readily, but
it is possible to provide a flow coefficient
that is incompatible with the given flow
rate resulting in an infeasible problem.

TurbineInletStage Class

class idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStage(*args,
**kwds)

Inlet stage steam turbine model

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
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total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
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package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

has_work_transfer True if model a has
work transfer term.

has_heat_transfer True if model has a
heat transfer term.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmTurbineInletStage) New in-
stance

TurbineInletStageData Class

class idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStageData(component)

build()

Add model equations to the unit model.
This is called by a default block con-
strunction rule when the unit model is
created.

initialize(outlvl=0, solver=None, optarg=None, calculate_cf=False)

Initialize the inlet turbine stage model.
This deactivates the specialized con-
straints, then does the isentropic turbine
initialization, then reactivates the con-
straints and solves. This initializtion
uses a flow value guess, so some rea-
sonable flow guess should be sepecified
prior to initializtion.
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Parameters

• outlvl (int) – Amount of output (0 to
3) 0 is lowest

• solver (str) – Solver to use for initial-
ization

• optarg (dict) – Solver arguments dic-
tionary

• calculate_cf (bool) – If True, use
the flow and pressure ratio to calculate
the flow coefficient.

Turbine (Outlet Stage)

This is a steam power generation turbine
model for the outlet stage. The turbine
outlet model is based on:

Liese, (2014). “Modeling of a Steam
Turbine Including Partial Arc Admis-
sion for Use in a Process Simulation
Software Environment.” Journal of En-
gineering for Gas Turbines and Power.
v136.

Example

from pyomo.environ import␣
→˓ConcreteModel, SolverFactory
from idaes.
→˓core import FlowsheetBlock
from idaes.power_generation.
→˓unit_models.helm import␣
→˓HelmTurbineOutletStage
from idaes.generic_models.
→˓properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.
→˓fs.
→˓turb␣
→˓=␣
→˓HelmTurbineOutletStage(default=
→˓{"property_
→˓package": m.fs.properties})
# set inlet

(continues on next page)
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(continued from previous page)

m.fs.turb.
→˓inlet[:].enth_mol.fix(47115)
m.fs.turb.
→˓inlet[:].flow_mol.fix(15000)
m.fs.turb.
→˓inlet[:].pressure.fix(8e4)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet
stream minus flow rate plus discharge
pressure are fixed. There are also a few
variables which are turbine parameters
and are usually fixed. See the variables
section for more information.

Model Structure

The tur-
bine out-
let stage
model con-
tains one
ControlVol-
ume0DBlock
block called con-
trol_volume
and in-
herits the
HelmIsen-
tropicTur-
bine <tech-
nical_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Isentropic)>.

Variables

The vari-
ables be-
low are de-
fined int
the Tur-
bineIn-
letStage
model. Ad-
ditional vari-
ables are
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in inher-
ited from the
:HelmIsen-
tropicTur-
bine <tech-
nical_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Isentropic)> model.

Variable Symbol Index
Sets

Doc

eff_dry 𝜂𝑑𝑟𝑦 None Turbine efficiency when no liquid is present.
efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical Efficiency (accounts for losses in bear-

ings. . . )
flow_coeff 𝐶𝑓𝑙𝑜𝑤 None Turbine stage flow coefficient [kg*C^0.5/Pa/s]
design_exhaust_flow_vol 𝑉𝑑𝑒𝑠,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 None Design volumetric flow out of stage [m^3/s]

The table below shows important
variables inherited from the pressure
changer model.

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]
ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure

(︁
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁

Expressions

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss [W]
power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bearings. . . )

[W]
tel TEL time Total exhaust loss [J/mol]

The expression defined below provides
a total exhaust loss.

TEL = 1 × 106 *
(︀
−0.0035𝑓5 + 0.022𝑓4 − 0.0542𝑓3 + 0.0638𝑓2 − 0.0328𝑓 + 0.0064

)︀
Where 𝑓 is the total volumetric flow of
the exhaust divided by the design flow.
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Constraints

In addition to the constraints inherited
from the PressureChanger model with
the isentropic options, this model con-
tains two more constraints, one to es-
timate efficiency and one pressure-flow
relation. From the isentropic pressure
changer model, these constraints elim-
inate the need to specify efficiency and
either inlet flow or outlet pressure.

The isentropic efficiency is given by:

𝜂𝑖𝑠𝑒𝑛 = 𝜂𝑑𝑟𝑦𝑥 (1 − 0.65(1 − 𝑥)) *
(︂

1 +
TEL

∆ℎ𝑖𝑠𝑒𝑛

)︂
Where𝑥 is the steam quality (vapor frac-
tion).

The pressure-flow relation is given by
the Stodola Equation:

�̇�
√
𝑇𝑖𝑛− 273.15 = 𝐶𝑓𝑙𝑜𝑤𝑃𝑖𝑛

√︀
1 − 𝑃𝑟2

Initialization

The initialization method for this model
will save the current state of the model
before commencing initialization and
reloads it afterwards. The state of the
model will be the same after initializa-
tion, only the initial guesses for unfixed
variables will be changed except for op-
tional calculation of the flow coefficient.
To initialize this model, provide a start-
ing value for the inlet port variables.
Then provide a guess for one of: dis-
charge pressure, deltaP, or ratioP.
Since a good flow coefficient can be dif-
ficult to determine, the calculate_cf
option will calculate and set a flow coef-
ficient based on the specified inlet flow
and deltaP.

The model should initialize readily, but
it is possible to provide a flow coefficient
that is incompatible with the given flow
rate resulting in an infeasible problem.
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TurbineOutletStage Class

class idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStage(*args,
**kwds)

Outlet stage steam turbine model

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
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anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
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ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

has_work_transfer True if model a has
work transfer term.

has_heat_transfer True if model has a
heat transfer term.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmTurbineOutletStage) New
instance

TurbineOutletStageData Class

class idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStageData(component)

build()

Add model equations to the unit model.
This is called by a default block con-
strunction rule when the unit model is
created.

initialize(outlvl=0, solver=None, optarg=None, calculate_cf=True)

Initialize the outlet turbine stage model.
This deactivates the specialized con-
straints, then does the isentropic turbine
initialization, then reactivates the con-
straints and solves.

Parameters

• outlvl – sets output level of initializa-
tion routine

• solver (str) – Solver to use for initial-
ization

• optarg (dict) – Solver arguments dic-
tionary
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Turbine (Stage)

This is
a steam
power gen-
eration tur-
bine model
for in-
termedi-
ate stages
between
the in-
let and out-
let. It
inherits
HelmIsen-
tropicTur-
bine <tech-
nical_specs/model_libraries/power_generation/unit_models/turbine_inlet:Turbine
(Isentropic)>.

Example

from pyomo.environ import␣
→˓ConcreteModel, SolverFactory

from idaes.
→˓core import FlowsheetBlock
from idaes.power_
→˓generation.unit_models.
→˓helm import HelmTurbineStage
from idaes.generic_models.
→˓properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.turb␣
→˓= HelmTurbineStage(default=
→˓{"property_
→˓package": m.fs.properties})
# set inlet
m.fs.turb.
→˓inlet[:].enth_mol.fix(70000)
m.fs.turb.
→˓inlet[:].flow_mol.fix(15000)
m.fs.turb.
→˓inlet[:].pressure.fix(8e6)
m.fs.turb.efficiency_
→˓isentropic[:].fix(0.8)

(continues on next page)
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(continued from previous page)

m.fs.turb.ratioP[:].fix(0.7)
m.fs.turb.initialize()

Variables

Variable Sym-
bol

Index Sets Doc

efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical efficiency (accounts for losses in bearings. . . )
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]
ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure

(︁
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁
shaft_speed 𝑠 time Shaft speed [hz]

The shaft speed is used to calculate spe-
cific speed for more advanced turbine
models, the specific speed expression is
available, but otherwise has no effect on
the model results.

Expressions

This model provides two expressions
that are not available in the pressure
changer model.

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss [W]
power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bearings. . . )

[W]
specific_speed 𝑛𝑠 time Turbine stage specific speed [dimensionless]

𝑛𝑠 = 𝑠�̇�0.5(𝑤𝑖𝑠𝑒𝑛/�̇�) * *(−0.75)

Where �̇� is the mass flow rate and �̇� is the outlet volumetric flow.

Constraints

There are no additional constraints.
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Initialization

To initialize the turbine model, a rea-
sonable guess for the inlet condition and
deltaP and efficiency should be set by
setting the appropriate variables.

TurbineStage Class

class idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStage(*args, **kwds)

Basic steam turbine model

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
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total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
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lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

has_work_transfer True if model a has
work transfer term.

has_heat_transfer True if model has a
heat transfer term.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmTurbineStage) New instance

TurbineStageData Class

class idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStageData(component)

build()

Add model equations to the unit model.
This is called by a default block con-
strunction rule when the unit model is
created.

initialize(outlvl=0, solver=None, optarg=None)

Initialize the turbine stage model. This
deactivates the specialized constraints,
then does the isentropic turbine initial-
ization, then reactivates the constraints
and solves.

Parameters
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• outlvl – sets output level of initializa-
tion routine

• solver (str) – Solver to use for initial-
ization

• optarg (dict) – Solver arguments dic-
tionary

Turbine (Multistage)

This is a composite model for a power
plant turbine with high, intermediate
and low pressure sections. This model
contains an inlet stage with throttle
valves for partial arc admission and op-
tional splitters for steam extraction.

The figure below shows the layout of the
mutistage turbine model. Optional split-
ters provide for steam extraction. The
splitters can have two or more outlets
(one being the main steam outlet). The
streams that connect one stage to the
next can also be omitted. This allows for
connecting additional unit models (usu-
ally reheaters) between stages.

Fig. 16: MultiStage Turbine Model

Example

This example sets up a turbine mul-
tistage turbine model similar to what
could be found in a power plant steam
cycle. There are 7 high-pressure stages,
14 intermediate-pressure stages, and 11
low-pressure stages. Steam extractions
are provided after stages hp4, hp7, ip5,
ip14, lp4, lp7, lp9, lp11. The extrac-
tion at ip14 uses a splitter with three out-
lets, one for the main steam, one for the
boiler feed pump, and one for a feed-
water heater. There is a disconnection
between the HP and IP sections so that
steam can be sent to a reheater. In this
example, a heater block is a stand-in for
a reheater model.
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from pyomo.environ␣
→˓import (ConcreteModel,
→˓ SolverFactory,
→˓ TransformationFactory,

␣
→˓ Constraint, value)
from pyomo.network import Arc

from idaes.
→˓core import FlowsheetBlock
from idaes.
→˓unit_models import Heater
from idaes.power_
→˓generation.unit_models.helm␣
→˓import HelmTurbineMultistage
from idaes.generic_models.
→˓properties import iapws95

solver␣
→˓= SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.
→˓fs.
→˓turb␣
→˓=␣
→˓HelmTurbineMultistage(default=
→˓{

"property_
→˓package": m.fs.properties,

"num_hp": 7,
"num_ip": 14,
"num_lp": 11,

␣
→˓"hp_split_locations": [4,7],

"ip_
→˓split_locations": [5, 14],

"lp_split_
→˓locations": [4,7,9,11],

"hp_disconnect":␣
→˓[7], # 7 is last stage in␣
→˓hp so disconnect hp from ip

"ip_
→˓split_num_outlets": {14:3}})
# Add reheater (for example␣
→˓using a simple heater block)
m.fs.reheat␣
→˓= Heater(default={"property_
→˓package": m.fs.properties}) (continues on next page)
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(continued from previous page)

# Add Arcs (streams)␣
→˓to connect the HP and␣
→˓IP sections through reheater
m.fs.hp_
→˓to_reheat = Arc(source=m.fs.
→˓turb.hp_split[7].outlet_1,

␣
→˓ destination=m.
→˓fs.reheat.inlet)
m.fs.
→˓reheat_to_ip = Arc(source=m.
→˓fs.reheat.outlet,

␣
→˓ destination=m.
→˓fs.turb.ip_stages[1].inlet)
# Set the␣
→˓turbine inlet conditions␣
→˓and an initial flow guess
p = 2.4233e7
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.inlet_split.
→˓inlet.enth_mol[0].fix(hin)
m.fs.turb.inlet_split.
→˓inlet.flow_mol[0].fix(26000)
m.fs.turb.inlet_split.
→˓inlet.pressure[0].fix(p)

# Set the inlet of the ip␣
→˓section for initialization,
→˓ since it is disconnected
p = 7.802e+06
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.ip_stages[1].inlet.
→˓enth_mol[0].value = hin
m.fs.turb.ip_stages[1].inlet.
→˓flow_mol[0].value = 25220.0
m.fs.turb.ip_stages[1].
→˓inlet.pressure[0].value = p
# Set the efficency and␣
→˓pressure ratios of stages␣
→˓other than inlet and outlet
for i,␣
→˓s in turb.hp_stages.items():

s.ratioP[:] = 0.88
s.efficiency_

→˓isentropic[:] = 0.9
for i,␣
→˓s in turb.ip_stages.items():

s.ratioP[:] = 0.85
s.efficiency_

→˓isentropic[:] = 0.9
for i,␣
→˓s in turb.lp_stages.items(): (continues on next page)
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(continued from previous page)

s.ratioP[:] = 0.82
s.efficiency_

→˓isentropic[:] = 0.9
# Usually these fractions␣
→˓would be determined by␣
→˓the boiler feed water heater
# network. Since this example␣
→˓doesn't include them,
→˓ just fix split fractions
turb.hp_
→˓split[4].split_fraction[0,
→˓"outlet_2"].fix(0.03)
turb.hp_
→˓split[7].split_fraction[0,
→˓"outlet_2"].fix(0.03)
turb.ip_
→˓split[5].split_fraction[0,
→˓"outlet_2"].fix(0.04)
turb.ip_
→˓split[14].split_fraction[0,
→˓"outlet_2"].fix(0.04)
turb.ip_
→˓split[14].split_fraction[0,
→˓"outlet_3"].fix(0.15)
turb.lp_
→˓split[4].split_fraction[0,
→˓"outlet_2"].fix(0.04)
turb.lp_
→˓split[7].split_fraction[0,
→˓"outlet_2"].fix(0.04)
turb.lp_
→˓split[9].split_fraction[0,
→˓"outlet_2"].fix(0.04)
turb.lp_
→˓split[11].split_fraction[0,
→˓"outlet_2"].fix(0.04)
# unfix inlet flow for␣
→˓pressure driven simulation
turb.inlet_
→˓split.inlet.flow_mol.unfix()
# Set the inlet steam mixer␣
→˓to use the constraints␣
→˓that the pressures of all
# inlet streams are equal
turb.inlet_mix.use_
→˓equal_pressure_constraint()
# Initialize turbine
turb.initialize(outlvl=1)
# Copy␣
→˓conditions out of turbine␣
→˓to initialize the reheater
for t in m.fs.time:

(continues on next page)
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(continued from previous page)

m.fs.reheat.
→˓inlet.flow_mol[t].value = \
␣

→˓ value(turb.hp_split[7].
→˓outlet_1_state[t].flow_mol)

m.fs.reheat.
→˓inlet.enth_mol[t].value = \
␣

→˓ value(turb.hp_split[7].
→˓outlet_1_state[t].enth_mol)

m.fs.reheat.
→˓inlet.pressure[t].value = \
␣

→˓ value(turb.hp_split[7].
→˓outlet_1_state[t].pressure)
# initialize the reheater
m.fs.
→˓reheat.initialize(outlvl=4)
# Add constraint␣
→˓to the reheater to result␣
→˓in 880K outlet temperature
def reheat_T_rule(b, t):

return m.fs.reheat.
→˓control_volume.properties_
→˓out[t].temperature == 880
m.fs.reheat.temperature_
→˓out_equation = Constraint(m.
→˓fs.reheat.time_ref,

rule=reheat_T_rule)
# Expand the Arcs connecting␣
→˓the turbine to the reheater
TransformationFactory(
→˓"network.
→˓expand_arcs").apply_to(m)
# Fix the␣
→˓outlet pressure (usually␣
→˓determined by condenser)
m.fs.turb.outlet_stage.
→˓control_volume.properties_
→˓out[0].pressure.fix()

# Solve the pressure driven␣
→˓flow model with reheat
solver.solve(m, tee=True)
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Unit Models

The multistage turbine model contains
the models in the table below. The split-
ters for steam extraction are not present
if a turbine section contains no steam ex-
tractions.

Unit Index Sets Doc
inlet_split None Splitter to split the main steam feed into steams for each arc (Separator)
throttle_valve Admission Arcs Throttle valves for each admission arc (HelmValve)
inlet_stage Admission Arcs Parallel inlet turbine stages that represent admission arcs (TurbineInlet)
inlet_mix None Mixer to combine the streams from each arc back to one stream (Mixer)
hp_stages HP stages Turbine stages in the high-pressure section (TurbineStage)
ip_stages IP stages Turbine stages in the intermediate-pressure section (TurbineStage)
lp_stages LP stages Turbine stages in the low-pressure section (TurbineStage)
hp_splits subset of HP

stages
Extraction splitters in the high-pressure section (Separator)

ip_splits subset of IP stages Extraction splitters in the high-pressure section (Separator)
lp_splits subset of LP

stages
Extraction splitters in the high-pressure section (Separator)

outlet_stage None The final stage in the turbine, which calculates exhaust losses (Turbine-
Outlet)

Initialization

The initialization approach is to sequen-
tially initialize each sub-unit using the
outlet of the previous model. Before
initializing the model, the inlet of the
turbine, and any stage that is discon-
nected should be given a reasonable
guess. The efficiency and pressure ra-
tion of the stages in the HP, IP and LP
sections should be specified. For the in-
let and outlet stages the flow coefficient
should be specified. Valve coefficients
should also be specified. A reasonable
guess for split fractions should also be
given for any extraction splitters present.
The most likely cause of initialization
failure is flow coefficients in inlet stage,
outlet stage, or valves that do not pair
well with the specified flow rates.

The flow coefficients for the inlet and
outlet stage can be difficult to deter-
mine, therefore the initialization ar-
guments calculate_outlet_cf and
calculate_outlet_cf are provided.
If these are True, the first stage flow
coefficient is calculated from the flow
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and pressure ratio guesses, and the out-
let flow coefficient is calculated from the
exhaust pressure and flow.

TurbineMultistage Class

class idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistage(*args,
**kwds)

Multistage steam turbine with optional
reheat and extraction

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Only False, in a dynamic flow-
sheet this is psuedo-steady- state.

has_holdup Only False, in a dynamic
flowsheet this is psuedo-steady- state.

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

num_parallel_inlet_stages Number of
parallel inlet stages to simulate partial
arc admission. Default=4

throttle_valve_function The type
of valve function, if custom pro-
vide an expression rule with the
valve_function_rule argument. de-
fault - ValveFunctionType.linear Valid
values - { ValveFunctionType.linear,
ValveFunctionType.quick_opening,
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ValveFunctionType.equal_percentage,
ValveFunctionType.custom}

throttle_valve_function_callback A
callback to add a custom valve function
to the throttle valves or None. If a
callback is provided, it should take the
valve block data as an argument and
add a valve_function expressions to it.
Default=None

num_hp Number of high pressure stages
not including inlet stage

num_ip Number of intermediate pressure
stages

num_lp Number of low pressure stages
not including outlet stage

hp_split_locations A list of index loca-
tions of splitters in the HP section. The
indexes indicate after which stage to in-
clude splitters. 0 is between the inlet
stage and the first regular HP stage.

ip_split_locations A list of index loca-
tions of splitters in the IP section. The
indexes indicate after which stage to in-
clude splitters.

lp_split_locations A list of index loca-
tions of splitters in the LP section. The
indexes indicate after which stage to in-
clude splitters.

hp_disconnect HP Turbine stages to not
connect to next with an arc. This is usu-
ally used to insert addtional units be-
tween stages on a flowsheet, such as a
reheater

ip_disconnect IP Turbine stages to not
connect to next with an arc. This is usu-
ally used to insert addtional units be-
tween stages on a flowsheet, such as a
reheater

lp_disconnect LP Turbine stages to not
connect to next with an arc. This is usu-
ally used to insert addtional units be-
tween stages on a flowsheet, such as a
reheater

hp_split_num_outlets Dict, hp split in-
dex: number of splitter outlets, if not 2

ip_split_num_outlets Dict, ip split in-
dex: number of splitter outlets, if not 2
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lp_split_num_outlets Dict, lp split in-
dex: number of splitter outlets, if not 2

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmTurbineMultistage) New in-
stance

TurbineMultistageData Class

class idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData(component)

build()

General build method for UnitModel-
BlockData. This method calls a num-
ber of sub-methods which automate the
construction of expected attributes of
unit models.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

initialize(outlvl=0, solver=None, flow_iterate=2, optarg=None, copy_disconneted_flow=True,
copy_disconneted_pressure=True, calculate_outlet_cf=False, calculate_inlet_cf=False)

Initialize

Parameters

• outlvl – logging level default is NOT-
SET, which inherits from the parent log-
ger

• solver – the NL solver

• flow_iterate – If not calculating flow
coefficients, this is the number of times
to update the flow and repeat initializa-
tion (1 to 5 where 1 does not update the
flow guess)
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• optarg – solver arguments, default is
None

• copy_disconneted_flow – Copy the
flow through the disconnected stages de-
fault is True

• copy_disconneted_pressure –
Copy the pressure through the discon-
nected stages default is True

• calculate_outlet_cf – Use the flow
initial flow guess to calculate the outlet
stage flow coefficient, default is False,

• calculate_inlet_cf – Use the inlet
stage ratioP to calculate the flow coeffi-
cent for the inlet stage default is False

Returns None

throttle_cv_fix(value)

Fix the thottle valve coefficients. These
are generally the same for each of the
parallel stages so this provides a conve-
nient way to set them.

Parameters value – The value to fix the
turbine inlet flow coefficients at

turbine_inlet_cf_fix(value)

Fix the inlet turbine stage flow coeffi-
cient. These are generally the same for
each of the parallel stages so this pro-
vides a convenient way to set them.

Parameters value – The value to fix the
turbine inlet flow coefficients at

turbine_outlet_cf_fix(value)

Fix the inlet turbine stage flow coeffi-
cient. These are generally the same for
each of the parallel stages so this pro-
vides a convenient way to set them.

Parameters value – The value to fix the
turbine inlet flow coefficients at
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HelmValve

This is a steam power generation turbine
model for the stages between the inlet
and outlet.

Example

from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory,
→˓ TransformationFactory

from idaes.
→˓core import FlowsheetBlock
from␣
→˓idaes.power_generation.unit_
→˓models.helm import HelmValve
from idaes.generic_models.
→˓properties import iapws95
from idaes.
→˓ui.report import degrees_of_
→˓freedom, active_equalities

solver␣
→˓= SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})
m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()
m.fs.
→˓valve = HelmValve(default=
→˓{"property_
→˓package": m.fs.properties})

hin = iapws95.
→˓htpx(T=880, P=2.4233e7)
# set inlet
m.fs.valve.
→˓inlet.enth_mol[0].fix(hin)
m.fs.valve.inlet.
→˓flow_mol[0].fix(26000/4.0)
m.fs.valve.
→˓inlet.pressure[0].fix(2.5e7)
m.fs.valve.Cv.fix(0.01)
m.fs.
→˓valve.valve_opening.fix(0.5)
m.fs.
→˓valve.initialize(outlvl=1)
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Variables

This model adds a variable to account
for mechanical efficiency to the base
PressureChanger model.

Variable Symbol Index Sets Doc
Cv 𝐶𝑣 None Valve coefficient for liquid [mol/s/Pa^0.5] for vapor [mol/s/Pa]
valve_opening 𝑥 time The fraction that the valve is open from 0 to 1

Expressions

Currently this model provides two addi-
tional expressions, with are not available
in the pressure changer model.

Expression Sym-
bol

Index
Sets

Doc

valve_function 𝑓(𝑥) time This is a valve function that describes how the fraction open affects
flow.

Constraints

The pressure flow relation is added to
the inherited constraints from the Pres-
sureChanger model.

If the phase option is set to "Liq"
the following equation describes the
pressure-flow relation.

1

𝑠2𝑓
𝐹 2 =

1

𝑠2𝑓
𝐶2

𝑣 (𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡) 𝑓(𝑥)2

If the phase option is set to "Vap"
the following equation describes the
pressure-flow relation.

1

𝑠2𝑓
𝐹 2 =

1

𝑠2𝑓
𝐶2

𝑣

(︀
𝑃 2
𝑖𝑛 − 𝑃 2

𝑜𝑢𝑡

)︀
𝑓(𝑥)2

Initialization

This just calls the initialization routine
from PressureChanger, but it is wrapped
in a function to ensure the state after
initialization is the same as before ini-
tialization. The arguments to the ini-
tialization method are the same as Pres-
sureChanger.
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HelmValve Class

class idaes.power_generation.unit_models.helm.valve_steam.HelmValve(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.useDefault. Valid values:
{ MaterialBalanceType.useDefault
- refer to property package for
default balance type **Mate-
rialBalanceType.none - exclude
material balances, MaterialBalance-
Type.componentPhase - use phase
component balances, MaterialBal-
anceType.componentTotal - use
total component balances, Materi-
alBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBal-
anceType.useDefault. Valid values:
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{ EnergyBalanceType.useDefault -
refer to property package for default
balance type **EnergyBalance-
Type.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase -
energy balances for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_phase_equilibrium Indicates
whether terms for phase equilibrium
should be constructed, default = False.
Valid values: { True - include phase
equilibrium terms False - exclude phase
equilibrium terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations, default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PropertyParameterObject - a
PropertyParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to a prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
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{ see property package for documenta-
tion.}

has_work_transfer True if model a has
work transfer term.

has_heat_transfer True if model has a
heat transfer term.

valve_function The type of valve func-
tion, if custom provide an expression
rule with the valve_function_rule
argument. default - ValveFunc-
tionType.linear Valid values - {
ValveFunctionType.linear, Valve-
FunctionType.quick_opening, Valve-
FunctionType.equal_percentage,
ValveFunctionType.custom}

valve_function_callback This is a call-
back that adds a valve function. The
callback function takes the valve bock
data argument.

phase Expected phase of fluid in valve in
{“Liq”, “Vap”}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HelmValve) New instance

HelmValveData Class

class idaes.power_generation.unit_models.helm.valve_steam.HelmValveData(component)

Basic adiabatic 0D valve model. This
inherits the balance block to get a lot of
unit model boilerplate and the mass bal-
ance, enegy balance and pressure equa-
tions. This model is intended to be
used only with Helmholtz EOS property
pacakges in mixed or single phase mode
with P-H state vars.

Since this inherits BalanceBlockData,
and only operates in steady-state or
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pseudo-steady-state (for dynamic mod-
els) the following mass, energy and
pressure equations are implicitly writen.

1) Mass Balance: 0 = flow_mol_in[t] -
flow_mol_out[t]

2) Energy Balance: 0 =
(flow_mol[t]*h_mol[t])_in -
(flow_mol[t]*h_mol[t])_out

3) Pressure: 0 = P_in[t] + deltaP[t] - P_out[t]

build()

Add model equations to the unit model.
This is called by a default block con-
strunction rule when the unit model is
created.

initialize(outlvl=0, solver=None, optarg=None)

For simplicity this initialization requires
you to set values for the efficency, in-
let, and one of pressure ratio, pressure
change or outlet pressure.

BoilerHeatExchanger

The BoilerHeatExchanger model can be
used to represent boiler heat exchang-
ers in sub-critical and super critical
power plant flowsheets (i.e. econmizer,
primary superheater, secondary super-
heater, finishing superheater, reheater,
etc.). The model consists of a shell
and tube crossflow heat exchanger, in
which the shell is used as the gas side
and the tube is used as the water or
steam side. Rigorous heat transfer cal-
culations (convective heat transfer for
shell side, and convective heat transfer
for tube side) and shell and tube pressure
drop calculations have been included.

The BoilerHeatExchanger model
can be imported from idaes.
power_generation.unit_models,
while additional rules and utility
functions can be imported from idaes.
power_generation.unit_models.
boiler_heat_exchanger.
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Example

The example below demonstrates how
to initialize the BoilerHeatExchanger
model, and override the default temper-
ature difference calculation.

# Import Pyomo libraries
from pyomo.environ␣
→˓import ConcreteModel,
→˓ SolverFactory, value
# Import IDAES core
from idaes.
→˓core import FlowsheetBlock
# Import Unit Model Modules
from idaes.generic_models.
→˓properties import iapws95
# import␣
→˓ideal flue gas prop pack
from idaes.
→˓power_generation.properties.
→˓IdealProp_FlueGas␣
→˓import FlueGasParameterBlock
# Import␣
→˓Power Plant HX Unit Model
from idaes.power_
→˓generation.unit_models.
→˓boiler_heat_exchanger␣
→˓import BoilerHeatExchanger,
→˓ TubeArrangement, \

DeltaTMethod
import pyomo.environ␣
→˓as pe # Pyomo environment
from idaes.core import␣
→˓FlowsheetBlock, StateBlock
from idaes.unit_models.
→˓heat_exchanger import delta_
→˓temperature_amtd_callback
from idaes.generic_models.
→˓properties import iapws95

# Create a Concrete Model␣
→˓as the top level object
m = ConcreteModel()

# Add a flowsheet␣
→˓object to the model
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})

# Add property packages␣
→˓to flowsheet library
m.fs.prop_water = iapws95.
→˓Iapws95ParameterBlock() (continues on next page)
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(continued from previous page)

m.fs.prop_fluegas␣
→˓= FlueGasParameterBlock()

# Create unit models
m.fs.ECON =␣
→˓BoilerHeatExchanger(default=

␣
→˓ {"side_1_property_
→˓package": m.fs.prop_water,

␣
→˓ "side_2_property_
→˓package": m.fs.prop_fluegas,

␣
→˓"has_pressure_change": True,

␣
→˓ "has_holdup": False,

␣
→˓ "delta_T_method":␣
→˓DeltaTMethod.counterCurrent,

␣
→˓ "tube_arrangement
→˓": TubeArrangement.inLine,

␣
→˓"side_1_water_phase": "Liq",

␣
→˓ "has_radiation": False})

# Set Inputs
# BFW Boiler Feed␣
→˓Water inlet temeperature␣
→˓= 555 F = 563.706 K
# inputs␣
→˓based on NETL Baseline␣
→˓Report v3 (SCPC 650 MW␣
→˓net, no carbon capture case)
h = iapws95.
→˓htpx(563.706, 2.5449e7)
m.fs.ECON.side_1_inlet.flow_
→˓mol[0].fix(24678.26) # mol/s
m.fs.ECON.side_
→˓1_inlet.enth_mol[0].fix(h)
m.fs.ECON.
→˓side_1_inlet.pressure[0].
→˓fix(2.5449e7) # Pa

# FLUE GAS Inlet␣
→˓from Primary Superheater
FGrate = 28.
→˓3876e3 # mol/s equivalent␣
→˓of ~1930.08 klb/hr
# Use FG molar composition␣
→˓to set component␣
→˓flow rates (baseline report) (continues on next page)

4.5. Technical Specifications 663



IDAES Documentation, Release 1.10.1

(continued from previous page)

m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"H2O"].fix(FGrate*8.69/100)
m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"CO2"].fix(FGrate*14.49/100)
m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"N2"].fix(FGrate*(8.69

␣
→˓ ␣
→˓ +14.49+2.47+0.06+0.2)/100)
m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"O2"].fix(FGrate*2.47/100)
m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"NO"].fix(FGrate*0.0006)
m.fs.ECON.side_
→˓2_inlet.flow_component[0,
→˓"SO2"].fix(FGrate*0.002)
m.fs.ECON.
→˓side_2_inlet.temperature[0].
→˓fix(682.335) # K
m.fs.ECON.side_2_inlet.
→˓pressure[0].fix(100145) # Pa
# economizer design␣
→˓variables and parameters
ITM = 0.0254␣
→˓ # inch to meter conversion
# Based␣
→˓on NETL Baseline Report Rev3
m.fs.ECON.tube_
→˓di.fix((2-2*0.188)*ITM)␣
→˓ # calc inner diameter
# ␣
→˓ (2 = outer␣
→˓diameter, thickness = 0.188)
m.fs.
→˓ECON.tube_thickness.fix(0.
→˓188*ITM) # tube thickness
m.fs.ECON.pitch_x.fix(3.5*ITM)
# pitch_y = (54.5) gas path␣
→˓transverse width /columns
m.fs.
→˓ECON.pitch_y.fix(5.03*ITM)
m.fs.ECON.tube_
→˓length.fix(53.41*12*ITM)␣
→˓# use tube length (53.41 ft)
m.fs.ECON.tube_nrow.fix(36*2.
→˓5) # use to␣
→˓match baseline performance

(continues on next page)
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(continued from previous page)

m.fs.ECON.
→˓tube_ncol.fix(130) ␣
→˓ # 130 from NETL report
m.fs.ECON.nrow_inlet.fix(2)
m.fs.
→˓ECON.delta_elevation.fix(50)
# parameters
# heat transfer␣
→˓resistance due to tube␣
→˓side fouling (water scales)
m.fs.ECON.
→˓tube_rfouling = 0.000176
# heat transfer resistance␣
→˓due to tube shell␣
→˓fouling (ash deposition)
m.fs.ECON.
→˓shell_rfouling = 0.00088
if m.fs.ECON.config.
→˓has_radiation is True:

m.fs.
→˓ECON.emissivity_wall.fix(0.
→˓7) # wall emissivity
# correction␣
→˓factor for overall␣
→˓heat transfer coefficient
m.fs.ECON.
→˓fcorrection_htc.fix(1.5)
# correction factor for␣
→˓pressure drop calc tube side
m.fs.ECON.
→˓fcorrection_dp_tube.fix(1.0)
# correction␣
→˓factor for pressure␣
→˓drop calc shell side
m.fs.ECON.fcorrection_
→˓dp_shell.fix(1.0)

# Initialize the model
m.fs.ECON.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat
exchanger model usually has two de-
grees of freedom, which can be fixed for
it to be fully specified. Things that are
frequently fixed are two of:

• heat transfer area,

• heat transfer coefficient, or

• temperature approach.
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In order to capture off design condi-
tions and heat transfer coefficients at
ramp up/down or load following con-
ditions, the BoilerHeatExanger model
includes rigorous heat transfer calcula-
tions. Therefore, additional degrees of
freedom are required to calculate Nus-
selt, Prandtl, Reynolds numbers, such
as:

• tube_di (inner diameter)

• tube length

• tube number of rows (tube_nrow),
columns (tube_ncol), and inlet flow
(nrow_inlet)

• pitch in x and y axis (pitch_x and
pitch_y, respectively)

If pressure drop calculation is enabled,
additional degrees of freedom are re-
quired:

• elevation with respect to ground level
(delta_elevation)

• tube fouling resistance (tube_r_fouling)

• shell fouling resistance
(shell_r_fouling)

Model Structure

The BoilerHeatExchanger model
contains two ControlVolume0DBlock
blocks. By default the gas side is
named shell and the water/steam
side is named tube. These names are
configurable. The sign convention is
that duty is positive for heat flowing
from the hot side to the cold side.

The control volumes are configured the
same as the ControlVolume0DBlock
in the Heater model. The
BoilerHeatExchanger model
contains additional constraints that
calculate the amount of heat transferred
from the hot side to the cold side.

The BoilerHeatExchanger has
two inlet ports and two outlet ports.
By default these are shell_inlet,
tube_inlet, shell_outlet, and
tube_outlet. If the user supplies
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different hot and cold side names the
inlet and outlets are named accordingly.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from hot side to the cold side
area 𝐴 None Heat transfer area
U 𝑈 time Heat transfer coefficient
delta_temperature ∆𝑇 time Temperature difference, defaults to LMTD

Note: delta_temperature may be ei-
ther a variable or expression depending
on the callback used. If the specified
cold side is hotter than the specified hot
side this value will be negative.

Constraints

The default constraints can be over-
ridden by providing alternative rules
for the heat transfer equation, tempera-
ture difference, heat transfer coefficient,
shell and tube pressure drop. This sec-
tion describes the default constraints.

Heat transfer from shell to tube:

𝑄 = 𝑈𝐴∆𝑇

Temperature difference is:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
The overall heat transfer coefficient is
calculated as a function of convective
heat transfer shell and tube, and wall
conduction heat transfer resistance.

Convective heat transfer equations:

1

𝑈
* 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛ℎ𝑡𝑐 = [

1

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒
+

1

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙
+ 𝑟 + 𝑡𝑢𝑏𝑒𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔 + 𝑠ℎ𝑒𝑙𝑙𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔]

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒 =
𝑁𝑢𝑡𝑢𝑏𝑒𝑘

𝑡𝑢𝑏𝑒𝑑𝑖

𝑁𝑢𝑡𝑢𝑏𝑒 = 0.023𝑅𝑒0.8𝑡𝑢𝑏𝑒𝑃𝑟
0.4
𝑡𝑢𝑏𝑒

𝑃𝑟𝑡𝑢𝑏𝑒 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇
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ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙 =
𝑁𝑢𝑠ℎ𝑒𝑙𝑙𝑘𝑓𝑙𝑢𝑒𝑔𝑎𝑠

𝑡𝑢𝑏𝑒𝑑𝑜

𝑁𝑢𝑠ℎ𝑒𝑙𝑙 = 𝑓𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡0.33𝑅𝑒0.6𝑡𝑢𝑏𝑒𝑃𝑟
0.3333
𝑡𝑢𝑏𝑒

𝑃𝑟𝑠ℎ𝑒𝑙𝑙 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑠ℎ𝑒𝑙𝑙 =
𝑡𝑢𝑏𝑒𝑑𝑜𝑉 𝜌

𝜇

𝑡𝑢𝑏𝑒𝑑𝑜 = 2 * 𝑡𝑢𝑏𝑒𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 + 𝑡𝑢𝑏𝑒𝑑𝑖

Wall heat conduction resistance equation:

𝑟 = 0.5 * 𝑡𝑢𝑏𝑒𝑑𝑜 * log (
𝑡𝑢𝑏𝑒𝑑𝑜
𝑡𝑢𝑏𝑒𝑑𝑖

) * 𝑘

where:

• hconv_tube : convective heat transfer
resistance tube side (fluid water/steam)
(W / m2 / K)

• hconv_shell : convective heat transfer
resistance shell side (fluid Flue Gas) (W
/ m2 / K )

• Nu : Nusselt number

• Pr : Prandtl number

• Re : Reynolds number

• V: velocity (m/s)

• tube_di : inner diameter of the tube (m)

• tube_do : outer diameter of the tube (m)
(expression calculated by the model)

• tube_thickness : tube thickness (m)

• r = wall heat conduction resistance (K
m^2 / W)

• k : thermal conductivity of the tube wall
(W / m / K)

• 𝜌 : density (kg/m^3)

• 𝜇 : viscocity (kg/m/s)

• tube_r_fouling : tube side fouling resis-
tance (K m^2 / W)

• shell_r_fouling : shell side fouling resis-
tance (K m^2 / W)

• fcorrection_htc: correction factor for
overall heat trasnfer

• f_arrangement: tube arrangement factor
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Note: by default fcorrection_htc is set to
1, however, this variable can be used to
match unit performance (i.e. as a param-
eter estimation problem using real plant
data).

Tube arrangement factor is a con-
fig argument with two different type
of arrangements supported at the mo-
ment: 1.- In-line tube arrangement
factor (f_arrangement = 0.788), and
2.- Staggered tube arrangement factor
(f_arrangement = 1). f_arrangement is
a parameter that can be adjusted by the
user.

The BoilerHeatExchanger includes
an argument to compute heat tranfer
due to radiation of the flue gases. If
has_radiation = True the model builds
additional heat transfer calculations that
will be added to the hconv_shell re-
sistances. Radiation effects are calcu-
lated based on the gas gray fraction and
gas-surface radiation (between gas and
shell).

𝐺𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑤𝑎𝑙𝑙𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦, 𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙𝑟𝑎𝑑 = 𝑓(𝑘𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛, 𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐, 𝑇𝑔𝑎𝑠𝑖𝑛, 𝑇𝑔𝑎𝑠𝑜𝑢𝑡, 𝑇𝑓𝑙𝑢𝑖𝑑𝑖𝑛, 𝑇𝑓𝑙𝑢𝑖𝑑𝑜𝑢𝑡)

Note: Gas emissivity is calculated with
surrogate models (see more details in
boiler_heat_exchanger.py). Radiation =
True when flue gas temperatures are
higher than 700 K (for example, when the model is used for units like Primary superheater, Reheater, or Finishing
Superheater; while Radiation = False when the model is used to represent the economizer in a power plant flowsheet).

If pressure change is set to True,
𝑑𝑒𝑙𝑡𝑎𝑃𝑢𝑡𝑢𝑟𝑛𝑎𝑛𝑑𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 are cal-
culated

Tube side:

∆𝑃𝑡𝑢𝑏𝑒 = ∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 * 𝑔 * 𝜌𝑖𝑛 + 𝜌𝑜𝑢𝑡
2

∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑡𝑢𝑏𝑒𝑑𝑖𝜌, 𝑉𝑡𝑢𝑏𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑢𝑏𝑒𝑠, 𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑔𝑡ℎ)

∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 = 𝑓(𝜌, 𝑣𝑡𝑢𝑏𝑒, 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛)

where:

• 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛 : pressure loss coeficient of a
tube u-turn

• g : is the acceleration of gravity 9.807
(m/s^2)
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Shell side:

∆𝑃𝑠ℎ𝑒𝑙𝑙 = 1.4∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝜌𝑉
2
𝑠ℎ𝑒𝑙𝑙

∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is calculated based on
the tube arrangement type:

In-line: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =

0.044+
0.08(

𝑃𝑥
𝑡𝑢𝑏𝑒𝑑𝑜

)

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)

0.43+ 1.13

(
𝑃𝑥

𝑡𝑢𝑏𝑒𝑑𝑜
)

𝑅𝑒0.15

Staggered: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
0.25+ 0.118

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)1.08

𝑅𝑒0.16

Figure. Tube Arrangement

Fig. 17: Tube Arrangement

Class Documentation

Note: The hot_side_config and cold_side_config can also be supplied using the name of the hot and cold sides
(shell and tube by default) as in the example.

class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchanger(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.
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• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True,
default - False. Valid values: { True -
construct holdup terms, False - do not
construct holdup terms}

side_1_property_package Property pa-
rameter object used to define prop-
erty calculations, default - useDefault.
Valid values: { useDefault - use de-
fault package from parent model or
flowsheet, PhysicalParameterObject -
a PhysicalParameterBlock object.}

side_1_property_package_args A Con-
figBlock with arguments to be passed to
a property block(s) and used when con-
structing these, default - None. Valid
values: { see property package for doc-
umentation.}

side_2_property_package Property pa-
rameter object used to define prop-
erty calculations, default - useDefault.
Valid values: { useDefault - use de-
fault package from parent model or
flowsheet, PhysicalParameterObject -
a PhysicalParameterBlock object.}

side_2_property_package_args A Con-
figBlock with arguments to be passed to
a property block(s) and used when con-
structing these, default - None. Valid
values: { see property package for doc-
umentation.}

material_balance_type Indicates what
type of material balance should be
constructed, default - MaterialBal-
anceType.componentPhase. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
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alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single ethalpy
balance for material, EnergyBal-
anceType.enthalpyPhase - ethalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

delta_T_method Flag indicat-
ing type of flow arrangement to
use for delta default - DeltaT-
Method.counterCurrent Valid values:
{ DeltaTMethod.counterCurrent}

tube_arrangement Tube arrangement
could be in-line and staggered
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side_1_water_phase Define water phase
for property calls

has_radiation Define if side 2 gas radia-
tion is to be considered

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (BoilerHeatExchanger) New
instance

class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData(component)

Standard Heat Exchanger Unit Model
Class

build()

Build method for Boiler heat exchanger
model

Parameters None –

Returns None

initialize(state_args_1=None, state_args_2=None, outlvl=0, solver=None, optarg=None)

General Heat Exchanger initialisation
routine.

Keyword Arguments

• state_args_1 – a dict of arguments
to be passed to the property package(s)
for side 1 of the heat exchanger to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• state_args_2 – a dict of arguments
to be passed to the property package(s)
for side 2 of the heat exchanger to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• outlvl – sets output level of initialisa-
tion routine
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• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

model_check()

Model checks for unit - calls model
checks for both control volume Blocks.

Parameters None –

Returns None

WaterWall Model

Introduction

The waterwall section model simulates
the water hydraulics and the heat trans-
fer inside typical membrane waterwall
tubes. The fluid flowing inside the tubes
is either liquid water or a mixture of liq-
uid water and steam (two-phase flow).
A boiler is typically discretized in mul-
tiple zones or sections along its height
and a waterwall section model repre-
sents one section of the waterwall. It is
usually coupled with IDAES’ 1-D fire-
side model to solve the wall tempera-
tures and heat transfer rate in each sec-
tion. Figure 1 shows a schematic rep-
resentation of the integrated boiler fire-
side and fluid-side models, in which the
sum of the net radiation and convective
heat fluxes (𝑞𝑓𝑖𝑟𝑒𝑟𝑎𝑑 and 𝑞𝑓𝑖𝑟𝑒𝑐𝑜𝑛𝑣) at the slag
outer layer is an output of the fire-side
model and an input of the waterwall sec-
tion model (the fluid-side model) and
the temperature of the outer slag layer
𝑇𝑤,𝑠𝑙𝑎𝑔 is an output of the fluid-side
model and an input (boundary condition) of the fire-side model. The heat conduction through the slag and tube layers
is a part of the fluid-side model. At a steady state, the amount of the heat transferred at the outer slag surface (𝑞𝑓𝑖𝑟𝑒𝑟𝑎𝑑

and 𝑞𝑓𝑖𝑟𝑒𝑐𝑜𝑛𝑣) is equal to the heat conducted through the slag and tube layers, which is equal to the heat convected to the
fluid 𝑞𝑓𝑙𝑢𝑖𝑑𝑐𝑜𝑛𝑣 .

Property package: This model requires
the Helmholtz EoS (IAPWS95) prop-
erty package with the mixed phase op-
tion, therefore, the phase equilibrium
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calculations are handled by the property
package.

Fig. 18: Figure 1. Coupling of fire-side zones and fluid-side waterwall sections modeled in IDAES

Figure 1 shows the schematic represen-
tation of the coupled fire-side and fluid-
side waterwall model. Since, the water-
wall section is connected with a fire-side
section of the boiler, the user must set
the number of waterwall sections equal
to the number of zones in the fire-side
model. The first (the lowest) section is
generally connected with the water liq-
uid from a downcomer for a subcritical
boiler or the water from the outlet of
an economizer for a supercritical boiler.
Other sections are generally connected
with their neighboring sections below
them via Pyomo Arcs. Finally, the last
section is generally connected either to
a drum for a subcritical boiler or a su-
perheater for a supercritical boiler.

Model inputs (variable name):

• number of zones (ww_zones)

• number of tubes around the perimeter of
the boiler (number_tubes)

• heat duty of individual zone from fire-
side model (sum of net radiation and
convection) (heat_fireside)

4.5. Technical Specifications 675



IDAES Documentation, Release 1.10.1

• tube dimensions (length, inside di-
ameter and thickness) (tube_length,
tube_diameter, tube_thickness)

• projected membrane wall area (pro-
jected_area)

• fin dimension of membrane wall
(width and thickness) (fin_length,
fin_thickness)

• slag layer thickness (slag_thickness)

• water/steam flow rate and states at inlet
(flow_mol, enth_mol, pressure)

• properties of slag and tube metal (ther-
mal conductivity, heat capacity, density)
(therm_cond_slag, therm_cond_metal,
dens_metal, dens_slag)

• pressure drop correction factor (fcorrec-
tion_dp)

Model Outputs:

• temperatures of tube metal at inner
wetted surface and at center of the
tube thickness (temp_tube_boundary,
temp_tube_center)

• temperatures of slag layer at outer
surface and at the center of the
slag layer (temp_slag_boundary,
temp_slag_center)

• pressure drop through each section and
heat added to each section (deltaP)

• water/steam flow rate and states at outlet
(flow_mol, enth_mol, pressure)

Figure 2 illustrates the physics and main
variables in a single waterwall section
model. This model assumes that the
net radiation and convective heat fluxes
are given from the fire-side model for
the corresponding zone. The membrane
wall geometry and slag layer thickness
are the given input variables along with
the fluid inlet flow rate and state condi-
tions. In case of 2-phase flow, the vol-
ume fraction of the vapor phase is cal-
culated based on an empirical correla-
tion that calculates the slip velocity be-
tween the two phases due to their den-
sity difference. The pressure drop of
the 2-phase flow is calculated based on
the liquid-only velocity, Reynolds num-
ber and friction factors corrected for the
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Fig. 19: Figure 2. Ilustration of a waterwall section model and its main variables
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volume fraction of vapor. Likewise,
the convective heat transfer coefficient
h_conv on the fluid side is calculated
from empirical correlations for nucleate
boiling with forced convection enhance-
ment factor and pool boiling suppression factor. The overall heat transfer coefficient is the reciprocal of the overall heat
transfer resistance (𝑟ℎ𝑡 in Figure 2). Finally, The heat duty from fire-side model is provided by the user, while the heat
conduction model solves the slag outer surface temperature 𝑇𝑤,𝑠𝑙𝑎𝑔, slag layer center point temperature 𝑇𝑐,𝑠𝑙𝑎𝑔, tube
center point temperature 𝑇𝑐,𝑡𝑢𝑏𝑒, and tube inner wall temperature 𝑇𝑤,𝑡𝑢𝑏𝑒. The center point temperatures are used to
calculate the energy stored in the slag and tube layers for dynamic simulations. The single waterwall section model
eventually calculates the heat transfer rate to the fluid, pressure drop of the fluid in the waterwall section, and the slag
outer wall temperature, which is required as the boundary condition input for the fire-side model. The heat duty from
fire-side model is generally obtained from a surrogate model, the surrogate model must be trained using a rigorous 2-D
model under different operating conditions. The rigorous 2-D simulates the heat conduction through the complicated
geometry of the slag and tube layers and heat convection between the inner tube wall and the fluid. [1]

[1] Ma, J., Eason, J. P., Dowling, A.
W., Biegler, L. T., Miller, D. C. (2016).
Development of a first-principles hybrid
boiler model for oxy-combustion power
generation system. Int. J. of Green-
house Gas Contr., 46, pp. 136-157.

Degrees of Freedom

As mentioned above, the water wall sec-
tion model has been modeled as an in-
dex set block, therefore, the number of
zones must be selected during the con-
struction of this model. Each water-
wall section is then considered a single
model. Aside from the inlet conditions
and tube dimensions, a waterwall sec-
tion model usually has two degrees of
freedom, which can be fixed for it to
be fully specified. Things that are fre-
quently fixed are two of:

• tube dimensions and number of tubes,

• heat loss to the water wall,

• ash or slag thickness

Variables

Variable Sym-
bol

Index
Sets

Doc

heat_duty 𝑄 time Heat transferred from flue gas to tube side fluid
projected_area 𝐴 None Heat transfer area (total projected area based on tube shape)
hconv,
hconv_liquid

ℎ𝑐𝑜𝑛𝑣 time Overal convective heat transfer coefficient and hconv_liquid for liq-
uid only

temp_slag_boundary 𝑇𝑤,𝑠𝑙𝑎𝑔 time Temperature of the slag
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Constraints

The main constraints here show the heat
flux and convective heat transfer model.
This model calculates the slag tem-
perature, slag center temperature, tube
boundary temperature, tube center tem-
peratures, and heat flux from fire side
to the water/steam side. Finally, a two
phase flow model is considered, includ-
ing water boiling effects in the con-
vective heat transfer coefficient calcula-
tions.

Heat flux equation:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥 = 𝑄 * 𝑝𝑖𝑡𝑐ℎ/(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑎𝑟𝑒𝑎 * 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟_𝑠𝑙𝑎𝑔)

Temperature of slag:

𝑇𝑤,𝑠𝑙𝑎𝑔 − 𝑇𝑐,𝑠𝑙𝑎𝑔 = ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥 * 𝑠𝑙𝑎𝑔𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Heat flux interface equation:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑖𝑛𝑡 * (𝑠𝑙𝑎𝑔𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +𝑚𝑒𝑡𝑎𝑙𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = (𝑇𝑐,𝑠𝑙𝑎𝑔 − 𝑇𝑐,𝑡𝑢𝑏𝑒)

Convective heat flux eqn at tube bound-
ary:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 * 𝑓𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑣 * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑝𝑖𝑡𝑐ℎ * ℎ𝑐𝑜𝑛𝑣 * (𝑇𝑤,𝑡𝑢𝑏𝑒 − 𝑇𝑓𝑙𝑢𝑖𝑑,𝑖𝑛)

Tube boundary wall temperature:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 *𝑚𝑒𝑡𝑎𝑙𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 * (𝑇𝑐,𝑡𝑢𝑏𝑒 − 𝑇𝑤,𝑡𝑢𝑏𝑒)

Heat equation:

ℎ𝑒𝑎𝑡𝑑𝑢𝑡𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑢𝑏𝑒𝑠 * ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 * 𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑔𝑡ℎ * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

Convective heat transfer:

ℎ𝑐𝑜𝑛𝑣 = ℎ𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒_𝑙𝑜 * 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑓𝑎𝑐𝑡𝑜𝑟 + ℎ𝑝𝑜𝑜𝑙 * 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟

Pressure drop:

∆𝑃 = ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Convective heat transfer liquid only:

ℎ𝑐𝑜𝑛𝑣_𝑙𝑜 = 𝑓(𝑡𝑢𝑏𝑒𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑁𝑅𝑒,𝑁𝑃 𝑟, 𝑘)

Enhancement factor:

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑓(𝑏𝑜𝑖𝑙𝑖𝑛𝑔𝑛𝑢𝑚𝑏𝑒𝑟)

Pool boiling heat tranfeer coefficient:

ℎ𝑝𝑜𝑜𝑙 = 𝑓(𝑀𝑊, 𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣)
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Prandtl number:

𝑃𝑟𝑡𝑢𝑏𝑒 =
𝐶𝑝𝜇

𝑘𝑀𝑤

Reynolds number:

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇

where:

• hconv : convective heat transfer coeffi-
cient tube side (fluid water/steam) (W /
m2 / K)

• hconv_liquid : convective heat transfer
coefficient for liquid only

• projected_area : total projected wall
area of waterwall section (m2)

• Pr : Prandtl number (liquid only)

• Re : Reynolds number (liquid only)

• V: fluid velocity (m/s, liquid only)

• k : thermal conductivity of the fluid (W
/ m / K)

• MW: molecular weigth of water
(kmol/kg)

• 𝜇 : viscocity (kg/m/s)

Note that at the flowsheet level first wa-
terwall section is connected to the econ-
omizer, arcs connecting section 2 to n-1
have to be constructed by the user, and
the outlet of section n is connected to the
drum model or superheater (subcritical
and supercritical plant, respectively)

Dynamic Model

The dynamic model version of the
waterwall section model can be con-
structed by selecting dynamic=True.
If dynamic = True, the energy ac-
cumulation of slag and metal, ma-
terial accumulation holdups are con-
structed. Therefore, a dynamic ini-
tialization method has been developed
set_initial_conditions to initialize the
holdup terms.
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HelmPhaseSeparator Model

Introduction

The HelmPhaseSeparator model con-
sists of a simple phase separator to be
used only with the Helmholtz equa-
tion of state. The two-phase mixture
at the inlet is separated into the va-
por and liquid streams at the two corre-
sponding outlets. This simple unit in-
cludes one state block (mixed_state) for
the inlet, and two state blocks, one for
liquid (liq_state) and the other for va-
por (vap_state). Note that this water-
specific flash model replaces IDAES’
generic flash unit operation model.

Model inputs:

• mixed_state, variables (flow_mol,
enth_mol, and pressure), port name =
inlet

Model Outputs:

• liq_state, variables (flow_mol,
enth_mol, and pressure), port name =
liq_outlet

• vap_state, variables (flow_mol,
enth_mol, and pressure), port name =
vap_outlet

Degrees of Freedom

The Helm-
PhaseSepa-
rator model
consist of
nine vari-
ables and
six con-
straints.
By fix-
ing the in-
let state
(self.inlet.flow_mol,self.inlet.flow_mol,
and self.inlet.flow_mol) or three de-
grees of freedom, the system will be
fully specified.
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Variables

Variable Symbol Index Sets Doc
flow_mol 𝐹 time molar flowrate
enth_mol ℎ time molar enthalpy
pressure 𝑃 time pressure

Constraints

The phase separator model uses the
IAPWS95 property package to calcu-
late the vapor fraction and enthalpies of
the vapor and liquid phases at the in-
let of the unit. The flowrates of the
vap_outlet and liq_outlet streams are
calculate as the products of the inlet
flow rate and corresponding phase frac-
tions for vapor and liquid, respectively.
The enthalpies of the vapor and liquid
phases in the inlet stream are assigned
to the enthalpies of the vap_outlet and
the liq_outlet streams, respectively. The
pressure of the two outlet streams are
identical to that of the inlet stream.

Material Balances: Vapor State:

𝑓𝑙𝑜𝑤_𝑚𝑜𝑙𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 * 𝑣𝑎𝑝𝑜𝑟_𝑓𝑟𝑎𝑐𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝑓𝑙𝑜𝑤_𝑚𝑜𝑙𝑣𝑎𝑝𝑜𝑢𝑡𝑙𝑒𝑡

Liquid State:

𝑓𝑙𝑜𝑤_𝑚𝑜𝑙𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒 * (1 − 𝑣𝑎𝑝𝑜𝑟_𝑓𝑟𝑎𝑐𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒) = 𝑓𝑙𝑜𝑤_𝑚𝑜𝑙𝑙𝑖𝑞𝑜𝑢𝑡𝑙𝑒𝑡

Energy Balances:

𝑒𝑛𝑡ℎ_𝑚𝑜𝑙_𝑝ℎ𝑎𝑠𝑒𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒[𝑉 𝑎𝑝] = 𝑒𝑛𝑡ℎ_𝑚𝑜𝑙𝑣𝑎𝑝_𝑠𝑡𝑎𝑡𝑒

𝑒𝑛𝑡ℎ_𝑚𝑜𝑙_𝑝ℎ𝑎𝑠𝑒𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒[𝐿𝑖𝑞] = 𝑒𝑛𝑡ℎ_𝑚𝑜𝑙𝑙𝑖𝑞_𝑠𝑡𝑎𝑡𝑒

Momentum Balances:

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑚𝑖𝑥𝑒𝑑_𝑠𝑡𝑎𝑡𝑒[𝐿𝑖𝑞] = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑙𝑖𝑞_𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑣𝑎𝑝_𝑠𝑡𝑎𝑡𝑒

Drum Model

Introduction

The drum model consists of three main
sub-unit operations:

1) a flash model to separate the saturated
steam from the saturated liquid water in
the water/steam mixture,
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2) a mixer model to mix saturated liquid
water with feed water, and

3) a water tank model to calculate drum
level and pressure drop.

First the water/steam mixture from
boiler waterwall tubes (risers) enters the
flash model and leaves in two separate
streams (liquid water and steam). Then,
the saturated water from the flash model
is mixed with the feed water stream (typ-
ically from the economizer or a wa-
ter pipe linking the economizer and the
drum) and leave the mixer model in a
single mixed stream. Finally, the mixed
stream enters the water tank of the drum
and leaves the vessel through the multi-
ple downcomers (see Figure 1).

Fig. 20: Figure 1. Schematic representation of a Drum modeled in IDAES

Inlet Ports:

• water_steam_inlet: water/steam mix-
ture from waterwall
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• feedwater_inlet: feedwater from econo-
mizer/pipe

Outlet Ports:

• liquid_outlet: liquid to downcomer

• steam_outlet: saturated steam leaving
the drum

Variables

Model inputs (variable name):

• water/steam inlet (water_steam_inlet:
flow_mol, enth_mol, pressure)

• feedwater inlet (feedwater_inlet:
flow_mol, enth_mol, pressure)

• drum diameter (drum_diameter)

• drum length (drum_length)

• number of downcomer tubes (num-
ber_downcomers)

• downcomer diameter (down-
comer_diameter)

• drum level (drum_level)

• heat duty (heat_duty)

Model Outputs:

• vapor outlet (vap_outlet: flow_mol,
enth_mol, pressure)

• liquid outlet (liq_outlet: flow_mol,
enth_mol, pressure)

Constraints

As mentioned above, the drum model
imports a HelmPhaseSeparator and
mixer models, specific documentation
for these models can be obtained in:
Once the water enters the tank model
the main equations calculate water ve-
locity and pressure drop calculation due
to gravity based on water level and con-
traction to downcomer. Water level
(drum_leve) is either fixed for steady
state simulation or calculated for dy-
namic model (Dynamic = True)

Main assumptions:
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1) Heat loss is a variable given by the user
(zero heat loss can be specified if adia-
batic)

2) Pressure change due to gravity based
on water level and contraction to down-
comer is calculated

3) Water level is either fixed for steady-
state model or calculated for dynamic
model

4) Assume enthalpy_in == enthalpy_out +
heat loss + energy accumulation

5) Subcooled water from economizer and
saturated water from waterwall are well
mixed before entering the drum

Pressure equality constraint:

𝑃𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑𝑊𝑎𝑡𝑒𝑟 = 𝑃𝐹𝑒𝑒𝑑𝑊𝑎𝑡𝑒𝑟

Pressure drop in unit:

𝑑𝑒𝑙𝑡𝑎𝑃 = 𝑑𝑒𝑙𝑡𝑎𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑡𝑎𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑑𝑒𝑙𝑡𝑎𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑓(𝜌𝑙𝑖𝑞𝑢𝑖𝑑, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑣𝑖𝑡𝑦, 𝑑𝑟𝑢𝑚_𝑙𝑒𝑣𝑒𝑙)

𝑑𝑒𝑙𝑡𝑎𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝜌𝑙𝑖𝑞𝑢𝑖𝑑, 𝑉 )

where: * V: fluid velocity (m/s, liquid
only)

Note that the model builds an Pyomo
Arc to connect the Liquid_outlet
from the self.aFlash unit to the Sat-
uratedWater inlet port of the mixer,
and the mixed_state (Mixer outlet)
is directly constructed as the Drum
control_volume.properties_in. Once
the Drum model is constructed,
the mixer and flash blocks can be
found as self.aDrum.aMixer and
self.aDrum.aFlash

Degrees of Freedom

Once the unit dimensions have been
fixed, the model generally has 5 de-
grees of freedom. The water/steam mix-
ture inlet state (flow_mol, enth_mol,
and pressure) and feewater inlet state
(flow_mol and enth_mol). The feedwa-
ter inlet pressure is usually free due to
the pressure equality mentioned above.
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Dynamic Model

The dynamic model version of the drum
model can be constructed by selecting
dynamic=True. If dynamic = True,
material accumulation, energy accumu-
lation, and drum level must be cal-
culated. Therefore, a dynamic ini-
tialization method has been developed
set_initial_conditions to initialize the
holdup terms.

Downcomer Model

Introduction

The Downcomer model consists of a
simple pipe model (or a set of pipes)
where the inlet stream is the Drum out-
let and the outlet stream connects with
the WaterWall (section 1). The model
simply calculates the pressure change
due to friction and gravity, which in-
volves the calculation of fluid veloc-
ity, Reynolds number, and friction factor
(using Darcy’s correlation).

Property package: This model requires
the Helmholtz EoS (IAPWS95) prop-
erty package with the mixed phase op-
tion, therefore, the phase equilibrium
calculations are handled by the property
package.

Model inputs (variable name):

• inlet stream (flow_mol, enth_mol, pres-
sure)

• number of downcomer pipes (num-
ber_downcomers) same as Drum model

• height of the tubes (height)

• inner diameter of the tubes (diameter)

• heat duty (heat_duty), heat_duty = 0 if
adiabatic

Model Outputs:

• outlet stream (flow_mol, enth_mol,
pressure)

• pressure change (deltaP) due to gravity
and friction
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Degrees of Freedom

By specifying the inlet conditions and
downcomer dimensions, the model will
be fully specified. Things that are fre-
quently fixed are:

• inlet state vars (generally flow_mol,
enth_mol, pressure)

• heat_duty to the downcomer (if applica-
ble)

• number_downcomers, height, diameter

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from flue gas to tube side fluid
deltaP 𝑑𝑒𝑙𝑡𝑎𝑃 time Pressure change in the unit

Constraints

The main constraints in the model cal-
culate the pressure drop, which is given
by deltaP_friction and deltaP_gravity.

Pressure drop:

∆𝑃 = ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Friction:

∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟, 𝜌𝑙𝑖𝑞𝑢𝑖𝑑, 𝑉, 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟)

Friction factor (Darcy’s correlation’):

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 =
0.3164

𝑅𝑒0.25

deltaP gravity:

∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝜌𝑙𝑖𝑞𝑢𝑖𝑑 * 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑣𝑖𝑡𝑦 * ℎ𝑒𝑖𝑔ℎ𝑡

Reynolds number:

𝑅𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇

where:

• Re : Reynolds number (liquid)

• V: fluid velocity (m/s, liquid)

• 𝜌𝑙𝑖𝑞𝑢𝑖𝑑: mass density of liquid (kg/m3)

• 𝜇 : viscocity (kg/m/s)
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Dynamic Model

The downcomer dynamic model can be
constructed by selecting dynamic=True
and hold_up=True. If dynamic and
holdup = True, the energy accumula-
tion and material accumulation vari-
ables are constructed, which are the
derivatives of the corresponding holdup
terms with respect to time and are in-
cluded in the material and energy con-
servation equations. A dynamic model
also requires the specification of ini-
tial conditions related to the accumula-
tion variables. The user needs to pro-
vide the initial values for the accumu-
lation variables at all time points and
fix the initial conditions to solve the dy-
namic problem. Therefore, a dynamic
initialization method has been devel-
oped set_initial_conditions to initialize
the values of the time-indexed accumu-
lation variables to zero and fix the vari-
ables at the first time point to zero.

Steam Heater Model

Introduction

The steam heater model consists of a
heater model with rigorous heat transfer
calculations on the tube side, while the
heat duty from fire side is either fixed or
provided by the boiler fire side model.
The model is usually coupled with the
IDAES 1-D fire-side model to solve the
wall temperatures and heat transfer rate.
If coupled with the fire side model, this
model is similar to the water_wall sec-
tion model. The sum of the net radi-
ation and convective heat fluxes (𝑞𝑓𝑖𝑟𝑒𝑟𝑎𝑑

and 𝑞𝑓𝑖𝑟𝑒𝑐𝑜𝑛𝑣) at the slag outer layer is an
output of the fire-side model and an in-
put of the steam heater model (the fluid-
side model). While, the temperature of
the outer slag layer 𝑇𝑤,𝑠𝑙𝑎𝑔 is an out-
put of the fluid-side model and an in-
put (boundary condition) of the fire-side
model. The heat conduction through
the slag and tube layers is a part of the
fluid-side model. At a steady state, the
amount of the heat transferred at the
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outer slag surface (𝑞𝑓𝑖𝑟𝑒𝑟𝑎𝑑 and 𝑞𝑓𝑖𝑟𝑒𝑐𝑜𝑛𝑣) is equal to the heat conducted through the slag and tube layers, which is equal
to the heat convected to the fluid 𝑞𝑓𝑙𝑢𝑖𝑑𝑐𝑜𝑛𝑣 .

Model inputs (variable name):

• number of tubes (number_tubes)

• heat duty from fire-side model (sum
of net radiation and convection)
(heat_fireside)

• tube dimensions (length, inside di-
ameter and thickness) (tube_length,
tube_diameter, tube_thickness)

• fin dimension of membrane wall
(width and thickness) (fin_length,
fin_thickness)

• slag layer thickness (slag_thickness)

• water/steam flow rate and states at inlet
(flow_mol, enth_mol, pressure)

• properties of slag and tube metal (ther-
mal conductivity, heat capacity, density)
(therm_cond_slag, therm_cond_metal,
dens_metal, dens_slag)

• pressure drop correction factor (fcorrec-
tion_dp)

Model Outputs:

• temperatures of tube metal at inner
wetted surface and at center of the
tube thickness (temp_tube_boundary,
temp_tube_center)

• temperatures of slag layer at outer
surface and at the center of the
slag layer (temp_slag_boundary,
temp_slag_center)

• pressure drop through each section and
heat added to the tube (deltaP and
heat_duty, respectively)

• water/steam flow rate and states at outlet
(flow_mol, enth_mol, pressure)
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Degrees of Freedom

As mentioned above, the steam heater
model includes rigorous heat transfer,
therefore, detailed tube and unit dimen-
sions are required. Aside from the in-
let conditions and tube dimensions, the
steam heater model usually has two de-
grees of freedom, heat flux from fire side
and slag thickness, which can be fixed
for it to be fully specified.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from flue gas to tube side fluid
hconv ℎ𝑐𝑜𝑛𝑣 time Overal convective heat transfer coefficient
temp_slag_boundary 𝑇𝑤,𝑠𝑙𝑎𝑔 time Temperature of the slag
projected_area 𝐴 None Heat transfer area (total projected area based on tube shape)

Constraints

The main constraints here show the heat
flux, convective heat transfer model, and
pressure drop. This model calculates the
slag temperature, slag center tempera-
ture, tube boundary temperature, tube
center temperatures, and heat flux from
fire side to the water/steam side.

Heat flux equation:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥 = 𝑄 * 𝑝𝑖𝑡𝑐ℎ/(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑎𝑟𝑒𝑎 * 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟_𝑠𝑙𝑎𝑔)

Temperature of slag:

𝑇𝑤,𝑠𝑙𝑎𝑔 − 𝑇𝑐,𝑠𝑙𝑎𝑔 = ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥 * 𝑠𝑙𝑎𝑔𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Heat flux interface equation:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑖𝑛𝑡 * (𝑠𝑙𝑎𝑔𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 +𝑚𝑒𝑡𝑎𝑙𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) = (𝑇𝑐,𝑠𝑙𝑎𝑔 − 𝑇𝑐,𝑡𝑢𝑏𝑒)

Convective heat flux eqn at tube bound-
ary:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 * 𝑓𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑣 * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑝𝑖𝑡𝑐ℎ * ℎ𝑐𝑜𝑛𝑣 * (𝑇𝑤,𝑡𝑢𝑏𝑒 − 𝑇𝑓𝑙𝑢𝑖𝑑,𝑖𝑛)

Tube boundary wall temperature:

ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 *𝑚𝑒𝑡𝑎𝑙𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 * (𝑇𝑐,𝑡𝑢𝑏𝑒 − 𝑇𝑤,𝑡𝑢𝑏𝑒)

Heat equation:

ℎ𝑒𝑎𝑡𝑑𝑢𝑡𝑦 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑡𝑢𝑏𝑒𝑠 * ℎ𝑒𝑎𝑡𝑓𝑙𝑢𝑥_𝑐𝑜𝑛𝑣 * 𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑔𝑡ℎ * 𝑡𝑢𝑏𝑒𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
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Pressure drop:

∆𝑃 = ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Convective heat transfer:

ℎ𝑐𝑜𝑛𝑣 = 𝑓(𝑡𝑢𝑏𝑒𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟, 𝑁𝑅𝑒,𝑁𝑃 𝑟, 𝑘)

Prandtl number:

𝑃𝑟𝑡𝑢𝑏𝑒 =
𝐶𝑝𝜇

𝑘𝑀𝑤

Reynolds number:

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇

where:

• hconv : convective heat transfer coeffi-
cient tube side (fluid water/steam) (W /
m2 / K)

• projected_area : total projected wall
area (m2)

• Pr : Prandtl number

• Re : Reynolds number

• V: fluid velocity (m/s)

• k : thermal conductivity of the fluid (W
/ m / K)

• MW: molecular weigth of water/steam
(kmol/kg)

Note that at the flowsheet level first wa-
terwall section is connected to the econ-
omizer, arcs connecting section 2 to n-1
have to be constructed by the user, and
the outlet of section n is connected to the
drum model or superheater (subcritical
and supercritical plant, respectively)

Dynamic Model

The dynamic model version of the steam
heater model can be constructed by
selecting dynamic=True. If dynamic
= True, the energy accumulation of
slag and metal, material accumulation
holdups are constructed. Therefore, a
dynamic initialization method has been
developed set_initial_conditions to ini-
tialize the holdup terms.
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Boiler Fire Side Model

Introduction

The boiler fire side model consists of a
hybrid model, including first principle
equations and surrogate models. The
surrogate models determine the heat
flux to the individual water wall zones,
heat flux to platen superheater, heat flux
to roof superheater, NOx formation in
PPM, and unburned carbon in fly ash.
Meanwhile, the flue gas outlet condi-
tions (flowrate, temperature, and pres-
sure) are determined by complete mass
and energy balances.

The processes inside a coal-fired boiler
are very complicated involving combus-
tion of the fuel by an oxidizer, typically
air, and the transfer of the heat released
from the combustion to waterwall, roof,
and platen superheater, if any. The re-
acting flow inside the boiler is turbulent
flow with both gas-phase homogenous
reactions and gas-solid heterogenous re-
actions. At high combustion tempera-
tures, the homogenous gas-phase reac-
tions can be assumed to reach chemi-
cal equilibrium while the heterogenous
reactions involving devolatilization, ox-
idation of char by O2, and gasification
of the char by H2O and CO2 are usually
controlled by finite-rate chemistry and
mass transfer of the reactants to the ex-
ternal and internal surfaces of the solid
fuel. The main heat transfer mechanism
inside the boiler is radiative transfer in-
volving both gas phase and solid phase
participating media. Due to its com-
plexity, a high-fidelity model such as NETL’s 1D/3D hybrid fire-side boiler model should be developed first based
on a given geometry of the furnace. A surrogate model could then be generated from the results of multiple high-
fidelity model simulations sampled in the input space of the high-fidelity model. Those inputs could possibly include
the flow rates of coal, primary and secondary air, lower furnace Stoichiometric ratio, fuel composition, secondary air
temperature, and the slag layer wall temperatures of waterwall, roof, and platen superheater. The surrogate model
provides the algebraic functions mapping the input variables to the output variables such as heat transfer rates to the
waterwall, roof, and platen superheater, unburned carbon in the fly ash, and NOx mole fraction in the flue gas. As
mentioned above, the variables calculated from the surrogate functions include the heat transfer rates to individual
waterwall zones, platen superheater, and roof, the unburned carbon in fly ash, and mole fraction of NO in flue gas. The
mole fractions of individual species in the flue gas including O2, N2, CO2, H2O, and SO2 are calculated based on
the mass balance of individual elements including C, H, O, N, and S. Note that Ar in air is ignored here and its mole
fraction in air is assigned to N2. It is also assumed that coal contains C, H, O, N, S elements only (no Cl) and ash in
coal is inert (no mineral related reaction is considered). The amount of unburned carbon in fly ash determines the coal
burnout (percent of dry-ash-free coal burned). Only the amount of burned coal is considered in calculating the flue gas
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composition. Unburned CO in the flue gas is ignored in the current model. To enforce energy balance, the furnace exit
gas temperature (FEGT) is not calculated by a surrogate function. It is calculated by the energy balance instead.

Note that the surrogate models are
trained off line and imported as a model
argument, these surrogate models usu-
ally are a function of the coal flowrate,
moisture content, stoichiometric ratio
(O2 real/O2 reaction), primary air to
coal ratio, and wall/slag temperatures
among others.

Fig. 21: Figure 1. Schematic representation of a Boiler fire side model

Property package: This model requires
the IdealFlueGas property package.

Model Arguments:

• number_of_zones: the number of water
wall zones are required to maintain the
overall energy balance

• calculate_PA_SA_flows: Depending on
the user’s selection, this feature builds
different parts of the model (config ar-
gument: calculate_PA_SA_flows=True
or False).
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– Option1 assumes that users know pri-
mary air flowrate and secondary air
flowrate (if calculate_PA_SA_flows is
False).

– Option2 assumes that the users pro-
vide stoichiometric ratio and primary
air to coal ratio to calculate primary air
and secondary air flowrates (if calcu-
late_PA_SA_flows is True).

• has_platen_superheater: True/False if a
platen superheater will be included in
the flowsheet

• has_roof_backpass: True if a roof and
backpass heater will be included in the
flowsheet

• surrogate_dictionary: user must provide
a dictionary with surrogate models for
water wall zones, platen and roof super-
heaters, NOx, and flyash

Note that the surrogate dictionary can be
either surrogate models (algebraic equa-
tions), or fixed values, or variables to
calculate the heat flux required for cer-
tain performance. For example, this
model can be used for data reconcilia-
tion to calculate the heat duty to the wa-
ter wall, platen superheater, and roof.

Model inputs (variable name):

• primary_air_inlet (flow_mol, enth_mol,
pressure)

• secondary_air_inlet (flow_mol,
enth_mol, pressure)

• number of water wall zones (num-
ber_of_zones)

• Coal composition in dry basis
(mf_C_coal_dry)

• coal flowrate (coal_flowrate_raw)

• moisture content in the coal
(mf_H2O_coal_raw)

• stoichiometric ratio (SR)*

• primary air to coal ratio (ratioPA2coal)*

• heat flux (or heat_duty) to water wall
zones, platen superheater, and roof su-
perheater

* not required if calcu-
late_PA_SA_flows is False
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Model outputs:

• flue_gas_outlet (flow_mol, enth_mol,
pressure)

• heat duty to water wall (ww_heat),
platen superheater (platen_heat)*, and
roof and backpass (roof_heat)*

Note that platen_heat and roof_heat are
only constructed if arguments are equat
True

Degrees of Freedom

if calculate_PA_SA_flows is True: By
specifying the inlet conditions (primary
air and secondary air temperature and
pressure), stoichiometric ratio, primary
air to coal ratio, coal composition, coal
High Heating Value, coal flowrate (raw),
moisture content in coal, and surro-
gate_dictionary, the model will be fully
specified. Things that are frequently
fixed are:

if calculate_PA_SA_flows is False: This
means users “know” or have measure-
ments of the primary air and secondary
air, therefore, stoichiometric ratio and
primary air to coal ratio are not re-
quired to estimate the primary and sec-
ondary air. By specifying the pri-
mary air inlet (flow_mol_comp, tem-
perature, pressure), secondary air in-
let (flow_mol_comp, temperature, pres-
sure), coal composition, coal High
Heating Value, coal flowrate (raw),
moisture content in coal, and surro-
gate_dictionary, the model will be fully
specified. Things that are frequently
fixed are:

Constraints

The main constraints in the model
satisfy the energy balance and cal-
culate flue gas outlet conditions
(flow_mol_comp, temperature, pres-
sure).

𝐻𝑒𝑎𝑡𝑖𝑛 = 𝐻𝑒𝑎𝑡𝑜𝑢𝑡

𝐻𝑒𝑎𝑡𝑖𝑛 = 𝐶𝑜𝑎𝑙𝑚𝑎𝑠𝑠𝑓𝑙𝑜𝑤 *𝐻𝑐𝑜𝑎𝑙 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦_𝑎𝑖𝑟𝑚𝑜𝑙𝑓𝑙𝑜𝑤 * 𝑒𝑛𝑡ℎ_𝑚𝑜𝑙𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑎𝑖𝑟 + 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦_𝑎𝑖𝑟𝑚𝑜𝑙𝑓𝑙𝑜𝑤 * 𝑒𝑛𝑡ℎ_𝑚𝑜𝑙𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟

4.5. Technical Specifications 695



IDAES Documentation, Release 1.10.1

𝐻𝑒𝑎𝑡𝑜𝑢𝑡 = 𝑓𝑙𝑢𝑒_𝑔𝑎𝑠𝑚𝑜𝑙𝑎𝑟𝑓𝑙𝑜𝑤 * 𝑒𝑛𝑡ℎ_𝑚𝑜𝑙𝑓𝑙𝑢𝑒𝑔𝑎𝑠 + 𝑤𝑤ℎ𝑒𝑎𝑡 + 𝑝𝑙𝑎𝑡𝑒𝑛ℎ𝑒𝑎𝑡 + 𝑟𝑜𝑜𝑓ℎ𝑒𝑎𝑡 + 𝑎𝑠ℎ𝑚𝑎𝑠𝑠𝑓𝑙𝑜𝑤 *𝐻𝑠𝑓𝑙𝑦𝑎𝑠ℎ

𝑤𝑤ℎ𝑒𝑎𝑡 = 𝑓(𝑐𝑜𝑎𝑙_𝑓𝑙𝑜𝑤, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑟𝑎𝑡𝑖𝑜, 𝑟𝑎𝑡𝑖𝑜𝑃𝐴2𝑐𝑜𝑎𝑙, 𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

𝑝𝑙𝑎𝑡𝑒𝑛ℎ𝑒𝑎𝑡 = 𝑓(𝑐𝑜𝑎𝑙_𝑓𝑙𝑜𝑤, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑟𝑎𝑡𝑖𝑜, 𝑟𝑎𝑡𝑖𝑜𝑃𝐴2𝑐𝑜𝑎𝑙, 𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

𝑟𝑜𝑜𝑓ℎ𝑒𝑎𝑡 = 𝑓(𝑐𝑜𝑎𝑙_𝑓𝑙𝑜𝑤, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑟𝑎𝑡𝑖𝑜, 𝑟𝑎𝑡𝑖𝑜𝑃𝐴2𝑐𝑜𝑎𝑙, 𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

𝑁𝑂𝑥 = 𝑓(𝑐𝑜𝑎𝑙_𝑓𝑙𝑜𝑤, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑟𝑎𝑡𝑖𝑜, 𝑟𝑎𝑡𝑖𝑜𝑃𝐴2𝑐𝑜𝑎𝑙, 𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

𝑓𝑙𝑦𝑎𝑠ℎ = 𝑓(𝑐𝑜𝑎𝑙_𝑓𝑙𝑜𝑤, 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦𝑎𝑖𝑟𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑟𝑎𝑡𝑖𝑜, 𝑟𝑎𝑡𝑖𝑜𝑃𝐴2𝑐𝑜𝑎𝑙, 𝑤𝑎𝑙𝑙𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)

𝑇𝑐𝑜𝑎𝑙 = 𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦𝑎𝑖𝑟

where:

• Flow_mol_comp in mol/s

• Temperature in K

• Pressure in Pa

• Heat duty in W

• Coal mass flow after removing the mois-
ture content kg/s

Water Tank

The IDAES water tank model repre-
sents a unit operation for storing wa-
ter. The water tank model supports sev-
eral shapes including rectangular, verti-
cal and horizontal cylindrical.

Model Structure

The water tank unit model consists
of a single ControlVolume0D (named
control_volume) with one Inlet Port
(named inlet) and one Outlet Port
(named outlet).

Construction Arguments

Similar to other IDAES unit models, the
water tank has the following construc-
tion arguments:
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Argument Default Value
dynamic False
include_holdup False
material_balance_type MaterialBalanceType.componentPhase
energy_balance_type EnergyBalanceType.enthalpyTotal
momentum_balance_type MomentumBalanceType.pressureTotal
has_heat_transfer True
has_pressure_change True
property_package Parent value
property_package_args --

Additionally, the water tank model has
one specific construction argument to
declare the tank shape:

• tank_type: configuration argument
to define the shape of the tank to
be modeled, and accordingly calcu-
late the volume of the filled level.
Currently, the supported values
are: simple_tank, rectangular_tank,
vertical_cylindrical_tank, and hor-
izontal_cylindrical_tank. Being
simple_tank the default value.

Variables

The following variables are added to the
model independently of the tank type se-
lected:

Model Inputs (variable name) - symbol:

• water inlet (inlet: flow_mol, enth_mol,
pressure)

• tank level (tank_level) - 𝑙

• heat duty (heat_duty) - 𝑄

Model Outputs (variable name):

• water outlet (outlet: flow_mol,
enth_mol, pressure)

• pressure drop (deltaP) - ∆𝑃

Additionally, some variables are added
to the model based on the tank type as
indicated below:

tank_type Variable added
simple_tank tank_cross_sect_area - 𝐴𝑐

rectangular_tank tank_width - 𝑊 , tank_length - 𝐿
vertical_cylindrical_tank tank_diameter - 𝑑
horizontal_cylindrical_tank tank_diameter - 𝑑, tank_length - 𝐿
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Constraints

The main assumptions used in the water
tank unit model are:

1) Heat loss is a variable given by the user
(zero heat loss can be specified if adia-
batic)

2) Calculate pressure change due to gravity
based on water level

3) Water level is either fixed for steady-
state model or calculated for dynamic
model

4) Assume enthalpy_in == enthalpy_out +
heat loss

In addition to the constraints written
by the control volume, the water tank
model adds two constraints for the pres-
sure drop and the volume of the liquid
level in the unit.

Pressure drop constraint:

∆𝑃 = ∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝜌𝑙𝑖𝑞 * 𝑔 * 𝑙

Volume of the liquid constraint:

1) for simple_tank, rectangular_tank and
vertical_cylindrical_tank:

𝑉𝑙𝑖𝑞 = 𝑙 *𝐴𝑐

2) for horizontal_cylindrical_tank:

𝑉𝑙𝑖𝑞 = 𝐿 *𝐴𝑡

where:

• 𝜌𝑙𝑖𝑞: liquid density

• 𝑙: level filled by liquid in the unit

• 𝑔: acceleration gravity

• 𝐿: tank length

• 𝐴𝑐: cross sectional area of the tank,
which for the simple_tank is an input
variable, while for rectangular_tank and
vertical_cylindrical_tank is an expres-
sion calculated by the model

• 𝐴𝑡: area of the circular segment covered
by the liquid level at one end of the tank.
This is an expression calculated by the
model and is only valid for the horizon-
tal_cylindrical_tank
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The following expressions were used to
calculate the tank cross sectional area,
and tank area:

• for rectangular_tank: 𝐴𝑐 = 𝑊 * 𝐿

• for vertical_cylindrical_tank: 𝐴𝑐 = 𝜋 *
𝑟2, tank_radius (r) is an expression cal-
culated by the model

• for horizontal_cylindrical_tank: 𝐴𝑡 =
𝑐𝑜𝑠−1(1−𝑙/𝑟)*𝑟2−(𝑟−𝑙)*(2𝑟𝑙−𝑙2)0.5

Degrees of Freedom

The degrees of freedom depend on the
tank type as the dimension variables are
differents for each type, but once the di-
mensions for a specific tank type have
been fixed, the model generally has 3-
5 degrees of freedom: the inlet state
(flow_mol, enth_mol, and pressure), the
heat duty whether the config argument
has_pressure_change is set to True, and
the tank level whether for steady state
simulations

Dynamic Model

The dynamic model version of the tank
model can be constructed by selecting
dynamic=True. If dynamic = True,
material accumulation, energy accumu-
lation, and tank level must be cal-
culated. Therefore, a dynamic ini-
tialization method has been developed
set_initial_conditions to initialize the
holdup terms.

BoilerHeatExchanger2D

The BoilerHeatExchanger2D model can
be used to represent boiler heat ex-
changers in sub-critical and super crit-
ical power plant flowsheets (i.e. econ-
mizer, primary superheater, secondary
superheater, finishing superheater, re-
heater, etc.). The model consists of a
shell and tube crossflow heat exchanger,
in which the shell is used as the gas
side and the tube is used as the water
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or steam side. Due to the fluid temper-
ature changes along the flow paths in-
side and outside of the tubes, the veloc-
ities of the fluids also change from the
inlet to the outlet, causing the changes
of heat transfer coefficients and fric-
tion factors on both sides along the flow
paths. If the flows on both sides can be
discretized along the flow paths, local
temperature difference between the hot
and cold streams (the driving force for
heat transfer), local heat transfer coeffi-
cients and local friction factors can be
used and a more accurate model can be constructed. Figure 1 shows a schematic of the shell and tube cross-flow heat
exchanger. In this figure, the hot fluid on the shell side flows from left to right while the cold fluid flows through the
tubes up and down. Notice that the cold fluid may enter the tube bundle in multiple rows (2 rows shown in the fig-
ure) and flow in parallel. The dash lines show the discretization along the flow path of the hot shell-side flow. The
dash lines also cut the tube side flow to multiple segments with the direction of the flow inside the tube switching in
two neighboring segments. The flow properties such as heat transfer coefficients and friction factors are calculated
in individual discretized elements. Meanwhile the overall flow configuration is either a co-current or counter-current.
Counter-current configuration are shown in Figure 1. Since the tube-side flow switches direction from one discretized
section to another, pressure drop due the U-turn is also modeled based on the loss coefficient of the U-turn. If the
elevation changes between the tube inlet and outlet, the pressure change due to gravity for the tube side fluid is also
modeled in each element. Rigorous heat transfer calculations (convective heat transfer for shell side, and convective
heat transfer for tube side) and shell and tube pressure drop calculations have been included.

Fig. 22: Cross-flow heat exchanger

In a transient heat transfer process such
as in a load ramping operating condi-
tion, tube metal wall contains internal
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energy and its change with time repre-
sents the accumulation term (source or
sink) in the energy conservation equa-
tion. Due to the high density and high
heat capacity of the tube metal, its en-
ergy holdup should not be ignored. In
other words, the transient tube wall tem-
peratures and its distribution along the
wall thickness and along the flow path
need to be solved. In addition to the
discretization along the flow path direc-
tion, the discretization along the tube
wall thickness at each discretized flow
path section is required, which make the
heat exchanger model a 2-D model. Be-
sides, the temperature gradient along the
tube thickness is also required to calcu-
late the thermal stress and other equip-
ment health related properties. Figure
2 shows the discretization of tube wall
temperature along the tube radius direction. The transient tube wall temperature T_(w,r) at each discretized radius r
is calculated based on transient heat conduction equation(Eqn. 1), and in the cylindrical coordinate system the heat
conduction equation is shown in equation 2.

where, T_(w,r) is the tube metal temper-
ature, t is time, alfa is termal diffusivity
of the tube metal, typically steel, and r is
the radius. This partial differential equa-
tion can be discretized by Pyomo-DAE
in the radius direction. The heat accu-
mulation in the tube metal is represented
by the solution of the transient tempera-
tures along the radius direction.

The HeatExchangerCross-
Flow2D_Header model can be imported
from idaes.power_generation.
unit_models, while addi-
tional rules and utility functions
can be imported from idaes.
power_generation.unit_models.
boiler_heat_exchanger2D.

Degrees of Freedom

The configuration variables for the 2-
D heat exchanger model include the in-
side diameter of the tube and thickness
of the tube. They are used as param-
eters of the model and have to be de-
clared for discretization in the radius di-
rection. Once declared as configura-
tion arguments, they are not allowed to
change (immutable). Other configura-
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Fig. 23: Cross-flow heat exchanger
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tion variables include “finite_elements”
(the number of elements) in the flow
path direction, “radial_elements” (the
number of elements in radius direction,
“tube_arrangement” for either staggered
or in-line arrangement, “has_radiation”
if shell-side radiation heat transfer is
considered, and “flow_type” for either
co-current or counter-current configu-
ration. Additionally, has_header has
been added as a configuration argu-
ment, when it is True, the health of the
water/steam headers is calculated (see
header section). The main input vari-
ables for the 2-D cross-flow heat exchanger model include design variables such as number of tube segments, number
of tube columns, number of tube inlet rows, length of the tube in each segment (each pass), pitches in directions parallel
and perpendicular to the shell fluid flow, and elevation change from tube inlet to tube outlet. The thermal and transport
properties are also required as well as the mechanical properties if the equipment health model is used. Other required
operating variables include fouling resistances on both tube and shell sides, tube wall emissivity if radiation model is
turned on, and correction factors for heat transfer and pressure drops on both sides. Given the inlet conditions such as
pressures, temperatures and flow rates on both sides, the outlet conditions will be predicted by the model. Meanwhile
the temperature and pressure distributions along the flow path direction will be solved on both sides. The 2-D tube wall
temperature distribution will also be solved.

In order to capture off design conditions
and heat transfer coefficients at ramp
up/down or load following conditions,
the BoilerHeatExchanger2D model in-
cludes rigorous heat transfer calcula-
tions. Therefore, additional degrees of
freedom are required to calculate Nus-
selt, Prandtl, Reynolds numbers, such
as:

• tube_di (inner diameter)

• tube length

• tube number of rows (tube_nrow),
columns (tube_ncol), and inlet flow
(nrow_inlet)

• pitch in x and y axis (pitch_x and
pitch_y, respectively)

If pressure drop calculation is enabled,
additional degrees of freedom are re-
quired:

• elevation with respect to ground level
(delta_elevation)

• tube fouling resistance (tube_r_fouling)

• shell fouling resistance
(shell_r_fouling)
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Model Structure

The HeatExchangerCrossFlow2D_Header
model contains two
ControlVolume1DBlock blocks.
By default the gas side is named shell
and the water/steam side is named
tube. These names are configurable.
The sign convention is that duty is
positive for heat flowing from the hot
side to the cold side.

The con-
trol vol-
umes are
config-
ured the
same as the
ControlVolume1DBlock
in the Heater
model. The
HeatExchangerCrossFlow2D_Header
model contains additional constraints
that calculate the amount of heat trans-
ferred from the hot side to the cold
side.

The HeatExchangerCrossFlow2D_Header
has two inlet ports and two outlet ports.
By default these are shell_inlet,
tube_inlet, shell_outlet, and
tube_outlet. If the user supplies
different hot and cold side names the
inlet and outlets are named accordingly.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from hot side to the cold side
area 𝐴 None Heat transfer area
U 𝑈 time Heat transfer coefficient
delta_temperature ∆𝑇 time Temperature difference, defaults to LMTD

Note: delta_temperature may be ei-
ther a variable or expression depending
on the callback used. If the specified
cold side is hotter than the specified hot
side this value will be negative.
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Constraints

The default constraints can be over-
ridden by providing alternative rules
for the heat transfer equation, tempera-
ture difference, heat transfer coefficient,
shell and tube pressure drop. This sec-
tion describes the default constraints.

Heat transfer from shell to tube:

𝑄 = 𝑈𝐴∆𝑇

Temperature difference is:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
The overall heat transfer coefficient is
calculated as a function of convective
heat transfer shell and tube, and wall
conduction heat transfer resistance.

Convective heat transfer equations:

1

𝑈
* 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛ℎ𝑡𝑐 = [

1

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒
+

1

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙
+ 𝑟 + 𝑡𝑢𝑏𝑒𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔 + 𝑠ℎ𝑒𝑙𝑙𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔]

Tube convective heat transfer (for all el-
ements in tube discretization approach):

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒 =
𝑁𝑢𝑡𝑢𝑏𝑒𝑘

2𝑡𝑢𝑏𝑒𝑟𝑖

𝑁𝑢𝑡𝑢𝑏𝑒 = 0.023𝑅𝑒0.8𝑡𝑢𝑏𝑒𝑃𝑟
0.4
𝑡𝑢𝑏𝑒

𝑃𝑟𝑡𝑢𝑏𝑒 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑟𝑖2𝑉 𝜌

𝜇

Shell convective heat transfer:

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙 =
𝑁𝑢𝑠ℎ𝑒𝑙𝑙𝑘𝑓𝑙𝑢𝑒𝑔𝑎𝑠

𝑡𝑢𝑏𝑒𝑑𝑜

𝑁𝑢𝑠ℎ𝑒𝑙𝑙 = 𝑓𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡0.33𝑅𝑒0.6𝑡𝑢𝑏𝑒𝑃𝑟
0.3333
𝑡𝑢𝑏𝑒

𝑃𝑟𝑠ℎ𝑒𝑙𝑙 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑠ℎ𝑒𝑙𝑙 =
𝑡𝑢𝑏𝑒𝑑𝑜𝑉 𝜌

𝜇

𝑡𝑢𝑏𝑒𝑑𝑜 = 2 * 𝑡𝑢𝑏𝑒𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 + 𝑡𝑢𝑏𝑒𝑑𝑖

Wall heat conduction resistance equation:

𝑟 = 0.5 * 𝑡𝑢𝑏𝑒𝑑𝑜 * log (
𝑡𝑢𝑏𝑒𝑑𝑜
𝑡𝑢𝑏𝑒𝑑𝑖

) * 𝑘

where:
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• hconv_tube : convective heat transfer
resistance tube side (fluid water/steam)
(W / m2 / K)

• hconv_shell : convective heat transfer
resistance shell side (fluid Flue Gas) (W
/ m2 / K )

• Nu : Nusselt number

• Pr : Prandtl number

• Re : Reynolds number

• V: velocity (m/s)

• tube_di : inner diameter of the tube (m)

• tube_do : outer diameter of the tube (m)
(expression calculated by the model)

• tube_thickness : tube thickness (m)

• r = wall heat conduction resistance (K
m^2 / W)

• k : thermal conductivity of the tube wall
(W / m / K)

• 𝜌 : density (kg/m^3)

• 𝜇 : viscocity (kg/m/s)

• tube_r_fouling : tube side fouling resis-
tance (K m^2 / W)

• shell_r_fouling : shell side fouling resis-
tance (K m^2 / W)

• fcorrection_htc: correction factor for
overall heat trasnfer

• f_arrangement: tube arrangement factor

Note: by default fcorrection_htc is set to
1, however, this variable can be used to
match unit performance (i.e. as a param-
eter estimation problem using real plant
data).

Tube arrangement factor is a con-
fig argument with two different type
of arrangements supported at the mo-
ment: 1.- In-line tube arrangement
factor (f_arrangement = 0.788), and
2.- Staggered tube arrangement factor
(f_arrangement = 1). f_arrangement is
a parameter that can be adjusted by the
user.

The HeatExchangerCrossFlow2D_Header
model includes an argument to compute
heat tranfer due to radiation of the
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flue gases. If has_radiation = True the
model builds additional heat transfer
calculations that will be added to the
hconv_shell resistances. Radiation
effects are calculated based on the gas
gray fraction and gas-surface radiation
(between gas and shell).

𝐺𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑤𝑎𝑙𝑙𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦, 𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙𝑟𝑎𝑑 = 𝑓(𝑘𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛, 𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐, 𝑇𝑔𝑎𝑠𝑖𝑛, 𝑇𝑔𝑎𝑠𝑜𝑢𝑡, 𝑇𝑓𝑙𝑢𝑖𝑑𝑖𝑛, 𝑇𝑓𝑙𝑢𝑖𝑑𝑜𝑢𝑡)

Note: Gas emissivity is calculated with
surrogate models (see more details in
boiler_heat_exchanger.py). Radiation =
True when flue gas temperatures are
higher than 700 K (for example, when the model is used for units like Primary superheater, Reheater, or Finishing
Superheater; while Radiation = False when the model is used to represent the economizer in a power plant flowsheet).

If pressure change is set to True,
𝑑𝑒𝑙𝑡𝑎𝑃𝑢𝑡𝑢𝑟𝑛𝑎𝑛𝑑𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 are cal-
culated

Tube side:

∆𝑃𝑡𝑢𝑏𝑒 = ∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 * 𝑔 * 𝜌𝑖𝑛 + 𝜌𝑜𝑢𝑡
2

∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑡𝑢𝑏𝑒𝑑𝑖𝜌, 𝑉𝑡𝑢𝑏𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑢𝑏𝑒𝑠, 𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑔𝑡ℎ)

∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 = 𝑓(𝜌, 𝑣𝑡𝑢𝑏𝑒, 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛)

where:

• 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛 : pressure loss coeficient of a
tube u-turn

• g : is the acceleration of gravity 9.807
(m/s^2)

Shell side:

∆𝑃𝑠ℎ𝑒𝑙𝑙 = 1.4∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝜌𝑉
2
𝑠ℎ𝑒𝑙𝑙

∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is calculated based on
the tube arrangement type:

In-line: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =

0.044+
0.08(

𝑃𝑥
𝑡𝑢𝑏𝑒𝑑𝑜

)

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)

0.43+ 1.13

(
𝑃𝑥

𝑡𝑢𝑏𝑒𝑑𝑜
)

𝑅𝑒0.15

Staggered: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
0.25+ 0.118

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)1.08

𝑅𝑒0.16

Figure. Tube Arrangement

4.5. Technical Specifications 707



IDAES Documentation, Release 1.10.1

Fig. 24: Tube Arrangement

Header Health Model

The heat exchanger 2D model allows
the user to calculate the thermal and
mechanical stresses of the water/steam
headers connected to the outlet of the
tube side. Additionally, the rupture time
and fatigue calculation of allowable cy-
cles are computed by the model. A
simplified 1D PDE problem is devel-
oped to represent the heat conduction
transient through the radius of the su-
perheater/reheater headers. Regarding
to the flow path configuration (counter-
current or co-current) of the 2D heat ex-
changer, the first or the last discretiza-
tion point will be used to define the
boundary of the headers. For this ex-
ample, the last discretization point will
be used for the outlet superheater header
due to the counter-current flow configu-
ration. Under the assumptions of con-
stant conductivity and no heat genera-
tion, the Fourier’s equation is converted
to the Eq. (h1) for the cylindrical header.
The Pyomo.DAE framework is applied to solve the PDE problem. The thermal and mechanical stresses are calculated
based on the pressure and temperature difference between both sides of the header which can be used to evaluate the
allowable number of cycles of the main body and the critical point of the edge of the hole.

1

𝑎

𝜕𝑇

𝜕𝑡
=
𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟

where T is wall temperature (K), r is radius (m), and a is the material thermal difussivity (m2/s). The material thermal
difussivity is a function of (material thermal conductivity, specific heat, and density)
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Detailed description of the mechanical
stress calculations and thermal stress
calculations can be found in S. Bracco,
2012 and Taler & Duda, 2006, respec-
tively.

Rupture time calculation: The creep
phenomenon is an important design
consideration in the analysis of struc-
tures. At the high temperature op-
eration, the creep is coupled with fa-
tigue due to cycling, the damage will be
much higher than that occurring if the
same fatigue or creep is working alone.
For example, a long-time creep rupture
strength values can be derived by using
the Manson-Haferd model. However,
depending on the investigated material,
users can find another correlation to cal-
culate the rupture strength in the open
literature.

Fatigue calculation of allowable cycles:
For general ferritic and austenitic ma-
terials, the calculation of the allowable
number of cycles are expressed in the
following equation. However, the users
can be recommended to find a specific
fatigue equation for their own material
to obtain a better result. Using the cal-
culated stresses above, the number of
allowable cycles of the component can
be evaluated based on fatigue assess-
ment standard, such as EN 13445. The
detail of the developed approach can
be found in Bracco’s report (S. Bracco,
2012). This model can be applied for
both drum and thick-walled components
such as header. According to the EN
13445 standard, for a single cycle, the
allowable number of fatigue cycles N
can be computed as:

𝑁 =
46000

∆Σ𝑅𝑖 − 0.63𝑅𝑚 + 11.5

where Rm is the material tensile strength at room temperature while the reference stress range ∆𝑖 depends on the stress
range ∆Σ𝑖

Bracco, S. (2012). Dynamic sim-
ulation of combined cycles operating
in transient conditions: An innova-
tive approach to determine the steam
drums life consumption. In Proceed-
ings of the 25th International Confer-
ence on Efficiency, Cost, Optimization
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and Simulation of Energy Conversion
Systems and Processes, ECOS 2012.
Taler, J., & Duda, P. (2006). Solv-
ing direct and inverse heat conduction
problems. Solving Direct and Inverse
Heat Conduction Problems. Springer
Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-33471-2

Class Documentation

class idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_Header(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

shell_side shell side config arguments

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.componentTotal. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
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use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single ethalpy
balance for material, EnergyBal-
anceType.enthalpyPhase - ethalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
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‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

tube_side tube side config arguments

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.componentTotal. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single ethalpy
balance for material, EnergyBal-
anceType.enthalpyPhase - ethalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
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ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

transformation_method Discretization
method to use for DAE transforma-
tion. See Pyomo documentation for
supported transformations.

transformation_scheme Discretization
scheme to use when transformating
domain. See Pyomo documentation for
supported schemes.

finite_elements Number of finite ele-
ments to use when discretizing length
domain (default=5). Should set to the
number of tube rows

collocation_points Number of colloca-
tion points to use per finite element
when discretizing length domain (de-
fault=3)

flow_type Flow configuration of heat ex-
changer co_current: shell and tube flows
from 0 to 1 counter_current: shell side
flows from 0 to 1 tube side flows from 1
to 0

tube_arrangement Tube arrangement
could be in-line or staggered

tube_side_water_phase Define water
phase for property calls

has_radiation Define if shell side gas ra-
diation is to be considered

tube_inner_diameter User must define
inner diameter of tube

tube_thickness User must define tube
wall thickness
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radial_elements Number of finite ele-
ments to use when discretizing radius
domain (default=5).

header_inner_diameter User must de-
fine inner diameter of header

header_wall_thickness User must define
header wall thickness

header_radial_elements Number of fi-
nite elements to use when discretizing
radius domain (default=5).

has_header If has_header is True, user
must provide header thickness and inner
diameter.

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HeatExchangerCross-
Flow2D_Header) New instance

class idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_HeaderData(component)

Standard Heat Exchanger Cross Flow
Unit Model Class.

build()

Begin building model.

Parameters None –

Returns None

initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver=None, optarg=None)

HeatExchangerCrossFlow1D initialisa-
tion routine

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).
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• outlvl – sets output level of initialisa-
tion routine

– 0 = no output (default)

– 1 = return solver state for each step in
routine

– 2 = return solver state for each step in
subroutines

– 3 = include solver output infomation
(tee=True)

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

Drum 1D Model

Introduction

The 1-D drum model is similar to the 0-
D drum model, however, the 1-D heat
conduction through the radius or thick-
ness of the drum wall is modeled. The
heat conduction through insulation is
modeled as steady state and no energy
holdup or accumulation in the insula-
tion layer is considered. Dynamics and
energy holdup are accounted for in the
drum metal.

Similar to the drum model, the drum 1D
model consists of three main sub-unit
operations:

1) a flash model to separate the saturated
steam from the saturated liquid water in
the water/steam mixture,

2) a mixer model to mix saturated liquid
water with feed water, and

3) a water tank model to calculate drum
level and pressure drop.

First the water/steam mixture from
boiler waterwall tubes (risers) enters the
flash model and leaves in two separate
streams (liquid water and steam). Then,
the saturated water from the flash model
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is mixed with the feed water stream (typ-
ically from the economizer or a wa-
ter pipe linking the economizer and the
drum) and leave the mixer model in a
single mixed stream. Finally, the mixed
stream enters the water tank of the drum
and leaves the vessel through the multi-
ple downcomers (see Figure 1).

The sub-unit models for the flash and
the mixer (Items 1 and 2 in the above
list) are identical to the 0-D drum model.
The main difference between them is
the way the horizontal water tank model
is modeled, especially with respect to
the heat transfer from the liquid water
through the drum metal wall, its insu-
lation layer and to the ambient air. In
other words, the drum is not adiabatic.
The heat transfer from the liquid water
in the drum to the ambient air includes
a) convective heat transfer between the
liquid water and the wetted inner wall
of the drum, b) heat conduction from
the inner drum wall to the outer drum
wall through the drum metal thickness,
c) heat conduction from the insulation
layer inner wall to its outer wall, and d)
natural heat convection from the insula-
tion outer wall to the ambient air, typi-
cal at a room temperature. Figure 1 is a
schematic of the cross-sectional area of
the drum. As can be seen in the figure, the liquid water occupies the lower part of the drum and the saturated steam
occupies the upper part. The metal wall and insulation layer are also shown in the figure. The water/steam mixture
and feed water enter the drum while the saturated steam leaves the drum through the pipes in the upper part and the
subcooled water leaves the drum to the downcomers.

Inlet Ports:

• water_steam_inlet: water/steam mix-
ture from waterwall

• feedwater_inlet: feedwater from econo-
mizer/pipe

Outlet Ports:

• liquid_outlet: liquid to downcomer

• steam_outlet: saturated steam leaving
the drum
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Fig. 25: Figure 1. Schematic of a boiler drum with metal wall and insulation layer
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Variables

Model inputs (variable name):

• water/steam inlet (water_steam_inlet:
flow_mol, enth_mol, pressure)

• feedwater inlet (feedwater_inlet:
flow_mol, enth_mol, pressure)

• drum diameter (drum_diameter)

• drum length (drum_length)

• number of downcomer tubes (num-
ber_downcomers)

• downcomer diameter (down-
comer_diameter)

• drum level (drum_level)

• heat duty (heat_duty)

Model Outputs:

• vapor outlet (vap_outlet: flow_mol,
enth_mol, pressure)

• liquid outlet (liq_outlet: flow_mol,
enth_mol, pressure)

Constraints

As mentioned above, the drum model
imports a HelmPhaseSeparator and
mixer models, specific documentation
for these models can be obtained in:
Once the water enters the tank model
the main equations calculate water ve-
locity and pressure drop calculation due
to gravity based on water level and con-
traction to downcomer. Water level
(drum_leve) is either fixed for steady
state simulation or calculated for dy-
namic model (Dynamic = True)

Main assumptions:

1) Heat loss is a variable given by the user
(zero heat loss can be specified if adia-
batic)

2) Pressure change due to gravity based
on water level and contraction to down-
comer is calculated

3) Water level is either fixed for steady-
state model or calculated for dynamic
model
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4) Assume enthalpy_in == enthalpy_out +
heat loss + energy accumulation

5) Subcooled water from economizer and
saturated water from waterwall are well
mixed before entering the drum

Pressure equality constraint:

𝑃𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑𝑊𝑎𝑡𝑒𝑟 = 𝑃𝐹𝑒𝑒𝑑𝑊𝑎𝑡𝑒𝑟

Pressure drop in unit:

𝑑𝑒𝑙𝑡𝑎𝑃 = 𝑑𝑒𝑙𝑡𝑎𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑡𝑎𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦

𝑑𝑒𝑙𝑡𝑎𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑓(𝜌𝑙𝑖𝑞𝑢𝑖𝑑, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑣𝑖𝑡𝑦, 𝑑𝑟𝑢𝑚_𝑙𝑒𝑣𝑒𝑙)

𝑑𝑒𝑙𝑡𝑎𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝜌𝑙𝑖𝑞𝑢𝑖𝑑, 𝑉 )

where: * V: fluid velocity (m/s, liquid
only)

Note that the model builds an Pyomo
Arc to connect the Liquid_outlet
from the self.aFlash unit to the Sat-
uratedWater inlet port of the mixer,
and the mixed_state (Mixer outlet)
is directly constructed as the Drum
control_volume.properties_in. Once
the Drum model is constructed,
the mixer and flash blocks can be
found as self.aDrum.aMixer and
self.aDrum.aFlash

Convective heat transfer: Strictly speak-
ing, the inner drum wall temperature
is not uniform along the circumfer-
ence since the temperature of the wet-
ted lower section is different from that
of the upper section in contact with the
saturated steam. The heat convection
between the liquid water and the inner
drum wall is considered as the domi-
nant mechanism compared to the heat
convection between the saturated steam
and the inner drum wall in the upper dry
section. The main assumption for the
1-D drum model is that the latter part
can be ignored and inner drum wall tem-
perature is uniformly distributed. The
convective heat transfer coefficient be-
tween the liquid water and the inner wet-
ted wall (wetted section only) is calcu-
lated based on pool boiling assumption

ℎ𝑖𝑛 = 𝑓(𝑃𝑟, 𝑃𝑟𝑒𝑑,𝑀𝑤, 𝑇𝑤𝑎𝑙𝑙,𝑖𝑛, 𝑇𝑙𝑖𝑞)
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where P_red is the reduced pressure (ratio of the drum pressure to the critical pressure of water), Mw is the molecular
weight of water in mol/g, T_(wall,in) is the wetted drum inner wall temperature, and T_liq is the liquid water tem-
perature. The heat transfer coefficient of the natural heat convection h_(conv,ins) at the outer insulation wall can be
calculated from the Nusselt number N_u by.

ℎ𝑐𝑜𝑛𝑣,𝑖𝑛𝑠 =
𝑁𝑢𝑘𝑎𝑖𝑟
𝐷𝑜,𝑖𝑛𝑠

where D_(o,ins) is the outside diameter of the insulation layer and k_air is the thermal conductivity of air. The N_u
for natural convection of a horizontal cylindrical wall is correlated to Rayleigh number R_a and Prandtl number of air
P_(r,air) by

The Rayleigh number R_a is defined as

𝑅𝑎 =
𝑔(𝑇𝑤𝑎𝑙𝑙,𝑜𝑢𝑡,𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏)𝐷

3
𝑜,𝑖𝑛𝑠

where g is gravity, is thermal expan-
sion coefficient of air, T_(wall,out,ins) is
the outside insulation wall temperature,
T_amb is the ambient temperature, is
kinematic viscosity of air, and is ther-
mal diffusivity of air. To simplify the
model, the thermal and transport prop-
erties of air are assumed to be constant
at a film temperature, the average of the
room temperature of 25 C and a insula-
tion wall temperature of 80 C.

The equivalent heat transfer coeffi-
cient of the natural convection at the
drum metal wall outside the boundary
(hconv,drum) can be calculated from
hconv,ins as:

ℎ𝑐𝑜𝑛𝑣,𝑑𝑟𝑢𝑚 =
𝐷𝑜,𝑖𝑛𝑠ℎ𝑐𝑜𝑛𝑣,𝑖𝑛𝑠

𝐷𝑜,𝑑𝑟𝑢𝑚

where D_(o,drum) is the outside diame-
ter of the drum metal wall

The energy accumulation for the insula-
tion layer is ignored due to its low heat
capacity compared with the drum metal
wall. The heat transfer resistance of the
insulation layer based on inner insula-
tion area is considered though (r_ht,ins).
The heat transfer resistance of the insu-
lation layer and the natural heat convec-
tion are combined to obtain the equiv-
alent overall heat transfer coefficient at
the outer boundary of the drum metal
wall (hout).

The heat conduction through the thick-
ness or radius of the drum metal can be
described by a transient heat conduction
equation of solid as

𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇
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In cylindrical coordinate system, it can
be written as

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑟2
+
𝛼

𝑟

𝜕𝑇

𝜕𝑡

where T is the drum metal temperature,
t is time, is thermal diffusivity of drum
metal, typically steel, and r is the radius.
This partial differential equation can be
discretized by Pyomo-DAE in the radius
direction. The heat accumulation in the
drum metal is represented by the solu-
tion of the transient temperatures along
the radius direction. To solve the tran-
sient heat conduction problem, we need
to specify the boundary conditions. Fig-
ure 2 shows the drum metal wall and the liquid water inside the drum.

Fig. 26: Figure 2. Drum metal wall with liquid water
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Drum Health Model

The model can be used to calculate the
stress and allowable number of cycles
of both the main body and location of
critical point of the opening junction.
During transient operation, the compo-
nent is subject to variations of pressure
and temperature which cause thermal
stress and thermo-mechanical fatigue.
The temperature difference in both sides
of the metal causes the thermal stress.
Also, the cylinder is subjected to an in-
side and outside pressure, which can ob-
tain the mechanical stresses. The me-
chanical and thermal stresses are con-
sidered:

• Mechanical stress is calculated using S.
Bracco, 2012 reference, and it is a func-
tion of the pressure and radius at the in-
side and outside surfaces.

• Thermmal stress is calculaed using
Taler & Duda, 2006 refernce, and it is
a function of the Young modus, a linear
temperature expansion coefficient, and
Poisson ratio of the steel material.

Fatigue calculation of allowable cycles:
Using the calculated stresses above, the
number of allowable cycles of the com-
ponent can be evaluated based on fa-
tigue assessment standard, such as EN
13445. The detail of the developed ap-
proach can be found in Bracco’s report
(S. Bracco, 2012). This model can be
applied for both drum and thick-walled
components such as header. According
to the EN 13445 standard, for a single
cycle, the allowable number of fatigue
cycles N can be computed as a funciton
of the material tensile strength at room
temperature and a reference stress range.

[1] Bracco, S. (2012). Dynamic simu-
lation of combined cycles operating in
transient conditions: An innovative ap-
proach to determine the steam drums
life consumption. In Proceedings of the
25th International Conference on Effi-
ciency, Cost, Optimization and Simula-
tion of Energy Conversion Systems and
Processes, ECOS 2012.

[2] Taler, J., & Duda, P. (2006). Solv-
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ing direct and inverse heat conduction
problems. Solving Direct and Inverse
Heat Conduction Problems. Springer
Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-33471-2

[3] European standard EN 13445: 2002
(2005). Unfired pressure vessels, (parts
1-5), CEN European Committee for
Standardization, Part 3: Design, Issue
14.

Degrees of Freedom

Once the unit dimensions have been
fixed, the model generally has 5 de-
grees of freedom. The water/steam mix-
ture inlet state (flow_mol, enth_mol,
and pressure) and feewater inlet state
(flow_mol and enth_mol). The feedwa-
ter inlet pressure is usually free due to
the pressure equality mentioned above.

Dynamic Model

The dynamic model version of the drum
model can be constructed by selecting
dynamic=True. If dynamic = True,
material accumulation, energy accumu-
lation, and drum level must be cal-
culated. Therefore, a dynamic ini-
tialization method has been developed
set_initial_conditions to initialize the
holdup terms.

Water Pipe Model

Introduction

The water pipe model is used to model
a water or steam pipe connecting two
units in a power plant. It calculates the
pressure change between the pipe inlet
and outlet due to friction, gravity, and
optional expansion or contraction at the
end of the pipe. The water pipe model
does not provide the equations to calcu-
late the heat loss. However, the user can
specify the heat duty if configuration
variable “has_heat_transfer” is set to
True. When declaring the water pipe
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model, the user needs to provide typical
configuration variables for a control
volume, the base class the model is
derived from, including “dynamic”,
“has_holdup”, “has_heat_transfer”,
“has_pressure_change”, etc. While
most of configuration variables have de-
fault values, the configuration variable
for “property_package” has to be given
as the IDAES property package for
water implemented based on IAPWS
water property table. The user needs to set the variable “water_phase” either as “Liq” for liquid water or “Vap” for
water vapor. Currently the model does not support the pipe with two phase flow since the two-phase flow is usually
unstable. The user also needs to specify the configuration variable “contraction_expansion_at_end”. If there is a
contraction at the end of the pipe, the value for the variable should be “contraction”. If there is an expansion at the
end, the value should be “expansion”. The value of “None” is used if there is no contraction or expansion at the end
of the pipe.

Model inputs (variable name):

• number of pipes (number_of_pipes)

• tube dimensions (length, inner diameter,
elevation change) (length, diameter, el-
evation_change)

• water/steam flow rate and states at inlet
(flow_mol, enth_mol, pressure)

• pressure drop correction factor (fcorrec-
tion_dp)

• heat duty (usually fixed equal to 0)

• if expansion at the end of pipe is True,
user needs to specify area ratio at the
end (area_ratio), which is the area after
contraction or expansion divided by the
cross sectional area of the pipe)

Model Outputs:

• pressure drop (deltaP)

• water/steam flow rate and states at outlet
(flow_mol, enth_mol, pressure)

Degrees of Freedom

As mentioned above, the waterpipe
model includes rigorous pressure drop,
therefore, detailed pipe dimensions are
required. Aside from the inlet condi-
tions and tube dimensions, the water-
pipe model usually has one degree of
freedom, the heat duty, which can be
fixed for it to be fully specified.

724 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from flue gas to tube side fluid
deltaP time Pressure drop

Constraints

The main constraints in this model are
used to compute the pressure drop.
Three types of pressure changes are con-
sidered in the pipe model, including the
pressure change due to friction along the
pipe length, the pressure change due to
gravity if there is an elevation change
from the inlet to the outlet, and the pres-
sure change due to the contraction or ex-
pansion at the end.

Pressure drop:

∆𝑃 = ∆𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + ∆𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝜌, 𝑉, 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑖𝑝𝑒𝑠, 𝑙𝑒𝑛𝑔𝑡ℎ,𝑅𝑒, 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑑𝑝)

𝑑𝑒𝑙𝑡𝑎𝑃𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑓(𝜌, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑣𝑖𝑡𝑦, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑐ℎ𝑎𝑛𝑔𝑒)

𝑑𝑒𝑙𝑡𝑎𝑃𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝜌, 𝑉,𝐾𝑙𝑜𝑠𝑠)

Reynolds number:

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇

where:

• fcorrection_dp: correction factor if the
pipe is not smooth

• diameter: inner diameter (m)

• 𝜌 : density (kg/m^3)

• Re : Reynolds number

• V: fluid velocity (m/s)

• Kloss: loss coefficient due to the con-
traction (function of the area ratio)
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Dynamic Model

The dynamic model version of the
steam heater model can be constructed
by selecting dynamic=True. If dy-
namic = True, the material accumula-
tion holdups are constructed. While, the
metal energy holdup is not considered.

Heat Exchanger With Three Streams

The HeatExchangerWith3Streams
model consists of a heat exchanger with
three inlets, side_1 represents the hot
stream, while side_2 and side_3 are
cold streams. This model is a simplified
generic heat exchanger model with
lumped UA (the product of the overall
heat transfer coefficient and the heat
transfer area).

In a power plant flowsheet this model
is used to represent an air preheater
unit. This is because modeling the
Ljungström type preheater is quite chal-
lenging since it involves not only the hot
and cold gas streams but also the en-
ergy stored in and relased from the metal
parts.

Degrees of Freedom

Aside from the inlet conditions, a 3 in-
let heat exchanger model usually has six
degrees of freedom, which must be fixed
for it to be fully specified. Things that
are frequently fixed are two of:

• UA_side_2 - lumped overall heat trans-
fer and heat transfer area of side 2

• UA_side_3 - lumped overall heat trans-
fer and heat transfer area of side 3

• frac_heatloss - fraction of heat loss in
the system

• deltaP_side_1 - pressure drop in side 1

• deltaP_side_2 - pressure drop in side 2

• deltaP_side_3 - pressure drop in side 3
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Model Structure

The HeatExchangerWith3Streams
model contains three
ControlVolume0DBlock blocks.
The hot side is named side_1 and
two cold sides are named side_2
and side_3. These names are not
configurable. The sign convention is
that duty is positive for heat flowing
from the hot side to the cold side.

The control volumes are configured the
same as the ControlVolume0DBlock
in the Heater model. The
HeatExchangerWith3Streams
model contains additional constraints
that calculate the amount of heat trans-
ferred from the hot side to the cold
side.

The HeatExchangerWith3Streams
has three inlet ports and three out-
let ports. By default these are
side_1_inlet, side_2_inlet,
side_3_inlet, side_1_outlet,
side_2_outlet, side_3_outlet.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred (model includes 3 variables, one for each side)
UA 𝑈𝐴 None lumped Heat transfer area and overall heat transfer coefficient
LMTD 𝐿𝑀𝑇𝐷 time Log Mean Temperature difference, LMTD

Constraints

The default constraints can be over-
ridden by providing alternative rules
for the heat transfer equation, tempera-
ture difference, heat transfer coefficient,
shell and tube pressure drop. This sec-
tion describes the default constraints.

Heat transfer from hot to cold sides:

𝑄𝑠𝑖𝑑𝑒_1 * (1 − 𝑓𝑟𝑎𝑐ℎ𝑒𝑎𝑡_𝑙𝑜𝑠𝑠) = 𝑄𝑠𝑖𝑑𝑒_2 +𝑄𝑠𝑖𝑑𝑒_3

𝑄𝑠𝑖𝑑𝑒_2 = 𝑈𝐴𝑠𝑖𝑑𝑒_2∆𝑇2

𝑄𝑠𝑖𝑑𝑒_3 = 𝑈𝐴𝑠𝑖𝑑𝑒_3∆𝑇3
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Temperature difference is:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
Note: DeltaT2 is a function of hot stream side 1 and cold stream side 2, and DeltaT3 is a function of hot side and cold
stream side 3.

Class Documentation

class idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3Streams(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

side_1_property_package Property pa-
rameter object used to define prop-
erty calculations, default - useDefault.
Valid values: { useDefault - use de-
fault package from parent model or
flowsheet, PhysicalParameterObject -
a PhysicalParameterBlock object.}

side_1_property_package_args A Con-
figBlock with arguments to be passed to

728 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict


IDAES Documentation, Release 1.10.1

a property block(s) and used when con-
structing these, default - None. Valid
values: { see property package for doc-
umentation.}

side_2_property_package Property pa-
rameter object used to define prop-
erty calculations, default - useDefault.
Valid values: { useDefault - use de-
fault package from parent model or
flowsheet, PhysicalParameterObject -
a PhysicalParameterBlock object.}

side_2_property_package_args A Con-
figBlock with arguments to be passed to
a property block(s) and used when con-
structing these, default - None. Valid
values: { see property package for doc-
umentation.}

side_3_property_package Property pa-
rameter object used to define prop-
erty calculations, default - useDefault.
Valid values: { useDefault - use de-
fault package from parent model or
flowsheet, PhysicalParameterObject -
a PhysicalParameterBlock object.}

side_3_property_package_args A Con-
figBlock with arguments to be passed to
a property block(s) and used when con-
structing these, default - None. Valid
values: { see property package for doc-
umentation.}

material_balance_type Indicates what
type of material balance should be
constructed, default - MaterialBal-
anceType.componentPhase. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single ethalpy
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balance for material, EnergyBal-
anceType.enthalpyPhase - ethalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_heat_transfer Indicates whether
terms for heat transfer should be con-
structed, default - False. Valid values:
{ True - include heat transfer terms,
False - exclude heat transfer terms.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

flow_type_side_2 Flag indicating type
of flow arrangement to use for heat
exchanger, default ‘counter-current’
counter-current flow arrangement

flow_type_side_3 Flag indicating type of
flow arrangement to use for heat ex-
changer (default = ‘counter-current’ -
counter-current flow arrangement

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
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from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (HeatExchangerWith3Streams)
New instance

class idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3StreamsData(component)

Standard Heat Exchanger Unit Model
Class

build()

Begin building model

initialize(state_args_1=None, state_args_2=None, state_args_3=None, outlvl=0, solver=None,
optarg=None)

General Heat Exchanger initialisation
routine.

Keyword Arguments

• state_args_1 – a dict of arguments
to be passed to the property package(s)
for side 1 of the heat exchanger to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• state_args_2 – a dict of arguments
to be passed to the property package(s)
for side 2 of the heat exchanger to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• state_args_3 – a dict of arguments
to be passed to the property package(s)
for side 3 of the heat exchanger to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).

• outlvl – sets output level of initialisa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None
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Feedwater Heater Dynamic (0D)

The FWH0DDynamic model is a 0D
feedwater heater model suitable for dy-
namic modeling. It is intended to be
used primarily with the IAWPS95 prop-
erty package. The feedwater heater is
split into three sections. The condensing
section is required while the desuper-
heating and drain cooling sections are
optional. There is also an optional mixer
for adding a drain stream from another
feedwater heater to the condensing sec-
tion. The figure below shows the layout
of the feedwater heater. All but the con-
densing section are optional.

Fig. 27: Feedwater Heater

Features of Dynamic Model

The dynamic version of the 0-D feed
water heater model is based on the
steady-state feed water heater 0D model
FWH0D. It contains additional variables
related to the mass and energy inven-
tories inside the condensing section of
the feed water heater on both the tube
and the shell sides. The desuperheater
and drain cooler sections, if any, are
usually treated as steady-state. For the
condensing section, the tubes are always
filled with condensate or feed water and
the total volume of the liquid inside the
tube is usually specified as a user in-
put. The shell side, however, is partially
filled with saturated liquid water and the
water level changes with time and so is
the volume of the saturated water. Only
the horizontal design of the feed water
heater is modeled here and it usually
consists of a cylindrical tank with a frac-
tion of its internal volume occupied by
the heat transfer tubes with the remain-
ing gaps between the tubes occupied either by the steam or the saturated water. The shell side of the condenser section
is modeled as a horizontal cylinder similar to that in a drum model Drum1D with the total volume of the shell side
liquid and the submerged tubes calculated from the water level (see the description of the drum model). The volume
of the saturated liquid is simply a fraction of the total volume. Therefore, the additional input variables in the dynamic
version of the feed water heater model include the inner diameter of the feed water heater cylinder, the length of the
condensing section, the fraction of the volume occupied by the shell side liquid (gaps between the tubes), and the vol-
ume of the feed water inside the tubes of the condensing section. Those input variables are constant (do not change
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with time) for a given design. In addition, the water level defined as the distance from the bottom of the cylinder to
the top of the water is also included in the model and indexed by time. The dynamic version of the feed water heater
model provides the constraint (equation) to calculate the volume of the shell-side liquid as a function of the water level.
The mass and energy accumulation terms are handled by the IDAES control volume class based on the volumes of the
tube-side and the shell-side liquids. Since the density of the steam on the shell side is much lower than the density of
the liquid, the mass and energy accumulations of the steam above the water level are ignored.

Note that the total heat transfer area
and overall heat transfer coefficient are
required inputs as in the steady-state
model for the condensing section. The
overall heat transfer coefficient is dom-
inated by the tube-side convective heat
transfer coefficient since the shell-side
heat transfer coefficient is usually very
high due to the phase change. Based
on an empirical correlation (Bird et al,
1960), the Nusselt number on the tube
side is proportional to the Reynolds
number to the power of 0.8. Therefore,
the overall heat transfer coefficient is ap-
proximately proportional to the feed wa-
ter flow rate to the power of 0.8. A flow-
sheet level constraint can be imposed to
account for the effect of feed water flow
rate on the overall heat transfer coeffi-
cient.

Initialial Condition of Dynamic Model

Typical initial condition for the dynamic
model is a steady state condition. The
user can call set_initial_condition func-
tion of the model to initialize the vari-
ables related to the material and en-
ergy accumulation terms for the dy-
namic model. Note that the water level
at the initial time usually should be fixed
to ensure the inventories of mass and en-
ergy are well defined.

Degrees of Freedom

The area
and overall_heat_transfer_coefficient
should be
fixed or con-
straints
should be
provided
to cal-
culate overall_heat_transfer_coefficient.
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In addition, the geometry variables
related to the condensing sec-
tion including heater_diameter,
cond_sect_length,
vol_frac_shell, and tube.volume
should be fixed. The initial value of
level should also be fixed.

If the inlets are also fixed except for
the inlet steam flow rate (inlet_1.
flow_mol), the model will have 0 de-
grees of freedom.

See FWH0DDynamic and
FWH0DDynamicData for full Python
class details.

Property Models

Flue Gas Property Package

A flue gas property package has been de-
veloped to provide properties of com-
bustion gases and air. The ideal gas
property package includes the main
components in flue gas: O2, N2, NO,
CO2, H2O, SO2

Main parameters:

• molecular weight in kg/kg-mol indexed
by component list,

• reference pressure & temperature in Pa
and Kelvin,

• critical pressure and temperature in Pa
and Kelvin indexed by component list,

• gas constant in J/(mol K),

• constants for specific heat capacity in
J/(mol K) indexed by component list and
parameter A to H,

• vapor pressure coefficients (Antoine
Eq.) P in Bar and T in K indexed by
component list and parameters A to C,

Source: NIST webbook (last update:
01/08/2020)

The main methods supported are:

• heat capacity in J/(mol K),

• enthalpy in J/mol,

• entropy in J/(mol K),
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• volumetric flowrate m3/s,

• viscosity of mixture in kg/(m s),

• thermal conductivity mixture in J / (m K
s),

• molar density m3/mol,

• reduced pressure and temperature (unit-
less),

Flowsheet Models

Supercritical Coal-Fired Power Plant Flowsheet (steady state)

This is an example supercritical pulverized coal (SCPC) power plant.This simulation model consist of a ~595 MW gross coal fired power plant.
The dimensions and operating condi-
tions used for this simulation do not
represent any specific coal-fired power
plant.

This model is for demonstration and tu-
torial purposes only. Before looking at
the model, it may be useful to look at the
process flow diagram (PFD).

SCPC Power Plant (simplified descrip-
tion)

Inputs:

• Throttle valve opening,

• Feed water pump pressure,

• BFW - boiler feed water (from Feed wa-
ter heaters),

• Coal from pulverizers

Main Assumptions:

Coal flowrate is a function of the plant
load, the coal HHV is fixed and heat
dutty from fire side to water wall and
platen superheater are fixed.

Boiler heat exchanger network:

Water Flow: Fresh water -> FWH’s ->
Economizer -> Water Wall -> Primary
SH -> Platen SH -> Finishing Super-
heate -> HP Turbine -> Reheater -> IP
Turbine

Flue Gas Flow:

Fire Ball -> Platen SH -> Finishing SH -> Reheater -> o -> Economizer -> Air Preheater
-> Primary SH –^
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Steam Flow: Boiler -> HP Turbine -> Re-
heater -> IP Turbine -> Condenser HP,
IP, and LP steam extractions to Feed Wa-
ter Heaters

Main Models used:

• Mixers: Attemperator, Flue gas mix

• Heater: Platen SH, Fire/Water side
(simplified model), Feed Water Heaters,
Hot Tank, Condenser

• BoilerHeatExchanger: Economizer, Primary SH, Finishing SH, Reheater

– Shell and tube heat exchanger

∗ tube side: Steam (side 1 holdup)

∗ shell side: flue gas (side 2 holdup)

• Steam Turbines

• Pumps

Property packages used:

• IAPWS: Water/steam side

• IDEAL GAS: Flue Gas side

Figures Process Flow Diagram:

Subcritical Coal-Fired Power Plant Flowsheet (steady state and dynamic)

Note: This is an example of a subcritical pulverized coal-fired power plant. This simulation model consists of a ~320
MW gross coal fired power plant, the dimensions and operating conditions used for this simulation do not represent
any specific power plant. This model is for demonstration and tutorial purposes only.

Introduction

A 320 MW gross subcritical coal-fired
power plant is modeled using the unit
model library has been developed for
demonstration purposes only. This plant
simulation does not represent any power
plant. This subcritical unit burns Illinois
#6 high-volatile bituminous coal. The
fuel is identical to the NETL baseline
case for a 650 MW unit and its analysis
data are listed in Table 1.

Table 1. coal specifications - Proximate
Analysis (weight %)

736 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

4.5. Technical Specifications 737



IDAES Documentation, Release 1.10.1

item As-Received Dry
Moisture 11.12 0.00
Ash 9.70 10.91
Volatile Matter 34.99 39.37
Fixed Carbon 44.19 49.72
Total 100.00 100.0

Table 2. coal specifications - Ultimate
Analysis (weight %)

item As-Received Dry
Moisture 11.12 0.00
Carbon 63.75 71.72
Hydrogen 4.50 5.06
Nitrogen 1.25 1.41
Chlorine 0.15 0.17
Sulfur 2.51 2.82
Ash 9.70 10.91
Oxygen 7.02 7.91
Total 100.00 100.0

Table 3. coal specifications - Heating
Value

item As-Received Dry
Higher Heating Value (HHV), kJ/kg (Btu/lb) 27,113 (11,666) 30,506 (13,126)
Lower Heating Value (LHV), kJ/kg (Btu/lb) 26,151 (11,252) 29,544 (12,712)

The power plant is a generic subcrit-
ical unit, where the boiler has 4 lev-
els of wall burners and one level of
overfire airports. There are 18 platen
superheaters hanging over the furnace
roof serving as the finishing superheater.
The platen superheater panels are par-
allel to the furnace side walls. The
boiler has one drum, eight downcom-
ers, backpass superheater, platen super-
heater, a reheater section (represented
with 2 heat exchanger model), a primary
superheater, an economizer, and the air
preheater (this model is a simplified tri-
sector Ljungström type)

The steam cycle equipment includes a
multistage steam turbine with single re-
heat. It has a throttle valve, mul-
tiple stages for HP, IP, and LP sec-
tions with steam extraction to 3 low-
pressure feed water heaters and 2 high-
pressure feed water heaters as well as
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a deaerator and a boiler feed pump tur-
bine. The steam cycle also includes
the main and auxiliary condensers, a
hotwell tank, a condensate pump, a
booster pump and a main pump. Mul-
tiple control valves are used to con-
trol the water levels of hotwell tank,
deaerator tank, and feed water heaters
and the spray flow to main steam at-
temperator. The process flow dia-
gram is shown in Figure 1. The en-
tire process is modeled in two sub-
flowsheets, one for the boiler sys-
tem and the other for the steam cy-
cle system, corresponding to two sepa-
rate files named “boiler_subfs.py” and
“steam_cycle_subfs.py”, respectively. The main flowsheet contains the two sub-flowsheets in a file named
“plant_dyn.py”.

Figure 1: Process Flow Diagram

Property packages used:

• Helmholtz Equation of State
(IAPWS95): Water and steam IAWPS95

• IDEAL GAS: Air and Flue Gas FlueGas

It can be seen from the Figure 1 that pri-
mary air is first split to two inlet streams,
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one goes through the primary air sector
of the regenerative air preheater where
it is heated, and the other, also known
as tempering air, bypasses the air pre-
heater and is used for primary air tem-
perature control. The two streams are
then mixed and connected with the fire
side of the boiler. The coal stream is
also fed to the fire side of the boiler.
While this boiler sub-flowsheet does not
contain a specific coal mill model, the
partial vaporization of the moisture in
the raw coal is modeled in the fire-side
boiler model. The secondary air enters
the secondary air sector of the air pre-
heater. After being heated in the air pre-
heater, the hot secondary air stream en-
ters boiler’s windbox, from which it en-
ters the furnace either as the secondary
air of the burners or as overfire air. The
pulverized coal from primary air stream
is eventually burned in the boiler by both primary and secondary air to form flue gas that leaves the boiler with small
amount of unburned fuel in fly ash. The hot flue gas then goes through the boiler backpass consisting of multiple
convective heat exchangers including first the hot reheater, then the cold reheater, the primary superheater, and the
economizer. Finally, the flue gas enters the air preheater to heat the cold primary air and secondary air before entering
the downstream equipment which is not modeled. The feed water from steam cycle system enters the economizer to ab-
sorb the heat transferred from the flue gas and leaves the economizer at a temperature considerably below its saturation
temperature. The subcooled water then goes to the boiler drum through water pipes where it mixes with the saturated
water separated from the water/steam mixture from the boiler waterwall. The mixed water stream splits to two streams.
A small amount of water leaves the system as a blowdown water to prevent buildup of slag and the main portion of the
water stream goes through eight downcomers to enter the bottom of waterwall tubes. The vertical waterwall is modeled
by multiple waterwall section models in series. The subcooled water from the downcomers is heated by the combustion
products inside the boiler and part of the liquid are vaporized, forming a liquid-vapor 2-phase mixture and eventually
enters the drum to complete a circuit for natural circulation of the feed water, in which the density difference between
the liquid in the downcomers and the 2-phase mixture in the waterwall tubes drives the circulating flow.

The saturated steam from drum goes to
the roof superheater before entering the
primary superheater. Note that the en-
closure wall tubes for the backpass as a
part of the superheaters is not included
in the flowsheet model. The steam leav-
ing the primary superheater is mixed
with spray water from boiler main feed
pump in an attemperator. Finally, the
steam from the attemperator enters the
platen superheater where the steam is
heated to main steam temperature be-
fore entering the main turbine. The
cold reheat steam from the HP outlet is
first heated in the cold reheater and then
heated in the hot reheater before enter-
ing the IP stages of the turbine. There is
no attemperation for the reheat steam.
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The steam cycle, depicted in Figure 1,
accepts steam from the boiler and uses it
to generate electricity. Specifically, HP
steam from the boiler passes through a
throttle valve prior to entering the HP
turbine, after which some is extracted to
supply heat to feedwater heater (FWH) 6
while the remaining steam is sent back
to the boiler to be reheated. The re-
heated steam then enters the IP turbine
section where some is extracted to sup-
ply heat to FWH 5. Additional steam is
extracted for the boiler feed pump tur-
bine (BFPT) and deaerator between the
IP and LP turbine sections at the IP/LP
crossover, while the remaining steam
enters the LP turbine. In the LP sec-
tion, steam is extracted for FWHs 1, 2,
and 3. Steam leaving the LP turbine is
condensed in the main condenser, while
steam leaving the BFPT is condensed in
the auxiliary condenser. The condensate
from the condenser hotwell is pumped
through the LP FWHs 1, 2, and 3, where it is heated by steam extracted from the LP turbine. After passing through the
deaerator, the feedwater enters a booster pump prior to entering the main boiler feed pump and HP FWHs 5 and 6.

Dynamic Flowsheet

The dynamic model considers the mass
and energy inventories in large ves-
sels in the system including drum,
deaerator, feed water heaters, and con-
denser hotwell. Meanwhile, invento-
ries in downcomers and multiple water-
wall zones are also considered. To keep
the problem tractable, the inventory in
the 2D boiler heat exchanger model for
the reheaters, the primary superheater,
and the economizer are not considered.
However, the internal energy held by
the tube metal of those heat exchang-
ers are considered. Some unit mod-
els are treated as the steady-state mod-
els on the dynamic flowsheet. For ex-
ample, the boiler fire-side model is as-
sumed as steady-state since the flue gas
density is low and so is the residence
time (2-3 seconds). All turbine stages,
condensers and pumps are modeled as
pseudo-steady-state. The entire process
is pressure driven, indicating the flow
rates of air, flue gas, water, and steam are related to the pressures in the system. Table 4 lists all unit operation models
on the boiler sub-flowsheet including their names, descriptions, unit model library names, and dynamic/steady-state
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flag. Table 5 lists all unit operations on the steam cycle sub-flowsheet.

Table 4. List of unit models on the boiler
system sub-flowsheet

Unit Name Description Unit Library Name Dynamic
aBoiler Boiler fire-side surrogate BoilerFireside False
aDrum 1D boiler drum Drum1D True
blowdown_split Splitter for blowdown HelmSplitter False
aDowncomer Downcomer Downcomer True
Waterwalls 12 waterwall zones WaterwallSection True
aRoof Roof superheater SteamHeater False
aPlaten Platen superheater SteamHeater False
aRH1 2D Cold reheater HeatExchangerCrossFlow2D_Header HX2D True *
aRH2 2D Hot reheater HeatExchangerCrossFlow2D_Header HX2D True *
aPSH 2D Primary superheater HeatExchangerCrossFlow2D_Header HX2D True *
aECON 2D Economizer HeatExchangerCrossFlow2D_Header HX2D True *
aPipe Pipes from eco. to drum WaterPipe False
Mixer_PA Mixer of hot PA and TA Mixer False
Attemp Attemperator HelmMixer False
aAPH Air preheater HeatExchangerWith3Streams False

• The heat held by tube metal is modeled
as dynamic while fluids are modeled as
steady-state

Table 5. List of unit models on the steam
cycle system sub-flowsheet

742 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Unit Name Description Unit Library Name Dynamic
turb Multistage turbine HelmTurbineMultistage False
bfp_turb_valve BFPT regulating valve HelmValve False
bfp_turb Front stage of BFPT HelmTurbineStage False
bfp_turb_os Outlet stage of BFPT HelmTurbineOutletStage False
condenser Main condenser HelmNtuCondenser False
aux_condenser Auxiliary condenser HelmNtuCondenser False
condenser_hotwell Mixer of 3 water streams HelmMixer False
makeup_valve Makeup water valve HelmValve False
hotwell_tank Hotwell tank WaterTank Dynamic
cond_pump Condensate pump HelmIsentropicCompressor False
cond_valve Condensate Valve HelmValve False
fwh1 Feed water heater 1 FWH0D Dynamic
fwh1_drain_pump Drain pump after FWH 1 HelmIsentropicCompressor False
fwh1_drain_return Mixer of drain and condensate HelmMixer False
fwh2 Feed water heater 2 FWH0D Dynamic
fwh2_valve Drain valve for FWH 2 HelmValve False
fwh3 Feed water heater 3 FWH0D Dynamic
Fwh3_valve Drain valve for FWH 3 HelmValve False
fwh4_deair Mixer for deaerator HelmMixer False
da_tank Deserator water tank WaterTank Dynamic
booster Booster pump HelmIsentropicCompressor False
bfp Main boiler feed pump HelmIsentropicCompressor False
split_attemp Splitter for spray water HelmSplitter False
spray_valve Control valve for water spray HelmValve False
Fwh5 Feed water heater 5 FWH0D Dynamic
Fwh5_valve Drain valve for FWH 5 HelmValve False
Fwh6 Feed water heater 6 FWH0D Dynamic
Fwh6_valve Drain valve for FWH 6 HelmValve False

• Dynamic flag is true for condensing sec-
tion only

There are several control valves to reg-
ulate the water and steam flows in the
steam cycle system including the throt-
tle valve to control the power output,
BFPT valve to control feed water pump
speed and, therefore, the feed water
flow, makeup water valve to control con-
denser hotwell tank level, condensate
valve to control deaerator tank level, and
water spray valve to control the main
steam temperature. There are also drain
valves between the drain outlet of a feed
water heater and the drain inlet of its cas-
cading downstream feed water heater.
They are used to control the water level
inside the condensing section of the feed
water heater.

Controllers are included in the dynamic
flowsheet. There are several regulatory
level controllers, all of which are either
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PID controllers, including those to con-
trol the levels of FWH2, FWH3, FWH5,
FWH6, deaerator tank, and hotwell
tank. The corresponding control valves
involved in those level controllers are
drain valves of FWH2, FWH3, FWH5,
FWH6, the condensate valve, and the
makeup water valve, respectively.

The main steam temperature is con-
trolled by the attemperator with the
spray water from the main feed pump
outlet. The spray valve between the at-
temperator and the feed pump outlet is
controlled by a PID controller that is
also configured with default valve open-
ing bounded between 0.05 and 1. This
configuration limits the spray flow to
certain values if the main steam temper-
ature is way below or above its setpoint.

The drum level is controlled by a 3-
element controller as shown in Figure 2.
It is implemented with two cascading PI
control loops. The master controller of
the drum level cascading control is used
to provide the setpoint of the slave con-
troller. The slave controller controls the
feed water flow rate based on the set-
point provided by the master controller.
The three measured elements include
drum level, main steam flow and feed
water flow. Note that the main steam
flow rate is usually controlled by a throt-
tle valve such that the required power
output is met. The feed water flow rate
should be the same as the main steam
flow rate in a steady-state condition. If
the drum level is deviated from its set-
point, the feed water flow should be ad-
justed to compensate the level deviation.
For example, when the drum level is too
low, the feed water flow rate should be
increased. Therefore, the setpoint of the
feed water flow rate for the slave controller is equal to the sum of the measured main steam flow rate and the output of
the master controller, which is the adjustment calculated by the master controller due to the deviation of the drum level
from its setpoint. In case there is a drum water blowdown flow, the amount of blowdown flow should also be added.
In the modeled power plant, the flow rate of feed water is controlled by the governing valve of the boiler feed pump
turbine (BFPT), which controls the speed of the BFPT and hence the speed of the boiler feed pump (BFP). The BFPT
uses the steam from the IP turbine outlet to generate the mechanical work needed for the BFP pump.

Figure 2: Drum Level Control

The supervisory level control for the
power generation is implemented as a
typical coordinated control as shown in
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Figure 3. It involves a turbine master
that controls the throttle valve opening
to meet the power demand and a boiler
master that controls the coal feed rate
and air flow rates. In the dynamic flow-
sheet model, both the turbine master and
the boiler master are implemented as PI
controllers. The turbine master simply
controls the power output to meet the
power demand by adjusting the throttle
valve opening. The boiler master con-
trols the coal feed rate and air flow rates
to maintain the desired main steam pres-
sure. The setpoint for the main steam
pressure is calculated as the sum of two
parts. The first part is the desired steady-
state sliding pressure as a function of
load (sliding pressure curve as shown
in the figure). In the current dynamic
plant model, the sliding pressure is im-
plemented as a linear function of power demand. The second part is the pressure adjustment term calculated based
on the deviation of electrical power output from the demand multiplied by a gain factor. The second part represents
the coordination between the turbine master and boiler master. Note that in the current dynamic flowsheet model, the
control for the air flows is not implemented with detailed PID controllers for FD and ID fans and their dampers. The
primary and secondary air flow rates are actually specified as constraints such that the mole fraction of O2 in flue gas
is set to be a predefined function of coal flow rate, which is related to the load. The primary air flow rate is specified as
a constraint that specifies the primary air to coal flow ratio as a function of coal feed rate (mill curve). In other words,
the primary and secondary air flow rates is controlled in proportion to the coal feed rate as in a typical ratio control
loop.

Figure 3: Coordinated Control

Table 6 lists the PI and PID controllers
on the dynamic flowsheet. Some con-
trollers are declared on the steam cycle
sub-flowsheet while others are declared
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on the main flowsheet. The table also
lists the type of the controller, whether
it is bounded for output, and whether it
belongs to the steam cycle or main flow-
sheet.

Table 6. Controllers in the dynamic
flowsheet model

Unit Name Description Type Bounded Flowsheet
fwh2_ctrl Level controller for FWH 2 PI No Steam cycle
Fwh3_ctrl Level controller for FWH 3 PI No Steam cycle
Fwh5_ctrl Level controller for FWH 5 PI No Steam cycle
Fwh6_ctrl Level controller for FWH 6 PI No Steam cycle
da_ctrl Level controller for deaerator tank PI No Steam cycle
makeup_ctrl Level controller for hotwell tank PI Yes Steam cycle
spray Main steam temperature controller PID Yes Steam Cycle
drum_master_ctrl Master controller for drum level PI No Main
drum_slave_ctrl Slave controller for drum level PI No Main
turbine_master_ctrl Turbine master controller PI No Main
boiler_master_ctrl Boiler master controller PI No Main
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Steady-state power plant example:

A steady state version of the power
plant flowsheet is constructed by call-
ing the m_ss = main_steady_state()
method line 1824 in the subcriti-
cal_power_plant.py file. This function
will build a steady state version of
the power plant in Figure 1. This
power plant model consists of two
subflowsheets, the boiler subsystem
(m_ss.fs_main.fs_blr) and the steam
cycle subsystem (m_ss.fs_main.fs_stc.
These two subsystems are connected
trough arcs at the flowsheet level. A
custom initialization procedure has
been developed, in which we initialize
each subflowsheet at the time at a given
load. After initializing the subflowsheet
the example solves the entire power
plant model for a given load (degrees of
freedom = 0).

Main Fixed Variables:

• power demand
(m_ss.fs_main.power_output.fix(320))

• main steam
temper-
ature (m.fs_main.fs_stc.temperature_main_steam.fix(810)
in Kelvin)

• water level (drum, deareator, condenser,
feedwater heaters)

• equipment geometry/dimension

• fuel composition and HHV (on dry ba-
sis)

Main un-
fixed vari-
ables cal-
culated by
the model:
* Coal
flowrate
(m.fs_main.fs_blr.aBoiler.flowrate_coal_raw
is unfixed
and cal-
culated to
match the
power de-
mand) * wa-
ter/steam
flowrates
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* attem-
perator
flowrate
(m.fs_main.fs_stc.spray_valve.valve_opening.unfix())
free to keep main
steam at 810 K
* Boiler feedwa-
ter pump pressure (m.fs_main.fs_stc.bfp.outlet.pressure.unfix()) * throttle valve opening
(m.fs_main.fs_stc.turb.throttle_valve[1].valve_opening.unfix()) * primary air and secondary air flowrates (con-
strained by primary air to coal ratio and O2 mol fraction in the flue gas)

Dynamic power plant example:

The dynamic simulation version of the
power plant examples is built when the
user calls the m_dyn = main_dynamic()
method in line 1820 in the subcrit-
ical_power_plant.py file. The user
should note that this method takes a long
time to solve (~60 min). This method
builds and runs a subcritical coal-fired
power plant dynamic simulation. The
demonstration example prepared for this
simulation consists of 5%/min ramping
down from full load to 50% load, hold-
ing for 30 minutes and then ramping up
to 100% load and holding for 20 min-
utes.

This method first creates a steady state
version of the power plant, initializes the
steady state model, and then uses this
steady state model for initializing the dy-
namic model. Two dynamic flowsheets
are constructed here, the main differ-
ence is that they have different time steps
in the discretization domain. Dynamic
flowsheet 1 uses a step size of 30 sec-
onds and dynamic flowsheet 2 uses a
time step of 60 seconds. This is useful
to speed up the overall simulation time
and to reduce the final number of vari-
ables and constraints. Note that the dy-
namic flowsheet 1 is used when the load
is changing to capture the dynamic tran-
sient conditions of the plant change (i.e.,
while plant is ramping). While the dy-
namic flowsheet 2 is used when process
is near steady state transient conditions.
To simulate the dynamic case, this ex-
ample implements a ramp function for
the power demand and fixes the set point
to match the power demand (see code below).
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for␣
→˓t in m.fs_main.config.time:

power_demand␣
→˓= input_profile(t0+t, x0)

m.fs_main.turbine_
→˓master_ctrl.setpoint[t].
→˓value = power_demand

Solving the dynamic model:

At this point we have a very large math-
ematical model, therefore, to exploit
the temporal distribution of the model.
The team implemented a rolling hori-
zon approach (also known as reced-
ing horizon or moving time window),
in which the full space model is di-
vided into subproblems with 2 time pe-
riods each, then we solve the subprob-
lem and use the solution of the previ-
ous subproblem to connect with the next
time window (each time window con-
sists of a dynamic model with 2 time pe-
riods). Thus, the dynamic model with 2
time steps is solved based on the distur-
bance of load demand specified by the
user (power demand function described
above). If the time duration for the sim-
ulation is longer than the period of the 2
time steps, the results of the solved dy-
namic model at the end of the second
time step will be copied as the initial
condition for the simulation of the next
2 time steps. The results to be copied include the errors for the integral and derivative parts of individual controllers.
In case the error term for the integral part of a controller is too large (windup error), the user has an option to reset the
windup error. If the time step size is changed, the user needs to choose a different dynamic model to copy to (dynamic
flowsheet 1 or dynamic flowsheet 2). After that the time window is rolled to the second one and the simulation for the
second time period can then be solved. This process is repeated for multiple time periods until the entire duration for
the dynamic simulation is solved.

Note that during each rolling time win-
dow simulation, the results at individual
time step for the main performance vari-
ables and equipment health are saved.
Those results are plotted after the last
simulation and written to a text file for
review and further processing. Fig-
ure 4 shows an example of dynamic
model simulation result, the load de-
mand (ramp function) and coal feed rate
for as functions of time.

Figure 4: Transient results for a load
changing dynamic simulation
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Power Plant Costing Library

Contents

• Power Plant Costing Library

– Introduction

∗ Costing sub-blocks

∗ Capital Cost Stages

∗ Dollar year scaling

– Power Plant Costing Module
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– Supercritical CO2 Costing Module

– Other Costing Modules

∗ Air Separation Unit

– Utility Functions

∗ Initialize Costing

∗ Total Flowsheet Cost Constraint

∗ Display Total Flowsheet Cost

∗ Display Individual Costs

∗ Checking Bounds

– References

Introduction

Note: The power plant costing method is available for most of the unit operations in power plants (Boiler, Feed Water
Heaters, Compressor, Turbine, Condenser, etc.).

A capital cost methodology is de-
veloped in this module, both bare
and erected cost and total plant cost
are calculated based on costing cor-
relations. The Power Plant Costing
Library contains two main cost-
ing functions get_PP_costing and
get_SCO2_unit_cost. The first function
(get_PP_costing) can be called to
include cost correlations for equip-
ment typically used in simulation of 7
technologies:

1. Supercritical pulverized coal plants
(SCPC),
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2. Subcritical pulverized coal plants,

3. Two-stage IGCC,

4. Single-stage IGCC,

5. Single-stage dry-feed IGCC,

6. natural gas air-fired plant (NGCC),

7. Advanced ultra-supercritical PC
(AUSC).

Similarly, get_sCO2_unit_cost can be
called to include cost correlations for
equipment in supercritical CO2 power
cycle plants.

Details are given for each method later
in this documentation, however, there
are many similarities between methods
as discribed below:

Costing sub-blocks

In general, when get_PP_costing or
get_sCO2_unit_cost is called on an in-
stance of a unit model, a new sub-block
is created on that unit named costing
(i.e. flowsheet.unit.costing). All vari-
ables and constraints related to cost-
ing will be constructed within this new
block (see detailed documentation for
each unit for details on these variables
and constraints).

Capital Cost Stages

There are multiple stages of capital cost,
the lowest stage is the equipment cost
which only includes the cost of manu-
facturing the equipment. The next stage
is the bare erected cost (BEC) which in-
cludes the equipment cost and the cost of
material and labor for installation. The
final stage is the total plant cost (TPC)
which includes the BEC plus the engi-
neering fee, process contingency, and
project contingency, all of which are
typically estimated as a percentage of
BEC.

𝑏𝑎𝑟𝑒_𝑒𝑟𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑠𝑡 = 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 * (1 +𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙_𝑐𝑜𝑠𝑡+ 𝑙𝑎𝑏𝑜𝑟_𝑐𝑜𝑠𝑡)

𝑡𝑜𝑡𝑎𝑙_𝑝𝑙𝑎𝑛𝑡_𝑐𝑜𝑠𝑡 = 𝑏𝑎𝑟𝑒_𝑒𝑟𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑠𝑡 * (1 + 𝑒𝑛𝑔_𝑓𝑒𝑒+ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦 + 𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑐𝑦)
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Note: The equations above assume the additional costs (eng_fee or process and project contingencies) are given as
percentages of BEC and TPC.

All costing methods calculate the bare
erected and total plant costs. The sCO2
library is currently the only one that in-
cludes an equipment cost.

Dollar year scaling

The value of money decreases over time
due to inflation and missed investment
opportunity. Thus, all costs must be nor-
malized to the same dollar year to be
compared on a consistent basis. This is
done using a CE index and the following
formula:

𝑏𝑎𝑟𝑒_𝑒𝑟𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑠𝑡 = 𝑏𝑎𝑟𝑒_𝑒𝑟𝑒𝑐𝑡𝑒𝑑_𝑐𝑜𝑠𝑡𝑏𝑎𝑠𝑒_𝑦𝑒𝑎𝑟 * (𝐶𝐸_𝑖𝑛𝑑𝑒𝑥/𝐶𝐸_𝑖𝑛𝑑𝑒𝑥𝑏𝑎𝑠𝑒_𝑦𝑒𝑎𝑟)

In the costing functions this equation is
built into the constraint for the lowest
level capital cost in the selected method.

Table 1. Base years of costing modules

Module Base Year
Power Plant Costing 2018
sCO2 Costing 2017
ASU 2011

The first time a ‘get costing’ function is
called for a unit operation within a flow-
sheet, an additional costing block is cre-
ated on the flowsheet object (i.e. flow-
sheet.costing) in order to hold any global
parameters relating to costing. The most
common of these paramters is the CE in-
dex parameter. The CE index will be set
to the base year of the method called.

Note: The global paramters are created when the first instance of get_costing is called and use the values provided
there for initialization. Subsequent get_costing calls use the existing paramters, and do not change the initialized values.
i.e. any “year” argument provided to a get_costing call after the first will be ignored.

To manually set the dollar year the user
must call m.fs.get_costing(year=2019)
before any calls to a ‘get costing’ func-
tion are made.
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Power Plant Costing Module

A default costing module has been de-
veloped based on the capital cost scal-
ing methodology from NETL’s Bitumi-
nous Baseline Report Rev 4 [1]. It
provides costing correlations for com-
mon variants of pulverized coal (PC),
integrated gassification combined cycle
(IGCC), and natural gas combined cycle
(NGCC) power generation technologies.
Users should refer to reference [2] for
details of the costing correlations, how-
ever, a summary is provided below.

The module breaks down the cost of
a power plant into separate accounts
for each system within the plant. The
accounts are scaled based on a pro-
cess parameter that determines the size
of the equipment needed. The cost
of the account is computed based on
the scaled parameter, reference param-
eter, reference cost, and scaling expo-
nent determined by NETL in [1]. This
equation is similar to a six tenth fac-
tor approach, however, the exponents
have been trained using several vendor
quotes.

𝑠𝑐𝑎𝑙𝑒𝑑_𝑐𝑜𝑠𝑡 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑐𝑜𝑠𝑡 * (
𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑎𝑟𝑎𝑚

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑝𝑎𝑟𝑎𝑚
)𝛼

where:

• sacaled_cost - the cost of the system in
Million dollars

• reference_cost - the cost of the reference
system in thousands of dollars

• scaled_param - the value of the system’s
process parameter

• reference_param - the value of the refer-
ence system’s process parameter

• alpha - scaling exponent

Note: The capital cost scaling equation can be applied to any capital cost stage. In the power plant costing library it
is applied to the bare erected cost, while in the sCO2 library it is applied to the equipment cost.

The Power Plant costing method has
five arguments, self, cost_accounts,
scaled_param, units, and tech.
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• self : an existing unit model or Pyomo
Block

• cost_accounts : A list of accounts or
a string containing the name of a pre-
named account. If the input is a list
all accounts must share the same pro-
cess parameter. Pre-named accounts are
listed below.

• scaled_param : The Pyomo Variable
representing the accounts’ scaled pa-
rameter

• tech : The technology to cost, different
technologies have different accounts.

1. Supercritical PC,

2. Subcritical PC,

3. Two-stage, slurry-feed IGCC

4. Single-stage, slurry-feed IGCC

5. Single-stage, dry-feed IGCC,

6. Natural Gas Combined Cycle (NGCC),

7. Advanced Ultrasupercritical PC

• units : The user must pass a string with
the units the scaled_param is in. It
serves as a check to make sure the cost-
ing method is being used correctly.

Many accounts scale using the same
process parameter. For convenience the
user is allowed to enter accounts as a list
instead of having to cost each account
individually. If the accounts in the list
do not use the same process parameter
an error will be raised.

It is recognized that many users will be
unfamiliar with the accounts in the Bi-
tuminous Baseline. For this reason the
cost_accounts argument will also accept
a string with the name of a pre-named
account. Pre-nammed accounts aggre-
gate the relevant accounts for certain
systems. The pre-named accounts for
each technology can be found in the ta-
bles below.

Table 2. Pre-named Accounts for PC
technologies

756 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Pre-named Account Accounts Included Process Parameter Units
Coal Handling 1.1, 1.2, 1.3, 1.4, 1.9a Coal Feed Rate lb/hr
Sorbent Handling 1.5, 1.6, 1.7, 1.8, 1.9b Limestone Feed Rate lb/hr
Coal Feed 2.1, 2.2, 2.9a Coal Feed Rate lb/hr
Sorbent Feed 2.5, 2.6, 2.9b Limestone Feed Rate lb/hr
Feedwater System 3.1, 3.3 HP BFW Flow Rate lb/hr
PC Boiler 4.9 HP BFW Flow Rate lb/hr
Steam Turbine 8.1 Steam Turbine Power kW
Condenser 8.3 Condenser Duty MMBtu/hr
Cooling Tower 9.1 Cooling Tower Duty MMBtu/hr
Circulating Water System 9.2, 9.3, 9.4, 9.6, 9.7 Circulating Water Flow Rate gpm
Ash Handling 10.6, 10.7, 10.9 Total Ash Flow lb/hr

Table 3. Pre-named Accounts for IGCC
technologies

Pre-named Account Accounts Included Process Parameter Units
Coal Handling 1.1, 1.2, 1.3, 1.4, 1.9 Coal Feed Rate lb/hr
Coal Feed 2.1, 2.2, 2.9 Coal Feed Rate lb/hr
Feedwater System 3.1, 3.3 HP BFW Flow Rate lb/hr
Gasifier 4.1 Coal Feed Rate lb/hr
Syngas Cooler 4.2 Syngas Cooler Duty MMBtu/hr
ASU 4.3a Oxygen Production tpd
ASU Oxidant Compression 4.3b Main Air Compressor Power kW
Combustion Turbine 6.1, 6.3 Syngas Flowrate lb/hr
Syngas Expander 6.2 Syngas Flowrate lb/hr
HRSG 7.1, 7.2 HRSG Duty MMBtu/hr
Steam Turbine 8.1 Steam Turbine Power MW
Condenser 8.3 Condenser Duty MMBtu/hr
Cooling Tower 9.1 Cooling Tower Duty MMBtu/hr
Circulating Water System 9.2, 9.3, 9.4, 9.6, 9.7 Circulating Water Flow Rate gpm
Slag Handling 10.1, 10.2, 10.3, 10.6, 10.7, 10.8, 10.9 Slag Production lb/hr

Table 4. Pre-named Accounts for
NGCC technologies

Pre-named Account Accounts Included Process Parameter Units
Feedwater System 3.1, 3.3 HP BFW Flow Rate lb/hr
Combustion Turbine 6.1, 6.3 Fuel Gas Flow lb/hr
HRSG 7.1, 7.2 HRSG Duty MMBtu/hr
Steam Turbine 8.1 Steam Turbine Power kW
Condenser 8.3 Condenser Duty MMBtu/hr
Cooling Tower 9.1 Cooling Tower Duty MMBtu/hr
Circulating Water System 9.2, 9.3, 9.4, 9.6, 9.7 Circulating Water Flow Rate gpm

The library has a 7th technology of
AUSC. These operate at higher temper-
atures that traditional PC plants. The li-
brary contains modified correlation for
the PC boiler, steam turbine, and steam
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piping to reflect the use of high temper-
ature materials.

Table 5. Pre-named Accounts for AUSC
technologies

Pre-named Account Accounts Included Process Parameter Units
PC Boiler 4.9 HP BFW Flow Rate lb/hr
Steam Turbine 8.1 Steam Turbine Power kW
Steam Piping 8.4 HP BFW Flow Rate lb/hr

A call to get_PP_costing creates two
variables and two constraints for each
account in the list. The variables are
bare_erected_cost and total_plant_cost.
Both variables are indexed by the ac-
count number in string format. The
function makes a new block called
self.costing where all variables and pa-
rameters associated with costing are
stored.

Note: The bare_erected_cost and total_plant_cost are in Million dollars.

Example

Below is a simple example of how to add
cost correlations to a flowsheet includ-
ing a heat exchanger using the default
IDAES costing module.

from pyomo.environ␣
→˓import (ConcreteModel,
→˓ SolverFactory)
from idaes.
→˓core import FlowsheetBlock
from idaes.
→˓generic_models.unit_models.
→˓heat_exchanger import \

(HeatExchanger,
→˓ HeatExchangerFlowPattern)
from idaes.generic_models.
→˓properties import iapws95
from idaes.
→˓power_generation.costing.
→˓power_plant_costing import \

(get_PP_
→˓costing, initialize_costing,
→˓ display_total_plant_costs,

display_flowsheet_cost)

(continues on next page)
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(continued from previous page)

m = ConcreteModel()
m.fs = FlowsheetBlock(default=
→˓{"dynamic": False})

m.fs.properties = iapws95.
→˓Iapws95ParameterBlock()

m.fs.unit␣
→˓= HeatExchanger(default={

␣
→˓ "shell": {"property_
→˓package": m.fs.properties},
␣

→˓ "tube": {"property_
→˓package": m.fs.properties},

"flow_pattern
→˓": HeatExchangerFlowPattern.
→˓countercurrent})
# set inputs
m.fs.unit.shell_inlet.flow_
→˓mol[0].fix(100) # mol/s
m.fs.unit.shell_inlet.enth_
→˓mol[0].fix(3500) # j/s
m.fs.unit.
→˓shell_inlet.pressure[0].
→˓fix(101325) # Pa

m.fs.unit.tube_
→˓inlet.flow_mol[0].fix(100)
m.fs.unit.tube_
→˓inlet.enth_mol[0].fix(4000)
m.fs.unit.tube_inlet.
→˓pressure[0].fix(101325.0)

m.fs.unit.area.fix(1000) # m2
m.fs.unit.overall_
→˓heat_transfer_coefficient.
→˓fix(100) # W/m2K

m.fs.unit.initialize()

m.fs.
→˓unit.duty_MMbtu = pyo.Var(

m.fs.time,
initialize=1e5,
doc="Condenser␣

→˓duty in MMbtu/hr")

@m.fs.
→˓unit.Constraint(m.fs.time)
def duty_conversion(b, t):

conv_fact = 3.412/1e6

(continues on next page)
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(continued from previous page)

return b.duty_MMbtu[t]␣
→˓== conv_fact*b.heat_duty[t]

get_PP_costing(m.fs.unit,
→˓ 'Condenser', m.fs.unit.
→˓duty_MMbtu, 'MMBtu/hr', 1)
# initialize costing equations
initialize_costing(fs)

opt = SolverFactory('ipopt')
opt.options = {
→˓'tol': 1e-6, 'max_iter': 50}
results␣
→˓= opt.solve(m, tee=True)

display_total_plant_costs(fs)
display_flowsheet_cost(fs)

Supercritical CO2 Costing Module

The sCO2 costing function, besides in-
cluding the capital cost and engineer-
ing of the equipment, it can cost penalty
due to the high temperature and pres-
sure equipment required for sCO2 PC
plants. The function has has five argu-
ments, self, equipment, scaled_param,
temp_C, and n_equip.

• self : an existing unit model or Pyomo
Block

• equipment : The type of equipment to
be costed, see table 6

• scaled_param : The Pyomo Variable
representing the component’s scaled pa-
rameter

• temp_C : The Pyomo Variable repre-
senting the hottest temperature of the
piece of equiment being costed. Some
pieces of equipment do not have a tem-
perature associated with them, so the de-
fault argument is None.

• n_equip : The number of pieces of
equipment to be costed. The function
will evenly divide the scaled parameter
between the number passed.

The equipment cost is calculated using
the following two equations. A temper-
ature correction factor account for ad-
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vanced materials needed at high temper-
atures.

𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡_𝑐𝑜𝑠𝑡 = 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑐𝑜𝑠𝑡 * (𝑠𝑐𝑎𝑙𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)𝛼 * 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑓𝑎𝑐𝑡𝑜𝑟

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 = 1 + 𝑐 * (𝑇 − 𝑇𝑏𝑝) + 𝑑 * (𝑇 − 𝑇𝑏𝑝)2 : 𝑖𝑓𝑇 ≥ 𝑇𝑏𝑝

(𝑖𝑓𝑇 > 550, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 = 1)

𝑇𝑏𝑝 = 550𝐶

The bare erected and total plant costs
are calculated as shown in the introduc-
tion. There are currently no estimates
for the total plant cost components, so
bare erected cost will be the same as to-
tal plant cost for now.

Five variables and constraints are cre-
ated within the costing block. Three
are for the equipment, bare erected, and
total plant costs. One is for the tem-
perature correction factor. The last one
is for the scaled parameter divided by
n_equip.

Table 6. sCO2 Costing Library Compo-
nents

Component Scaling Parameter Units
Coal-fired heaters 𝑄 𝑀𝑊𝑡ℎ

Natural gas-fired heaters 𝑄 𝑀𝑊𝑡ℎ

Recuperators 𝑈𝐴 𝑊/𝐾
Direct air coolers 𝑈𝐴 𝑊/𝐾
Radial turbines 𝑊𝑠ℎ 𝑀𝑊𝑠ℎ

Axial turbines 𝑊𝑠ℎ 𝑀𝑊𝑠ℎ

IG centrifugal compressors 𝑊𝑠ℎ 𝑀𝑊𝑠ℎ

Barrel type compressors 𝑉𝑖𝑛 𝑚3/𝑠
Gearboxes 𝑊𝑒 𝑀𝑊𝑠ℎ

Generators 𝑊𝑒 𝑀𝑊𝑒

Explosion proof motors 𝑊𝑒 𝑀𝑊𝑒

Synchronous motors 𝑊𝑒 𝑀𝑊𝑒

Open drip-proof motors 𝑊𝑒 𝑀𝑊𝑒

Other Costing Modules

Air Separation Unit

The ASU costing function calculates
total plant cost in the exact same
way as the get_PP_costing function.
get_ASU_cost takes two arguments:
self, and scaled_param.

• self - a Pyomo Block or unit model
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• scaled_param - The scaled parameter.
For the ASU it is the oxygen flowrate in
units of tons per day.

Utility Functions

Initialize Costing

The costing_initialization function will
initialize all the variable within every
costing block in the flowsheet. It takes
one argument, the flowsheet object. It
should be called after all the calls to ‘get
costing’ functions are completed.

The function iterates through the flow-
sheet looking for costing blocks and cal-
culates variables from constraints.

Total Flowsheet Cost Constraint

For optimization, a constraint summing
all the total plant costs is required. Call-
ing build_flowsheet_cost_constraint(m)
creates a variable named
m.fs.flowsheet_cost and builds the
required constraint at the flowsheet
level.

Note: The costing libraries can be used for simulation or optimization. For simulation, costing constraints can be built
and solved after the flowsheet has been solved. For optimization, the costing constraints will need to be solved with the
flowsheet.

Display Total Flowsheet Cost

Calling display_flowsheet_cost(m) will
print the value of m.fs.flowsheet_cost.

Display Individual Costs

There are three functions for displaying
individual costs.

• display_total_plant_costs(fs)

• display_bare_erected_costs(fs)

• display_equipment_costs(fs)
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Each one prints out a list of the costed
blocks and the cost level of the function
chosen. The functions should be called
after solving the model.

Checking Bounds

Currently, only the sCO2 module has
support for checking bounds.

All costing methods have a range,
outside of which the correla-
tions become inaccurate. Calling
check_sCO2_costing_bounds(fs) will
display which components are within
the proper range and which are outside
it. It should be called after the model is
solved.
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Proportional-Integral-Derivative (PID) Controller

The IDAES framework contains a basic
PID control implementation, this sec-
tion describes the dynamic power plant
PID controller model.

Introduction

The PID controller model represents a
PID controller in a feedback control
loop of a process plant. Depending
on the user specified configuration, this
model can be configurated as a propor-
tional only (P), proportional and integral
(PI), proportional and derivative (PD),
or proportional, integral and derivative
(PID) controller. When declaring a con-
troller model, the user needs to spec-
ify the model type through the config-
uration option “type”, the process vari-
able to be controlled y(t) through the
configuration option “pv”, and the ma-
nipulated variable u(t) through the con-
figuration option “mv”. The “pv” and
“mv” variables can be any of the time-
indexed variable on a dynamic flow-
sheet. The setpoint of the process vari-
able r(t) is a variable declared inside
the model named as “setpoint”, which is
usually fixed or specified as a function of
other process variables. The variable or
expression for the error e(t) is defined as the setpoint minus the process variable to be controlled.

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)

Since the proportional part exists in any type of controllers, the gain for the proportional part K_p (t) named as “gain_p”
is always included as a variable in the model. Note that the gain is declared as a time-indexed variable since it could
be changed from time to time if a gain scheduling approach is applied. If the model contains the integral part (for a PI
or PID type controller), the user needs to specify the gain for the integral part K_i (t) named as “gain_i”. A variable
named “integral_of_error” is also declared inside the model for the integral error e_i (t) defined as

𝑒𝑖(𝑡) =

∫︁ 𝑡

0

𝑒(𝑡′)d𝑡′

Since Pyomo.DAE does not provide a direct method to calculate the integral of a variable for the discretized equations,
the PID controller model declares the integral term as a regular variable and a constraint that sets the derivative of the
integral term with respect to time as the error term e(t)

d𝑒𝑖(𝑡)
d𝑡

= 𝑒(𝑡)

If the model contains the derivative part (for a PD or PID type controller), the user needs to specify the gain for the
derivative part K_i (t) named as “gain_d”. A derivative variable named “derivative_of_error” is also declared inside
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the model for the derivative error e_d (t) defined as

𝑒𝑖(𝑡) =
d𝑒(𝑡)

d𝑡
Pyomo.DAE provides a method to calculate the derivative error using its “DerivativeVar” declaration for the discretized
equations.

For a general PID controller, the devia-
tion of the manipulated variable from its
steady-state value u’(t) can be expressed
as

𝑢′(𝑡) = 𝐾𝑝𝑒(𝑡) +𝐾𝑖𝑒𝑖(𝑡) +𝐾𝑑𝑒𝑑(𝑡)

Note that the terms for the integral and
derivative part on the right side of the
equation could be zero depending on the
controller type. The actual output for
the manipulated variable u(t) is calcu-
lated as the sum of the deviation term
u’(t) and the reference value also known
as steady-state bias u_ref

𝑢(𝑡) = 𝑢′(𝑡) + 𝑢𝑟𝑒𝑓

Note that the steady-state bias is refer-
ence value that is not time-indexed in the
current model. To account for an actu-
ator saturation condition, the calculated
manipulated variable u(t) can optionally
be clamped within a range between its lower and upper bounds. For example, a control valve cannot close to less than
0% or open to more than 100%. To declare this option, the configuration option “bounded_output” is set to True. With
this option turned on, the user needs to set the value for two mutable parameters. Parameter “mv_lb” is for the lower
bound and parameter “mv_ub” is for the upper bound. If they are not set by the user, the default values of 0.05 and
1 for the lower and upper bounds will be used as defaults, respectively. Different clamping function has been tried
to make the output of the manipulated variable u(t) within the lower and upper bounds. Since Pyomo model requires
all functions to be smooth and differentiable, current PID controller model uses a sigmoid function as the clamping
function. If the lower and upper bounds of u are u_l and u_u, respectively, the sigmoid function is defined as

𝑓(𝑢) = 𝑢𝑙 +
𝑢𝑢 − 𝑢𝑙

1 + 𝑒𝑥𝑝[− 4(𝑢−𝑢𝑙+𝑢𝑢
2 )

𝑢𝑢−𝑢𝑙
]

where u is the calculated manipulated variable before the clamping function is applied and f(u) is the actual output
value for the manipulated variable. This function has the following properties:

𝑓(−∞) = 𝑢𝑙

𝑓(∞) = 𝑢𝑢

𝑓(
𝑢𝑙 + 𝑢𝑢

2
) =

𝑢𝑙 + 𝑢𝑢
2

d𝑓
d𝑢

(
𝑢𝑙 + 𝑢𝑢

2
) = 1

Certainly, it is also smooth and differentiable. One disadvantage of the function is that when all error terms are zero
(e(t)=e_i (t)=e_d (t)=0), the final output for the manipulated variable is not steady-state bias unless the bias is the same
as the average of the lower and upper bound values.

𝑓(𝑢) ̸= 𝑈𝑟𝑒𝑓
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For a PI controller, if e(t)=0, to make f(u)=u_ref, the integral error e_i (t) should be set to a non-zero value, which can
be calculated as

𝑒(𝑖, 𝑜)(𝑡) =
1

𝐾𝑖
[
𝑢𝑙 + 𝑢𝑢

2
− 𝑈𝑟𝑒𝑓 − 𝑢𝑢 − 𝑢𝑙

4
ln(

𝑢𝑢 − 𝑢𝑙
𝑢𝑟𝑒𝑓 − 𝑢𝑙

− 1)]

The model provides an expression named “integral_of_error_ref” for the above equation. There is a similar expression
named “integral_of_error_mv” to calculate the required integral error for a given f(u) value when e(t)=0. While current
clamping function is quite robust in solving the dynamic system with PID controllers, a better clamping function is still
under development. If a manipulated variable is unlikely to reach saturation, it is recommended to disable the clamping
option. It needs to be mentioned that the integral error in an PID controller could causes the wind-up issue if it gets
larger and larger, especially for a slow process. To reset the wind-up at certain time, the dynamic simulation can be
performed in multiple discretized time periods and the integral error as a variable can be reset to zero or other small
values after solving one time period and before solving a subsequent time period. The PID controller model should
be declared only for a dynamic flowsheet. It needs to be mentioned that when a dynamic flowsheet is discretized in a
time domain, the calculation for the manipulated variable at the initial time is skipped. The user should provide the
initial condition for the manipulated variable. Also note that the current implementation of the PID controller model
ignore the measurement delay for the process variable. The current model simply provides continuous equations for
the controller model, which is solved by the discretization through Pyomo.DAE. This is different from the actual PID
installed at a plant where the controller calculates the current maneuver based on the measured process variable from
the previous time step.

Carbon Capture Model Library

The IDAES Process Modeling Frame-
work contains a library of models
specifically developed for modeling car-
bon capture systems. These models all
built off of the core IDAES modeling
framework and model libraries.

Monoethanolamine(MEA) Solvent System Model Library

The IDAES Process Modeling Frame-
work contains a library of models
specifically developed for modeling
post-combustion carbon capture sys-
tems using the baseline MEA solvent.
These models are all built off of the core
IDAES modeling framework.

Unit Models

MEA Packed Column

The first generation (GEN 1) rate-
based IDAES Packed Column model
represents a unit operation for MEA-
based post-combustion carbon capture
for both absorption and stripping pro-
cesses. The contactor model uses an en-
hancement factor model that is superior
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to the Hatta number approximation and
more accurate over a wide range of op-
erating conditions. The vapor and liq-
uid streams flow in a counter-current ar-
rangement as shown in Figure 1(A). For
more information on the Column model
see Akula et al. (2021).

Fig. 28: Figure 1. Schematic diagram of : (A) Packed column (B) Packed column structure in IDAES

Degrees of Freedom

Once the configuration parame-
ters (construction arguments of the
PackedColumn Class) have been
specified, the remaining degrees of
freedom for the PackedColumn are
the operating and design parameters
as listed in the Specification Table
below. The indexed components for
mole_frac_comp depend on the phase
and process_type as follows:

• Vapor phase:

– absorption process: H2O, CO2, N2,
O2.

– stripping process: H2O, CO2.

• Liquid phase:

– all process types: H2O, MEA and CO2.

Due to the reactions in the liquid
phase, the apparent species (H2O, MEA
and CO2) are reconstituted from the
true species (H2O, MEA, CO2, MEA+,
MEACOO-, HCO3-) in the speciation
model based on the kinetics below:

CO2 + 2MEA� MEA+ + MEACOO−

CO2 + MEA + H2O� MEA+ + HCO−
3
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Specification

Variable Name Description Units
Configuration parameters
process_type Flag indicating either absorption or stripping process None
packing_specific_area Specific surface area of packing 𝑚2/𝑚3

packing_void_fraction Void fraction of the packing None
fix_column_pressure Indicates whether the column pressure should be fixed None
column_pressure Value of fixed column pressure 𝑃𝑎
Design parameters
diameter_column Column diameter 𝑚
length_column Column length 𝑚
Operating parameters
vapor_inlet.flow_mol Vapor/Gas inlet total molar flowrate 𝑚𝑜𝑙/𝑠
vapor_inlet.temperature Vapor/Gas inlet temperature 𝐾
vapor_inlet.pressure Vapor/Gas inlet pressure 𝑃𝑎
vapor_inlet.mole_frac_comp Vapor/Gas inlet mole fraction indexed by component None
liquid_inlet.flow_mol Liquid inlet total molar flowrate 𝑚𝑜𝑙/𝑠
liquid_inlet.temperature Liquid inlet temperature 𝐾
liquid_inlet.pressure Liquid inlet pressure 𝑃𝑎
liquid_inlet.
mole_frac_comp

Liquid inlet mole fraction indexed by component None

Model Structure

The PackedColumn unit model
consists of two ControlVolume1D
Blocks (named vapor_phase and
liquid_phase), each with one
Inlet Port (named vapor_inlet
and liquid_inlet) and one Out-
let Port (named vapor_outlet
and liquid_outlet) as shown in
Figure 1(B). The vapor_phase Con-
trolVolume1D Block uses the Vapor
Phase Property Methods while the
liquid_phase ControlVolume1D
Block block uses the Liquid Phase
Property Methods. Both property
packages are built off of the Physical
Property Package Class.
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Additional Constraints (Performance Equations)

The PackedColumn unit writes addi-
tional Constraints beyond those writ-
ten by the ControlVolume1D Blocks to
describe the reactive absorption / des-
orption process for post-combustion car-
bon capture using MEA solvent.

Initialization

The PackedColumn unit uses two ho-
motopy/continuation parameters ( 𝜆1,
𝜆2) as shown in Figure 2 to initalize
the column in steady-state mode (this
is extended over the entire time hori-
zon for dynamic simulation while fix-
ing the accumulation terms to zero).
The functions, 𝑔1(𝑥), 𝑔2(𝑥), 𝑓(𝑥),
describe the Constraints when the
homotopy parameters become zero or
unity. The initialization routine uses
the user-provided inputs to initialize the
properties and then first solves only
the material balance equations by turn-
ing off the heat and mass transfer rates
Constraints. Then, the isothermal
chemical absorption continuation pa-
rameter, 𝜆1, is used to turn on the mass
transfer Constraints gradually with
values ranging from 0 to 1. Subse-
quently, the adiabatic chemical absorp-
tion continuation parameter, 𝜆2, is used
to turn on the heat transfer equations
gradually with values ranging from 0 to 1 to finish initializing the PackedColumn. Lastly, for dynamic simulation, the
accumulation terms are computed to initialize the dynamic column.

PackedColumn Class

class idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.column.PackedColumn(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”
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Fig. 29: Figure 2. Packed Column Initialization Strategy

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

area_definition Argument defining
whether area variable should be
spatially variant or not. default -
DistributedVars.uniform. Valid val-
ues: { DistributedVars.uniform - area
does not vary across spatial domian,
DistributedVars.variant - area can vary
over the domain and is indexed by time
and space.}

finite_elements Number of finite ele-
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ments to use when discretizing length
domain (default=20)

length_domain_set length_domain_set -
(optional) list of point to use to initialize
a new ContinuousSet if length_domain
is not provided (default = [0.0, 1.0])

transformation_method Method to
use to transform domain. Must be
a method recognised by the Pyomo
TransformationFactory, default -
“dae.finite_difference”. Valid values:
{ “dae.finite_difference” - Use a finite
difference transformation method,
“dae.collocation” - use a collocation
transformation method}

collocation_points Number of colloca-
tion points to use per finite element
when discretizing length domain (de-
fault=3)

flow_type PackedColumn flow pattern,
default - FlowPattern.countercurrent.
Valid values: { FlowPat-
tern.countercurrent - countercur-
rent flow, FlowPattern.cocurrent -
cocurrent flow}

process_type Flag indicating either ab-
sorption or stripping process. default
- ProcessType.absorber. Valid values:
{ ProcessType.absorber - absorption
process, ProcessType.stripper - strip-
ping process.}

packing_specific_area Surface area
of packing per unit volume of col-
umn(default= 250 m2/m3)

packing_void_fraction Packing porosity
or void fraction (default= 0.97 )

fix_column_pressure Indicates whether
the column pressure should be fixed or
not. The momentum balances are not
added when this is True. default - True.
Valid values: { True - fix the column
pressure and do not add momentum bal-
ances, False -Do not fix the column
pressure and add momentum balances}

column_pressure Fixed column operat-
ing pressure in Pa

vapor_side vapor side config arguments

has_pressure_change Indicates whether
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terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

pressure_drop_type
Indicates
what type
of pres-
sure drop
correla-
tion should
be used, de-
fault- None.
Valid val-
ues: {
None -
set pres-
sure drop
to zero,
“Stichlmair_Fair_Bravo_correlation”
- Use the
Stichlmair_Fair_Bravo_correlation
model “GPDC- Kister” - Use
the Generalized Pressure Drop
Correlation of Kister 2007 “Bil-
let_Schultes_correlation” - Use the
Billet_Schultes_correlation model}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

transformation_scheme Scheme to use
when transformating domain. See
Pyomo documentation for supported
schemes, default - “BACKWARD”.
Valid values: { “BACKWARD”
- Use a BACKWARD finite differ-
ence transformation method, “FOR-
WARD”” - Use a FORWARD finite
difference transformation method,
“LAGRANGE-RADAU”” - use a
collocation transformation method}
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liquid_side liquid side config arguments

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

pressure_drop_type
Indicates
what type
of pres-
sure drop
correla-
tion should
be used, de-
fault- None.
Valid val-
ues: {
None -
set pres-
sure drop
to zero,
“Stichlmair_Fair_Bravo_correlation”
- Use the
Stichlmair_Fair_Bravo_correlation
model “GPDC- Kister” - Use
the Generalized Pressure Drop
Correlation of Kister 2007 “Bil-
let_Schultes_correlation” - Use the
Billet_Schultes_correlation model}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

transformation_scheme Scheme to use
when transformating domain. See
Pyomo documentation for supported
schemes, default - “BACKWARD”.
Valid values: { “BACKWARD”
- Use a BACKWARD finite differ-
ence transformation method, “FOR-
WARD”” - Use a FORWARD finite
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difference transformation method,
“LAGRANGE-RADAU”” - use a
collocation transformation method}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (PackedColumn) New instance

PackedColumnData Class

class idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.column.PackedColumnData(component)

Standard Continous Differential Con-
tactor (CDC) Model Class.

build()

Begin building model (pre-DAE trans-
formation).

Parameters None –

Returns None

fix_initial_condition()

Initial condition for material and en-
thalpy balance.

Mass balance : Initial condition is deter-
mined by fixing n-1 mole fraction and
the total molar flowrate

Energy balance :Initial condition is de-
termined by fixing the temperature.

initialize(vapor_phase_state_args=None, liquid_phase_state_args=None, state_vars_fixed=False,
homotopy_steps_m=None, homotopy_steps_h=None, outlvl=0, solver=None, optarg=None)

Column initialization.

Parameters

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
documentation of the specific property
package) (default = None).
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• homotopy_steps_m – List of continu-
ations steps between 0 and 1 for turning
mass transfer constrainst gradually

• homotopy_steps_h – List of continu-
ations steps between 0 and 1 for turning
heat transfer constraints gradually

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use IDAES default solver)

make_dynamic_column_profile()

Dynamic Plot function for Temperature
and CO2 Pressure profile.

make_steady_state_column_profile()

Steady-state Plot function for Tempera-
ture and CO2 Pressure profile.

unfix_initial_condition()

Function to unfix initial condition for
material and enthalpy balance.
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Plate Heat Exchanger

The thermal model of IDAES Plate Heat
Exchanger (PHE) as part of the MEA
scrubbing process for post-combustion
carbon capture (PCC) is based on the
Effectiveness-Number of Transfer Units
(e-NTU) approach. In amine-based
PCC, the rich solvent leaving the ab-
sorber is pre-heated in the PHE using
heat recovered from the lean solvent
leaving the stripper to reduce the regen-
eration energy requirement. In the PHE
unit, the series of plates stacked together
form channels where hot and cold flu-
ids flow alternatively as shown in Fig-
ure 1(A). Divider plates enable the par-
titioning of PHEs into different operat-
ing zones. The main dimensions of a
gasket plate are shown in Figure 1(B).
The PHE is a viable alternative to the
conventional Shell and Tube Heat Ex-
changer specifically because of its lower
approach temperature difference capa-
bility. For more information on the PHE
model see Akula et al. (2019).

Fig. 30: Figure 1(A). Z-configuration Plate Heat Exchanger with P passes

776 Chapter 4. Contents

https://doi.org/10.1016/B978-0-12-818597-1.50008-4


IDAES Documentation, Release 1.10.1

Fig. 31: Figure 1(B). Basic details of a Chevron Plate

Degrees of Freedom

Once the configuration parameters (con-
struction arguments of the PHE Class)
have been specified, the PHE unit model
has 12 degrees of freedom which are
the operating parameters as listed in the
Specification Table below. The indexed
components for mole_frac_comp are
H2O, MEA and CO2.
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Specification

Variable Name Description Units
Configuration parameters
passes Number of passes of the fluids None
channel_list Number of channels in each pass as a list None
divider_plate_number Number of divider plates None
port_diameter Diameter of the plate ports (Dp) 𝑚
plate_thermal_cond Thermal conductivity of the plate material 𝑊/𝑚.𝐾
total_area Total heat transfer area as specified by the manufacturer 𝑚2

plate_thickness Plate thickness 𝑚
plate_vertical_dist Vertical distance between centers of ports (Lv) 𝑚
plate_horizontal_dist Horizontal distance between centers of ports (Lh) 𝑚
plate_pact_length Compressed plate pact length (optional) 𝑚
surface_enlargement_factor Ratio of single plate area obtained from the total area to the

projected plate area (optional)
None

plate_gap Distance between two adjacent plates that forms a flow chan-
nel

𝑚

Operating parameters
hot_inlet.flow_mol Hot fluid inlet total molar flowrate 𝑚𝑜𝑙/𝑠
hot_inlet.temperature Hot fluid inlet temperature 𝐾
hot_inlet.pressure Hot fluid inlet pressure 𝑃𝑎
hot_inlet.mole_frac_comp Hot fluid inlet mole fraction indexed by component None
cold_inlet.flow_mol Cold fluid inlet total molar flowrate 𝑚𝑜𝑙/𝑠
cold_inlet.temperature Cold fluid inlet temperature 𝐾
cold_inlet.pressure Cold fluid inlet pressure 𝑃𝑎
cold_inlet.
mole_frac_comp

Cold fluid inlet mole fraction indexed by component None

Model Structure

The PHE unit model consists of two
ControlVolume0D Blocks (named
hot_side and cold_side), each with
one Inlet Port (named hot_inlet
and cold_inlet) and one Out-
let Port (named hot_outlet and
cold_outlet). The hot_side and
cold_side ControlVolume0D Blocks
use the Liquid Phase Property Meth-
ods which is built off of the Physical
Property Package Class. The Energy
balance is based on the Effectiveness
Number of Transfer Units (e-NTU
method) and is included as performance
equations (Additional Constraints).
Hence, the control volume energy
balances are not added.
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Additional Constraints

The PHE unit model writes addi-
tional Constraints beyond those writ-
ten by the ControlVolume0D Blocks
to describe the heat exchange between
the rich and lean solvent for post-
combustion carbon capture using MEA
solvent.

PHE Class

class idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.phe.PHE(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

passes Number of passes of the fluids
through the heat exchanger

channel_list Number of channels to be
used in each pass where a channel is the
space between two plates with a flowing
fluid

divider_plate_number Divider plates
are used to create separate partitions in
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the unit. Each pass can be separated by
a divider plate

port_diameter Diameter of the ports on
the plate for fluid entry/exit into a chan-
nel

plate_thermal_cond Thermal conduc-
tivity of the plate material [W/m.K]

total_area Total heat transfer area as
specifed by the manufacturer

plate_thickness Plate thickness

plate_vertical_dist Vertical distance be-
tween centers of ports.(Top and bottom
ports) (approximately equals to the plate
length)

plate_horizontal_dist Horizontal dis-
tance between centers of ports(Left and
right ports)

plate_pact_length Compressed plate
pact length. Length between the Head
and the Follower

surface_enlargement_factor Surface
enlargement factor is the ratio of single
plate area (obtained from the total area)
to the projected plate area

plate_gap The plate gap is the distance
between two adjacent plates that forms
a flow channel

hot_side Hot fluid config arguments

property_package Property parameter
object used to define property calcu-
lations default - useDefault. Valid
values: { useDefault - use default
package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

cold_side Cold fluid config arguments

property_package Property parameter
object used to define property calcu-
lations default - useDefault. Valid
values: { useDefault - use default
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package from parent model or flow-
sheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

property_package_args A ConfigBlock
with arguments to be passed to prop-
erty block(s) and used when construct-
ing these, default - None. Valid values:
{ see property package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (PHE) New instance

PHEData Class

class idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.phe.PHEData(component)

Plate Heat Exchanger(PHE) Unit
Model.

build()

General build method for UnitModel-
BlockData. This method calls a num-
ber of sub-methods which automate the
construction of expected attributes of
unit models.

Inheriting models should call su-
per().build.

Parameters None –

Returns None

initialize(hotside_state_args=None, coldside_state_args=None, outlvl=0, solver=None, optarg=None)

Initialisation routine for PHE unit (de-
fault solver ipopt)

Keyword Arguments

• state_args – a dict of arguments to be
passed to the property package(s) to pro-
vide an initial state for initialization (see
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documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initializa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None)

Returns None

References

1. Akula, P., Eslick, J., Bhattacharyya, D.,
& Miller, D. C. (2019). “Modelling
and Parameter Estimation of a Plate
Heat Exchanger as Part of a Solvent-
Based Post-Combustion CO2 Capture
System”, In Computer Aided Chemi-
cal Engineering (Vol. 47, pp. 47-
52). Elsevier. https://doi.org/10.1016/
B978-0-12-818597-1.50008-4

2. Kakac, S., Liu, H., & Pramuanjaroenkij,
A. (2012). Heat exchangers: selection,
rating, and thermal design. CRC press.

Property Models for MEA-Based Carbon-Capture

Liquid Phase Property Methods

The liquid phase property methods (and
parameters) for post-combustion car-
bon capture using Monoethalnolamine
(MEA) solvent includes :

• Liquid density and molar volume.

• Specific heat capacity of liquid (MEA,
H2O).

• Specific heat capacity of CO2-loaded
solution.

• Heat of CO2 absorption.

• Henry’s constant.

• Concentration based equilibrium con-
stants.

• Viscosity of the liquid solution.
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• Liquid thermal conductivity.

• Binary diffusivity of vapor components.

• Diffusivity of CO2 in aqueous MEA.

• Diffusivity of MEA in solution.

• Diffusivity of MEAH+ and MEACOO-.

• Liquid surface tension.

• Second order rate constant.

Vapor Phase Property Methods

The vapor phase property methods (and
parameters) for post-combustion carbon
capture includes :

• Vapor density and molar volume

• Vapor heat capacity

• Water vapor pressure

• Vapor viscosity of the pure components

• Vapor viscosity

• Vapor thermal conductivity

• Binary diffusivity of vapor components

Gas Solid Contactors Model Library

This specialized IDAES application li-
brary contains a suite of generic ad-
vanced models that are applicable to
gas-solid processes. The axially dis-
cretized models are one dimensional,
with two phases (gas and solid).

Flowsheet Models

Contents

Methane Combustion in a Moving Bed (steady-state)

Steady-state flowsheet example of the
moving bed reactor model for methane
combustion with an iron-oxide based
oxygen carrier.

This model is for demonstration and tu-
torial purposes only.

Inputs:
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• Bed diameter

• Bed height

• Gas feed - flowrate, pressure, tempera-
ture, composition

• Solid feed - flowrate, particle porosity,
temperature, composition

Methane Combustion in a Bubbling Fluidized Bed (steady-state)

Steady-state flowsheet example of
the bubbling fluidized bed model for
methane combustion with an iron-oxide
based oxygen carrier.

This model is for demonstration and tu-
torial purposes only.

Inputs:

• Bed diameter

• Bed height

• Number of orifices

• Gas feed - flowrate, pressure, tempera-
ture, composition

• Solid feed - flowrate, particle porosity,
temperature, composition

Oxygen Carrier Oxidation in a Bubbling Fluidized Bed (steady-state)

Steady-state flowsheet example of the
bubbling fluidized bed model for oxida-
tion of an iron-oxide based oxygen car-
rier with oxygen (air).

This model is for demonstration and tu-
torial purposes only.

Inputs:

• Bed diameter

• Bed height

• Number of orifices

• Gas feed - flowrate, pressure, tempera-
ture, composition

• Solid feed - flowrate, particle porosity,
temperature, composition
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Unit Models

Contents

Bubbling Fluidized Bed Reactor

The IDAES Bubbling Fluidized Bed Re-
actor (BFBR) model represents a unit
operation where two material streams,
a solid phase and a gas phase, pass
through a linear vessel while undergo-
ing chemical reaction(s). The BFBR
model is represented as a 1-D axially
discretized model with two phases (gas
and solid), and two regions (bubble and
emulsion). The model captures the gas-
solid interaction between both phases
and regions through reaction, mass and
heat transfer.

Assumptions:

• Cloud-wake region effects are negligig-
ble and are not modelled.

• Gas emulsion is at minimum fluidiza-
tion conditions.

• Gas feeds into emulsion region before
the excess enters into the bubble region.

• Gas and solids are well mixed in the ra-
dial direction but vary axially.

Requirements:

• Property package contains temperature
and pressure variables.

• Property package contains minimum
fluidization velocity and voidage param-
eters.

The BFBR model equations are de-
rived from:

• A. Lee, D.C. Miller. A one-dimensional
(1-D) three-region model for a bub-
bling fluidized-bed adsorber, Ind. Eng.
Chem. Res. 52 (2013) 469–484.
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Degrees of Freedom

BFBRs generally have at least 3 (or
more) degrees of freedom, consisting of
design and operating variables. The de-
sign variables of reactor length, diame-
ter and number of orifices in the distrib-
utor are typically the minimum variables
to be fixed.

Model Structure

The core BFBR unit model con-
sists of two inlet ports (named
gas_inlet and solid_inlet), two out-
let ports (named gas_outlet and
solid_outlet), and three ControlVol-
ume1DBlock Blocks (named bub-
ble_region, gas_emulsion_region and
solid_emulsion_region).

Construction Arguments

The IDAES BFBR model has construc-
tion arguments specific to the whole unit
and to the individual regions.

Arguments that are applicable to the
BFBR unit as a whole are:

• finite_elements - sets the number of fi-
nite elements to use when discretizing
the spatial domains (default = 10).

• length_domain_set - sets the list of point
to use to initialize a new ContinuousSet
(default = [0.0, 1.0]).

• transformation_method - sets the dis-
cretization method to use by the Py-
omo TransformationFactory to trans-
form the spatial domain (default =
dae.finite_difference):

– dae.finite_difference - finite difference
method.

– dae.collocation - orthogonal collocation
method.

• transformation_scheme - sets the
scheme to use when transforming a
domain. Selected schemes should
be compatible with the transforma-
tion_method chosen (default = None):
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– None - defaults to “BACKWARD” for
finite difference transformation method
and to “LAGRANGE-RADAU” for col-
location transformation method

– BACKWARD - use a finite difference
transformation method.

– FORWARD - use a finite difference
transformation method.

– LAGRANGE-RADAU - use a colloca-
tion transformation method.

• collocation_points - sets the number of
collocation points to use when discretiz-
ing the spatial domains (default = 3, col-
location methods only).

• flow_type - indicates the flow arrange-
ment within the unit to be modeled. Op-
tions are:

– ‘co-current’ - (default) gas and solid
streams both flow in the same direction
(from x=0 to x=1)

– ‘counter-current’ - gas and solid streams
flow in opposite directions (gas from
x=0 to x=1 and solid from x=1 to x=0).

• material_balance_type - indicates what
type of energy balance should be con-
structed (default = MaterialBalance-
Type.componentTotal).

– MaterialBalanceType.componentTotal -
use total component balances.

– MaterialBalanceType.total - use total
material balance.

• energy_balance_type - indicates what
type of energy balance should be
constructed (default = EnergyBalance-
Type.enthalpyTotal).

– EnergyBalanceType.none - excludes en-
ergy balances.

– EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material.

• momentum_balance_type - indicates
what type of momentum balance should
be constructed (default = Momentum-
BalanceType.pressureTotal).

– MomentumBalanceType.none - exclude
momentum balances.
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– MomentumBalanceType.pressureTotal
- single pressure balance for material.

• has_pressure_change - indicates
whether terms for pressure change
should be constructed (default = True).

– True - include pressure change terms.

– False - exclude pressure change terms.

Arguments that are applicable to the
gas phase:

• property_package - property pack-
age to use when constructing bubble
region Property Blocks (default =
‘use_parent_value’). This is provided
as a Physical Parameter Block by the
Flowsheet when creating the model. If
a value is not provided, the ControlVol-
ume Block will try to use the default
property package if one is defined.

• property_package_args - set of argu-
ments to be passed to the bubble region
Property Blocks when they are created
(default = ‘use_parent_value’).

• reaction_package - reaction package to
use when constructing bubble region
Reaction Blocks (default = None). This
is provided as a Reaction Parameter
Block by the Flowsheet when creating
the model. If a value is not provided,
the ControlVolume Block will try to use
the default property package if one is de-
fined.

• reaction_package_args - set of argu-
ments to be passed to the bubble region
Reaction Blocks when they are created
(default = None).

• has_equilibrium_reactions - sets flag to
indicate if terms of equilibrium con-
trolled reactions should be constructed
(default = False).

Arguments that are applicable to the
solid phase:

• property_package - property pack-
age to use when constructing bubble
region Property Blocks (default =
‘use_parent_value’). This is provided
as a Physical Parameter Block by the
Flowsheet when creating the model. If
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a value is not provided, the ControlVol-
ume Block will try to use the default
property package if one is defined.

• property_package_args - set of argu-
ments to be passed to the bubble region
Property Blocks when they are created
(default = ‘use_parent_value’).

• reaction_package - reaction package to
use when constructing bubble region
Reaction Blocks (default = None). This
is provided as a Reaction Parameter
Block by the Flowsheet when creating
the model. If a value is not provided,
the ControlVolume Block will try to use
the default property package if one is de-
fined.

• reaction_package_args - set of argu-
ments to be passed to the bubble region
Reaction Blocks when they are created
(default = None).

• has_equilibrium_reactions - sets flag to
indicate if terms of equilibrium con-
trolled reactions should be constructed
(default = False).

Additionally, BFBR units have the
following construction arguments
which are passed to all the ControlVol-
ume1DBlock Blocks and are always
specified to their default values.

Argument Default Value
dynamic useDefault
has_holdup useDefault

Constraints

Geometric Constraints

Area of orifice:

𝐴𝑜𝑟 =
1

𝑛𝑜𝑟

Bed cross-sectional area:

𝐴𝑏𝑒𝑑 = 𝜋
𝐷2

𝑏𝑒𝑑

4

Area of bubble region:

𝐴𝑏,𝑡,𝑥 = 𝛿𝑡,𝑥𝐴𝑏𝑒𝑑
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Area of gas emulsion region:

𝐴𝑔𝑒,𝑡,𝑥 = 𝛿𝑒,𝑡,𝑥𝜀𝑒,𝑡,𝑥𝐴𝑏𝑒𝑑

Area of solid emulsion region:

𝐴𝑠𝑒,𝑡,𝑥 = 𝛿𝑒,𝑡,𝑥(1 − 𝜀𝑒,𝑡,𝑥)𝐴𝑏𝑒𝑑

Length of bubble region:

𝐿𝑏 = 𝐿𝑏𝑒𝑑

Length of gas emulsion region:

𝐿𝑔𝑒 = 𝐿𝑏𝑒𝑑

Length of solid emulsion region:

𝐿𝑠𝑒 = 𝐿𝑏𝑒𝑑

Hydrodynamic Constraints

Emulsion region volume fraction:

𝛿𝑒,𝑡,𝑥 = 1 − 𝛿𝑡,𝑥

Average cross-sectional voidage:

𝜀𝑡,𝑥 = 1 − (1 − 𝜀𝑒,𝑡,𝑥) (1 − 𝛿𝑡,𝑥)

Emulsion region voidage:

𝜀𝑒,𝑡,𝑥 = 𝜀𝑚𝑓,𝑠𝑒

Bubble growth coefficient:

𝛾𝑡,𝑥 =
0.0256

𝑣𝑚𝑓,𝑠𝑒

(︂
𝐷𝑏𝑒𝑑

𝑔

)︂0.5

Maximum bubble diameter:

𝑑5𝑏𝑚,𝑡,𝑥𝑔 = 2.595([𝑣𝑔,𝑡,𝑥 − 𝑣𝑔𝑒,𝑡,𝑥]𝐴𝑏𝑒𝑑)
2

Bubble diameter (gas inlet, x = 0):

𝑑𝑏,𝑡,𝑥 = 1.38𝑔−0.2([𝑣𝑔,𝑡,𝑥 − 𝑣𝑔𝑒,𝑡,𝑥]𝐴𝑜𝑟)
0.4

Bubble diameter (x > 0):

𝑑𝑑𝑏,𝑡,𝑥
𝑑𝑥

=
0.3

𝐷𝑏𝑒𝑑
𝐿𝑏𝑒𝑑

(︁
𝑑𝑏𝑚,𝑡,𝑥 − 𝑑𝑏,𝑡,𝑥 − 𝛾𝑡,𝑥(𝐷𝑏𝑒𝑑𝑑𝑏,𝑡,𝑥)

0.5
)︁

Bubble rise velocity:

𝑣2𝑏𝑟,𝑡,𝑥 = 0.7112𝑔𝑑𝑏,𝑡,𝑥

Bubble velocity:

𝑣𝑏,𝑡,𝑥 = 𝑣𝑔,𝑡,𝑥 − 𝑣𝑚𝑓,𝑠𝑒 + 𝑣𝑏𝑟,𝑡,𝑥
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Average gas density:

𝐶𝑔,𝑡,𝑥 =
𝐹𝑚𝑜𝑙,𝑏,𝑡,𝑥𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 + 𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,𝑥𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥

𝐹𝑚𝑜𝑙,𝑏,𝑡,𝑥 + 𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,𝑥

Superficial gas velocity:

𝑣𝑔,𝑡,𝑥 =
𝐹𝑚𝑜𝑙,𝑏,𝑡,𝑥 + 𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,𝑥

𝐴𝑏𝑒𝑑𝐶𝑔,𝑡,𝑥

Bubble volume fraction:

𝛿𝑡,𝑥𝑣𝑏,𝑡,𝑥 = 𝑣𝑔𝑒,𝑡,𝑥𝛿𝑒,𝑡,𝑥 − 𝑣𝑔,𝑡,𝑥

Gas emulsion pressure drop:

if ‘has_pressure_change’ is ‘True’:

∆𝑃𝑔𝑒,𝑡,𝑥 = −𝑔(1 − 𝜀𝑒,𝑡,𝑥)𝜌𝑚𝑎𝑠𝑠,𝑠𝑒,𝑡,𝑥

elif ‘has_pressure_change’ is ‘False’:

𝑃𝑔𝑒,𝑡,𝑥 = 𝑃𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

Mass Transfer Constraints

Bubble to emulsion gas mass transfer
coefficient:

𝐾𝑏𝑒,𝑡,𝑥,𝑗𝑑
1.25
𝑏,𝑡,𝑥 = 5.94𝑣𝑚𝑓,𝑠𝑒𝑑

0.25
𝑏,𝑡,𝑥 + 5.85𝐷0.5

𝑣𝑎𝑝,𝑔𝑒,𝑡,𝑥,𝑗𝑔
0.25

Bulk gas mass transfer:

if 𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 > 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥:

𝐾𝑔𝑏𝑢𝑙𝑘𝑐,𝑡,𝑥,𝑗 = 6𝐾𝑑𝛿𝑡,𝑥𝐴𝑏𝑒𝑑(𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥)𝑑𝑏,𝑡,𝑥𝑦𝑔𝑒,𝑡,𝑥,𝑗

else:

𝐾𝑔𝑏𝑢𝑙𝑘𝑐,𝑡,𝑥,𝑗 = 6𝐾𝑑𝛿𝑡,𝑥𝐴𝑏𝑒𝑑(𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥)𝑑𝑏,𝑡,𝑥𝑦𝑏,𝑡,𝑥,𝑗

Heat Transfer Constraints

Bubble to emulsion gas heat transfer co-
efficient:

𝐻𝑏𝑒,𝑡,𝑥,𝑗𝑑
1.25
𝑏,𝑡,𝑥 = 4.5𝑣𝑚𝑓,𝑠𝑒𝑐𝑝_𝑣𝑎𝑝,𝑏,𝑡,𝑥𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥𝑑

0.25
𝑏,𝑡,𝑥 + 5.85(𝑘𝑣𝑎𝑝,𝑏,𝑡,𝑥𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥𝑐𝑝_𝑣𝑎𝑝,𝑏,𝑡,𝑥)

0.5
𝑔0.25

Convective heat transfer coefficient:

ℎ𝑡𝑐,𝑡,𝑥𝑑𝑝,𝑠𝑒 = 0.03𝑘𝑣𝑎𝑝,𝑒,𝑡,𝑥

(︂
𝑣𝑔𝑒,𝑡,𝑥𝑑𝑝,𝑠𝑒

𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥

𝜇𝑣𝑎𝑝,𝑔𝑒,𝑡,𝑥

)︂1.3

Emulsion region gas-solids convective
heat transfer:

ℎ𝑡_𝑔𝑠,𝑡,𝑥𝑑𝑝,𝑠𝑒 = 6𝛿𝑒,𝑡,𝑥(1 − 𝜀𝑒,𝑡,𝑥)ℎ𝑡𝑐,𝑡,𝑥(𝑇𝑔𝑒,𝑡,𝑥 − 𝑇𝑠𝑒,𝑡,𝑥)

Bulk gas heat transfer:
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if 𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 > 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥:

𝐻𝑔𝑏𝑢𝑙𝑘,𝑡,𝑥 = 𝐾𝑑𝛿𝑡,𝑥𝐴𝑏𝑒𝑑(𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥)𝑑𝑏,𝑡,𝑥𝐻𝑔𝑒,𝑡,𝑥

else:

𝐻𝑔𝑏𝑢𝑙𝑘,𝑡,𝑥 = 𝐾𝑑𝛿𝑡,𝑥𝐴𝑏𝑒𝑑(𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥)𝑑𝑏,𝑡,𝑥𝐻𝑏,𝑡,𝑥

Mass and heat transfer terms in con-
trol volumes

Bubble mass transfer ‘(p=vap)’:

𝑀𝑡𝑟,𝑏,𝑡,𝑥,𝑝,𝑗 = 𝐾𝑔𝑏𝑢𝑙𝑘𝑐,𝑡,𝑥,𝑗 −𝐴𝑏,𝑡,𝑥𝐾𝑏𝑒,𝑡,𝑥,𝑗(𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥)

Gas emulsion mass transfer ‘(p=vap)’:

𝑀𝑡𝑟,𝑔𝑒,𝑡,𝑥,𝑝,𝑗 = −𝐾𝑔𝑏𝑢𝑙𝑘𝑐,𝑡,𝑥,𝑗 +𝐴𝑏,𝑡,𝑥𝐾𝑏𝑒,𝑡,𝑥,𝑗(𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 − 𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥) + 𝑟ℎ𝑒𝑡𝑒𝑟𝑜,𝑔𝑒,𝑡,𝑥,𝑗

if ‘energy_balance_type’ is not ‘Ener-
gyBalanceType.none’:

Bubble heat transfer:

𝐻𝑡𝑟,𝑏,𝑡,𝑥 = 𝐻𝑔𝑏𝑢𝑙𝑘,𝑡,𝑥 −𝐴𝑏,𝑡,𝑥𝐻𝑏𝑒,𝑡,𝑥,𝑗(𝑇𝑏,𝑡,𝑥 − 𝑇𝑔𝑒,𝑡,𝑥)

Gas emulsion heat transfer:

𝐻𝑡𝑟,𝑔𝑒,𝑡,𝑥 = −𝐻𝑔𝑏𝑢𝑙𝑘,𝑡,𝑥 +𝐴𝑏,𝑡,𝑥𝐻𝑏𝑒,𝑡,𝑥,𝑗(𝑇𝑏,𝑡,𝑥 − 𝑇𝑔𝑒,𝑡,𝑥) − ℎ𝑡_𝑔𝑠,𝑡,𝑥𝐴𝑏𝑒𝑑

Solid emulsion heat transfer:

𝐻𝑡𝑟,𝑠𝑒,𝑡,𝑥 = ℎ𝑡_𝑔𝑠,𝑡,𝑥𝐴𝑏𝑒𝑑

Reaction constraints

if ‘homogeneous reaction package’ is
not ‘None’:

Bubble rate reaction extent:

𝑟𝑒𝑥𝑡,𝑏,𝑡,𝑥,𝑟 = 𝐴𝑏,𝑡,𝑥𝑟𝑏,𝑡,𝑥,𝑟

Gas emulsion rate reaction extent:

𝑟𝑒𝑥𝑡,𝑔𝑒,𝑡,𝑥,𝑟 = 𝐴𝑔𝑒,𝑡,𝑥𝑟𝑔𝑒,𝑡,𝑥,𝑟

if ‘heterogeneous reaction package’ is
not ‘None’:

Solid emulsion rate reaction extent:

𝑟𝑒𝑥𝑡,𝑠𝑒,𝑡,𝑥,𝑟 = 𝐴𝑠𝑒,𝑡,𝑥𝑟𝑠𝑒,𝑡,𝑥,𝑟

Gas emulsion heterogeneous rate reac-
tion extent:

𝑟ℎ𝑒𝑡𝑒𝑟𝑜,𝑔𝑒,𝑡,𝑥,𝑗 = 𝐴𝑠𝑒,𝑡,𝑥

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠∑︁
𝑟

𝑠𝑠𝑒,𝑗,𝑟𝑟𝑠𝑒,𝑡,𝑥,𝑟
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Flowrate constraints

Bubble gas flowrate:

𝐹𝑚𝑜𝑙,𝑏,𝑡,𝑥 = 𝐴𝑏𝑒𝑑𝛿𝑡,𝑥𝑣𝑏,𝑡,𝑥𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥

Emulsion gas flowrate:

𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,𝑥 = 𝐴𝑏𝑒𝑑𝑣𝑔𝑒,𝑡,𝑥𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥

Inlet boundary conditions

if ‘has_pressure_change’ is ‘True’:

Gas emulsion pressure at inlet:

𝑃𝑔𝑒,𝑡,0 = 𝑃𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 − ∆𝑃𝑜𝑟

Total gas balance at inlet:

𝐹𝑚𝑜𝑙,𝑏,𝑡,0 + 𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,0 = 𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

Solid particle porosity at inlet:

𝜑𝑠𝑒,𝑡,0 = 𝜑𝑡,𝑖𝑛𝑙𝑒𝑡

Gas emulsion velocity at inlet:

𝑣𝑔𝑒,𝑡,0 = 𝑣𝑚𝑓,𝑠𝑒

Bubble mole fraction at inlet:

𝑦𝑏,𝑡,0,𝑗 = 𝑦𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡,𝑗

Gas emulsion mole fraction at inlet:

𝑦𝑔𝑒,𝑡,0,𝑗 = 𝑦𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡,𝑗

Solid emulsion mass flow at inlet:

if ‘flow_type’ is ‘co_current’ x = 0 else
if ‘flow_type’ is ‘counter_current’ x = 1:

𝐹𝑚𝑎𝑠𝑠,𝑠𝑒,𝑡,𝑥 = 𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

Solid emulsion mass fraction at inlet:

if ‘flow_type’ is ‘co_current’ x = 0 else
if ‘flow_type’ is ‘counter_current’ x = 1:

𝑥𝑠𝑒,𝑡,𝑥 = 𝑥𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

if ‘energy_balance_type’ is not ‘Ener-
gyBalanceType.none’:
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Gas inlet energy balance:

𝐻𝑏,𝑡,0 +𝐻𝑔𝑒,𝑡,0 = 𝐻𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

Gas emulsion temperature at inlet:

𝑇𝑔𝑒,𝑡,0 = 𝑇𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

elif ‘energy_balance_type’ is ‘Energy-
BalanceType.none’:

Isothermal bubble region:

𝑇𝑏,𝑡,𝑥 = 𝑇𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

Isothermal gas emulsion region:

𝑇𝑔𝑒,𝑡,𝑥 = 𝑇𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡

Isothermal solid emulsion region:

𝑇𝑠𝑒,𝑡,𝑥 = 𝑇𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

if ‘flow_type’ is ‘co_current’ x = 0 else
if ‘flow_type’ is ‘counter_current’ x = 1:

Solid inlet energy balance:

𝐻𝑠𝑒,𝑡,𝑥 = 𝐻𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

Outlet boundary conditions

Gas emulsion pressure at outlet:

𝑃𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃𝑔𝑒,𝑡,1

Total gas balance at outlet:

𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐹𝑚𝑜𝑙,𝑏,𝑡,1 + 𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,1

Solid outlet material balance:

if ‘flow_type’ is ‘co_current’ x = 1 else
if ‘flow_type’ is ‘counter_current’ x = 0:

𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐹𝑚𝑎𝑠𝑠,𝑠𝑒,𝑡,𝑥

Solid particle porosity at outlet:

𝜑𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝜑𝑠𝑒,𝑡,1

if ‘energy_balance_type’ is not ‘Ener-
gyBalanceType.none’:

Gas outlet energy balance:

𝐻𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐻𝑏,𝑡,1 +𝐻𝑔𝑒,𝑡,1

Solid outlet energy balance:
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if ‘flow_type’ is ‘co_current’ x = 1 else
if ‘flow_type’ is ‘counter_current’ x = 0:

𝐻𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝐻𝑠𝑒,𝑡,𝑥

elif ‘energy_balance_type’ is ‘Energy-
BalanceType.none’:

Gas outlet energy balance:

𝑇𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑇𝑔𝑒,𝑡,1

Solid outlet energy balance:

if ‘flow_type’ is ‘co_current’ x = 1 else
if ‘flow_type’ is ‘counter_current’ x = 0:

𝑇𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑇𝑠𝑒,𝑡,𝑥

Variables

List of variables in the BFBR model:

Variable Name Notes
𝐿𝑏𝑒𝑑 bed_height Bed height
𝐷𝑏𝑒𝑑 bed_diameter Reactor diameter
𝐴𝑏𝑒𝑑 bed_area Reactor cross-sectional area
𝐴𝑜𝑟 area_orifice Distributor plate area per orifice
𝑛𝑜𝑟 number_orifice Number of distributor plate orifices per area
𝛿𝑡,𝑥 delta Volume fraction occupied by bubble region
𝛿𝑒,𝑡,𝑥 delta_e Volume fraction occupied by emulsion region
𝜀𝑡,𝑥 voidage_average Cross-sectional average voidage
𝜀𝑒,𝑡,𝑥 voidage_emulsion Emulsion region voidage fraction
𝜑𝑠𝑒,𝑡,𝑥 solid_emulsion_region.particle_porosity Particle porosity of solid
𝛾𝑡,𝑥 bubble_growth_coeff Bubble growth coefficient
𝑑𝑏𝑚,𝑡,𝑥 bubble_diameter_max Maximum theoretical bubble diameter
𝑑𝑏,𝑡,𝑥 bubble_diameter Average bubble diameter
𝑣𝑔,𝑡,𝑥 velocity_superficial_gas Gas superficial velocity
𝑣𝑔𝑒,𝑡,𝑥 velocity_emulsion_gas Emulsion region superficial gas velocity
𝑣𝑏𝑟,𝑡,𝑥 velocity_bubble_rise Bubble rise velocity
𝑣𝑏,𝑡,𝑥 velocity_bubble Average bubble diameter
𝐾𝑏𝑒,𝑡,𝑥,𝑗 Kbe Bubble to emulsion gas mass transfer coefficient
𝐾𝑔𝑏𝑢𝑙𝑘𝑐,𝑡,𝑥,𝑗 Kgbulk_c Gas phase component bulk transfer rate
𝐻𝑏𝑒,𝑡,𝑥,𝑗 Hbe Bubble to emulsion gas heat transfer coefficient
𝑐𝑝_𝑣𝑎𝑝,𝑏,𝑡,𝑥 cp_mol Mixture mole heat capacity
ℎ𝑡𝑐,𝑡,𝑥 htc_conv Gas to solid convective heat transfer coefficient
𝜇𝑣𝑎𝑝,𝑔𝑒,𝑡,𝑥 visc_d Mixture dynamic viscosity
ℎ𝑡_𝑔𝑠,𝑡,𝑥 ht_conv Gas to solid convective enthalpy transfer
𝐻𝑔𝑏𝑢𝑙𝑘,𝑡,𝑥 Hgbulk Bulk gas heat transfer between bubble and emulsion
𝑟ℎ𝑒𝑡𝑒𝑟𝑜,𝑔𝑒,𝑡,𝑥,𝑗 gas_emulsion_hetero_rxn Gas emulsion heterogeneous rate reaction generation
𝐿𝑏 bubble_region.length
𝐿𝑔𝑒 gas_emulsion_region.length

continues on next page
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Table 9 – continued from previous page
Variable Name Notes
𝐿𝑠𝑒 solid_emulsion_region.length
𝐴𝑏,𝑡,𝑥 bubble_region.area
𝐴𝑔𝑒,𝑡,𝑥 gas_emulsion_region.area
𝐴𝑠𝑒,𝑡,𝑥 solid_emulsion_region.area
∆𝑃𝑔𝑒,𝑡,𝑥 gas_emulsion_region.deltaP pressure drop across gas emulsion region
𝜌𝑚𝑎𝑠𝑠,𝑠𝑒,𝑡,𝑥 solid_emulsion_region.properties.dens_mass_particle solid particle mass density
𝐷𝑣𝑎𝑝,𝑔𝑒,𝑡,𝑥,𝑗 gas_emulsion_region.properties.diffusion_comp gas component diffusion in gas emulsion region
𝐶𝑏,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 bubble_region.properties.dens_mol_vap gas mole density in the bubble region
𝐶𝑔,𝑡,𝑥 average_gas_density average gas density
𝐶𝑔𝑒,𝑡𝑜𝑡𝑎𝑙,𝑡,𝑥 gas_emulsion_region.properties.dens_mol_vap gas mole density in the emulsion region
𝑀𝑡𝑟,𝑏,𝑡,𝑥,𝑝,𝑗 bubble_region.mass_transfer_term
𝑀𝑡𝑟,𝑔𝑒,𝑡,𝑥,𝑝,𝑗 gas_emulsion_region.mass_transfer_term
𝑀𝑡𝑟,𝑠𝑒,𝑡,𝑥,𝑝,𝑗 solid_emulsion_region.mass_transfer_term
𝑟𝑒𝑥𝑡,𝑏,𝑡,𝑥,𝑟 bubble_region.rate_reaction_extent
𝑟𝑒𝑥𝑡,𝑔𝑒,𝑡,𝑥,𝑟 gas_emulsion_region.rate_reaction_extent
𝑟𝑒𝑥𝑡,𝑠𝑒,𝑡,𝑥,𝑟 solid_emulsion_region.rate_reaction_extent
𝑟𝑏,𝑡,𝑥,𝑟 bubble_region.reactions.reaction_rate
𝑟𝑔𝑒,𝑡,𝑥,𝑟 gas_emulsion_region.reactions.reaction_rate
𝑟𝑠𝑒,𝑡,𝑥,𝑟 solid_emulsion_region.reactions.reaction_rate
𝑘𝑣𝑎𝑝,𝑏,𝑡,𝑥 bubble_region.properties.therm_cond bubble region thermal conductivity
𝑘𝑣𝑎𝑝,𝑒,𝑡,𝑥 gas_emulsion_region.properties.therm_cond gas emulsion region thermal conductivity
𝑇𝑏,𝑡,𝑥 bubble_region.properties.temperature
𝑇𝑔𝑒,𝑡,𝑥 gas_emulsion_region.properties.temperature
𝑇𝑠𝑒,𝑡,𝑥 solid_emulsion_region.properties.temperature
𝐻𝑡𝑟,𝑏,𝑡,𝑥 bubble_region.heat bubble region heat transfer term
𝐻𝑡𝑟,𝑔𝑒,𝑡,𝑥 gas_emulsion_region.heat gas emulsion region heat transfer term
𝐻𝑡𝑟,𝑠𝑒,𝑡,𝑥 solid_emulsion_region.heat solid emulsion region heat transfer term
𝐹𝑚𝑜𝑙,𝑏,𝑡,𝑥 bubble_region.properties.flow_mol
𝐹𝑚𝑜𝑙,𝑔𝑒,𝑡,𝑥 gas_emulsion_region.properties.flow_mol
𝑦𝑏,𝑡,𝑥,𝑗 bubble_region.properties.mole_frac
𝑦𝑔𝑒,𝑡,𝑥,𝑗 gas_emulsion_region.properties.mole_frac
𝑥𝑠𝑒,𝑡,𝑥,𝑗 solid_emulsion_region.properties.mass_frac
𝑃𝑔𝑒,𝑡,𝑥 gas_emulsion_region.properties.pressure
𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 gas_inlet.flow_mol
𝑦𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡,𝑗 gas_inlet.mole_frac
𝑃𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 gas_inlet.pressure
𝑇𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 gas_inlet.temperature
𝐻𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 gas_inlet.enthalpy
𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 solid_inlet.flow_mass
𝜑𝑡,𝑖𝑛𝑙𝑒𝑡 solid_inlet.particle_porosity
𝑥𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 solid_inlet.mass_frac
𝑇𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 solid_inlet.temperature
𝐻𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 solid_inlet.enthalpy
𝐹𝑚𝑎𝑠𝑠,𝑠𝑒,𝑡,𝑥 solid_emulsion_region.properties.flow_mass
𝐻𝑏,𝑡,𝑥 bubble_region.properties.enthalpy
𝐻𝑔𝑒,𝑡,𝑥 gas_emulsion_region.properties.enthalpy
𝐻𝑠𝑒,𝑡,𝑥 solid_emulsion_region.properties.enthalpy
𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 gas_outlet.flow_mol
𝑦𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡,𝑗 gas_outlet.mole_frac

continues on next page
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Table 9 – continued from previous page
Variable Name Notes
𝑃𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 gas_outlet.pressure
𝑇𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 gas_outlet.temperature
𝐻𝑔,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 gas_outlet.enthalpy
𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 solid_outlet.flow_mass
𝜑𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 solid_outlet.particle_porosity
𝑥𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 solid_outlet.mass_frac
𝑇𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 solid_outlet.temperature
𝐻𝑠,𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 solid_outlet.mass_enthalpy
𝑣𝑚𝑓,𝑠𝑒 solid_emulsion_region.properties.velocity_mf velocity at minimum fluidization
𝜀𝑚𝑓,𝑠𝑒 solid_emulsion_region.properties.voidage_mf voidage at minimum fluidization
𝐾𝑑 Kd bulk gas permeation coefficient
𝑑𝑝,𝑠𝑒 solid_emulsion_region.properties._params.particle_dia
∆𝑃𝑜𝑟 deltaP_orifice Pressure drop across orifice

Parameters

List of parameters in the BFBR model:

Parame-
ter

Name Notes

𝑠𝑠𝑒,𝑗,𝑟 rate_reaction_stoichiometry Reference to solid_emulsion_region.reactions.rate_reaction_stoichiometry

Subscripts

List of subscripts in the BFBR model:

Subscript Name
𝑏 bubble region
𝑒 emulsion region
𝑔 gas phase
𝑔𝑒 gas_emulsion
𝑗 component
𝑝 phase
𝑠 solid phase
𝑠𝑒 solid_emulsion
𝑟 reaction
𝑡 time
𝑥 length
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Initialization

The initialization method for this model
will save the current state of the model
before commencing initialization and
reloads it afterwards. The state of the
model will be the same after initializa-
tion, only the initial guesses for unfixed
variables will be changed.

The model allows for the passing of a
dictionary of values of the state vari-
ables of the gas and solid phases that
can be used as initial guesses for the
state variables throughout the time and
spatial domains of the model. This is
optional but recommended. A typical
guess could be values of the gas and
solid inlet port variables at time t=0.

The model initialization proceeds
through a sequential hierarchical
method where the model equations are
deactivated at the start of the initializa-
tion routine, and the complexity of the
model is built up through activation and
solution of various sub-model blocks
and equations at each initialization step.
At each step the model variables are
updated to better guesses obtained from
the model solution at that step.

The initialization routine proceeds as
follows:

• Step 1. Initialize the thermo-physical
and transport properties model blocks

• Step 2. Initialize geometric constraints

• Step 3. Initialize the hydrodynamic
properties

• Step 4a. Initialize pressure drop and
mass balances without reactions

• Step 4b. Initialize mass balances with
reactions

• Step 5. Initialize energy balances
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BFBR Class

class idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBed(*args,
**kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

finite_elements Number of finite ele-
ments to use when discretizing length
domain (default=20)

length_domain_set length_domain_set -
(optional) list of point to use to initialize
a new ContinuousSet if length_domain
is not provided (default = [0.0, 1.0]).

transformation_method Method to
use to transform domain. Must be
a method recognised by the Pyomo
TransformationFactory, default -
“dae.finite_difference”. Valid values:
{ “dae.finite_difference” - Use a
finite difference transformation scheme,
“dae.collocation” - use a collocation
transformation scheme}

transformation_scheme Scheme to
use when transforming domain. See
Pyomo documentation for supported
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schemes, default - None. Valid values:
{ None - defaults to “BACKWARD”
for finite difference transforma-
tion method, and to “LAGRANGE-
RADAU” for collocation transfor-
mation method, “BACKWARD” -
Use a finite difference transformation
method, “FORWARD”” - use a finite
difference transformation method,
“LAGRANGE-RADAU”” - use a
collocation transformation method}

collocation_points Number of colloca-
tion points to use per finite element
when discretizing length domain (de-
fault=3)

flow_type Flow configuration of
Bubbling Fluidized Bed default
- “co_current”. Valid values: {
“co_current” - gas flows from
0 to 1, solid flows from 0 to 1,
“counter_current” - gas flows from 0
to 1, solid flows from 1 to 0.}

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.componentTotal. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single enthalpy
balance for material, EnergyBal-
anceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
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what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.none. Valid
values: { MomentumBalance-
Type.none - exclude momentum
balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

gas_phase_config gas phase config argu-
ments

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
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ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

solid_phase_config solid phase config ar-
guments

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
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‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (BubblingFluidizedBed) New in-
stance

BFBRData Class

class idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBedData(component)

Standard Bubbling Fluidized Bed Unit
Model Class

build()

Begin building model :param None:

Returns None

initialize(gas_phase_state_args=None, solid_phase_state_args=None, outlvl=0, solver=None,
optarg=None)

Initialisation routine for Bubbling Flu-
idized Bed unit

Keyword Arguments

• gas_phase_state_args – a dict of ar-
guments to be passed to the property
package(s) to provide an initial state
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for initialization (see documentation of
the specific property package) (default =
None).

• solid_phase_state_args – a dict of
arguments to be passed to the prop-
erty package(s) to provide an initial state
for initialization (see documentation of
the specific property package) (default =
None).

• outlvl – sets output level of initialisa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

results_plot()

Plot method for common bubbling flu-
idized bed variables

Variables plotted: Tge : temperature of gas
in the emulsion region Tgb : tempera-
ture of gas in the bubble region Tse :
temperature of solid in the emulsion re-
gion Ge : flowrate of gas in the emulsion
region Gb : flowrate of gas in the bubble
region cet : total concentration of gas in
the emulsion region cbt : total concen-
tration of gas in the bubble region y_b
: mole fraction of gas components in
the bubble region x_e : mass fraction of
solid components in the emulsion region

Moving Bed Reactor

The IDAES Moving Bed Reactor
(MBR) model represents a unit op-
eration where two material streams –
a solid phase and a gas phase – pass
through a linear reactor vessel while un-
dergoing chemical reaction(s). The two
streams have opposite flow directions
(counter-flow). The MBR mathematical
model is a 1-D rigorous first-principles
model consisting of a set of differential
equations obtained by applying the
mass, energy (for each phase) and
momentum balance equations.
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Assumptions:

• The radial concentration and tempera-
ture gradients are assumed to be negli-
gible.

• The reactor is assumed to be adiabatic.

• The solid phase is assumed to be moving
at a constant velocity determined by the
solids feed rate to the reactor.

Requirements:

• Property package contains temperature
and pressure variables.

• Property package contains minimum
fluidization velocity.

The MBR model is based on:

A. Ostace, A. Lee, C.O. Okoli, A.P. Bur-
gard, D.C. Miller, D. Bhattacharyya,
Mathematical modeling of a moving-
bed reactor for chemical looping com-
bustion of methane, in: M.R. Eden, M.
Ierapetritou, G.P. Towler (Eds.),13th Int.
Symp. Process Syst. Eng. (PSE 2018),
Computer-Aided Chemical Engineering
2018, pp. 325–330 , San Diego, CA.

Degrees of Freedom

MBRs generally have at least 2 (or
more) degrees of freedom, consisting of
design and operating variables. The de-
sign variables of reactor length and di-
ameter are typically the minimum vari-
ables to be fixed.

Model Structure

The core MBR unit model consists of
two ControlVolume1DBlock Blocks
(named gas_phase and solid_phase),
each with one Inlet Port (named
gas_inlet and solid_inlet) and one
Outlet Port (named gas_outlet and
solid_outlet).
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Constraints

In the following, the subscripts 𝑔 and
𝑠 refer to the gas and solid phases, re-
spectively. In addition to the constraints
written by the control_volume Block,
MBR units write the following Con-
straints:

Geometry Constraints

Area of the reactor bed:

𝐴𝑏𝑒𝑑 = 𝜋

(︂
𝐷𝑏𝑒𝑑

2

)︂2

Area of the gas domain:

𝐴𝑔,𝑡,𝑥 = 𝜀𝐴𝑏𝑒𝑑

Area of the solid domain:

𝐴𝑠,𝑡,𝑥 = (1 − 𝜀)𝐴𝑏𝑒𝑑

Length of the gas domain:

𝐿𝑔 = 𝐿𝑏𝑒𝑑

Length of the solid domain:

𝐿𝑠 = 𝐿𝑏𝑒𝑑

Hydrodynamic Constraints

Superficial velocity of the gas:

𝑢𝑔,𝑡,𝑥 =
𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑥

𝐴𝑏𝑒𝑑𝜌𝑚𝑜𝑙,𝑔,𝑡,𝑥

Superficial velocity of the solids:

𝑢𝑠,𝑡 =
𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

𝐴𝑏𝑒𝑑𝜌𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡

Pressure drop:

The constraints written by the MBR
model to compute the pressure drop (if
has_pressure_change is ‘True’) in the
reactor depend upon the construction ar-
guments chosen:

If pressure_drop_type is sim-
ple_correlation:

−𝑑𝑃𝑔,𝑡,𝑥

𝑑𝑥
= 0.2 (𝜌𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑥 − 𝜌𝑚𝑎𝑠𝑠,𝑔,𝑡,𝑥)𝑢𝑔,𝑡,𝑥
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If pressure_drop_type is er-
gun_correlation:

−𝑑𝑃𝑔,𝑡,𝑥

𝑑𝑥
=

150𝜇𝑔,𝑡,𝑥(1 − 𝜀)
2

(𝑢𝑔,𝑡,𝑥 + 𝑢𝑠,𝑡)

𝜀3𝑑2𝑝
+

1.75 (1 − 𝜀) 𝜌𝑚𝑎𝑠𝑠,𝑔,𝑡,𝑥 (𝑢𝑔,𝑡,𝑥 + 𝑢𝑠,𝑡)
2

𝜀3𝑑𝑝

Reaction Constraints

Gas phase reaction extent:

If gas_phase_config.reaction_package
is not ‘None’:

𝜉𝑔,𝑡,𝑥,𝑟 = 𝑟𝑔,𝑡,𝑥,𝑟𝐴𝑔,𝑡,𝑥

Solid phase reaction extent:

If solid_phase_config.reaction_package
is not ‘None’:

𝜉𝑠,𝑡,𝑥,𝑟 = 𝑟𝑠,𝑡,𝑥,𝑟𝐴𝑠,𝑡,𝑥

Gas phase heterogeneous rate gener-
ation/consumption:

𝑀𝑔,𝑡,𝑥,𝑝,𝑗 = 𝐴𝑠,𝑡,𝑥

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠∑︁
𝑟

𝜈𝑠,𝑗,𝑟𝑟𝑠,𝑡,𝑥,𝑟

Dimensionless numbers, mass and heat transfer coefficients

Particle Reynolds number:

𝑅𝑒𝑝,𝑡,𝑥 =
𝑢𝑔,𝑡,𝑥𝜌𝑚𝑎𝑠𝑠,𝑔,𝑡,𝑥

𝜇𝑔,𝑡,𝑥𝑑𝑝

Prandtl number:

𝑃𝑟𝑡,𝑥 =
𝑐𝑝,𝑡,𝑥𝜇𝑔,𝑡,𝑥

𝑘𝑔,𝑡,𝑥

Particle Nusselt number:

𝑁𝑢𝑝,𝑡,𝑥 = 2 + 1.1𝑃𝑟
1/3
𝑡,𝑥 |𝑅𝑒𝑝,𝑡,𝑥|0.6

Particle to fluid heat transfer coeffi-
cient

ℎ𝑔𝑠,𝑡,𝑥𝑑𝑝 = 𝑁𝑢𝑝,𝑡,𝑥𝑘𝑔,𝑡,𝑥

If energy_balance_type not EnergyBal-
anceType.none:

Gas phase - gas to solid heat transfer:

𝐻𝑔,𝑡,𝑥 = − 6

𝑑𝑝
ℎ𝑔𝑠,𝑡,𝑥 (𝑇𝑔,𝑡,𝑥 − 𝑇𝑠,𝑡,𝑥)𝐴𝑠,𝑡,𝑥

Solid phase - gas to solid heat trans-
fer:

𝐻𝑠,𝑡,𝑥 =
6

𝑑𝑝
ℎ𝑔𝑠,𝑡,𝑥 (𝑇𝑔,𝑡,𝑥 − 𝑇𝑠,𝑡,𝑥)𝐴𝑠,𝑡,𝑥
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List of Variables

Variable Description Reference to
𝐴𝑏𝑒𝑑 Reactor bed cross-sectional area bed_area
𝐴𝑔,𝑡,𝑥 Gas phase area (interstitial cross-sectional area) gas_phase.area
𝐴𝑠,𝑡,𝑥 Solid phase area solid_phase.area
𝑐𝑝,𝑡,𝑥 Gas phase heat capacity (constant 𝑃 ) gas_phase.properties.cp_mass
𝐷𝑏𝑒𝑑 Reactor bed diameter bed_diameter
𝐹𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 Total mass flow rate of solids, at inlet (𝑥 = 1) solid_phase.properties.flow_mass
𝐹𝑚𝑜𝑙,𝑔,𝑡,𝑥 Total molar flow rate of gas gas_phase.properties.flow_mol
𝐻𝑔,𝑡,𝑥 Gas to solid heat transfer term, gas phase gas_phase.heat
𝐻𝑠,𝑡,𝑥 Gas to solid heat transfer term, solid phase solid_phase.heat
ℎ𝑔𝑠,𝑡,𝑥 Gas-solid heat transfer coefficient gas_solid_htc
𝑘𝑔,𝑡,𝑥 Gas thermal conductivity gas_phase.properties.therm_cond
𝐿𝑏𝑒𝑑 Reactor bed height bed_height
𝐿𝑔 Gas domain length gas_phase.length
𝐿𝑠 Solid domain length solid_phase.length
𝑀𝑔,𝑡,𝑥,𝑝,𝑗 Rate generation/consumption term, gas phase gas_phase.mass_transfer_term
𝑁𝑢𝑝,𝑡,𝑥 Particle Nusselt number Nu_particle
𝑑𝑃𝑔,𝑡,𝑥 Total pressure derivative w.r.t. 𝑥 (axial position) gas_phase.deltaP
𝑃𝑟𝑡,𝑥 Prandtl number Pr
𝑟𝑔,𝑡,𝑥,𝑟 Gas phase reaction rate gas_phase.reactions.reaction_rate
𝑟𝑠,𝑡,𝑥,𝑟 Solid phase reaction rate solid_phase.reactions.reaction_rate
𝑅𝑒𝑝,𝑡,𝑥 Particle Reynolds number Re_particle
𝑇𝑔,𝑡,𝑥 Gas phase temperature gas_phase.properties.temperature
𝑇𝑠,𝑡,𝑥 Solid phase temperature solid_phase.properties.temperature
𝑢𝑔,𝑡,𝑥 Superficial velocity of the gas velocity_superficial_gas
𝑢𝑠,𝑡 Superficial velocity of the solids velocity_superficial_solid
Greek letters
𝜀 Reactor bed voidage bed_voidage
𝜇𝑔,𝑡,𝑥 Dynamic viscosity of gas mixture gas_phase.properties.visc_d
𝜉𝑔,𝑡,𝑥,𝑟 Gas phase reaction extent gas_phase.rate_reaction_extent
𝜉𝑠,𝑡,𝑥,𝑟 Solid phase reaction extent solid_phase.rate_reaction_extent
𝜌𝑚𝑎𝑠𝑠,𝑔,𝑡,𝑖𝑛𝑙𝑒𝑡 Density of gas mixture gas_phase.properties.dens_mass
𝜌𝑚𝑎𝑠𝑠,𝑠,𝑡,𝑖𝑛𝑙𝑒𝑡 Density of solid particles solid_phase.properties.dens_mass_particle
𝜌𝑚𝑜𝑙,𝑔,𝑡,𝑥 Molar density of the gas gas_phase.properties.dens_mole

List of Parameters

Parameter Description Reference to
𝑑𝑝 Solid particle diameter solid_phase.properties._params.particle_dia
𝜈𝑠,𝑗,𝑟 Stoichiometric coefficients solid_phase.reactions.rate_reaction_stoichiometry
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Initialization

The initialization method for this model
will save the current state of the model
before commencing initialization and
reloads it afterwards. The state of the
model will be the same after initializa-
tion, only the initial guesses for unfixed
variables will be changed.

The model allows for the passing of a
dictionary of values of the state vari-
ables of the gas and solid phases that
can be used as initial guesses for the
state variables throughout the time and
spatial domains of the model. This is
optional but recommended. A typical
guess could be values of the gas and
solid inlet port variables at time 𝑡 = 0.

The model initialization proceeds
through a sequential hierarchical
method where the model equations are
deactivated at the start of the initializa-
tion routine, and the complexity of the
model is built up through activation and
solution of various sub-model blocks
and equations at each initialization step.
At each step the model variables are
updated to better guesses obtained from
the model solution at that step.

The initialization routine proceeds in as
follows:

• Step 1: Initialize the thermo-physical
and transport properties model blocks.

• Step 2: Initialize the hydrodynamic
properties.

• Step 3a: Initialize mass balances with-
out reactions and pressure drop.

• Step 3b: Initialize mass balances with
reactions and without pressure drop.

• Step 3c: Initialize mass balances with
reactions and pressure drop.

• Step 4: Initialize energy balances.
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MBR Class

class idaes.gas_solid_contactors.unit_models.moving_bed.MBR(*args, **kwds)

Parameters

• rule (function) – A rule function or
None. Default rule calls build().

• concrete (bool) – If True, make this a
toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the
block. Default - “Block”

• default (dict) – Default Process-
BlockData config

Keys

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

finite_elements Number of finite ele-
ments to use when discretizing length
domain (default=20)

length_domain_set length_domain_set -
(optional) list of point to use to initialize
a new ContinuousSet if length_domain
is not provided (default = [0.0, 1.0])

transformation_method Method to
use to transform domain. Must be
a method recognised by the Pyomo
TransformationFactory, default -
“dae.finite_difference”. Valid values:
{ “dae.finite_difference” - Use a finite
difference transformation method,
“dae.collocation” - use a collocation
transformation method}

transformation_scheme Scheme to
use when transforming domain. See
Pyomo documentation for supported
schemes, default - None. Valid values:
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{ None - defaults to “BACKWARD”
for finite difference transforma-
tion method, and to “LAGRANGE-
RADAU” for collocation transfor-
mation method, “BACKWARD” -
Use a finite difference transformation
method, “FORWARD”” - use a finite
difference transformation method,
“LAGRANGE-RADAU”” - use a
collocation transformation method}

collocation_points Number of colloca-
tion points to use per finite element
when discretizing length domain (de-
fault=3)

flow_type Flow configuration of Moving
Bed - counter_current: gas side flows
from 0 to 1 solid side flows from 1 to
0

material_balance_type Indicates what
type of mass balance should be
constructed, default - MaterialBal-
anceType.componentTotal. Valid
values: { MaterialBalanceType.none
- exclude material balances, Materi-
alBalanceType.componentPhase -
use phase component balances, Ma-
terialBalanceType.componentTotal -
use total component balances, Mate-
rialBalanceType.elementTotal - use
total element balances, MaterialBal-
anceType.total - use total material
balance.}

energy_balance_type Indicates what
type of energy balance should be
constructed, default - EnergyBalance-
Type.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude
energy balances, EnergyBalance-
Type.enthalpyTotal - single enthalpy
balance for material, EnergyBal-
anceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBal-
anceType.energyTotal - single energy
balance for material, EnergyBalance-
Type.energyPhase - energy balances
for each phase.}

momentum_balance_type Indicates
what type of momentum balance
should be constructed, default - Mo-
mentumBalanceType.pressureTotal.
Valid values: { MomentumBal-
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anceType.none - exclude momen-
tum balances, MomentumBalance-
Type.pressureTotal - single pressure
balance for material, MomentumBal-
anceType.pressurePhase - pressure
balances for each phase, Momen-
tumBalanceType.momentumTotal
- single momentum balance for
material, MomentumBalance-
Type.momentumPhase - momentum
balances for each phase.}

has_pressure_change Indicates whether
terms for pressure change should be
constructed, default - False. Valid val-
ues: { True - include pressure change
terms, False - exclude pressure change
terms.}

pressure_drop_type Indicates what type
of pressure drop correlation should be
used, default - “simple_correlation”.
Valid values: { “simple_correlation”
- Use a simplified pressure drop corre-
lation, “ergun_correlation” - Use the
ergun equation.}

gas_phase_config gas phase config argu-
ments

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
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from parent (default = None) - a
ParameterBlock object

property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

solid_phase_config solid phase config ar-
guments

dynamic Indicates whether this model
will be dynamic or not, default =
useDefault. Valid values: { useDefault
- get flag from parent (default = False),
True - set as a dynamic model, False -
set as a steady-state model.}

has_holdup Indicates whether holdup
terms should be constructed or not.
Must be True if dynamic = True, default
- False. Valid values: { useDefault -
get flag from parent (default = False),
True - construct holdup terms, False -
do not construct holdup terms}

has_equilibrium_reactions Indicates
whether terms for equilibrium con-
trolled reactions should be constructed,
default - True. Valid values: { True
- include equilibrium reaction terms,
False - exclude equilibrium reaction
terms.}

property_package Property parameter
object used to define property calcu-
lations (default = ‘use_parent_value’)
- ‘use_parent_value’ - get package
from parent (default = None) - a
ParameterBlock object
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property_package_args A dict of argu-
ments to be passed to the Property-
BlockData and used when constructing
these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from
parent (default = None) - a dict (see
property package for documentation)

reaction_package Reaction param-
eter object used to define reaction
calculations, default - None. Valid
values: { None - no reaction pack-
age, ReactionParameterBlock - a
ReactionParameterBlock object.}

reaction_package_args A ConfigBlock
with arguments to be passed to a reac-
tion block(s) and used when construct-
ing these, default - None. Valid values:
{ see reaction package for documenta-
tion.}

• initialize (dict) – ProcessBlock-
Data config for individual elements.
Keys are BlockData indexes and values
are dictionaries described under the “de-
fault” argument above.

• idx_map (function) – Function to
take the index of a BlockData element
and return the index in the initialize dict
from which to read arguments. This can
be provided to overide the default behav-
ior of matching the BlockData index ex-
actly to the index in initialize.

Returns (MBR) New instance

MBRData Class

class idaes.gas_solid_contactors.unit_models.moving_bed.MBRData(component)

Standard Moving Bed Unit Model
Class.

build()

Begin building model (pre-DAE trans-
formation).

Parameters None –

Returns None

initialize(gas_phase_state_args=None, solid_phase_state_args=None, outlvl=0, solver=None,
optarg=None)

Initialisation routine for MB unit.
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Keyword Arguments

• gas_phase_state_args – a dict of ar-
guments to be passed to the property
package(s) to provide an initial state
for initialization (see documentation of
the specific property package) (default =
None).

• solid_phase_state_args – a dict of
arguments to be passed to the prop-
erty package(s) to provide an initial state
for initialization (see documentation of
the specific property package) (default =
None).

• outlvl – sets output level of initialisa-
tion routine

• optarg – solver options dictionary ob-
ject (default=None, use default solver
options)

• solver – str indicating which solver
to use during initialization (default =
None, use default solver)

Returns None

results_plot()

Plot method for common moving bed
variables

Variables plotted: Tg : Temperature in gas
phase Ts : Temperature in solid phase vg
: Superficial gas velocity P : Pressure in
gas phase Ftotal : Total molar flowrate
of gas Mtotal : Total mass flowrate of
solid Cg : Concentration of gas com-
ponents in the gas phase y_frac : Mole
fraction of gas components in the gas
phase x_frac : Mass fraction of solid
components in the solid phase

Property Packages

Contents

Methane Combustion Property Models

Gas properties

This property package provides the gas
phase properties for the chemical loop-
ing combustion of methane. The com-
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ponents modeled are methane, carbon
dioxide, and water.

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following
state variables:

• Component molar flowrate in mol/s,

• Pressure in bar,

• Component mole fraction in (dimen-
sionless),

• Temperature in K

Lists:

• Component list - [CH4, CO2, H2O]

• Shomate parameter list - [1 to 8]

• Viscosity parameter list - [1 to 4]

• Thermal conductivity parameter list - [1
to 4]

Parameters:

Parameter
Name

Sym-
bol

Description Units Refer-
ence

mw_comp 𝑚𝑤𝑗 Molecular weights of gas components indexed by component list kg/mol [1]
enth_mol_form_comp𝐻𝑓𝑜𝑟𝑚,𝑗 Component molar heats of formation indexed by component list J/mol [1]
cp_param 𝐶𝑃𝑗,𝑖 Heat capacity parameters indexed by component list and sho-

mate list
[1]

visc_d_param 𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,𝑖Viscosity parameters indexed by component list and viscosity
list

[2]

therm_cond_param𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,𝑖 Thermal conductivity parameters indexed by component list and
thermal conductivity list

[2]

diff_vol_param 𝑉𝑝𝑎𝑟𝑎𝑚,𝑗 Diffusion volume parameters indexed by component list [3]
gas_const 𝑅 Gas constant kJ/mol.K

Variables:
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Variable Name Symbol Description Units
flow_mol 𝐹𝑚𝑎𝑠𝑠 Component molar flowrate mol/s
pressure 𝑃 Pressure bar
mole_frac_comp 𝑦𝑗 Component mole fractions indexed by component list None
temperature 𝑇 Temperature K
mw 𝑚𝑤 Molecular weight of gas mixture kg/mol
dens_mol 𝐶𝑔 Molar density/concentration mol/m3
dens_mol_comp 𝐶𝑔,𝑗 Component molar concentration indexed by component list mol/m3
dens_mass 𝜌𝑚𝑎𝑠𝑠 Mass density kg/m3
visc_d 𝜇𝑣𝑎𝑝 Mixture dynamic viscosity kg/m.s
diffusion_comp 𝐷𝑣𝑎𝑝,𝑗 Component diffusion in a gas mixture indexed by component list cm2/s
therm_cond 𝑘𝑣𝑎𝑝 Thermal conductivity of gas kJ/m.K.s
cp_mol_comp 𝑐𝑝,𝑚𝑜𝑙,𝑗 Pure component molar heat capacities indexed by component list J/mol.K
cp_mol 𝑐𝑝,𝑚𝑜𝑙 Mixture heat capacity, mole-basis J/mol.K
cp_mass 𝑐𝑝,𝑚𝑎𝑠𝑠 Mixture heat capacity, mass-basis J/kg.K
enth_mol_comp 𝐻𝑚𝑜𝑙,𝑗 Pure component enthalpies indexed by component list J/mol
enth_mol 𝐻𝑚𝑜𝑙 Molar enthalpy of gas mixture J/mol

Methods:

Sum of component fractions:

1 =
∑︁
𝑗

𝑦𝑗

Molecular weight of gas mixture:

𝑚𝑤 =
∑︁
𝑗

𝑦𝑗𝑚𝑤𝑗

Molar density:

𝐶𝑔 = 100
𝑃

𝑅𝑇

Component molar density:

𝐶𝑔,𝑗 = 𝑦𝑗𝐶𝑔

Mass density:

𝜌𝑚𝑎𝑠𝑠 = 𝑚𝑤𝐶𝑔

Mixture dynamic viscosity, see refer-
ence [2] for parameters:

𝜇𝑣𝑎𝑝 =
∑︁
𝑖

𝑦𝑖𝜇𝑖∑︀
𝑗 𝑦𝑗

(︁
𝑚𝑤𝑗

𝑚𝑤𝑖

)︁0.5
𝜇𝑖 =

𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,1𝑇
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,2

1 +
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,3

𝑇 +
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,4

𝑇 2

Thermal conductivity, see reference [2] for parameters:

𝑘𝑣𝑎𝑝 =
∑︁
𝑖

𝑦𝑖𝑘𝑖∑︀
𝑗 𝑦𝑗𝐴𝑗,𝑖
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𝑘𝑖 =
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,1𝑇

𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,2

1 +
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,3

𝑇 +
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,4

𝑇 2

𝐴𝑗,𝑖 =

(︂
1 +

(︁
𝑘𝑗

𝑘𝑖

)︁0.5(︁
𝑚𝑤𝑗

𝑚𝑤𝑖

)︁0.25)︂2

8
(︁

1 +
(︁

𝑚𝑤𝑗

𝑚𝑤𝑖

)︁)︁0.5
Diffusion of component in a multicomponent gas mixture, see reference [3] for parameters:

𝐷𝑣𝑎𝑝,𝑗 =
1 − 𝑦𝑗∑︀
𝑗,𝑗𝑖

𝑦𝑖

𝐷𝑗,𝑖

𝐷𝑗,𝑖 =
0.00143𝑇 1.75

(︁
1

𝑚𝑤𝑗
+ 1

𝑚𝑤𝑖

)︁0.5
𝑃
(︁
𝑉

1
3
𝑝𝑎𝑟𝑎𝑚,𝑗𝑉

1
3
𝑝𝑎𝑟𝑎𝑚,𝑖

)︁2
Molar heat capacity of component, see reference [1]:

𝑐𝑝,𝑚𝑜𝑙,𝑗 = 𝐶𝑃𝑗,1 + 𝐶𝑃𝑗,2𝑇 + 𝐶𝑃𝑗,3𝑇
2 + 𝐶𝑃𝑗,4𝑇

3 +
𝐶𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Molar heat capacity of gas mixture:

𝑐𝑝,𝑚𝑜𝑙 =
∑︁
𝑗

𝑐𝑝,𝑚𝑜𝑙,𝑗𝑦𝑗

Mass heat capacity of gas mixture:

𝑐𝑝,𝑚𝑎𝑠𝑠 =
𝑐𝑝,𝑚𝑜𝑙

𝑚𝑤

Molar enthalpy of component, see reference [1]:

𝐻𝑚𝑜𝑙,𝑗 = 𝑃𝑗,1 + 𝑃𝑗,2𝑇 + 𝑃𝑗,3𝑇
2 + 𝑃𝑗,4𝑇

3 +
𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Molar enthalpy of gas mixture:

𝐻𝑚𝑜𝑙𝑒 =
∑︁
𝑗

𝐻𝑚𝑜𝑙,𝑗𝑦𝑗

References:

1. National Institute of Standards and
Technology, NIST Chemistry Web-
Book, (n.d.). (accessed March 10,
2018).

2. R.H. Perry, D.W. Green, Perry’s Chem-
ical Engineering Handbook, 1997,
McGraw-Hill, n.d.

3. Poling, B.E., Prausnitz, J.M. and
O’connell, J.P., 2001. Properties
of gases and liquids. McGraw-Hill
Education.
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Solid properties

This property package provides the solid
phase properties for the chemical loop-
ing combustion of an iron-based oxygen
carrier. The components modeled are
Fe2O3, Fe3O4, and Al2O3.

Flow basis: Mass

Units: SI units

State Variables:

The state block supports the following
state variables:

• Component mass flowrate in kg/s,

• Particle porosity in (dimensionless),

• Component mass fraction in (dimen-
sionless),

• Temperature in K

Lists:

• Component list - [Fe2O3, Fe3O4,
Al2O3]

• Shomate parameter list - [1 to 8]

Parameters:

Parameter Name Sym-
bol

Description Units Refer-
ence

mw_comp 𝑚𝑤𝑗 Molecular weights of solid components indexed by
component list

kg/mol [1]

dens_mass_comp_skeletal𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙,𝑗 Skeletal density of solid components indexed by com-
ponent list

kg/m3 [1]

cp_param 𝐶𝑃𝑗,𝑖 Heat capacity parameters indexed by component list
and shomate list

J/
mol.K

[1]

enth_mol_form_comp 𝐻𝑓𝑜𝑟𝑚,𝑗 Component molar heats of formation indexed by com-
ponent list

J/mol [1]

particle_dia 𝑑𝑝 Diameter of solid particles m [2]
velocity_mf 𝑣𝑚𝑓 Velocity at minimum fluidization m/s [2]
voidage_mf 𝜀𝑚𝑓 Voidage at minimum fluidization None [2]
therm_cond_sol 𝑘𝑠𝑜𝑙 Thermal conductivity of solid particles kJ/m.K.s [2]

Variables:
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Variable Name Symbol Description Units
flow_mass 𝐹𝑚𝑎𝑠𝑠 Component mass flowrate kg/s
particle_porosity 𝜑 Porosity of oxygen carrier None
mass_frac_comp 𝑥𝑗 Component mass fractions indexed by component list None
temperature 𝑇 Temperature K
dens_mass_skeletal 𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Skeletal density of oxygen carrier kg/m3
dens_mass_particle 𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 Particle density of oxygen carrier kg/m3
cp_mol_comp 𝑐𝑝,𝑚𝑜𝑙,𝑗 Pure component solid heat capacities indexed by component list J/mol.K
cp_mass 𝑐𝑝,𝑚𝑎𝑠𝑠 Mixture heat capacity, mass-basis J/kg.K
enth_mol_comp 𝐻𝑚𝑜𝑙,𝑗 Pure component enthalpies indexed by component list J/mol
enth_mass 𝐻𝑚𝑎𝑠𝑠 Mixture specific enthalpy J/kg

Methods:

Sum of component fractions:

1 =
∑︁
𝑗

𝑥𝑗

Skeletal density of oxygen carrier:

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 =
1∑︀

𝑗
𝑥𝑗

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙,𝑗

Particle density of oxygen carrier:

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = (1 − 𝜑)𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙

Molar heat capacity of component, see
reference [1]:

𝑐𝑝,𝑚𝑜𝑙,𝑗 = 𝐶𝑃𝑗,1 + 𝐶𝑃𝑗,2𝑇 + 𝐶𝑃𝑗,3𝑇
2 + 𝐶𝑃𝑗,4𝑇

3 +
𝐶𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Mass heat capacity of oxygen carrier:

𝑐𝑝,𝑚𝑎𝑠𝑠 =
∑︁
𝑗

𝑐𝑝,𝑚𝑜𝑙,𝑗𝑥𝑗
𝑚𝑤𝑗

Molar enthalpy of component, see reference [1]:

𝐻𝑚𝑜𝑙,𝑗 = 𝑃𝑗,1 + 𝑃𝑗,2𝑇 + 𝑃𝑗,3𝑇
2 + 𝑃𝑗,4𝑇

3 +
𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Mass enthalpy of oxygen carrier:

𝐻𝑚𝑎𝑠𝑠 =
∑︁
𝑗

𝐻𝑚𝑜𝑙,𝑗𝑥𝑗
𝑚𝑤𝑗

References:

1. National Institute of Standards and
Technology, NIST Chemistry Web-
Book, (n.d.). (accessed March 10,
2018).

820 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

2. Stevens R., Newby R., Shah V., Kuehn
N., Keairns D., Guidance for NETL’s
oxycombustion R&D program: Chem-
ical looping combustion reference plant
designs and sensitivity studies, 2014.

Heterogeneous reaction properties

Property package for the reaction of
CH4 with an iron-based OC. More de-
tails of this reaction scheme can be
found in reference [1]. The gas compo-
nents modeled are CH4, CO2, H2O. The
solid components modeled are Fe2O3,
Fe3O4, Al2O3. Reaction scheme mod-
eled is CH4 + 12Fe2O3 => 8Fe3O4 +
CO2 + 2H2O

Rate basis: Molar

Units: SI units

Lists:

• Component list - [CH4, CO2, H2O,
Fe2O3, Fe3O4, Al2O3]

• Reaction list - [R1]

Parameters:

Parameter Name Sym-
bol

Description Units Refer-
ence

dh_rxn 𝐻𝑟𝑥𝑛 Heat of reaction kJ/mol
grain_radius 𝑟𝑔 Representative particle grain radius within oxygen

carrier particle
m [1]

dens_mol_sol 𝜌𝑠𝑜𝑙,𝑚𝑜𝑙 Molar density of oxygen carrier particle mol/m3 [1]
a_vol 𝑎𝑣𝑜𝑙 Available reaction volume per volume of oxygen

carrier
None [1]

k0_rxn 𝑘0 Pre-exponential factor 𝑚𝑜𝑙1−𝑛𝑖𝑚3𝑛𝑖−2

𝑠 [1]
energy_activation 𝐸𝐴 ‘Activation energy kJ/mol [1]
rxn_order 𝑛𝑖 Reaction order indexed by reaction list None [1]
gas_const 𝑅 Gas constant kJ/mol.K
rate_reaction_stoichiometry𝑏𝑖,𝑗 Reaction Stoichiometry indexed by reaction list

and component list
kJ/mol.K [1]

mw_comp 𝑚𝑤𝑗 Molecular weights of components indexed by
component list

kg/mol [1]

Variables:
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Variable Name Symbol Description Units
k_rxn 𝑘 Rate constant 𝑚𝑜𝑙1−𝑛𝑖𝑚3𝑛𝑖−2

𝑠

OC_conv 𝑋 Fraction of oxygen carrier converted None
reaction_rate 𝑟𝑎𝑡𝑒𝑟𝑥𝑛 Reaction rate mol_rxn/m3.s
temperature 𝑇 Temperature K
dens_mol_comp 𝐶𝑔,𝑗 Component molar concentration indexed by component list mol/m3
mass_frac_comp 𝑥𝑗 Component mass fractions indexed by component list None
particle_porosity 𝜑 Porosity of oxygen carrier None
dens_mass_skeletal 𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Skeletal density of oxygen carrier kg/m3

Methods:

Rate constant:

𝑘 = 𝑘0𝑒𝑥𝑝

(︂
−𝐸
𝑅𝑇

)︂
Reaction rate:

𝑟𝑎𝑡𝑒𝑟𝑥𝑛 = 𝑥𝐹𝑒2𝑂3(1 − 𝜑)𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
𝑎𝑣𝑜𝑙

𝑚𝑤𝐹𝑒2𝑂3

3𝑘𝑏𝑖,𝐹𝑒2𝑂3𝐶𝑔,𝐶𝐻4
𝑛𝑖

𝜌𝑠𝑜𝑙,𝑚𝑜𝑙𝑟𝑔
(1 −𝑋)

2
3

References:

1. A. Abad, J. Adánez, F. García-Labiano,
L.F. de Diego, P. Gayán, J. Celaya, Map-
ping of the range of operational condi-
tions for Cu-, Fe-, and Ni-based oxy-
gen carriers in chemical-looping com-
bustion, Chem. Eng. Sci. 62 (2007)
533–549.

Oxidation Property Models

Gas properties

This property package provides the gas
phase properties for the oxidation of
a chemical looping combustion oxygen
carrier. The components modeled are
oxygen, nitrogen, carbon dioxide, and
water.

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following
state variables:

• Component molar flowrate in mol/s,

• Pressure in bar,

• Component mole fraction in (dimen-
sionless),
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• Temperature in K

Lists:

• Component list - [O2, N2, CO2, H2O]

• Shomate parameter list - [1 to 8]

• Viscosity parameter list - [1 to 4]

• Thermal conductivity parameter list - [1
to 4]

Parameters:

Parameter
Name

Sym-
bol

Description Units Refer-
ence

mw_comp 𝑚𝑤𝑗 Molecular weights of gas components indexed by component list kg/mol [1]
enth_mol_form_comp𝐻𝑓𝑜𝑟𝑚,𝑗 Component molar heats of formation indexed by component list J/mol [1]
cp_param 𝐶𝑃𝑗,𝑖 Heat capacity parameters indexed by component list and sho-

mate list
[1]

visc_d_param 𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,𝑖Viscosity parameters indexed by component list and viscosity
list

[2]

therm_cond_param𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,𝑖 Thermal conductivity parameters indexed by component list and
thermal conductivity list

[2]

diff_vol_param 𝑉𝑝𝑎𝑟𝑎𝑚,𝑗 Diffusion volume parameters indexed by component list [3]
gas_const 𝑅 Gas constant kJ/mol.K

Variables:

Variable Name Symbol Description Units
flow_mol 𝐹𝑚𝑎𝑠𝑠 Component molar flowrate mol/s
pressure 𝑃 Pressure bar
mole_frac_comp 𝑦𝑗 Component mole fractions indexed by component list None
temperature 𝑇 Temperature K
mw 𝑚𝑤 Molecular weight of gas mixture kg/mol
dens_mol 𝐶𝑔 Molar density/concentration mol/m3
dens_mol_comp 𝐶𝑔,𝑗 Component molar concentration indexed by component list mol/m3
dens_mass 𝜌𝑚𝑎𝑠𝑠 Mass density kg/m3
visc_d 𝜇𝑣𝑎𝑝 Mixture dynamic viscosity kg/m.s
diffusion_comp 𝐷𝑣𝑎𝑝,𝑗 Component diffusion in a gas mixture indexed by component list cm2/s
therm_cond 𝑘𝑣𝑎𝑝 Thermal conductivity of gas kJ/m.K.s
cp_mol_comp 𝑐𝑝,𝑚𝑜𝑙,𝑗 Pure component molar heat capacities indexed by component list J/mol.K
cp_mol 𝑐𝑝,𝑚𝑜𝑙 Mixture heat capacity, mole-basis J/mol.K
cp_mass 𝑐𝑝,𝑚𝑎𝑠𝑠 Mixture heat capacity, mass-basis J/kg.K
enth_mol_comp 𝐻𝑚𝑜𝑙,𝑗 Pure component enthalpies indexed by component list J/mol
enth_mol 𝐻𝑚𝑜𝑙 Molar enthalpy of gas mixture J/mol

Methods:

Sum of component fractions:

1 =
∑︁
𝑗

𝑦𝑗
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Molecular weight of gas mixture:

𝑚𝑤 =
∑︁
𝑗

𝑦𝑗𝑚𝑤𝑗

Molar density:

𝐶𝑔 = 100
𝑃

𝑅𝑇

Component molar density:

𝐶𝑔,𝑗 = 𝑦𝑗𝐶𝑔

Mass density:

𝜌𝑚𝑎𝑠𝑠 = 𝑚𝑤𝐶𝑔

Mixture dynamic viscosity, see refer-
ence [2] for parameters:

𝜇𝑣𝑎𝑝 =
∑︁
𝑖

𝑦𝑖𝜇𝑖∑︀
𝑗 𝑦𝑗

(︁
𝑚𝑤𝑗

𝑚𝑤𝑖

)︁0.5
𝜇𝑖 =

𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,1𝑇
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,2

1 +
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,3

𝑇 +
𝜇𝑝𝑎𝑟𝑎𝑚,𝑗,4

𝑇 2

Thermal conductivity, see reference [2] for parameters:

𝑘𝑣𝑎𝑝 =
∑︁
𝑖

𝑦𝑖𝑘𝑖∑︀
𝑗 𝑦𝑗𝐴𝑗,𝑖

𝑘𝑖 =
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,1𝑇

𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,2

1 +
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,3

𝑇 +
𝑘𝑝𝑎𝑟𝑎𝑚,𝑗,4

𝑇 2

𝐴𝑗,𝑖 =

(︂
1 +

(︁
𝑘𝑗

𝑘𝑖

)︁0.5(︁
𝑚𝑤𝑗

𝑚𝑤𝑖

)︁0.25)︂2

8
(︁

1 +
(︁

𝑚𝑤𝑗

𝑚𝑤𝑖

)︁)︁0.5
Diffusion of component in a multicomponent gas mixture, see reference [3] for parameters:

𝐷𝑣𝑎𝑝,𝑗 =
1 − 𝑦𝑗∑︀
𝑗,𝑗𝑖

𝑦𝑖

𝐷𝑗,𝑖

𝐷𝑗,𝑖 =
0.00143𝑇 1.75

(︁
1

𝑚𝑤𝑗
+ 1

𝑚𝑤𝑖

)︁0.5
𝑃
(︁
𝑉

1
3
𝑝𝑎𝑟𝑎𝑚,𝑗𝑉

1
3
𝑝𝑎𝑟𝑎𝑚,𝑖

)︁2
Molar heat capacity of component, see reference [1]:

𝑐𝑝,𝑚𝑜𝑙,𝑗 = 𝐶𝑃𝑗,1 + 𝐶𝑃𝑗,2𝑇 + 𝐶𝑃𝑗,3𝑇
2 + 𝐶𝑃𝑗,4𝑇

3 +
𝐶𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Molar heat capacity of gas mixture:

𝑐𝑝,𝑚𝑜𝑙 =
∑︁
𝑗

𝑐𝑝,𝑚𝑜𝑙,𝑗𝑦𝑗
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Mass heat capacity of gas mixture:

𝑐𝑝,𝑚𝑎𝑠𝑠 =
𝑐𝑝,𝑚𝑜𝑙

𝑚𝑤

Molar enthalpy of component, see reference [1]:

𝐻𝑚𝑜𝑙,𝑗 = 𝑃𝑗,1 + 𝑃𝑗,2𝑇 + 𝑃𝑗,3𝑇
2 + 𝑃𝑗,4𝑇

3 +
𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Molar enthalpy of gas mixture:

𝐻𝑚𝑜𝑙𝑒 =
∑︁
𝑗

𝐻𝑚𝑜𝑙,𝑗𝑦𝑗

References:

1. National Institute of Standards and
Technology, NIST Chemistry Web-
Book, (n.d.). (accessed March 10,
2018).

2. R.H. Perry, D.W. Green, Perry’s Chem-
ical Engineering Handbook, 1997,
McGraw-Hill, n.d.

3. Poling, B.E., Prausnitz, J.M. and
O’connell, J.P., 2001. Properties
of gases and liquids. McGraw-Hill
Education.

Solid properties

This property package provides the solid
phase properties for the chemical loop-
ing combustion of an iron-based oxygen
carrier. The components modeled are
Fe2O3, Fe3O4, and Al2O3.

Flow basis: Mass

Units: SI units

State Variables:

The state block supports the following
state variables:

• Component mass flowrate in kg/s,

• Particle porosity in (dimensionless),

• Component mass fraction in (dimen-
sionless),

• Temperature in K

Lists:

• Component list - [Fe2O3, Fe3O4,
Al2O3]
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• Shomate parameter list - [1 to 8]

Parameters:

Parameter Name Sym-
bol

Description Units Refer-
ence

mw_comp 𝑚𝑤𝑗 Molecular weights of solid components indexed by
component list

kg/mol [1]

dens_mass_comp_skeletal𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙,𝑗 Skeletal density of solid components indexed by com-
ponent list

kg/m3 [1]

cp_param 𝐶𝑃𝑗,𝑖 Heat capacity parameters indexed by component list
and shomate list

J/
mol.K

[1]

enth_mol_form_comp 𝐻𝑓𝑜𝑟𝑚,𝑗 Component molar heats of formation indexed by com-
ponent list

J/mol [1]

particle_dia 𝑑𝑝 Diameter of solid particles m [2]
velocity_mf 𝑣𝑚𝑓 Velocity at minimum fluidization m/s [2]
voidage_mf 𝜀𝑚𝑓 Voidage at minimum fluidization None [2]
therm_cond_sol 𝑘𝑠𝑜𝑙 Thermal conductivity of solid particles kJ/m.K.s [2]

Variables:

Variable Name Symbol Description Units
flow_mass 𝐹𝑚𝑎𝑠𝑠 Component mass flowrate kg/s
particle_porosity 𝜑 Porosity of oxygen carrier None
mass_frac_comp 𝑥𝑗 Component mass fractions indexed by component list None
temperature 𝑇 Temperature K
dens_mass_skeletal 𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Skeletal density of oxygen carrier kg/m3
dens_mass_particle 𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 Particle density of oxygen carrier kg/m3
cp_mol_comp 𝑐𝑝,𝑚𝑜𝑙,𝑗 Pure component solid heat capacities indexed by component list J/mol.K
cp_mass 𝑐𝑝,𝑚𝑎𝑠𝑠 Mixture heat capacity, mass-basis J/kg.K
enth_mol_comp 𝐻𝑚𝑜𝑙,𝑗 Pure component enthalpies indexed by component list J/mol
enth_mass 𝐻𝑚𝑎𝑠𝑠 Mixture specific enthalpy J/kg

Methods:

Sum of component fractions:

1 =
∑︁
𝑗

𝑥𝑗

Skeletal density of oxygen carrier:

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 =
1∑︀

𝑗
𝑥𝑗

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙,𝑗

Particle density of oxygen carrier:

𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = (1 − 𝜑)𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙

Molar heat capacity of component, see
reference [1]:

𝑐𝑝,𝑚𝑜𝑙,𝑗 = 𝐶𝑃𝑗,1 + 𝐶𝑃𝑗,2𝑇 + 𝐶𝑃𝑗,3𝑇
2 + 𝐶𝑃𝑗,4𝑇

3 +
𝐶𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

826 Chapter 4. Contents



IDAES Documentation, Release 1.10.1

Mass heat capacity of oxygen carrier:

𝑐𝑝,𝑚𝑎𝑠𝑠 =
∑︁
𝑗

𝑐𝑝,𝑚𝑜𝑙,𝑗𝑥𝑗
𝑚𝑤𝑗

Molar enthalpy of component, see reference [1]:

𝐻𝑚𝑜𝑙,𝑗 = 𝑃𝑗,1 + 𝑃𝑗,2𝑇 + 𝑃𝑗,3𝑇
2 + 𝑃𝑗,4𝑇

3 +
𝑃𝑗,5

𝑇 2

𝑇 = 10−3𝑇

Mass enthalpy of oxygen carrier:

𝐻𝑚𝑎𝑠𝑠 =
∑︁
𝑗

𝐻𝑚𝑜𝑙,𝑗𝑥𝑗
𝑚𝑤𝑗

References:

1. National Institute of Standards and
Technology, NIST Chemistry Web-
Book, (n.d.). (accessed March 10,
2018).

2. Stevens R., Newby R., Shah V., Kuehn
N., Keairns D., Guidance for NETL’s
oxycombustion R&D program: Chem-
ical looping combustion reference plant
designs and sensitivity studies, 2014.

Heterogeneous reaction properties

Property package for the reaction of air
(oxygen) with an iron-based OC. More
details of this reaction scheme can be
found in reference [1]. The gas com-
ponents modeled are O2, N2, CO2,
H2O. The solid components modeled
are Fe2O3, Fe3O4, Al2O3. Reaction
scheme modeled is O2 + 4Fe3O4 =>
6Fe2O3.

Rate basis: Molar

Units: SI units

Lists:

• Component list - [N2, O2, CO2, H2O,
Fe2O3, Fe3O4, Al2O3]

• Reaction list - [R1]

Parameters:
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Parameter Name Sym-
bol

Description Units Refer-
ence

dh_rxn 𝐻𝑟𝑥𝑛 Heat of reaction kJ/mol
grain_radius 𝑟𝑔 Representative particle grain radius within oxygen

carrier particle
m [1]

dens_mol_sol 𝜌𝑠𝑜𝑙,𝑚𝑜𝑙 Molar density of oxygen carrier particle mol/m3 [1]
a_vol 𝑎𝑣𝑜𝑙 Available reaction volume per volume of oxygen

carrier
None [1]

k0_rxn 𝑘0 Pre-exponential factor 𝑚𝑜𝑙1−𝑛𝑖𝑚3𝑛𝑖−2

𝑠 [1]
energy_activation 𝐸𝐴 ‘Activation energy kJ/mol [1]
rxn_order 𝑛𝑖 Reaction order indexed by reaction list None [1]
gas_const 𝑅 Gas constant kJ/mol.K
rate_reaction_stoichiometry𝑏𝑖,𝑗 Reaction Stoichiometry indexed by reaction list

and component list
kJ/mol.K [1]

mw_comp 𝑚𝑤𝑗 Molecular weights of components indexed by
component list

kg/mol [1]

Variables:

Variable Name Symbol Description Units
k_rxn 𝑘 Rate constant 𝑚𝑜𝑙1−𝑛𝑖𝑚3𝑛𝑖−2

𝑠

OC_conv 𝑋 Fraction of oxygen carrier converted None
reaction_rate 𝑟𝑎𝑡𝑒𝑟𝑥𝑛 Reaction rate mol_rxn/m3.s
temperature 𝑇 Temperature K
dens_mol_comp 𝐶𝑔,𝑗 Component molar concentration indexed by component list mol/m3
mass_frac_comp 𝑥𝑗 Component mass fractions indexed by component list None
particle_porosity 𝜑 Porosity of oxygen carrier None
dens_mass_skeletal 𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙 Skeletal density of oxygen carrier kg/m3

Methods:

Rate constant:

𝑘 = 𝑘0𝑒𝑥𝑝

(︂
−𝐸
𝑅𝑇

)︂
Reaction rate:

𝑟𝑎𝑡𝑒𝑟𝑥𝑛 = 𝑥𝐹𝑒3𝑂4(1 − 𝜑)𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
𝑎𝑣𝑜𝑙

𝑚𝑤𝐹𝑒3𝑂4

3𝑘𝑏𝑖,𝐹𝑒3𝑂4𝐶𝑔,𝑂2
𝑛𝑖

𝜌𝑠𝑜𝑙,𝑚𝑜𝑙𝑟𝑔
(1 −𝑋)

2
3

References:

1. A. Abad, J. Adánez, F. García-Labiano,
L.F. de Diego, P. Gayán, J. Celaya, Map-
ping of the range of operational condi-
tions for Cu-, Fe-, and Ni-based oxy-
gen carriers in chemical-looping com-
bustion, Chem. Eng. Sci. 62 (2007)
533–549.
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4.6 Related Packages

In addition to the IDAES PSE frame-
work, several related software packages
have been developed and/or extended to
support capabilities for IDAES.

4.6.1 Pecos: Data Quality
Control and Fault Detection

Before using plant data in process mod-
els, quality control and fault detection
analysis is recommended to identify po-
tential data issues (e.g., missing or cor-
rupt data) and data points that are not
suitable for the intended analysis (e.g.,
abnormal plant behavior). The follow-
ing documentation describes methods to
run data quality control and fault detec-
tion analysis using Pecos.

Pecos is an open-source Python pack-
age designed to monitor performance
of time series data, subject to a series
of quality control tests. The software
includes methods to run quality con-
trol tests defined by the user and gen-
erate reports which include test results
and graphics. Results from the quality
control analysis can be used to extract
“clean data” which removes data points
that failed quality control inspection.
Pecos was originally developed for the
U.S. Department of Energy in 2016 to
monitor solar photovoltaic systems and
has been used for a wide range of appli-
cations since. The software was updated
for IDAES to facilitate near real-time
analysis using continuous data streams.

More information on Pecos can be found
in the online documentation at https:
//pecos.readthedocs.io. The software
repository is located at https://github.
com/sandialabs/pecos.

The following functionality is available
in Pecos:

• Check data for missing, non-monotonic,
and duplicate time stamps

• Check for missing data

• Check for corrupt data
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• Check for data that are outside the ex-
pected range

• Check for stagnant data and/or abrupt
changes in the data using the difference
between max and min values within a
rolling window

• Check for outliers using normalized data
within a rolling window

The analysis generates the following in-
formation:

• Cleaned data (data that failed a test are
removed)

• Boolean mask (indicates which data
points failed a test)

• Summary of the quality control test re-
sults (includes the variable name, start
and end time for each failure, and an er-
ror message)

The test results summary and accom-
panying graphics can be included in
HTML or LATEX reports generated us-
ing Pecos.

Pecos supports both static and streaming
analysis along with custom quality con-
trol functions:

• Static analysis operates on the entire
data set to determine if all data points are
normal or anomalous. While this can
include operations like moving window
statistics, the quality control tests oper-
ate on the entire data set at once.

• Streaming analysis loops through each
data point using a quality control test
that relies on information from “clean
data” in a moving window. If a data
point is determined to be anomalous, it
is not included in the window for subse-
quent analysis.

• The user can define custom quality con-
trol functions used to determine if data is
anomalous and return custom metadata
from the analysis.

Data points that do not pass quality con-
trol inspection should be removed or
replaced by various means (interpola-
tion, data from a duplicate sensor, val-
ues from a model) before using the data
for further analysis. Data replacement
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strategies are generally defined on a
case-by-case basis. If large sections of
the data failed quality control tests, the
data might not be suitable for use.

The raw data, results from the quality
control analysis, and the analysis files
used to run Pecos can be stored in the
Data Management Framework (DMF)
to ensure reproducible results.

Installation

To install Pecos using pip:

pip install pecos

To install Pecos using git:

git clone https:/
→˓/github.com/sandialabs/pecos
cd pecos
python setup.py install

Examples

IDAES examples that use Pecos are
listed on the examples online doc-
umentation page. Pecos also in-
cludes several general examples, located
at https://github.com/sandialabs/pecos/
tree/master/examples.

4.7 Frequently Asked
Questions

4.7.1 How do I. . .

. . . Run some examples? First, install the
examples with idaes get-examples.
Then, in the directory that this cre-
ated (“examples”, by default), open
the main Jupyter notebook with
the command jupyter notebook
notebook_index.ipynb, and use it
to navigate to the example(s) of your
choice.

. . . Get more help? Use the website to reg-
ister for the IDAES support mailing
list. Then you can send questions
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to idaes-support@idaes.org. For more
specific technical questions, we recom-
mend our new IDAES discussions board
on Github.

4.7.2 Troubleshooting

Missing win32api DLL For Python 3.8 and
maybe others, you can get an error when
running Jupyter on Windows 10 about
missing the win32api DLL. There is a
relatively easy fix:

pip uninstall pywin32
pip install pywin32==225

4.8 License

Institute for the Design of Advanced
Energy Systems Process Systems
Engineering Framework (IDAES
PSE Framework) Copyright (c) 2019,
by the software owners: The Re-
gents of the University of California,
through Lawrence Berkeley National
Laboratory, National Technology &
Engineering Solutions of Sandia, LLC,
Carnegie Mellon University, West Vir-
ginia University Research Corporation,
et al. All rights reserved.

Redistribution and use in source and bi-
nary forms, with or without modifica-
tion, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must
retain the above copyright notice, this
list of conditions and the following dis-
claimer.

2. Redistributions in binary form must
reproduce the above copyright notice,
this list of conditions and the following
disclaimer in the documentation and/or
other materials provided with the distri-
bution.

3. Neither the name of the Institute for
the Design of Advanced Energy Sys-
tems (IDAES), University of California,
Lawrence Berkeley National Labora-
tory, National Technology & Engineer-
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ing Solutions of Sandia, LLC, Sandia
National Laboratories, Carnegie Mel-
lon University, West Virginia University
Research Corporation, U.S. Dept. of
Energy, nor the names of its contributors
may be used to endorse or promote prod-
ucts derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED
BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IM-
PLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatso-
ever to provide any bug fixes, patches,
or upgrades to the features, functional-
ity or performance of the source code
(“Enhancements”) to anyone; however,
if you choose to make your Enhance-
ments available either publicly, or di-
rectly to Lawrence Berkeley National
Laboratory, without imposing a sepa-
rate written license agreement for such
Enhancements, then you hereby grant
Lawrence Berkeley National Laboratory
the following license: a non-exclusive,
royalty-free perpetual license to install,
use, modify, prepare derivative works,
incorporate into other computer soft-
ware, distribute, and sublicense such en-
hancements or derivative works thereof,
in binary and source code form.

4.8. License 833



IDAES Documentation, Release 1.10.1

4.9 Copyright

Institute for the Design of Advanced
Energy Systems Process Systems
Engineering Framework (IDAES PSE
Framework) was produced under the
DOE Institute for the Design of Ad-
vanced Energy Systems (IDAES), and is
copyright (c) 2018-2021 by the software
owners: The Regents of the Univer-
sity of California, through Lawrence
Berkeley National Laboratory, National
Technology & Engineering Solutions
of Sandia, LLC, Carnegie Mellon
University, West Virginia University
Research Corporation, et al. All rights
reserved.

NOTICE. This Software was developed
under funding from the U.S. Depart-
ment of Energy and the U.S. Gov-
ernment consequently retains certain
rights. As such, the U.S. Government
has been granted for itself and others
acting on its behalf a paid-up, nonex-
clusive, irrevocable, worldwide license
in the Software to reproduce, distribute
copies to the public, prepare derivative
works, and perform publicly and display
publicly, and to permit other to do so.
Copyright (C) 2018-2019 IDAES - All
Rights Reserved
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idaes.apps.caprese.nmpc, 208
idaes.apps.matopt.materials.canvas, 203
idaes.apps.matopt.materials.design, 203
idaes.apps.matopt.materials.lattices.lattice,

203
idaes.apps.matopt.opt.mat_modeling, 205
idaes.core.components, 367
idaes.core.control_volume0d, 313
idaes.core.control_volume1d, 328
idaes.core.flowsheet_model, 310
idaes.core.phases, 370
idaes.core.process_base, 306
idaes.core.process_block, 305
idaes.core.property_base, 348
idaes.core.reaction_base, 357
idaes.core.unit_model, 363
idaes.core.util.dyn_utils, 371
idaes.core.util.homotopy, 379
idaes.core.util.initialization, 380
idaes.core.util.misc, 382
idaes.core.util.model_serializer, 387
idaes.core.util.model_statistics, 403
idaes.core.util.scaling, 422
idaes.core.util.tables, 430
idaes.core.util.unit_costing, 439
idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed,

799
idaes.gas_solid_contactors.unit_models.moving_bed,

810
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack,

467
idaes.generic_models.properties.cubic_eos.cubic_prop_pack,

459
idaes.generic_models.properties.helmholtz.helmholtz,

471
idaes.generic_models.properties.iapws95, 471
idaes.generic_models.properties.swco2, 478
idaes.generic_models.unit_models.cstr, 501
idaes.generic_models.unit_models.equilibrium_reactor,

505
idaes.generic_models.unit_models.feed, 510

idaes.generic_models.unit_models.feed_flash,
513

idaes.generic_models.unit_models.flash, 518
idaes.generic_models.unit_models.gibbs_reactor,

523
idaes.generic_models.unit_models.heat_exchanger_1D,

543
idaes.generic_models.unit_models.heater, 525
idaes.generic_models.unit_models.mixer, 552
idaes.generic_models.unit_models.plug_flow_reactor,

559
idaes.generic_models.unit_models.pressure_changer,

570
idaes.generic_models.unit_models.product, 576
idaes.generic_models.unit_models.separator,

581
idaes.generic_models.unit_models.statejunction,

588
idaes.generic_models.unit_models.stoichiometric_reactor,

591
idaes.generic_models.unit_models.translator,

595
idaes.generic_models.unit_models.valve, 598
idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.column,

769
idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.phe,

779
idaes.power_generation.unit_models.feedwater_heater_0D,

616
idaes.power_generation.unit_models.helm.turbine,

622
idaes.power_generation.unit_models.helm.turbine_inlet,

627
idaes.power_generation.unit_models.helm.turbine_multistage,

646
idaes.power_generation.unit_models.helm.turbine_outlet,

634
idaes.power_generation.unit_models.helm.turbine_stage,

641
idaes.power_generation.unit_models.helm.valve_steam,

656
idaes.surrogate.pysmo.kriging, 189
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idaes.surrogate.pysmo.polynomial_regression,
177

idaes.surrogate.pysmo.radial_basis_function,
183
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Symbols
_GeneralVarLikeExpressionData (class in

idaes.core.util.misc), 384
__init__() (idaes.surrogate.pysmo.kriging.KrigingModel

method), 190
__init__() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression

method), 178
__init__() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions

method), 185
__init__() (idaes.surrogate.pysmo.sampling.CVTSampling

method), 199
__init__() (idaes.surrogate.pysmo.sampling.HaltonSampling

method), 196
__init__() (idaes.surrogate.pysmo.sampling.HammersleySampling

method), 198
__init__() (idaes.surrogate.pysmo.sampling.LatinHypercubeSampling

method), 193
__init__() (idaes.surrogate.pysmo.sampling.UniformSampling

method), 194
-I

idaes-get-examples command line option,
142

-N
idaes-get-examples command line option,

143
-S,--sort

dmf-ls command line option, 105
-U

idaes-get-examples command line option,
143

-V
idaes-get-examples command line option,

143
--by value

dmf-find command line option, 100
--color

dmf-ls command line option, 105
dmf-related command line option, 112
dmf-status command line option, 115

--contained resource
dmf-register command line option, 107

--create

dmf-init command line option, 104
idaes-bin-directory command line option,

140
idaes-data-directory command line

option, 142
idaes-lib-directory command line option,

144
--created value

dmf-find command line option, 100
--derived resource

dmf-register command line option, 107
--desc

dmf-init command line option, 104
--exists

idaes-bin-directory command line option,
140

idaes-data-directory command line
option, 142

idaes-lib-directory command line option,
144

--file value
dmf-find command line option, 100

--help
command line option, 147
idaes-bin-directory command line option,

140
idaes-copyright command line option, 141
idaes-data-directory command line

option, 142
idaes-get-examples command line option,

142
idaes-get-extensions command line

option, 144
idaes-lib-directory command line option,

144
--is-subject

dmf-register command line option, 107
--list,--no-list

dmf-rm command line option, 114
--list-releases

idaes-get-examples command line option,
142
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--modified value
dmf-find command line option, 100

--multiple
dmf-info command line option, 101
dmf-rm command line option, 114

--name
dmf-init command line option, 104

--name value
dmf-find command line option, 100

--no-color
dmf-ls command line option, 105
dmf-related command line option, 112
dmf-status command line option, 115

--no-copy
dmf-register command line option, 107

--no-download
idaes-get-examples command line option,

143
--no-install

idaes-get-examples command line option,
142

--no-prefix
dmf-ls command line option, 105

--no-unicode
dmf-related command line option, 112

--no-unique
dmf-register command line option, 107

--output value
dmf-find command line option, 100

--prev resource
dmf-register command line option, 107

--quiet
command line option, 147
dmf command line option, 97

--strict
dmf-register command line option, 107

--type value
dmf-find command line option, 100

--unicode
dmf-related command line option, 112

--unstable
idaes-get-examples command line option,

143
--url

idaes-get-extensions command line
option, 144

--used resource
dmf-register command line option, 107

--verbose
command line option, 147
dmf command line option, 97

--version
dmf-register command line option, 108

--version TEXT

idaes-get-examples command line option,
143

-a,--all
dmf-status command line option, 116

-d,--dir TEXT
idaes-get-examples command line option,

142
-d,--direction

dmf-related command line option, 112
-f,--format value

dmf-info command line option, 101
-l

idaes-get-examples command line option,
142

-q
command line option, 147
dmf command line option, 97

-r,--reverse
dmf-ls command line option, 106

-s,--show
dmf-ls command line option, 105

-s,--show info
dmf-status command line option, 115

-t,--type
dmf-register command line option, 107

-v
command line option, 147
dmf command line option, 97

-y,--yes
dmf-rm command line option, 114

A
activated_block_component_generator() (in mod-

ule idaes.core.util.model_statistics), 403
activated_blocks_set() (in module

idaes.core.util.model_statistics), 403
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idaes.core.util.model_statistics), 403
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idaes.core.util.model_statistics), 404
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idaes.core.util.model_statistics), 404
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idaes.core.util.model_statistics), 404
activated_inequalities_set() (in module

idaes.core.util.model_statistics), 404
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idaes.core.util.model_statistics), 404
activated_objectives_set() (in module

idaes.core.util.model_statistics), 405
active_variables_in_deactivated_blocks_set()

(in module idaes.core.util.model_statistics),
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405
ActivityCoeffParameterBlock (class in

idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
467

ActivityCoeffStateBlock (class in
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
468

ActivityCoeffStateBlockData (class in
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
469

add() (idaes.core.util.misc.IndexedVarLikeExpression
method), 383

add() (idaes.core.util.misc.SimpleVarLikeExpression
method), 383

add_adiabatic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 573

add_energy_mixing_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 555

add_energy_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_geometry() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 315

add_geometry() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 331

add_inlet_port() (idaes.core.unit_model.UnitModelBlockData
method), 363

add_inlet_port_objects()
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method), 585

add_inlet_state_blocks()
(idaes.generic_models.unit_models.mixer.MixerData
method), 555

add_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 573

add_isothermal() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 573

add_material_mixing_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 555

add_material_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_mixed_state_block()
(idaes.generic_models.unit_models.mixer.MixerData
method), 555

add_mixed_state_block()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_momentum_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_object_reference() (in module

idaes.core.util.misc), 384
add_outlet_port() (idaes.core.unit_model.UnitModelBlockData

method), 363
add_outlet_port_objects()

(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_outlet_state_blocks()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 585

add_phase_component_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 315

add_phase_component_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 331

add_phase_energy_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 316
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(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 316
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(idaes.core.control_volume1d.ControlVolume1DBlockData
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add_port() (idaes.core.unit_model.UnitModelBlockData
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add_pressure_equality_equations()
(idaes.generic_models.unit_models.mixer.MixerData
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(idaes.generic_models.unit_models.mixer.MixerData
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add_reaction_blocks()
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(idaes.core.control_volume1d.ControlVolume1DBlockData
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arcs_to_stream_dict() (in module
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atoms (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor
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atoms (idaes.apps.matopt.opt.mat_modeling.MatOptModel
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B
badly_scaled_var_generator() (in module

idaes.core.util.scaling), 427
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(idaes.core.process_block.ProcessBlock class
method), 306

base_class_name() (idaes.core.process_block.ProcessBlock
class method), 306

binary (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 205

BoilerFireside
idaes.power_generation.unit_models.boiler_fireside,

692
BoilerHeatExchanger

idaes.power_generation.unit_models.boiler_heat_exchanger,
661

BoilerHeatExchanger (class in
idaes.power_generation.unit_models.boiler_heat_exchanger),
670

BoilerHeatExchangerData (class in
idaes.power_generation.unit_models.boiler_heat_exchanger),
673

bound() (idaes.core.util.model_serializer.StoreSpec
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BubblingFluidizedBed (class in
idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed),
799

BubblingFluidizedBedData (class in
idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed),
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build() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 320

build() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 336

build() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 310
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build() (idaes.core.process_base.ProcessBlockData
method), 307

build() (idaes.core.property_base.PhysicalParameterBlock
method), 348

build() (idaes.core.property_base.StateBlockData
method), 351

build() (idaes.core.reaction_base.ReactionBlockDataBase
method), 360

build() (idaes.core.reaction_base.ReactionParameterBlock
method), 357

build() (idaes.core.unit_model.UnitModelBlockData
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method), 515
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method), 529
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C
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method), 351
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CubicParameterData (class in
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459
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460
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D
Data Management (IDAES-DMF), 14
data_scaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling

static method), 177
data_scaling_minmax()

(idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
static method), 183

data_unscaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling
static method), 177

data_unscaling_minmax()
(idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
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deactivate_model_at() (in module
idaes.core.util.dyn_utils), 372
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deactivated_constraints_generator() (in module
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idaes.core.util.model_statistics), 406

deactivated_objectives_set() (in module
idaes.core.util.model_statistics), 406

declare_process_block_class() (in module
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method), 352
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(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 470
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method), 460

degrees_of_freedom() (in module
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delta_temperature_amtd_callback() (in module
idaes.generic_models.unit_models.heat_exchanger),
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delta_temperature_lmtd_callback() (in module
idaes.generic_models.unit_models.heat_exchanger),
538

delta_temperature_underwood_callback() (in
module idaes.generic_models.unit_models.heat_exchanger),
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derivative_variables_set() (in module
idaes.core.util.model_statistics), 407

Design (class in idaes.apps.matopt.materials.design),
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DMF
dmf, 93

dmf
DMF, 93
Help, 95

dmf command line option
--quiet, 97
--verbose, 97
-q, 97
-v, 97

dmf-find command line option
--by value, 100
--created value, 100
--file value, 100
--modified value, 100
--name value, 100
--output value, 100
--type value, 100

dmf-info command line option
--multiple, 101
-f,--format value, 101
identifier, 101

dmf-init command line option
--create, 104
--desc, 104
--name, 104
path, 104

dmf-ls command line option
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-r,--reverse, 106
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dmf-register command line option
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--no-copy, 107
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--no-unicode, 112
--unicode, 112
-d,--direction, 112

dmf-rm command line option
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-y,--yes, 114
identifier, 114

dmf-status command line option
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--no-color, 115
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715

E
EquilibriumReactor (class in
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EquilibriumReactorData (class in
idaes.generic_models.unit_models.equilibrium_reactor),
509
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fix_state_vars() (in module
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432

get_activity_dict() (in module
idaes.core.util.dyn_utils), 374

get_class_attr_list()
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(in module idaes.core.util.scaling), 425

get_costing() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 310

get_data_class_attr_list()
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(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 180

get_feature_vector()
(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions
method), 186

get_fixed_dict() (in module
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idaes.core.util.dyn_utils), 375
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get_location_of_coordinate_set() (in module
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HelmTurbineInletStageData (class in

848 Index



IDAES Documentation, Release 1.10.1

idaes.power_generation.unit_models.helm.turbine_inlet),
633

HelmTurbineMultistage
idaes.power_generation.unit_models.helm.turbine_multistage,

646
HelmTurbineMultistage (class in

idaes.power_generation.unit_models.helm.turbine_multistage),
652

HelmTurbineMultistageData (class in
idaes.power_generation.unit_models.helm.turbine_multistage),
654

HelmTurbineOutletStage
idaes.power_generation.unit_models.helm.turbine_outlet,

634
HelmTurbineOutletStage (class in

idaes.power_generation.unit_models.helm.turbine_outlet),
638

HelmTurbineOutletStageData (class in
idaes.power_generation.unit_models.helm.turbine_outlet),
640

HelmTurbineStage
idaes.power_generation.unit_models.helm.turbine_stage,

641
HelmTurbineStage (class in

idaes.power_generation.unit_models.helm.turbine_stage),
643

HelmTurbineStageData (class in
idaes.power_generation.unit_models.helm.turbine_stage),
645

HelmValve
idaes.power_generation.unit_models.helm.valve_steam,

656
HelmValve (class in idaes.power_generation.unit_models.helm.valve_steam),

658
HelmValveData (class in

idaes.power_generation.unit_models.helm.valve_steam),
660

Help
dmf, 95

HeteroReactionParameterBlock
idaes.gas_solid_contactors.properties.methane_iron_OC_reduction.hetero_reactions,

821
idaes.gas_solid_contactors.properties.oxygen_iron_OC_oxidation.hetero_reactions,

827
HeteroReactionParameterData

idaes.gas_solid_contactors.properties.methane_iron_OC_reduction.hetero_reactions,
821

idaes.gas_solid_contactors.properties.oxygen_iron_OC_oxidation.hetero_reactions,
827

HeteroReactionStateBlock
idaes.gas_solid_contactors.properties.methane_iron_OC_reduction.hetero_reactions,

821
idaes.gas_solid_contactors.properties.oxygen_iron_OC_oxidation.hetero_reactions,

827

HeteroReactionStateBlockData
idaes.gas_solid_contactors.properties.methane_iron_OC_reduction.hetero_reactions,

821
idaes.gas_solid_contactors.properties.oxygen_iron_OC_oxidation.hetero_reactions,

827
Home

idaes, 1
homotopy() (in module idaes.core.util.homotopy), 379
htpx() (in module idaes.generic_models.properties.iapws95),
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(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 496

852 Index



IDAES Documentation, Release 1.10.1

list_properties_required_by_model()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 498

list_required_properties()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 496

list_required_properties()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 498

lock_attribute_creation_context()
(idaes.core.property_base.StateBlockData
method), 353

lock_attribute_creation_context()
(idaes.core.reaction_base.ReactionBlockDataBase
method), 360

M
make_dynamic_column_profile()

(idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.column.PackedColumnData
method), 775

make_steady_state_column_profile()
(idaes.power_generation.carbon_capture.mea_solvent_system.unit_models.column.PackedColumnData
method), 775

map_scaling_factor() (in module
idaes.core.util.scaling), 428

MaterialDescriptor (class in
idaes.apps.matopt.opt.mat_modeling), 204

MatOptModel (class in
idaes.apps.matopt.opt.mat_modeling), 205

maximize() (idaes.apps.matopt.opt.mat_modeling.MatOptModel
method), 206

MBR (class in idaes.gas_solid_contactors.unit_models.moving_bed),
810

MBRData (class in idaes.gas_solid_contactors.unit_models.moving_bed),
814

min_scaling_factor() (in module
idaes.core.util.scaling), 428

minimize() (idaes.apps.matopt.opt.mat_modeling.MatOptModel
method), 206

Mixer (class in idaes.generic_models.unit_models.mixer),
552

MixerData (class in idaes.generic_models.unit_models.mixer),
555

model_check() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 321

model_check() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 337

model_check() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 311

model_check() (idaes.core.unit_model.UnitModelBlockData
method), 365

model_check() (idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 470

model_check() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 461

model_check() (idaes.generic_models.unit_models.mixer.MixerData
method), 557

model_check() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 575

model_check() (idaes.generic_models.unit_models.separator.SeparatorData
method), 587

model_check() (idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData
method), 674

module
idaes.apps.caprese.nmpc, 208
idaes.apps.matopt.materials.canvas, 203
idaes.apps.matopt.materials.design, 203
idaes.apps.matopt.materials.lattices.lattice,

203
idaes.apps.matopt.opt.mat_modeling, 205
idaes.core.components, 367
idaes.core.control_volume0d, 313
idaes.core.control_volume1d, 328
idaes.core.flowsheet_model, 310
idaes.core.phases, 370
idaes.core.process_base, 306
idaes.core.process_block, 305
idaes.core.property_base, 348
idaes.core.reaction_base, 357
idaes.core.unit_model, 363
idaes.core.util.dyn_utils, 371
idaes.core.util.homotopy, 379
idaes.core.util.initialization, 380
idaes.core.util.misc, 382
idaes.core.util.model_serializer, 387
idaes.core.util.model_statistics, 403
idaes.core.util.scaling, 422
idaes.core.util.tables, 430
idaes.core.util.unit_costing, 439
idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed,

799
idaes.gas_solid_contactors.unit_models.moving_bed,

810
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack,

467
idaes.generic_models.properties.cubic_eos.cubic_prop_pack,

459
idaes.generic_models.properties.helmholtz.helmholtz,

471
idaes.generic_models.properties.iapws95,

471
idaes.generic_models.properties.swco2,

478
idaes.generic_models.unit_models.cstr,

501
idaes.generic_models.unit_models.equilibrium_reactor,

505

Index 853



IDAES Documentation, Release 1.10.1

idaes.generic_models.unit_models.feed,
510

idaes.generic_models.unit_models.feed_flash,
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