IDAES Documentation
Release 1.2.1

IDAES team

Jul 12, 2019

Contents

1 Project Goals 1
2 Collaborating institutions 3
3 Contact, contributions and more information 5
4 Contents 7
4.1 Installation e e e e e 7
4.2 IDAES Modeling Standards 17
43 CoreLibrary o e e e e e 22
44 UnitModel Library L 89
4.5 Property Model Library e e e e e e e e e e 165
4.6 Visualizationo e e e e e e 171
4.7 Data Management Framework L o 174
4.8 IDAES Versioning e e e 196
4.9 TutorialsS e e e e e e e e e e e e e e e e e e 198
4.10 Developer Documentation o vt it e e e e e e e e e e e e e e e e e 199
401 ddaes . .. e e e 217
412 GlOSSATY . . o vt e e e e e e e e e e e e e e e e e e e 364
413 LICENSE . . v v v v i e e e e e e e e e e e e e e e e 364
4.14 Copyright o L e 365
5 Indices and tables 367
Python Module Index 369
Index 371

CHAPTER 1

Project Goals

The Institute for the Design of Advanced Energy Systems (IDAES) will be the world’s premier resource for the de-
velopment and analysis of innovative advanced energy systems through the use of process systems engineering tools
and approaches. IDAES and its capabilities will be applicable to the development of the full range of advanced fossil
energy systems, including chemical looping and other transformational CO, capture technologies, as well as integra-
tion with other new technologies such as supercritical CO,. In addition, the tools and capabilities will be applicable to
renewable energy development, such as biofuels, green chemistry, Nuclear and Environmental Management, such as
the design of complex, integrated waste treatment facilities.

IDAES Documentation, Release 1.2.1

2 Chapter 1. Project Goals

CHAPTER 2

Collaborating institutions

The IDAES team is comprised of collaborators from the following institutions:
* National Energy Technology Laboratory (Lead)
 Sandia National Laboratory
» Lawrence Berkeley National Laboratory
¢ Carnegie-Mellon University (subcontract to LBNL)

* West Virginia University (subcontract to LBNL)

IDAES Documentation, Release 1.2.1

4 Chapter 2. Collaborating institutions

CHAPTER 3

Contact, contributions and more information

General, background and overview information is available at the IDAES main website. Framework development

happens at our GitHub repo where you can report issues/bugs or make contributions. For further enquiries, send an
email to: <idaes-support@idaes.org>

https://www.idaes.org
https://github.com/IDAES/idaes-pse
https://github.com/IDAES/idaes-pse/issues
https://github.com/IDAES/idaes-pse/pulls
mailto:idaes-support@idaes.org

IDAES Documentation, Release 1.2.1

6 Chapter 3. Contact, contributions and more information

CHAPTER 4

Contents

4.1 Installation

4.1.1 Minimal installation

To make it easier to use basic functionality and try the IDAES PSE Toolkit, we have compiled these “minimal”
instructions, that only allow one to use the free IPOPT solver with MUMPS. This will not be appropriate for some
models. We are working on an easy installer with better solvers, but for now you will need to use the full install
instructions in the next sections if this is not sufficient for your needs.

Minimal install with IPOPT/MUMPS for Windows

Install Miniconda’
1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest- Windows-x86_64.exe
2. Install anaconda from the downloaded file in (1).
3. Open the Anaconda powershell (Start -> “Anaconda Powershell Prompt”).

4. In the Anaconda Powershell, follow the Generic minimal install with IPOPT/MUMPS instructions.

Minimal install with IPOPT/MUMPS for Linux

Install Miniconda®
1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
2. For the next steps, open a terminal window

3. Run the script you downloaded in (1).

2 Miniconda is a product from Anaconda that contains their package manager, “Conda” (and not much else). This is the package manager we
will use here for setting up the software development environment and installing IDAES’ software (package) dependencies.

https://www.coin-or.org/Ipopt/documentation/documentation.html
http://mumps.enseeiht.fr/
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://anaconda.com

IDAES Documentation, Release 1.2.1

4. Follow the Generic minimal install with IPOPT/MUMPS instructions.

Generic minimal install with IPOPT/MUMPS

Once you have Conda installed, the remaining steps, performed in either the Anaconda Powershell (Prompt) or a Linux
terminal, are the same.

Isolate the IDAES installation (from other Python packages)

1. Create an environment with Python = 3.6 or above:

’conda create —n myenv "python>=3.6"

2. Activate the environment you created:

conda activate myenv

Install a git client

3. Install the git client:

’conda install -c¢ anaconda git

Install IPOPT
4. Install IPOPT from “conda-forge”:

’conda install -c¢ conda-forge ipopt

5. Check if the installation worked by checking for the ipopt version:

ipopt -v

Download IDAES source code and install required packages

6. Go to the idaes-pse releases page, https://github.com/IDAES/idaes-pse/releases/, and look at the most recent
release. Under the section labeled “Assets” there will be a zip file. Download that file and extract the contents
in any location of your choice.

7. In the Linux terminal or Anaconda Powershell, navigate to the folder you created in the previous step.

8. Install the packages required for IDAES using the following command:

’pip install -r requirements.txt

Install IDAES

9. In the folder where the idaes source code was downloaded, run the setup.py file:

’python setup.py develop

10. Run tests on unit models:

’pytest idaes/unit_models

11. You should see the tests run and all should pass to ensure the installation worked. You can report problems on
the Github issues page (Please try to be specific about the command and the offending output.)

12. Launch the Jupyter Notebook

a. Navigate to examples and run Jupyter notebook:

8 Chapter 4. Contents

https://github.com/IDAES/idaes-pse/releases/
https://github.com/IDAES/idaes-pse/issues

IDAES Documentation, Release 1.2.1

cd examples
jupyter notebook

b. Open a web browser to the URL that is printed from the previous command.

4.1.2 Linux installation

This section has the instructions for a “full” Linux installation. If you want to just try a few examples and find these
instructions difficult to follow, you may try the Minimal install with IPOPT/MUMPS for Linux.

System Requirements

The IDAES toolkit can be installed on Linux, Windows, or MacOSX. The officially supported platform, and the
one we use for our automated testing, is Linux. Therefore it is recommended that for maximum stability you use
this platform. However we realize many users have Windows or Mac OSX environments. We include best-effort
instructions, that we have gotten to work for us, for those platforms as well.

 Linux operating system
* Python 3.6 or above (Python 2 is no longer supported)
* Basic GNU/C compilation tools: make, gcc/g++
* wget (for downloading software)
e git (for getting the IDAES source code)
* Access to the Internet
Things you must know how to do:
 Get root permissions via sudo.

* Install packages using the package manager.

Installation steps

sudo apt-get install gcc g++ make libboost-dev

We use a Python packaging system called Conda. Below are instructions for installing a minimal version of Conda,
called Miniconda. The full version installs a large number of scientific analysis and visualization libraries that are not
required by the IDAES framework.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Create and activate a conda environment (along with its own copy of pip) for the new IDAES installation (you will
need to conda activate idaes when you open a fresh terminal window and wish to use IDAES):

conda create -n idaes pip
conda activate idaes

Obtain the source code for IDAES from GitHub:

git clone https://github.com/IDAES/idaes-pse.git

4.1. Installation 9

https://conda.io/
https://conda.io/en/latest/miniconda.html

IDAES Documentation, Release 1.2.1

Download and compile the AMPL Solver Library (ASL) and compile external property functions; this is required for
steam properties and cubic equations of state. This step is optional, but highly recommended.

cd <Location to keep the ASL>

wget https://ampl.com/netlib/ampl/solvers.tgz
tar -xf solvers.tgz

cd solvers

./configure

make

export ASL_BRUILD= pwd /sys. uname -m . uname -S
cd <IDAES source main directory>

make

Note: If you get an error about funcadd. h not being found, either AST,_BUILD is not set correctly or the ASL did
not compile properly.

Install the required Python packages:

pip install -r requirements.txt
python setup.py develop # or "install”

Install ipopt. If you have an HSL license, you may prefer to compile ipopt with HSL support. Please see the ipopt
documentation in that case. Otherwise ipopt can be installed with conda.

’conda install -c conda-forge ipopt

At this point, you should be able to launch the Jupyter Notebook server and successfully run examples from the
examples folder:

’jupyter notebook

Solvers

Some of the model code depends on external solvers. The installation instructions above include the free IPOPT
solver. Most of the examples can run with this solver, but a significant number of more advanced problems will not be
handled well. Some other solvers you can install that may improve (or make possible) solutions for these models are:

* CPLEX: a linear optimization package from IBM.
¢ Gurobi: LP/MILP/MIQP, etc., solvers from Gurobi.

ASL and AMPL

In some cases, IDAES uses AMPL user-defined functions written in C for property models. Compiling these functions
is optional, but some models may not work without them.

The AMPL solver library (ASL) is required, and can be downloaded from from https://ampl.com/netlib/ampl/solvers.
tgz. Documentation is available at https://ampl.com/resources/hooking-your-solver-to-ampl/.

4.1.3 Windows Installation

10 Chapter 4. Contents

https://projects.coin-or.org/Ipopt
examples.html
https://www.coin-or.org/Ipopt/documentation/documentation.html
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
https://ampl.com/netlib/ampl/solvers.tgz
https://ampl.com/netlib/ampl/solvers.tgz
https://ampl.com/resources/hooking-your-solver-to-ampl/

IDAES Documentation, Release 1.2.1

Note: Windows is not officially supported at this time.

This is a complete guide to installing the IDAES framework on Windows. The Extras section includes additional
information which may be useful. This guide includes compiling C++ components. In the future precompiled versions
of these libraries will be made available, simplifying the installation process.

Tools
Before installing the IDAES software there are a few development tools that need to be installed. There are alternatives,
but an attempt was made to provide the easiest path here.

1. Install a gif client from https://git-scm.com/download/win. A git client is not necessary for all users, but if you
are a developer or advanced user, you will likely want it.

2. Install MSYS2. MSYS2 provides a shell which will allow use of Linux style build tools. It also provides a
convenient package manager (pacman) which allows for easy installation of build tools.

a. Go to https://www.msys2.org/

b. Download the x86_64 installer

c. Run the installer (the default options should be okay)

d. Open the MSYS2 MinGW 64-bit terminal (go to: start menu/MSYS2 64Bit/MSYS2 MinGW 64Bit).
e. Update the MSYS2 software:

pacman —-Syu

f. Repeat the previous step until there are no more updates.

g. Install the build tools and libraries. Some packages installed are group packages, and pacman will prompt
to select which packages you would like to install. Press “enter” for the default, which is all.:

pacman -S mingw-w64-x86_64-toolchain mingw-w64-x86_64-boost unzip patch make

h. While MinGW does produce Windows native binaries, depending on linking options, some DLLs may
be required. Add the MinWG/MSYS2 DLLs to your path. For example if MSYS2 was installed in the
default location you would probably want to add C: \msys64\mingw64\bin. See Modifying the Path
Environment Variable.

Note: In the MSYS2 terminal the directory structure looks different than the regular Windows directory structure.
The Windows C: drive is located at /c.

Install Miniconda

1. Download Miniconda (https://docs.conda.io/en/latest/miniconda.html)

2. Run the Miniconda installer (default options should be fine)

4.1. Installation 11

https://git-scm.com/download/win
https://www.msys2.org/
https://docs.conda.io/en/latest/miniconda.html

IDAES Documentation, Release 1.2.1

Get IDAES

The two main options for getting IDAES are to download the files or to clone the repository. Cloning the repository
requires a git client. For core IDAES developers or users who need to track the latest developments and have access
to the idaes-dev repo, replace “idaes-pse” with “idaes-dev.”

Option 1: Download from Github

Most users can download the release files from https://github.com/IDAES/idaes-pse/releases. The latest development
version can be downloaded by going to https://github.com/IDAES/idaes-pse and clicking the “Clone or Download”
button then clicking on “Download Zip.” Unzip the files to a convenient location.

Option 2: Fork and Clone the Repository

For people who are not IDAES core developers but potentially would like to make contributions to the IDAES project
or closely follow IDAES development, the best way to get the IDAES files is to fork the IDAES repo on Github,
then clone the new fork. To fork the repository sign into your Github account, and go to https://github.com/IDAES/
idaes-pse. Then, click the “Fork™ button in the upper righthand corner of the page.

To clone a repository:
1. Open a command window.
2. Go to the directory where you want to create the local repo.

3. Enter the command (replace “Github_Account” with the Github account of the fork you wish to clone):

git clone https://github.com/Githhub_Account/idaes-pse

4. The clone command should create a new idaes-pse subdirectory with a local repository.

IDAES Location

In the instructions that follow idaes_dir will refer to the directory containing the IDAES files.

Compiling ASL
The AMPL Solver Library (ASL) is required to compile some user-defined functions used in parts of the IDAES
framework (mainly some property packages).

1. Open the MSYS2 MinGW 64-bit terminal (go to: start menu/MSYS2 64Bit/MSYS2 MinGW 64Bit).

2. Create a directory for complied source code in a convenient location, which will be referred to as src in these
instructions. For example (obviously change the user name and /c is the location of the C: drive in Windows)
mkdir /c/Users/jeslick/src.

3. Go to the source directory (again replace src with the actual directory):

cd src

4. Download the ASL and compile the ASL:

12 Chapter 4. Contents

https://github.com/IDAES/idaes-pse/releases
https://github.com/IDAES/idaes-pse
https://github.com/IDAES/idaes-pse
https://github.com/IDAES/idaes-pse

IDAES Documentation, Release 1.2.1

wget https://ampl.com/netlib/ampl/solvers.tgz
tar —-zxvf solvers.tgz

cd solvers

./configure

make

Compiling IDAES AMPL Function Extensions
IDAES uses some additional user defined AMPL functions for various purposes, but mainly for physical properties.
Before installing IDAES these functions must be compiled.

1. Open the MSYS2 MinGW 64-bit terminal.

2. Set the ASL_BUILD environment variable (the directory may differ depending on the architecture and replace
. . . /src with the actual location of your src directory):

’export ASL_BUILD=/c/.../src/solvers/sys. uname -m’ . uname -s’

3. Go to the IDAES directory (replace /c/idaes_dir with the location of the IDAES files):

’cd /c/idaes_dir/idaes_pse/

4. Run: make

If the compile finishes without errors you can proceed to installing IDAES.

Install IDAES

1. Open the Anaconda Command prompt

2. Create an idaes environment and activate it (optional):

conda create -n idaes "python>=3.6" pip
conda activate idaes

Note: If you are using a version of conda older than 4.4 the command on Windows to activate a conda environment
(for example idaes) is activate idaes.

3. Install requirements:

’pip install -r requirements.txt

4. Install IDAES:

’python setup.py develop

5. (Optional) Install IPOPT:

’conda install -c¢ conda-forge ipopt

4.1. Installation 13

IDAES Documentation, Release 1.2.1

Extras

Building Documentation

Most users do not need to build this documentation, but if necessary you can. The instructions here use make from
the MSYS?2 installed above.

1.
2. Go to the IDAES directory

3.

4. Add the MSYS2 bin directory to your path temporarily. For example, if MSYS2 is installed in the default

5.

Open the Anaconda Command prompt, and activate the IDAES environment

Go to the docs subdirectory

location:

set Path=%Path%;C:\msys64\usr\bin

Run make (from MSYS2):

’make html

The HTML documentation will be in the “build” subdirectory.

Compiling IPOPT

It’s not required to compile IPOPT yourself, and these are pretty much the standard IPOPT compile instructions. If
you have set up MSYS2 as above, you should be able to follow these instructions to compile IPOPT for Windows.

1.

Download IPOPT from https://www.coin-or.org/download/source/Ipopt/, and put the zip file in the src direc-
tory created above. The Ipopt source is also available from other locations, but source code from other locations
may not include the scripts to download third-party libraries.

Open the MSYS2 MinGW 64-bit terminal (go to: start menu/MSYS2 64Bit/MSYS2 MinGW 64Bit).

Unzip Ipopt (the « here represents the portion of the file name with the Ipopt version information):

unzip Ipopt*.zip
cd Ipoptx*

Get third party libraries:

cd ThirdParty/ASL

./get .ASL

cd ../Blas

./get.Blas

and so on for all the other subdirectories except HSL.

(Optional) Get the HSL source code from https://www.hsl.ac.uk/ipopt. You will need to fill out a request from
and be emailed a download link. Extract the files. Depending on how you extract the files there may be an extra
directory level. Find the directory containing the HSL files and rename it “coinhsl.” Copy the renamed directory
to the HSL subdirectory of the Ipop ThirdParty directory. The results of the configure script below should show
that the HSL was found. Refer to the Ipopt documentation if necessary.

Go to the IPOPT directory (replace $IPOPT_DIR with the IPOPT directory):

14

Chapter 4. Contents

https://www.coin-or.org/download/source/Ipopt/
https://www.hsl.ac.uk/ipopt

IDAES Documentation, Release 1.2.1

cd $SIPOPT_DIR
./configure
make

7. The IPOPT AMPL executable will be in ./Ipopt/src/Apps/AmplSolver/ipopt.exe, you can move the executable
to a location in the path (environment variable). See Modifying the Path Environment Variable.

Modifying the Path Environment Variable

The Windows Path environment variable provides a search path for executable code and dynamically linked libraries
(DLLs). You can temporarily modify the path in a command window session or permanently modify it for the whole
system.

Changing Path Via the Control Panel

This method will modify the path for the whole system. Running programs especially open command windows will
need to be restarted for this change to take effect.

A. Any version of Windows
1. Press the “Windows Key.”
Start to type “Control Panel”
Click on “Control Panel” in the start menu.
Click “System and Security.”
Click “System.”

Click “Advanced system settings.”

A o B

Click “Environment Variables.”
B. In Windows 10
1. Press the “Windows Key.”
2. Start to type “Environment”
3. Click on “Edit the system environment” in the start menu.
4. Click “Environment Variables.”
Temporary Change in Command Window

This method temporarily changes the path in just the active command window. Once the command window is closed
the change will be lost.

Set the Path variable to include any additional directories you want to add to the path. Replace “added_directory” with
the directory you want to add:

set Path=%Path%;added_directory

4.1.4 Installation using Docker

One way to install the IDAES PSE Framework is by using the pre-built Docker image.

A Docker image is essentially an embedded instance of Linux (even if you are using Windows or Mac OSX) that has
all the code for the IDAES PSE framework pre-installed. You can run commands and Jupyter Notebooks in that image.
This section describes how to set up your system, get the Docker image, and interact with it.

4.1. Installation 15

https://www.docker.com/

IDAES Documentation, Release 1.2.1

Install Docker on your system

1. Install the community edition (CE) of Docker (website: https://docker.i0).
2. Start the Docker daemon. How to do this will depend on your operating system.

OS X You should install Docker Desktop for Mac. Docker should have been installed to your Ap-
plications directory. Browse to it and click on it from there. You will see a small icon in your
toolbar that indicates that the daemon is running.

Linux Install Docker using the package manager for your OS. Then start the daemon. If you are
using Ubuntu or a Debian-based Linux distro, the Docker daemon will start automatically once
Docker is installed. For CentOS, start Docker manually, e.g., run sudo systemctl start
docker.

Windows You should install Docker Desktop for Windows. Docker will be started automatically.

Get the IDAES Docker image

You need to get the ready made Docker image containing the source code and solvers for the IDAES PSE framework.
This image is available for download at a URL like “https://s3.amazonaws.com/idaes/idaes-pse/idaes-pse-docker-
VERSION.tgz”, where VERSION is the release version. See the Releases page on GitHub for information about what
is different about each version.

If you want the latest version, simply use the tag “latest” as the version number. Thus, clicking on this link will start
a download of the latest version: https://s3.amazonaws.com/idaes/idaes-pse/idaes-pse-docker-latest.tgz.

Load the IDAES Docker image

The image you downloaded needs to be loaded into your local Docker Installation using the Docker load command,
which from the command-line looks like this:

docker load < idaes-pse-docker-latest.tgz

Run the IDAES Docker image

To start the Docker image, use a graphical user interface or a console or shell command-line interface.

From the command-line, if you want to start up the Jupyter Notebook server, e.g. to view and run the examples and
tutorials, then run this command:

$ docker run -p 8888:8888 —-it idaes/idaes_pse
<debugging output from Jupyter>

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://(305491ce063a or 127.0.0.1):8888/?
—token=812a290619211bef9177b0e8c0£fd7e4d1£673d29909%ac254

Copy and paste the URL provided at the end of the output into a browser window and you should get a working Jupyter
Notebook. You can browse to the examples directory under /home/idaes/examples and click on the Jupyter
Notebooks to open them.

To interact with the image directly from the command-line (console), you can run the following command:

16 Chapter 4. Contents

https://www.docker.com/
https://docker.io
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://s3.amazonaws.com/idaes/idaes-pse/idaes-pse-docker
https://github.com/IDAES/idaes-pse/releases
https://s3.amazonaws.com/idaes/idaes-pse/idaes-pse-docker-latest.tgz
https://docs.docker.com/engine/reference/commandline/load/

IDAES Documentation, Release 1.2.1

$ docker run -p 8888:8888 —-it idaes/idaes_pse /bin/bash
jovyan@l10cllca29008:~$ cd /home/idaes

To install the IDAES PSE framework, follow the set of instructions below that are appropriate for your needs and
operating system.

If you get stuck, please contact idaes-support@idaes.org.

The minimal installation only installs IDAES and the free IPOPT solver with MUMPS. The full installation is recom-
mended for access to more advanced solvers. The Docker installation works on any platform that supports Docker, but
of course requires installation of, and some understanding of, Docker itself to operate.

Type of installation Operating System Section

Minimal [IPOPT/MUMPS | Linux Minimal install with IPOPT/MUMPS for Linux
Windows Minimal install with IPOPT/MUMPS for Windows
Mac OSX not supported'

Full Linux Linux installation
Windows Windows Installation
Mac OSX not supported'

Docker-based Windows, Linux OSX | Installation using Docker

Note: These installation procedures are only fully tested on Debian-based Linux distributions.

4.2 IDAES Modeling Standards

Contents

* IDAES Modeling Standards
— Model Formatting and General Standards
* Headers and Meta-data
* Coding Standard
* Model Organization
* Commenting
— Units of Measurement and Reference States
— Standard Variable Names
+ Standard Naming Format

Constants

*

* Thermophysical and Transport Properties

* Reaction Properties

x Solid Properties

! For advanced users, Mac OSX installation may be performed with some small changes to the Linux installation instructions.

4.2. IDAES Modeling Standards 17

mailto:idaes-support@idaes.org
https://www.coin-or.org/Ipopt/documentation/documentation.html
http://mumps.enseeiht.fr/
https://www.docker.com/

IDAES Documentation, Release 1.2.1

* Naming Examples I

4.2.1 Model Formatting and General Standards

The section describes the recommended formatting used within the IDAES framework. Users are strongly encouraged
to follow these standards in developing their models in order to improve readability of their code.

Headers and Meta-data
Model developers are encouraged to include some documentation in the header of their model files which provides a
brief description of the purpose of the model and how it was developed. Some suggested information to include is:

* Model name,

* Model publication date,

* Model author

* Any necessary licensing and disclaimer information (see below).

* Any additional information the modeler feels should be included.

Coding Standard

All code developed as part of IDAES should conform to the PEP-8 standard.

Model Organization

Whilst the overall IDAES modeling framework enforces a hierarchical structure on models, model developers are
still encouraged to arrange their models in a logical fashion to aid other users in understanding the model. Model
constraints should be grouped with similar constraints, and each grouping of constraints should be clearly commented.

For property packages, it is recommended that all the equations necessary for calculating a given property be grouped
together, clearly separated and identified by using comments.

Additionally, model developers are encouraged to consider breaking their model up into a number of smaller methods
where this makes sense. This can facilitate modification of the code by allowing future users to inherit from the base
model and selectively overload sub-methods where desired.

Commenting

To help other modelers and users understand the how a model works, model builders are strongly encouraged to
comment their code. It is suggested that every constraint should be commented with a description of the purpose
of the constraint, and if possible/necessary a reference to a source or more detailed explanation. Any deviations
from standard units or formatting should be clearly identified here. Any initialization procedures, or other procedures
required to get the model to converge should be clearly commented and explained where they appear in the code.
Additionally, modelers are strongly encouraged to add additional comments explaining how their model works to aid
others in understanding the model.

18 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

4.2.2 Units of Measurement and Reference States

Due to the flexibility provided by the IDAES modeling framework, there is no standard set of units of measurement
or standard reference state that should be used in models. This places the onus on the user to understand the units of
measurement being used within their models and to ensure that they are consistent.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by
the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been
consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.

4.2.3 Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have a standard naming conven-
tion for any variable that may need to be shared between different models. Within the IDAES modeling framework,
this occurs most frequently with information regarding the state and properties of the material within the system,
which is calculated in specialized property blocks, and then used in others parts of the model. This section of the
documentation discusses the standard naming conventions used within the IDAES modeling framework.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a number of different ways
in which these quantities can be expressed. In order to facilitate communication between different parts of models, a
naming convention has been established to standardize the naming of variables across models. Variable names within
IDAES follow to the format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list of standard variable
names given later in this document. If a particular quantity is not included in the list of standard names, users are
encouraged to contact the IDAES developers so that it can be included in a future release. This is followed by a
number of qualifiers which further indicate the specific conditions under which the quantity is being calculated. These
qualifiers are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis, that is quantity per
unit amount of material. There are a number of different bases that can be used when expressing intensive quantities,
and a list of standard basis qualifiers are given below.

Basis Standard Name
Mass Basis mass

Molar Basis mol

Volume Basis | vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the
quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed
by a Pyomo Set.

4.2. IDAES Modeling Standards 19

IDAES Documentation, Release 1.2.1

Basis Standard Name | Comments
Component comp Indexed by component list
Phase phase Indexed by phase list

Phase & Component

phase_comp

Indexed by phase and component list

Total Mixture

No state qualifier

Phase Standard Name
Supercritical Fluid | liq

Tonic Species ion

Liquid Phase lig

Solid Phase sol

Vapor Phase vap

Multiple Phases e.g. ligl

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the
system (e.g. at the critical point, or at equilibrium).

Constants

Basis

Standard Name

Critical Point

crit

Equilibrium State equil
Ideal Gas ideal
Reduced Properties | red
Reference State ref

Constant

Standard Name

Gas Constant

gas_const

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which currently have a standard name associated with them in the
IDAES framework.

Variable Standard Name
Activity act
Activity Coefficient act_coeff

Bubble Pressure

pressure_bubble

Bubble Temperature

temperature_bubble

Compressibility Factor

compress_fact

Concentration

conc

Density

dens

Dew Pressure

pressure_dew

Dew Temperature

temperature_dew

Continued on next page

20

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Table 1 — continued from previous page

Variable Standard Name
Diffusivity diffus

Diffusion Coefficient (binary) | diffus_binary
Enthalpy enth

Entropy entr

Fugacity fug

Fugacity Coefficient fug_coeff

Gibbs Energy energy_gibbs
Heat Capacity (const. P) cp

Heat Capacity (const. V) cv

Heat Capacity Ratio heat_capacity_ratio
Helmholtz Energy energy_helmholtz
Henry’s Constant henry

Mass Fraction mass_frac
Material Flow flow

Molecular Weight mw

Mole Fraction mole_frac

pH pH

Pressure pressure

Speed of Sound speed_sound
Surface Tension surf_tens
Temperature temperature
Thermal Conductivity therm_cond
Vapor Pressure pressure_sat
Viscosity (dynamic) visc_d

Viscosity (kinematic) visc_k

Vapor Fraction vap_frac

Volume Fraction vol_frac

Reaction Properties

Below is a list of all the reaction properties which currently have a standard name associated with them in the IDAES
framework.

Variable Standard Name
Activation Energy energy_activation
Arrhenius Coefficient | arrhenius

Heat of Reaction dh_rxn

Entropy of Reaction ds_rxn
Equilibrium Constant | k_eq
Reaction Rate reaction_rate
Rate constant k_rxn
Solubility Constant k_sol

Solid Properties

Below is a list of all the properties of solid materials which currently have a standard name associated with them in
the IDAES framework.

4.2. IDAES Modeling Standards 21

IDAES Documentation, Release 1.2.1

Variable Standard Name
Min. Fluidization Velocity | velocity_mf
Min. Fluidization Voidage | voidage_mf
Particle Size particle_dia

Pore Size pore_dia
Porosity particle_porosity
Specific Surface Area area_{basis}
Sphericity sphericity
Tortuosity tort

Voidage bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

Variable Name Meaning

enth Specific enthalpy of the entire mixture (across all phases)
flow_comp[“H20”’] Total flow of H20 (across all phases)

entr_phase[“liq”] Specific entropy of the liquid phase mixture
conc_phase_comp[“liq”, “H20] | Concentration of H2O in the liquid phase
temperature_red Reduced temperature

pressure_crit Critical pressure

4.3 Core Library

4.3.1 Core Contents

IDAES Framework Configuration

The IDAES framework can be configured with configuration files in TOML format. Supplying a configuration file
is optional. Currently this file sets logging configuration and modules that should be searched for plugins. The
configuration is done when first importing any idaes.* module. The IDAES framework will first attempt to read a user-
level configuration file at ¥ LOCALAPPDATA%\idaes\idaes.conf on Windows or $HOME/ .idaes/idaes.
conf on other operating systems (e.g. Linux or Mac). Next if an idaes.conf file exists in the working directory it will
be read. Configuration files in the working directory will override settings in the user-level configuration file. The user
level configuration file will override default settings. Not all setting need to be set in a configuration file.

An example configuration file is given below with the default settings.

[plugins]
required = []
optional [1]
[logging]
version = 1
disable_existing_loggers = false
[logging.formatters.fl]
format = "% (asctime)s - %$(levelname)s - % (name)s — % (message)s
datefmt = "$Y-%m-%d %H:%M:%S"
[logging.handlers.console]
class = "logging.StreamHandler"

(continues on next page)

22

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

formatter = "f1"

stream = "ext://sys.stderr"
[logging.loggers.idaes]

level = "INFO"

handlers = ["console"]

The Python dictConfig method is used to set up the logger. The required and optional elements under plugins are string
lists of modules to search for Pyomo style plugins. Any failure to import plugins in the required modules will raise
an exception, while any failure to import optional plugins will only result in the exception being logged and execution
continuing.

Process Blocks

Example

ProcessBlock is used to simplify inheritance of Pyomo’s Block. The code below provides an example of how a new
ProcessBlock class can be implemented. The new ProcessBlock class has a ConfigBlock that allows each element of
the block to be passed configuration options that affect how a block is built. ProcessBlocks have a rule set by default
that calls the build method of the contained ProcessBlockData class.

from pyomo.environ import =
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class ("MyBlock")
class MyBlockData (ProcessBlockData) :
CONFIG = ProcessBlockData.CONFIG()
CONFIG.declare("xinit", ConfigValue (default=1001, domain=float))
CONFIG.declare("yinit", ConfigValue (default=1002, domain=float))
def build(self):
super (MyBlockData, self) .build()
self.x = Var(initialize=self.config.xinit)
self.y = Var(initialize=self.config.yinit)

The following example demonstrates creating a scalar instance of the new class. The default key word argument is
used to pass information on the the MyBlockData ConfigBlock.

m = ConcreteModel ()
m.b = MyBlock (default={"xinit":1, "yinit":2})

The next example creates an indexed MyBlock instance. In this case, each block is configured the same, using the
default argument.

m = ConcreteModel ()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2})

The next example uses the initialize argument to override the configuration of the first block. Initialize is a
dictionary of dictionaries where the key of the top level dictionary is the block index and the second level dictionary
is arguments for the config block.

m = ConcreteModel ()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2},
initialize={0:{"xinit":1, "yinit":2}})

4.3. Core Library 23

https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

IDAES Documentation, Release 1.2.1

The next example shows a more complicated configuration where there are three configurations, one for the first block,
one for the last block, and one for the interior blocks. This is accomplished by providing the idx_map argument to
MyBlock, which is a function that maps a block index to a index in the initialize dictionary. In this case 0 is mapped
to 0, 4 is mapped to 4, and all elements between 0 and 4 are mapped to 1. A lambda function is used to convert the
block index to the correct index in initialize.

= ConcreteModel ()
.b = MyBlock (
[0,1,2,3,41,
idx_map = lambda i: 1 if i > 0 and i < 4 else i,
initialize={0:{"xinit":2001, "yinit":2002},
1:{"xinit":5001, "yinit":5002},
4:{"xinit":7001, "yinit":7002}})

m
m

The build method

The core part of any IDAES Block is the build method, which contains the instructions on how to construct the
variables, constraints and other components that make up the model. The build method serves as the default rule for
constructing an instance of an IDAES Block, and is triggered automatically whenever an instance of an IDAES Block
is created unless a custom rule is provided by the user.

ProcessBlock Class

idaes.core.process_block.declare_process_block_class (name, block_class=<class

’idaes.core.process_block.ProcessBlock’>,

doc=")
Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is derived from Pyomo’s _BlockData. It creates
a ProcessBlock subclass to contain the decorated class. The only requirment is that the subclass of _BlockData
contain a build() method. The purpose of this decorator is to simplify subclassing Pyomo’s block class.

Parameters
* name — name of class to create

* block_class — ProcessBlock or a subclass of ProcessBlock, this allows you to use a
subclass of ProcessBlock if needed. The typical use case for Subclassing ProcessBlock is to
impliment methods that operate on elements of an indexed block.

* doc — Documentation for the class. This should play nice with sphinx.
Returns Decorator function

class idaes.core.process_block.ProcessBlock (*args, **kwargs)
ProcessBlock is a Pyomo Block that is part of a system to make Pyomo Block easier to subclass. The main
difference between a Pyomo Block and ProcessBlock from the user perspective is that a ProcessBlock has a rule
assigned by default that calls the build() method for the contained ProcessBlockData objects. The default rule
can be overridden, but the new rule should always call build() for the ProcessBlockData object.

Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

24 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.2.1

* default (dict)— Default ProcessBlockData config

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (funct ion) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ProcessBlock) New instance

classmethod base_class_module ()
Return module of the associated ProcessBase class.

Returns (str) Module of the class.

Raises AttributeError, if no base class module was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

classmethod base_ class_ name ()
Name given by the user to the ProcessBase class.

Returns (str) Name of the class.

Raises AttributeError, if no base class name was set, e.g. this class — was not wrapped by the
declare_process_block_class decorator.

class idaes.core.process_base.ProcessBlockData (component)
Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to handle arguments provided by the user
when constructing an object and to ensure that these arguments are stored in the config block.

Additionally, this class contains a number of methods common to all IDAES classes.

build()
The build method is called by the default ProcessBlock rule. If a rule is sepecified other than the default it
is important to call ProcessBlockData’s build method to put information from the “default” and “initialize”
arguments to a ProcessBlock derived class into the BlockData object’s ConfigBlock.

The the build method should usually be overloaded in a subclass derived from ProcessBlockData. This
method would generally add Pyomo components such as variables, expressions, and constraints to the
object. It is important for build() methods implimented in derived classes to call build() from the super
class.

Parameters None —
Returns None

fix initial_conditions (state=steady-state’)
This method fixes the initial conditions for dynamic models.

Parameters state — initial state to use for simulation (default = ‘steady-state’)
Returns : None

flowsheet ()
This method returns the components parent flowsheet object, i.e. the flowsheet component to which the
model is attached. If the component has no parent flowsheet, the method returns None.

Parameters None —

Returns Flowsheet object or None

4.3. Core Library 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

unfix initial conditions ()
This method unfixed the initial conditions for dynamic models.

Parameters None —

Returns : None

IDAES Modeling Concepts

Contents

* IDAES Modeling Concepts

Introduction

Time Domain

Flowsheets

Unit Models

Component References

What Belongs in Each Type of Block?

Introduction

The purpose of this section of the documentation is to explain the different parts of the IDAES modeling framework,
and what components belong in each part for the hierarchy. Each component is described in greater detail later in the
documentation, however this section provides a general introduction to different types of components.

Time Domain

Before starting on the different types of models present in the IDAES framework, it is important to discuss how time is
handled by the framework. When a user first declares a Flowsheet model a time domain is created, the form of which
depends on whether the Flowsheet is declared to be dynamic or steady-state (see FlowsheetBlock documentation). In
situations where the user makes use of nested flowsheets, each sub-flowsheet refers to its parent flowsheet for the time
domain.

Different models may handle the time domain differently, but in general all IDAES models refer to the time domain
of their parent flowsheet. The only exception to this are blocks associated with Property calculations. PropertyBlocks
represent the state of the material at a single point in space and time, and thus do not contain the time domain. Instead,
PropertyBlocks are indexed by time (and space where applicable) - i.e. there is a separate PropertyBlock for each point
in time. The user should keep this in mind when working with IDAES models, as it is important for understanding
where the time index appears within a model.

In order to facilitate referencing of the time domain, all Flowsheet objects have a time configuration argument which
is a reference to the time domain for that flowsheet. All IDAES models contain a flowsheet method which returns
the parent flowsheet object, thus a reference to the time domain can always be found using the following code: flow-
sheet().config.time.

Another important thing to note is that steady-state models do contain a time domain, however this is generally a
single point at time = 0.0. However, models still contain a reference to the time domain, and any components are still
indexed by time even in a steady-state model (e.g. PropertyBlocks).

26 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Flowsheets

The top level of the IDAES modeling framework is the Flowsheet model. Flowsheet models represent traditional
process flowsheets, containing a number of Unit models representing process unit operations connected together into
a flow network. Flowsheets generally contain three types of components:

1. Unit models, representing unit operations,
2. Arcs, representing connections between Unit models, and,

3. Property Parameter blocks, representing the parameters associated with different materials present within the
flowsheet.

Flowsheet models may also contain additional constraints relating to how different Unit models behave and interact,
such as control and operational constraints. Generally speaking, if a Constraint is purely internal to a single unit, and
does not depend on information from other units in the flowsheet, then the Constraint should be placed inside the
relevant Unit model. Otherwise, the Constraint should be placed at the Flowsheet level.

Unit Models

Unit models generally represent individual pieces of equipment present within a process which perform a specific task.
Unit models in turn are generally composed of two main types of components:

1. Control Volume Blocks, which represent volume of material over which we wish to perform material, energy
and/or momentum balances, and,

2. StateBlocks and ReactionBlocks, which represent the thermophysical, transport and reaction properties of the
material at a specific point in space and time.

3. Inlets and Outlets, which allow Unit models to connect to other Unit models.

Unit models will also contain Constraints describing the performance of the unit, which will relate terms in the balance
equations to different phenomena.

Control Volumes

A key feature of the IDAES modeling framework is the use of Control Volume Blocks. As mentioned above, Control
Volumes represent a volume of material over which material, energy and/or momentum balances can be performed.
Control Volume Blocks contain methods to automate the task of writing common forms of these balance equations.
Control Volume Blocks can also automate the creation of StateBlocks and ReactionBlocks associated with the control
volume.

Property Blocks

Property blocks represent the state of a material at a given point in space and time within the process flowsheet, and
contain the state variables, thermophysical, transport and reaction properties of a material (which are functions solely
of the local state of the material). Within the IDAES process modeling framework, properties are divided into two

types:
* Physical properties (StateBlocks), including thermophysical and transport properties, and
* Reaction properties (ReactionBlocks), which include all properties associated with chemical reactions.

Additionally, StateBlocks contain information on the extensive flow of material at that point in space and time, which is
a departure from how engineers generally think about properties. This is required to facilitate the flexible formulation

4.3. Core Library 27

IDAES Documentation, Release 1.2.1

of the IDAES Framework by allowing the property package to dictate what form the balance equations will take, which
requires the StateBlock to know the extensive flow information.

The calculations involved in property blocks of both types generally require a set of parameters which are constant
across all instances of that type of property block. Rather than each property block containing its own copy of each
of these parameters (thus duplicating parameters between blocks), each type of property block is associated with a
Property Parameter Block (PhysicalParameterBlock or ReactionParameterBlock). Property Parameter Blocks serve
as a centralized location for the constant parameters involved in property calculations, and all property blocks of the
associated type link to the parameters contained in the parameter block.

Component References

There are many situations in the IDAES modeling framework where a developer may want to make use of a modeling
component (e.g. a variable or parameter) from one Block in another Block. The time domain is a good example of this
- almost all Blocks within an IDAES model need to make use of the time domain, however the time domain exists only
at the top level of the flowsheet structure. In order to make use of the time domain in other parts of the framework,
references to the time domain are used instead. By convention, all references within the IDAES modeling framework
are indicated by the suffix “_ref” attached to the name of the reference. E.g. all references to the time domain within
the framework are called “time_ref”.

What Belongs in Each Type of Block?

A common question with the hierarchical structure of the IDAES framework is where does a specific variable or
constraint belong (or conversely, where can I find a specific variable or constraint). In general, variables and constraints
are divided based on the following guidelines:

1. Property Parameter Blocks - any parameter or quantity that is consistent across all instances of a Property Block
belongs in the Property Parameter Block. This includes:

e component lists,

* lists of valid phases,

* universal constants (e.g. R, 7),

* constants used in calculating properties (e.g. coefficients for calculating c,),
» reference states (e.g. Prcy and Trcp),

o lists of reaction identifiers,

e reaction stoichiometry.

2. Property Blocks - all state variables (including extensive flow information) and any quantity that is a function
only of state variables plus the constraints required to calculate these. These include:

* flow rates (can be of different forms, e.g. mass or molar flow, on a total or component basis),
 temperature,
e pressure,
* intensive and extensive state functions (e.g. enthalpy); both variables and constraints.

3. Control Volume Blocks - material, energy and momentum balances and the associated terms. These include:
* balance equations,
¢ holdup volume,

» material and energy holdups; both variables and constraints,

28 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

» material and energy accumulation terms (Pyomo.dae handles the creation of the associated derivative con-
straints),

* material generation terms (kinetic reactions, chemical and phase equilibrium, mass transfer),
* extent of reaction terms and constraints relating these to the equivalent generation terms,
* phase fraction within the holdup volume and constrain on the sum of phase fractions,
¢ heat and work transfer terms,
e pressure change term
« diffusion and conduction terms (where applicable) and associated constraints,
e Mixer and Splitter blocks for handling multiple inlets/outlets.
4. Unit Model - any unit performance constraints and associated variables, such as:

* constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to
reaction rate and volume),

* constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints),
* unit level efficiency constraints (e.g. relating mechanical work to fluid work).

5. Flowsheet Model - any constraints related to interaction of unit models and associated variables. Examples
include:

* control constraints relating behavior between different units (e.g. a constraint on valve opening based on
the level in another unit).

Flowsheet Model Class

Contents

* Flowsheet Model Class
— Default Property Packages

— Flowsheet Configuration Arguments

— Flowsheet Classes

Flowsheet models make up the top level of the IDAES modeling framework, and represent the flow of material and
energy through a process. Flowsheets will generally contain a number of UnitModels to represent unit operations
within the process, and will contain one or more Property Packages which represent the thermophysical and transport
properties of material within the process.

Flowsheet models are responsible for establishing and maintaining the time domain of the model, including declaring
whether the process model will be dynamic or steady-state. This time domain is passed on to all models attached to
the flowsheet (such as Unit Models and sub-Flowsheets). The Flowsheet model also serves as a centralized location
for organizing property packages, and can set one property package to use as a default throughout the flowsheet.

Flowsheet Blocks may contain other Flowsheet Blocks in order to create nested flowsheets and to better organize large,
complex process configurations. In these cases, the top-level Flowsheet Block creates the time domain, and each sub-
flowsheet creates a reference this time domain. Sub-flowsheets may make use of any property package declared at a
higher level, or declare new property package for use within itself - any of these may be set as the default property
package for a sub-Flowsheet.

4.3. Core Library 29

IDAES Documentation, Release 1.2.1

Default Property Packages

Flowsheet Blocks may assign a property package to use as a default for all UnitModels within the Flowsheet. If a
specific property package is not provided as an argument when constructing a UnitModel, the UnitModel will search
up the model tree until it finds a default property package declared. The UnitModel will use the first default property
package it finds during the search, and will return an error if no default is found.

Flowsheet Configuration Arguments

Flowsheet blocks have three configuration arguments which are stored within a Config block (flowsheet.config). These
arguments can be set by passing arguments when instantiating the class, and are described below:

* dynamic - indicates whether the flowsheet should be dynamic or steady-state. If dynamic = True, the flowsheet

is declared to be a dynamic flowsheet, and the time domain will be a Pyomo ContunuousSet. If dynamic = False,
the flowsheet is declared to be steady-state, and the time domain will be an ordered Pyomo Set. For top level
Flowsheets, dynamic defaults to False if not provided. For lower level Flowsheets, the dynamic will take the
same value as that of the parent model if not provided. It is possible to declare steady-state sub-Flowsheets as
part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Flowsheets within
steady-state Flowsheets).

time - a reference to the time domain for the flowsheet. During flowsheet creation, users may provide a Set or
ContinuousSet that the flowsheet should use as the time domain. If not provided, then the flowsheet will look for
a parent flowsheet and set this equal to the parent’s time domain, otherwise a new time domain will be created
and assigned here.

time_set - used to initialize the time domain in top-level Flowsheets. When constructing the time domain in
top-level Flowsheets, time_set is used to initialize the ContinuousSet or Set created. This can be used to set start
and end times, and to establish points of interest in time (e.g. times when disturbances will occur). If dynamic
= True, time_set defaults to [0.0, 1.0] if not provided, if dynamic = False time_set defaults to [0.0]. time_set is
not used in sub-Flowsheets and will be ignored.

default_property_package - can be used to assign the default property package for a Flowsheet. Defaults to
None if not provided.

Flowsheet Classes

class idaes.core.flowsheet_model.FlowsheetBlockData (component)

The FlowsheetBlockData Class forms the base class for all IDAES process flowsheet models. The main purpose
of this class is to automate the tasks common to all flowsheet models and ensure that the necessary attributes of
a flowsheet model are present.

The most signfiicant role of the FlowsheetBlockData class is to automatically create the time domain for the
flowsheet.

build()
General build method for FlowsheetBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of flowsheets.

Inheriting models should call super().build.
Parameters None —
Returns None

is_ flowsheet ()
Method which returns True to indicate that this component is a flowsheet.

30

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameters None —
Returns True

model_check ()
This method runs model checks on all unit models in a flowsheet.

This method searches for objects which inherit from UnitModelBlockData and executes the model_check
method if it exists.

Parameters None —
Returns None

stream_table (true_state=False, time_point=0, orient="columns’)
Method to generate a stream table by iterating over all Arcs in the flowsheet.

Parameters

* true_state — whether the state variables (True) or display variables (False, default)
from the StateBlocks should be used in the stream table.

* time_ point - point in the time domain at which to create stream table (default = 0)
* orient — whether stream should be shown by columns (“columns”) or rows (“index”)
Returns A pandas dataframe containing stream table information

class idaes.core.flowsheet_model.FlowsheetBlock (*args, **kwargs)
FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and contains instances of Flow-
sheetBlockData.

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent or False, True - set as a dynamic model,
False - set as a steady-state model. }

time Pointer to the time domain for the flowsheet. Users may provide an existing time
domain from another flowsheet, otherwise the flowsheet will search for a parent with a
time domain or create a new time domain and reference it here.

time_set Set of points for initializing time domain. This should be a list of floating point
numbers, default - [0].

default_property_package Indicates the default property package to be used by models
within this flowsheet if not otherwise specified, default - None. Valid values: { None
- no default property package, a ParameterBlock object.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

4.3. Core Library 31

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Returns (FlowsheetBlock) New instance

Property Packages

Physical Property Package Classes

Contents

* Physical Property Package Classes

— Physical Parameter Blocks

— State Blocks

Physical property packages represent a collection of calculations necessary to determine the state properties of a given
material. Property calculations form a critical part of any process model, and thus property packages form the core of
the IDAES modeling framework.

Physical property packages consist of two parts:

* PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being mod-
eled, and

¢ StateBlocks, which contain the actual calculations of the state variables and functions.

Physical Parameter Blocks

Physical Parameter blocks serve as a central location for linking to a property package, and contain all the parameters
and indexing sets used by a given property package.

PhysicalParameterBlock Class

The role of the PhysicalParameterBlock class is to set up the references required by the rest of the IDAES framework
for constructing instances of StateBlocks and attaching these to the PhysicalParameter block for ease of use. This
allows other models to be pointed to the PhysicalParameter block in order to collect the necessary information and to
construct the necessary StateBlocks without the need for the user to do this manually.

Physical property packages form the core of any process model in the IDAES modeling framework, and are used by
all of the other modeling components to inform them of what needs to be constructed. In order to do this, the IDAES
modeling framework looks for a number of attributes in the PhysicalParameter block which are used to inform the
construction of other components.

* state_block_class - a pointer to the associated class that should be called when constructing StateBlocks.
* phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.
* component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

¢ element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species
within the mixture. This is used when doing elemental material balances.

¢ element_comp - (optional) a dict-like object which defines the elemental composition of each species in com-
ponent_list. Form: component: {element_1: value, element_2: value, ... }.

32 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

* supported properties metadata - a list of supported physical properties that the property package supports, along
with instruction to the framework on how to construct the associated variables and constraints, and the units
of measurement used for the property. This information is set using the add_properties attribute of the de-
fine_metadata class method.

Physical Parameter Configuration Arguments

Physical Parameter blocks have one standard configuration argument:

¢ default_arguments - this allows the user to provide a set of default values for construction arguments in associ-
ated StateBlocks, which will be passed to all StateBlocks when they are constructed.

class idaes.core.property_base.PhysicalParameterBlock (component)
This is the base class for thermophysical parameter blocks. These are blocks that contain a set of parameters
associated with a specific thermophysical property package, and are linked to by all instances of that property
package.

build ()
General build method for PropertyParameterBlocks. Inheriting models should call super().build.

Parameters None —

Returns None

State Blocks

State Blocks are used within all IDAES Unit models (generally within ControlVolume Blocks) in order to calculate
physical properties given the state of the material. State Blocks are notably different to other types of Blocks within
IDAES as they are always indexed by time (and possibly space as well). There are two base Classes associated with
State Blocks:

« StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to
construct each instance of a State Block.

* StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks
(or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and
examples for more information.

State Block Construction Arguments

State Blocks have the following construction arguments:

 parameters - a reference to the associated Physical Parameter block which will be used to make references to all
necessary parameters.

* defined_state - this argument indicates whether the State Block should expect the material state to be fully
defined by another part of the flowsheet (such as by an upstream unit operation). This argument is used to
determine whether constraints such as sums of mole fractions should be enforced.

¢ has_phase_equilibrium - indicates whether the associated Control Volume or Unit model expects phase equilib-
rium to be enforced (if applicable).

4.3. Core Library 33

IDAES Documentation, Release 1.2.1

StateBlockData Class

StateBlockData contains the code necessary for implementing the as needed construction of variables and constraints.

class idaes.core.property_base.StateBlockData (component)

This is the base class for state block data objects. These are blocks that contain the Pyomo components associ-
ated with calculating a set of thermophysical and transport properties for a given material.

build()
General build method for StateBlockDatas.

Parameters None —
Returns None

calculate_bubble_point_pressure (*args, **kwargs)
Method which computes the bubble point pressure for a multi- component mixture given a temperature
and mole fraction.

calculate_bubble_point_temperature (*args, **kwargs)
Method which computes the bubble point temperature for a multi- component mixture given a pressure
and mole fraction.

calculate_dew_point_pressure (*args, **kwargs)
Method which computes the dew point pressure for a multi- component mixture given a temperature and
mole fraction.

calculate_dew_point_temperature (*args, **kwargs)
Method which computes the dew point temperature for a multi- component mixture given a pressure and
mole fraction.

define display_ vars ()
Method used to specify components to use to generate stream tables and other outputs. Defaults to de-
fine_state_vars, and developers should overload as required.

define_port_members ()
Method used to specify components to populate Ports with. Defaults to define_state_vars, and developers
should overload as required.

define state vars()
Method that returns a dictionary of state variables used in property package. Implement a placeholder
method which returns an Exception to force users to overload this.

get_energy_diffusion_terms (*args, **kwargs)
Method which returns a valid expression for energy diffusion to use in the energy balances.

get_enthalpy density_ terms (*args, **kwargs)
Method which returns a valid expression for enthalpy density to use in the energy balances.

get_enthalpy flow_terms (*args, **kwargs)
Method which returns a valid expression for enthalpy flow to use in the energy balances.

get_material_density_ terms (*args, **kwargs)
Method which returns a valid expression for material density to use in the material balances .

get_material_diffusion_terms (*args, **kwargs)
Method which returns a valid expression for material diffusion to use in the material balances.

get_material_ flow_ basis (*args, **kwargs)
Method which returns an Enum indicating the basis of the material flow term.

34

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

get_material_flow_terms (*args, **kwargs)
Method which returns a valid expression for material flow to use in the material balances.

StateBlock Class

class idaes.core.property_base.StateBlock (*args, **kwargs)
This is the base class for state block objects. These are used when constructing the SimpleBlock or IndexedBlock
which will contain the PropertyData objects, and contains methods that can be applied to multiple StateBlock-
Data objects simultaneously.

initialize (*args, **kwargs)
This is a default initialization routine for StateBlocks to ensure that a routine is present. All StateBlockData
classes should overload this method with one suited to the particular property package

Parameters None —
Returns None

report (index=0, true_state=False, dof=False, ostream=None, prefix="")
Default report method for StateBlocks. Returns a Block report populated with either the display or state
variables defined in the StateBlockData class.

Parameters

* index — tuple of Block indices indicating which point in time (and space if applicable)
to report state at.

* true_state — whether to report the display variables (False default) or the actual state
variables (True)

* dof — whether to show local degrees of freedom in the report (default=False)
* ostream - output stream to write report to
* prefix — string to append to the beginning of all output lines

Returns Printed output to ostream

Reaction Property Package Classes

Contents

* Reaction Property Package Classes

— Reaction Parameter Blocks

— Reaction Blocks

Reaction property packages represent a collection of calculations necessary to determine the reaction behavior of a
mixture at a given state. Reaction properties depend upon the state and physical properties of the material, and thus
must be linked to a StateBlock which provides the necessary state and physical property information.

Reaction property packages consist of two parts:

* ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being mod-
eled, and

¢ ReactionBlocks, which contain the actual calculations of the reaction behavior.

4.3. Core Library 35

IDAES Documentation, Release 1.2.1

Reaction Parameter Blocks

Reaction Parameter blocks serve as a central location for linking to a reaction property package, and contain all the
parameters and indexing sets used by a given reaction package.

ReactionParameterBlock Class

The role of the ReactionParameterBlock class is to set up the references required by the rest of the IDAES framework
for constructing instances of ReactionBlocks and attaching these to the ReactionParameter block for ease of use. This
allows other models to be pointed to the ReactionParameter block in order to collect the necessary information and to
construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of what needs to be
constructed when dealing with chemical reactions. In order to do this, the IDAES modeling framework looks for a
number of attributes in the ReactionParameter block which are used to inform the construction of other components.

* reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks.
¢ phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

* component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

* rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

* rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions.
Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric
coefficient for that index.

e equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of
interest.

e equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled
reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to
the stoichiometric coefficient for that index.

* supported properties metadata - a list of supported reaction properties that the property package supports, along
with instruction to the framework on how to construct the associated variables and constraints, and the units
of measurement used for the property. This information is set using the add_properties attribute of the de-
fine_metadata class method.

* required properties metadata - a list of physical properties that the reaction property calculations depend upon,
and must be supported by the associated StateBlock. This information is set using the add_required_properties
attribute of the define_metadata class method.

Reaction Parameter Configuration Arguments

Reaction Parameter blocks have two standard configuration arguments:

* property_package - a pointer to a PhysicalParameterBlock which will be used to construct the StateBlocks to
which associated ReactionBlocks will be linked. Reaction property packages must be tied to a single Physical
property package, and this is used to validate the connections made later when constructing ReactionBlocks.

¢ default_arguments - this allows the user to provide a set of default values for construction arguments in associ-
ated ReactionBlocks, which will be passed to all ReactionBlocks when they are constructed.

class idaes.core.reaction_base.ReactionParameterBlock (component)
This is the base class for reaction parameter blocks. These are blocks that contain a set of parameters associated
with a specific reaction package, and are linked to by all instances of that reaction package.

36 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

build()
General build method for ReactionParameterBlocks. Inheriting models should call super().build.

Parameters None —

Returns None

Reaction Blocks

Reaction Blocks are used within IDAES Unit models (generally within ControlVolume Blocks) in order to calculate
reaction properties given the state of the material (provided by an associated StateBlock). Reaction Blocks are notably
different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well), and
are also not fully self contained (in that they depend upon the associated state block for certain variables). There are
two bases Classes associated with Reaction Blocks:

* ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions
on how to construct each instance of a Reaction Block.

» ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction
Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials
and examples for more information.

Reaction Block Construction Arguments

Reaction Blocks have the following construction arguments:

» parameters - a reference to the associated Reaction Parameter block which will be used to make references to
all necessary parameters.

« state_block - a reference to the associated StateBlock which will provide the necessary state and physical prop-
erty information.

¢ has_equilibrium - indicates whether the associated Control Volume or Unit model expects chemical equilibrium
to be enforced (if applicable).

ReactionBlockDataBase Class

ReactionBlockDataBase contains the code necessary for implementing the as needed construction of variables and
constraints.

class idaes.core.reaction_base.ReactionBlockDataBase (component)
This is the base class for reaction block data objects. These are blocks that contain the Pyomo components
associated with calculating a set of reacion properties for a given material.

build()
General build method for PropertyBlockDatas. Inheriting models should call super().build.

Parameters None —
Returns None

get_reaction_rate_basis ()
Method which returns an Enum indicating the basis of the reaction rate term.

4.3. Core Library 37

IDAES Documentation, Release 1.2.1

ReactionBlockBase Class

class idaes.core.reaction_pase.ReactionBlockBase (*args, **kwargs)
This is the base class for reaction block objects. These are used when constructing the SimpleBlock or In-
dexedBlock which will contain the PropertyData objects, and contains methods that can be applied to multiple
ReactionBlockData objects simultaneously.

initialize (*args)
This is a default initialization routine for ReactionBlocks to ensure that a routine is present. All Reaction-
BlockData classes should overload this method with one suited to the particular reaction package
Parameters None —

Returns None

IDAES Property Packages

The IDAES process modeling framework divides property calculations into two parts;
* physical and transport properties
* chemical reaction properties

Defining the calculations to be used when calculating properties is done via “property packages”, which contain a set
of related calculations for a number of properties of interest. Property packages may be general in purpose, such as
ideal gas equations, or specific to a certain application.

As Needed Properties

Process flow sheets often require a large number of properties to be calculate, but not all of these are required in every
unit operation. Calculating additional properties that are not required is undesirable, as it leads to larger problem sizes
and unnecessary complexity of the resulting model.

To address this, the IDAES modeling framework supports “as needed” construction of properties, where the variables
and constraints required to calculate a given quantity are not added to a model unless the model calls for this quantity.
To designate a property as an “as needed” quantity, a method can be declared in the associated property BlockData
class (StateBlockData or ReactionBlockData) which contains the instructions for constructing the variables and con-
straints associated with the quantity (rather than declaring these within the BlockData’s build method). The name of
this method can then be associated with the property via the add_properties metadata in the property packages Param-
eterBlock, which indicates to the framework that when this property is called for, the associated method should be
run.

The add_properties metadata can also indicate that a property should always be present (i.e. constructed in the Block-
Data’s build method) by setting the method to None, or that it is not supported by setting the method to False.

Unit Model Class

The UnitModelBlock is class is designed to form the basis of all IDAES Unit Models, and contains a number of
methods which are common to all Unit Models.

UnitModelBlock Construction Arguments

The UnitModelBlock class by default has only one construction argument, which is listed below. However, most
models inheriting from UnitModelBlock should declare their own set of configuration arguments which contain more

38 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

information on how the model should be constructed.

* dynamic - indicates whether the Unit model should be dynamic or steady-state, and if dynamic = True, the
unit is declared to be a dynamic model. dynamic defaults to useDefault if not provided when instantiating the
Unit model (see below for more details). It is possible to declare steady-state Unit models as part of dynamic
Flowsheets if desired, however the reverse is not true (cannot have dynamic Unit models within steady-state
Flowsheets).

Collecting Time Domain

The next task of the UnitModelBlock class is to establish the time domain for the unit by collecting the necessary
information from the parent Flowsheet model. If the dynamic construction argument is set to useDefault then the Unit
model looks to its parent model for the dynamic argument, otherwise the value provided at construction is used.

Finally, if the Unit model has a construction argument named “has_holdup” (not part of the base class), then this is
checked to ensure that if dynamic = True then has_holdup is also True. If this check fails then a ConfigurationError
exception will be thrown.

Modeling Support Methods

The UnitModelBlock class also contains a number of methods designed to facilitate the construction of common
components of a model, and these are described below.

Build Inlets Method

All (or almost all) Unit Models will have inlets and outlets which allow material to flow in and out of the unit being
modeled. In order to save the model developer from having to write the code for each inlet themselves, UnitModel-
Block contains a method named build_inlet_port which can automatically create an inlet to a specified Control Volume
block (or linked to a specified StateBlock). The build_inlet_port method is described in more detail in the documenta-
tion below.

Build Outlets Method

Similar to build_inlet_port, UnitModelBlock also has a method named build_outlet_port for constructing outlets from
Unit models. The build_outlets method is described in more detail in the documentation below.

Model Check Method

In order to support the IDAES Model Check tools, UnitModelBlock contains a simple model_check method which
assumes a single Holdup block and calls the model_check method on this block. Model developers are encouraged to
create their own model_check methods for their particular applications.

Initialization Routine

All Unit Models need to have an initialization routine, which should be customized for each Unit model, In order to
ensure that all Unit models have at least a basic initialization routine, UnitModelBlock contains a generic initialization
procedure which may be sufficient for simple models with only one Holdup Block. Model developers are strongly
encouraged to write their own initialization routines rather than relying on the default method.

4.3. Core Library 39

IDAES Documentation, Release 1.2.1

UnitModelBlock Classes

class idaes.core.unit_model.UnitModelBlockData (component)
This is the class for process unit operations models. These are models that would generally appear in a process
flowsheet or superstructure.

add_inlet_port (name=None, block=None, doc=None)
This is a method to build inlet Port objects in a unit model and connect these to a specified control volume
or state block.

The name and block arguments are optional, but must be used together. i.e. either both arguments are
provided or neither.

Keyword Arguments

name to use for Port object (name)-—

* = an instance of a ControlVolume or StateBlock to use as
the (block) — source to populate the Port object. If a ControlVolume is provided, the
method will use the inlet state block as defined by the ControlVolume. If not provided,
method will attempt to default to an object named control_volume.

* = doc string for Port object (doc)-
Returns A Pyomo Port object and associated components.

add_outlet_port (name=None, block=None, doc=None)
This is a method to build outlet Port objects in a unit model and connect these to a specified control volume
or state block.

The name and block arguments are optional, but must be used together. i.e. either both arguments are
provided or neither.

Keyword Arguments
* = name to use for Port object (name)-—

* = an instance of a ControlVolume or StateBlock to use as
the (block) — source to populate the Port object. If a ControlVolume is provided, the
method will use the outlet state block as defined by the ControlVolume. If not provided,
method will attempt to default to an object named control_volume.

* = doc string for Port object (doc)-
Returns A Pyomo Port object and associated components.

add_port (name=None, block=None, doc=None)
This is a method to build Port objects in a unit model and connect these to a specified StateBlock. :keyword
name = name to use for Port object.: :keyword block = an instance of a StateBlock to use as the source to:
populate the Port object :keyword doc = doc string for Port object:

Returns A Pyomo Port object and associated components.

build()
General build method for UnitModelBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of unit models.

Inheriting models should call super().build.
Parameters None —

Returns None

40 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

initialize (state_args=None, outlvl=0, solver="ipopt’, optarg={"tol’: le-06})
This is a general purpose initialization routine for simple unit models. This method assumes a single
ControlVolume block called controlVolume, and first initializes this and then attempts to solve the entire
unit.

More complex models should overload this method with their own initialization routines,
Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.

* outlvl — sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)

* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})

* solver - str indicating which solver to use during initialization (default = ‘ipopt’)
Returns None

model_check ()
This is a general purpose initialization routine for simple unit models. This method assumes a single
Control Volume block called control Volume and tries to call the model_check method of the control Volume
block. If an AttributeError is raised, the check is passed.

More complex models should overload this method with a model_check suited to the particular application,
especially if there are multiple ControlVolume blocks present.

Parameters None —
Returns None
class idaes.core.unit_model.UnitModelBlock (*args, **kwargs)
Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms }

e initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

4.3. Core Library 41

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (UnitModelBlock) New instance

Control Volume Classes

0D Control Volume Class

Contents

e 0D Control Volume Class

— ControlVolumeODBlock Equations

The ControlVolumeODBlock block is the most commonly used Control Volume class, and is used for systems where
there is a well-mixed volume of fluid, or where variations in spatial domains are considered to be negligible. Con-
trol VolumeODBIlock blocks generally contain two StateBlocks - one for the incoming material and one for the material
within and leaving the volume - and one StateBlocks.

class idaes.core.control_volumeOd.ControlVolumeODBlock (*args, **kwargs)
Control VolumeODBIlock is a specialized Pyomo block for IDAES non-discretized control volume blocks, and
contains instances of ControlVolumeODBlockData.

Control VolumeODBlock should be used for any control volume with a defined volume and distinct inlets and
outlets which does not require spatial discretization. This encompases most basic unit models used in process
modeling.

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

42 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton. }

e initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (function) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolumeODBlock) New instance

class idaes.core.control_volume(Od.ControlVolumeODBlockData (component)
0-Dimensional (Non-Discretised) Control Volume Class

This class forms the core of all non-discretized IDAES models. It provides methods to build property and
reaction blocks, and add mass, energy and momentum balances. The form of the terms used in these constraints
is specified in the chosen property package.

add_geometry ()
Method to create volume Var in Control Volume.

Parameters None —
Returns None

add_phase_component_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

) custom_molar_term=None, custom_mass_term=None)
This method constructs a set of 0D material balances indexed by time, phase and component.

Parameters

* has_rate_reactions — whether default generation terms for rate reactions should be
included in material balances

* has_equilibrium_reactions — whether generation terms should for chemical
equilibrium reactions should be included in material balances

* has_phase_equilibrium — whether generation terms should for phase equilibrium
behaviour should be included in material balances

* has_mass_transfer — whether generic mass transfer terms should be included in
material balances

* custom_molar_term-aPyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, phase list and
component list

* custom_mass_term - a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, phase list and
component list

4.3. Core Library 43

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Returns Constraint object representing material balances

add_phase_energy_balances (*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy_balances (*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances (*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances (*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks (has_equilibrium=None)
This method constructs the reaction block for the control volume.

Parameters

* has_equilibrium - indicates whether equilibrium calculations will be required in
reaction block

* package_arguments — dict-like object of arguments to be passed to reaction block as
construction arguments

Returns None

add_state_blocks (information_flow=<FlowDirection.forward: 1>,

has_phase_equilibrium=None)
This method constructs the inlet and outlet state blocks for the control volume.

Parameters

* information_flow — a FlowDirection Enum indicating whether information flows
from inlet-to-outlet or outlet-to-inlet

* has_phase_equilibrium - indicates whether equilibrium calculations will be re-
quired in state blocks

* package_arguments — dict-like object of arguments to be passed to state blocks as
construction arguments

Returns None

add_total_component_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

) custom_molar_term=None, custom_mass_term=None)
This method constructs a set of 0D material balances indexed by time and component.

Parameters

* — whether default generation terms for rate
(has_rate_reactions) - reactions should be included in material balances

* — whether generation terms should for(has_equilibrium reactions)
— chemical equilibrium reactions should be included in material balances

44 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

* — whether generation terms should for phase
(has_phase_equilibrium) - equilibrium behaviour should be included in
material balances

* — whether generic mass transfer terms should be
(has_mass_transfer)—included in material balances

* — a Pyomo Expression representing custom terms to
(custom_mass_term) — be included in material balances on a molar basis. Ex-
pression must be indexed by time, phase list and component list

e — a Pyomo Expression representing custom terms to-beincludedin
material balances on a mass basis. Expression must be indexed by time, phase list and
component list

Returns Constraint object representing material balances

add_total_element_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

) custom_elemental_term=None)
This method constructs a set of 0D element balances indexed by time.

Parameters

* — whether default generation terms for rate
(has_rate_reactions) - reactions should be included in material balances

* — whether generation terms should for(has_equilibrium reactions)
— chemical equilibrium reactions should be included in material balances

* — whether generation terms should for phase
(has_phase_equilibrium) — equilibrium behaviour should be included in
material balances

* — whether generic mass transfer terms should be
(has_mass_transfer)—included in material balances

* — a Pyomo Expression representing custom
(custom_elemental_term) — terms to be included in material balances on a
molar elemental basis. Expression must be indexed by time and element list

Returns Constraint object representing material balances

add_total_energy_ balances (*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy balances (has_heat_of reaction=False, has_heat_transfer=False,
has_work_transfer=False, custom_term=None)
This method constructs a set of 0D enthalpy balances indexed by time and phase.

Parameters

e — whether terms for heat of reaction should
(has_heat_of_reaction) - be included in enthalpy balance

e — whether terms for heat transfer should be
(has_heat_transfer) —included in enthalpy balances

¢ — whether terms for work transfer should be
(has_work_transfer) - included in enthalpy balances

4.3.

Core Library 45

IDAES Documentation, Release 1.2.1

* — a Pyomo Expression representing custom terms to
(custom_term) — be included in enthalpy balances. Expression must be indexed
by time and phase list

Returns Constraint object representing enthalpy balances

add_total_material_balances (*args, **kwargs)
Method for adding a total material balance to the control volume.

See specific control volume documentation for details.

add_total_momentum_balances (*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

add_total_pressure_balances (has_pressure_change=False, custom_term=None)
This method constructs a set of OD pressure balances indexed by time.

Parameters

* — whether terms for pressure change should be
(has_pressure_change) —included in enthalpy balances

* — a Pyomo Expression representing custom terms to
(custom_term) — be included in pressure balances. Expression must be indexed
by time

Returns Constraint object representing pressure balances

build()
Build method for Control VolumeODBIlock blocks.

Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for OD control volume (default solver ipopt)

Keyword Arguments

* state_args —adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

e outlvl —sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)

* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold_state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_ check ()

This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None —

46 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Returns None

release_state (flags, outlvi=0)
Method to release state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of logging

Returns None

ControlVolumeODBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVol-
umeODBlock class.

* tindicates time index

* pindicates phase index

¢ j indicates component index
* e indicates element index

¢ r indicates reaction name index

add_geometry

The add_geometry method creates a single variable within the control volume named volume indexed by time (allow-
ing for varying volume over time). A number of other methods depend on this variable being present, thus this method
should generally be called first.

Variables
Variable Name Symbol Indices Conditions
volume Vi t None
Constraints

No additional constraints

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables

4.3. Core Library 47

IDAES Documentation, Release 1.2.1

Variable Name Symbol Indices Conditions

material_holdup My p t,p,J has_holdup = True
phase_fraction Dt.p t,p has_holdup = True
material_accumulation % tp,] dynamic = True
rate_reaction_generation kinetic,t,p.j t,p, has_rate_reactions = True
rate_reaction_extent Xiinetic,t,r t,r has_rate_reactions = True
equilibrium_reaction_generation | Neguilibrium,t,p,j t,p, has_equilibrium_reactions = True
equilibrium_reaction_extent Xequilibrium,t,r t,r has_equilibrium_reactions = True
phase_equilibrium_generation Npet.p.j t,p, has_phase_equilibrium = True
mass_transfer_term Nivansfert,p,j tLp, has_mass_transfer = True

Constraints
material_balances(t, p, j):

OM; . ;
ot

The Necustom,t,p,; term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

- ﬂn,t,p,j - Fout,t,p,j + Nkinetic,t,p,j + Nequilibm’um,t,p,j + Npe,t,p,j + Ntransfer,t,p,j + Ncustom,t,p,j

If has_holdup is True, material_holdup_calculation(t, p, j):

Mipj = prpj X Vi X drp

where p; ,, ; is the density of component j in phase p at time ¢

If dynamic is True:

oM,

Numerical discretization of the derivative terms, =——5;%%, will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, p, j):

Nkinetic,t,p,j = Qpp g X Xk?inetic,t,r

where «.p, ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

Nequilibrium,t,p,j = Qrpj X Xequilibrium,t,r

where a.), ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-
rameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam).
Most terms in the balance equations are still indexed by both phase and component however. Physical property
packages may include information to indicate that certain species do not appear in all phases, and material balances
will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these
will be set to 0).

Variables

48 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Variable Name Symbol Indices Conditions

material_holdup My p t,p,J has_holdup = True
phase_fraction Dt.p t,p has_holdup = True
material_accumulation % tp,] dynamic = True
rate_reaction_generation kinetic,t,p.j t,p, has_rate_reactions = True
rate_reaction_extent Xiinetic,t,r t,r has_rate_reactions = True
equilibrium_reaction_generation | Neguilibrium,t,p,j t,p, has_equilibrium_reactions = True
equilibrium_reaction_extent Xequilibrium,t,r t,r has_equilibrium_reactions = True
mass_transfer_term Niransfer,t,p.; t,p, has_mass_transfer = True

Constraints

material_balances(t, j):

OM;
PyJ E § E E § §
ot - Fin,t,p,j - Fout,t,p,j + Nkinetic,t,p,j + Nequilibrium,t,p,j + Npe,t,p,j + Ntransfer,t,p,j + Ncustz
p p

p p p p

The Ncystom,t,; term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

Mipi = ptp X Vi X ¢ p
where py , ; is the density of component j in phase p at time ¢
If dynamic is True:

Numerical discretization of the derivative terms, dl\gf'j , will be performed by Pyomo.DAE.

If has_rate_reactions is True,, rate_reaction_stoichiometry_constraint(t, p, j):
Nkinetic,t,p,j =0rpj X innetic,t,r

where «.;, ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

Nequilibrium,t,p,j =0Orpj X Xequilibrium,t,r

where «;. , ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-
rameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables
Variable Name Symbol Indices Conditions
element_holdup M . t, e has_holdup = True
phase_fraction Dt.p t, p has_holdup = True
element_accumulation 81\84;,6 t, e dynamic = True
elemental_mass_transfer_term Niransfert,e t, e has_mass_transfer = True

4.3. Core Library 49

IDAES Documentation, Release 1.2.1

Expressions

elemental_flow_in(t, p, e):

Fintpe= E Fintpj X Nje
J

elemental_flow_out(t, p, e):
Fouttpe =) Fouttpg X Nje
J
where n; . is the number of moles of element e in component j.
Constraints

element_balances(t, e):

OM; .
8t, = E Fin,t,p,e - E Fout,t,p,e + E Ntransfer,t,e + Ncustom,t,e
p p p

The Neystom,t,e term allows the user to provide custom terms (variables or expressions) which will be added into the
material balances.

If has_holdup is True, elemental_holdup_calculation(t, e):
My =V, x Z Ptp X Prp.j X Mje
D.J
where p; ,, ; is the density of component j in phase p at time ¢
If dynamic is True:

Numerical discretization of the derivative terms, 81(»;;_,6 , will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture.

Variables
Variable Name Symbol Indices Conditions
enthalpy_holdup By, t,p has_holdup = True
phase_fraction Dtp t,p has_holdup = True
enthalpy_accumulation ngp t,p dynamic = True
heat Q4 t has_heat_transfer = True
work Wy t has_work_transfer = True

Expressions

heat_of _reaction(t):
chn,t = Sumerinetic,t,r X AHrarn,r + SumrXequilihriunL,t,r X AHra:n,r

where @), ¢ is the total enthalpy released by both kinetic and equilibrium reactions, and A H,., ,- is the specific heat
of reaction for reaction r.

Parameters

50 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameter Name Symbol Default Value
scaling_factor_energy Senergy 1E-6
Constraints

enthalpy_balance(t):

OE,

E P E E

Senergy X ot = Senergy X Hin,t,p - Senergy X Hout,t,p + Senergy X Qt + Senergy X Wt + Senergy X Qrmn,t + Senergs
p p p

The E.yst0m,: term allows the user to provide custom terms which will be added into the energy balance.

If has_holdup is True, enthalpy_holdup_calculation(t, p):
E,= ht,p x Vi x ¢t,p

where h; ;, is the enthalpy density (specific enthalpy) of phase p at time ¢
If dynamic is True:

Numerical discretization of the derivative terms, ag;”’ , will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture.

Variables

Variable Name Symbol Indices Conditions
deltaP AP; t has_pressure_change = True

Parameters

Parameter Name Symbol Default Value
scaling_factor_pressure Spressure 1E-4

Constraints

pressure_balance(t):
0= Spressure X Pin,t - Sp'r‘essu'r‘e X Pout,t + Spressure X A-Pt + Spressure X A-Pcustorn,if

The AP,y stom,: term allows the user to provide custom terms which will be added into the pressure balance.

1D Control Volume Class

Contents

e |D Control Volume Class

— ControlVolumelDBlock Equations

4.3. Core Library 51

IDAES Documentation, Release 1.2.1

The ControlVolumelDBlock block is used for systems with one spatial dimension where material flows parallel to
the spatial domain. Examples of these types of unit operations include plug flow reactors and pipes. ControlVol-
ume1DBlock blocks are discretized along the length domain and contain one StateBlock and one ReactionBlock (if

applicable) at each point in the domain (including the inlet and outlet).

class idaes.core.control_volumeld.ControlVolumelDBlock (*args, **kwargs)

ControlVolume1DBlock is a specialized Pyomo block for IDAES control volume blocks discretized in one
spatial direction, and contains instances of ControlVolume1DBlockData.

ControlVolume1DBlock should be used for any control volume with a defined volume and distinct inlets and
outlets where there is a single spatial domain parallel to the material flow direction. This encompases unit
operations such as plug flow reactors and pipes.

Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool)—If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object. }

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton.}

area_definition Argument defining whether area variable should be spatially variant or
not. default - DistributedVars.uniform. Valid values: { DistributedVars.uniform - area
does not vary across spatial domian, DistributedVars.variant - area can vary over the
domain and is indexed by time and space. }

transformation_method Method to use to transform domain. Must be a method recog-
nised by the Pyomo TransformationFactory.

52

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

transformation_scheme Scheme to use when transformating domain. See Pyomo doc-
umentation for supported schemes.

finite_elements Number of finite elements to use in transformation (equivalent to Pyomo
nfe argument).

collocation_points Number of collocation points to use (equivalent to Pyomo ncp argu-
ment).

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolumel1DBlock) New instance

class idaes.core.control_volumeld.ControlVolumelDBlockData (component)
1-Dimensional ControlVolume Class

This class forms the core of all 1-D IDAES models. It provides methods to build property and reaction blocks,
and add mass, energy and momentum balances. The form of the terms used in these constraints is specified in

the chosen property package.

add_geometry (length_domain=None, length_domain_set=[0.0, 1.0],
flow_direction=<FlowDirection.forward: 1>)
Method to create spatial domain and volume Var in Control Volume.

Parameters

* — (length_domain_set) — domain for the ControlVolume. If not provided, a new
ContinuousSet will be created (default=None). ContinuousSet should be normalized to
run between O and 1.

e ——anew ContinuousSet if length_domain is not provided (default = [0.0, 1.0]).

* — argument indicating direction of material flow
(flow_direction)—

relative to length domain. Valid values:
— FlowDirection.forward (default), flow goes from O to 1.
— FlowDirection.backward, flow goes from 1 to 0
Returns None

add_phase_component_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

custom_molar_term=None, custom_mass_term=None)
This method constructs a set of 1D material balances indexed by time, length, phase and component.

Parameters

* has_rate_reactions — whether default generation terms for rate reactions should be
included in material balances

* has_equilibrium reactions — whether generation terms should for chemical
equilibrium reactions should be included in material balances

* has_phase_equilibrium — whether generation terms should for phase equilibrium
behaviour should be included in material balances

4.3. Core Library

53

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* has_mass_transfer — whether generic mass transfer terms should be included in
material balances

* custom_molar_ term-aPyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, length domain,
phase list and component list

* custom_mass_term — a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, length domain,
phase list and component list

Returns Constraint object representing material balances

add_phase_energy_balances (*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy_balances (*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances (*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances (*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks (has_equilibrium=None)
This method constructs the reaction block for the control volume.

Parameters

* has_equilibrium — indicates whether equilibrium calculations will be required in
reaction block

* package_arguments — dict-like object of arguments to be passed to reaction block as
construction arguments

Returns None

add_state_blocks (information_flow=<FlowDirection.forward: 1>,

has_phase_equilibrium=None)
This method constructs the state blocks for the control volume.

Parameters

e information_flow — a FlowDirection Enum indicating whether information flows
from inlet-to-outlet or outlet-to-inlet

* has_phase_equilibrium — indicates whether equilibrium calculations will be re-
quired in state blocks

* package_arguments — dict-like object of arguments to be passed to state blocks as
construction arguments

Returns None

54

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

add_total_component_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

) custom_molar_term=None, custom_mass_term=None)
This method constructs a set of 1D material balances indexed by time length and component.

Parameters

* has_rate_reactions — whether default generation terms for rate reactions should be
included in material balances

* has_equilibrium reactions — whether generation terms should for chemical
equilibrium reactions should be included in material balances

* has_phase_equilibrium — whether generation terms should for phase equilibrium
behaviour should be included in material balances

* has_mass_transfer — whether generic mass transfer terms should be included in
material balances

* custom _molar_ term-aPyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, length domain
and component list

* custom_mass_term — a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, length domain
and component list

Returns Constraint object representing material balances

add_total_element_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,

) custom_elemental_term=None)
This method constructs a set of 1D element balances indexed by time and length.

Parameters

* — whether default generation terms for rate
(has_rate_reactions) - reactions should be included in material balances

* — whether generation terms should for(has_equilibrium reactions)
— chemical equilibrium reactions should be included in material balances

* — whether generation terms should for phase
(has_phase_equilibrium) - equilibrium behaviour should be included in
material balances

* — whether generic mass transfer terms should be
(has_mass_transfer)—included in material balances

* — a Pyomo Expression representing custom
(custom _elemental_term) — terms to be included in material balances on a
molar elemental basis. Expression must be indexed by time, length and element list

Returns Constraint object representing material balances

add_total_energy_balances (*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy_balances (has_heat_of _reaction=False, has_heat_transfer=False,

has_work_transfer="False, custom_term=None)
This method constructs a set of 1D enthalpy balances indexed by time and phase.

Parameters

4.3.

Core Library 55

IDAES Documentation, Release 1.2.1

* — whether terms for heat of reaction should
(has_heat_of_reaction)—be included in enthalpy balance

* — whether terms for heat transfer should be
(has_heat_transfer) - included in enthalpy balances

* — whether terms for work transfer should be
(has_work_transfer) —included in enthalpy balances

* — a Pyomo Expression representing custom terms to
(custom_term) — be included in enthalpy balances. Expression must be indexed
by time, length and phase list

Returns Constraint object representing enthalpy balances

add_total_material_balances (*args, **kwargs)
Method for adding a total material balance to the control volume.

See specific control volume documentation for details.

add_total_momentum_balances (*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

add_total_pressure_balances (has_pressure_change=False, custom_term=None)
This method constructs a set of 1D pressure balances indexed by time.

Parameters

* - whether terms for pressure change should be
(has_pressure_change) —included in enthalpy balances

* — a Pyomo Expression representing custom terms to
(custom_term) — be included in pressure balances. Expression must be indexed

by time and length domain
Returns Constraint object representing pressure balances

apply_transformation ()
Method to apply DAE transformation to the Control Volume length domain. Transformation applied will

be based on the Control Volume configuration arguments.

build()
Build method for Control Volume 1DBlock blocks.

Returns None

initialize (state_args=None, outlvl=0, optarg=None, solver="ipopt’, hold_state=True)
Initialisation routine for 1D control volume (default solver ipopt)

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)

* optarg — solver options dictionary object (default=None)

* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

56 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

* hold_state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization else the release state is triggered.

model_check ()
This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

release_state (flags, outlvi=0)
Method to release state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of logging
Returns None

report (time_point=0, dof=False, ostream=None, prefix="")
No report method defined for ControlVolumelD class. This is due to the difficulty of presenting spatially
discretized data in a readable form without plotting.

ControlVolume1DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVol-
umeODBlock class.

* t indicates time index

* 7 indicates spatial (length) index
* pindicates phase index

* j indicates component index

* e indicates element index

 r indicates reaction name index

Most terms within the balance equations written by ControlVolumelDBlock are on a basis of per unit length (e.g.
mol/m - s).

add_geometry

The add_geometry method creates the normalized length domain for the control volume (or a reference to an external
domain). All constraints in ControlVolumelDBlock assume a normalized length domain, with values between 0 and
1.

This method also adds variables and constraints to describe the geometry of the control volume. ControlVol-
ume 1 DBlock does not support varying dimensions of the control volume with time at this stage.

4.3. Core Library 57

IDAES Documentation, Release 1.2.1

Variables
Variable Name Symbol Indices Conditions
length_domain T None None
volume 1% None None
area A None None
length L None None
Constraints
geometry_canstraint:
V=AxL

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables
Variable Name Symbol Indices Conditions
material_holdup My p.i t, X, P, j has_holdup = True
phase_fraction Ot,a,p t, X, p has_holdup = True
material_accumulation aM’a% t, X, P, J dynamic = True
_flow_terms Fiop,j t, X, P, j None
material_flow_dx % t, X, P, j None
rate_reaction_generation Niinetic,te,p,j X, Psj has_rate_reactions = True
rate_reaction_extent Xiinetic,t,z,r t, X, T has_rate_reactions = True
equilibrium_reaction_generation | Neguitibrium,t,e,pj | & X P 4 has_equilibrium_reactions = True
equilibrium_reaction_extent Xequilibrium,t,z,r t,X, T has_equilibrium_reactions = True
phase_equilibrium_generation Npe.t,zp,j X, P, has_phase_equilibrium = True
mass_transfer_term Niransfert,z,p,j X, Pj has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

« aMt,w@j

5ltij
% sT,Ds,
ot

ox

fdis a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, fd = —1, otherwise fd = 1.

L

= fd + L x Nkinetic,t,m,p,j + L x Nequilibrium,t,m,p,j + L x Npe,t,z,p,j + L x Ntransfer,t,w,p,j + L x N,

The Neystom,t,z,p,; term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

material_flow_linking_constraints(t, x, p, j):

58 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

My zpj = Ptapi X AX Gtap

where p; ;. p ; is the density of component j in phase p at time ¢ and location .
If dynamic is True:

1%}

Numerical discretization of the derivative terms, %, will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

Nk‘inetic,t,x,p,j =0rpj X innetic,t,m,r

where «;. , ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):
Nequilibrium,,t,x,p,j = Qrp,j X Xequilibrium,t,:c,r
where a., ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-

rameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables
Variable Name Symbol Indices Conditions
material_holdup M 2 p.; t, X, P, j has_holdup = True
phase_fraction Ot.a,p t, X, p has_holdup = True
material_accumulation % X, P, j dynamic = True
_flow_terms Fiop,j t, X, p, j None
material_flow_dx 8’58% t, X, P, j None
rate_reaction_generation Niinetic,ta,p,j X, P, has_rate_reactions = True
rate_reaction_extent Xiinetic,t,z,r t,X, T has_rate_reactions = True
equilibrium_reaction_generation | Neguilibrium,t,e,pj | & X P 4 has_equilibrium_reactions = True
equilibrium_reaction_extent Xequilibrium,t,z,r t, X, T has_equilibrium_reactions = True
mass_transfer_term Niransfert,z.p,j X, P, has_mass_transfer = True
Constraints

material_balances(t, x, p, j):

oM, ; OF; ;
L x zp: 73;””3 = fd x Z 7317’1)’] + L x gNkmem,t,z,p,j + L x ZNequilibrium,t,m,p,j + L x ZNtmnsfer,t,z,p,j +Lx

€T
p p

4.3. Core Library 59

IDAES Documentation, Release 1.2.1

fdis a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, fd = —1, otherwise fd = 1.

The Neystom,t,z,; term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be

returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

Mo pi = Ptipi X AX Grap

where p; ;. ; is the density of component j in phase p at time ¢ and location x.

If dynamic is True:

Numerical discretization of the derivative terms,

OM: x,p,5
ot

, will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

Nkinetic,t,x,p,j =Qrpj X innetic,t,w,r

where «.p, ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-

rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

Nequilibrium,t,r,p,j = OQrpj X Xequilibrium,t,m,r

where «. , ; is the stoichiometric coefficient of component j in phase p for reaction r (as defined in the PhysicalPa-

rameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables
Variable Name Symbol Indices Conditions
element_holdup My ze t, X, € has_holdup = True
phase_fraction Ot,a,p t, X, p has_holdup = True
element_accumulation 81\4(,)"];”'”‘ t, X, e dynamic = True
elemental_mass_transfer_term Niransfer,t,z,e t, X, e has_mass_transfer = True
elemental flow_term Fze t, X, e None

Constraints

elemental_flow_constraint(t, x, e):

Fize= § § Fiopj X Nje
P J

60

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

where n; . is the number of moles of element e in component j.
element_balances(t, x, e):

a]\415,:16,6
ot

fdis a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, fd = —1, otherwise fd = 1.

aFt,x,e

L x = fd X + L x Nt’ransfer,t,p,j + L x Ncusto’m,t,e

The Neystom,t,z,e term allows the user to provide custom terms (variables or expressions) which will be added into
the material balances.

If has_holdup is True, elemental_holdup_calculation(t, x, e):

My ze = ptap X AX Ptzp

where p; ;. p ; is the density of component j in phase p at time ¢ and location x.
If dynamic is True:

OM: z,p,;

Numerical discretization of the derivative terms, —37%, will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture at each point in the spatial domain.

Variables
Variable Name Symbol Indices Conditions
enthalpy_holdup Eivp t, X, p has_holdup = True
phase_fraction Ot,a,p t, X, p has_holdup = True
enthalpy_accumulation BEéf‘p t, X, p dynamic = True
_enthalpy_flow Hiyp t, X, p None
enthalpy_flow_dx M‘gg’f P t, X, p None
heat Qt,z t, X has_heat_transfer = True
work Wia t, X has_work_transfer = True

Expressions

heat_of _reaction(t, x):
Qrwn,t,w = Sumerinetic,t,w,r X AHTwnJ‘ + sumrXequilibriumﬁt,Lr X AH’I‘JZH,T‘

where (Qrqn ¢, is the total enthalpy released by both kinetic and equilibrium reactions, and AH,, , is the specific
heat of reaction for reaction r.

Parameters
Parameter Name Symbol Default Value
scaling_factor_energy Senergy 1E-6
Constraints

enthalpy_balance(t):

t,x,p

OF,; 4 OH,
E s TP . E
Senergy x L x 815 = Senergy X fd times 0x + Senergy x L x Qt,w + Senergy x L x Wt,w + Senergy x L x Qrmn,t
p p

4.3. Core Library 61

IDAES Documentation, Release 1.2.1

fdis a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, fd = —1, otherwise fd = 1.

The E¢ystom,t, term allows the user to provide custom terms which will be added into the energy balance.
enthalpy_flow_linking_constraints(t, x, p):

This constraint is an internal constraint used to link the extensive enthalpy flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, enthalpy_holdup_calculation(t, x, p):
Et,x,p - ht,z,p x A X ¢t,r,p

where h, .., is the enthalpy density (specific enthalpy) of phase p at time ¢ and location x.

If dynamic is True:

Numerical discretization of the derivative terms, aEgt” , will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture at all points in the spatial domain.

Variables

Variable Name Symbol Indices Conditions

pressure Py, t, X None

pressure_dx % t, X None

deltaP AP, t, X has_pressure_change = True
Parameters

Parameter Name Symbol Default Value

scaling_factor_pressure Spressure 1E-4
Constraints
pressure_balance(t, x):

Pt,m

0= Spressure X fd X + spressure x L x Apt,z + S;m‘essure x L x A]Dcustom,t,m

fd is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, fd = —1, otherwise fd = 1.

The APeystom,t,« term allows the user to provide custom terms which will be added into the pressure balance.
pressure_linking_constraint(t, x):

This constraint is an internal constraint used to link the pressure terms in the StateBlocks into a single indexed variable.
This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their
numerical expansions.

Control Volumes are the center of the IDAES process modeling framework, and serve as the fundamental building
block of all unit operations. Control Volumes represent a single, well-defined volume of material over which material,
energy and/or momentum balances will be performed.

62 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

The IDAES Control Volume classes are designed to facilitate the construction of these balance equations by providing
the model developer with a set of pre-built methods to perform the most common tasks in developing models of unit
operations. The Control Volume classes contain methods for creating and linking the necessary property calculations
and writing common forms of the balance equations so that the model developer can focus their time on the aspects
that make each unit model unique.

The IDAES process modeling framework currently supports two types of Control Volume:

* ControlVolumeODBIlock represents a single well-mixed volume of material with a single inlet and a single
outlet. This type of control volume is sufficient to model most inlet-outlet type unit operations which do not
require spatial discretization.

e ControlVolumelDBlock represents a volume with spatial variation in one dimension parallel to the mate-
rial flow. This type of control volume is useful for representing flow in pipes and simple 1D flow reactors.

Common Control Volume Tasks

All of the IDAES Control Volume classes are built on a common core (Cont rolVolumeBlockData) which defines
a set of common tasks required for all Control Volumes. The more specific Control Volume classes then build upon
these common tasks to provide tools appropriate for their specific application.

All Control Volume classes begin with the following tasks:
* Determine if the Cont rolVolume should be steady-state or dynamic.
* Get the time domain.
* Determine whether material and energy holdups should be calculated.
¢ Collect information necessary for creating StateBlocks and ReactionBlocks.
¢ Create references to phase_1list and component_1list Setsinthe PhysicalParameterBlock.

More details on these steps is provided later.

Setting up the time domain

The first common task the Control Volume block performs is to determine if it should be dynamic or steady-state and
to collect the time domain from the UnitModel. Control Volume blocks have an argument dynamic which can be
provided during construction which specifies if the Control Volume should be dynamic (dynamic=True) or steady-
state (dynamic=False). If the argument is not provided, the Control Volume block will inherit this argument from
its parent UnitModel.

Finally, the Control Volume checks that the has_holdup argument is consistent with the dynamic argument, and
raises a ConfigurationError if it is not.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument, the Control Vol-
ume first checks to see if the UnitModel has a property_package argument set, and uses this if present.
Otherwise, the Control Volume block begins searching up the model tree looking for an argument named
default_property_package and uses the first of these that it finds. If no default_property_package
is found, a ConfigurationError is returned.

4.3. Core Library 63

IDAES Documentation, Release 1.2.1

Collecting Indexing Sets for Property Package

The final common step for all Control Volumes is to collect any required indexing sets from the physical property
package (for example component and phase lists). These are used by the Control Volume for determining what
balance equations need to be written, and what terms to create.

The indexing sets the Control Volume looks for are:

e component_list - used to determine what components are present, and thus what material balances are
required

* phase_list - used to determine what phases are present, and thus what balance equations are required

ControlVolume and ControlVolumeBlockData Classes

A key purpose of Control Volumes is to automate as much of the task of writing a unit model as possible. For this
purpose, Control Volumes support a number of methods for common tasks model developers may want to perform.
The specifics of these methods will be different between different types of Control Volumes, and certain methods may
not be applicable to some types of Control Volumes (in which case a Not ImplementedError will be returned). A
full list of potential methods is provided here, however users should check the documentation for the specific Control
Volume they are using for more details on what methods are supported in that specific Control Volume.

class idaes.core.control_volume_base.ControlVolume (*args, **kwargs)
This class is not usually used directly. Use ControlVolumeODBlock or Control Volume1DBlock instead.

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

64 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolume) New instance

class idaes.core.control_volume_base.ControlVolumeBlockData (component)
The ControlVolumeBlockData Class forms the base class for all IDAES ControlVolume models. The purpose of
this class is to automate the tasks common to all control volume blockss and ensure that the necessary attributes
of a control volume block are present.

The most signfiicant role of the ControlVolumeBlockData class is to set up the construction arguments for the
control volume block, automatically link to the time domain of the parent block, and to get the information
about the property and reaction packages.

add_energy_balances (balance_type=<EnergyBalanceType.enthalpyTotal: 2>, **kwargs)
General method for adding energy balances to a control volume. This method makes calls to specialised
sub-methods for each type of energy balance.

Parameters

* balance_type (EnergyBalanceType) — Enum indicating which type of energy
balance should be constructed.

e has_heat_of_reaction (bool) — whether terms for heat of reaction should be in-
cluded in energy balance

* has_heat_transfer (bool)—whether generic heat transfer terms should be included
in energy balances

* has_work_transfer (bool) — whether generic mass transfer terms should be in-
cluded in energy balances

* custom_term (Expression)—aPyomo Expression representing custom terms to be
included in energy balances

Returns Constraint objects constructed by sub-method

add_geometry (*args, **kwargs)
Method for defining the geometry of the control volume.

See specific control volume documentation for details.

add_material_balances (balance_type=<MaterialBalanceType.componentPhase: 1>,

**kwargs)
General method for adding material balances to a control volume. This method makes calls to specialised

sub-methods for each type of material balance.
Parameters

* — MaterialBalanceType Enum indicating which type of
(balance_type)— material balance should be constructed.

* — whether default generation terms for rate
(has_rate_reactions) - reactions should be included in material balances

4.3. Core Library 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.2.1

* — whether generation terms should for(has_equilibrium reactions)
— chemical equilibrium reactions should be included in material balances

* — whether generation terms should for phase
(has_phase_equilibrium) - equilibrium behaviour should be included in
material balances

* — whether generic mass transfer terms should be
(has_mass_transfer)—included in material balances

* — a Pyomo Expression representing custom terms to
(custom _mass_ term)— be included in material balances on a molar basis.

* — a Pyomo Expression representing custom terms to-beincludedin
material balances on a mass basis.

Returns Constraint objects constructed by sub-method

add_momentum_balances (balance_type=<MomentumBalanceType.pressurelotal: 1>, **kwargs)
General method for adding momentum balances to a control volume. This method makes calls to spe-
cialised sub-methods for each type of momentum balance.

Parameters

* balance_type (MomentumBalanceType) — Enum indicating which type of mo-
mentum balance should be constructed.

* has_pressure_change (bool) — whether default generation terms for pressure
change should be included in momentum balances

* custom term (Expression)—aPyomo Expression representing custom terms to be
included in momentum balances

Returns Constraint objects constructed by sub-method

add_phase_component_balances (*args, **kwargs)
Method for adding material balances indexed by phase and component to the control volume.

See specific control volume documentation for details.

add_phase_energy_balances (*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy_balances (*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum balances (*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances (*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks (*args, **kwargs)
Method for adding ReactionBlocks to the control volume.

See specific control volume documentation for details.

66

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.2.1

add_state_blocks (*args, **kwargs)
Method for adding StateBlocks to the control volume.

See specific control volume documentation for details.

add_total_component_balances (*args, **kwargs)
Method for adding material balances indexed by component to the control volume.

See specific control volume documentation for details.

add_total_element_balances (*args, **kwargs)
Method for adding total elemental material balances indexed to the control volume.

See specific control volume documentation for details.

add_total_energy_balances (*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy balances (*args, **kwargs)
Method for adding a total enthalpy balance to the control volume.

See specific control volume documentation for details.

add_total_material_balances (*args, ¥**kwargs)
Method for adding a total material balance to the control volume.

See specific control volume documentation for details.

add_total_momentum_balances (*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

add_total_pressure_balances (*args, **kwargs)
Method for adding a total pressure balance to the control volume.

See specific control volume documentation for details.

build()
General build method for Control Volumes blocks. This method calls a number of sub-methods which
automate the construction of expected attributes of all Control Volume blocks.

Inheriting models should call super().build.
Parameters None —

Returns None

Auto-Construct Method

To reduce the demands on unit model developers even further, Control Volumes have an optional auto-construct feature
that will attempt to populate the Control Volume based on a set of instructions provided at the Unit Model level. If
the auto_construct configuration argument is set to True, the following methods are called automatically in the
following order when instantiating the Control Volume.

1. add_geometry

2. add_state_blocks

3. add_reaction_blocks
4

. add_material_balances

4.3. Core Library 67

IDAES Documentation, Release 1.2.1

5. add_energy_balances
6. add_momentum _balances
7. apply_transformation

To determine what terms are required for the balance equations, the Control Volume expects the Unit Model to have
the following configuration arguments, which are used as arguments to the methods above.

¢ dynamic

* has_holdup

* material_balance_type
* energy_balance_type

* momentum_balance_type
* has_rate_reactions

* has_equilibrium_reactions
* has_phase_equilibrium
* has_mass_transfer

* has_heat_of_reaction
* has_heat_transfer

* has_work_transfer

* has_pressure_change

* property_package

* property_package_args
* reaction_package

* reaction_package_args

For convenience, a template ConfigBlock (named CONFIG_Template) 1is available in the
control_volume_base.py module which contains all the necessary arguments which can be inherited by
unit models wishing to use the auto-construct feature.

Utility Methods

Model State Serialization

The IDAES framework has some utility functions for serializing the state of a Pyomo model. These functions can
save and load attributes of Pyomo components, but cannot reconstruct the Pyomo objects (it is not a replacement for
pickle). It does have some advantages over pickle though. Not all Pyomo models are picklable. Serialization and
deserialization of the model state to/from json is more secure in that it only deals with data and not executable code. It
should be safe to use the from_json () function with data from untrusted sources, while, unpickling an object from
an untrusted source is not secure. Storing a model state using these functions is also probably more robust against
Python and Python package version changes, and possibly more suitable for long-term storage of results.

Below are a few example use cases for this module.

* Some models are very complex and may take minutes to initialize. Once a model is initialized it’s state can be
saved. For future runs, the initialized state can be reloaded instead of rerunning the initialization procedure.

68 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

* Results can be stored for later evaluation without needing to rerun the model. These results can be archived in a
data management system if needed later.

» These functions may be useful in writing initialization procedures. For example, a model may be constructed
and ready to run but first it may need to be initialized. Which components are active and which variables are
fixed can be stored. The initialization can change which variables are fixed and which components are active.
The original state can be read back after initialization, but where only values of variables that were originally
fixed are read back in. This is an easy way to ensure that whatever the initialization procedure may do, the result
is exactly the same problem (with only better initial values for unfixed variables).

* These functions can be used to send and receive model data to/from JavaScript user interface components.
Examples

This section provides a few very simple examples of how to use these functions.

Example Models

This section provides some boilerplate and functions to create a couple simple test models. The second model is a
little more complicated and includes suffixes.

from pyomo.environ import =«
from idaes.core.util import to_json, from_json, StoreSpec

def setup_modelO1l():
model = ConcreteModel ()
model.b = Block([1,2,3])
a = model.b[l].a = Var (bounds=(-100, 100), initialize=2)

b = model.b[l].b = Var (bounds=(-100, 100), initialize=20)
model.b[1l].c = Constraint (expr=b==10+a)
a.fix (2)

return model

def setup_modelO2():
model = ConcreteModel ()
a = model.a = Param(default=1, mutable=True)
b = model.b = Param(default=2, mutable=True)

c = model.c = Param(initialize=4)

x = model.x = Var([1,2], initialize={1:1.5, 2:2.5}, bounds=(-10,10))
model.f = Objective (expr=(x[1] — a)#**2 + (x[2] — Db)=*=*2)

model.g = Constraint (expr=x[1l] + x[2] - ¢ >= 0)

model.dual Suffix(direction=Suffix.IMPORT)
model.ipopt_zL_out = Suffix(direction=Suffix.IMPORT)
model.ipopt_zU_out = Suffix(direction=Suffix.IMPORT)
return model

Serialization

These examples can be appended to the boilerplate code above.

The first example creates a model, saves the state, changes a value, then reads back the initial state.

4.3. Core Library 69

IDAES Documentation, Release 1.2.1

model = setup_modelO1l ()

to_json (model, fname="ex.json.gz", gz=True, human_read=True)
model.b[1].a = 3000.4

from_json (model, fname="ex.json.gz", gz=True)

print (value (model.b[1l].a))

This next example show how to save only suffixes.

model = setup_model02 ()
Suffixes here are read back from solver, so to have suffix data,
need to solve first

solver = SolverFactory ("ipopt")
solver.solve (model)
store_spec = StoreSpec.suffix()

to_json (model, fname="ex.json", wts=store_spec)
Do something and now I want my suffixes back
from_json (model, fname="ex.json", wts=store_spec)

to_json

Despite the name of the t o__json function it is capable of creating Python dictionaries, json files, gzipped json files,
and json strings. The function documentation is below. A StoreSpec object provides the function with details on what
to store and how to handle special cases of Pyomo component attributes.

idaes.core.util.model_serializer.to_Jjson (o, fname=None, human_read=False, wts=None,
metadata={}, gz=False, return_dict=False, re-

turn_json_string=False)
Save the state of a model to a Python dictionary, and optionally dump it to a json file. To load a model state, a

model with the same structure must exist. The model itself cannot be recreated from this.
Parameters

* o — The Pyomo component object to save. Usually a Pyomo model, but could also be a
subcomponent of a model (usually a sub-block).

* fname — json file name to save model state, if None only create python dict
* gz — If fname is given and gv is True gzip the json file. The default is False.

* human_read - if True, add indents and spacing to make the json file more readable, if
false cut out whitespace and make as compact as possilbe

* metadata — A dictionary of addtional metadata to add.

* wts — is What To Save, this is a StoreSpec object that specifies what object types and
attributes to save. If None, the default is used which saves the state of the compelte model
state.

* metadata — addtional metadata to save beyond the standard format_version, date, and
time.

* return_dict — default is False if true returns a dictionary representation
* return_json_string — default is False returns a json string

Returns If return_dict is True returns a dictionary serialization of the Pyomo component. If re-
turn_dict is False and return_json_string is True returns a json string dump of the dict. If fname

70 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

is given the dictionary is also written to a json file. If gz is True and fname is given, writes a
gzipped json file.

from_json

The from_json function puts data from Python dictionaries, json files, gzipped json files, and json strings back into
a Pyomo model. The function documentation is below. A StoreSpec object provides the function with details on what
to read and how to handle special cases of Pyomo component attributes.

idaes.core.util.model_serializer.from_json (o, sd=None, fname=None, s=None,

wts=None, gz=False)
Load the state of a Pyomo component state from a dictionary, json file, or json string. Must only specify one

of sd, fname, or s as a non-None value. This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is ignored. If the save state doesn’t contain
an enetry for a model component that is to be loaded an error will be raised, unless ignore_missing = True.

Parameters
* o — Pyomo component to for which to load state
* sd - State dictionary to load, if None, check fname and s
* fname — JSON file to load, only used if sd is None
* s — JSON string to load only used if both sd and fname are None
» wts — StoreSpec object specifying what to load
» gz — If True assume the file specified by fname is gzipped. The default is False.

Returns Dictionary with some perfomance information. The keys are “etime_load_file”, how long
in seconds it took to load the json file “etime_read_dict”, how long in seconds it took to read
models state “etime_read_suffixes”, how long in seconds it took to read suffixes

StoreSpec

StoreSpec is a class for objects that tell the to_json () and from_json () functions how to read and write
Pyomo component attributes. The default initialization provides an object that would load and save attributes usually
needed to save a model state. There are several other class methods that provide canned objects for specific uses.
Through initialization arguments, the behavior is highly customizable. Attributes can be read or written using callback
functions to handle attributes that can not be directly read or written (e.g. a variable lower bound is set by calling
setlb()). See the class documentation below.

4.3. Core Library 7

IDAES Documentation, Release 1.2.1

>

class idaes.core.util.model_serializer.StoreSpec (classes=((<class 'py-
omo.core.base.param.Param’>,
(’_mutable’,), (<class ’py-
omo.core.base.var.Var’>,
0)s (<class ‘py-
omo.core.base.component.Component’>,
(Cactive’,))), data_classes=((<class
"pyomo.core.base.var._VarData’>,

(fixed’, stale’, value’,
'Ib’, ‘ub’)), (<class ‘py-
omo.core.base.param._ParamData’>,
('value’,)), (<class ‘int’>,
('value’,)), (<class ’float’>,
(’value’,), (<class ‘py-
omo.core.base.component.ComponentData’>,
(Cactive’,),
skip_classes=(<class ‘py-

omo.core.base.external. External Function’>,
<class ’pyomo.core.base.sets.Set’>,
<class ’pyomo.network.port.Port’>,

<class ‘py-
omo.core.base.expression.Expression’>,
<class "py-

omo.core.base.rangeset.RangeSet’>),
ignore_missing=True, suffix=True,
suffix_filter=None)
A StoreSpec object tells the serializer functions what to read or write. The default settings will produce a
StoreSpec configured to load/save the typical attributes required to load/save a model state.

Parameters

* classes — Alistof classes to save. Each class is represented by a list (or tupple) containing
the following elements: (1) class (compared using isinstance) (2) attribute list or None,
an emptry list store the object, but none of its attributes, None will not store objects of
this class type (3) optional load filter function. The load filter function returns a list of
attributes to read based on the state of an object and its saved state. The allows, for example,
loading values for unfixed variables, or only loading values whoes current value is less than
one. The filter function only applies to load not save. Filter functions take two arguments
(a) the object (current state) and (b) the dictionary containing the saved state of an object.
More specific classes should come before more general classes. For example if an obejct
is a HeatExchanger and a UnitModel, and HeatExchanger is listed first, it will follow the
HeatExchanger settings. If UnitModel is listed first in the classes list, it will follow the
UnitModel settings.

* data_classes —This takes the same form as the classes argument. This is for component
data classes.

* skip_classes - This is a list of classes to skip. If a class appears in the skip list, but
also appears in the classes argument, the classes argument will override skip_classes. The
use for this is to specifically exclude certain classes that would get caught by more general
classes (e.g. UnitModel is in the class list, but you want to exclude HeatExchanger which is
derived from UnitModel).

* ignore_missing - If True will ignore a component or attribute that exists in the model,
but not in the stored state. If false an excpetion will be raised for things in the model that
should be loaded but aren’t in the stored state. Extra items in the stored state will not raise
an exception regaurdless of this argument.

72 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

» suffix — If True store suffixes and component ids. If false, don’t store suffixes.

e suffix_filter — None to store all siffixes if suffix=True, or a list of suffixes to store if
suffix=True

classmethod bound()
Returns a StoreSpec object to store variable bounds only.

get_class_attr_list (o)
Look up what attributes to save/load for an Component object. :param o: Object to look up attribute list
for.

Returns A list of attributes and a filter function for object type

get_data_class_attr_ list (o)
Look up what attributes to save/load for an ComponentData object. :param o: Object to look up attribute
list for.

Returns A list of attributes and a filter function for object type

classmethod isfixed ()
Returns a StoreSpec object to store if variables are fixed.

set_read_callback (attr, cb=None)
Set a callback to set an attribute, when reading from json or dict.

set_write_ callback (attr, cb=None)
Set a callback to get an attribute, when writing to json or dict.

classmethod value ()
Returns a StoreSpec object to store variable values only.

classmethod value_isfixed (only_fixed)
Return a StoreSpec object to store variable values and if fixed.

Parameters only fixed — Only load fixed variable values

classmethod value_isfixed_ isactive (only_fixed)
Retur a StoreSpec object to store variable values, if variables are fixed and if components are active.

Parameters only_ fixed — Only load fixed variable values

Structure

Python dictionaries, json strings, or json files are generated, in any case the structure of the data is the same. The
current data structure version is 3.

The example json below shows the top-level structure. The "top_level_component" would be the name of the
Pyomo component that is being serialized. The top level component is the only place were the component name does
not matter when reading the serialized data.

{

"_ metadata_ ": {
"format_version": 3,
"date": "2018-12-21",
"time": "11:34:39.714323",
"other": {

}I
" __performance__": {
"n_components": 219,

"etime_make_dict": 0.003}

(continues on next page)

4.3. Core Library 73

IDAES Documentation, Release 1.2.1

(continued from previous page)

}y

"top_level_component": {
n ", n n

by

The data structure of a Pyomo component is shown below. Here "attribute_1" and "attribute_2" are just
examples the actual attributes saved depend on the “wts” argument to to_json (). Scalar and indexed components
have the same structure. Scalar components have one entry in "data" with an index of "None". Only components
derived from Pyomo’s _BlockData have a "__pyomo_components___" field, and components appearing there
are keyed by thier name. The data structure duplicates the hierarchical structure of the Pyomo model.

Suffixes store extra attributes for Pyomo components that are not stored on the components themselves. Suffixes are a
Pyomo structure that comes from the AMPL solver interface. If a component is a suffix, keys in the data section are the
serial integer component IDs generated by to_json (), and the value is the value of the suffix for the corresponding
component.

{

"__type_ ": "<class 'some.class'>",
" id__": 0,
"data":{
"index_1":{
"__type_ ":"<usually a component class but for params could be float, int,
O
" id__": 1,
"___pyomo_components__":{
"child_component_1": {
R
}
by
"attribute_1": "... could be any number of attributes like 'value': 1.0,",
"attribute_2": "..."
}
}I
"attribute_1": "... could be any number of attributes like 'active': true,",

"attribute_2": "..."

As a more concrete example, here is the json generated for example model 2 in Examples. This code can be appended
to the example boilerplate above. To generate the example json shown.

model = setup_model02 ()

solver = SolverFactory ("ipopt")
solver.solve (model)
to_json(model, fname="ex.json")

The resulting json is shown below. The top-level component in this case is given as “unknown,” because the model
was not given a name. The top level object name is not needed when reading back data, since the top level object
is specified in the call to from_json (). Types are not used when reading back data, they may have some future
application, but at this point they just provide a little extra information.

{

" _ metadata ":{
"format_version":3,
"date":"2019-01-02",
"time":"10:22:25.833501",

(continues on next page)

74 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

"other": {
}I
" __performance_ ":{
"n_components":18,
"etime_make_dict":0.0009555816650390625
}

b
"unknown" : {

"_type ":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
"_id_ ":0,
"active":true,
"data": {
"None" : {
"__type_ ":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
"_id_":1,
"active":true,
"___pyomo_components__ ": {
"am":{
"__type_ ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id ":2,
"_mutable":true,
"data": {
"None" : {
"__type_ ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id_":3,
"value":1
}
}
by
"b": {
"_type_ ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id ":4,
"_mutable":true,
"data": {
"None" : {
"_type ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id_":5,
"value":2
}
}
}I
"e":{
"_type_ ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id_":6,
"_mutable":false,
"data": {
"None" : {
"_type ":"<class 'pyomo.core.base.param.SimpleParam'>",
"_id_":7,
"value":4
}
}
}I
"x":{
"__type_ ":"<class 'pyomo.core.base.var.IndexedVar'>",
"_id ":8,
"data": {

(continues on next page)

4.3. Core Library 75

IDAES Documentation, Release 1.2.1

(continued from previous page)

"1
"__type_ ":"<class 'pyomo.core.base.var._GeneralVarData'>",
"_id_ ":9,
"fixed":false,
"stale":false,
"value":1.5,
"l1b":-10,
"ub":10
}I
"2":{
"__type_ ":"<class 'pyomo.core.base.var._GeneralVarData'>",
"_id_ ":10,
"fixed":false,
"stale":false,
"value":2.5,

"lb":-10,
"ub":10
}
}
} 4
e
"__type_ ":"<class 'pyomo.core.base.objective.SimpleObjective'>",
"_id ":11,
"active":true,
"data": {
"None": {"__type ":"<class 'pyomo.core.base.objective.SimpleObjective'>
SN "
"_id_ ":12,
"active":true
}
}
by
llgll . {
"__type_ ":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
"_id ":13,
"active":true,
"data": {
"None" : {
"_type ":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
"_id_ ":14,
"active":true
}
}
} ’
"dual": {
"__type_ ":"<class 'pyomo.core.base.suffix.Suffix'>",
"_id ":15,
"active":true,
"data": {
"14":0.9999999626149493
}
} 4
"ipopt_zL_out":{
"__type_ ":"<class 'pyomo.core.base.suffix.Suffix'>",
"_id_":1le,
"active":true,
"data": {
(continues on next page)
76 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

"9":2.1791814146763388e-10,
"10":2.004834508495852e-10
}
} 4
"ipopt_zU_out": {

"__type_ ":"<class 'pyomo.core.base.suffix.Suffix'>",
"_id__":17,

"active":true,

"data": {

"9":-2.947875485096964e-10,
"10":-3.3408951850535573e-10

Model Statistics Methods

The IDAES toolset contains a number of utility functions which are useful for quantifying model statistics such as the
number of variable and constraints, and calculating the available degrees of freedom in a model. These methods can
be found in idaes.core.util.model_statistics.

The most commonly used methods are degrees_of_freedomand report_statistics, which are described
below.

Degrees of Freedom Method

The degrees_of_freedom method calculates the number of degrees of freedom available in a given model. The
calcuation is based on the number of unfixed variables which appear in active constraints, minus the number of ac-
tive equality constraints in the model. Users should note that this method does not consider inequality or deactived
constraints, or variables which do not appear in active equality constraints.

idaes.core.util.model_statistics.degrees_of_ freedom (block)
Method to return the degrees of freedom of a model.

Parameters block — model to be studied

Returns Number of degrees of freedom in block.

Report Statistics Method

The report_statistics method provides the user with a summary of the contents of their model, including the
degrees of freedom and a break down of the different Variables, Constraints, Objectives, Blocks and
Expressions. This method also includes numbers of deactivated components for the user to use in debugging
complex models.

Note: This method only considers Pyomo components in activated Blocks. The number of deactivated Blocks is
reported, but any components within these Blocks are not included.

4.3. Core Library 77

IDAES Documentation, Release 1.2.1

Example Output
Model Statistics
Degrees of Freedom: 0
Total No. Variables: 52
No. Fixed Variables: 12
No. Unused Variables: 0 (Fixed: 0)
No. Variables only in Inequalities: 0 (Fixed: 0)
Total No. Constraints: 40
No. Equality Constraints: 40 (Deactivated: 0)
No. Inequality Constraints: 0 (Deactivated: 0)
No. Objectives: 0 (Deactivated: 0)
No. Blocks: 14 (Deactivated: 0)

No. Expressions: 2

idaes.core.util.model_statistics.report_statistics (block, ostream=None)
Method to print a report of the model statistics for a Pyomo Block

Parameters
* block - the Block object to report statistics from
* ostream - output stream for printing (defaults to sys.stdout)

Returns Printed output of the model statistics

Other Statistics Methods

In addition to the methods discussed above, the model_statistics module also contains a number of methods
for quantifying model statistics which may be of use to the user in debugging models. These methods come in three

types:
e Number methods (start with number_) return the number of components which meet a given criteria, and are

useful for quickly quantifying differnt types of components within a model for determining where problems
may exist.

» Set methods (end with _set) return a Pyomo Component Set containing all components which meet a given
criteria. These methods are useful for determining where a problem may exist, as the Component Set indicates
which components may be causing a problem.

* Generator methods (end with _generator) contain Python generators which return all components which
meet a given criteria.

Available Methods

This module contains utility functions for reporting structural statistics of IDAES models.

idaes.core.util.model_statistics.activated_block component_generator (block,
. . : e . chpe)
Generator which returns all the components of a given ctype which exist in activated Blocks within a model.

78 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameters
* block — model to be studied
* ctype - type of Pyomo component to be returned by generator.

Returns A generator which returns all components of ctype which appear in activated Blocks in
block

idaes.core.util.model_statistics.activated_blocks_set (block)
Method to return a ComponentSet of all activated Block components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated Block components in block (including block itself)

idaes.core.util.model_statistics.activated_constraints_generator (block)
Generator which returns all activated Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated Constraint components block

idaes.core.util.model_statistics.activated_constraints_set (block)
Method to return a ComponentSet of all activated Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated Constraint components in block

idaes.core.util.model_statistics.activated_equalities_generator (block)
Generator which returns all activated equality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated equality Constraint components block

idaes.core.util.model_statistics.activated_equalities_set (block)
Method to return a ComponentSet of all activated equality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated equality Constraint components in block

idaes.core.util.model_statistics.activated_inequalities_generator (block)
Generator which returns all activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated inequality Constraint components block

idaes.core.util.model_statistics.activated_inequalities_set (block)
Method to return a ComponentSet of all activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated inequality Constraint components in block

idaes.core.util.model_statistics.activated_objectives_generator (block)
Generator which returns all activated Objective components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated Objective components block

idaes.core.util.model_statistics.activated_objectives_set (block)
Method to return a ComponentSet of all activated Objective components which appear in a model.

4.3. Core Library 79

IDAES Documentation, Release 1.2.1

Parameters block — model to be studied
Returns A ComponentSet including all activated Objective components which appear in block

idaes.core.util.model_statistics.active_variables_in deactivated blocks_set (block)
Method to return a ComponentSet of any Var components which appear within an active Constraint but belong
to a deacitvated Block in a model.

Parameters block — model to be studied

Returns A ComponentSet including any Var components which belong to a deacitvated Block but
appear in an activate Constraint in block

idaes.core.util.model_statistics.deactivated_blocks_set (block)
Method to return a ComponentSet of all deactivated Block components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all deactivated Block components in block (including block
itself)

idaes.core.util.model_statistics.deactivated_constraints_generator (block)
Generator which returns all deactivated Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all deactivated Constraint components block

idaes.core.util.model_statistics.deactivated_constraints_set (block)
Method to return a ComponentSet of all deactivated Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated Constraint components in block

idaes.core.util.model_statistics.deactivated_equalities_generator (block)
Generator which returns all deactivated equality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all deactivated equality Constraint components block

idaes.core.util.model_statistics.deactivated_equalities_set (block)
Method to return a ComponentSet of all deactivated equality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated equality Constraint components in block

idaes.core.util.model_statistics.deactivated_inequalities_generator (block)
Generator which returns all deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all indeactivated equality Constraint components block

idaes.core.util.model_statistics.deactivated_inequalities_set (block)
Method to return a ComponentSet of all deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated inequality Constraint components in block

idaes.core.util.model_statistics.deactivated_objectives_generator (block)
Generator which returns all deactivated Objective components in a model.

Parameters block — model to be studied

80 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Returns A generator which returns all deactivated Objective components block

idaes.core.util.model_statistics.deactivated_objectives_set (block)
Method to return a ComponentSet of all deactivated Objective components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated Objective components which appear in block

idaes.core.util.model_statistics.derivative_variables_set (block)
Method to return a ComponentSet of all DerivativeVar components which appear in a model. Users should note
that DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block — model to be studied
Returns A ComponentSet including all DerivativeVar components which appear in block

idaes.core.util.model_statistics.expressions_set (block)
Method to return a ComponentSet of all Expression components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Expression components which appear in block

idaes.core.util.model_statistics.fixed unused_variables_ set (block)
Method to return a ComponentSet of all fixed Var components which do not appear within any activated Con-
straint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which do not appear within any Con-
straints in block

idaes.core.util.model_statistics.fixed _variables_generator (block)
Generator which returns all fixed Var components in a model.

Parameters block — model to be studied
Returns A generator which returns all fixed Var components block

idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all fixed Var components which appear within an equality Constraint in a
model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which appear within activated equal-
ity Constraints in block

idaes.core.util.model_statistics.fixed variables only_ in inequalities (block)
Method to return a ComponentSet of all fixed Var components which appear only within activated inequality
Constraints in a model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which appear only within activated
inequality Constraints in block

idaes.core.util.model_statistics.fixed wvariables_set (block)
Method to return a ComponentSet of all fixed Var components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components in block

4.3. Core Library 81

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.large_residuals_set (block, tol=1e-05)
Method to return a ComponentSet of all Constraint components with a residual greater than a given threshold
which appear in a model.

Parameters
* block — model to be studied
* tol —residual threshold for inclusion in ComponentSet

Returns A ComponentSet including all Constraint components with a residual greater than tol which
appear in block

idaes.core.util.model_statistics.number_ activated blocks (block)
Method to return the number of activated Block components in a model.

Parameters block — model to be studied
Returns Number of activated Block components in block (including block itself)

idaes.core.util.model_statistics.number activated constraints (block)
Method to return the number of activated Constraint components in a model.

Parameters block — model to be studied
Returns Number of activated Constraint components in block

idaes.core.util.model_statistics.number_activated_equalities (block)
Method to return the number of activated equality Constraint components in a model.

Parameters block — model to be studied
Returns Number of activated equality Constraint components in block

idaes.core.util.model_statistics.number_activated_inequalities (block)
Method to return the number of activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of activated inequality Constraint components in block

idaes.core.util.model_statistics.number_activated_objectives (block)
Method to return the number of activated Objective components which appear in a model.

Parameters block — model to be studied
Returns Number of activated Objective components which appear in block

idaes.core.util.model_statistics.number active_variables_in_ deactivated blocks (block)
Method to return the number of Var components which appear within an active Constraint but belong to a
deacitvated Block in a model.

Parameters block — model to be studied

Returns Number of Var components which belong to a deacitvated Block but appear in an activate
Constraint in block

idaes.core.util.model_statistics.number_deactivated blocks (block)
Method to return the number of deactivated Block components in a model.

Parameters block — model to be studied
Returns Number of deactivated Block components in block (including block itself)

idaes.core.util.model_statistics.number_deactivated_ constraints (block)
Method to return the number of deactivated Constraint components in a model.

82 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameters block — model to be studied
Returns Number of deactivated Constraint components in block

idaes.core.util.model_statistics.number_ deactivated equalities (block)
Method to return the number of deactivated equality Constraint components in a model.

Parameters block — model to be studied
Returns Number of deactivated equality Constraint components in block

idaes.core.util.model_statistics.number_deactivated_inequalities (block)
Method to return the number of deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of deactivated inequality Constraint components in block

idaes.core.util.model_statistics.number_deactivated_objectives (block)
Method to return the number of deactivated Objective components which appear in a model.

Parameters block — model to be studied
Returns Number of deactivated Objective components which appear in block

idaes.core.util.model_statistics.number_ derivative_variables (block)
Method to return the number of DerivativeVar components which appear in a model. Users should note that
DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block — model to be studied
Returns Number of DerivativeVar components which appear in block

idaes.core.util.model_statistics.number_expressions (block)
Method to return the number of Expression components which appear in a model.

Parameters block — model to be studied
Returns Number of Expression components which appear in block

idaes.core.util.model_statistics.number fixed unused_variables (block)
Method to return the number of fixed Var components which do not appear within any activated Constraint in a
model.

Parameters block — model to be studied

Returns Number of fixed Var components which do not appear within any activated Constraints in
block

idaes.core.util.model_statistics.number_ fixed variables (block)
Method to return the number of fixed Var components in a model.

Parameters block — model to be studied
Returns Number of fixed Var components in block

idaes.core.util.model_statistics.number_ fixed variables_in_ activated equalities (block)
Method to return the number of fixed Var components which appear within activated equality Constraints in a
model.

Parameters block — model to be studied

Returns Number of fixed Var components which appear within activated equality Constraints in
block

4.3. Core Library 83

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.number_fixed variables_only in_inequalities (block)
Method to return the number of fixed Var components which only appear within activated inequality Constraints
in a model.

Parameters block — model to be studied

Returns Number of fixed Var components which only appear within activated inequality Constraints
in block

idaes.core.util.model_statistics.number_large_residuals (block, tol=1e-05)
Method to return the number Constraint components with a residual greater than a given threshold which appear
in a model.

Parameters
* block — model to be studied
* tol - residual threshold for inclusion in ComponentSet
Returns Number of Constraint components with a residual greater than tol which appear in block

idaes.core.util.model_statistics.number total_blocks (block)
Method to return the number of Block components in a model.

Parameters block — model to be studied
Returns Number of Block components in block (including block itself)

idaes.core.util.model_statistics.number total_constraints (block)
Method to return the total number of Constraint components in a model.

Parameters block — model to be studied
Returns Number of Constraint components in block

idaes.core.util.model_statistics.number_total_equalities (block)
Method to return the total number of equality Constraint components in a model.

Parameters block — model to be studied
Returns Number of equality Constraint components in block

idaes.core.util.model_statistics.number_total_inequalities (block)
Method to return the total number of inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of inequality Constraint components in block

idaes.core.util.model_statistics.number_total_objectives (block)
Method to return the number of Objective components which appear in a model

Parameters block — model to be studied
Returns Number of Objective components which appear in block

idaes.core.util.model_statistics.number_unfixed variables (block)
Method to return the number of unfixed Var components in a model.

Parameters block — model to be studied
Returns Number of unfixed Var components in block

idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities (block)
Method to return the number of unfixed Var components which appear within activated equality Constraints in
a model.

84 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameters block — model to be studied

Returns Number of unfixed Var components which appear within activated equality Constraints in
block

idaes.core.util.model_ statistics.number unused_ variables (block)
Method to return the number of Var components which do not appear within any activated Constraint in a model.

Parameters block — model to be studied
Returns Number of Var components which do not appear within any activagted Constraints in block

idaes.core.util.model statistics.number variables (block)
Method to return the number of Var components in a model.

Parameters block — model to be studied
Returns Number of Var components in block

idaes.core.util.model statistics.number variables in_ activated constraints (block)
Method to return the number of Var components that appear within active Constraints in a model.

Parameters block — model to be studied
Returns Number of Var components which appear within active Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_equalities (block)
Method to return the number of Var components which appear within activated equality Constraints in a model.

Parameters block — model to be studied
Returns Number of Var components which appear within activated equality Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_inequalities (block)
Method to return the number of Var components which appear within activated inequality Constraints in a model.

Parameters block — model to be studied
Returns Number of Var components which appear within activated inequality Constraints in block

idaes.core.util.model_statistics.number_variables_only in_inequalities (block)
Method to return the number of Var components which appear only within activated inequality Constraints in a
model.

Parameters block — model to be studied

Returns Number of Var components which appear only within activated inequality Constraints in
block

idaes.core.util.model_statistics.total_blocks_set (block)
Method to return a ComponentSet of all Block components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Block components in block (including block itself)

idaes.core.util.model_statistics.total_constraints_set (block)
Method to return a ComponentSet of all Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Constraint components in block

idaes.core.util.model_statistics.total_equalities_generator (block)
Generator which returns all equality Constraint components in a model.

Parameters block — model to be studied

4.3. Core Library 85

IDAES Documentation, Release 1.2.1

Returns A generator which returns all equality Constraint components block

idaes.core.util.model_statistics.total_equalities_set (block)
Method to return a ComponentSet of all equality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all equality Constraint components in block

idaes.core.util.model_statistics.total_inequalities_generator (block)
Generator which returns all inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all inequality Constraint components block

idaes.core.util.model_statistics.total_inequalities_set (block)
Method to return a ComponentSet of all inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all inequality Constraint components in block

idaes.core.util.model_statistics.total_objectives_generator (block)
Generator which returns all Objective components in a model.

Parameters block — model to be studied
Returns A generator which returns all Objective components block

idaes.core.util.model_statistics.total_objectives_set (block)
Method to return a ComponentSet of all Objective components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Objective components which appear in block

idaes.core.util.model_statistics.unfixed_variables_generator (block)
Generator which returns all unfixed Var components in a model.

Parameters block — model to be studied
Returns A generator which returns all unfixed Var components block

idaes.core.util.model_statistics.unfixed variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all unfixed Var components which appear within an activated equality
Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all unfixed Var components which appear within activated
equality Constraints in block

idaes.core.util.model_statistics.unfixed wvariables_set (block)
Method to return a ComponentSet of all unfixed Var components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all unfixed Var components in block

idaes.core.util.model_statistics.unused variables_set (block)
Method to return a ComponentSet of all Var components which do not appear within any activated Constraint
in a model.

Parameters block — model to be studied

86 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Returns A ComponentSet including all Var components which do not appear within any Constraints
in block

idaes.core.util.model_statistics.variables_in_activated constraints_set (block)
Method to return a ComponentSet of all Var components which appear within a Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear within activated Constraints
in block

idaes.core.util.model_statistics.variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all Var components which appear within an equality Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear within activated equality
Constraints in block

idaes.core.util.model_statistics.variables_in_activated_inequalities_set (block)
Method to return a ComponentSet of all Var components which appear within an inequality Constraint in a
model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear within activated inequality
Constraints in block

idaes.core.util.model_statistics.variables_only_in_inequalities (block)
Method to return a ComponentSet of all Var components which appear only within inequality Constraints in a
model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear only within inequality Con-
straints in block

idaes.core.util.model_statistics.variables_set (block)
Method to return a ComponentSet of all Var components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components in block

Table Methods

The IDAES toolset contians a number of methods for generating and dislpaying summary tables of data in the form of
pandas DataFrames.

Available Methods

idaes.core.util.tables.create_stream table_dataframe (streams, true_state=False,
time_point=0, ori-

ent="columns’)
Method to create a stream table in the form of a pandas dataframe. Method takes a dict with name keys and

stream values. Use an OrderedDict to list the streams in a specific order, otherwise the dataframe can be sorted
later.

Parameters

4.3. Core Library 87

IDAES Documentation, Release 1.2.1

* streams — dict with name keys and stream values. Names will be used as display names
for stream table, and streams may be Arcs, Ports or StateBlocks.

* true_state - indicated whether the stream table should contain the display variables
define in the StateBlock (False, default) or the state variables (True).

* time_point — point in the time domain at which to generate stream table (default = 0)

* orient - orientation of stream table. Accepted values are ‘columns’ (default) where
streams are displayed as columns, or ‘index’ where stream are displayed as rows.

Returns A pandas DataFrame containing the stream table data.

idaes.core.util.tables.generate_table (blocks, attributes, heading=None)
Create a Pandas DataFrame that contains a list of user-defined attributes from a set of Blocks.

Parameters

* blocks (dict) — A dictionary with name keys and BlockData objects for values. Any
name can be associated with a block. Use an OrderedDict to show the blocks in a specific
order, otherwise the dataframe can be sorted later.

* attributes (I1ist or tuple of strings) — Attributes to report from a Block,
can be a Var, Param, or Expression. If an attribute doesn’t exist or doesn’t have a valid
value, it will be treated as missing data.

* heading (I1ist or tuple of srings)— A list of strings that will be used as col-
umn headings. If None the attribute names will be used.

Returns A Pandas dataframe containing a data table
Return type (DataFrame)

idaes.core.util.tables.stream table_dataframe_to_string (stream_table, **kwargs)
Method to print a stream table from a dataframe. Method takes any argument understood by DataFrame.to_string

4.3.2 Core Overview

All components of the IDAES process modeling framework are built of Pyomo Block components (see Pyomo docu-
mentation).

The ProcessBlock class is the base class of IDAES models, and provides the common foundation for all other compo-
nents.

FlowsheetModel objects represent the top level of the IDAES modeling hierarchy, and contain connected networks of
unit models, or even contain other flowsheet models, which are connected by Pyomo Arcs.

Physical property packages supply information about a material’s state including physical properties and flow rates.
Reaction property packages are used in systems where chemical reactions may take place, and supply information on
reaction rates and stoichiometry, based on a material’s state.

Equipment models are derived from UnitModel. Unit models contain control volumes and have ports which can be
used to connect material and energy flows between unit models. On top of the balance equations usually contained
in control volumes unit models contain additional performance equations that may calculate things like heat and mass
transfer or efficiency curves.

ControlVolumes are the basic building block used to construct unit models that contain material and energy holdup
and flows in and out. These blocks contain energy, mass, and momentum balances, as well as state and reaction blocks
associated with the material within the control volume.

More detail on the different types of modeling objects is available in the Modeling Concepts section.

88 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.2.1

4.4 Unit Model Library

4.4.1 Continuous Stirred Tank Reactor

The IDAES CSTR model represents a unit operation where a material stream undergoes some chemical reaction(s) in
a well-mixed vessel.

Degrees of Freedom

CSTRs generally have one degree of freedom. Typically, the fixed variable is reactor volume.

Model Structure

The core CSTR unit model consists of a single ControlVolume0D (named control_volume) with one Inlet
Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints
CSTR units write the following additional Constraints beyond those written by the Control Volume Block.
Xir=Ve X1y,
where X, , is the extent of reaction of reaction r at time ¢, V; is the volume of the reacting material at time ¢ (allows

for varying reactor volume with time) and r; , is the volumetric rate of reaction of reaction r at time ¢ (from the outlet
property package).

Variables

CSTR units add the following additional Variables beyond those created by the Control Volume Block.

Vari- Name | Notes
able
Vi vol- If has_holdup = True this is a reference to control_volume.volume, otherwise a Var
ume attached to the Unit Model
Q¢ heat Only if has_heat_transfer = True, reference to control_volume.heat
CSTR Class

class idaes.unit_models.cstr.CSTR (*args, **kwargs)
Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config

Keys

4.4. Unit Model Library 89

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance. }

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-
tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms. }

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_heat_of reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms. }

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock

90

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

- a ReactionParameterBlock object. }

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (CSTR) New instance

CSTRData Class

class idaes.unit_models.cstr.CSTRData (component)
Standard CSTR Unit Model Class

build()
Begin building model (pre-DAE transformation). :param None:

Returns None

4.4.2 Equilibrium Reactor
The IDAES Equilibrium reactor model represents a unit operation where a material stream undergoes some chemical

reaction(s) to reach an equilibrium state. This model is for systems with reaction with equilibrium coefficients - for
Gibbs energy minimization see Gibbs reactor documentation.

Degrees of Freedom

Equilibrium reactors generally have 1 degree of freedom.
Typical fixed variables are:

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Equilibrium reactor unit model consists of a single Cont rolVolume0D (named control_volume) with
one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

Equilibrium reactors units write the following additional Constraints beyond those written by the Control Volume if
rate controlled reactions are present.

Tty = 0

where 7, is the rate of reaction for reaction r at time ¢. This enforces equilibrium in any reversible rate controlled
reactions which are present. Any non-reversible reaction that may be present will proceed to completion.

4.4. Unit Model Library 91

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Variables

Equilibrium reactor units add the following additional Variables beyond those created by the Control Volume.

Vari- Name| Notes

able

Vi vol- If has_holdup = True this is a reference to control_volume.volume, otherwise a Var
ume attached to the Unit Model

Q: heat Only if has_heat_transfer = True, reference to control_volume.heat

EquilibriumReactor Class

class idaes.unit_models.equilibrium_reactor.EquilibriumReactor (*args,

**kwargs)

Parameters

e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Equilib-
rium Reactors do not support dynamic behavior.

has_holdup Indicates whether holdup terms should be constructed or not. default -
False. Equilibrium reactors do not have defined volume, thus this must be False.

material_balance_type Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance. }

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_rate_reactions Indicates whether terms for rate controlled reactions should be con-
structed, along with constraints equating these to zero, default - True. Valid values: {
True - include rate reaction terms, False - exclude rate reaction terms. }

92

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-
tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default - True. Valid values: { True - include phase equilibrium term, False
- exclude phase equlibirum terms. }

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_heat_of reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms. }

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object. }

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (EquilibriumReactor) New instance

EquilibriumReactorData Class
class idaes.unit_models.equilibrium reactor.EquilibriumReactorData (component)
Standard Equilibrium Reactor Unit Model Class

build()
Begin building model.

Parameters None —

Returns None

4.4. Unit Model Library 93

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

4.4.3 Feed Block

Feed Blocks are used to represent sources of material in Flowsheets. Feed blocks do not calculate phase equilibrium
of the feed stream, and the composition of the material in the outlet stream will be exactly as specified in the input.
For applications where the users wishes the outlet stream to be in phase equilibrium, see the Feed_Flash unit model.

Degrees of Freedom

The degrees of freedom of Feed blocks depends on the property package being used and the number of state variables
necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

Feed Blocks consists of a single StateBlock (named properties), each with one Outlet Port (named outlet). Feed Blocks
also contain References to the state variables defined within the StateBlock

Additional Constraints

Feed Blocks write no additional constraints to the model.

Variables

Feed blocks add no additional Variables.

Feed Class

class idaes.unit_models. feed.Feed (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict)— Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Feed
blocks are always steady-state.

has_holdup Feed blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

94 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Feed) New instance

FeedData Class
class idaes.unit_models. feed.FeedData (component)
Standard Feed Block Class

build ()
Begin building model.

Parameters None —
Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={’tol’: 1e-06})
This method calls the initialization method of the state block.

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

0 = no output (default)

— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)
e optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver - str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

4.4.4 Feed Block with Flash

Feed Blocks are used to represent sources of material in Flowsheets. In some cases, users may have a situation where
a feed stream may be in a multi-phase state, but may not know the full details of the equilibrium state. The IDAES
Feed Block with Flash (FeedFlash) allows users to define a feed block where the outlet is in phase equilibrium based
on calculations from the chosen property package and a sufficient set of state variables prior to being passed to the first
unit operation. The phase equilibrium is performed assuming an isobaric and isothermal flash operation.

A Feed Block with Flash is only required in cases where the feed may be in phase equilibrium AND the chosen
property package uses a state definition that includes phase separations. Some property packages support phase equi-
librium, but use a state definition that involves only total flows - in these cases a flash calculation is performed at the
inlet of every unit and thus it is not necessary to perform a flash calculation at the feed block.

4.4. Unit Model Library 95

IDAES Documentation, Release 1.2.1

Degrees of Freedom

The degrees of freedom of FeedFlash blocks depends on the property package being used and the number of state
variables necessary to fully define the system. Users should refer to documentation on the property package they are
using.

Model Structure

FeedFlash Blocks contain a single ControlVolume0OD (named control_volume) with one Outlet Port (named
outlet). FeedFlash Blocks also contain References to the state variables defined within the inlet StateBlock of the
Control Volume (representing the unflashed state of the feed).

FeedFlash Blocks do not write a set of energy balances within the Control Volume - instead a constraint is written
which enforces an isothermal flash.

Additional Constraints

The FeedFlash Block writes one additional constraint to enforce isothermal behavior.
Tin,t = Tout,t

where T, ; and Ty, ; are the temperatures of the material before and after the flash operation.

Variables

FeedFlash blocks add no additional Variables.

FeedFlash Class

class idaes.unit_models.feed_flash.FeedFlash (*args, **kwargs)
Parameters

e rule (function)— A rule function or None. Default rule calls build().

* concrete (bool)— If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict) — Default ProcessBlockData config

Keys

dynamic Feed units do not support dynamic behavior.
has_holdup Feed units do not have defined volume, thus this must be False.

material_balance_type Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

flash_type Indicates what type of flash operation should be used. default -
FlashType.isothermal. Valid values: { FlashType.isothermal - specify temperature,
FlashType.isenthalpic - specify enthalpy. }

96 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (function) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (FeedFlash) New instance

FeedFlashData Class
class idaes.unit_models.feed_flash.FeedFlashData (component)
Standard Feed block with phase equilibrium

build ()
Begin building model.

Parameters None —

Returns None

4.4.5 Flash Unit

The IDAES Flash model represents a unit operation where a single stream undergoes a flash separation into two phases.
The Flash model supports mutile types of flash operations, including pressure changes and addition or removal of heat.

Degrees of Freedom

Flash units generally have 2 degrees of freedom.
Typical fixed variables are:
* heat duty or outlet temperature (see note),
* pressure change or outlet pressure.

Note: When setting the outlet temeprature of a Flash unit, it is best to set con-
trol_volume.properties_out[t].temperature. Setting the temperature in one of the outlet streams directly results
in a much harder problme to solve, and may be degenerate or unbounded in some cases.

Model Structure

The core Flash unit model consists of a single Control VolumeODBlock (named control_volume) with one Inlet Port
(named inlet) connected to a Separator unit model with two outlet Ports named ‘vap_outlet’ and ‘lig_outlet’. The Flash
model utilizes the separator unit model in IDAES to split the outlets by phase flows to the liquid and vapor outlets
respectively.

The Separator unit model supports both direct splitting of state variables and writting of full splitting constraints via the
ideal_separation construction argument. Full details on the Separator unit model can be found in the documentation

4.4. Unit Model Library 97

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

for that unit. To support direct splitting, the property package must use one of a specified set of state variables and
support a certain set of property calacuations, as outlined in the table below.

State Variables

Required Properties

Material flow and composition

flow_mol & mole_frac

flow_mol_phase & mole_frac_phase

flow_mol_phase & mole_frac_phase

flow_mol_phase & mole_frac_phase

flow_mol_comp

flow_mol_phase_comp

flow_mol_phase_comp

flow_mol_phase_comp

flow_mass & mass_frac

flow_mass_phase & mass_frac_phase

flow_mass_phase & mass_frac_phase

flow_mass_phase & mass_frac_phase

flow_mass_comp

flow_mass_phase_comp

flow_mass_phase_comp

flow_mass_phase_comp

Energy state

temperature temperature
enth_mol enth_mol_phase
enth_mol_phase enth_mol_phase
enth_mass enth_mass_phase

enth_mass_phase

enth_mass_phase

Pressure state

pressure

pressure

Construction Arguments

Flash units have the following construction arguments:

* property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the Property Blocks when they are created.

Additionally, Flash units have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations.

Argument Default Value
dynamic False
include_holdup False

material_balance_type

MaterialBalanceType.componentPhase

energy_balance_type

EnergyBalanceType.enthalpyTotal

momentum_balance_type

MomentumBalanceType.pressureTotal

has_phase_equilibrium

True

has_heat_transfer

True

has_pressure_change

True

Finally, Flash units also have the following arguments which are passed to the Separator block for determining how to

split to two-phase mixture.

Argument

Default Value

ideal_separation

True

energy_split_basis

EnergySplittingType.equal_temperature

98

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Additional Constraints

Flash units write no additional Constraints beyond those written by the ControlVolumeODBlock and the Separator

block.

Variables

Flash Class

Name Notes
heat_duty | Reference to control_volume.heat
deltaP Reference to control_volume.deltaP

class idaes.unit_models.flash.Flash (*args, **kwargs)

Parameters

e rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict)— Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Flash

units do not support dynamic behavior.

has_holdup Indicates whether holdup terms should be constructed or not. default -

False. Flash units do not have defined volume, thus this must be False.

material_balance_type Indicates what type of mass balance should be constructed, de-

fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-

fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be con-

structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

energy_split_basis Argument indicating basis to use for splitting energy this is not used

for when ideal_separation == True. default - EnergySplittingType.equal_temperature.

4.4. Unit Model Library

99

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Valid values: { EnergySplittingType.equal_temperature - outlet temperatures equal
inlet EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal in-
let, EnergySplittingType.enthalpy_split - apply split fractions to enthalpy flows.}

ideal_separation Argument indicating whether ideal splitting should be used. Ideal
splitting assumes perfect separation of material, and attempts to avoid duplication of
StateBlocks by directly partitioning outlet flows to ports, default - True. Valid values:
{ True - use ideal splitting methods. Cannot be combined with has_phase_equilibrium
= True, False - use explicit splitting equations with split fractions. }

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - True. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (funct ion) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Flash) New instance

FlashData Class
class idaes.unit_models.flash.FlashData (component)
Standard Flash Unit Model Class

build()
Begin building model (pre-DAE transformation).

Parameters None —

Returns None

4.4.6 Gibbs Reactor

The IDAES Gibbs reactor model represents a unit operation where a material stream undergoes some set of reactions
such that the Gibbs energy of the resulting mixture is minimized. Gibbs reactors rely on conservation of individual
elements within the system, and thus require element balances, and make use of Lagrange multipliers to find the
minimum Gibbs energy state of the system.

Degrees of Freedom

Gibbs reactors generally have between 0 and 2 degrees of freedom, depending on construction arguments.

100 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Typical fixed variables are:
* reactor heat duty (has_heat_transfer = True only).
* reactor pressure change (has_pressure_change = True only).

Model Structure

The core Gibbs reactor unit model consists of a single Control VolumeODBlock (named control_volume) with one Inlet
Port (named inlet) and one Outlet Port (named outlet).

Variables

Gibbs reactor units add the following additional Variables beyond those created by the Control Volume Block.

Variable Name | Symbol | Notes

lagrange_mult Ly Lagrange multipliers

heat_duty Q: Only if has_heat_transfer = True, reference
deltaP AP, Only if has_pressure_change = True, reference

Constraints
Gibbs reactor models write the following additional constraints to calculate the state that corresponds to the minimum
Gibbs energy of the system.
gibbs_minimization(time, phase, component):
0= Ipartial,t,j + Z (Lt,e X aj,e)
e

where gpartial ¢, 1S the partial molar Gibbs energy of component j at time ¢, L . is the Lagrange multiplier for element
e at time ¢ and «; . is the number of moles of element e in one mole of component j. gpartial,t,; and o . come from
the outlet StateBlock.

GibbsReactor Class

class idaes.unit_models.gibbs_reactor.GibbsReactor (*args, **kwargs)
Parameters

* rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict) — Default ProcessBlockData config

Keys
dynamic Gibbs reactors do not support dynamic models, thus this must be False.

has_holdup Gibbs reactors do not have defined volume, thus this must be False.

4.4. Unit Model Library 101

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (funct ion) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (GibbsReactor) New instance

GibbsReactorData Class

class idaes.unit_models.gibbs_reactor.GibbsReactorData (component)

Standard Gibbs Reactor Unit Model Class

This model assume all possible reactions reach equilibrium such that the system partial molar Gibbs free energy
is minimized. Since some species mole flow rate might be very small, the natural log of the species molar flow
rate is used. Instead of specifying the system Gibbs free energy as an objective function, the equations for zero
partial derivatives of the grand function with Lagrangian multiple terms with repect to product species mole
flow rates and the multiples are specified as constraints.

build()
Begin building model (pre-DAE transformation).

Parameters None —

Returns None

102

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

4.4.7 Heater

The Heater model is a simple 0D model that adds or removes heat from a material stream.

Example

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.unit_models import Heater

from idaes.property models import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel ()

model.fs = FlowsheetBlock (default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock ()

Add a Heater model to the flowsheet.
model.fs.heater = Heater (default={"property_package": model.fs.properties})

Setup the heater model by fixing the inputs and heat duty

model.fs.heater.inlet[:].enth_mol.fix (4000)
model.fs.heater.inlet[:].flow_mol.fix (100)
model.fs.heater.inlet[:] .pressure.fix (101325)
model.fs.heater.heat_duty[:].£ix(100%x20000)

Initialize the model.
model.fs.heater.initialize ()

Degrees of Freedom

Aside from the inlet conditions, a heater model usually has one degree of freedom, which is the heat duty.

Model Structure

A heater model contains one Control VolumeODBlock block.

Variables

The heat_duty variable is a reference to control_volume.heat.

Constraints

A heater model contains no additional constraints beyond what are contained ina Cont ro1Volume0ODBlock model.

Heater Class
class idaes.unit_models.heat_exchanger.Heater (*args, **kwargs)
Simple 0D heater/cooler model.
Parameters

* rule (function)— A rule function or None. Default rule calls build().

4.4. Unit Model Library 103

IDAES Documentation, Release 1.2.1

* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms }

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

104 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Returns (Heater) New instance

HeaterData Class
class idaes.unit_models.heat_exchanger.HeaterData (component)
Simple 0D heater unit. Unit model to add or remove heat from a material.

build()
Building model :param None:

Returns None

4.4.8 HeatExchanger (0D)

The HeatExchanger model can be imported from i daes.unit_models, while additional rules and utility functions

can be imported from idaes.unit_models.heat_exchanger.

Example

The example below demonstrates how to initialize the HeatExchanger model, and override the default temperature

difference calculation.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.unit_models import HeatExchanger

from idaes.unit_models.heat_exchanger import delta_temperature_amtd_rule

from idaes.property models import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel ()

model.fs = FlowsheetBlock (default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock ()

Add a Heater model to the flowsheet.

model. fs.heat_exchanger = HeatExchanger (default={
"delta_ temperature_rule":delta_temperature_amtd_rule,
"side_1":{"property_package": model.fs.properties},
"side_2":{"property_package": model.fs.properties}})

model. fs.heat_exchanger.area.fix (1000)

model. fs.heat_exchanger.overall heat_transfer_coefficient[0].£fix(100)
model. fs.heat_exchanger.inlet_1.flow_mol.fix (100)

model. fs.heat_exchanger.inlet_1.pressure.fix (101325)
model. fs.heat_exchanger.inlet_l.enth_mol.£fix(4000)
model. fs.heat_exchanger.inlet_2.flow_mol.fix (100)
model. fs.heat_exchanger.inlet_2.pressure.fix (101325)
model. fs.heat_exchanger.inlet_2.enth_mol.£fix(3000)

Initialize the model
model.fs.heat_exchanger.initialize ()

4.4. Unit Model Library

105

IDAES Documentation, Release 1.2.1

Degrees of Freedom
Aside from the inlet conditions, a heat exchanger model usually has two degrees of freedom, which can be fixed for it
to be fully specified:

¢ heat transfer area

¢ heat transfer coefficient.

The user may also provide constants to calculate the heat transfer coefficient.

Model Structure

The HeatExchanger model contains two ControlVolumeODBlock blocks (side_1 and side_2), which are
configured the same as the Cont ro1VolumeODBlock in the Heater model. The HeatExchanger model contains
additional constraints that calculate the amount of heat transferred from side_1 to side_2.

The HeatExchanger has two inlet ports inlet_1 (inlet for side_1) and inlet_2 (outlet for side_2), and two outlet
ports inlet ports inlet_1 (outlet for side_1) and outlet_2 (outlet for side_2).

If the AT calculation method requires one side to be hotter than the other, side_1 is assumed to be the hot side.

Variables
Variable Sym- Index Doc
bol Sets
heat_duty Q t Heat transferred from side_1 to side_2 a reference to side_2.heat
area A None Heat transfer area
heat_transfer_coefficient U t Heat transfer coefficient
delta_temperature AT t Temperature difference for heat transfer calculations defaults to
LMTD

Constraints

The default constants can be overridden by providing alternative rules for the heat transfer equation, temperature
difference, and heat transfer coefficient. The section describes the default constraints.

Heat transfer from side_1 to side_2:
Q =UAAT

Temperature difference is an expression:

ATy — ATy

AT =
log, ATy —log, AT,

The heat transfer coefficient is a variable with no associated constraints by default.

class idaes.unit_models.heat_exchanger.HeatExchanger (*args, **kwargs)
Simple 0D heat exchanger model.

Parameters
* rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

106 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.2.1

* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

side_1 A config block used to construct the side_1 control volume.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances, MaterialBalance-
Type.componentPhase - use phase component balances, MaterialBalance-
Type.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalance-
Type.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single
enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy bal-
ances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms. }

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock ob-
ject.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation. }

side_2 A config block used to construct the side_2 control volume.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.componentPhase. Valid values: {

4.4. Unit Model Library 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

MaterialBalanceType.none - exclude material balances, MaterialBalance-
Type.componentPhase - use phase component balances, MaterialBalance-
Type.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalance-
Type.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single
enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy bal-
ances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms. }

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock ob-
ject.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation. }

delta_temperature_rule Rule for equation for temperature difference

flow_pattern Heat exchanger flow pattern, default - HeatExchangerFlowPat-
tern.countercurrent. Valid values: { HeatExchangerFlowPattern.countercurrent
- countercurrent flow, HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow, factor times countercurrent
temperature difference.}

e initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (funct ion)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (HeatExchanger) New instance

class idaes.unit_models.heat_exchanger.HeatExchangerData (component)
Simple 0D heat exchange unit. Unit model to transfer heat from one material to another.

build()
Building model

108 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Parameters None —
Returns None

initialize (state_args_I=None, state_args_2=None, outlvi=0, solver="ipopt’, optarg={"tol’: lIe-
06}, duty=1000)
Heat exchanger initialization method.

Parameters

* state_args_1 - a dict of arguments to be passed to the property initialization for
side_1 (see documentation of the specific property package) (default = {}).

* state_args_2 — a dict of arguments to be passed to the property initialization for
side_2 (see documentation of the specific property package) (default = {}).

* outlvl - sets output level of initialisation routine * 0 = no output (default) * 1 = return
solver state for each step in routine * 2 = return solver state for each step in subroutines *
3 = include solver output infomation (tee=True)

* optarg — solver options dictionary object (default={‘tol’: 1e-6})

* solver - str indicating which solver to use during initialization (default = ‘ipopt’)

e duty — an initial guess for the amount of heat transfered (default = 10000)
Returns None

set_scaling_factor_energy (f)
This function sets scaling_factor_energy for both side_1 and side_2. This factor multiplies the energy bal-
ance and heat transfer equations in the heat exchnager. The value of this factor should be about 1/(expected
heat duty).

Parameters £ — Energy balance scaling factor

Rules

A selection of functions for Pyomo rules are provided in the idaes.unit_models.heat_exchanger module,
which provide options for different calculation methods. Users can also provide their own rule functions. See the
source code for the rules below for examples.

Rules for the delta_temperature_rule Option

These rules provide expressions for the temperature difference used in the heat transfer equations.

idaes.unit_models.heat_exchanger.delta_temperature_lmtd_rule (b, t)
This is a rule for a temperaure difference expression to calculate AT in the heat exchanger model using log-mean
temperature difference (LMTD). It can be supplied to “delta_temperature_rule” HeatExchanger configuration
option.

idaes.unit_models.heat_exchanger.delta_temperature_amtd_rule (b, t)
This is a rule for a temperaure difference expression to calculate AT in the heat exchanger model using
arithmetic-mean temperature difference (AMTD). It can be supplied to “delta_temperature_rule” HeatEx-
changer configuration option.

Rules for the heat_transfer rule Option

These rules provide constraints for the heat transfer rate.

4.4. Unit Model Library 109

IDAES Documentation, Release 1.2.1

idaes.unit_models.heat_exchanger._heat_transfer_rule (b, 1)
This is the default rule used by the HeatExchanger model to calculate heat transfer (QQ = U AAT).

Rules for the heat_transfer coefficient_rule Option

There are currently no rules provided for heat transfer coefficient calculation. When the rule is set to None,
heat_transfer_coefficient is a fixed Var. User provided heat transfer coefficient rules should return a
constraint.

4.4.9 Heat Exchangers (1D)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. The IDAES 1-D
Heat Exchanger model is used for detailed modeling of heat exchanger units with variations in one spatial dimension.
For a simpler representation of a heat exchanger unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7 degrees of freedom.
Typical fixed variables are:

* shell length and diameter,

* tube length and diameter,

* number of tubes,

* heat transfer coefficients (at all spatial points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model unit model consists of two ControlVolumelDBlock Blocks (named shell and
tube), each with one Inlet Port (named shell_inlet and tube_inlet) and one Outlet Port (named shell_outlet and
tube_outlet).

Construction Arguments

1-D Heat Exchanger units have construction arguments specific to the shell side, tube side and for the unit as a whole.
Arguments that are applicable to the heat exchanger unit are as follows:
 flow_type - indicates the flow arrangement within the unit to be modeled. Options are:
— ‘co-current’ - (default) shell and tube both flow in the same direction (from x=0 to x=1)

— ‘counter-current’ - shell and tube flow in opposite directions (shell from x=0 to x=1 and tube from x=1 to
x=0).

* finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 20).
This is used for both shell and tube side domains.

* collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default
=5, collocation methods only). This is used for both shell and tube side domains.

¢ has_wall_conduction - option to enable a model for heat conduction across the tube wall:

110 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

— ‘none’ - 0D wall model

— ‘1D’ - 1D heat conduction equation along the thickness of the tube wall

— ‘2D’ - 2D heat conduction equation along the length and thickness of the tube wall
Arguments that are applicable to the shell side:

* property_package - property package to use when constructing shell side Property Blocks (default =
‘use_parent_value’). This is provided as a Physical Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Control Volume Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the shell side Property Blocks when they are created.

* transformation_method - argument to specify the DAE transformation method for the shell side; should be
compatible with the Pyomo DAE TransformationFactory

* transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method;
should be compatible with the Pyomo DAE TransformationFactory

Arguments that are applicable to the tube side:

» property_package - property package to use when constructing tube side Property Blocks (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the Control Volume Block will try to use the default property package if one is defined.

* property_package_args - set of arguments to be passed to the tube side Property Blocks when they are created.

e transformation_method - argument to specify the DAE transformation method for the tube side; should be
compatible with the Pyomo DAE TransformationFactory

* transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method;
should be compatible with the Pyomo DAE TransformationFactory

Additionally, 1-D Heat Exchanger units have the following construction arguments which are passed to the Con-
trolVolume 1DBlock Block for determining which terms to construct in the balance equations for the shell and tube
side.

Argument Default Value
dynamic useDefault
has_holdup False
material_balance_type ‘componentTotal’
energy_balance_type ‘enthalpyTotal’
momentum_balance_type | ‘pressureTotal’
has_phase_equilibrium False
has_heat_transfer True
has_pressure_change False

Additional Constraints

1-D Heat Exchanger models write the following additional Constraints to describe the heat transfer between the two
sides of the heat exchanger. Firstly, the shell- and tube-side heat transfer is calculated as:

Qshell,tw = _Ntubes X (71- X Ushell,t@ X Dtubeputer X (Tshell,t,a: - walli,m))

where Qsneii, ¢, is the shell-side heat duty at point 2 and time ¢, Nyypes Diupe are the number of and diameter of
the tubes in the heat exchanger, Ugpeii,t,o 15 the shell-side heat transfer coefficient, and Tipe11,¢,. and Tyq11,¢,,c are the
shell-side and tube wall temperatures respectively.

Qtube,t,w = Ntubes X (77 X Utube,t,x X Dtube,inner X (Twall,t,w - Ttube,t,w))

4.4. Unit Model Library 111

IDAES Documentation, Release 1.2.1

where Qtype, 1, is the tube-side heat duty at point = and time ¢, Upype ¢, is the tube-side heat transfer coefficient and
Tube,t,o 15 the tube-side temperature.

If a OD wall model is used for the tube wall conduction, the following constraint is implemented to connect the heat
terms on the shell and tube side:

Niupes X Qtube,t,z = 7Qshell,t,z
Finally, the following Constraints are written to describe the unit geometry:

2
4 X Apybe =T X Di e

2 2
4 X Ashert = T X (Dgpen — Niubes X Diype)

where Agpey and Ayype are the shell and tube areas respectively and Dgpep; and Dy pe are the shell and tube diameters.

Variables

1-D Heat Exchanger units add the following additional Variables beyond those created by the Control Volume1DBlock
Block.

Variable | Name Notes

Lshenr shell_length Reference to shell.length
Aghell shell_area Reference to shell.area
Dshell d_shell

Liube tube_length Reference to tube.length
Atube tube_area Reference to tube.area

Diupe d_tube

Ntubes N_tubes

Twali,t,z | temperature_wall

Ushetit,o | shell_heat_transfer_coefficient

Utube,t,= | tube_heat_transfer_coefficient

HeatExchangeridClass

class idaes.unit_models.heat_exchanger_1D.HeatExchangerlD (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms }

shell_side shell side config arguments

112 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { True - construct holdup
terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase -
use phase component balances, MaterialBalanceType.componentTotal - use total
component balances, MaterialBalanceType.elementTotal - use total element bal-
ances, MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalance-
Type.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single
enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy bal-
ances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms. }

has_phase_equilibrium Argument to enable phase equilibrium on the shell side. -
True - include phase equilibrium term - False - do not include phase equilibrium
term

property_package Property parameter object used to define property calculations (de-
fault = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

property_package_args A dict of arguments to be passed to the Property-
BlockData and used when constructing these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default = None) - a dict (see prop-
erty package for documentation)

transformation_method Discretization method to use for DAE transformation. See
Pyomo documentation for supported transformations.

transformation_scheme Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes.

tube_side tube side config arguments

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

4.4. Unit Model Library 113

IDAES Documentation, Release 1.2.1

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { True - construct holdup
terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase -
use phase component balances, MaterialBalanceType.componentTotal - use total
component balances, MaterialBalanceType.elementTotal - use total element bal-
ances, MaterialBalanceType.total - use total material balance. }

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalance-
Type.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single
enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy bal-
ances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms. }

has_phase_equilibrium Argument to enable phase equilibrium on the shell side. -
True - include phase equilibrium term - False - do not include phase equilibrium
term

property_package Property parameter object used to define property calculations (de-
fault = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

property_package_args A dict of arguments to be passed to the Property-
BlockData and used when constructing these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default = None) - a dict (see prop-
erty package for documentation)

transformation_method Discretization method to use for DAE transformation. See
Pyomo documentation for supported transformations.

transformation_scheme Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes.

finite_elements Number of finite elements to use when discretizing length domain (de-
fault=20)

collocation_points Number of collocation points to use per finite element when dis-
cretizing length domain (default=3)

flow_type Flow configuration of heat exchanger - HeatExchangerFlowPattern.cocurrent:
shell and tube flows from O to 1 (default) - HeatExchangerFlowPattern.countercurrent:
shell side flows from O to 1 tube side flows from 1 to 0

114 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

has_wall_conduction Argument to enable type of wall heat conduction model. -
WallConductionType.zero_dimensional - 0D wall model (default), - WallConduction-
Type.one_dimensional - 1D wall model along the thickness of the tube, - WallCon-
ductionType.two_dimensional - 2D wall model along the lenghth and thickness of the
tube

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (HeatExchanger1D) New instance

HeatExchangeridDataClass
class idaes.unit_models.heat_exchanger_1D.HeatExchangerlDData (component)
Standard Heat Exchanger 1D Unit Model Class.

build()
Begin building model (pre-DAE transformation).

Parameters None —
Returns None

initialize (shell_state_args=None, tube_state_args=None, outlvl=1, solver="ipopt’, optarg={"tol’:

1e-06})
Initialisation routine for the unit (default solver ipopt).

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

0 = no output (default)

— 1 = return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)

* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

4.4.10 Mixer

The IDAES Mixer unit model represents operations where multiple streams of material are combined into a single
flow. The Mixer class can be used to create either a stand-alone mixer unit, or as part of a unit model where multiple
streams need to be mixed.

4.4. Unit Model Library 115

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Degrees of Freedom

Mixer units have zero degrees of freedom.

Model Structure

The IDAES Mixer unit model does not use Control Volumes, and instead writes a set of material, energy and momentum
balances to combine the inlet streams into a single mixed stream. Mixer models have a user-defined number of inlet
Ports (by default named inlet_1, inlet_2, etc.) and one outlet Port (named outlet).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the
mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation
by linking multiple inlet streams to a single existing StateBlock.

Variables

Mixer units have the following variables (¢ indicates index by inlet):

Variable Name Sym- Notes
bol
phase_equilibrium_generation X, ;, | Only if has_phase_equilibrium = True, Generation term for phase equi-
librium
minimum_pressure Prin,t,i | Only if momentum_mixing_type = MomemntumMixingType.minimize
Parameters

Mixer units have the following parameters:

Variable Sym- | Notes

Name bol

eps_pressure | € Only if momentum_mixing_type = MomemntumMixingType.minimize, smooth mini-
mum parameter

Constraints

The constraints written by the Mixer model depend upon the construction arguments chosen.
If material_mixing_type is extensive:
e If material_balance_type is componentPhase:

material_mixing_equations(t, p, j):
0= Z Finip,j — Foutp,j + an,m X Xeg,t,r
7 r

* If material_balance_type is componentTotal:

material_mixing_equations(t, j):

0= Finipi— Foutpj+ Y _nrpj x Xegir)
p i r

116 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

e If material_balance_type is total:

material_mixing_equations(t):
0= Z Z (Z Finipj — Foutpj + Z Nrp,j X Xeg,t,r)
P J % r

where n,.;, ; is the stoichiometric coefficient of component j in phase p in reaction 7.
If ‘energy_mixing_type‘ is extensive:

enthalpy_mixing_equations(t):
0= Hinip=) Houts
% P p

If ‘momentum_mixing_type‘ is minimize, a series of smooth minimum operations are performed:
minimum_pressure_constraint(t, i):

For the first inlet:

Pringti = Pri

)

Otherwise:

Print,i = smin(Ppin.t.i—1, P i, eps)

Here, P; ; is the pressure in inlet ¢ at time ¢, P55, ¢,; is the minimum pressure in all inlets up to inlet 4, and smin is
the smooth minimum operator (see IDAES Utility Function documentation).

The minimum pressure in all inlets is then:
mixture_pressure(t):
Pnn'w,t = Pmin,t,i:last

If momentum_mixing_type is equality, the pressure in all inlets and the outlet are equated.

Note: This may result in an over-specified problem if the user is not careful.

pressure_equality_constraints(t, i):
Pmixﬂf = Pt7i

Often the minimum inlet pressure constraint is useful for sequential modular type initialization, but the equal pres-
sure constants are required for pressure-driven flow models. In these cases it may be convenient to use the minimum
pressure constraint for some initialization steps, them deactivate it and use the equal pressure constraints. The mo-
mentum_mixing_type is minimum_and_equality this will create the constraints for both with the minimum pressure
constraint being active.

The mixture_pressure(t) and pressure_equality_constraints(t, i) can be directly activated and deactivated, but only
one set of constraints should be active at a time. The use_minimum_inlet_pressure_constraint () and
use_equal_pressure_constraint () methods are also provided to switch between constant sets.

4.4. Unit Model Library 117

IDAES Documentation, Release 1.2.1

Mixer Class

class idaes.unit_models.mixer.Mixer (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Mixer
blocks are always steady-state.

has_holdup Mixer blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

inlet_list A list containing names of inlets, default - None. Valid values: { None - use
num_inlets argument, list - a list of names to use for inlets. }

num_inlets Argument indicating number (int) of inlets to construct, not used if inlet_list
arg is provided, default - None. Valid values: { None - use inlet_list arg instead, or
default to 2 if neither argument provided, int - number of inlets to create (will be named
with sequential integers from 1 to num_inlets). }

material_balance_type Indicates what type of mass balance should be con-
structed. Only used if ideal_separation = False. default - MaterialBalance-
Type.componentPhase. Valid values: { MaterialBalanceType.none - exclude ma-
terial balances, MaterialBalanceType.componentPhase - use phase component bal-
ances, MaterialBalanceType.componentTotal - use total component balances, Ma-
terialBalanceType.elementTotal - use total element balances, MaterialBalance-
Type.total - use total material balance.}

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream. }

material_mixing_type Argument indicating what method to use when mixing material
flows of incoming streams, default - MixingType.extensive. Valid values: { Mixing-
Type.none - do not include material mixing equations, MixingType.extensive - mix
total flows of each phase-component pair. }

energy_mixing_type Argument indicating what method to use when mixing energy
flows of incoming streams, default - MixingType.extensive. Valid values: { Mix-
ingType.none - do not include energy mixing equations, MixingType.extensive - mix
total enthalpy flows of each phase.}

momentum_mixing_type Argument indicating what method to use when mixing mo-
mentum/ pressure of incoming streams, default - MomentumMixingType.minimize.

118 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Valid values: { MomentumMixingType.none - do not include momentum mixing
equations, MomentumMixingType.minimize - mixed stream has pressure equal to
the minimimum pressure of the incoming streams (uses smoothMin operator), Mo-
mentumMixingType.equality - enforces equality of pressure in mixed and all incom-
ing streams., MomentumMixingType.minimize_and_equality - add constraints for
pressure equal to the minimum pressure of the inlets and constraints for equality of
pressure in mixed and all incoming streams. When the model is initially built, the
equality constraints are deactivated. This option is useful for switching between flow
and pressure driven simulations. }

mixed_state_block An existing state block to use as the outlet stream from the Mixer
block, default - None. Valid values: { None - create a new StateBlock for the mixed
stream, StateBlock - a StateBock to use as the destination for the mixed stream. }

construct_ports Argument indicating whether model should construct Port objects
linked to all inlet states and the mixed state, default - True. Valid values: { True
- construct Ports for all states, False - do not construct Ports.

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Mixer) New instance

MixerData Class

class idaes.unit_models.mixer.MixerData (component)

This is a general purpose model for a Mixer block with the IDAES modeling framework. This block can be used
either as a stand-alone Mixer unit operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the incoming streams, then writes a set of phase-
component material balances, an overall enthalpy balance and a momentum balance (2 options) linked to a
mixed-state StateBlock. The mixed-state StateBlock can either be specified by the user (allowing use as a
sub-model), or created by the Mixer.

When being used as a sub-model, Mixer should only be used when a set of new StateBlocks are required for the
streams to be mixed. It should not be used to mix streams from mutiple ControlVolumes in a single unit model
- in these cases the unit model developer should write their own mixing equations.

add_energy_mixing equations (inlet_blocks, mixed_block)
Add energy mixing equations (total enthalpy balance).

add_inlet_state_blocks (inlet_list)
Construct StateBlocks for all inlet streams.

Parameters of strings to use as StateBlock names (list)-—
Returns list of StateBlocks

add_material_mixing_ equations (inlet_blocks, mixed_block)
Add material mixing equations.

add mixed state_block ()
Constructs StateBlock to represent mixed stream.

Returns New StateBlock object

4.4.

Unit Model Library 119

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.2.1

add_port_objects (inlet_list, inlet_blocks, mixed_block)
Adds Port objects if required.

Parameters
* list of inlet StateBlock objects (a)-—
* mixed state StateBlock object (a)-—
Returns None

add_pressure_equality_equations (inlet_blocks, mixed_block)
Add pressure equality equations. Note that this writes a number of constraints equal to the number of
inlets, enforcing equality between all inlets and the mixed stream.

add_pressure_minimization_equations (inlet_blocks, mixed_block)
Add pressure minimization equations. This is done by sequential comparisons of each inlet to the minimum
pressure so far, using the IDAES smooth minimum fuction.

build()
General build method for MixerData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

Inheriting models should call super().build.
Parameters None —
Returns None

create_inlet_list ()
Create list of inlet stream names based on config arguments.

Returns list of strings

get_mixed_state_block ()
Validates StateBlock provided in user arguments for mixed stream.

Returns The user-provided StateBlock or an Exception

initialize (outlvi=0, optarg={}, solver="ipopt’, hold_state=False)
Initialisation routine for mixer (default solver ipopt)

Keyword Arguments

* outlvl —sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)

* optarg — solver options dictionary object (default={})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold_state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - False. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_ check ()

This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None —

120

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Returns None

release_state (flags, outlvi=0)
Method to release state variables fixed during initialisation.

Keyword Arguments

» flags — dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

* outlvl - sets output level of logging
Returns None

use_equal_pressure_constraint ()
Deactivate the mixer pressure = mimimum inlet pressure constraint and activate the mixer pressure and
all inlet pressures are equal constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

use_minimum_inlet_pressure_constraint ()
Activate the mixer pressure = mimimum inlet pressure constraint and deactivate the mixer pressure and
all inlet pressures are equal constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

4.4.11 Plug Flow Reactor
The IDAES Plug Flow Reactor (PFR) model represents a unit operation where a material stream passes through a

linear reactor vessel whilst undergoing some chemical reaction(s). This model requires modeling the system in one
spatial dimension.

Degrees of Freedom

PFRs generally have at least 2 degrees of freedom.
Typical fixed variables are:

* 2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a single ControlVolumelDBlock (named control_volume) with one Inlet Port
(named inlet) and one Outlet Port (named outlet).

Variables

PFR units add the following additional Variables:

Variable | Name | Notes

L length | Reference to control_volume.length

A area Reference to control_volume.area

1% volume | Reference to control_volume.volume

Qt,z heat Only if has_heat_transfer = True, reference to holdup.heat

AP, » deltaP | Only if has_pressure_change = True, reference to holdup.deltaP

4.4. Unit Model Library 121

IDAES Documentation, Release 1.2.1

Constraints

PFR units write the following additional Constraints at all points in the spatial domain:

where X, , , is the extent of reaction of reaction r at point x and time ¢, A is the cross-sectional area of the reactor

Xt,m,r =Ax Tt,x,r

and 7, is the volumetric rate of reaction of reaction r at point = and time ¢ (from the outlet StateBlock).

PFR Class

class idaes.unit_models.plug_flow_reactor.PFR (*args, **kwargs)

Parameters

e rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict) — Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.

Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True

if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms }

material_balance_type Indicates what type of mass balance should be constructed, de-

fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-

fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-

structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-

tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms. }

122

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_heat_of reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms. }

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

length_domain_set A list of values to be used when constructing the length domain of
the reactor. Point must lie between 0.0 and 1.0, default - [0.0, 1.0]. Valid values: { a
list of floats}

transformation_method Method to use to transform domain. Must be a method recog-
nised by the Pyomo TransformationFactory, default - “dae.finite_difference”.

transformation_scheme Scheme to use when transformating domain. See Pyomo doc-
umentation for supported schemes, default - “BACKWARD”.

finite_elements Number of finite elements to use when transforming length domain, de-
fault - 20.

collocation_points Number of collocation points to use when transforming length do-
main, default - 3.

e initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PFR) New instance

PFRData Class

class idaes.unit_models.plug_flow_reactor.PFRData (component)
Standard Plug Flow Reactor Unit Model Class

4.4. Unit Model Library 123

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

build()
Begin building model (pre-DAE transformation).

Parameters None —

Returns None

4.4.12 Pressure Changer
The IDAES Pressure Changer model represents a unit operation with a single stream of material which undergoes a

change in pressure due to the application of a work. The Pressure Changer model contains support for a number of
different thermodynamic assumptions regarding the working fluid.

Degrees of Freedom

Pressure Changer units generally have one or more degrees of freedom, depending on the thermodynamic assumption
used.

Typical fixed variables are:
* outlet pressure, P40 Or AP,
* unit efficiency (isentropic or pump assumption).

Model Structure

The core Pressure Changer unit model consists of a single control volume (named Control Volume0ODBIlock), a state
block, containing the states, one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

Pressure Changers contain the following Variables (not including those contained within the control volume Block):

Variable Name Notes
Pratio ratioP
Vi volume Only if has_rate_reactions = True, reference to con-

trol_volume.rate_reaction_extent
Winechanical,t| Work_mechanical Reference to control_volume.work

W ttuid,¢ work_fluid Pump assumption only
Npump,t efficiency_pump Pump assumption only
Wisentropic,t | Work_isentropic Isentropic assumption only
Nisentropic,t | €ffi- Isentropic assumption only

ciency_isentropic

Isentropic Pressure Changers also have an additional Property Block named properties_isentropic (attached to the Unit
Model).

Constraints

In addition to the Constraints written by the Control Volume block, Pressure Changer writes additional Constraints
which depend on the thermodynamic assumption chosen. All Pressure Changers add the following Constraint to

124 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

calculate the pressure ratio:

Pratio,t X f)in,t = Pout,t

Isothermal Assumption

The isothermal assumption writes one additional Constraint:

Tout = Tz

Adiabatic Assumption

The isothermal assumption writes one additional Constraint:

Hout = Hz

Isentropic Assumption

The isentropic assumption creates an additional set of Property Blocks (indexed by time) for the isentropic fluid
calculations (named properties_isentropic). This requires a set of balance equations relating the inlet state to the
isentropic conditions, which are shown below:

Fint.pi = Fout,t,p,j

Sin,t = Sisentropic,t
I)in,t X Pratio,t = Pisentropic,t
where I} , ; is the flow of component j in phase p at time ¢ and s is the specific entropy of the fluid at time ¢.

Next, the isentropic work is calculated as follows:

Wisentropic,t = § Hisentropic,t,p_ E Hin,t,p
p p

where Hy , is the total energy flow of phase p at time ¢. Finally, a constraint which relates the fluid work to the actual
mechanical work via an efficiency term 7.

If compressor is True7 Wisentropic,t = Wmechanical,t X Nt

If compressor is False, Wisentropic,t X Mt = Wimechanical,t

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption writes two additional constraints. Firstly, a Constraint is written which relates
fluid work to the pressure change of the fluid.

Wfluid,t = (Pout,t - Pin,t) X Fvol,t

where F, ; is the total volumetric flowrate of material at time ¢ (from the outlet Property Block). Secondly, a
constraint which relates the fluid work to the actual mechanical work via an efficiency term 7.

If compressor is True, Wyiyid,t = Winechanical,t X Mt

If compressor is False, Wriyia,e X 1t = Winechanical,t

4.4. Unit Model Library 125

IDAES Documentation, Release 1.2.1

PressureChanger Class

class idaes.unit_models.pressure_changer.PressureChanger (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

126 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PressureChanger) New instance

PressureChangerData Class
class idaes.unit_models.pressure_changer.PressureChangerData (component)
Standard Compressor/Expander Unit Model Class

add_adiabatic()
Add constraints for adiabatic assumption.

Parameters None —
Returns None

add_isentropic()
Add constraints for isentropic assumption.

Parameters None —
Returns None

add_isothermal ()
Add constraints for isothermal assumption.

Parameters None —
Returns None

add_performance ()
Define constraints which describe the behaviour of the unit model.

Parameters None —
Returns None

add_pump ()
Add constraints for the incompressible fluid assumption

Parameters None —

Returns None
build()

Parameters None —

Returns None

init_isentropic (state_args, outlvl, solver, optarg)
Initialisation routine for unit (default solver ipopt)

Keyword Arguments

4.4. Unit Model Library

127

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine
— 2 =return solver state for each step in subroutines
— 3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

initialize (state_args={}, routine=None, outlvl=0, solver="ipopt’, optarg={’tol’: 1e-06})
General wrapper for pressure changer initialisation routines

Keyword Arguments

* routine - str stating which initialization routine to execute * None - use routine match-
ing thermodynamic_assumption * ‘isentropic’ - use isentropic initialization routine *
‘isothermal’ - use isothermal initialization routine

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.

* outlvl - sets output level of initialisation routine

0 = no output (default)
— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines

— 3 =include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={‘tol’: 1e-6})
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)
Returns None

model_check ()
Check that pressure change matches with compressor argument (i.e. if compressor = True, pressure should
increase or work should be positive)

Parameters None —
Returns None

set_geometry ()
Define the geometry of the unit as necessary, and link to control volume

Parameters None —

Returns None

128 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

4.4.13 Product Block

Product Blocks are used to represent sinks of material in Flowsheets. These can be used as a conventient way to mark
the final destination of a material stream and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero degrees of freedom.

Model Structure

Product Blocks consists of a single StateBlock (named properties), each with one Inlet Port (named inlet). Product
Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Product Blocks write no additional constraints to the model.

Variables

Product blocks add no additional Variables.

Product Class

class idaes.unit_models.product.Product (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict)— Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Product
blocks are always steady- state.

has_holdup Product blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

4.4. Unit Model Library 129

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Returns (Product) New instance

ProductData Class
class idaes.unit_models.product.ProductData (component)
Standard Product Block Class

build()
Begin building model.

Parameters None —
Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={’tol’: 1e-06})
This method calls the initialization method of the state block.

Keyword Arguments

* state_args — adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={D.

* outlvl - sets output level of initialisation routine

— 0 =no output (default)

1 = return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

4.4.14 Separator

The IDAES Separator unit model represents operations where a single stream is split into multiple flows. The Separator
model supports separation using split fractions, or by ideal separation of flows. The Separator class can be used to
create either a stand-alone separator unit, or as part of a unit model where a flow needs to be separated.

Degrees of Freedom

Separator units have a number of degrees of freedom based on the separation type chosen.
o If split_basis = ‘phaseFlow’, degrees of freedom are generally (no.outlets — 1) X no.phases
* If split_basis = ‘componentFlow’, degrees of freedom are generally (no.outlets — 1) X no.components

o If split_basis = ‘phaseComponentFlow’, degrees of freedom are generally (no.outlets — 1) x no.phases x
no.components

o If split_basis = ‘totalFlow’, degrees of freedom are generally (no.outlets — 1) X no.phases x no.components
Typical fixed variables are:

* split fractions.

130 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Model Structure

The IDAES Separator unit model does not use ControlVolumes, and instead writes a set of material, energy and
momentum balances to split the inlet stream into a number of outlet streams. Separator models have a single inlet Port
(named inlet) and a user-defined number of outlet Ports (by default named outlet_1, outlet_2, etc.).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the
mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation
by linking to an existing StateBlock.

Ideal Separation

The IDAES Separator model supports ideal separations, where all of a given subset of the mixed stream is sent to a
single outlet (i.e. split fractions are equal to zero or one). In these cases, no Constraints are necessary for performing
the separation, as the mixed stream states can be directly partitioned to the outlets.

Ideal separations will not work for all choices of state variables, and thus will not work for all property packages. To
use ideal separations, the user must provide a map of what part of the mixed flow should be partitioned to each outlet.
The ideal_split_map should be a dict-like object with keys as tuples matching the split_basis argument and values
indicating which outlet this subset should be partitioned to.

Variables

Separator units have the following variables (o indicates index by outlet):

Variable Name | Symbol | Notes
split_fraction Dt ,0,5 Indexing sets depend upon split_basis

Constraints

Separator units have the following Constraints, unless ideal_separation is True.
 If material_balance_type is componentPhase:

material_splitting_eqn(t, o, p, j):
Fintpj = Otpx X Frop,;

e If material_balance_type is componentTotal:

material_splitting_eqn(t, o, j):
Z Fintpj = Z Dtpx X Frop,;
P P

e If material_balance_type is total:

material_splitting_eqn(t, 0):
2.2 Fintwi =30 Suwe X Froa
P j P J

If energy_split_basis is equal_temperature:

4.4. Unit Model Library 131

IDAES Documentation, Release 1.2.1

temperature_equality_eqn(t, o):
nn,t = Tt,o

If energy_split_basis is equal_molar_enthalpy:

molar_enthalpy_equality_eqn(t, o):
hinﬂt = ht,o

If energy_split_basis is enthalpy_split:

molar_enthalpy_splitting_eqn(t, 0):
SUMpNin t.p * 8 ft.0p = SUMpNt 0.
pressure_equality_eqn(t, o):

Pin,t = Pt,o

Separator Class

class idaes.unit_models.separator.Separator (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Product
blocks are always steady- state.

has_holdup Product blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

outlet_list A list containing names of outlets, default - None. Valid values: { None -
use num_outlets argument, list - a list of names to use for outlets. }

num_outlets Argument indicating number (int) of outlets to construct, not used if out-
let_list arg is provided, default - None. Valid values: { None - use outlet_list arg
instead, or default to 2 if neither argument provided, int - number of outlets to create
(will be named with sequential integers from 1 to num_outlets). }

split_basis Argument indicating basis to use for splitting mixed stream, default - Split-
tingType.totalFlow. Valid values: { SplittingType.totalFlow - split based on total
flow (split fraction indexed only by time and outlet), SplittingType.phaseFlow - split
based on phase flows (split fraction indexed by time, outlet and phase), Splitting-
Type.componentFlow - split based on component flows (split fraction indexed by time,

132 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

outlet and components), SplittingType.phaseComponentFlow - split based on phase-
component flows (split fraction indexed by both time, outlet, phase and components). }

material_balance_type Indicates what type of mass balance should be con-
structed. Only used if ideal_separation = False. default - MaterialBalance-
Type.componentPhase. Valid values: { MaterialBalanceType.none - exclude ma-
terial balances, MaterialBalanceType.componentPhase - use phase component bal-
ances, MaterialBalanceType.componentTotal - use total component balances, Ma-
terialBalanceType.elementTotal - use total element balances, MaterialBalance-
Type.total - use total material balance.}

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream. }

energy_split_basis Argument indicating basis to use for splitting energy this is not used
for when ideal_separation == True. default - EnergySplittingType.equal_temperature.
Valid values: { EnergySplittingType.equal_temperature - outlet temperatures equal
inlet EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal in-
let, EnergySplittingType.enthalpy_split - apply split fractions to enthalpy flows.
Does not work with component or phase-component splitting. }

ideal_separation Argument indicating whether ideal splitting should be used. Ideal
splitting assumes perfect spearation of material, and attempts to avoid duplication of
StateBlocks by directly partitioning outlet flows to ports, default - True. Valid values:
{ True - use ideal splitting methods. Cannot be combined with has_phase_equilibrium
= True, False - use explicit splitting equations with split fractions. }

ideal_split_map Dictionary containing information on how extensive variables should
be partitioned when using ideal splitting (ideal_separation = True). default - None.
Valid values: { dict with keys of indexing set members and values indicating which
outlet this combination of keys should be partitioned to. E.g. {(“Vap”, “H2”): “out-
let_17}}

mixed_state_block An existing state block to use as the source stream from the Sepa-
rator block, default - None. Valid values: { None - create a new StateBlock for the
mixed stream, StateBlock - a StateBock to use as the source for the mixed stream.}

construct_ports Argument indicating whether model should construct Port objects
linked the mixed state and all outlet states, default - True. Valid values: { True -
construct Ports for all states, False - do not construct Ports.

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (funct ion) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Separator) New instance
SeparatorData Class
class idaes.unit_models.separator.SeparatorData (component)

This is a general purpose model for a Separator block with the IDAES modeling framework. This block can be
used either as a stand-alone Separator unit operation, or as a sub-model within another unit operation.

4.4. Unit Model Library 133

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

This model creates a number of StateBlocks to represent the outgoing streams, then writes a set of phase-
component material balances, an overall enthalpy balance (2 options), and a momentum balance (2 options)
linked to a mixed-state StateBlock. The mixed-state StateBlock can either be specified by the user (allowing use
as a sub-model), or created by the Separator.

When being used as a sub-model, Separator should only be used when a set of new StateBlocks are required
for the streams to be separated. It should not be used to separate streams to go to mutiple ControlVolumes in a
single unit model - in these cases the unit model developer should write their own splitting equations.

add_energy_splitting_constraints (mixed_block)
Creates constraints for splitting the energy flows - done by equating temperatures in outlets.

add_inlet_port_objects (mixed_block)
Adds inlet Port object if required.

Parameters mixed state StateBlock object (a)-—
Returns None

add_material_splitting constraints (mixed_block)
Creates constraints for splitting the material flows

add_mixed_state_block ()
Constructs StateBlock to represent mixed stream.

Returns New StateBlock object

add_momentum_splitting constraints (mixed_block)
Creates constraints for splitting the momentum flows - done by equating pressures in outlets.

add_outlet_port_obijects (outlet_list, outlet_blocks)
Adds outlet Port objects if required.

Parameters 1list of outlet StateBlock objects (a)-—
Returns None

add_outlet_state_blocks (outlet_list)
Construct StateBlocks for all outlet streams.

Parameters of strings to use as StateBlock names (list)-—
Returns list of StateBlocks

add_split_fractions (outlet_list)
Creates outlet Port objects and tries to partiton mixed stream flows between these

Parameters
* representing the mixed flow to be split (StateBlock)-—
e list of names for outlets(a)-

Returns None

build()
General build method for SeparatorData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

Inheriting models should call super().build.
Parameters None —

Returns None

134

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.2.1

create_outlet_list ()
Create list of outlet stream names based on config arguments.

Returns list of strings

get_mixed state_block ()
Validates StateBlock provided in user arguments for mixed stream.

Returns The user-provided StateBlock or an Exception

initialize (outlvi=0, optarg={}, solver="ipopt’, hold_state=False)
Initialisation routine for separator (default solver ipopt)

Keyword Arguments

* outlvl - sets output level of initialisation routine. Valid values: 0 - no output (default), 1
- return solver state for each step in routine, 2 - include solver output infomation (tee=True)

* optarg — solver options dictionary object (default=None)
* solver - str indicating whcih solver to use during initialization (default = ‘ipopt’)

* hold_state - flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - False. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.
model_ check ()

This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None —
Returns None

partition_outlet_flows (mb, outlet_list)
Creates outlet Port objects and tries to partiton mixed stream flows between these

Parameters
* representing the mixed flow to be split (StateBlock)-—
* list of names for outlets(a)-

Returns None

release_state (flags, outlvi=0)
Method to release state variables fixed during initialisation.

Keyword Arguments

» flags —dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

¢ outlvl - sets output level of logging

Returns None

. Unit Model Library 135

IDAES Documentation, Release 1.2.1

4.4.15 Statedunction Block

The IDAES StateJunction block represents a pass-through unit or simple pipe with no holdup. The primary use for
this unit is in conceptual design applications for linking Arcs to/from different process alternatives.

Degrees of Freedom

StateJunctions have no degrees of freedom.

Model Structure

A StateJunction consists of a single StateBlock with two Ports (inlet and outlet), where the state variables in the state
block are simultaneously connected to both Ports.

Additional Constraints

StateJunctions write no additional constraints beyond those in the StateBlock.

Variables

StateJunctions have no additional variables.

StateJunction Class

class idaes.unit_models.statejunction.Statedunction (*args, **kwargs)
Parameters

e rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict)— Default ProcessBlockData config

Keys
dynamic Indicates whether this unit will be dynamic or not, default = False.

has_holdup Indicates whether holdup terms should be constructed or not. default -
False. StateJunctions do not have defined volume, thus this must be False.

property_package Property parameter object used to define property state block, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

136 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Returns (StateJunction) New instance

StatedJunctionData Class
class idaes.unit_models.statejunction.StatedJunctionData (component)
Standard StateJunction Unit Model Class

build()
Begin building model. :param None:

Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={’tol’: 1e-06})
This method initializes the StateJunction block by calling the initialize method on the property block.

Keyword Arguments

* state_args —adict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default

={}.
* outlvl - sets output level of initialisation routine

— 0 =no output (default)

— 1 =return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver - str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

4.4.16 Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor model represents a unit operation where a single material stream undergoes some
chemical reaction(s) subject to a set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have degrees of freedom equal to the number of reactions + 1.
Typical fixed variables are:
* reaction extents or yields (1 per reaction),

* reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Stoichiometric reactor unit model consists of a single Control VolumeODBlock (named control_volume) with
one Inlet Port (named inlet) and one Outlet Port (named outlet).

4.4. Unit Model Library 137

IDAES Documentation, Release 1.2.1

Variables

Stoichiometric reactors units add the following variables:

Variable | Name Notes
Q¢ heat Only if has_heat_transfer = True, reference to control_volume.heat
deltaP; | pressure change | Only if has_pressure_change = True, reference to control_volume.deltaP

Constraints

Stoichiometric reactor units write no additional Constraints beyond those written by the control_volume Block.

StoichiometricReactor Class

class idaes.unit_models.stoichiometric_reactor.StoichiometricReactor (*args,
**kwargs)

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict)— Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

138 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

has_heat_of reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms. }

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms. }

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (StoichiometricReactor) New instance

StoichiometricReactorData Class

class idaes.unit_models.stoichiometric_reactor.StoichiometricReactorData (component)
Standard Stoichiometric Reactor Unit Model Class This model assumes that all given reactions are irreversible,
and that each reaction has a fixed rate_reaction extent which has to be specified by the user.

build ()
Begin building model (pre-DAE transformation). :param None:

Returns None

4.4.17 Translator Block

Translator blocks are used in complex flowsheets where the user desires to use different property packages for different
parts of the flowsheet. In order to link two streams using different property packages, a translator block is required.

The core translator block provides a general framework for constructing Translator Blocks, however users need to add
constraints to map the incoming states to the outgoing states as required by their specific application.

4.4. Unit Model Library 139

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Degrees of Freedom

The degrees of freedom of Translator blocks depends on the property packages being used, and the user should write
a sufficient number of constraints mapping inlet states to outlet states to satisfy these degrees of freedom.

Model Structure

The core Translator Block consists of two State Blocks, names properties_in and properties_out, which
are linked to two Ports names inlet and out let respectively.

Additional Constraints

The core Translator Block writes no additional constraints. Users should add constraints to their instances as required.

Variables

Translator blocks add no additional Variables.

Translator Class

class idaes.unit_models.translator.Translator (*args, **kwargs)
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict)— Default ProcessBlockData config
Keys
dynamic Translator blocks are always steady-state.
has_holdup Translator blocks do not contain holdup.

outlet_state_defined Indicates whether unit model will fully define outlet state. If False,
the outlet property package will enforce constraints such as sum of mole fractions
and phase equilibrium. default - True. Valid values: { True - outlet state will be
fully defined, False - outlet property package should enforce sumation and equilibrium
constraints. }

has_phase_equilibrium Indicates whether outlet property package should enforce phase
equilibrium constraints. default - False. Valid values: { True - outlet property pack-
age should calculate phase equilibrium, False - outlet property package should notcal-
culate phase equilibrium. }

inlet_property_package Property parameter object used to define property calculations
for the incoming stream, default - None. Valid values: { PhysicalParameterObject
- a PhysicalParameterBlock object. }

inlet_property_package_args A ConfigBlock with arguments to be passed to the prop-
erty block associated with the incoming stream, default - None. Valid values: { see
property package for documentation. }

140 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

outlet_property_package Property parameter object used to define property calcula-
tions for the outgoing stream, default - None. Valid values: { PhysicalParameter-
Object - a PhysicalParameterBlock object. }

outlet_property_package_args A ConfigBlock with arguments to be passed to the
property block associated with the outgoing stream, default - None. Valid values:
{ see property package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (function) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Translator) New instance

TranslatorData Class
class idaes.unit_models.translator.TranslatorData (component)
Standard Translator Block Class

build()
Begin building model.

Parameters None —
Returns None

initialize (state_args_in={}, state_args_out={}, outlvi=0, solver="ipopt’, optarg={"tol’: 1e-06})
This method calls the initialization method of the state blocks.

Keyword Arguments

* state_args_in—adictof arguments to be passed to the inlet property package (to pro-
vide an initial state for initialization (see documentation of the specific property package)
(default = { }).

* state_args_out — a dict of arguments to be passed to the outlet property package
(to provide an initial state for initialization (see documentation of the specific property
package) (default = {}).

* outlvl - sets output level of initialisation routine

0 = no output (default)

1 = return solver state for each step in routine

2 = return solver state for each step in subroutines

3 = include solver output infomation (tee=True)
* optarg — solver options dictionary object (default={ ‘tol’: 1e-6})
* solver — str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

4.4.18 Power Generation Models

4.4. Unit Model Library 141

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Feedwater Heater (0D)

The FWHOD model is a 0D feedwater heater model suitable for steady state modeling. It is intended to be used
primarily used with the JAWPS95 property package. The feedwater heater is split into three sections the condensing
section is required while the desuperheating and drain cooling sections are optional. There is also an optional mixer
for adding a drain stream from another feedwater heater to the condensing section. The figure below shows the layout
of the feedwater heater. All but the condensing section are optional.

Fig. 1: Feedwater Heater

Example

The example below shows how to setup a feedwater heater with all tree sections. The feedwater flow rate, steam
conditions, heat transfer coefficients and areas are not necessarily realistic.

import pyomo.environ as pyo

from idaes.core import FlowsheetBlock

from idaes.unit_models.heat_ exchanger import (delta_temperature_underwood2_rule,
delta_temperature_underwood_rule, delta_temperature_lmtd_rule)

from idaes.property models import iapws95

from idaes.unit_models.power generation import FWHOD

def make_fwh_model () :
model = pyo.ConcreteModel ()
model.fs = FlowsheetBlock (default={

"dynamic": False,

"default_property_package": iapws95.Iapws95ParameterBlock () })
model.fs.properties = model.fs.config.default_property_package
model.fs.fwh = FWHOD (default={

"has_desuperheat":True,

"has_drain_cooling":True,

"has_drain_mixer":True,

"property_package":model.fs.properties})

model.fs.fwh.desuperheat.inlet_1.flow_mol.fix (100)
model.fs.fwh.desuperheat.inlet_1.flow_mol.unfix()

model . fs.fwh.desuperheat.inlet_1.pressure.fix (201325)

model . fs.fwh.desuperheat.inlet_1l.enth_mol.£fix (60000)
model.fs.fwh.drain_mix.drain.flow_mol.fix (1)
model.fs.fwh.drain_mix.drain.pressure.fix (201325)
model.fs.fwh.drain_mix.drain.enth_mol.fix (20000)
model.fs.fwh.cooling.inlet_2.flow_mol.fix (400)
model.fs.fwh.cooling.inlet_2.pressure.fix (101325)
model.fs.fwh.cooling.inlet_2.enth_mol.fix(3000)
model.fs.fwh.condense.area.fix (1000)
model.fs.fwh.condense.overall heat_transfer_ coefficient.fix (100)
model . fs.fwh.desuperheat.area.fix (1000)
model.fs.fwh.desuperheat.overall heat_transfer_coefficient.fix (10)
model.fs.fwh.cooling.area.fix (1000)
model.fs.fwh.cooling.overall_heat_transfer_coefficient.fix (10)

model.fs.fwh.initialize ()
return (model)

(continues on next page)

142 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

create a feedwater heater model with all optional units and initialize
model = make_fwh_model ()

Model Structure

The condensing section uses the FWHCondensing0D model to calculate a steam flow rate such that all steam is
condensed in the condensing section. This allows turbine steam extraction rates to be calculated. The other sections
are regular HeatExchanger models. The table below shows the unit models which make up the feedwater heater, and
the option to include or exclude them.

Unit Option Doc

condense - Condensing section (FWHCondensing0D)
desuperheat | has_desuperheat Desuperheating section (HeatExchanger)
cooling has_drain_cooling | Drain cooling section (HeatExchanger)
drain_mix has_drain_mixer Mixer for steam and other FWH drain (Mixer)

Degrees of Freedom

The area and overall_heat_transfer_coefficient should be fixed or constraints should be provided to
calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow
rate (inlet_1.flow_mol), the model will have O degrees of freedom.

See FWHOD and FWHODData for full Python class details.

Feedwater Heater (Condensing Section 0D)

The condensing feedwater heater is the same as the HeatExchanger model with one additional constraint to calculate
the inlet flow rate such that all the entering steam is condensed. This model is suitable for steady state modeling, and

is intended to be used with the JAWPS95 property package. For dynamic modeling, the 1D feedwater heater models
should be used (not yet publicly available).

Degrees of Freedom

Usually area and overall_heat_transfer_coefficient are fixed or constraints are provided to calcu-
late overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate
(inlet_1.flow_mol), the model will have O degrees of freedom.

Variables

The variables are the same as HeatExchanger.

Constraints

In addition to the HeatExchanger constraints, there is one additional constraint to calculate the inlet steam flow such
that all steam condenses. The constraint is called extraction_rate_constraint, and is defined below.

hsteam,out = hsat,liquid(P)

4.4. Unit Model Library 143

IDAES Documentation, Release 1.2.1

Where h is molar enthalpy, and the saturated liquid enthalpy is a function of pressure.

FWHCondensing0D Class

class idaes.unit_models.power_generation.feedwater_heater_0D.FWHCondensingOD (*args,

**kwargs)

Feedwater Heater Condensing Section The feedwater heater condensing section model is a normal OD heat
exchanger model with an added constraint to calculate the steam flow such that the outlet of side_1 is a saturated

liquid.

Args: rule (function): A rule function or None. Default rule calls build(). concrete (bool): If True,
make this a toplevel model. Default - False. ctype (str): Pyomo ctype of the block. Default -
“Block” default (dict): Default ProcessBlockData config

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { True - construct holdup
terms, False - do not construct holdup terms}

side_1 A config block used to construct the side_1 control volume.

material_balance_type Indicates what type of mass balance should be con-

structed, default - MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances, MaterialBalance-
Type.componentPhase - use phase component balances, MaterialBalance-
Type.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total
- use total material balance. }

energy_balance_type Indicates what type of energy balance should be con-

structed, default - EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances, EnergyBalance-
Type.enthalpyTotal - single enthalpy balance for material, EnergyBalance-
Type.enthalpyPhase - enthalpy balances for each phase, EnergyBalance-
Type.energyTotal - single energy balance for material, EnergyBalance-
Type.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be

constructed, default - MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances, Momentum-
BalanceType.pressureTotal - single pressure balance for material, Momen-
tumBalanceType.pressurePhase - pressure balances for each phase, Momen-
tumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each
phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be

constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms. }

has_pressure_change Indicates whether terms for pressure change should be

constructed, default - False. Valid values: { True - include pressure change
terms, False - exclude pressure change terms.}

144

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package
from parent model or flowsheet, PropertyParameterObject - a PropertyParam-
eterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values:
{ see property package for documentation.}

side_2 A config block used to construct the side_2 control volume.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances, MaterialBalance-
Type.componentPhase - use phase component balances, MaterialBalance-
Type.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total
- use total material balance. }

energy_balance_type Indicates what type of energy balance should be con-
structed, default - EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances, EnergyBalance-
Type.enthalpyTotal - single enthalpy balance for material, EnergyBalance-
Type.enthalpyPhase - enthalpy balances for each phase, EnergyBalance-
Type.energyTotal - single energy balance for material, EnergyBalance-
Type.energyPhase - energy balances for each phase. }

momentum_balance_type Indicates what type of momentum balance should be
constructed, default - MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances, Momentum-
BalanceType.pressureTotal - single pressure balance for material, Momen-
tumBalanceType.pressurePhase - pressure balances for each phase, Momen-
tumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each
phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms. }

has_pressure_change Indicates whether terms for pressure change should be
constructed, default - False. Valid values: { True - include pressure change
terms, False - exclude pressure change terms. }

property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package
from parent model or flowsheet, PropertyParameterObject - a PropertyParam-
eterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values:
{ see property package for documentation. }

delta_temperature_rule Rule for equation for temperature difference

flow_pattern Heat exchanger flow pattern, default - HeatExchanger-
FlowPattern.countercurrent. Valid values: { HeatExchangerFlowPat-
tern.countercurrent - countercurrent flow, = HeatExchangerFlowPat-

tern.cocurrent - cocurrent flow, HeatExchangerFlowPattern.crossflow -

4.4. Unit Model Library 145

IDAES Documentation, Release 1.2.1

cross flow, factor times countercurrent temperature difference. }
initialize (dict): ProcessBlockData config for individual elements. Keys are BlockData in-
dexes and values are dictionaries described under the “default” argument above.

idx_map (function): Function to take the index of a BlockData element and return the in-
dex in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns: (FWHCondensingOD) New instance

FWHCondensing0DData Class

class idaes.unit_models.power_generation.feedwater_heater_0D.FWHCondensingODData (component)

build()
Building model

Parameters None —
Returns None

initialize (*args, **kwargs)
Use the regular heat exchanger initilization, with the extraction rate constraint deactivated; then it activates
the constraint and calculates a steam inlet flow rate.

Turbine (Inlet Stage)

This is a steam power generation turbine model for the inlet stage. The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation
Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory
from idaes.core import FlowsheetBlock

from idaes.unit_models.power generation import TurbineInletStage

from idaes.property models import iapws95

= ConcreteModel ()

.fs = FlowsheetBlock (default={"dynamic": False})
.fs.properties = iapws95.Iapws95ParameterBlock ()
.fs.turb = TurbineInletStage (default={"property package": m.fs.properties})
= i1apws95.htpx (T=880, P=2.4233e7)

set inlet

.fs.turb.inlet[:].enth_mol.fix (hin)
.fs.turb.inlet[:].flow_mol.fix (26000/4.0)
.fs.turb.inlet[:] .pressure.fix (2.4233e7)
.fs.turb.eff_nozzle.fix (0.95)
.fs.turb.blade_reaction.fix (0.9)
.fs.turb.flow_coeff.fix (1.053/3600.0)
.fs.turb.blade_velocity.fix (110.0)
.fs.turb.efficiency_mech.fix (0.98)

2 3 3 3

oy
-
o}

25 3 3 3 3 53 3 %

(continues on next page)

146 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

m.fs.turb.initialize ()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge pressure are fixed. There are also a few
variables which are turbine parameters and are usually fixed. See the variables section for more information.

Model Structure

The turbine inlet stage model contains one ControlVolumeODBlock block called control_volume and inherits the Pres-
sureChanger model using the isentropic option.

Variables

The variables below are defined in the TurbinelnletStage model. Additional variables are inherited from the Pres-
sureChanger model model.

Variable Sym- Index Doc
bol Sets
blade_reaction R None Blade reaction
eff_nozzle Nnozzle | None Nozzle efficiency
efficiency_mech Nimech None Mechanical Efficiency (accounts for losses in bearings. ..)
flow_coeff Ciow None Turbine stage flow coefficient [kg*C"0.5/Pa/s]
blade_velocity |75 None Turbine blade velocity (should be constant while running)
[m/s]
delta_enth_isentropifAhjse, | time Isentropic enthalpy change through stage [J/mol]

The table below shows important variables inherited from the pressure changer model.

Variable Symbol | Index Sets | Doc

efficiency_isentropic | Misen time Isentropic efficiency

deltaP AP time Pressure change (P,,+ — P;,) [Pa]

ratioP P otio time Ratio of discharge pressure to inlet pressure (113;“’5)

Expressions
Variable Sym- | Index Doc
bol Sets

power_thermo Wihermo| tIME Turbine stage power output not including mechanical loss
[W]

power_shaft Wshast | time Turbine stage power output including mechanical loss (bear-
ings...) [W]

steam_entering_veloclily time Steam velocity entering stage [m/s]

4.4. Unit Model Library 147

IDAES Documentation, Release 1.2.1

The expression defined below provides a calculation for steam velocity entering the stage, which is used in the effi-
ciency calculation.

_(1 - R)Ahisen
Vo=1414\ | ——————
0 \/ WTinnnozzel

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this model con-
tains two more constraints, one to estimate efficiency and one pressure-flow relation. From the isentropic pressure
changer model, these constraints eliminate the need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

Vi Vi Vorr \ 2
Nisen = 2 ‘;bl <m — ‘;bl> + <m _ Tbl) +R
0 0

The pressure-flow relation is given by:

Pin Y
VI, —273.15\ v—1

m = Cflow

2 a+1
Pout v Pout v
P; Py,

Initialization

The initialization method for this model will save the current state of the model before commencing initialization and
reloads it afterwards. The state of the model will be the same after initialization, only the initial guesses for unfixed
variables will be changed. To initialize this model, provide a starting value for the inlet port variables. Then provide a
guess for one of: discharge pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow coefficient that is incompatible with the given
flow rate resulting in an infeasible problem.

TurbinelnletStage Class

class idaes.unit_models.power_generation.turbine_inlet.TurbineInletStage (*args,

**kwargs)
Inlet stage steam turbine model

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) — If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

148 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation. }

e initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbinelnletStage) New instance

4.4. Unit Model Library 149

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

TurbinelnletStageData Class

class idaes.unit_models.power_generation.turbine_inlet.TurbineInletStageData (component)

build()
Parameters None —
Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={"max_iter’: 30, 'tol’: le-06})
Initialize the inlet turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters
* state_args (dict) — Initial state for property initialization
* outlvl (int)— Amount of output (0 to 3) 0 is lowest
* solver (st r)— Solver to use for initialization

* optarg (dict)— Solver arguments dictionary

Turbine (Outlet Stage)

This is a steam power generation turbine model for the outlet stage. The turbine outlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation
Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory

from idaes.core import FlowsheetBlock

from idaes.unit_models.power_ generation import TurbineOutletStage
from idaes.property models import iapws95

= ConcreteModel ()

.fs = FlowsheetBlock (default={"dynamic": False})

.fs.properties = iapws95.Iapws95ParameterBlock ()

.fs.turb = TurbineOutletStage (default={"property_ package": m.fs.properties})
set inlet

.fs.turb.inlet[:].enth_mol.fix (47115)

.fs.turb.inlet[:].flow_mol.fix (15000)

.fs.turb.inlet[:] .pressure.fix (8e4)

338 %53 3 3 3

=}

.fs.turb.initialize ()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge pressure are fixed. There are also a few
variables which are turbine parameters and are usually fixed. See the variables section for more information.

150 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Model Structure

The turbine outlet stage model contains one ControlVolumeODBlock block called control_volume and inherits the
PressureChanger model using the isentropic option.

Variables

The variables below are defined int the TurbinelnletStage model. Additional variables are in inherited from the Pres-
sureChanger model model.

Variable Symbol Index Doc
Sets
eff_dry Ndry None Turbine efficiency when no liquid is present.
efficiency_mech Thmech None Mechanical Efficiency (accounts for losses in bear-
ings...)
flow_coeff C'tiow None Turbine stage flow coefficient [kg*C"0.5/Pa/s]
design_exhaust_flow_vqlVyes exhaust| None Design volumetric flow out of stage [m”3/s]

The table below shows important variables inherited from the pressure changer model.

Variable Symbol | Index Sets | Doc

efficiency_isentropic | Misen time Isentropic efficiency

deltaP AP time Pressure change (P, — P;,) [Pa]

ratioP Pratio time Ratio of discharge pressure to inlet pressure (%"'t)

Expressions

Variable Sym- Index Doc
bol Sets
power_thermo| Wipermo | time Turbine stage power output not including mechanical loss [W]
power_shaft | Wspepe | time Turbine stage power output including mechanical loss (bearings. . .)
[W]
tel TEL time Total exhaust loss [J/mol]

The expression defined below provides a total exhaust loss.
TEL = 1 x 10% % (—0.0035f° + 0.022f* — 0.0542f% + 0.0638 f> — 0.0328 f + 0.0064)

Where f is the total volumetric flow of the exhaust divided by the design flow.

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this model con-
tains two more constraints, one to estimate efficiency and one pressure-flow relation. From the isentropic pressure
changer model, these constraints eliminate the need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

TEL
Nisen = NdryT (1 - 0'65(1 a l‘)) 1+ Ahisen

4.4. Unit Model Library 151

IDAES Documentation, Release 1.2.1

Where z is the steam quality (vapor fraction).

The pressure-flow relation is given by the Stodola Equation:

im/Tin — 27315 = CfiowPin\/1 — Pr?

Initialization

The initialization method for this model will save the current state of the model before commencing initialization and
reloads it afterwards. The state of the model will be the same after initialization, only the initial guesses for unfixed
variables will be changed. To initialize this model, provide a starting value for the inlet port variables. Then provide a
guess for one of: discharge pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow coefficient that is incompatible with the given
flow rate resulting in an infeasible problem.

TurbineOutletStage Class

class idaes.unit_models.power_generation.turbine_outlet.TurbineOutletStage (*args,
**kwargs)
Outlet stage steam turbine model

Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance. }

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

152 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineOutletStage) New instance

TurbineOutletStageData Class

class idaes.unit_models.power_generation.turbine_outlet.TurbineOutletStageData (component)

build()
Parameters None —
Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={"max_iter’: 30, 'tol’: le-06})
Initialize the outlet turbine stage model. This deactivates the specialized constraints, then does the isen-
tropic turbine initialization, then reactivates the constraints and solves.

Parameters
* state_args (dict) — Initial state for property initialization
e outlvl (int)— Amount of output (0 to 3) 0 is lowest
* solver (st r)— Solver to use for initialization

* optarg (dict)— Solver arguments dictionary

4.4. Unit Model Library 153

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Turbine (Stage)
This is a steam power generation turbine model for the stages between the inlet and outlet. This model inherits the

PressureChanger model with the isentropic options. The initialization scheme is the same as the TurbinelnletStage
model.

Example

from pyomo.environ import ConcreteModel, SolverFactory

from idaes.core import FlowsheetBlock
from idaes.unit_models.power_generation import TurbineStage
from idaes.property models import iapws95

.fs.turb.ratioP[:].fix (0.7)
.fs.turb.initialize ()

m = ConcreteModel ()

m.fs = FlowsheetBlock (default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock ()
m.fs.turb = TurbineStage (default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth mol.fix (70000)
m.fs.turb.inlet[:].flow_mol.fix (15000)
m.fs.turb.inlet[:] .pressure.fix (8e6)
m.fs.turb.efficiency_isentropic[:].£fix(0.8)

m

m

Variables

This model adds a variable to the base PressureChanger model to account for mechanical efficiency .

Variable Symbol | Index Sets | Doc
efficiency_mech | Mmech None Mechanical Efficiency (accounts for losses in bearings. ..)

The table below shows important variables inherited from the pressure changer model.

Variable Symbol | Index Sets | Doc

efficiency_isentropic | Misen time Isentropic efficiency

deltaP AP time Pressure change (P,,; — P;,) [Pa]

ratioP Pratio time Ratio of discharge pressure to inlet pressure (’?g“)

Nisentropic,t €fficiency_isentropic Isentropic assumption only

Expressions

This model provides two expressions that are not available in the pressure changer model.

154 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Variable Sym- Index Doc
bol Sets
power_thermo| Wipermo | time Turbine stage power output not including mechanical loss [W]
power_shaft | Wspepe | time Turbine stage power output including mechanical loss (bearings...)
(W]

Constraints

There are no additional constraints.

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in a function to ensure the state
after initialization is the same as before initialization. The arguments to the initialization method are the same as
PressureChanger.

TurbineStage Class

class idaes.unit_models.power_generation.turbine_stage.TurbineStage (*args,
**kwargs)
Basic steam turbine model

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

4.4. Unit Model Library 155

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineStage) New instance

TurbineStageData Class

class idaes.unit_models.power_generation.turbine_stage.TurbineStageData (component)

build()
Parameters None —
Returns None

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={"max_iter’: 30, 'tol’: le-06})
Initialize the turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters
* state_args (dict) — Initial state for property initialization
e outlvl (int)— Amount of output (0 to 3) 0 is lowest
* solver (st r)— Solver to use for initialization

* optarg (dict)— Solver arguments dictionary

156 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

Turbine (Multistage)

This is a composite model for a power plant turbine with high, intermediate and low pressure sections. This model
contains an inlet stage with throttle valves for partial arc admission and optional splitters for steam extraction.

The figure below shows the layout of the mutistage turbine model. Optional splitters provide for steam extraction. The
splitters can have two or more outlets (one being the main steam outlet). The streams that connect one stage to the
next can also be omitted. This allows for connecting additional unit models (usually reheaters) between stages.

Fig. 2: MultiStage Turbine Model

Example

This example sets up a turbine multistage turbine model similar to what could be found in a power plant steam cycle.
There are 7 high-pressure stages, 14 intermediate-pressure stages, and 11 low-pressure stages. Steam extractions are
provided after stages hp4, hp7, ip5, ip14, Ip4, 1p7, 1p9, Ip11. The extraction at ip14 uses a splitter with three outlets,
one for the main steam, one for the boiler feed pump, and one for a feedwater heater. There is a disconnection between
the HP and IP sections so that steam can be sent to a reheater. In this example, a heater block is a stand-in for a reheater
model.

from pyomo.environ import (ConcreteModel, SolverFactory, TransformationFactory,
Constraint, wvalue)
from pyomo.network import Arc

from idaes.core import FlowsheetBlock
from idaes.unit_models import Heater
from idaes.unit_models.power_generation import (
TurbineMultistage, TurbineStage, TurbinelInletStage, TurbineOutletStage)
from idaes.property models import iapws95

solver = SolverFactory ('ipopt')
solver.options = {'tol': le-6}

m = ConcreteModel ()
m.fs = FlowsheetBlock (default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock ()
m.fs.turb = TurbineMultistage (default={
"property_package": m.fs.properties,
"num_hp": 7,
"num_ip": 14,
"num_1lp": 11,

"hp_split_locations": [4,7],

"ip_split_locations": [5, 147,

"lp_split_locations": [4,7,9,11],

"hp_disconnect": [7], # 7 is last stage in hp so disconnect hp from ip

"ip_split_num_outlets": {14:3}})
Add reheater (for example using a simple heater block)
.fs.reheat = Heater (default={"property_ package": m.fs.properties})
Add Arcs (streams) to connect the HP and IP sections through reheater
.fs.hp_to_reheat = Arc(source=m.fs.turb.hp_split[7].outlet_1,
destination=m.fs.reheat.inlet)
m.fs.reheat_to_ip = Arc(source=m.fs.reheat.outlet,
destination=m.fs.turb.ip_stages[1l].inlet)
Set the turbine inlet conditions and an initial flow guess

8 % 8 %

(continues on next page)

4.4. Unit Model Library 157

IDAES Documentation, Release 1.2.1

(continued from previous page)

p = 2.4233e7

hin = iapws95.htpx (T=880, P=p)
m.fs.turb.inlet_split.inlet.enth _mol[0].fix (hin)
m.fs.turb.inlet_split.inlet.flow_mol[0].fix (26000)
m.fs.turb.inlet_split.inlet.pressure[0].fix (p)

Set the inlet of the ip section for initialization, since it is disconnected
p = 7.802e+06

hin = iapws95.htpx (T=880, P=p)
m.fs.turb.ip_stages[l].inlet.enth mol[0].value = hin
m.fs.turb.ip_stages([1l].inlet.flow_mol[0].value = 25220.0
m.fs.turb.ip_stages([l].inlet.pressure[0] .value = p

Set the efficency and pressure ratios of stages other than inlet and outlet
for i, s in turb.hp_stages.items/() :

s.ratioP[:] 0.88
s.efficiency_isentropic(:]
i, s in turb.ip_stages.items (
s.ratioP[:] 0.85
s.efficiency_isentropic(:]
i, s in turb.lp_stages.items (
s.ratioP[:] 0.82
s.efficiency_isentropic(:] 0.9

0.9
for) :

0.9
for) :

Usually these fractions would be determined

by the boiler feed water heater

network. Since this example doesn't include them, just fix split fractions
turb.hp_split[4].split_fraction[0, "outlet 2"].£fix (0.03)
turb.hp_split[7].split_fraction[0, "outlet_ 2"].£fix(0.03)

turb.ip_split[5] .split_fraction[0, "outlet 2"].£fix (0.04)
turb.ip_split[14].split_fraction[O0, "outlet 2"].£fix(0.04)

turb.ip_split[14] .split_fraction[0, "outlet_ 3"].fix(0.15)
turb.lp_split[4].split_fraction[0,"outlet 2"].£fix (0.04)
turb.lp_split[7].split_fraction[0, "outlet 2"].£fix (0.04)

turb.lp_split[9] .split_fraction[0, "outlet_ 2"].£fix(0.04)
turb.lp_split[11].split_fraction[0, "outlet 2"].£fix(0.04)

unfix inlet flow for pressure driven simulation
turb.inlet_split.inlet.flow_mol.unfix()
Set the inlet steam mixer to use the constraints that the pressures of all
inlet streams are equal
turb.inlet_mix.use_equal_pressure_constraint ()
Initialize turbine
turb.initialize (outlvl=1)
Copy conditions out of turbine to initialize the reheater
for t in m.fs.time:
m.fs.reheat.inlet.flow_mol[t].value \
value (turb.hp_split[7].outlet_1_state[t].flow_mol)
m.fs.reheat.inlet.enth_mol[t].value \
value (turb.hp_split[7].outlet_1_state[t].enth_mol)
m.fs.reheat.inlet.pressure[t] .value \
value (turb.hp_split[7] .outlet_1_state[t] .pressure)
initialize the reheater
m.fs.reheat.initialize (outlvl=4)
Add constraint to the reheater to result in 880K outlet temperature
def reheat_T_rule(b, t):
return m.fs.reheat.control_volume.properties_out[t].temperature == 880
m.fs.reheat.temperature_out_equation Constraint (m.fs.reheat.time_ref,
rule=reheat_T_rule)
Expand the Arcs connecting the turbine to the reheater
TransformationFactory ("network.expand arcs") .apply_to (m)

(continues on next page)

158 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

Fix the outlet pressure (usually determined by condenser)
m.fs.turb.outlet_stage.control_volume.properties_out[0].pressure.fix()

Solve the pressure driven flow model with reheat
solver.solve (m, tee=True)

Unit Models

The multistage turbine model contains the models in the table below. The splitters for steam extraction are not present
if a turbine section contains no steam extractions.

Unit Index Sets Doc
inlet_split None Splitter to split the main steam feed into steams for each arc (Separator)
throttle_valve Admission Arcs Throttle valves for each admission arc (SteamValve)
inlet_stage Admission Arcs Parallel inlet turbine stages that represent admission arcs (Turbinelnlet)
inlet_mix None Mixer to combine the streams from each arc back to one stream (Mixer)
hp_stages HP stages Turbine stages in the high-pressure section (TurbineStage)
ip_stages IP stages Turbine stages in the intermediate-pressure section (TurbineStage)
lp_stages LP stages Turbine stages in the low-pressure section (TurbineStage)
hp_splits subset of HP | Extraction splitters in the high-pressure section (Separator)

stages
ip_splits subset of IP | Extraction splitters in the high-pressure section (Separator)

stages
lp_splits subset of LP | Extraction splitters in the high-pressure section (Separator)

stages
outlet_stage None The final stage in the turbine, which calculates exhaust losses (Turbine-

Outlet)
Initialization

The initialization approach is to sequentially initialize each sub-unit using the outlet of the previous model. Before
initializing the model, the inlet of the turbine, and any stage that is disconnected should be given a reasonable guess.
The efficiency and pressure ration of the stages in the HP, IP and LP sections should be specified. For the inlet and
outlet stages the flow coefficient should be specified. Valve coefficients should also be specified. A reasonable guess
for split fractions should also be given for any extraction splitters present. The most likely cause of initialization failure
is flow coefficients in inlet stage, outlet stage, or valves that do not pair well with the specified flow rates.

TurbineMultistage Class

class idaes.unit_models.power_generation.turbine_multistage.TurbineMultistage (*args,
**kwargs)

Multistage steam turbine with optional reheat and extraction
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) — If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

4.4. Unit Model Library 159

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.2.1

* default (dict)— Default ProcessBlockData config
Keys
dynamic Indicates whether the model is dynamic.

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms }

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream. }

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentTotal‘. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance. }

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

num_parallel_inlet_stages Number of parallel inlet stages to simulate partial arc admis-
sion. Default=4

num_hp Number of high pressure stages not including inlet stage
num_ip Number of intermediate pressure stages
num_lp Number of low pressure stages not including outlet stage

hp_split_locations A list of index locations of splitters in the HP section. The indexes
indicate after which stage to include splitters. 0 is between the inlet stage and the first
regular HP stage.

ip_split_locations A list of index locations of splitters in the IP section. The indexes
indicate after which stage to include splitters.

Ip_split_locations A list of index locations of splitters in the LP section. The indexes
indicate after which stage to include splitters.

hp_disconnect HP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

ip_disconnect IP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

Ip_disconnect LP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

hp_split_num_outlets Dict, hp split index: number of splitter outlets, if not 2
ip_split_num_outlets Dict, ip split index: number of splitter outlets, if not 2

Ip_split_num_outlets Dict, Ip split index: number of splitter outlets, if not 2

160 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineMultistage) New instance

TurbineMultistageData Class

class idaes.unit_models.power_generation.turbine_multistage.TurbineMultistageData (component)

build()
General build method for UnitModelBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of unit models.

Inheriting models should call super().build.
Parameters None —
Returns None

initialize (outlvi=0, solver="ipopt’, optarg={’max_iter’: 35, 'tol’: 1e-06})
Initialize

throttle_cv_f£fix (value)
Fix the thottle valve coefficients. These are generally the same for each of the parallel stages so this
provides a convenient way to set them.

Parameters value — The value to fix the turbine inlet flow coefficients at

turbine_inlet_cf_ fix (value)
Fix the inlet turbine stage flow coefficient. These are generally the same for each of the parallel stages so
this provides a convenient way to set them.

Parameters value — The value to fix the turbine inlet flow coefficients at

turbine_outlet_cf_ fix (value)
Fix the inlet turbine stage flow coefficient. These are generally the same for each of the parallel stages so
this provides a convenient way to set them.

Parameters value — The value to fix the turbine inlet flow coefficients at
Steam/Water Valve
This is a steam power generation turbine model for the stages between the inlet and outlet. This model inherits the

PressureChanger model with the adiabatic options. Beyond the base pressure changer model this provides a pressure
flow relation as a function of the valve opening fraction.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory

from idaes.core import FlowsheetBlock
from idaes.unit_models.power_ generation import SteamValve

(continues on next page)

4.4. Unit Model Library 161

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

(continued from previous page)

from idaes.property models import iapws95
from idaes.ui.report import degrees_of_freedom, active_equalities

solver = SolverFactory ('ipopt'")

solver.options = {'tol': le-6}

m = ConcreteModel ()

m.fs = FlowsheetBlock (default={"dynamic": False})

m.fs.properties = iapws95.Iapws95ParameterBlock ()

m.fs.valve = SteamValve (default={"property_package": m.fs.properties})

hin = iapws95.htpx (T=880, P=2.4233e7)

set inlet
.fs.valve.inlet.enth_mol[0].fix (hin)
.fs.valve.inlet.flow_mol[0].£fix (26000/4.0)
.fs.valve.inlet .pressure[0].fix (2.5e7)
.fs.valve.Cv.fix (0.01)
.fs.valve.valve_opening.fix (0.5)
.fs.valve.initialize (outlvl=1)

25 3 3 3 3 %

Parameters
Expres- Sym- | Index Doc
sion bol Sets
flow_scalgsy None Factor for scaling the pressure-flow equation, should be same magnitude as
expected flow rate
Variables

This model adds a variable to account for mechanical efficiency to the base PressureChanger model.

Variable Symbol | Index Sets | Doc
Cv Cy None Valve coefficient for liquid [mol/s/Pa0.5] for vapor [mol/s/Pa]
valve_opening | x time The fraction that the valve is open from 0 to 1

Expressions

Currently this model provides two additional expressions, with are not available in the pressure changer model.

Expression Sym- Index Doc
bol Sets
valve_function f(z) time This is a valve function that describes how the fraction open affects
flow.

Constraints

The pressure flow relation is added to the inherited constraints from the PressureChanger model.

162 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

If the phase option is set to "Lig" the following equation describes the pressure-flow relation.

If the phase option is set to "Vap" the following equation describes the pressure-flow relation.
Lo 1 o 2 2
gF = gcv (Pin - Pout) f(l‘)

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in a function to ensure the state
after initialization is the same as before initialization. The arguments to the initialization method are the same as

PressureChanger.

SteamValve Class

class idaes.unit_models.power_generation.valve_steam.SteamValve (*args,

**kwargs)

Basic steam valve models
Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a

dynamic model, False - set as a steady-state model. }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,

False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,

MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-

gyBalanceType.energyPhase - energy balances for each phase.}

4.4. Unit Model Library

163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

valve_function The type of valve function, if custom provide an expression rule with
the valve_function_rule argument. default - ValveFunctionType.linear Valid val-
ues - { ValveFunctionType.linear, ValveFunctionType.quick_opening, ValveFunction-
Type.equal_percentage, ValveFunctionType.custom }

valve_function_rule This is a rule that returns a time indexed valve function expression.
This is required only if valve_function==ValveFunctionType.custom

phase Expected phase of fluid in valve in {*Liq”, “Vap”'}

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (funct ion) - Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (SteamValve) New instance

SteamValveData Class

class idaes.unit_models.power_generation.valve_steam.SteamValveData (component)

build()
Parameters None —

Returns None

164 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

initialize (state_args={}, outlvl=0, solver="ipopt’, optarg={"max_iter’: 30, 'tol’: le-06})
Initialize the turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters
* state_args (dict) — Initial state for property initialization
* outlvl (int)— Amount of output (0 to 3) 0 is lowest
* solver (st r)— Solver to use for initialization

* optarg (dict)— Solver arguments dictionary

4.5 Property Model Library

4.5.1 Cubic Equations of State

Coming Soon.

4.5.2 Ideal Gas

4.5.3 Water/Steam

Accurate and thermodynamically consistent steam properties are provided for the IDAES framework by implementing
the International Association for the Properties of Water and Steam’s “Revised Release on the IAPWS Formulation
1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.” Non-analytic
terms designed to improve accuracy very near the critical point were omitted, because they cause a singularity at the
critical point, a feature which is undesirable in optimization problems. The IDAES implementation provides features
which make the water and steam property calculations amenable to rigorous mathematical optimization.

Example

Theses modules can be imported as:

from idaes.property models import iapws95

The Heater unit model example, provides a simple example for using water properties.

import pyomo.environ as pe # Pyomo environment

from idaes.core import FlowsheetBlock, MaterialBalanceType
from idaes.unit_models import Heater

from idaes.property models import iapws95

Create an empty flowsheet and steam property parameter block.

model = pe.ConcreteModel ()

model.fs = FlowsheetBlock (default={"dynamic": False})

model.fs.properties = iapws95.Iapws95ParameterBlock (default={
"phase_presentation":iapws95.PhaseType. LG,
"state_vars":iapws95.StateVars.PH})

Add a Heater model to the flowsheet.
model.fs.heater = Heater (default={
"property_package": model.fs.properties,

(continues on next page)

4.5. Property Model Library 165

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

(continued from previous page)

"material balance_type":MaterialBalanceType.componentTotal})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix (100)
model.fs.heater.inlet[:] .pressure.fix (101325)
model.fs.heater.heat_duty[:].£ix(100x20000)

Initialize the model.
model.fs.heater.initialize ()

Since all properties except the state variables are Pyomo Expressions in the water properties module, after solving the
problem any property can be calculated in any state block. Continuing from the heater example, to get the viscosity of
both phases, the lines below could be added.

mu_l = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Lig"])
mu_v = pe.value (model.fs.heater.control_volume.properties_out[0].visc_d_phase["Vap"])

For more information about how StateBlocks and PropertyParameterBlocks work see the StateBlock documentation.

Units

The iapws95 property module uses SI units (m, kg, s, J, mol) for all public variables and expressions. Temperature is
in K. Note that this means molecular weight is in the unusual unit of kg/mol.

A few expressions intended to be used internally and all external function calls use units of kg, kJ, kPa, and K. These
generally are not needed by the end user.

Methods

These methods use the IAPWS-95 formulation for scientific use for thermodynamic properties (Wagner and Pruss,
2002; IAPWS, 2016). To solve the phase equilibrium, the method of Akasaka (2008) was used. For solving these
equations, some relations from the IAPWS-97 formulation for industrial use are used as initial values (Wagner et al.,
2002). The industrial formulation is slightly discontinuous between different regions, so it may not be suitable for
optimization. In addition to thermodynamic quantities, viscosity and thermal conductivity are calculated (JAPWS,
2008; IAPWS, 2011).

External Functions

The IAPWS-95 formulation uses density and temperature as state variables. For most applications those state variables
are not the most convenient choices. Using other state variables requires solving equations to get density and temper-
ature from the chosen state variables. These equations can have numerous solutions only one of which is physically
meaningful. Rather than solve these equations as part of the full process simulation, external functions were developed
that can solve the equations required to change state variables and guarantee the correct roots.

The external property functions are written in C++ and complied such that they can be called by AMPL solvers.
See the Installation page for information about compiling these functions. The external functions provide both first
and second derivatives for all property function calls, however at phase transitions some of these functions may be
non-smooth.

166 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

IDAES Framework Wrapper

A wrapper for the external functions is provided for compatibility with the IDAES framework. Most properties are
available as Pyomo Expressions from the wrapper. Only the state variables are model variables. Benefits of using
mostly expressions in the property package are: no initialization is required specifically for the property package, the
model has fewer equations, and all properties can be easily calculated after the model is solved from the state variable
values even if they were not used in the model. Calls to the external functions are used within expressions so users
do not need to directly call any functions. The potential downside of the extensive use of expressions here is that
combining the expressions to form constraints could yield equations that are more difficult to solve than, they would
have been if an equivalent system of equations was written with more variables and simpler equations. Quantifying
the effect of writing larger equations with fewer variables is difficult. Experience suggests in this particular case more
expressions and fewer variables is better.

Although not generally used, the wrapper provides direct access to the ExternalFunctions, including intermediate
functions. For more information see section ExternalFunctions. These are mostly available for testing purposes.

Phase Presentation

The property package wrapper can present fluid phase information to the IDAES framework in different ways. See
the class reference for details on how to set these options. The phase_presentation=PhaseType.MIX option
looks like one phase called “Mix” to the IDAES framework. The property package will calculate a phase fraction. This
will bypass any two phase handling equations written for unit models, and should work with any unit model options
as long as you do not want to separate the phases. The benefit of this option is that it can potentially lead to a simpler
set of equations.

The phase_presentation=PhaseType.LG option appears to the IDAES framework to be two phases “Vap”
and “Liq”. This option requires one of two unit model options to be set. You can use the total material balance option
for unit models, to specify that only one material balance equation should be written not one per phase. The other
possible option is to specify has_phase_equlibrium=True. This will still write a material balance per phase,
but will add a phase generation term to the model. For the IAPWS-95 package, it is generally recommended that
specifying total material balances is best because it results in a problem with fewer variables.

There are also two single phase options phase_presentation=PhaseType.L and
phase_presentation=PhaseType.G, these present a single phase “Liq” or “Vap” to the framework.
The vapor fraction will also always return O or 1 as appropriate. These options can be used when the phase of a fluid
is know for certain to only be liquid or only be vapor. For the temperature-pressure-vapor fraction formulation, this
eliminates the complementarity constraint, but for the enthalpy-pressure formulation, where the vapor fraction is
always calculated, the single phase options probably do not provide any real benefit.

Pressure-Enthalpy Formulation

The advantage of this choice of state variables is that it is very robust when phase changes occur, and is especially
useful when it is not known if a phase change will occur. The disadvantage of this choice of state variables is that for
equations like heat transfer equations that are highly dependent on temperature, a model could be harder to solve near
regions with phase change. Temperature is a non-smooth function with non-smoothness when transitioning from the
single-phase to the two-phase region. Temperature also has a zero derivative with respect to enthalpy in the two-phase
region, so near the two-phase region solving a constraint that specifies a specific temperature may not be possible.

The variables for this form are £1ow_mol (mol/s), pressure (Pa), and enth_mo1l (J/mol).

Since temperature and vapor fraction are not state variables in this formulation, they are provided by expressions, and
cannot be fixed. For example, to set a temperature to a specific value, a constraint could be added which says the
temperature expression equals a fixed value.

These expressions are specific to the P-H formulation:

4.5. Property Model Library 167

IDAES Documentation, Release 1.2.1

temperature Expression that calculates temperature by calling an ExternalFunction of enthalpy and pressure. This
expression is non-smooth in the transition from single-phase to two-phase and has a zero derivative with respect
to enthalpy in the two-phase region.

vapor_frac Expression that calculates vapor fraction by calling an ExternalFunction of enthalpy and pressure.
This expression is non-smooth in the transition from single-phase to two-phase and has a zero derivative with
respect to enthalpy in the single-phase region, where the value is O (liquid) or 1 (vapor).

Temperature-Pressure-Vapor Fraction

This formulation uses temperature (K), pressure (Pa), and vapor fraction as state variables. When a single phase option
is given, the vapor fraction is fixed to the appropriate value and not included in the state variable set. For single phase,
the complementarity constraint is also deactivated.

A complementarity constraint is required for the T-P-x formulation. First, two expressions are defined below where
P~ is pressure under saturation pressure and PV is pressure over saturation pressure. The max function is provided
by an IDAES utility function which provides a smooth max expression.

P~ = max(0, Py — P)

P+

max(0, P — Pyy)

With the pressure over and pressure under saturated pressure expressions a complementarity constraint can be written.
If the pressure under saturation is more than zero, only vapor exists. If the pressure over saturation is greater than zero
only a liquid exists. If both are about zero two phases can exist. The saturation pressure function maxes out at the
critical pressure and any temperature above the critical temperature will yield a saturation pressure that is the critical
pressure, so supercritical fluids will be classified as liquids as the convention for this property package.

0=aP" —(1-2)P"

Assuming the vapor fraction () is positive and noting that only one of P+ and P~ can be nonzero (approximately),
the complementarity equation above requires x to be 0 when P is not zero (liquid) or x to be 1 when P~ is not zero
(vapor). When both P and P~ are about 0, the complementarity constraint says nothing about x, but it does provide
another constraint, that P = Py,. When two phases are present x can be found by the unit model energy balance and
the temperature will be Tg,.

An alternative approach is sometimes useful. If you know for certain that you have two phases, the complementarity
constraint can be deactivated and a P = P, or T = T, constraint can be added.

Using the T-P-x formulation requires better initial guesses than the P-H form. It is not strictly necessary but it is best
to try to get an initial guess that is in the correct phase region for the expected result model.

Expressions

Unless otherwise noted, the property expressions are common to both the T-P-x and P-H formulations. For phase
specific properties, valid phase indexes are "Lig" and "Vap"

Expression Description

mw Molecular weight (kg/mol)

tau Critical temperature divided by temperature (unitless)

temperature Temperature (K) if PH form

temperature_red Reduced temperature, temperature divided by critical temperature (unitless)
temperature_sat Saturation temperature (K)

Continued on next page

168 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Table 2 — continued from previous page

Expression

Description

tau_sat

Critical temperature divided by saturation temperature (unitless)

pressure_sat

Saturation pressure (Pa)

dens_mass_phase [phase]

Density phase (kg/m?>)

dens_phase_red[phase]

Phase reduced density (), mass density divided by critical density (unitless)

dens_mass

Total mixed phase mass density (kg/m>)

dens_mol

Total mixed phase mole density (kg/m>)

flow_vol

Total volumetric flow rate (m>/s)

enth_mass

Mass enthalpy (J/kg)

enth_mol_sat_phase[phase]

Saturation enthalpy of phase, enthalpy at P and T, (J/mol)

enth_mol

Molar enthalpy (J/mol) if TPx form

enth_mol_phase[phase]

Molar enthalpy of phase (J/mol)

energy_internal_mol

molar internal energy (J/mol)

energy_internal_mol_phase[phase]

Molar internal energy of phase (J/mol)

entr_mol_phase

Molar entropy of phase (J/mol/K)

entr_mol

Total mixed phase entropy (J/mol/K)

cp_mol_phase[phase]

Constant pressure molar heat capacity of phase (J/mol/K)

cv_mol_phase[phase]

Constant pressure volume heat capacity of phase (J/mol/K)

cp_mol

Total mixed phase constant pressure heat capacity (J/mol/K)

cv_mol

Total mixed phase constant volume heat capacity (J/mol/K)

heat_capacity_ratio

cp_mol/cv_mol

speed_sound_phase [phase]

Speed of sound in phase (m/s)

dens_mol_phase [phase]

Mole density of phase (mol/m>)

therm_cond_phase[phase]

Thermal conductivity of phase (W/K/m)

vapor_frac

Vapor fraction, if PH form

visc_d_phase [phase]

Viscosity of phase (Pa/s)

visc_k_phase[phase]

Kinimatic viscosity of phase (m”/s)

phase_frac[phase]

Phase fraction

flow_mol_comp["H20"]

Same as total flow since only water (mol/s)

P_under_sat

Pressure under saturation pressure (kPA)

P_over_sat

Pressure over saturation pressure (kPA)

ExternalFunctions

This provides a list of ExternalFuctions available in the wrapper. These functions do not use SI units and are not
usually called directly. If these functions are needed, they should be used with caution. Some of these are used in the
property expressions, some are just provided to allow easier testing with a Python framework.

All of these functions provide first and second derivative and are generally suited to optimization (including the ones
that return derivatives of Helmholtz free energy). Some functions may have non-smoothness at phase transitions. The
delta_vap and delta_11iqg functions return the same values in the critical region. They will also return real values
when a phase doesn’t exist, but those values do not necessarily have physical meaning.

There are a few variables that are common to a lot of these functions, so they are summarized here 7 is the critical
temperature divided by the temperature %, 4 is density divided by the critical density pﬁ, and ¢ is Helmholtz free

energy divided by the ideal gas constant and temperature J

ﬁ.
Pyomo Function C Function Returns Arguments
func_p P pressure (kPa) 0, T
func_u u internal energy (kJ/kg) o, T

Continued on next page

4.5. Property Model Library 169

IDAES Documentation, Release 1.2.1

Table 3 — continued from previous page

Pyomo Function C Function Returns Arguments
func_s S entropy (kJ/K/kg) o, T

func_h h enthalpy (kJ/kg) o, T
func_hvpt hvpt vapor enthalpy (kJ/kg) P (kPa), 7
func_hlpt hlpt liquid enthalpy (kJ/kg) P (kPa), T
func_tau tau 7 (unitless) h (kl/kg), P (kPa)
func_vf vf vapor fraction (unitless) h (kJ/kg), P (kPa)
func_g g Gibbs free energy (kJ/kg) o, T

func_f f Helmbholtz free energy (kl/kg) 6, T
func_cv cv const. volume heat capacity (kJ/K/kg) | §,7
func_cp cp const. pressure heat capacity (kJ/K/kg) | d, 7

func_w W speed of sound (m/s) o, T
func_delta_liq delta_liq liquid § (unitless) P (kPa), 7
func_delta_vap delta_vap vapor J (unitless) P (kPa), 7
func_delta_sat_1 delta_sat_1 sat. liquid ¢ (unitless) T
func_delta_sat_v delta_sat_v sat. vapor ¢ (unitless) T
func_p_sat p_sat sat. pressure (kPa) T
func_tau_sat tau_sat sat. 7 (unitless) P (kPa)
func_phi0 phi0 ¢ idaes gas part (unitless) 0,7
func_phi0_delta phi0_delta Do 5
func_phi0_delta2 | phi0_delta2 | &% 5
func_phi0_tau phi0_tau So T
func_phi0_tau2 phi0_tau2 9 %0 T

func_phir phir ¢ real gas part (unitless) 0, T
func_phir_delta phir_delta "a‘é{ 6, T
func_phir_delta2 phir_delta2 85 [;ZT 6, T
func_phir_tau phir_tau % o, T
func_phir_tau2 phir_tau2 33:’5{ o, T
func_phir_delta_tau | phir_delta_tau g;g; o, T

Initialization

The IAPWS-95 property functions do provide initialization functions for general compatibility with the IDAES frame-
work, but as long as the state variables are specified to some reasonable value, initialization is not required. All required
solves are handled by external functions.

References

International Association for the Properties of Water and Steam (2016). IAPWS R6-95 (2016), “Revised Release
on the TAPWS Formulation 1995 for the Properties of Ordinary Water Substance for General Scientific Use,” URL:
http://iapws.org/relguide/TAPWS95-2016.pdf

Wagner, W., A. Pruss (2002). “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water
Substance for General and Scientific Use.” J. Phys. Chem. Ref. Data, 31, 387-535.

Wagner, W. et al. (2000). “The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam,” ASME J. Eng. Gas Turbines and Power, 122, 150-182.

Akasaka, R. (2008). “A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equa-
tions of State.” Journal of Thermal Science and Technology, 3(3), 442-451.

170 Chapter 4. Contents

http://iapws.org/relguide/IAPWS95-2016.pdf

IDAES Documentation, Release 1.2.1

International Association for the Properties of Water and Steam (2011). IAPWS R15-11, “Release on the IAPWS For-
mulation 2011 for the Thermal Conductivity of Ordinary Water Substance,” URL: http://iapws.org/relguide/ThCond.
pdf.

International Association for the Properties of Water and Steam (2008). IAPWS R12-08, “Release on the IAPWS
Formulation 2008 for the Viscosity of Ordinary Water Substance,” URL: http://iapws.org/relguide/visc.pdf.

Convenience Functions
lapws95StateBlock Class
lapws95StateBlockData Class
lapws95ParameterBlock Class

lapws95ParameterBlockData Class
4.6 Visualization

4.6.1 Contents

Drawing heat exchanger network diagrams

The following example demonstrates how to generate a heat exchanger network diagram.

In the code below, different streams are defined in the streams list. For each stream, we expect a name (name), a
list of temperatures (femps) and a type field specifying if this is a hot stream (HENStreamType.hot) or a cold one
(HENStreamType.cold).

The exchangers list defines the heat exchangers. Each exchanger is defined by its hot/cold stream (hot, cold) which
must match one of the streams in the streams list above. We also require for each exchanger the area (A),the amount
of heat transferred from one stream to another (Q), annual cost (annual_cost) and stage (stg). If the utility_type key
is passed and it’s set to HENStreamType.cold_utility then we draw the cold stream of the exchanger as water. If the
utility_type key is passed and it’s set to HENStreamType.hot_utility then we draw the hot stream of the exchanger as
steam.

The color-codes of each stage are picked randomly in the final diagram.

from bokeh.io import output_notebook

from bokeh.plotting import show

from idaes.vis.plot import Plot

from idaes.vis.plot_utils import HENStreamType

exchangers = [
{'"hot': 'H2', 'cold': 'Cl', 'Q': 1400, 'A': 159, 'annual_cost': 28358, 'stg': 2},
{"hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost': 10979, 'stg': 3},
{"hot': 'H1', 'cold': 'Cl', 'Q': 233, 'A': 10, 'annual_cost': 4180, 'stg': 1},
{'hot': 'H1', 'cold': 'C2', 'Q': 2400, 'A': 355, 'annual_cost': 35727, 'stg': 2},
{"hot': 'H2', 'cold': 'wW', 'Q': 400, 'A': 50, 'annual_cost': 10979, 'stg': 3,
—'utility type': HENStreamType.cold_utility},
{'"hot': 'S', 'cold': 'C2', 'Q': 450, 'A': 50, 'annual_cost': 0, 'stg': 1,

—'utility type': HENStreamType.hot_utility}
1

(continues on next page)

4.6. Visualization 171

http://iapws.org/relguide/ThCond.pdf
http://iapws.org/relguide/ThCond.pdf
http://iapws.org/relguide/visc.pdf

IDAES Documentation, Release 1.2.1

(continued from previous page)

streams = [
{'name':'H2'"', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'"name':'H1'"', 'temps': [443, 435, 355, 333], 'type': HENStreamType.hot},
[1
[1

{"name':'Cl', 'temps': 408, 396, 326, 293], 'type': HENStreamType.cold},
{'"name':'C2", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold}
1
plot_obj = Plot.heat_exchanger_network (exchangers, streams,

mark_temperatures_with_tooltips=True)
plot_obj.show()

By default tooltips are used to mark stream temperatures. We can disable those and add labels instead as seen below.
They can be a bit crowded and for now you can just zoom in to decipher crowded labels (but we’re working on that!)

plot_obj = Plot.heat_exchanger_network (exchangers, streams,
mark_temperatures_with_tooltips=False)
plot_obj.show ()

In case a stream exchanges with multiple streams in the same stage, this is handled through a stage split. We also
currently support describing modules for each exchanger that are added as tooltips to the area label on each exchanger.
The example below demonstrates this functionality:

exchangers = [
{'"hot': 'H1', 'cold': 'C2', 'Q': 2400, 'A': 355, 'annual_cost': 35727, 'stg': 2},
{"hot': 'H2', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 2},
{'"hot': 'H1', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{"hot': 'H1', 'cold': 'Cl', 'Q': 667, 'A': 50, 'annual_cost': 10979, 'stg': 3,
—'modules': {10: 1, 20: 2}},
{"hot': 'H2', 'cold': 'C3', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{"hot': 'H2', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3,
—'modules': {10: 1, 20: 2}},
{"hot': 'H3', 'cold': 'C2', 'Q': 1700, 'A': 159, 'annual_cost': 28358, 'stg': 3},
{"hot': 'H2', 'cold': 'wW', 'Q': 400, 'A': 50, 'annual_cost': 10979, 'stg': 3,
—'utility_ type': HENStreamType.cold_utility},
{"hot': 'S', 'cold': 'C2', 'Q': 450, 'A': 50, 'annual_cost': 0, 'stg': 1,

—'utility_ type': HENStreamType.hot_utility}
1

streams = [
{'name':'H3'"', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'"name':'H2', 'temps': [423, 423, 330, 303], 'type': HENStreamType.hot},
{'name':'H1'"', 'temps': [443, 435, 355, 333], 'type': HENStreamType.hot},
{'name':'Cl", 'temps': [408, 396, 326, 293], 'type': HENStreamType.cold},
{"name':'C2"'", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold},
{'name':'C3", 'temps': [413, 413, 353, 353], 'type': HENStreamType.cold}

]

plot_obj = Plot.heat_exchanger_network (exchangers, streams,

mark_temperatures_with_tooltips=True,
mark_modules_with_tooltips=True,
stage_width=2,
y_stream_step=1)

plot_obj.show()

172 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Plotting profile plots from the MEA example

Warning: The following has not been tested recently and should be considered a work in progress.

The following examples demonstrate the resize, annotation and saving functionalities.

In the following example, we being by preparing a data frame from our flowsheet variables.

Absorber CO2 Levels

from pandas import DataFrame
import os

tmp = fs.absorb.make_profile (t=0)
tmp = fs.regen.make_profile (t=0)

plot_dict = {'z':fs.absorb.profile_1['2z"'],
'yv1':fs.absorb.profile_l.y_vap_C02x101325.0,
'v2':fs.absorb.profile_1.P_star_ CO2}

plot_data_frame = DataFrame (data=plot_dict)

We can then plot the data frame we just made, show it, resize it and save it.

absorber_co2_plot = Plot.profile(plot_data_frame,

x = 'z",

y = ['y1l','y2'],

title = 'Absorber CO2 Levels',

xlab = 'Axial distance from top (m)',
ylab = 'Partial Pressure CO2 (Pa)',
legend = ['Bulk vapor', 'Equilibrium'])

absorber_co2_plot.show ()
absorber_co2_plot.save ('/home/jovyan/model_contrib/absorber_co2_plot.html")
assert (os.path.isfile (' /home/jovyan/model_contrib/absorber_co2_plot.html'))

absorber_co2_plot.resize (height=400,width=600)

absorber_co2_plot.show ()

absorber_co2_plot.save ('/home/jovyan/model_contrib/absorber_co2_plot_resized.html')
assert (os.path.isfile (' /home/jovyan/model_contrib/absorber_co2_plot_resized.html'))

The following demonstrates the annotate functionality by plotting a second plot from the same flowsheet.

from IPython.core.display import display, HTML
stripper_co2_plot = Plot.profile(plot_data_frame,

[}

x = "'z",
y = ['yl','yv2'],

title = 'Stripper CO2 Levels',

xlab = 'Axial distance from top (m)',
ylab = 'Partial Pressure CO2 (Pa)',
legend = ['Bulk vapor', 'Equilibrium'])

stripper_co2_plot.show ()
stripper_co2_plot.save ('/home/jovyan/model_contrib/stripper_co2_plot.html")
assert (os.path.isfile (' /home/jovyan/model_contrib/stripper_co2_plot.html'))

We can then annotate the “Reboiler vapor” point as shown below:

4.6. Visualization 173

IDAES Documentation, Release 1.2.1

stripper_co2_plot.annotate(rloc,rco2p, 'Reboiler vapor')
stripper_co2_plot.show ()
stripper_co2_plot.save ('/home/jovyan/model_ contrib/stripper_co2_plot_annotated.html')

Warning: The visualization library is still in active development and we hope to improve on it in future releases.
Please use its functionality at your own discretion.

4.6.2 Overview

The idaes.vis subpackage contains the framework and implementation of plots that are expected to be of general utility
within the IDAES framework.

For users, an entry point is provided for IDAES classes to produce plots with the idaes.vis.plotbase.
PlotRegistry singleton.

Plots will inherit from the interface in idaes.vis.plotbase.PlotBase, which provides some basic methods.

The current implementations all use the Python “bokeh” package, and can be found in i daes.vis.bokeh plots.

4.7 Data Management Framework

4.7.1 DMF Command-line Interface

This page lists the commands and options for the DMF command-line interface, which is a Python program called
dmf. There are several usage examples for each sub-command. These examples assume the UNIX bash shell.

Contents

* DMF Command-line Interface
- dmf

dmf find

dmf info

dmf init

dmf'ls

dmf register

dmf related

dmfrm

dmf status

dmf

Data management framework command wrapper. This base command has some options for verbosity that can be
applied to any sub-command.

174 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

dmf options

-V

—-verbose

Increase verbosity. Show warnings if given once, then info, and then debugging messages.
-q

——quiet

Increase quietness. If given once, only show critical messages. If given twice, show no messages.

dmf usage

Run sub-command with logging at level “error”:

’$ dmf <sub-command>

Run sub-command and log warnings:

’$ dmf <sub-command>

Run sub-command and log informational / warning messages:

’$ dmf -vv <sub-command>

Run sub-command only logging fatal errors:

’$ dmf -g <sub-command>

Run sub-command with no logging at all:

’$ dmf -gg <sub-command>

dmf subcommands

The subcommands are listed alphabetically below. For each, keep in mind that any unique prefix of that command
will be accepted. For example, for dmf init, the user may also type dmf ini. However, dmf in will not work
because that would also be a valid prefix for dmf info.

In addition, there are some aliases for some of the sub-commands:
e dmf info =>dmf resource or dmf show
e dmf 1s=>dmflist
* dmf register =>dmfadd
e dmf related =>dmf graph
e dmf rm=>dmfdelete

e dmf status =>dmfdescribe

4.7. Data Management Framework 175

IDAES Documentation, Release 1.2.1

usage overview

To give a feel for the context in which you might actually run these commands, below is a simple example that uses
each command:

create a new workspace
$ dmf init ws —--name workspace —--desc "my workspace" —--create
Configuration in '/home/dang/src/idaes/dangunter/idaes—-dev/docs/ws/config.yaml

view status of the workspace
$ dmf status
settings:
workspace: /home/myuser/ws
workspace:
location: /home/myuser/ws
name: workspace
description: my workspace
created: 2019-04-20 08:32:59
modified: 2019-04-20 08:32:59

add some resources from files

$ echo "one" > oldfile ; echo "two" > newfile

$ dmf register oldfile --version 0.0.1

2792c0ceb0734ed4b302c44884£2d404

$ dmf register newfile —--version 0.0.2 —--prev 2792c0ceb0734ed4b302c44884£2d404
6ddee9bb2bb3420abl0aaf4c74d186f6

list the current workspace contents
$ dmf 1s

id type desc modified

2792 data oldfile 2019-04-20 15:33:11
6dde data newfile 2019-04-20 15:33:23

look at one one resource (newfile)
$ dmf info 6dde
Resource 6ddee9bb2bb3420abl0aafd4c74d186£f6
created
'2019-04-20 15:33:23"
creator
name: dang
datafiles
— desc: newfile
is_copy: true
path: newfile
shal: 7bbefd5b3bc70855010e02460717643125c3beca
datafiles_dir
/home/myuser/ws/files/8027b£92628f41a0bl46a5167d147e9d
desc
newfile
doc_id
2
id_
6ddee9bb2bb3420abl0aaf4c74d186f6
modified
'2019-04-20 15:33:23"
relations
- 2792c0ceb0734ed4b302c44884f2d404 —-[version]—-—-> ME

(continues on next page)

176 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

type
data
version
0.0.2 @ 2019-04-20 15:33:23

see relations
$ dmf related 2792
2792 data

L——version|—— 6dde data -

remove the "old" file

$ dmf rm 2792

id type desc modified
2792c0ceb0734ed4b302¢c44884f2d404 data oldfile 2019-04-20 15:33:11
Remove this resource [y/N]? y

resource removed

$ dmf 1s
id type desc modified
6dde data newfile 2019-04-20 15:33:23

dmf find

Search for resources by a combination of their fields. Several convenient fields are provided. At this time, a compre-
hensive capability to search on any field is not available.

dmf find options

In addition to the options below, this command also accepts all the dmf Is options, although the ——color/
——no—color option is ignored for JSON output.

——output value

Output style/format. Possible values:

list (Default) Show results as a listing, as from the /s subcommand.
info Show results as individual records, as from the info subcommand.
json Show results are JSON objects

—-by value

Look for “value” in the value of the creator.name field.

——created value

Use “value” as a date or date range and filter on records that have a created date in that range. Dates should be in a
form that is accepted by the Pendulum parse function. The special token . . is used to indicate date ranges, as in:

¢ 2012-03-19: On March 19, 2012
* 2012-03-19..2012-03-22: From March 19 to March 22, 2012
¢ 2012-03-19..: After March 19, 2012

4.7. Data Management Framework 177

https://pendulum.eustace.io/docs/#parsing

IDAES Documentation, Release 1.2.1

e ..2012-03-19: Before March 19, 2012
Note that times may also be part of the date strings.
--file value
Look for “value” in the value of the desc field in one of the datafiles.
—--modified value

Use “value” as a date or date range and filter on records that have a modified date in that range. See ——created for
details on the date format.

——name value

Look for “value” as one of the values of the alias field.
——type value

Look for “value” as the value of the rype field.

dmf find usage

By default, find will essentially provide a filtered listing of resources. If used without options, it is basically an alias
for Is.

$ dmf 1s

id type desc modified

2517 data filel.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59
$ dmf find

id type desc modified

2517 data filel.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8cb55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59

The find-specific options add filters. In the example below, the find filters for files that were modified after the given
date and time.

$ dmf find --modified 2019-04-29T17:29:00..
id type desc modified

2517 data filel.txt 2019-04-29 17:29:00

344c data file2.txt 2019-04-29 17:29:01

dmf info

Show detailed information about a resource. This command may also be referred to as dmf show.

178 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

dmf info options

identifier

Identifier, or unique prefix thereof, of the resource. Any unique prefix of the identifier will work, but if that prefix

matches multiple identifiers, you need to add ——multiple to allow multiple records in the output.
—--multiple

Allow multiple records in the output (see identifier)

—f,——format value

Output format. Accepts the following values:

term Terminal output (colored, if the terminal supports it), with values that are empty left out and some values

simplified for easy reading.
json Raw JSON value for the resource, with newlines and indents for readability.

jsonc Raw JSON value for the resource, “compact” version with no extra whitespace added.

dmf info usage

The default is to show, with some terminal colors, a summary of the resource:

$ dmf info 0b62

Resource 0b62d999f0c44b678980d6a5e4f5d37d
created
'2019-03-23 17:49:35"
creator
name: dang
datafiles
- desc: fool3
is_copy: true
path: fool3
shal: feeed4ad365bbblec75c5621a0ad067371102854
datafiles_dir
/home/dang/src/idaes/dangunter/idaes—-dev/ws2/files/
—71d101327d224302aa8875802ed2af52
desc
fool3
doc_id
4
id_
0b62d999f0c44b678980d6a5e4£5d37d
modified
'2019-03-23 17:49:35"
relations
- 1ed41e6ae882b4622ba9043f4135f2143 —--[derived]--> ME
type
data
version
0.0.0 @ 2019-03-23 17:49:35

The same resource in JSON format:

4.7. Data Management Framework

179

IDAES Documentation, Release 1.2.1

$ dnf info —--format json 0b62
{

"id_": "0b62d999f0c44b678980d6a5e4£5d37d4d",
"type": "data",

"aliases": [],

"codes": [1,

"collaborators": [],

"created": 1553363375.817961,
"modified": 1553363375.817961,

"creator": {
"name": "dang"
}l
"data": {1},
"datafiles": [
{
"desc": "fool3",
"path": "fool3",
"shal": "feeed4ad365b6blec75c5621a0ad067371102854",

"is_copy": true
}
1,

"datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/
—71d101327d224302aa8875802ed2af52",
"desc": "fool3",
"relations": [
{
"predicate": "derived",
"identifier": "ledle6ae882b4622ba9043£4135f2143",
"role": "object"
}
]I
"sources": [],
"tags": [,
"version_info": {
"created": 1553363375.817961,
"version": [
OI
0,
OI
nw
]I
"name": ""
by
"doc_id": 4

And one more time, in “compact” JSON:

$ dmf info —--format jsonc 0b62

{"id_": "0b62d999f0c44b678980d6a5e4£5d37d", "type": "data", "aliases": [], "codes": _
—[], "collaborators": [], "created": 1553363375.817961, "modified": 1553363375.
—~817961, "creator": {"name": "dang"}, "data": {}, "datafiles": [{"desc": "fool3",
—"path": "fool3", "shal": "feeed44ad365bb6blec75c5621a0ad067371102854", "is_copy":
—true}], "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/
—71d101327d224302aa8875802ed2af52", "desc": "fool3", "relations": [{"predicate":
—"derived", "identifier": "ledle6ae882b4622ba9043£f4135f2143", "role": "object"}],
—"sources": [], "tags": [], "version_info": {"created": 1553363375.817961, "version
—": [0, O, O, ""], "name": ""}, "doc_id": 4}

180 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

dmf init

Initialize the current workspace. Optionally, create a new workspace.

dmf init options

path
Use the provided path as the workspace path. This is required.
—-—create

Create a new workspace at location provided by path. Use the ——name and ——desc options to set the workspace
name and description, respectively. If these are not given, they will be prompted for interactively.

——name
Workspace name, used by ——create
——-desc

Workspace description, used by ——create

dmf init usage

Note: In the following examples, the current working directory is set to /home /myuser.

This command sets a value in the user-global configuration file in . dmf, in the user’s home directory, so that all other
dmf commands know which workspace to use. With the ——create option, a new empty workspace can be created.

Create new workspace in sub-directory ws, with given name and description:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml

Create new workspace in sub-directory ws, providing the name and description interactively:

$ dmf init ws —-create

New workspace name: foo

New workspace description: foo workspace description
Configuration in '/home/myuser/ws/config.yaml

Switch to workspace ws2:

$ dmf init ws2

If you try to switch to a non-existent workspace, you will get an error message:

$ dmf init doesnotexist

Existing workspace not found at path='doesnotexist'
Add —--create flag to create a workspace.

$ mkdir some_random_directory

(continues on next page)

4.7. Data Management Framework 181

IDAES Documentation, Release 1.2.1

(continued from previous page)

$ dmf init some_random_directory
Workspace configuration not found at path='some_random_directory/'

If the workspace exists, you cannot create it:

$ dmf init ws —--create —--name "foo" --desc "foo workspace description”
Configuration in '/home/myuser/ws/config.yaml
$ dmf init ws —-create

Cannot create workspace: path 'ws' already exists

And, of course, you can’t create workspaces anywhere you don’t have permissions to create directories:

$ mkdir forbidden

$ chmod 000 forbidden

$ dmf init forbidden/ws —--create

Cannot create workspace: path 'forbidden/ws' not accessible

dmfls

This command lists resources in the current workspace.

dmf Is options

——-color

Allow (if terminal supports it) colored terminal output. This is the default.
—-no-color

Disallow, even if terminal supports it, colored terminal output.
-s,——show

Pick field to show in output table. This option can be repeated to show any known subset of fields. Also the option
value can have commas in it to hold multiple fields. Default fields, if this option is not specified at all, are “type”,
“desc”, and “modified”. The resource identifier field is always shown first.

codes List name of code(s) in resource. May be shortened with ellipses.
created Date created.

desc Description of resource.

files List names of file(s) in resource. May be shortened with ellipses.
modified Date modified.

type Name of the type of resource.

version Resource version.

You can specify other fields from the schema, as long as they are not arrays of objects, i.e. you can say ——show
tags or ——show version_info.version, but ——show sources is too complicated for a tabular listing.
To see detailed values in a record use the dmf info command.

-S,—-sort

182 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Sort by given field; if repeated, combine to make a compound sort key. These fields are a subset of those in —s,

CEINNY3

——show, with the addition of id for sorting by the identifier: “id”, “type”, “desc”, “created”, “modified”, and/or
“version”.

—-no-prefix

By default, shown identifier is the shortest unique prefix, but if you don’t want the identifier shortened, this option will
force showing it in full.

-r,—-reverse

Reverse the order of the sorting given by (or implied by absence of) the —S, ——sort option.

dmf Is usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

Without arguments, show the resources in an arbitrary (though consistent) order:

$ dmf 1s

id type desc modified

0b62 data fool3 2019-03-23 17:49:35
led4l data foolO 2019-03-23 17:47:53
6c9a data foold 2019-03-23 17:51:59
d3d5 data barl 2019-03-26 13:07:02
e780 data fooll 2019-03-23 17:48:11
eb60 data fool2 2019-03-23 17:49:08

Add a sort key to sort by, e.g. modified date

$ dmf 1ls -S modified

id type desc modified

led4l data fool0O 2019-03-23 17:47:53
e780 data fooll 2019-03-23 17:48:11
eb60 data fool2 2019-03-23 17:49:08
0b62 data fool3 2019-03-23 17:49:35
6c9a data foold 2019-03-23 17:51:59
d3d5 data barl 2019-03-26 13:07:02

Especially for resources of type “data”, showing the first (possibly only) file that is referred to by the resource is useful:

$ dmf 1ls -S modified -s type -s modified -s files
id type modified files

led4l data 2019-03-23 17:47:53 foo0l0

e780 data 2019-03-23 17:48:11 fooll

eb60 data 2019-03-23 17:49:08 fool2

0b62 data 2019-03-23 17:49:35 fool3

6c9a data 2019-03-23 17:51:59 fool4

d3d5 data 2019-03-26 13:07:02 barl

Note that you don’t actually have to show a field to sort by it (compare sort order with results from command above):

$ dmf 1ls -S modified -s type -s files
id type files
le4l data foolO

(continues on next page)

4.7. Data Management Framework 183

IDAES Documentation, Release 1.2.1

(continued from previous page)

e780 data fooll
eb60 data fool2
0b62 data fool3
6c9a data fool4
d3d5 data barl

Add ——no-prefix to show the full identifier:

$ dmf 1ls -S modified -s type -s files —-—no-prefix
id type files
1e41e6ae882b4622ba9043f4135f2143 data foolO0
e7809d25b390453487998e1£f1ef0e937 data fooll
eb606172dde74aa779eeal27e7ebbalb6 data fool2
0062d999f0c44b678980d6a5e4£5d37d data fool3
6c9a85629cb24e9796a2d123e9p03601 data fool4d
d3d5981106ced4d9d8cccd4e86c2cdl84 data barl

dmf register

Register a new resource with the DMF, using a file as an input. An alias for this command is dmf add.

dmf register options

——no-copy

Do not copy the file, instead remember path to current location. Default is to copy the file under the workspace
directory.

-t,——type

Explicitly specify the type of resource. If this is not given, then try to infer the resource type from the file. The default
will be ‘data’. The full list of resource types is in idaes.dmf.resource.RESOURCE_TYPES

—--strict

If inferring the type fails, report an error. With ——no-strict, or no option, if inferring the type fails, fall back to
importing as a generic file.

—-—-no-unique

Allow duplicate files. The default is ——unique, which will stop and print an error if another resource has a file
matching this file’s name and contents.

——contained resource

Add a ‘contained in’ relation to the given resource.
——derived resource

Add a ‘derived from’ relation to the given resource.
——used resource

Add a ‘used by’ relation to the given resource.
—-—prev resource

Add a ‘version of previous’ relation to the given resource.

184 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

——is—-subject

If given, reverse the sense of any relation(s) added to the resource so that the newly created resource is the subject and
the existing resource is the object. Otherwise, the new resource is the object of the relation.

—--version
Set the semantic version of the resource. From 1 to 4 part semantic versions are allowed, e.g.
o/
1.0
* 1.0.1
e 1.0.1-alpha

See http://semver.org and the function idaes.dmf.resource.version 1list () for more details.

dmf register usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

Register a new file, which is a CSV data file, and use the ——info option to show the created resource.

$ printf "index,time,value\nl,0.1,1.0\n2,0.2,1.3\n" > file.csv
$ dmf reg file.csv —-—-info
Resource 117a42287aec4c5ca333e0f£f3ac89639
created
'2019-04-11 03:58:52"
creator
name: dang
datafiles
— desc: file.csv
is_copy: true
path: file.csv
shal: fl1171a6442bd6ce22a718a0e6127866740c9052¢
datafiles_dir
/home/myuser/ws/files/4db42d92baf3431ab31d4f91labla673b
desc
file.csv
doc_id
1
id_
117a42287aec4c5ca333e0£f£3ac89639
modified
'2019-04-11 03:58:52"
type
data
version
0.0.0 @ 2019-04-11 03:58:52

If you try to register (add) the same file twice, it will be an error by default. You need to add the ——no-unique
option to allow it.

4.7. Data Management Framework 185

http://semver.org

IDAES Documentation, Release 1.2.1

$ printf "index,time,value\nl,0.1,1.0\n2,0.2,1.3\n" > timeseries.csv

$ dmf add timeseries.csv

2315bea239cl47e4bc6d2e1838e4101f

$ dmf add timeseries.csv

This file is already in 1 resource(s): 2315bea239cl47e4bc6d2e1838e4101f
$ dmf add --no-unique timeseries.csv

3f95851e4931491b995726£f410998491

If you register a file ending in “.json”, it will be parsed (unless it is over IMB) and, if it passes, registered as type
JSON. If the parse fails, it will be registerd as a generic file unless the ——strict option is given (with this option,
failure to parse will be an error):

$ echo "totally bogus" > notreally. json

$ dmf reg notreally.json

2019-04-12 06:06:47,003 [WARNING] idaes.dmf.resource: File ending in '.json' is not,
—valid JSON: treating as generic file

d22727¢c678a1499%ab2c5224e2d83d9df

$ dmf reg —--strict notreally.json

Failed to infer resource: File ending in '.json' is not valid JSON

You can explicitly specify the type of the resource with the —t, ——t ype option. In that case, any failure to validate
will be an error. For example, if you say the resource is a Jupyter Notebook file, and it is not, it will fail. But the same
file with type “data” will be fine:

$ echo "Ceci n'est pas une notebook" > my.ipynb

$ dmf reg -t notebook my.ipynb

Failed to load resource: resource type 'notebook': not wvalid JSON
$ dmf reg -t data my.ipynb

0197a82abab44ecf980d6ed2e299b258

You can add links to existing resources with the options ——contained, ~——derived, ——used, and ——prev. For
all of these, the new resource being registered is the target of the relation and the option argument is the identifier of
an existing resource that is the subject of the relation.

For example, here we add a “shoebox” resource and then some “shoes” that are contained in it:

$ touch shoebox.txt shoes.txt closet.txt
$ dmf add shoebox.txt
755374b6503a47a09870dfbdc572e561
$ dmf add shoes.txt —-—-contained 755374b6503a47a09870dfbdc572e561
dba0a5dc7d194040ac646bfl8ab5eb50
$ dmf info 7553 # the "shoebox" contains the "shoes"
Resource 755374b6503a47a09870dfbdc572e561
created
'2019-04-11 20:16:50"
creator
name: dang
datafiles
— desc: shoebox.txt
is_copy: true
path: shoebox.txt
shal: da39%9a3ee5e6b4b0d3255bfef95601890afd80709
datafiles_dir
/home/dang/src/idaes/dangunter/idaes—dev/docs/ws/files/
—7f3f£820676b41689%bb32bc325fd2d1lb
desc
shoebox.txt

(continues on next page)

186 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

(continued from previous page)

doc_1id
9
id_
755374b6503a47a09870dfbdc572e561
modified
'2019-04-11 20:16:50"
relations
- dbalab5dc7d194040ac646bfl8ab5eb50 <--[contains]—-- ME
type
data
version
0.0.0 @ 2019-04-11 20:16:50

$ dmf info dbaO # the "shoes" are in the "shoebox"
Resource dbal0ab5dc7d194040ac646bfl8ab5eb50
created
'2019-04-11 20:17:28"
creator
name: dang
datafiles
- desc: shoes.txt
is_copy: true
path: shoes.txt
shal: da39a3ee5e6b4b0d3255bfef95601890afd80709
datafiles_dir
/home/dang/src/idaes/dangunter/idaes—dev/docs/ws/files/
—a27f98c24d1848eabalb26e5ef87be88
desc
shoes.txt
doc_1id
10
id_
dbala5dc7d194040ac646bfl8ab5eb50
modified
'2019-04-11 20:17:28"
relations
- 755374b6503a47a09870dfbdc572e561 —--[contains]--> ME
type
data
version
0.0.0 @ 2019-04-11 20:17:28

To reverse the sense of the relation, add the ——is—sub ject flag. For example, we now add a “closet” resource that
contains the existing “shoebox”. This means the shoebox now has two different “contains” type of relations.

$ dmf add closet.txt —--is-subject —--contained 755374b6503a47a09870dfbdc572e561
22ace(0f8ed914fal3ac3e7582748924e4
$ dmf info 7553
Resource 755374b6503a47a09870dfbdc572e561
created
'2019-04-11 20:16:50"
creator
name: dang
datafiles
— desc: shoebox.txt
is_copy: true

(continues on next page)

4.7. Data Management Framework 187

IDAES Documentation, Release 1.2.1

(continued from previous page)

path: shoebox.txt
shal: da39%a3eeb5e6b4b0d3255bfef95601890a£d80709
datafiles_dir
/home/dang/src/idaes/dangunter/idaes—-dev/docs/ws/files/
—7f3f£820676b41689%bb32bc325fd2d1b

desc
shoebox.txt
doc_id
9
id_
755374b6503a47a09870dfbdc572e561
modified
'2019-04-11 20:16:50"
relations
- dba0a5dc7d194040ac646bfl8ab5eb50 <--[contains]—-- ME
— 22ace0f8ed914fal3ac3e7582748924e4 ——-[contains]—-—-> ME
type
data
version

0.0.0 @ 2019-04-11 20:16:50

You can give your new resource a version with the ——version option. You can use this together with the ——prev
option to link between multiple versions of the same underlying data:

note: following command stores the output of "dmf reg", which is the
id of the new resource, in the shell variable "oldid"

$ 0ldid=$(dmf reg oldfile.py --type code —-version 0.0.1)

$ dmf reg newfile.py --type code —--version 0.0.2 —--prev Soldid
ef2d801ca29a4a0a8c6f79ee71d3£fe07

$ dmf 1ls --show type —--show version —--show codes —--sort version
id type version codes

44e7 code 0.0.1 oldfile.py

ef2d code 0.0.2 newfile.py

$ dmf related Soldid

44e7 code

|\——version|-— ef2d code -

dmf related

This command shows resources related to a given resource.

dmf related options

—d, ——direction
Direction of relationships to show / follow. The possible values are:

in Show incoming connection/relationship edges. Since all relations have a bi-directional counterpart, this effectively
only shows the immediate neighbors of the root resource. For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the incoming edge from “B” to “A” but not the edge
from “C” to “B”.

188 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

out (Default) Show the outgoing connection/relationship edges. This will continue until there are no more connections
to show, avoiding cycles. For example, if the root resource is “A”, and “A” contains “B” and “B” contains “C”,
then this option shows the outgoing edge from “A” to “B” and also from “B” to “C”.

The default value is out.

——color

Allow (if terminal supports it) colored terminal output. This is the default.
—-no-color

Disallow, even if terminal supports it, colored terminal output.
—-unicode

Allow unicode drawing characters in the output. This is the default.
——-no—unicode

Use only ASCII characters in the output.

dmf related usage

In the following examples, we work with 4 resources arranged as a fully connected square (A, B, C, D). This is not
currently possible just with the command-line, but the following Python code does the job:

from idaes.dmf import DMF, resource
dmf = DMF ()
rlist = [resource.Resource (value={"desc": 1ltr, "aliases": [ltr],
"tags": ["graph"]})
for ltr in "ABCD"]
relation = resource.PR_USES
for r in rlist:
for r2 in rlist:
if r is r2:
continue
resource.create_relation_args(r, relation, r2)
for r in rlist:
dmf .add (r)

If you save that script as r4.py, then the following command-line actions will run it and verify that everything is
created.

$ python ré.py

$ dmf 1s

id type desc modified

le7f other B 2019-04-20 15:43:49
3bc5 other D 2019-04-20 15:43:49
ba67 other A 2019-04-20 15:43:49
£f7e9 other C 2019-04-20 15:43:49

You can then see the connections by looking at any one of the four resource (e.g., A):

$ dmf rel ba67
ba67 other A

L——uses}— 3bc5 other D
|

(continues on next page)

4.7. Data Management Framework 189

IDAES Documentation, Release 1.2.1

(continued from previous page)

—usesl— f7e9 other C
—usesl— le7f other B
——uses}— ba67 other A
L——uses}— f7e9 other C

—usesl— 3bc5 other D

——uses}— le7f other B

——usesf— ba67 other A
|\usesl— le7f other B

usesf— 3bc5 other D
usesf— f7e9 other C

usesl— ba67 other A

If you change the direction of relations, you will get much the same result, but with the arrows reversed.

dmfrm

Remove one or more resources. This also removes relations (links) to other resources.

dmf rm options

identifier
The identifier, or identifier prefix, of the resource(s) to remove
——list,——no-1list

With the —list option, which is the default, the resources to remove, or removed, will be listed as if by the dmf 1s
command. With —no-list, then do not produce this output.

~Yy,—"yes

If given, do not confirm removal of the resource(s) with a prompt. This is useful for scripts that do not want to bother
with input, or people with lots of confidence.

—-multiple

If given, allow multiple resources to be selected by an identifier prefix. Otherwise, if the given identifier matches more
than one resource, the program will print a message and stop.

dmf rm usage

190 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Note: In the following examples, there are 5 text files named “filel.txt”, “file2.txt”, .., “file5.txt”, in the workspace.
The identifiers for these files may be different in each example.

Remove one resource, by its full identifier:

$ dmf 1ls —--no-prefix

id type desc modified
096a2a2491e234c4b941£32b537dd3017 data fileb5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data filed.txt 2019-04-16 02:51:29
c20f3a6e338a40eeB8a3a4972544adb74 data filel.txt 2019-04-16 02:51:25
c8f2b5chb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9£2£5405cad442961 data file2.txt 2019-04-16 02:51:26
$ dmf rm c20f3a6e338a40ee8a3a4972544adb74

id type desc modified
c20f3a6e338a40eeB8a3a4972544adb74 data filel.txt 2019-04-16 02:51:25
Remove this resource [y/N]? y

resource removed

[dmfcli-167 !?]idaes-dev$ dmf 1ls —-no-prefix

id type desc modified
096a2a2491e234c4b941£32b537dd3017 data fileb.txt 2019-04-16 02:51:30
821fc8f8e54ed4c65b481f483be7f5a2d data filed.txt 2019-04-16 02:51:29
c8f2b5chb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2£f5405cad442961 data file2.txt 2019-04-16 02:51:26

Remove a single resource by its prefix:

$ dmf 1s

id type desc modified

6dd5 data file2.txt 2019-04-16 18:51:10

7953 data file3.txt 2019-04-16 18:51:12

7a06 data filed.txt 2019-04-16 18:51:13

ebd7 data filel.txt 2019-04-16 18:51:08

feOc data file5.txt 2019-04-16 18:51:15

$ dmf rm 6d

id type desc modified
6dd57ecc50a24efb824a66109dda0956 data file2.txt 2019-04-16 18:51:10
Remove this resource [y/N]? y

resource removed

$ dmf 1s

id type desc modified

7953 data file3.txt 2019-04-16 18:51:12

7a06 data filed.txt 2019-04-16 18:51:13

e5d7 data filel.txt 2019-04-16 18:51:08

feOc data file5.txt 2019-04-16 18:51:15

Remove multiple resources that share a common prefix. In this case, use the -y, ——yes option to remove without
prompting.

$ dmf 1s

id type desc modified

7953 data file3.txt 2019-04-16 18:51:12

7a06 data filed.txt 2019-04-16 18:51:13

ebd7 data filel.txt 2019-04-16 18:51:08

feOc data filebS.txt 2019-04-16 18:51:15

$ dmf rm --multiple --yes 7

id type desc modified

(continues on next page)

4.7. Data Management Framework 191

IDAES Documentation, Release 1.2.1

(continued from previous page)

7953e67db4a54341909988c52¢c820b68 data file3.txt 2019-04-16 18:51:12
7a06435c39p54890a3d01a%eabl114314 data filed.txt 2019-04-16 18:51:13
2 resources removed

$ dmf 1s

id type desc modified

e5d7 data filel.txt 2019-04-16 18:51:08

feOc data fileS5.txt 2019-04-16 18:51:15

dmf status

This command shows basic information about the current active workspace and, optionally, some additional details. It
does not (yet) give any way to modify the workspace configuration. To do that, you need to edit the config.yaml
file in the workspace root directory. See Configuration.

dmf status options

——color
Allow (if terminal supports it) colored terminal output. This is the default.
—-no-color

Disallow, even if terminal supports it, colored terminal output. UNIX output streams to pipes should be detected and
have color disabled, but this option can force that behavior if detection is failing.

-s,——show info

Show one of the following types of information:

files Count and total size of files in workspace

htmldocs Configured paths to the HTML documentation (for “%dmf help” magic in the Jupyter Notebook)
logging Configuration for logging

all Show all items above

-a,——all

This option is just an alias for “—show all”.

dmf status usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

Also note that the output shown below is plain (black) text. This is due to our limited understanding of how to do
colored text in our documentation tool (Sphinx). In a color-capable terminal, the output will be more colorful.

Show basic workspace status:

192 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

$ dmf status
settings:
workspace: /home/myuser/ws
workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:46:40
modified: 2019-04-09 12:46:40

Add the file information:

$ dmf status —--show files
settings:
workspace: /home/myuser/ws
workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:52:49
modified: 2019-04-09 12:52:49
files:
count: 3
total_size: 1.3 MB

You can repeat the —s, ——show option to add more things:

$ dmf status —-—-show files —-show htmldocs
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:54:10
modified: 2019-04-09 12:54:10
files:

count: 3

total_size: 1.3 MB
html_documentation_paths:

—: /home/myuser/idaes/docs/build

However, showing everything is less typing, and not overwhelming:

$ dmf status -a
settings:
workspace: /home/myuser/ws
workspace:
location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:55:05
modified: 2019-04-09 12:55:05
files:
count: 3
total_size: 1.3 MB
html_documentation_paths:

(continues on next page)

4.7. Data Management Framework

193

IDAES Documentation, Release 1.2.1

(continued from previous page)

—: /home/myuser/idaes/docs/build
logging:
not configured

4.7.2 Overview

The Data Management Framework (DMF) is used to manage all the data needed by the IDAES framework, including
flowsheets, models, and results. It stores metadata and data in persistent storage. It does not require that the user run a
server or connect to a remote service. The DMF can be accessed through its Python AP/ or command-line interfaces.
There is work in progress on adding graphical interfaces for Jupyter Notebooks and stand-alone desktop apps.

The DMF is designed to allow multiple separate threads of work. These are organized in workspaces. Inside a
given workspace, all the information is represented by containers called resources. A resource describes some
data in the system in a standard way, so it can be searched and manipulated by the rest of the IDAES framework.

Resources can be connected to each other with relations such as “derived”, “contains”, “uses”, and “version”.

Below is an illustration of these components.

Data Management Framework

Workspace
Pata | Resource Resource
file(s) |
Relations

Resource <_/ \ Resource

S~

~

Flowsheet, Property Data, Jupyter Notebook, etc.

4.7.3 Configuration

The DMF is configured with an optional global configuration file and a required per-workspace configuration file. By
default the global file is looked for as . dmf in the user’s home directory. Its main function at the moment is to set the
default workspace directory with the workspace keyword. For example:

global DMF configuration

workspace: ~/data/workspaces/workspacel

194 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

The per-workspace configuration has more options. See the documentation in the Workspace class for details. The
configuration file is in YAML (or JSON) format. Here is an example file, with some description in comments:

Total size of the files
List of paths for HTML documentation

total size: 1.3 MB
html_documentation_paths:
—: /home/myuser/idaes/docs/build
logging:
idaes.dmf:
level: DEBUG
output: /tmp/debug.log

settings: # Global settings
workspace: /home/myuser/ws # Path to current workspace
workspace: # Per-workspace settings
location: /home/myuser/ws # Path to this workspace
name: myws # Name of this workspace
description: my workspace # Description (if any) of this workspace
created: 2019-04-09 12:55:05 # Date workspace was created
modified: 2019-04-09 12:55:05 # Date workspace was modified
files: # Basic information about data files
count: 3 # How many files
#
#

Logging configuration
Name of the logger
Log level (Python logging constant)

[

"

M oW W W

File path or "_stdout_" or

stderr._

This configuration file is used whether you use the DMF from the command-line, Jupyter notebook, or in a Python
program. For details see the DMF' package documentation.

4.7.4 Jupyter notebook usage

In the Jupyter Notebook, there are some “magics” defined that make initializing the DMF pretty easy. For example:

from idaes.dmf import magics
$dmf init path/to/workspace

The code above loads the “%dmf” line magic in the first line, then uses it to initialize the DMF with the workspace at
“path/to/workspace”.

From there, other “line magics” will operate in the context of that DMF workspace.
* %dmf help - Provide help on IDAES objects and classes. See dmf-help.
* $dmf info - Provide information about DMF current state for whatever ‘topics’ are provided
e $dmf list - Listresources in the current workspace

* $dmf workspaces - List DMF workspaces; you can do this before %dmf init

DMF help

The IDAES Python interfaces are documented with Sphinx. This includes automatic translation of the comments and
structure of the code into formatted and hyperlinked HTML pages. The $dmf help command lets you easily pull
up this documentation for an IDAES module, class, or object. Below are a couple of examples:

Initialize the DMF first
from idaes.dmf import magics
$dmf init path/to/workspace create

Get help on a module (imported)
from idaes.core import control_volumeld
%dmf help control_volumeld

(continues on next page)

4.7. Data Management Framework 195

https://www.sphinx-doc.org

IDAES Documentation, Release 1.2.1

(continued from previous page)

Get help on a module (by name, no import)
$dmf help idaes.core.control_volumeOd

Get help on a class
from idaes.core.control volumeld import ControlVolumelDBlock
%dmf help ControlVolumelDBlock

Get help on a class (by name, no import)
$dmf help idaes.core.control_volumeld.ControlVolumelDBlock

Get help on an object (will show help for the object's class)

This will end up showing the same help as the previous two examples
obj = control_volumeld.ControlVolumelDBlock ()

$dmf help obj

The help pages will open in a new window. The location of the built documentation that they use is configured in the
per-workspace DMF configuration under the htmldocs keyword (a default value is filled in when the DMF is first
initialized).

4.7.5 Sharing

The contents of a DMF workspace can be shared quite simply because the data is all contained within a directory in
the local file system. So, some ways to share (with one or many people) include:

* Put the workspace directory in a cloud/shared drive like Dropbox , Box , Google Drive , or OneDrive .

* Put the workspace directory under version control like Git and share that versioned data using Git commands
and a service like Github , BitBucket or Gitlab.

» Package up the directory with a standard archiving utility like “zip” or “tar” and share it like any other file (e.g.
attach it to an email).

Note: These modes of sharing allow users to see the same data, but are not designed for real-time collaboration
(reading and writing) of the same data. That mode of operation requires a proper database server to mediate operations
on the same data. This is in the roadmap for the DMF, but not currently implemented.

4.7.6 Reference

See the idaes.dmf package documentation that is generated automatically from the source code.

4.8 IDAES Versioning

The IDAES Python package is versioned according to the general guidelines of semantic versioning, following the
recommendations of PEP 440 with respect to extended versioning descriptors (alpha, beta, release candidate, etc.).

4.8.1 Basic usage

You can see the version of the package at any time interactively by printing out the __version___ variable in the top-level
package:

196 Chapter 4. Contents

https://www.dropbox.com/
https://www.box.com/
https://google.com/drive/
https://onedrive.live.com/about/en-us/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://gitlab.com/
https://semver.org/
https://www.python.org/dev/peps/pep-0440/

IDAES Documentation, Release 1.2.1

import idaes
print (idaes.__version_)
prints a version like "1.2.3"

4.8.2 Advanced usage

This section describes the module’s variables and classes.

Overview

The API in this module is mostly for internal use, e.g. from ‘setup.py’ to get the version of the package. But Version
has been written to be usable as a general versioning interface.

Example of using the class directly:

>>> from idaes.ver import Version

>>> my_version = Version(l, 2, 3)

>>> print (my_version)

1.2.3

>>> tuple (my_version)

(1, 2, 3)

>>> my_version = Version(l, 2, 3, 'alpha')
>>> print (my_version)

1.2.3.a

>>> tuple (my_version)
(1, 2, 3, 'alpha')

>>> my_version = Version(l, 2, 3, 'candidate', 1)
>>> print (my_version)
1.2.3.rcl

>>> tuple (my_version)
(1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then simply inherit from HasVersion and initialize it with the
same arguments you would give the Version constructor:

>>> from idaes.ver import HasVersion
>>> class MyClass (HasVersion) :
def _ init__ (self):
super (MyClass, self).__init__ (1, 2, 3, 'alpha')

>>> obj = MyClass ()
>>> print (obj.version)
1.2.3.a

idaes.ver.package_version = <idaes.ver.Version object>
Package’s version as an object

idaes.ver._ _version_ = '1.2.1'
Package’s version as a simple string

Version class

The versioning semantics are encapsulated in a class called Version.

4.8. IDAES Versioning 197

IDAES Documentation, Release 1.2.1

class idaes.ver.Version (major, minor, micro, releaselevel="final’, serial=None)
This class attempts to be compliant with a subset of PEP 440.

Note: If you actually happen to read the PEP, you will notice that pre- and post- releases, as well as “release
epochs”, are not supported.

__init__ (major, minor, micro, releaselevel="final’, serial=None)
Create new version object.

Provided arguments are stored in public class attributes by the same name.
Parameters
* major (int)— Major version
e minor (int)— Minor version
* micro (int)— Micro (aka patchlevel) version
* releaselevel (str) - Optional PEP 440 specifier
e serial (int)— Optional number associated with releaselevel

__diter_ ()
Return version information as a sequence.

str ()
Return version information as a string.

HasVersion class

For adding versions to other classes in a simple and standard way, you can use the HasVersion mixin class.

class idaes.ver.HasVersion (*args)
Interface for a versioned class.

__init__ (*args)
Constructor creates a version attribute that is an instance of Version initialized with the provided args.

Parameters *args — Arguments to be passed to Version constructor.

4.9 Tutorials

The tutorials linked below are Jupyter Notebooks, which create and run IDAES models. They provide a thorough
introduction to the capabilities of the IDAES PSE framework. They were originally presented at a stakeholder meeting
in May of 2019. Each tutorial presents the creation of models, etc., as a series of steps with extensive context and
information. Each tutorial builds on information from the prior one, so it is recommended that the new user view them
in order.

198 Chapter 4. Contents

https://www.python.org/dev/peps/pep-0440/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

IDAES Documentation, Release 1.2.1

4.9.1 Module 0 Welcome Short Solution:
4.9.2 Module 0 Welcome Solution:

4.9.3 Module 1 Flash Unit Solution:
4.9.4 Module 2 Flowsheet Solution:

4.9.5 Module 3 Exercise 1 Solution:

If you want to run these Jupyter notebooks yourself, you need to download the source code for the IDAES toolkit and
then navigate to examples/workshops and its subdirectories. You would load a given tutorial with the command:

jupyter notebook <notebook-file-name.ipynb>

Then, in the Jupyter interface, you could select “Run all” to see the tutorial executed in front of you.

4.10 Developer Documentation

This section of the documentation is intended for developers, and much of it is targeted at the IDAES internal team.
Hopefully many of the principles and ideas are also applicable to external contributors.

4.10.1 Developer Contents

Developer introductory material
This section gives a high-level introduction for collaborative software development on the IDAES project. It serves as
background for understanding the collaborative development procedures.

Please refer to the IDAES contributor guide for specifics on writing, testing, and documenting code for the IDAES
project.

There are many more useful things to learn about git and Github. For more information, please refer to the excellent
Atlassian Github tutorials and the online Git documentation and Github help.

Terminology

Git A “version control system”, for keeping track of changes in a set of files

Github A hosting service for Git repositories that adds many other features that are useful for collaborative software
development.

branch A name for a series of commits. See Branches.
fork Copy of a repository in Github. See Forks.

pull request (PR) A request to compare and merge code in a Github repository. See Pull Requests.

4.10. Developer Documentation 199

https://www.atlassian.com/git/tutorials
https://git-scm.com/doc
https://help.github.com/
https://git-scm.com/
https://github.com

IDAES Documentation, Release 1.2.1

Git commands

The Git tool has many different commands, but there are several really important ones that tend to get used as verbs in
software development conversations, and therefore are good to know:

add Put a file onto the list of “things I want to commit” (see “commit”), called “staging” the file.

commit Save the changes in “staged” files into Git (since the last time you did this), along with a user-provided
description of what the changes mean (called the “commit message”).

push Move local committed changes to the Github-hosted “remote” repository by “pushing” them across the network.

pull Update your local files with changes from the Github-hosted “remote” repository by “pulling” them across the
network.

Note that the push and pull commands require Github (or some other service that can host a remote copy of the
repository).

Branches

There is a good description of what git branches are and how they work here. Understanding this takes a little study,
but this pays off by making git’s behavior much less mysterious. The short, practical version is that a branch is a name
for a series of commits that you want to group together, and keep separable from other series of commits. From git’s
perspective, the branch is just a name for the first commit in that series.

It is recommended that you create new branches on which to develop your work, and reserve the “master” branch
for merging in work that has been completed and approved on Github. One way to do this is to create branches that
correspond directly to issues on Github, and include the issue number in the branch name.

Forks

A fork is a copy of a repository, in the Github shared space (a copy of a repository from Github down to your local
disk is called a “clone”). In this context, that means a copy of the “idaes-dev” repository from the IDAES organiza-
tion (https://github.com/IDAES/idaes-dev) to your own user space, e.g., https://github.com/myname/idaes-dev). The
mechanics of creating and using forks on Github are given here.

Pull Requests

A fundamental procedure in the development lifecycle is what is called a “pull request”. Understanding what these are,
and do, is important for participating fully in the software development process. First, understand that pull requests
are for collaborative development (Github) and not part of the core revision control functionality that is offered by
Git. The official Github description of pull requests is here. However, it gets technical rather quickly, so a higher-level
explanation may be helpful:

Pull requests are a mechanism that Github provides to look at what the code on some branch from your fork of
the repository would be like if it were merged with the master branch in the main (e.g., idaes/idaes-dev) repository.
You can think of it as a staging area where the code is merged and all the tests are run, without changing the target
repository. Everyone on the team can see a pull request, comment on it, and review it.

Github repository overview

This section describes the layout of the Github repositories. Later sections will give guidelines for contributing code
to these repositories.

200 Chapter 4. Contents

https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://github.com/IDAES/idaes-dev
https://github.com/myname/idaes-dev
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/about-repositories/

IDAES Documentation, Release 1.2.1

Repositories

Repository | Pub- | Description

name lic?
idaes-pse Yes Main public repository, including core framework and integrated tools
idaes-dev No Main private repository, where code is contributed before being “mirrored” to the public

ideas-pse repository
workspace No Repository for code that does not belong to any particular CRADA or NDA, but also is
never intended to be released open-source

The URL for an IDAES repository, e.g. “some-repo”, will be https://github.com/IDAES/some-repo.

Public vs. Private

All these repositories except for “idaes-pse” will only be visible on Github, on the web, for people who have been
added to the IDAES developer team in the IDAES “organization” (See About Github organizations). If you are a
member of the IDAES team and not in the IDAES Github organization, please contact one of the core developers. The
idaes-pse repository will be visible to anyone, even people without a Github account.

Collaborative software development

This page gives guidance for all developers on the project.

Note: Many details here are targeted at members of the IDAES project team. However, we strongly believe in the
importance of transparency in the project’s software practices and approaches. Also, understanding how we develop
the software internally should be generally useful to understand the review process to expect for external contributors.

Although the main focus of this project is developing open source software (OSS), it is also true that some of the
software may be developed internally or in coordination with industry under a CRADA or NDA.

It is the developer’s responsibility, for a given development effort, to keep in mind what role you must assume and
thus which set of procedures must be followed.

CRADA/NDA If you are developing software covered by a CRADA, NDA, or other legal agreement that does not
explicitly allow the data and/or code to be released as open-source under the IDAES license, then you must
follow procedures under Developing Software with Proprietary Content.

Internal If you are developing non-CRADA/NDA software, which is not intended to be part of the core framework
or (ever) released as open-source then follow procedures under Developing Software for Internal Use.

Core/open-source If you are developing software with no proprietary data or code, which is intended to be released
as open-source with the core framework, then follow procedures under Developing software for Open-source
Release.

Developing Software with Proprietary Content

Proprietary content is not currently being kept on Github, or any other collaborative version control platform. When
this changes, this section will be updated.

4.10. Developer Documentation 201

https://help.github.com/articles/about-organizations/

IDAES Documentation, Release 1.2.1

Developing Software for Internal Use

Software for internal use should be developed in the workspace repository of the IDAES github organization. The
requirements for reviews and testing of this code are not as strict as for the 1 daes—dev repository, but otherwise the
procedures are the same as outlined for open-source development.

Developing software for Open-source Release

We can break the software development process into five distinct phases, illustrated in Figure 1 and summarized below:

1. Setup: Prepare your local system for collaborative development
2. Initiate: Notify collaborators of intent to make some changes

3. Develop: Make local changes

4. Collaborate: Push the changes to Github, get feedback and merge

Steps for one set of changes, or "topic"

._.[Setup]——»[Initiate]_{ Develop]-»[Colatl)orate]

A
Merge

No __Yes =®

Approved?

Fig. 3: Figure 1. Overview of software development workflow

The rest of this page describes the what and how of each of these phases.

1. Setup

Before you can start developing software collaboratively, you need to make sure you are set up in Github and set up
your local development environment.

Github setup

To work within the project, you need to create a login on Github. You also need to make sure that this login has been
added to the IDAES organization by contacting one of the core developers.

If these steps are successful, you should be able to login to Github, visit the IDAES Github organization, and see
“Private” repositories such as idaes-dev and workspace.

Fork the repo

You use a “fork” of a repository (or “repo” for short) to create a space where you can save changes without directly
affecting the main repository. Then, as we will see, you request that these changes be incorporated (after review).

202 Chapter 4. Contents

https://github.com/
https://github.com/IDAES/

IDAES Documentation, Release 1.2.1

This section assumes that the repository in question is idaes—dewv, but the idea is the same for any other repo.

You should first visit the repo on Github by pointing your browser to https://github.com/IDAES/

idaes-dev/. Then you should fork the repo into a repo of the same name under your name.

© IDAES / idaes-dev | private © Unwatch~ | 16 *star | 0 ¥ Fork 7
Clone your fork

<> Code Issues 30 Pull requests 6 Projects 0 Wiki Insights Settings
Click here

A “clone” iS a copy The internal development repository for the IDAES PSE Framework Edit
of a Github repos- "™
itory on your local D 879 commits ¥ 1 branch © 1release 42 12 contributors s View license
machine. This is
What you need to do Branch: master v New pull request Create new file Upload files = Find file

in order to actually
edit and change the
files. To make a Fig. 4: Figure 2. Screenshot showing where to click to fork the Github repo
clone of the fork you

created in the previ-

ous step, change to a

directory where you

want to put the source code and run the command:

R aclicki Maras niill raciiast #42 fram adlickildron 97 taate e I atest commit Ra12fa2 2 hatirs ann

git clone git@github.com:MYNAME/idaes-dev.git
cd idaes-dev

Of course, replace MYNAME with your login name. This will download all the files in the latest version of the
repository onto your local disk.

Note: Afterthe git clone, subsequent git commands should be performed from the “idaes-dev” directory.

Add upstream remote

In order to guarantee that your fork can be synchronized with the “main” idaes-dev repo in the Github IDAES orga-
nization, you need to add a pointer to that repository as a remote. This repository is called upstream (changes made
there by the whole team flow down to your fork), so we will use that name for it in our command:

git remote add upstream git@github.com:IDAES/idaes-dev.git

Create the Python environment

Once you have the repo cloned, you can change into that directory (by default, it will be called “idaes-dev” like the
repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and running. We use a Python packaging
system called Conda. Below are instructions for installing a minimal version of Conda, called Miniconda. The full
version installs a large number of scientific analysis and visualization libraries that are not required by the IDAES
framework.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

4.10. Developer Documentation 203

https://github.com/IDAES/idaes-dev/
https://github.com/IDAES/idaes-dev/
https://conda.io/
https://conda.io/en/latest/miniconda.html

IDAES Documentation, Release 1.2.1

Create and activate a conda environment (along with its own copy of pip) for the new IDAES installation (you will
need to conda activate idaes when you open a fresh terminal window and wish to use IDAES):

conda create -n idaes pip
conda activate idaes

Now that conda and pip are installed, and you are in the “idaes” conda environment, you can run the standard steps
for installing a Python package in development mode:

pip install -r requirements.txt
python setup.py develop

You can test that everything is installed properly by running the tests with Pytest:

pytest

2. Initiate

We will call a set of changes that belong together, e.g. because they depend on each other to work, a “topic”. This
section describes how to start work on a new topic. The workflow for initiating a topic is shown in Figure 3 below.

Create an issue on Github Steps for one set of changes, or "topic”

To create an issue on Github .-»-—[Initiate }»[Develop J—p[CollaborateJ

simply navigate to the repos- Y}

. . 4 " Merge
itory pige and click on the No Yes ®
Issues” tab. Then click on

the “Issues” button and fill ", Approved?

in a title and brief descrip- K
tion of the issue. You do not)
need to list details about sub-
steps required for the issue, P

as this sort of information is / Initiate \
better put in the (related) pull
request that you will create
later. Assign the issue to the
appropriate people, which is
often yourself.

Make local
edits

Create issue
on Github

Create new
PR in
Github

There is one more impor-
tant step to take, that will al- Create branch chances o
low the rest of the project g

in your fork
. . : \ our fork /
to easily notice your issue:
add the issue to the “Prior-
ities” project. The screen-
shot below shows where you
need to click to do this. Fig. 5: Figure 3. Initiate topic workflow

Push

Create a branch on your fork

It is certainly possible to do
your work on your fork in the

204 Chapter 4. Contents

https://pytest.org/

IDAES Documentation, Release 1.2.1

“master” branch. The prob-

lem that can arise here is if

you need to do two unrelated things at the same time, for example working on a new feature and fixing a bug in the
current code. This can be quite tricky to manage as a single set of changes, but very easy to handle by putting each
new set of changes in its own branch, which we call a fopic branch. When all the changes in the branch are done and
merged, you can delete it both locally and in your fork so you don’t end up with a bunch of old branches cluttering up
your git history.

The command for
dOing this iS Simple: 2 IDAES / idaes-dev private © unwatch~ | 16 *star | 0 ¥ Fork 8

git Code Q@ Issues 32 Pull requests 8 Projects 0 Wiki Insights Settings

[

—checkout -b
—<BRANCH-NAME >

My new issue Assignees
The branch showrelated issues | T ooan yoursel
name should Write | Preview MBi o> EZEYE @RN Labes
be one Solve a pressing problem that only | have the expertise to deal with. e CIICk here“
word, with projects
dashes pojets
or under-
scores as I
needed. .thenclickhere recent reposioy organization
One con- Attach files by dragging & dropping, selecting them, or pasting from the clipboard
vention for
the name €I Styling with Markdown is supported 20157[;\:;!Re|ease
that can
be help-
ful is to
include Fig. 6: Figure 4. Screenshot for creating an issue on Github
the Is-
sue num-
ber at
the end,
e.g. git
co -b

mytopic—-issue4?2. This is especially useful later when you are cleaning up old branches, and you can
quickly see which branches are related to issues that are completed.

Make local edits and push changes

A new branch, while it feels like a change, is not really a change in the eyes of Git or Github, and by itself will not
allow you to start a new pull request (which is the goal of this whole phase). The easiest thing to do is a special
“empty” commit:

git commit --allow-empty -m 'Empty commit so I can open a PR'

Since this is your first “push” to this branch, you are going to need to set an upstream branch on the remote that should
receive the changes. If this sounds complicated, it’s OK because git actually gives you cut-and-paste instructions. Just
run the git push command with no other arguments:

$ git push
fatal: The current branch mybranch-issue3000 has no upstream branch.
To push the current branch and set the remote as upstream, use

(continues on next page)

4.10. Developer Documentation 205

IDAES Documentation, Release 1.2.1

(continued from previous page)

git push —--set-upstream origin mybranch-issue3000

Cut and paste the suggested command, and you’re ready to go. Subsequent calls to “push” will not require any
additional arguments to work.

Start a new Pull Request on Github

Finally, you are ready to initiate the pull request. Right after you perform the push command
above, head to the repository URL in Github (https:/github.com/IDAES/idaes-dev) and you should see
a highlighted bar below the tabs, as in Figure 5 below, asking if you want to start a pull-request.

Click on this and fill £ IDAES / idaes-dev | private @unwatch~ | 16 | HsStar 0 YFork 8
in the requested in-

. <> Code Issues 32 Pull requests 9 Projects 0 Wiki Insights Settings
formation. Remem-
ber to link to the is- The internal development repository for the IDAES PSE Framework Edit
sue you created ear- Manage topics
lier.
D 907 commits ¥ 1 branch © 1release 42 12 contributors & View license

Depending on the
. Your recently pushed branches:
Github plan, there
¥ username:mybranch-issue3000 (8 minutes ago)
may be a pull-down
menu fOr Creatil’lg Branch: master v New pull request Create new file =~ Upload files = Find file
the pull request that

jghouse88 Merge pull request #81 from andrewlee94/issue_54 ==« Latest commit 25f4a57 2 days ago
lets you create a
“draft” pull request.
If that is not present, Fig. 7: Figure 5. Screenshot for starting a Pull Request on Github

you can signal this
the old-fashioned
way by adding “[WIP]” (for Work-in-Progress) at the beginning of the pull request title.

Either way, create the pull request. Do not assign reviewers until you are done making your changes (which is probably
not now). This way the assigning of reviewers becomes an unambiguous signal that the PR is actually ready for review.

Note: Avoid having pull requests that take months to complete. It is better to divide up the work, even artificially,
into a piece that can be reviewed and merged into the main repository within a week or two.

3. Develop

The development process is a loop of adding code, testing and debugging, and commit-

ting and pushing to Github. You may go through many (many!) iterations of this
loop before the code is ready for review. This workflow is illustrated in Figure 6.
Running tests Steps for one set of changes, or "topic”

should make sure you have
tests for the new/changed - . Merge

No %, Yes ®

e Appgroved?

206 €hapter4—Contents

/ Develop \

After significant edits, you »[Initiate H Develop HCollaborateJ
Y

https://github.com/IDAES/idaes-dev

IDAES Documentation, Release 1.2.1

functionality. This involves
writing Unit tests as well as
running the test suite and ex-
amining the results of the
Code coverage.

This project uses Pytest to
help with running the unit
tests. From the top-level di-
rectory of the working tree,

type:

pytest

Alternatively users of an IDE
like PyCharm can run the
tests from within the IDE.

Commit changes

The commands: git add, git
status, and git commit are all
used in combination to save
a snapshot of a Git project’s
current state.'.

The commit command is the

equivalent of “saving” your

changes. But unlike editing a

document, the set of changes

may cover multiple files, in-

cluding newly created files.

To allow the user flexibility in specifying exactly which changes to save with each commit, the add command is
used first to indicate files to “stage” for the next commit command. The status command is used to show the current
status of the working tree.

A typical workflow goes like this:

$ 1s

filel file2

$ echo 'a' > filel # edit existing file

$ echo 'l' > file3 # create new file

$ git status —--short # shows changed/unstaged and unknown file
M filel

?? file3

$ git add filel file3 # stage filel, file3 for commit
$ git status —--short # M=modified, A=added

M filel

A file3

$ git commit -m "made some changes"

[master 067clée] made some changes

2 files changed, 2 insertions(+)

create mode 100644 file3

! Git has an additional saving mechanism called ‘the stash’. The stash is an ephemeral storage area for changes that are not ready to be committed.
The stash operates on the working directory and has extensive usage options.* See the documentation for git stash for more information.

4.10. Developer Documentation 207

https://pytest.org/
https://git-scm.com/docs/git-stash

IDAES Documentation, Release 1.2.1

Of course, in most IDEs you could use built-in commands for committing and adding files. The basic flow would be
the same.

Synchronize with upstream changes

Hopefully you are not the only one on the team doing work, and therefore you should expect that the main repos-
itory may have new and changed content while you are in the process of working. To synchronize with the latest
content from the “upstream” (IDAES organization) repository, you should periodically run one of the two following
commands:

git pull

OR —— explicit

git fetch —-all

git merge upstream/master

You’ll notice that this merge command is using the name of the “upstream” remote that you created earlier.

Push changes to Github

Once changes are fested and committed, they need to be synchronized up to Github. This is done with the git push
command, which typically takes no options (assuming you have set up your fork, etc., as described so far):

git push

The output of this command on the console should be an informative, if slightly cryptic, statement of how many
changes were pushed and, at the bottom, the name of your remote fork and the local/remote branches (which should
be the same). For example:

Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 528 bytes | 528.00 KiB/s, done.
Total 5 (delta 4), reused 0 (delta 0)
remote: Resolving deltas: 100% (4/4), completed with 4 local objects.
To github.com:dangunter/idaes-dev.git
d535552. .feb6lfcc devdocs—-issue65 —> devdocs—-issue65

4. Collaborate

The collaboration phase of our journey, shown in Figure 7, is mostly about communicating what you did to the other
developers. Through the Github “review” mechanism, people will be able to suggest changes and improvements. You
can make changes to the code (other people can also make changes, see Shared forks), and then push those changes up
into the same Pull Request. When you get enough approving reviews, the code is merged into the master repository. At
this point, you can delete the “topic branch” used for the pull request, and go back to initiate your next set of changes.

Request review Steps for one set of changes, or "topic”
To .—p[Setup %-{ Initiate]-»[Develop }»[Collaborate]
request i .
review “.Merge
. - No ~._Yes ;\
§ .—'/ Approved? N
208 e Chapter 4. Contents

- ~
- ~

/ Collaborate \

IDAES Documentation, Release 1.2.1

of a
pull
request,
navi-
gate to
the pull
request
in the
main
(e.g.,
“idaes-
dev”)
repos-
itory
and
select
some
names
in the
“Re-
view-
ers”
pull-
down
on the
right-hand side. You need to have two approving reviews. The reviewers should get an email, but you can also “@”
people in a comment in the pull request to give them a little extra nudge.

See the full code review procedure for more details.

Make changes

You need to keep track of the comments and reviews, and make changes accordingly. Think of a pull request as a
discussion. Normally, the person who made the pull request will make any requested edits. Occasionally, it may make
sense for one or more other developers to jump in and make edits too, so how to do this is covered in the sub-section
below.

Changes made while the code is being reviewed use the normal Develop workflow.

Shared forks

Other developers can also make changes in your fork. All they need to do is git clone your fork (not the main
repository), switch to the correct topic branch, and then git push work directly to that branch. Note since this does
not use the whole pull-request mechanism, all developers working on the same branch this way need to make sure the
git pull to synchronize with updates from the other developers.

For example, if Jack wants to make some edits on Rose’s fork, on a topic branch called “changes-issue51” he could
do the following:

git clone https://github.com/rose/idaes—-dev # clone Rose's fork
git checkout changes-issue51 # checkout the topic branch

echo "Hello" >> README.txt # make some important changes
pytest # always run tests!!

v W W

(continues on next page)

4.10. Developer Documentation 209

IDAES Documentation, Release 1.2.1

(continued from previous page)

$ git add README.txt ; git commit -m "important changes"
$ git push # push changes to the fork

Hopefully it also is obvious that developers working this way have less safeguards for overwriting each other’s work,
and thus should make an effort to communicate clearly and in a timely manner.

Merge

Once all the tests pass and you have enough approving reviews, it’s time to merge the code! This is the easy part: go
to the bottom of the Pull Request and hit the big green “merge” button.

Before you close the laptop and go down to the pub, you should tidy up. First, delete your local branch (you can also
delete that branch on Github):

git checkout master # switch back to master branch
git branch -d mychanges—-issue3000

Next, you should make sure your master reflects the current state of the main master branch, i.e. go back and synchro-
nize with the upstream remote, i.e. ran git pull.

Now you can go and enjoy a tasty beverage. Cheers!

Testing

Testing is essential to the process of creating software. “If it isn’t tested, it doesn’t work™ is a good rule of thumb.
For some specific advice for adding new tests in the IDAES code, see IDAES contributor guide.

There are different kinds of tests: functional, acceptance, performance, usability. We will primarily concern our-
selves with functional testing here, i.e. whether the thing being tested produces correct outputs for expected in-
puts, and gracefully handles everything else. Within functional testing, we can classify the testing according to the
axes of time, i.e. how long the test takes to run, and scope, i.e. the amount of the total functionality being tested.
Along these two axes we will pick out just two points, as depicted in Figure 1. The main tests you will write are
“unit tests”, which run very quickly and test a focused amount of functionality. But sometimes you need something
more involved (e.g. running solvers, using data on disk), and here we will label that kind of test “integration tests”.

Unit tests E”dl'_to't?”d
appiication Integration tests

Testing individual pieces of functional- *8'
ity, including the ability to report the =
correct kind of errors from bad inputs. 8 Multiple
Unit tests must always run quickly. If 2 functions
it takes more than 10 seconds, it is not 8
a unit test, and it is expected that most

One function Unit

SneT tests
210 nefine Chapter 4. Contents
<ls 10s minutes hours

Tira fAr +fAact +A viirm

IDAES Documentation, Release 1.2.1

unit tests take well under 1 second. The
reason for this is that the entire unit test
suite is run on every change in a Pull
Request, and should also be run rela-
tively frequently on local developer ma-
chines. If this suite of hundreds of tests
takes more than a couple of minutes to
run, it will introduce a significant bot-
tleneck in the development workflow.

For Python code, we use the pytest test-
ing framework. This is compatible with
the built-in Python unittest framework,
but has many nice features that make it
easier and more powerful.

The best way to learn how to use pytest

is to look at existing unit tests, e.g. the

file “idaes/core/tests/test_process_block.py”. Test files are found in a directory named “test/”” in every Python package
(directory with an “__init__.py”). The tests are named “test_{something}.py”; this naming convention is important so
pytest can automatically find all the tests.

When writing your own tests, make sure to remember to keep each test focused on a single piece of functionality. If a
unit test fails, it should be obvious which code is causing the problem.

Mocking

Mocking is a common, but important, technique for avoiding dependencies that make your tests slow, fragile, and
harder to understand. The basic idea is to replace dependencies with fake, or “mock”, versions of them that will
provide just enough realism for the test. Python provides a library, unittest.mock, to help with this process by providing
objects that can report how they were used, and easily pretend to have certain functionality (returning, for example,
fixed values). To make this all more concrete, consider a simple problem where you want to test a function that makes
a system call (in this case, os . remove):

file: mymodule.py

import os

def rm(filename) :
os.remove (filename)

Normally, to test this you would create a temporary file, and then see if it got removed. However, with mocking you
can take a different approach entirely:

file: test_mymodule.py
from mymodule import rm
from unittest import mock

@mock.patch ('mymodule.os")

def test_rm(mock_os) :
rm("any path")
test that rm called os.remove with the right parameters
mock_os.remove.assert_called_with("any path")

Here, we have “patched” the os module that got imported into “mymodule” (note: had to do mymodule. os instead
of simply os, or the one mymodule uses would not get patched) so that when rm calls os . remove, it is really calling
a fake method in mock_os that does nothing but record how it was called. The patched module is passed in to the

4.10. Developer Documentation 211

pytest.org
https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/dev/library/unittest.mock.html

IDAES Documentation, Release 1.2.1

test as an argument so you can examine it. So, now, you are not doing any OS operations at all! You can imagine how
this is very useful with large files or external services.

Integration tests

Integration tests exercise an end-to-end slice of the overall functionality. At this time, the integration tests are all
housed in Jupyter Notebooks, which serve double-duty as examples and tutorials for end users. We execute these
notebooks and verify that they run correctly to completion at least once before each new release of the software.

Code coverage

The “coverage” of the code refers to what percentage of the code (“lines covered” divided by total lines) is executed by
the automated tests. This is important because passing automated tests is only meaningful if the automated tests cover
the majority of the code’s behavior. This is not a perfect measure, of course, since simply executing a line of code
under one condition does not mean it would execute correctly under all conditions. The code coverage is evaluated
locally and then integrated with Github through a tool called Coveralls.

Code Review

“It’s a simple 3-step process. Step one: Fix! Step two: It! Step three: Fix it!” — Oscar Rogers (Kenan Thompson),
Saturday Night Live, 2/2009

Code review is the last line of defense between a mistake that the IDAES team will see and a mistake the whole world
will see. In the case of that mistake being a leak of proprietary information, the entire project is jeopardized, so we
need to take this process seriously.

Summary

Warning: This section is an incomplete set of notes

Every piece of code must be reviewed by at least two people.

In every case, one of those people will be a designated “gatekeeper” and the one or more others will be “technical
reviewers”.

The technical reviewers are expected to consider various aspects of the proposed changes (details below), and engage
the author in a discussion on any aspects that are deemed lacking or missing.

The gatekeeper is expected to make sure all criteria have been met, and actually merge the PR.
Assigning Roles

The gatekeeper is a designated person, who will always be added to review a Pull Request (PR)
Gatekeeper is a role that will be one (?) person for some period like a week or two weeks

The role should rotate around the team, it’s expected to be a fair amount of work and should be aligned with availability
and paper deadlines, etc.

The originator of the PR will add as reviewers the gatekeeper and 1+ technical reviewers.
Originator responsibilities

The originator of the PR should include in the PR itself information about where to find:

212 Chapter 4. Contents

https://coveralls.io

IDAES Documentation, Release 1.2.1

Changes to code/data

Tests of the changes

Documentation of the changes

The originator should be responsive to the reviewers

Technical reviewer responsibilities

The technical reviewer(s) should look at the proposed changes for

Technical correctness (runs properly, good style, internal code documentation, etc.)
Tests

Documentation

No proprietary / sensitive information

Until they approve, the conversation in the PR is between the technical reviewers and the originator (the gatekeeper is
not required to participate, assuming they have many PRs to worry about)

Gatekeeper responsibilities

The gatekeeper does not need to engage until there is at least one approving technical review.
Once there is, they should verify that:

Changes do not contain proprietary data

Tests are adequate and do not fail

Documentation is adequate

Once everything is verified, the gatekeeper merges the PR

Automated Checks

The first level of code review is a set of automated checks that must pass before the code is ready for people to review
it. These checks will run on the initiation of a pull request and on every new commit to that pull request that is pushed
to Github (thus the name “continuous integration”).

The “continuous integration” of the code is hosted by an online service — we use CircleCI — that can automatically
rerun the tests after every change (in this case, every new Pull Request or update to the code in an existing Pull
Request) and report the results back to Github for display in the web pages. This status information can then be used
as an automatic gatekeeper on whether the code can be merged into the master branch — if tests fail, then no merge is
allowed. Following this procedure, it is not possible for the master branch to ever be failing its own tests.

Docker container

This page documents information needed by developers for working with the IDAES docker container.

As is expected by Docker, the main file for creating the Docker image is the “Dockerfile” in the top-level directory.

docker-idaes script

You can build new Docker images using the create option to the docker-idaes script. For example:

./docker—-idaes create

4.10. Developer Documentation 213

https://circleci.com

IDAES Documentation, Release 1.2.1

You need to have the IDAES installation activated. The script will automatically find the current version and attempt
to build a Docker image with the same version. If it detects an existing image, it will skip the image build. Next,
the script will try to use docker save to save the image as a compressed archive. This will also be skipped if an
existing image file, with the same version as the “idaes” Python package, is detected.

Pushing an image to S3

The Docker images are stored on Amazon S3. Before you can upload a new image, you need to be part of the “IDAES-
admin” group that is part of Amazon’s IAM (Identity Access Management) system. Please contact one of the core
developers to learn how to join this IAM group.

Once you have the IAM keys, you need to create a file ~/ . aws/credentials that has the access key id and key
from the TAM account. It will look like this:

[default]
aws_access_key_id = IDGOESHERE
aws_secret_access_key = accesskeygoeshere

The values for the ID and Access key are available from the AWS “IAM” service console.

Next you need to use the AWS command-line tools to copy the local image up to Amazon S3. For example, if the
image was version “1.0.1”, you would use the following command:

aws s3 cp idaes-pse-docker-1.0.1.tgz \
s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz

If the new image should be the latest, you also need to do an S3 -> S3 copy to create a new latest image:

aws s3 cp s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz \
s3://idaes/idaes-pse/idaes-pse-docker—latest.tgz

IDAES contributor guide

About

This page tries to give all the essential information needed to contribute software to the IDAES project. It is designed
to be useful to both internal and external collaborators.

Code and other file locations

Source code The main Python package is under the idaes/ directory. Sub-directories, aka subpackages, should be
documented elsewhere. If you add a new directory in this tree, be sure to add a __init__.py in that directory so
Python knows it is a subpackage with Python modules. Code that is not part of the core package is under apps/.
This code can have any layout that the creator wants.

Documentation The documentation for the core package is under docs. The documentation for the apps/ directory is
not (currently) being built automatically.

Examples Examples are under the examples/ directory. Tutorials from workshops are under the examples/workshops/
subdirectory.

214 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Code style

The code style is not entirely consistent. But some general guidelines are:
« follow the PEPS style (or variants such as Black)
* use Google-style docstrings on classes, methods, and functions
* format your docstrings as reStructuredText so they can be nicely rendered as HTML by Sphinx

¢ add logging to your code by creating and using a global log object named for the module, which can be created
like: _log = logging.getLogger (__name_)

* take credit by adding a global author variable: __author___ = 'yourname'

Tests

For general information about writing tests in Python, see Testing.
There are three types of tests:

Python source code The Python tests are integrated into the Python source code directories. Every package (directory
with .py modules and an __init__.py file) should also have a tests/ sub-package, in which are test files. These,
by convention are named test_<something>.py.

Doctests With some special reStructuredText “directives” (see “Writing tests”), the documentation can contain tests.
This is particularly useful for making sure examples in the documentation still run without errors.

Jupyter notebook tests (coming soon)

Writing tests

We use pytest to run our tests. The main advantage of this framework over the built-in unittest that comes with Python
is that almost no boilerplate code is required. You write a function named test_<something>() and, inside it, use the
(pytest-modified) assert keyword to check that things are correct.

Writing the Python unit tests in the fests/ directory is, hopefully, quite straightforward. Here is an example (out of
context) that tests a couple of things related to configuration in the core unit model library:

def test_config_block():
m = ConcreteModel ()

m.u = Unit ()

assert len(m.u. config) ==
assert m.u.config.dynamic == useDefault

See the existing tests for many more examples.

For tests in the documentation, you need to wrap the test itself in a directive called festcode. Here is an example:

testcode::
from pyomo.environ import =
from pyomo.common.config import ConfigValue

from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class ("MyBlock")

(continues on next page)

4.10. Developer Documentation 215

https://www.python.org/dev/peps/pep-0008/
https://github.com/python/black
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
http://docutils.sourceforge.net/rst.html
https://docs.pytest.org/en/latest/

IDAES Documentation, Release 1.2.1

(continued from previous page)

class MyBlockData (ProcessBlockData) :
CONFIG = ProcessBlockData.CONFIG ()
CONFIG.declare ("xinit", ConfigValue (default=1001, domain=float))
CONFIG.declare("yinit", ConfigValue (default=1002, domain=float))
def build(self):
super (MyBlockData, self) .build()
self.x = Var(initialize=self.config.xinit)
self.y = Var(initialize=self.config.yinit)

First, note that reStructuredText directive and indented Python code. The indentation of the Python code is important.
You have to write an entire program here, so all the imports are necessary (unless you use the testsetup and testcleanup
directives, but honestly this isn’t worth it unless you are doing a lot of tests in one file). Then you write your Python
code as usual.

Running tests

Running all tests is done by, at the top directory, running the command: pytest.

The documentation test code will actually be run by a special hook in the pytest configuration that treats the Makefile
like a special kind of test. As a result, when you run pytest in any way that includes the “docs/” directory (including
the all tests mode), then all the documentation tests will run, and errors/etc. will be reported through pytest. A useful
corollary is that, to run documentation tests, do: pytest docs/Makefile

You can run specific tests using the pytest syntax, see its documentation or pytest -—h for details.

Documentation

The documentation is built from its sources with a tool called Sphinx. The sources for the documentation are:
¢ hand-written text files, under docs/, with the extension “.rst” for reStructuredText.
¢ the Python source code

* selected Jupyter Notebooks

Building documentation

To build the documentation locally, there is a “Makefile” in the docs/ directory:

cd docs
make allclean
make all

The above commands will do a completely clean build to create HTML output. They will also attempt to execute the
tutorials. During development, more specific Makefile targets may save time:

make html Only build the HTML from the existing .rst files and generated API docs. Does not rebuild the tutorials
or regenerate the API docs.

make apidoc Just regenerate API documentation source from the Python code. This does not change the HTML
output.

make tutorials Generate HTML web pages from the Jupyter Notebook tutorials

216 Chapter 4. Contents

http://docutils.sourceforge.net/rst.html

IDAES Documentation, Release 1.2.1

Like any other Makefile, you can use these targets together. So, if you are editing source code and want to preview
the generated documentation, you should run: make apidoc html. This will regenerate .rst files from the source
code, then build those files together with hand-edited files into the HTML output.

Previewing documentation

The generated documentation can be previewed locally by opening the generated HTML files in a web browser. The
files are under the docs/build/ directory, so you can open the file docs/build/index.html to get started.

4.11 idaes

4.11.1 idaes package

__init__.py for idaes module

Set up logging for the idaes module, and import plugins.
Subpackages

idaes.core package

Subpackages

idaes.core.util package

Subpackages

idaes.core.util.convergence package
Submodules
idaes.core.util.convergence.convergence module

This module is a command-line script for executing convergence evaluation testing on IDAES models.

Convergence evaluation testing is used to verify reliable convergence of a model over a range of conditions for in-
puts and parameters. The developer of the test must create a ConvergenceEvaluation class prior to executing any
convergence testing (see convergence_base.py for documentation).

Convergence evaluation testing is a two step process. In the first step, a json file is created that contains a set of points
sampled from the provided inputs. This step only needs to be done once - up front. The second step, which should
be executed any time there is a major code change that could impact the model, takes that set of sampled points and
solves the model at each of the points, collecting convergence statistics (success/failure, iterations, and solution time).

To find help on convergence.py:

$ python convergence.py —--help

You will see that there are some subcommands. To find help on a particular subcommand:

4.11. idaes 217

IDAES Documentation, Release 1.2.1

$ python convergence.py <subcommand> —--help

To create a sample file, you can use a command-line like the following (this should be done once by the model
developer for a few different sample sizes):

$ python ../../../core/util/convergence/convergence.py create-sample-file
-s PressureChanger-10.json
-N 10 —--seed=42
—e idaes.models.convergence.pressure_changer.
pressure_changer_conv_eval.PressureChangerConvergenceEvaluation

More commonly, to run the convergence evaluation:

$ python ../../../core/util/convergence/convergence.py run-eval
—-s PressureChanger-10. json

Note that the convergence evaluation can also be run in parallel if you have installed MPI and mpi4py using a command
line like the following:

$ mpirun -np 4 python ../../../core/util/convergence/convergence.py run—-eval
-s PressureChanger-10.json

idaes.core.util.convergence.convergence_base module

This module provides the base classes and methods for running convergence evaluations on IDAES models. The con-
vergence evaluation runs a given model over a set of sample points to ensure reliable convergence over the parameter
space.

The module requires the user to provide:

* aset of inputs along with their lower bound, upper bound, mean,
and standard deviation.

* an initialized Pyomo model

* a Pyomo solver with appropriate options

The module executes convergence evaluation in two steps. In the first step, a json file is created that containsa set of
points sampled from the provided inputs. This step only needs to be done once - up front. The second step, which
should be executed any time there is a major code change that could impact the model, takes that set of sampled points
and solves the model at each of the points, collecting convergence statistics (success/failure, iterations, and solution
time).

This can be used as a tool to evaluate model convergence reliability over the defined input space, or to verify that
convergence performance is not decreasing with framework and/or model changes.

In order to write a convergence evaluation for your model, you must inherit a class from ConvergenceEvaluation, and
implement three methods:

 get_specification: This method should create and return a ConvergenceEvaluationSpecification object.
There are methods on ConvergenceEvaluationSpecification to add inputs. These inputs contain a string
that identifies a Pyomo Param or Var object, the lower and upper bounds, and the mean and standard
deviation to be used for sampling. When samples are generated, they are drawn from a normal distribution,
and then truncated by the lower or upper bounds.

* get_initialized_model: This method should create and return a Pyomo model object that is already initial-
ized and ready to be solved. This model will be modified according to the sampled inputs, and then it will
be solved.

218 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

* get_solver: This method should return an instance of the Pyomo solver that will be used for the analysis.

There are methods to create the sample points file (on ConvergenceEvaluationSpecification), to run a convergence
evaluation (run_convergence_evaluation), and print the results in table form (print_convergence_statistics).

However, this package can also be executed using the command-line interface. See the documentation in conver-
gence.py for more information.

idaes.core.util.convergence.convergence_base.print_convergence_statistics (inputs,
re-
sults,
. . o 5)
Print the statistics returned from run_convergence_evaluation in a set of tables
Parameters
* inputs (dict) - The inputs dictionary returned by run_convergence_evaluation
* results (dict)— The results dictionary returned by run_convergence_evaluation
Returns
Return type N/A

idaes.core.util.convergence.convergence_base.run_convergence_evaluation (sample_file_dict,

conv_eval)
Run convergence evaluation and generate the statistics based on information in the sample_file.

Parameters

* sample file dict (dict) - Dictionary created by ConvergenceEvaluationSpecifica-
tion that contains the input and sample point information

* conv_eval (ConvergenceEvaluation) — The ConvergenceEvaluation object that
should be used

Returns
Return type N/A

idaes.core.util.convergence.convergence_base.save_results_to_dmf (dmf, in-
puts, results,

stats)
Save results of run, along with stats, to DMF.

Parameters
* dmf (DMF) — Data management framework object
* inputs (dict) - Run inputs
e results (dict)— Run results
e stats (Stats) — Calculated result statistics
Returns None

idaes.core.util.convergence.convergence_base.write_sample_file (eval_spec, file-
name, conver-
gence_evaluation_class_str,
n_points,

seed=None)
Samples the space of the inputs defined in the eval_spec, and creates a json file with all the points to be used in

executing a convergence evaluation

Parameters

4.11. idaes 219

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* filename (str) — The filename for the json file that will be created containing all the

points to be run

* eval_spec (ConvergenceEvaluationSpecification)—The convergence eval-

uation specification object that we would like to sample

* convergence_evaluation_class_str (str) — Python string that identifies the

convergence evaluation class for this specific evaluation. This is usually in the form of
module.class_name.

* n_points (int) - The total number of points that should be created

* seed (int or None)— The seed to be used when generating samples. If set to None,

then the seed is not set

Returns

Return type N/A

idaes.core.util.convergence.mpi_utils module

Submodules

idaes.core.util.config module

This module contains utility functions useful for validating arguments to IDAES modeling classes. These functions

are primarily designed to be used as the domain argument in ConfigBlocks.

idaes.core.util.config.is_physical_parameter_block (val)
Domain validator for property package attributes

Parameters val — value to be checked

Returns ConfigurationError if val is not an instance of PhysicalParameterBlock or useDefault

idaes.core.util.config.is_port (arg)
Domain validator for ports

Parameters arg — argument to be checked as a Port

Returns Port object or Exception

idaes.core.util.config.is_reaction_parameter_block (val)
Domain validator for reaction package attributes

Parameters val — value to be checked

Returns ConfigurationError if val is not an instance of ReactionParameterBlock

idaes.core.util.config.is_state_block (val)
Domain validator for state block as an argument

Parameters val — value to be checked

Returns ConfigurationError if val is not an instance of StateBlock or None

idaes.core.util.config.is_time_domain (arg)
Domain validator for time domains

Parameters

* arg - argument to be checked as a time domain (i.e. Set or

220

Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

IDAES Documentation, Release 1.2.1

* ContinuousSet) —
Returns Set, ContinuousSet or Exception

idaes.core.util.config.is_transformation_method (arg)
Domain validator for transformation methods

Parameters arg — argument to be checked for membership in recognized strings
Returns Recognised string or Exception

idaes.core.util.config.is_transformation_scheme (arg)
Domain validator for transformation scheme

Parameters arg — argument to be checked for membership in recognized strings
Returns Recognised string or Exception

idaes.core.util.config.list_of_ floats (arg)
Domain validator for lists of floats

Parameters arg — argument to be cast to list of floats and validated
Returns List of strings

idaes.core.util.config.list_of strings (arg)
Domain validator for lists of strings

Parameters arg — argument to be cast to list of strings and validated

Returns List of strings

idaes.core.util.exceptions module

This module contains custom IDAES exceptions.

exception idaes.core.util.exceptions.BalanceTypeNotSupportedError
IDAES exception to be used when a control volumedoes not support a given type of balance equation.

exception idaes.core.util.exceptions.BurntToast
General exception for when something breaks badly in the core.

exception idaes.core.util.exceptions.ConfigurationError
IDAES exception to be used when configuration arguments are incorrect or inconsistent.

exception idaes.core.util.exceptions.DynamicError
IDAES exception for cases where settings associated with dynamic models are incorrect.

exception idaes.core.util.exceptions.PropertyNotSupportedError
IDAES exception for cases when a models calls for a property which is not supported by the chosen property
package.

Needs to inherit from AttributeError for Pyomo interactions.

exception idaes.core.util.exceptions.PropertyPackageError
IDAES exception for generic errors arising from property packages.

Needs to inherit from AttributeError for Pyomo interactions.

4.11. idaes 221

IDAES Documentation, Release 1.2.1

idaes.core.util.expr_doc module

class idaes.core.util.expr_doc.Pyomo2SympyVisitor (object_map)
This is based on the class of the same name in pyomo.core.base.symbolic, but it catches ExternalFunctions and
does not decend into named expressions.

class idaes.core.util.expr_doc.PyomoSympyBimap
This is based on the class of the same name in pyomo.core.base.symbolic, but it adds mapping latex symbols to
the sympy symbols. This will get you pretty equations when using sympy’s LaTeX writer.

idaes.core.util.expr_doc.deduplicate_symbol (x, v, used)
Check if x is a duplicated LaTeX symbol if so add incrementing Di subscript

Parameters
* x —symbol string
* v — pyomo object
* used - dictionary of pyomo objects with symbols as keys

Returns Returns a unique symbol. If x was not in used keys, returns x, otherwise adds exponents to
make it unique.

idaes.core.util.expr_doc.document_constraints (comp, doc=True, descend_into=True)
Provides nicely formatted constraint documetntation in markdown format, assuming the $$latex math$$ and
$latex math$ syntax is supported.

Parameters

* comp — A Pyomo component to document in {_ConstraintData, _ExpressionData, _Block-
Data}.

* doc — True adds a documentation table for each constraint or expression. Due to the way
symbols are semi-automatiaclly generated, the exact symbol definitions may be unique to
each constraint or expression, if unique LaTeX symbols were not provided everywhere in a
block.

¢ descend_into - If True, look in subblocks for constraints.
Returns A string in markdown format with equations in LaTeX form.

idaes.core.util.expr_doc.ipython_document_constraints (comp, doc=True, de-

. - .)) scend_into=True)
See document_constraints, this just directly displays the markdown instead of returning a string.

idaes.core.util.expr_doc.sympify expression (expr)
Converts Pyomo expressions to sympy expressions. This is based on the function of the same name in py-
omo.core.base.symbolic. The difference between this and the Pymomo is that this one checks if the expr argu-
ment is a named expression and expands it anyway. This allows named expressions to only be expanded if they
are the top level object.

idaes.core.util.expr_doc.to_latex (expr)
Return a sympy expression for the given Pyomo expression

Parameters expr (Expression)— Pyomo expression
Returns

keys: sympy_expr, a sympy expression; where, markdown string with documentation ta-
ble; latex_expr, a LaTeX string representation of the expression.

Return type (dict)

222 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

idaes.core.util.initialization module

This module contains utility functions for initialization of IDAES models.

idaes.core.util.initialization.solve_indexed_blocks (solver, blocks, **kwds)
This method allows for solving of Indexed Block components as if they were a single Block. A temporary Block
object is created which is populated with the contents of the objects in the blocks argument and then solved.

Parameters
* solve —a Pyomo solver object to use when solving the Indexed Block
* blocks — an object which inherits from Block, or a list of Blocks
* kwds — a dict of argumnets to be passed to the solver

Returns A Pyomo solver results object

idaes.core.util.math module

This module contains utility functions for mathematical operators of use in equation oriented models.
idaes.core.util.math.smooth_abs (a, eps=0.0001)
General function for creating an expression for a smooth minimum or maximum.
la| = sqrt(a® + eps?)
Parameters
* a —term to get absolute value from (Pyomo component, float or int)
* eps - smoothing parameter (Param, float or int) (default=1e-4)
Returns An expression for the smoothed absolute value operation.
idaes.core.util.math.smooth_max (a, b, eps=0.0001)
Smooth maximum operator, using smooth_abs operator.
maz(a,b) = 0.5 (a+b+|a—10|)
Parameters
* a - first term in max function
* b —second term in max function
* eps — smoothing parameter (Param or float, default = le-4)
Returns An expression for the smoothed maximum operation.
idaes.core.util.math.smooth_min (a, b, eps=0.0001)
Smooth minimum operator, using smooth_abs operator.
maz(a,b) = 0.5 (a+b— |a—b|)
Parameters
* a — first term in min function
* b —second term in min function

* eps — smoothing parameter (Param or float, default = 1e-4)

4.11. idaes 223

IDAES Documentation, Release 1.2.1

Returns An expression for the smoothed minimum operation.
idaes.core.util.math.smooth_minmax (a, b, eps=0.0001, sense="max’)
General function for creating an expression for a smooth minimum or maximum. Uses the smooth_abs operator.

minmax(a,b) = 0.5% (a+b+ —|a —b|)

Parameters
* a — first term in mix or max function (Pyomo component, float or int)
* b —second term in min or max function (Pyomo component, float or int)
* eps — smoothing parameter (Param, float or int) (default=1e-4)
* sense — ‘mim’ or ‘max’ (default = ‘max’)

Returns An expression for the smoothed minimum or maximum operation.

idaes.core.util.misc module

This module contains miscellaneous utility functions for use in IDAES models.

idaes.core.util.misc.TagReference (s, description="")
Create a Pyomo reference with an added description string attribute to describe the reference. The intended
use for these references is to create a time-indexed reference to variables in a model corresponding to plant
measurment tags.

Parameters

* s — Pyomo time slice of a variable or expression

* description (str)— A description the measurment
Returns A Pyomo Reference object with an added doc attribute

idaes.core.util.misc.add_object_reference (self, local_name, remote_object)
Method to create a reference in the local model to a remote Pyomo object. This method should only be used
where Pyomo Reference objects are not suitable (such as for referencing scalar Pyomo objects where the None
index is undesirable).

Parameters
¢ local_name — name to use for local reference (str)
* remote_object - object to make a reference to
Returns None

idaes.core.util.misc.copy_port_values (destination, source)
Copy the variable values in the source port to the destination port. The ports must containt the same variables.

Parameters
* (pyomo.Port) — Copy values from this port
* (pyomo.Port) — Copy values to this port
Returns None

idaes.core.util.misc.extract_data (data_dict)
General method that returns a rule to extract data from a python dictionary. This method allows the param block
to have a database for a parameter but extract a subset of this data to initialize a Pyomo param object.

224 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.2.1

idaes.core.util.misc.svg_tag (fags, svg, outfile=None, idx=None, tag_map=None,
show_tags=False)
Replace text in a SVG with tag values for the model. This works by looking for text elements in the SVG with

IDs that match the tags or are in tag_map.
Parameters

* tags — A dictionary where the key is the tag and the value is a Pyomo Refernce. The
refernce could be indexed. In yypical IDAES applications the references would be indexed
by time.

* svg — a file pointer or a string continaing svg contents

e outfile — a file name to save the results, if None don’t save

* idx —if None not indexed, otherwise an index in the indexing set of the reference

* tag_map - dictionary with svg id keys and tag values, to map svg ids to tags

* show_tags — Put tag labels of the diagram instead of numbers

Returns String for SVG

idaes.core.util.model_serializer module

Functions for saving and loading Pyomo objects to json

class idaes.core.util.model_serializer.Counter
This is a counter object, which is an easy way to pass an interger pointer around between methods.

>

class idaes.core.util.model_serializer.StoreSpec (classes=((<class 'py-
omo.core.base.param.Param’>,
(’_mutable’,)), (<class ’py-
omo.core.base.var.Var’>,
0)s (<class ‘py-
omo.core.base.component.Component’>,
(Cactive’,))), data_classes=((<class
"pyomo.core.base.var._VarData’>,

(fixed’, 'stale’, value’,
'Ib’, ‘ub’)), (<class ‘py-
omo.core.base.param._ParamData’>,
('value’,)), (<class ’int’>,
('value’,)), (<class ’float’>,
('value’,), (<class ‘py-
omo.core.base.component. ComponentData’>,
(Cactive’,),
skip_classes=(<class ‘py-

omo.core.base.external. External Function’>,
<class ’pyomo.core.base.sets.Set’>,
<class ’pyomo.network.port.Port’>,

<class ‘py-
omo.core.base.expression. Expression’>,
<class "py-

omo.core.base.rangeset.RangeSet’>),
ignore_missing=True, suffix=True,
suffix_filter=None)
A StoreSpec object tells the serializer functions what to read or write. The default settings will produce a
StoreSpec configured to load/save the typical attributes required to load/save a model state.

4.11. idaes 225

IDAES Documentation, Release 1.2.1

Parameters

* classes — A list of classes to save. Each class is represented by a list (or tupple) containing
the following elements: (1) class (compared using isinstance) (2) attribute list or None,
an emptry list store the object, but none of its attributes, None will not store objects of
this class type (3) optional load filter function. The load filter function returns a list of
attributes to read based on the state of an object and its saved state. The allows, for example,
loading values for unfixed variables, or only loading values whoes current value is less than
one. The filter function only applies to load not save. Filter functions take two arguments
(a) the object (current state) and (b) the dictionary containing the saved state of an object.
More specific classes should come before more general classes. For example if an obejct
is a HeatExchanger and a UnitModel, and HeatExchanger is listed first, it will follow the
HeatExchanger settings. If UnitModel is listed first in the classes list, it will follow the
UnitModel settings.

* data_classes —This takes the same form as the classes argument. This is for component
data classes.

* skip_classes — This is a list of classes to skip. If a class appears in the skip list, but
also appears in the classes argument, the classes argument will override skip_classes. The
use for this is to specifically exclude certain classes that would get caught by more general
classes (e.g. UnitModel is in the class list, but you want to exclude HeatExchanger which is
derived from UnitModel).

* ignore_missing - If True will ignore a component or attribute that exists in the model,
but not in the stored state. If false an excpetion will be raised for things in the model that
should be loaded but aren’t in the stored state. Extra items in the stored state will not raise
an exception regaurdless of this argument.

» suffix — If True store suffixes and component ids. If false, don’t store suffixes.

e suffix filter — None to store all siffixes if suffix=True, or a list of suffixes to store if
suffix=True

classmethod bound ()
Returns a StoreSpec object to store variable bounds only.

get_class_attr_list (o)
Look up what attributes to save/load for an Component object. :param o: Object to look up attribute list
for.

Returns A list of attributes and a filter function for object type

get_data_class_attr_list (o)
Look up what attributes to save/load for an ComponentData object. :param o: Object to look up attribute
list for.

Returns A list of attributes and a filter function for object type

classmethod isfixed ()
Returns a StoreSpec object to store if variables are fixed.

set_read_callback (attr, cb=None)
Set a callback to set an attribute, when reading from json or dict.

set_write_callback (attr, cb=None)
Set a callback to get an attribute, when writing to json or dict.

classmethod value ()
Returns a StoreSpec object to store variable values only.

226

Chapter 4. Contents

IDAES Documentation, Release 1.2.1

classmethod value_isfixed (only_fixed)
Return a StoreSpec object to store variable values and if fixed.

Parameters only fixed — Only load fixed variable values

classmethod value_isfixed isactive (only_fixed)
Retur a StoreSpec object to store variable values, if variables are fixed and if components are active.

Parameters only_ fixed — Only load fixed variable values

idaes.core.util.model_serializer.component_data_from_dict (sd, o, wts)
Component data to a dict.

idaes.core.util.model_serializer.component_data_to_dict (o, wis)
Component data to a dict.

idaes.core.util.model_serializer.from_json (o, sd=None, fname=None, s=None,

wts=None, gz=False)
Load the state of a Pyomo component state from a dictionary, json file, or json string. Must only specify one

of sd, fname, or s as a non-None value. This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is ignored. If the save state doesn’t contain
an enetry for a model component that is to be loaded an error will be raised, unless ignore_missing = True.

Parameters
* o — Pyomo component to for which to load state
* sd - State dictionary to load, if None, check fname and s
* fname — JSON file to load, only used if sd is None
* s — JSON string to load only used if both sd and fname are None
» wts — StoreSpec object specifying what to load
* gz — If True assume the file specified by fname is gzipped. The default is False.

Returns Dictionary with some perfomance information. The keys are “etime_load_file”, how long
in seconds it took to load the json file “etime_read_dict”, how long in seconds it took to read
models state “etime_read_suffixes”, how long in seconds it took to read suffixes

idaes.core.util.model_serializer.to_Jjson (o, fname=None, human_read=False, wts=None,
metadata={}, gz=False, return_dict=False, re-

turn_json_string=False)
Save the state of a model to a Python dictionary, and optionally dump it to a json file. To load a model state, a

model with the same structure must exist. The model itself cannot be recreated from this.
Parameters

* o — The Pyomo component object to save. Usually a Pyomo model, but could also be a
subcomponent of a model (usually a sub-block).

* fname - json file name to save model state, if None only create python dict
* gz — If fname is given and gv is True gzip the json file. The default is False.

* human_read - if True, add indents and spacing to make the json file more readable, if
false cut out whitespace and make as compact as possilbe

* metadata — A dictionary of addtional metadata to add.

* wts — is What To Save, this is a StoreSpec object that specifies what object types and
attributes to save. If None, the default is used which saves the state of the compelte model
state.

4.11. idaes 227

IDAES Documentation, Release 1.2.1

* metadata — addtional metadata to save beyond the standard format_version, date, and
time.

* return_dict - default is False if true returns a dictionary representation
* return_json_string — default is False returns a json string

Returns If return_dict is True returns a dictionary serialization of the Pyomo component. If re-
turn_dict is False and return_json_string is True returns a json string dump of the dict. If fname
is given the dictionary is also written to a json file. If gz is True and fname is given, writes a
gzipped json file.

idaes.core.util. model_statistics module

This module contains utility functions for reporting structural statistics of IDAES models.

idaes.core.util.model_statistics.activated_block_ component_generator (block,

ctype)
Generator which returns all the components of a given ctype which exist in activated Blocks within a model.

Parameters
* block — model to be studied
* ctype - type of Pyomo component to be returned by generator.

Returns A generator which returns all components of ctype which appear in activated Blocks in
block

idaes.core.util.model_statistics.activated_blocks_set (block)
Method to return a ComponentSet of all activated Block components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated Block components in block (including block itself)

idaes.core.util.model_statistics.activated_constraints_generator (block)
Generator which returns all activated Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated Constraint components block

idaes.core.util.model_statistics.activated constraints_set (block)
Method to return a ComponentSet of all activated Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated Constraint components in block

idaes.core.util.model_statistics.activated_equalities_generator (block)
Generator which returns all activated equality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated equality Constraint components block

idaes.core.util.model_statistics.activated_equalities_set (block)
Method to return a ComponentSet of all activated equality Constraint components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all activated equality Constraint components in block

228 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.activated_inequalities_generator (block)
Generator which returns all activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated inequality Constraint components block

idaes.core.util.model_statistics.activated_inequalities_set (block)
Method to return a ComponentSet of all activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated inequality Constraint components in block

idaes.core.util.model_statistics.activated_objectives_generator (block)
Generator which returns all activated Objective components in a model.

Parameters block — model to be studied
Returns A generator which returns all activated Objective components block

idaes.core.util.model_statistics.activated_objectives_set (block)
Method to return a ComponentSet of all activated Objective components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all activated Objective components which appear in block

idaes.core.util.model_statistics.active_variables_in_deactivated _blocks_set (block)
Method to return a ComponentSet of any Var components which appear within an active Constraint but belong
to a deacitvated Block in a model.

Parameters block — model to be studied

Returns A ComponentSet including any Var components which belong to a deacitvated Block but
appear in an activate Constraint in block

idaes.core.util.model_statistics.deactivated blocks_set (block)
Method to return a ComponentSet of all deactivated Block components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all deactivated Block components in block (including block
itself)

idaes.core.util.model_statistics.deactivated_constraints_generator (block)
Generator which returns all deactivated Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all deactivated Constraint components block

idaes.core.util.model_ statistics.deactivated_ constraints_ set (block)
Method to return a ComponentSet of all deactivated Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated Constraint components in block

idaes.core.util.model_statistics.deactivated_equalities_generator (block)
Generator which returns all deactivated equality Constraint components in a model.

Parameters block — model to be studied

Returns A generator which returns all deactivated equality Constraint components block

4.11. idaes 229

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.deactivated_equalities_set (block)
Method to return a ComponentSet of all deactivated equality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated equality Constraint components in block

idaes.core.util.model_statistics.deactivated_inequalities_generator (block)
Generator which returns all deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all indeactivated equality Constraint components block

idaes.core.util.model_statistics.deactivated_inequalities_set (block)
Method to return a ComponentSet of all deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated inequality Constraint components in block

idaes.core.util.model_statistics.deactivated_objectives_generator (block)
Generator which returns all deactivated Objective components in a model.

Parameters block — model to be studied
Returns A generator which returns all deactivated Objective components block

idaes.core.util.model_statistics.deactivated_objectives_set (block)
Method to return a ComponentSet of all deactivated Objective components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all deactivated Objective components which appear in block

idaes.core.util.model_statistics.degrees_of freedom (block)
Method to return the degrees of freedom of a model.

Parameters block — model to be studied
Returns Number of degrees of freedom in block.

idaes.core.util.model_statistics.derivative_ variables_set (block)
Method to return a ComponentSet of all DerivativeVar components which appear in a model. Users should note
that DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block — model to be studied
Returns A ComponentSet including all DerivativeVar components which appear in block

idaes.core.util.model_statistics.expressions_set (block)
Method to return a ComponentSet of all Expression components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Expression components which appear in block

idaes.core.util.model_statistics.fixed unused variables_set (block)
Method to return a ComponentSet of all fixed Var components which do not appear within any activated Con-
straint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which do not appear within any Con-
straints in block

230 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.fixed_variables_generator (block)
Generator which returns all fixed Var components in a model.

Parameters block — model to be studied
Returns A generator which returns all fixed Var components block

idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all fixed Var components which appear within an equality Constraint in a
model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which appear within activated equal-
ity Constraints in block

idaes.core.util.model_statistics.fixed _variables_only_in_inequalities (block)
Method to return a ComponentSet of all fixed Var components which appear only within activated inequality
Constraints in a model.

Parameters block — model to be studied

Returns A ComponentSet including all fixed Var components which appear only within activated
inequality Constraints in block

idaes.core.util.model_statistics.fixed wvariables_set (block)
Method to return a ComponentSet of all fixed Var components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all fixed Var components in block

idaes.core.util.model_statistics.large_residuals_set (block, tol=1e-05)
Method to return a ComponentSet of all Constraint components with a residual greater than a given threshold
which appear in a model.

Parameters
* block — model to be studied
* tol - residual threshold for inclusion in ComponentSet

Returns A ComponentSet including all Constraint components with a residual greater than tol which
appear in block

idaes.core.util.model_statistics.number activated blocks (block)
Method to return the number of activated Block components in a model.

Parameters block — model to be studied
Returns Number of activated Block components in block (including block itself)

idaes.core.util.model_statistics.number activated constraints (block)
Method to return the number of activated Constraint components in a model.

Parameters block — model to be studied
Returns Number of activated Constraint components in block

idaes.core.util.model_statistics.number_activated_equalities (block)
Method to return the number of activated equality Constraint components in a model.

Parameters block — model to be studied

Returns Number of activated equality Constraint components in block

4.11. idaes 231

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.number_activated_inequalities (block)
Method to return the number of activated inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of activated inequality Constraint components in block

idaes.core.util.model_statistics.number_activated_objectives (block)
Method to return the number of activated Objective components which appear in a model.

Parameters block — model to be studied
Returns Number of activated Objective components which appear in block

idaes.core.util.model_statistics.number active variables_in deactivated blocks (block)
Method to return the number of Var components which appear within an active Constraint but belong to a
deacitvated Block in a model.

Parameters block — model to be studied

Returns Number of Var components which belong to a deacitvated Block but appear in an activate
Constraint in block

idaes.core.util.model_statistics.number_deactivated blocks (block)
Method to return the number of deactivated Block components in a model.

Parameters block — model to be studied
Returns Number of deactivated Block components in block (including block itself)

idaes.core.util.model_statistics.number_deactivated_constraints (block)
Method to return the number of deactivated Constraint components in a model.

Parameters block — model to be studied
Returns Number of deactivated Constraint components in block

idaes.core.util.model_statistics.number_ deactivated equalities (block)
Method to return the number of deactivated equality Constraint components in a model.

Parameters block — model to be studied
Returns Number of deactivated equality Constraint components in block

idaes.core.util.model_statistics.number_ deactivated inequalities (block)
Method to return the number of deactivated inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of deactivated inequality Constraint components in block

idaes.core.util.model_statistics.number_ deactivated objectives (block)
Method to return the number of deactivated Objective components which appear in a model.

Parameters block — model to be studied
Returns Number of deactivated Objective components which appear in block

idaes.core.util.model_statistics.number_ derivative_variables (block)
Method to return the number of DerivativeVar components which appear in a model. Users should note that
DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block — model to be studied

Returns Number of DerivativeVar components which appear in block

232 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.number_expressions (block)
Method to return the number of Expression components which appear in a model.

Parameters block — model to be studied
Returns Number of Expression components which appear in block

idaes.core.util.model_statistics.number fixed unused_ variables (block)
Method to return the number of fixed Var components which do not appear within any activated Constraint in a
model.

Parameters block — model to be studied

Returns Number of fixed Var components which do not appear within any activated Constraints in
block

idaes.core.util.model_statistics.number fixed wvariables (block)
Method to return the number of fixed Var components in a model.

Parameters block — model to be studied
Returns Number of fixed Var components in block

idaes.core.util.model_statistics.number_fixed variables_in_activated_equalities (block)
Method to return the number of fixed Var components which appear within activated equality Constraints in a
model.

Parameters block — model to be studied

Returns Number of fixed Var components which appear within activated equality Constraints in
block

idaes.core.util.model_statistics.number_fixed variables_only in_inequalities (block)
Method to return the number of fixed Var components which only appear within activated inequality Constraints
in a model.

Parameters block — model to be studied

Returns Number of fixed Var components which only appear within activated inequality Constraints
in block

idaes.core.util.model_statistics.number_large_residuals (block, tol=1e-05)
Method to return the number Constraint components with a residual greater than a given threshold which appear
in a model.

Parameters
* block — model to be studied
* tol - residual threshold for inclusion in ComponentSet
Returns Number of Constraint components with a residual greater than tol which appear in block

idaes.core.util.model_statistics.number total_ blocks (block)
Method to return the number of Block components in a model.

Parameters block — model to be studied
Returns Number of Block components in block (including block itself)

idaes.core.util.model_statistics.number total_ constraints (block)
Method to return the total number of Constraint components in a model.

Parameters block — model to be studied

Returns Number of Constraint components in block

4.11. idaes 233

IDAES Documentation, Release 1.2.1

idaes.core.util.model_statistics.number_total_equalities (block)
Method to return the total number of equality Constraint components in a model.

Parameters block — model to be studied
Returns Number of equality Constraint components in block

idaes.core.util.model_statistics.number_total_inequalities (block)
Method to return the total number of inequality Constraint components in a model.

Parameters block — model to be studied
Returns Number of inequality Constraint components in block

idaes.core.util.model_statistics.number_total_objectives (block)
Method to return the number of Objective components which appear in a model

Parameters block — model to be studied
Returns Number of Objective components which appear in block

idaes.core.util.model_statistics.number unfixed variables (block)
Method to return the number of unfixed Var components in a model.

Parameters block — model to be studied
Returns Number of unfixed Var components in block

idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities (block)
Method to return the number of unfixed Var components which appear within activated equality Constraints in
a model.

Parameters block — model to be studied

Returns Number of unfixed Var components which appear within activated equality Constraints in
block

idaes.core.util.model_statistics.number_ unused variables (block)
Method to return the number of Var components which do not appear within any activated Constraint in a model.

Parameters block — model to be studied
Returns Number of Var components which do not appear within any activagted Constraints in block

idaes.core.util.model_statistics.number_ variables (block)
Method to return the number of Var components in a model.

Parameters block — model to be studied
Returns Number of Var components in block

idaes.core.util.model_statistics.number_variables_in_activated constraints (block)
Method to return the number of Var components that appear within active Constraints in a model.

Parameters block — model to be studied
Returns Number of Var components which appear within active Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_equalities (block)
Method to return the number of Var components which appear within activated equality Constraints in a model.

Parameters block — model to be studied
Returns Number of Var components which appear within activated equality Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_inequalities (block)
Method to return the number of Var components which appear within activated inequality Constraints in a model.

234 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Parameters block — model to be studied
Returns Number of Var components which appear within activated inequality Constraints in block

idaes.core.util.model_statistics.number variables_only in_inequalities (block)
Method to return the number of Var components which appear only within activated inequality Constraints in a
model.

Parameters block — model to be studied

Returns Number of Var components which appear only within activated inequality Constraints in
block

idaes.core.util.model_statistics.report_statistics (block, ostream=None)
Method to print a report of the model statistics for a Pyomo Block

Parameters

* block - the Block object to report statistics from

* ostream - output stream for printing (defaults to sys.stdout)
Returns Printed output of the model statistics

idaes.core.util.model_statistics.total_blocks_set (block)
Method to return a ComponentSet of all Block components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Block components in block (including block itself)

idaes.core.util.model_statistics.total_constraints_set (block)
Method to return a ComponentSet of all Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Constraint components in block

idaes.core.util.model_statistics.total_equalities_generator (block)
Generator which returns all equality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all equality Constraint components block

idaes.core.util.model_statistics.total_equalities_set (block)
Method to return a ComponentSet of all equality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all equality Constraint components in block

idaes.core.util.model_statistics.total_inequalities_generator (block)
Generator which returns all inequality Constraint components in a model.

Parameters block — model to be studied
Returns A generator which returns all inequality Constraint components block

idaes.core.util.model_statistics.total_inequalities_set (block)
Method to return a ComponentSet of all inequality Constraint components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all inequality Constraint components in block

idaes.core.util.model_statistics.total_objectives_generator (block)
Generator which returns all Objective components in a model.

4.11. idaes 235

IDAES Documentation, Release 1.2.1

Parameters block — model to be studied
Returns A generator which returns all Objective components block

idaes.core.util.model_statistics.total_objectives_set (block)
Method to return a ComponentSet of all Objective components which appear in a model.

Parameters block — model to be studied
Returns A ComponentSet including all Objective components which appear in block

idaes.core.util.model_statistics.unfixed_variables_generator (block)
Generator which returns all unfixed Var components in a model.

Parameters block — model to be studied
Returns A generator which returns all unfixed Var components block

idaes.core.util.model_statistics.unfixed variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all unfixed Var components which appear within an activated equality
Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all unfixed Var components which appear within activated
equality Constraints in block

idaes.core.util.model_statistics.unfixed wvariables_set (block)
Method to return a ComponentSet of all unfixed Var components in a model.

Parameters block — model to be studied
Returns A ComponentSet including all unfixed Var components in block

idaes.core.util.model_statistics.unused variables_set (block)
Method to return a ComponentSet of all Var components which do not appear within any activated Constraint
in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which do not appear within any Constraints
in block

idaes.core.util.model_statistics.variables_in_activated constraints_set (block)
Method to return a ComponentSet of all Var components which appear within a Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear within activated Constraints
in block

idaes.core.util.model_statistics.variables_in_activated_equalities_set (block)
Method to return a ComponentSet of all Var components which appear within an equality Constraint in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear within activated equality
Constraints in block

idaes.core.util.model_statistics.variables_in_activated_inequalities_set (block)
Method to return a ComponentSet of all Var components which appear within an inequality Constraint in a
model.

Parameters block — model to be studied

236 Chapter 4. Contents

IDAES Documentation, Release 1.2.1

Returns A ComponentSet including all Var components which appear within activated inequality
Constraints in block

idaes.core.util.model_statistics.variables_only_in inequalities (block)
Method to return a ComponentSet of all Var components which appear only within inequality Constraints in a
model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components which appear only within inequality Con-
straints in block

idaes.core.util.model_statistics.variables_set (block)
Method to return a ComponentSet of all Var components in a model.

Parameters block — model to be studied

Returns A ComponentSet including all Var components in block

idaes.core.util.tables module

idaes.core.util.tables.create_stream table_dataframe (streams, true_state=False,
time_point=0, ori-

ent="columns’)
Method to create a stream table in the form of a pandas dataframe. Method takes a dict with name keys and

stream values. Use an OrderedDict to list the streams in a specific order, otherwise the dataframe can be sorted
later.

Parameters

* streams — dict with name keys and stream values. Names will be used as display names
for stream table, and streams may be Arcs, Ports or StateBlocks.

* true_state - indicated whether the stream table should contain the display variables
define in the StateBlock (False, default) or the state variables (True).

* time_point — point in the time domain at which to generate stream table (default = 0)

* orient - orientation of stream table. Accepted values are ‘columns’ (default) where
streams are displayed as columns, or ‘index’ where stream are displayed as rows.

Returns A pandas DataFrame containing the stream table data.

idaes.core.util.tables.generate_table (blocks, attributes, heading=None)
Create a Pandas DataFrame that contains a list of user-defined attributes from a set of Blocks.

Parameters

* blocks (dict) — A dictionary with name keys and BlockData objects for values. Any
name can be associated with a block. Use an OrderedDict to show the blocks in a specific
order, otherwise the dataframe can be sorted later.

* attributes (I1ist or tuple of strings) — Attributes to report from a Block,
can be a Var, Param, or Expression. If an attribute doesn’t exist or doesn’t have a valid
value, it will be treated as missing data.

* heading (I1ist or tuple of srings)— A list of strings that will be used as col-
umn headings. If None the attribute names will be used.

Returns A Pandas dataframe containing a data table

Return type (DataFrame)

4.11. idaes 237

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.2.1

idaes.core.util.tables.stream table_dataframe_to_string (stream_table, **kwargs)
Method to print a stream table from a dataframe. Method takes any argument understood by DataFrame.to_string

idaes.core.util.testing module

This module contains utility functions for use in testing IDAES models.

class idaes.core.util.testing.PhysicalParameterTestBlock (*args, **kwargs)

Parameters

rule (function) — A rule function or None. Default rule calls build().
concrete (bool) - If True, make this a toplevel model. Default - False.
ctype (st r)—Pyomo ctype of the block. Default - “Block”
default (dict)— Default ProcessBlockData config
Keys

default_arguments Default arguments to use with Property Package

initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PhysicalParameterTestBlock) New instance

class idaes.core.util.testing.RBlockBase (*args, **kwargs)

initialize (outlvi=0, optarg=None, solver=None)
This is a default initialization routine for ReactionBlocks to ensure that a routine is present. All Reaction-
BlockData classes should overload this method with one suited to the particular reaction package

Parameters None —

Returns None

class idaes.core.util.testing.ReactionBlock (*args, **kwargs)

Parameters

rule (function) — A rule function or None. Default rule calls build().
concrete (bool) — If True, make this a toplevel model. Default - False.
ctype (st r)—Pyomo ctype of the block. Default - “Block”

default (dict)— Default ProcessBlockData config

Keys

initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ReactionBlock) New instance

238

Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

class idaes.core.util.testing.ReactionBlockData (component)

build ()
General build method for PropertyBlockDatas. Inheriting models should call super().build.

Parameters None —
Returns None

get_reaction_rate_basis ()
Method which returns an Enum indicating the basis of the reaction rate term.

class idaes.core.util.testing.ReactionParameterTestBlock (*args, **kwargs)
Parameters

* rule (function)— A rule function or None. Default rule calls build().

* concrete (bool) - If True, make this a toplevel model. Default - False.

* ctype (str)—Pyomo ctype of the block. Default - “Block”

* default (dict) — Default ProcessBlockData config

Keys

property_package Reference to associated PropertyPackageParameter object
default_arguments Default arguments to use with Property Package

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

e idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ReactionParameterTestBlock) New instance

class idaes.core.util.testing.SBlockBase (*args, **kwargs)

initialize (outlvi=0, optarg=None, solver=None, hold_state=False, **state_args)
This is a default initialization routine for StateBlocks to ensure that a routine is present. All StateBlockData
classes should overload this method with one suited to the particular property package

Parameters None —
Returns None

class idaes.core.util.testing.StateTestBlockData (component)

build()
General build method for StateBlockDatas.

Parameters None —
Returns None

define_state_vars ()
Method that returns a dictionary of state variables used in property package. Implement a placeholder
method which returns an Exception to force users to overload this.

get_enthalpy_density_ terms (p)
Method which returns a valid expression for enthalpy density to use in the energy balances.

4.11. idaes 239

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

get_enthalpy flow_terms (p)
Method which returns a valid expression for enthalpy flow to use in the energy balances.

get_material_density_ terms (p,))
Method which returns a valid expression for material density to use in the material balances .

get_material_flow basis ()
Method which returns an Enum indicating the basis of the material flow term.

get_material_ flow_terms (p,))
Method which returns a valid expression for material flow to use in the material balances.

class idaes.core.util.testing.TestStateBlock (*args, **kwargs)
Parameters
* rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)—Pyomo ctype of the block. Default - “Block”
* default (dict) — Default ProcessBlockData config
Keys

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TestStateBlock) New instance

idaes.core.util.testing.get_default_solver ()
Tries to set-up the default solver for testing, and returns None if not available

Submodules
idaes.core.control_volumeOd module

Base class for control volumes

class idaes.core.control_volumeOd.ControlVolumeODBlock (*args, **kwargs)
Control VolumeODBIlock is a specialized Pyomo block for IDAES non-discretized control volume blocks, and
contains instances of ControlVolumeODBlockData.

Control VolumeODBlock should be used for any control volume with a defined volume and distinct inlets and
outlets which does not require spatial discretization. This encompases most basic unit models used in process
modeling.

Parameters
e rule (function)— A rule function or None. Default rule calls build().
* concrete (bool) - If True, make this a toplevel model. Default - False.
* ctype (str)— Pyomo ctype of the block. Default - “Block”
* default (dict)— Default ProcessBlockData config

Keys

240 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model }

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object. }

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object. }

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation. }

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton. }

* initialize (dict)—ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

* idx_map (function)— Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolumeODBlock) New instance

class idaes.core.control_volume(Od.ControlVolumeODBlockData (component)
0-Dimensional (Non-Discretised) ControlVolume Class

This class forms the core of all non-discretized IDAES models. It provides methods to build property and
reaction blocks, and add mass, energy and momentum balances. The form of the terms used in these constraints
is specified in the chosen property package.

add_geometry ()
Method to create volume Var in ControlVolume.

Parameters None —
Returns None

add_phase_component_balances (has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer="False,

custom_molar_term=None, custom_mass_term=None)
This method constructs a set of 0D material balances indexed by time, phase and component.

Parameters

* has_rate_reactions — whether default generation terms for rate reactions should be
included in material balances

4.11. idaes 241

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.2.1

* has_equilibrium_reactions — whether generation terms should for chemical
equilibrium reactions should be included in material balances

* has_phase_equilibrium — whether generation terms should for phase equilibrium
behaviour should be included in material balances

* has_mass_transfer — whether generic mass transfer terms should be included in
material balances

* custom_molar_term-aPyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, phase list and
component list

* custom_mass_term - a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, phase list and
component list

Returns Constraint object representing material balances

add_phase_energy_balances (*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy balances (*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances (*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances (*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks (has_equilibrium=None)
This method constructs the reaction block for the control volume.

Parameters

* has_equilibrium - indicates whether equilibrium calculations will be required in
reaction block

* package_arguments — dict-like object of arguments to be passed to reaction block as
construction arguments

Returns None

add_state_blocks (information_flow=<FlowDirection.forward: 1>,

has_phase_equilibrium=None)
This method constructs the inlet and outlet state blocks for the control volume.

Parameters

* information_flow — a FlowDirection Enum indicating whether information flows
from inlet-to-outlet or outlet-to-inlet

*