

Institute for the Design of Advanced Energy Systems (IDAES)

Project Goals

The Institute for the Design of Advanced Energy Systems (IDAES) will be the
world’s premier resource for the development and analysis of innovative
advanced energy systems through the use of process systems engineering tools
and approaches. IDAES and its capabilities will be applicable to the development
of the full range of advanced fossil energy systems, including chemical looping
and other transformational CO2 capture technologies, as well as integration with
other new technologies such as supercritical CO2.

Collaborating institutions

The IDAES team is comprised of collaborators from the following institutions:

	National Energy Technology Laboratory (Lead)

	Sandia National Laboratory

	Lawrence Berkeley National Laboratory

	Carnegie-Mellon University (subcontract to LBNL)

	West Virginia University (subcontract to LBNL)

	University of Notre Dame (subcontract to LBNL)

Contact, contributions and more information

General, background and overview information is available at the IDAES main
website [https://www.idaes.org]. Framework development happens at our GitHub
repo [https://github.com/IDAES/idaes-pse] where you can report issues/bugs [https://github.com/IDAES/idaes-pse/issues] or make contributions [https://github.com/IDAES/idaes-pse/pulls]. For further enquiries, send an
email to: <idaes-support@idaes.org>

Contents

	Installation
	Windows

	Linux

	Mac/OSX

	Generic install

	Examples

	IDAES Modeling Standards
	Model Formatting and General Standards

	Units of Measurement and Reference States

	Standard Variable Names

	Configuration
	Global Configuration

	Important Configuration Entries

	Logging
	Getting Loggers

	Tags

	Levels

	Utility Functions

	Logging Solver Output

	Command-line interface
	idaes command

	Core Library
	Core Contents

	Core Overview

	Transformations
	Variable Replacement

	IDAES Model Libraries
	Contents

	Data Management Framework
	DMF Command-line Interface

	Overview

	Configuration

	Jupyter notebook usage

	Sharing

	Reference

	Surrogate modeling
	ALAMOPY : ALAMO Python

	RIPE : Reaction Identification and Parameter Estimation

	HELMET : HELMholtz Energy Thermodynamics

	PySMO: Python-based Surrogate Modelling Objects

	Applications
	Contents

	IDAES Versioning
	Basic usage

	Advanced usage

	Developer Documentation
	Developer Contents

	Glossary

	License

	Copyright

Indices and tables

	Index

	Module Index

	Search Page

Installation

To install the IDAES PSE framework, follow the set of instructions below that are
appropriate for your needs and operating system. If you get stuck, please contact
idaes-support@idaes.org.

The OS specific instructions provide information about optionally installing
Miniconda. If you already have a Python installation you prefer, you can skip
the Miniconda install section.

Note

IDAES supports Python 3.6 and above.

	System

	Section

	Linux

	Linux

	Windows

	Windows

	Mac OSX

	Mac/OSX

	Generic

	Generic install

Warning

If you are using Python for other complex projects, you may want to
consider using environments of some sort to avoid conflicting
dependencies. There are several good options including conda
environments if you use Anaconda.

Windows

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

	Install anaconda from the downloaded file in (1).

	Open the Anaconda Prompt (Start -> “Anaconda Prompt”).

	In the Anaconda Prompt, follow the Generic install instructions.

Linux

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

	Open a terminal window

	Run the script you downloaded in (1).

Install Dependencies

	The IPOPT solver depends on the GNU FORTRAN, GOMP, Blas, and Lapack libraries,
If these libraries are not already installed on your Linux system, you or your
system administrator can use the sample commands below to install them. If you
have a Linux distribution that is not listed, IPOPT should still work, but you
the commands to install the required libraries may differ. If these libraries
are already installed, you can skip this and proceed with the next step.

Note

Depending on your distribution, you may need to prepend sudo to
these commands or switch to the “root” user.

apt-get (Current Ubuntu based distributions):

sudo apt-get install libgfortran4 libgomp1 liblapack3 libblas3

yum (Current RedHat based distributions, including CentOS):

yum install lapack blas libgfortran libgomp

Complete Generic Install

Follow the Generic install instructions.

Mac/OSX

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

	For the next steps, open a terminal window

	Run the script you downloaded in (1).

Complete Generic Install

Follow the Generic install instructions.

Generic install

The remaining steps performed in either the Linux or OSX Terminal or Powershell.
If you installed Miniconda on Windows use the Anaconda Prompt or Anaconda
Powershell Prompt. Regardless of OS and shell, the following steps are the same.

Install IDAES

	Install IDAES with pip:

pip install idaes-pse

	Run the idaes get-extensions command
to install the compiled binaries:

idaes get-extensions

Warning

The IDAES binary extensions are not yet supported on Mac/OSX

Note

If you are installing on Linux, you can specify a specific platform.
While most Linux builds are interchangeable, specifying a build can
make managing dependencies considerably easier. By default Linux
will use the CentOS 7 build. To specify a build use the command
idaes get-extensions --platform <platform>. Supported Linux
platforms are: rhel6, rhel7, rhel8, cetos6, centos7, centos8,
ubuntu1804, ubuntu1910, and ubuntu2004. If you are not using a
supported platform, everything should still work, just choose the
platform that best matches your Linux distribution. You can also
use the idaes get-extensions-platforms command to see a list of
supported platforms.

	Run the idaes get-examples command to download
and install the example files:

idaes get-examples

By default this will install in a folder “examples” in the current directory.
The command has many options, but an important
one is –dir, which specifies the folder in which to install.

for Mac and Linux users this would look like:

idaes get-examples --dir ~/idaes/examples

or, for Windows users, it would look like:

idaes get-examples --dir C:\Users\MyName\IDAES\Examples

Refer to the full idaes get-examples command documentation
for more information.

	Run tests:

pytest --pyargs idaes -W ignore

	You should see the tests run and all should pass to ensure the installation worked. You
may see some “Error” level log messages, but they are okay, and produced by tests for
error handling. The number of tests that failed and succeeded is reported at the end of the pytest
output. You can report problems on the Github issues page [https://github.com/IDAES/idaes-pse/issues]
(Please try to be specific about the command and the offending output.)

Examples

The IDAES PSE software includes a number of example scripts and Jupyter Notebooks.
They are maintained the repository https://github.com/IDAES/examples-pse on Github,
and the online documentation
can be found at https://examples-pse.readthedocs.io/ . This documentation includes
browsable versions of the Jupyter Notebooks.

You can install the examples from within an IDAES installation by running
idaes get-examples in a command-line shell.
This requires that you have
installed the IDAES PSE toolkit. See the installation instructions for details.

IDAES Modeling Standards

Contents

	IDAES Modeling Standards

	Model Formatting and General Standards

	Headers and Meta-data

	Coding Standard

	Model Organization

	Commenting

	Units of Measurement and Reference States

	Standard Variable Names

	Standard Naming Format

	Constants

	Thermophysical and Transport Properties

	Reaction Properties

	Solid Properties

	Naming Examples

Model Formatting and General Standards

The section describes the recommended formatting used within the IDAES framework. Users are strongly encouraged to follow these standards in developing their models in order to improve readability of their code.

Headers and Meta-data

Model developers are encouraged to include some documentation in the header of their model files which provides a brief description of the purpose of the model and how it was developed. Some suggested information to include is:

	Model name,

	Model publication date,

	Model author

	Any necessary licensing and disclaimer information (see below).

	Any additional information the modeler feels should be included.

Coding Standard

All code developed as part of IDAES should conform to the PEP-8 standard.

Model Organization

Whilst the overall IDAES modeling framework enforces a hierarchical structure on models, model developers are still encouraged to arrange their models in a logical fashion to aid other users in understanding the model. Model constraints should be grouped with similar constraints, and each grouping of constraints should be clearly commented.

For property packages, it is recommended that all the equations necessary for calculating a given property be grouped together, clearly separated and identified by using comments.

Additionally, model developers are encouraged to consider breaking their model up into a number of smaller methods where this makes sense. This can facilitate modification of the code by allowing future users to inherit from the base model and selectively overload sub-methods where desired.

Commenting

To help other modelers and users understand the how a model works, model builders are strongly encouraged to comment their code. It is suggested that every constraint should be commented with a description of the purpose of the constraint, and if possible/necessary a reference to a source or more detailed explanation. Any deviations from standard units or formatting should be clearly identified here. Any initialization procedures, or other procedures required to get the model to converge should be clearly commented and explained where they appear in the code. Additionally, modelers are strongly encouraged to add additional comments explaining how their model works to aid others in understanding the model.

Units of Measurement and Reference States

Due to the flexibility provided by the IDAES modeling framework, there is no standard set of units of measurement or standard reference state that should be used in models. This places the onus on the user to understand the units of measurement being used within their models and to ensure that they are consistent.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.

Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have a standard naming convention for any variable that may need to be shared between different models. Within the IDAES modeling framework, this occurs most frequently with information regarding the state and properties of the material within the system, which is calculated in specialized property blocks, and then used in others parts of the model. This section of the documentation discusses the standard naming conventions used within the IDAES modeling framework.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a number of different ways in which these quantities can be expressed. In order to facilitate communication between different parts of models, a naming convention has been established to standardize the naming of variables across models. Variable names within IDAES follow to the format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list of standard variable names given later in this document. If a particular quantity is not included in the list of standard names, users are encouraged to contact the IDAES developers so that it can be included in a future release. This is followed by a number of qualifiers which further indicate the specific conditions under which the quantity is being calculated. These qualifiers are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis, that is quantity per unit amount of material. There are a number of different bases that can be used when expressing intensive quantities, and a list of standard basis qualifiers are given below.

	Basis

	Standard Name

	Mass Basis

	mass

	Molar Basis

	mol

	Volume Basis

	vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed by a Pyomo Set.

	Basis

	Standard Name

	Comments

	Component

	comp

	Indexed by component list

	Phase

	phase

	Indexed by phase list

	Phase & Component

	phase_comp

	Indexed by phase and component list

	Total Mixture

	
	No state qualifier

	Phase

	Standard Name

	Supercritical Fluid

	liq

	Ionic Species

	ion

	Liquid Phase

	liq

	Solid Phase

	sol

	Vapor Phase

	vap

	Multiple Phases

	e.g. liq1

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the system (e.g. at the critical point, or at equilibrium).

	Basis

	Standard Name

	Critical Point

	crit

	Equilibrium State

	equil

	Ideal Gas

	ideal

	Reduced Properties

	red

	Reference State

	ref

Constants

IDAES contains a library of common physical constants of use in process systems engineering models, which can be imported from idaes.core.util.constants. Below is a list of these constants with their standard names and values (SI units).

	Constant

	Standard Name

	Value

	Units

	Acceleration due to Gravity

	acceleration_gravity

	9.80665

	\(m⋅s^{-2}\)

	Avogadro’s Number

	avogadro_number

	6.02214076e23

	\(mol^{-1}\)

	Boltzmann Constant

	boltzmann_constant

	1.38064900e-23

	\(J⋅K^{-1}\)

	Elementary Charge

	elementary_charge

	1.602176634e-19

	\(C\)

	Faraday’s Constant

	faraday_constant

	96485.33212

	\(C⋅mol^{-1}\)

	Gas Constant

	gas_constant

	8.314462618

	\(J⋅mol^{-1}⋅K^{-1}\)

	Newtonian Constant of Gravitation

	gravitational_constant

	6.67430e-11

	\(m^3⋅kg^{-1}⋅s^{-2}\)

	Mass of an Electron

	mass_electron

	9.1093837015e-31

	\(kg\)

	Pi (Archimedes’ Constant)

	pi

	3.141592 [1]

	

	Planck Constant

	planck_constant

	6.62607015e-34

	\(J⋅s\)

	Stefan-Boltzmann Constant

	stefan_constant

	5.67037442e-8

	\(W⋅m^{-2}⋅K^{-4}\)

	Speed of Light in a Vacuum

	speed_light

	299792458

	\(m⋅s^{-1}\)

[1] pi imported from the Python math library and is available to machine precision.

Values for fundamental constants and derived constants are drawn from the definitions of SI units (https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf) and are generally defined to 9 significant figures.

Acceleration due to gravity, gravitational constant and electron mass are sourced from NIST (https://physics.nist.gov) and used the significant figures reported there.

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which currently have a standard name associated with them in the IDAES framework.

	Variable

	Standard Name

	Activity

	act

	Activity Coefficient

	act_coeff

	Bubble Pressure

	pressure_bubble

	Bubble Temperature

	temperature_bubble

	Compressibility Factor

	compress_fact

	Concentration

	conc

	Density

	dens

	Dew Pressure

	pressure_dew

	Dew Temperature

	temperature_dew

	Diffusivity

	diffus

	Diffusion Coefficient (binary)

	diffus_binary

	Enthalpy

	enth

	Entropy

	entr

	Fugacity

	fug

	Fugacity Coefficient

	fug_coeff

	Gibbs Energy

	energy_gibbs

	Heat Capacity (const. P)

	cp

	Heat Capacity (const. V)

	cv

	Heat Capacity Ratio

	heat_capacity_ratio

	Helmholtz Energy

	energy_helmholtz

	Henry’s Constant

	henry

	Internal Energy

	energy_internal

	Mass Fraction

	mass_frac

	Material Flow

	flow

	Molecular Weight

	mw

	Mole Fraction

	mole_frac

	pH

	pH

	Pressure

	pressure

	Speed of Sound

	speed_sound

	Surface Tension

	surf_tens

	Temperature

	temperature

	Thermal Conductivity

	therm_cond

	Vapor Pressure

	pressure_sat

	Viscosity (dynamic)

	visc_d

	Viscosity (kinematic)

	visc_k

	Vapor Fraction

	vap_frac

	Volume Fraction

	vol_frac

Reaction Properties

Below is a list of all the reaction properties which currently have a standard name associated with them in the IDAES framework.

	Variable

	Standard Name

	Activation Energy

	energy_activation

	Arrhenius Coefficient

	arrhenius

	Heat of Reaction

	dh_rxn

	Entropy of Reaction

	ds_rxn

	Equilibrium Constant

	k_eq

	Reaction Rate

	reaction_rate

	Rate constant

	k_rxn

	Solubility Constant

	k_sol

Solid Properties

Below is a list of all the properties of solid materials which currently have a standard name associated with them in the IDAES framework.

	Variable

	Standard Name

	Min. Fluidization Velocity

	velocity_mf

	Min. Fluidization Voidage

	voidage_mf

	Particle Size

	particle_dia

	Pore Size

	pore_dia

	Porosity

	particle_porosity

	Specific Surface Area

	area_{basis}

	Sphericity

	sphericity

	Tortuosity

	tort

	Voidage

	bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

	Variable Name

	Meaning

	enth

	Specific enthalpy of the entire mixture (across all phases)

	flow_comp[“H2O”]

	Total flow of H2O (across all phases)

	entr_phase[“liq”]

	Specific entropy of the liquid phase mixture

	conc_phase_comp[“liq”, “H2O”]

	Concentration of H2O in the liquid phase

	temperature_red

	Reduced temperature

	pressure_crit

	Critical pressure

Configuration

Some behavior of IDAES, especially logging, is configurable through configuration
files. IDAES’s configuration is obtained by first setting everything to internal
defaults; then loading a global config file, if it exists; then loading a config
file from the current working directory, if it exists.

Configuration file are in JSON format [https://www.json.org/json-en.html]. The
default configuration is shown below and can be used as a template to create new
configuration files. This is the configuration used by IDAES if nothing else is
provided.

{
 "use_idaes_solvers":true,
 "logger_capture_solver":true,
 "logger_tags":[
 "framework",
 "model",
 "flowsheet",
 "unit",
 "control_volume",
 "properties",
 "reactions"
],
 "valid_logger_tags":[
 "framework",
 "model",
 "flowsheet",
 "unit",
 "control_volume",
 "properties",
 "reactions"
],
 "logging":{
 "version":1,
 "disable_existing_loggers":false,
 "formatters":{
 "default_format":{
 "format": "%(asctime)s [%(levelname)s] %(name)s: %(message)s",
 "datefmt": "%Y-%m-%d %H:%M:%S"
 }
 },
 "handlers":{
 "console":{
 "class": "logging.StreamHandler",
 "formatter": "default_format",
 "stream": "ext://sys.stdout"
 }
 },
 "loggers":{
 "idaes":{
 "level": "INFO",
 "propagate": true,
 "handlers": ["console"]
 },
 "idaes.solve":{
 "propagate": false,
 "level": "INFO",
 "handlers": ["console"]
 },
 "idaes.init":{
 "propagate": false,
 "level": "INFO",
 "handlers": ["console"]
 },
 "idaes.model":{
 "propagate":false,
 "level": "INFO",
 "handlers": ["console"]
 }
 }
 }
}

Global Configuration

IDAES configuration files are named idaes.conf. The easiest way to find where the
global configuration file should be placed is to run the command
idaes data-directory. A global configuration file won’t exist unless a user
creates one. The default configuration above can be used as a start.

Windows

On Windows the global configuration file is located at
%LOCALAPPDATA%\idaes\idaes.conf.

UNIX-Like

On Unix-like systems the global configuration files is located at
$HOME/.idaes/idaes.conf.

Other

On systems that have neither an %LOCALAPPDATA% or $HOME environment
variable, global config files are not currently supported.

Important Configuration Entries

The configuration file has several fields, but they are not all important to
end-users. This section lists the commonly used entries.

logging

This section of the file configures IDAES loggers. Once the configuration is
read, Python’s standard logging.config.dictConfig() is used to set the logger
configuration. See Python’s logging documentation for more information.

IDAES has four main loggers defined in the standard configuration, although
additional loggers can be added if desired. The standard loggers are:

	idaes, this is the root logger of most IDAES logging, unless otherwise noted.

	idaes.init, this is the root of IDAES initialization loggers.

	idaes.solve, this is the root of IDAES solver loggers and solver information.

	idaes.model, this is the root of model loggers. Model loggers are
usually used by models written using the IDAES framework, but not
part of the idaes package.

use_idaes_solvers

This option can be set to false to direct the IDAES framework not to use
solvers obtained with the idaes get-extensions command. This can be used if
a user would prefer to use solver versions they have installed apart from IDAES.

logger_capture_solver

If a solver call is done from inside a solver logging context, this setting will
send the solver output to the logger if true, and not capture the solver output
for the logger if false. If solver output is not captured it will be sent to
the screen, and not be logged.

logger_tags

Loggers created with the idaes.logging module can be assigned tags. Output
from these loggers is recorded if the loggers tag is in the logger_tags set.
The default behavior can be configured in a configuration file. The tag set can
also be modified at any time via functions in the idaes.logging module.

valid_log_tags

When setting logger tags for idaes.logging loggers they are compared against
a list of valid tags. This is done to guard against spelling errors. If the default
set of defined tags is not sufficient tags can be added here, or later through
functions in the idaes.logging module.

Logging

IDAES provides some logging extensions to provide finer control over information
logging and to allow solver output to be logged.

Getting Loggers

There are four main roots of IDAES loggers (idaes, idaes.model,
idaes.init, idaes.solve). All of these loggers are standard Python
loggers, and can be used as such. The main differences between using the IDAES
logging functions to get the loggers and plain Python methods are that
the IDAES functions make it a little easier to get loggers that fit into IDAES’s
standard logging hierarchy, and the IDAES loggers have a few additional named
logging levels, which allow for finer control over the information displayed.
Logging levels are described in detail later.

A tag can also be specified and used to filter logging records. By default the
tag is None and log records won’t be filtered. Valid tags are in the set {None,
"framework", "model", "flowsheet", "unit", "control_volume", "properties",
"reactions"}. Users may add to the set of valid names. To see how
to control which logging tags are logged, see section “Tags” below. To avoid
filtering out import warning and error messages, records logged at the WARNING
level and above are not filtered out regardless of tag.

idaes Logger

Loggers descending from idaes (other than idaes.init, idaes.model, or
idaes.solve) are used for general IDAES framework logging. Typically the
module name __name__ is used for the logger name. Modules in the idaes
package already start with idaes, but if an IDAES logger is requested for a
module outside of the idaes package idaes. is prepended to the name.

	
idaes.logger.getLogger(name, level=None, tag=None)

	Return an idaes logger.

	Parameters

	
	name – usually __name__

	level – standard IDAES logging level (default use IDAES config)

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__, tag="framework")

idaes.init Logger

The init logger will always descend from “idaes.init”. This logger is used in
IDAES model initialization methods, and can be used in user models as well.
Initialization methods are usually attached to a Pyomo Block. Blocks have a
name attribute. So the logger name is usually given as the block name, and
the getInitLogger() function prepends idaes.init.. The advantage of using
the block name over the module name is that users can see exactly which model
instance the initialization log messages are coming from.

	
idaes.logger.getInitLogger(name, level=None, tag=None)

	Get a model initialization logger

	Parameters

	
	name – Object name (usually Pyomo Component name)

	level – Log level

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

class DummyBlock(object):
 """A dummy block for demonstration purposes"""
 def __init__(name):
 self.name = name

 def initialize(outlvl=idaeslog.INFO):
 init_log = idaeslog.getInitLogger(self.name, level=outlvl, tag="unit")

idaes.model Logger

The model logger is used to provide a standard way to produce log messages from
user models that are not part of the idaes package. The logger name has
idaes.model prepended to the name provided by the user. This is convenient
because it provides a way to use a standard configuration system for user model
loggers. The user can choose any name they like for these loggers.

	
idaes.logger.getModelLogger(name, level=None, tag=None)

	Get a logger for an IDAES model. This function helps users keep their
loggers in a standard location and use the IDAES logging config.

	Parameters

	
	name – Name (usually __name__). Any starting ‘idaes.’ is stripped off, so
if a model is part of the idaes package, ‘idaes’ won’t be repeated.

	level – Standard Python logging level (default use IDAES config)

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getModelLogger("my_model", level=idaeslog.DEBUG, tag="model")

idaes.solve Logger

The solve logger will always descend from “idaes.solve”. This logger is
used to log solver output. Since solvers may produce a lot of output,
it can be useful to specify different handlers for the solve logger to
direct it to a separate file.

	
idaes.logger.getSolveLogger(name, level=None, tag=None)

	Get a solver logger

	Parameters

	
	name – logger name is “idaes.solve.” + name (if name starts with “idaes.”
it is removed before creating the logger name)

	level – Log level

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Tags

Logger tags are provided to allow control over what types of log records
to display. The logger tag is just a string that gets attached to a
logger, which specifies that a logger generates records of a certain
type. You can then specify what tags you want to see information from.
A filter removes any tags that are not in the list of tags to display at
levels below WARNING.

The set of tags to display information from is a global setting in the
idaes.logger module. When getting a logger, you can set its tag by
providing the tag argument, see “Getting Loggers” above.

The following functions can be used to specify which logging tags to
display:

	
idaes.logger.log_tags()

	Returns a set of logging tags to be logged.

	Returns

	(set) tags to be logged

	
idaes.logger.set_log_tags(tags)

	Specify a set of tags to be logged

	Parameters

	tags (iterable of str) – Tags to log

	Returns

	None

	
idaes.logger.add_log_tag(tag)

	Add a tag to the list of tags to log.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Tag to log

	Returns

	None

	
idaes.logger.remove_log_tag(tag)

	Remove a tag from the list of tags to log.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Tag to no longer log

	Returns

	None

The tags are validated against a list of valid tags to provide error checking
for typos and to enforce some standard tag names. To provide more flexibility,
users can add to the list of valid tag names, but cannot remove names.

	
idaes.logger.valid_log_tags()

	Returns a set of valid logging tag names.

	Returns

	(set) valid tag names

	
idaes.logger.add_valid_log_tag(tag)

	Add a tag name to the list of valid names.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – A tag name

	Returns

	None

Levels

Several logging level constants are defined in the idaes.logger module. These
include the standard Python Levels. The following levels are provided for IDAES
loggers. The additional levels of info provide finer control over the amount of
logging information produced by IDAES loggers.

	Constant Name

	Value

	Name

	Log Method

	CRITICAL

	50

	CRITICAL

	critial()

	ERROR

	40

	ERROR

	error(), exception()

	WARNING

	30

	WARNING

	warning()

	INFO_LOW

	21

	INFO

	unit_low()

	INFO

	20

	INFO

	info()

	INFO_HIGH

	19

	INFO

	unit_high()

	DEBUG

	10

	DEBUG

	debug()

	NOTSET

	0

	NOTSET

	–

Utility Functions

There are some additional utility functions to perform logging tasks that are
common in the IDAES framework.

	
idaes.logger.condition(res)

	Get the solver termination condition to log. This isn’t a specifc value
that you can really depend on, just a message to pass on from the solver for
the user’s benefit. Sometimes the solve is in a try-except, so we’ll handle
None and str for those cases, where you don’t have a real result.

Logging Solver Output

The solver output can be captured and directed to a logger using the
idaes.logger.solver_log(logger, level) context manager, which uses
pyutilib.misc.capture_output() to temporarily redirect
sys.stdout and sys.stderr to a string buffer. The logger
argument is the logger to log to, and the level argument is the
level at which records are sent to the logger. The output is logged by a
separate logging thread, so output can be logged as it is produced
instead of after the solve completes. If the solver_log() context
manager is used, it can be turned on and off by using the
idaes.logger.solver_capture_on() and
idaes.logger.solver_capture_off() functions. If the capture is off
solver output won’t be logged and it will go to standard output as
usual.

The solver_log context yields an object with tee and thread
attributes. thread is the logging thread, which is not needed for
most uses. The tee attribute should be passed to the tee
argument of the solve method. Tee tells the Pyomo solver to
display solver output. The solver log context can provide this argument
by determining if the solver output would be logged at the given level.

Example

import idaes.logger as idaeslog
import pyomo.environ as pyo

solver = pyo.SolverFactory("ipopt")

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var()
model.x.fix(3)
model.c = pyo.Constraint(expr=model.y==model.x**2)

log = idaeslog.getSolveLogger("solver.demo")
log.setLevel(idaeslog.DEBUG)

with idaeslog.solver_log(log, idaeslog.DEBUG) as slc:
 res = solver.solve(model, tee=slc.tee)

Command-line interface

The IDAES PSE Toolkit includes a command-line tool that can be invoked
by typing idaes in a UNIX or Mac OSX shell, or Windows Powershell,
that is in an installed IDAES environment. For the most part, this means
that wherever you installed IDAES will have this command available.

This section of the documentation describes the capabilities of this
command-line program.

idaes command

The base idaes command does not do anything by itself, besides set some
shared configuration values. All the real work is done by one of the sub-commands,
each of which is described on a separate page below.

	idaes bin-directory: Show IDAES executable file directory

	idaes copyright: Show IDAES copyright information

	idaes data-directory: Show IDAES data directory

	idaes get-examples: Fetch example scripts and Jupyter Notebooks

	idaes get-extensions: Get solvers and libraries

	idaes lib-directory: Show IDAES library file directory

shared configuration

	
-v

	

	
--verbose

	

Increase verbosity. Show warnings if given once, then info, and then
debugging messages.

	
-q

	

	
--quiet

	

Increase quietness. If given once, only show critical messages.
If given twice, show no messages.

idaes bin-directory: Show IDAES executable file directory

This page lists the options for the idaes “bin-directory” bin-directory.
This is invoked like:

idaes [general options] bin-directory [bin-directory options]

general options

The following general options from the idaes base command
affect the bin-directory bin-directory. They should be placed before the
“bin-directory” bin-directory, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes bin-directory

This subcommand shows the IDAES executable file directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

idaes copyright: Show IDAES copyright information

This page lists the options for the idaes “copyright” subcommand.
This is invoked like:

idaes [general options] copyright [subcommand options]

general options

The following general options from the idaes base command
affect the copyright subcommand. They should be placed before the
“copyright” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes copyright

This subcommand prints the IDAES copyright notice to
standard output.

options

	
--help

	Show the help message and exit.

idaes data-directory: Show IDAES data directory

This page lists the options for the idaes “data-directory” subcommand.
This is invoked like:

idaes [general options] data-directory [subcommand options]

general options

The following general options from the idaes base command
affect the data-directory subcommand. They should be placed before the
“data-directory” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes data-directory

This subcommand shows the IDAES data directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

idaes get-examples: Fetch example scripts and Jupyter Notebooks

This page lists the options for the idaes “get-examples” subcommand.
This is invoked like:

idaes [general options] get-examples [subcommand options]

general options

The following general options from the idaes base command
affect the get-examples subcommand. They should be placed before the
“get-examples” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes get-examples

This subcommand fetches example scripts and Jupyter Notebooks from
a given release in Github [https://github.com/IDAES/examples-pse/releases].
and puts them in a directory of the users’ choosing. If the user does not
specify a directory, the default is examples.

options

	
--help

	Show the help message and exit.

	
-d,--dir TEXT

	

Select the installation target directory. See example usage for
several examples of this option.

	
-I, --no-install

	

Do not install examples into ‘idaes_examples’ package.
Examples are installed by default so they can be imported directly
from Python. Not installing them might cause some tests, which import
the examples, to fail.

	
-l, --list-releases

	

List all available released versions, and stop.
This lets people browse the releases and select one. By default,
the release that matches the version of the currently installed “idaes”
package is used. See also the –unstable option.

	
-N, --no-download

	

Do not download anything. If the –no-install option
is also given, this means the command will essentially do nothing. Or, looked
at another way, this option means that only action will be the installation
of the “idaes_examples” package from the selected directory.

	
-U, --unstable

	

Allow and list unstable/pre-release versions. This applies to both download
and the –list-releases option.
Unstable releases are marked with “rcN” or similar suffixes.

	
-V, --version TEXT

	

Version of examples to download. The default version, which is shown for the
–help option, is the same as the version of the IDAES PSE toolkit for which
the idaes command is installed. If the version to install is unstable
(ends with “rcN”) then you will need to add the –unstable
option to avoid errors.

example usage

	idaes get-examples

	Download examples from release matching release for the idaes command,
install them in the examples subdirectory of this directory, and
install the modules found under examples/src as a package named idaes_examples.
The examples directory must not exist, i.e. the program will refuse to
overwrite the contents of an existing directory.

	idaes get-examples -d /tmp/examples

	Same as above, but put downloaded code in /tmp/examples instead.

	idaes get-examples -d /tmp/examples -I

	Download to /tmp/examples, but do not install.

	idaes get-examples -d /tmp/examples -N

	Install the examples found under /tmp/examples.

	idaes get-examples –version 1.4.2-pre

	Download examples from release 1.4.2-pre,
install them in the examples subdirectory of this directory, and
install the modules found under examples/src as a package named idaes_examples.

	idaes get-examples –list-releases

	List available releases of the examples in Github repository, idaes/examples-pse.
Do not attempt to download or install anything.

	idaes get-examples –list-releases –unstable

	Same as above, but include non-stable releases.

idaes get-extensions: Get solvers and libraries

This page lists the options for the idaes “get-extensions” subcommand.
This is invoked like:

idaes [general options] get-extensions [subcommand options]

general options

The following general options from the idaes base command
affect the get-extensions subcommand. They should be placed before the
“get-extensions” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See idaes command for details.

idaes get-extensions

This subcommand gets the compiled solvers and libraries
from a remote repository, and installs them locally.

options

	
--help

	Show the help message and exit.

	
--url

	URL from which to download the solvers/libraries.

idaes lib-directory: Show IDAES library file directory

This page lists the options for the idaes “lib-directory” subcommand.
This is invoked like:

idaes [general options] lib-directory [subcommand options]

general options

The following general options from the idaes base command
affect the lib-directory subcommand. They should be placed before the
“lib-directory” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes lib-directory

This subcommand shows the IDAES library file directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

Core Library

Core Contents

	Process Blocks

	IDAES Modeling Concepts

	Flowsheet Model Class

	Property Packages

	Unit Model Class

	Control Volume Classes

	Utility Methods

Core Overview

All components of the IDAES process modeling framework are built of Pyomo Block components (see Pyomo documentation).

The ProcessBlock class is the base class of IDAES models, and provides the common foundation for all other components.

FlowsheetModel objects represent the top level of the IDAES modeling hierarchy, and contain connected networks of unit models, or even contain other flowsheet models, which are connected by Pyomo Arcs.

Physical property packages supply information about a material’s state including physical
properties and flow rates. Reaction property packages are used in systems where chemical
reactions may take place, and supply information on reaction rates and stoichiometry, based on a
material’s state.

Equipment models are derived from UnitModel. Unit models contain control volumes
and have ports which can be used to connect material and energy flows between
unit models. On top of the balance equations usually contained in control
volumes unit models contain additional performance equations that may calculate
things like heat and mass transfer or efficiency curves.

ControlVolumes are the basic building block used to construct unit models that
contain material and energy holdup and flows in and out. These blocks contain
energy, mass, and momentum balances, as well as state and reaction
blocks associated with the material within the control volume.

More detail on the different types of modeling objects is available in the Modeling Concepts section.

Process Blocks

Example

ProcessBlock is used to simplify inheritance of Pyomo’s Block. The code below
provides an example of how a new ProcessBlock class can be implemented. The
new ProcessBlock class has a ConfigBlock that allows each element of the block to
be passed configuration options that affect how a block is built. ProcessBlocks
have a rule set by default that calls the build method of the contained
ProcessBlockData class.

from pyomo.environ import *
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class("MyBlock")
class MyBlockData(ProcessBlockData):
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
 CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
 def build(self):
 super(MyBlockData, self).build()
 self.x = Var(initialize=self.config.xinit)
 self.y = Var(initialize=self.config.yinit)

The following example demonstrates creating a scalar instance of the new class.
The default key word argument is used to pass information on the the
MyBlockData ConfigBlock.

m = ConcreteModel()
m.b = MyBlock(default={"xinit":1, "yinit":2})

The next example creates an indexed MyBlock instance. In this case, each block is
configured the same, using the default argument.

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2})

The next example uses the initialize argument to override the configuration of
the first block. Initialize is a dictionary of dictionaries where the key of the
top level dictionary is the block index and the second level dictionary is
arguments for the config block.

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2},
 initialize={0:{"xinit":1, "yinit":2}})

The next example shows a more complicated configuration where there are three
configurations, one for the first block, one for the last block, and one for the
interior blocks. This is accomplished by providing the idx_map argument to
MyBlock, which is a function that maps a block index to a index in the initialize
dictionary. In this case 0 is mapped to 0, 4 is mapped to 4, and all elements
between 0 and 4 are mapped to 1. A lambda function is used to convert the block
index to the correct index in initialize.

m = ConcreteModel()
m.b = MyBlock(
 [0,1,2,3,4],
 idx_map = lambda i: 1 if i > 0 and i < 4 else i,
 initialize={0:{"xinit":2001, "yinit":2002},
 1:{"xinit":5001, "yinit":5002},
 4:{"xinit":7001, "yinit":7002}})

The build method

The core part of any IDAES Block is the build method, which contains the instructions on how to construct the variables, constraints and other components that make up the model. The build method serves as the default rule for constructing an instance of an IDAES Block, and is triggered automatically whenever an instance of an IDAES Block is created unless a custom rule is provided by the user.

ProcessBlock Class

	
idaes.core.process_block.declare_process_block_class(name, block_class=<class 'idaes.core.process_block.ProcessBlock'>, doc='')

	Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is
derived from Pyomo’s _BlockData. It creates a ProcessBlock subclass to
contain the decorated class. The only requirment is that the subclass of
_BlockData contain a build() method. The purpose of this decorator is to
simplify subclassing Pyomo’s block class.

	Parameters

	
	name – name of class to create

	block_class – ProcessBlock or a subclass of ProcessBlock, this allows
you to use a subclass of ProcessBlock if needed. The typical use
case for Subclassing ProcessBlock is to impliment methods that
operate on elements of an indexed block.

	doc – Documentation for the class. This should play nice with sphinx.

	Returns

	Decorator function

	
class idaes.core.process_block.ProcessBlock(*args, **kwargs)

	ProcessBlock is a Pyomo Block that is part of a system to make Pyomo
Block easier to subclass. The main difference between a Pyomo Block and
ProcessBlock from the user perspective is that a ProcessBlock has a rule
assigned by default that calls the build() method for the contained
ProcessBlockData objects. The default rule can be overridden, but the new
rule should always call build() for the ProcessBlockData object.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ProcessBlock) New instance

	
classmethod base_class_module()

	Return module of the associated ProcessBase class.

	Returns

	(str) Module of the class.

	Raises

	AttributeError, if no base class module was set, e.g. this class – was not wrapped by the declare_process_block_class decorator.

	
classmethod base_class_name()

	Name given by the user to the ProcessBase class.

	Returns

	(str) Name of the class.

	Raises

	AttributeError, if no base class name was set, e.g. this class – was not wrapped by the declare_process_block_class
decorator.

	
class idaes.core.process_base.ProcessBlockData(component)

	Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to
handle arguments provided by the user when constructing an object and to
ensure that these arguments are stored in the config block.

Additionally, this class contains a number of methods common to all IDAES
classes.

	
build()

	The build method is called by the default ProcessBlock rule. If a rule
is sepecified other than the default it is important to call
ProcessBlockData’s build method to put information from the “default”
and “initialize” arguments to a ProcessBlock derived class into the
BlockData object’s ConfigBlock.

The the build method should usually be overloaded in a subclass derived
from ProcessBlockData. This method would generally add Pyomo components
such as variables, expressions, and constraints to the object. It is
important for build() methods implimented in derived classes to call
build() from the super class.

	Parameters

	None –

	Returns

	None

	
fix_initial_conditions(state='steady-state')

	This method fixes the initial conditions for dynamic models.

	Parameters

	state – initial state to use for simulation (default =
‘steady-state’)

	Returns :

	None

	
flowsheet()

	This method returns the components parent flowsheet object, i.e. the
flowsheet component to which the model is attached. If the component
has no parent flowsheet, the method returns None.

	Parameters

	None –

	Returns

	Flowsheet object or None

	
unfix_initial_conditions()

	This method unfixed the initial conditions for dynamic models.

	Parameters

	None –

	Returns :

	None

IDAES Modeling Concepts

Contents

	IDAES Modeling Concepts

	Introduction

	Time Domain

	Flowsheets

	Unit Models

	Component References

	What Belongs in Each Type of Block?

Introduction

The purpose of this section of the documentation is to explain the different parts of the IDAES modeling framework, and what components belong in each part for the hierarchy. Each component is described in greater detail later in the documentation, however this section provides a general introduction to different types of components.

Time Domain

Before starting on the different types of models present in the IDAES framework, it is important to discuss how time is handled by the framework. When a user first declares a Flowsheet model a time domain is created, the form of which depends on whether the Flowsheet is declared to be dynamic or steady-state (see FlowsheetBlock documentation). In situations where the user makes use of nested flowsheets, each sub-flowsheet refers to its parent flowsheet for the time domain.

Different models may handle the time domain differently, but in general all IDAES models refer to the time domain of their parent flowsheet. The only exception to this are blocks associated with Property calculations. PropertyBlocks represent the state of the material at a single point in space and time, and thus do not contain the time domain. Instead, PropertyBlocks are indexed by time (and space where applicable) - i.e. there is a separate PropertyBlock for each point in time. The user should keep this in mind when working with IDAES models, as it is important for understanding where the time index appears within a model.

In order to facilitate referencing of the time domain, all Flowsheet objects have a time configuration argument which is a reference to the time domain for that flowsheet. All IDAES models contain a flowsheet method which returns the parent flowsheet object, thus a reference to the time domain can always be found using the following code: flowsheet().config.time.

Another important thing to note is that steady-state models do contain a time domain, however this is generally a single point at time = 0.0. However, models still contain a reference to the time domain, and any components are still indexed by time even in a steady-state model (e.g. PropertyBlocks).

Flowsheets

The top level of the IDAES modeling framework is the Flowsheet model. Flowsheet models represent traditional process flowsheets, containing a number of Unit models representing process unit operations connected together into a flow network. Flowsheets generally contain three types of components:

	Unit models, representing unit operations,

	Arcs, representing connections between Unit models, and,

	Property Parameter blocks, representing the parameters associated with different materials present within the flowsheet.

Flowsheet models may also contain additional constraints relating to how different Unit models behave and interact, such as control and operational constraints. Generally speaking, if a Constraint is purely internal to a single unit, and does not depend on information from other units in the flowsheet, then the Constraint should be placed inside the relevant Unit model. Otherwise, the Constraint should be placed at the Flowsheet level.

Unit Models

Unit models generally represent individual pieces of equipment present within a process which perform a specific task. Unit models in turn are generally composed of two main types of components:

	Control Volume Blocks, which represent volume of material over which we wish to perform material, energy and/or momentum balances, and,

	StateBlocks and ReactionBlocks, which represent the thermophysical, transport and reaction properties of the material at a specific point in space and time.

	Inlets and Outlets, which allow Unit models to connect to other Unit models.

Unit models will also contain Constraints describing the performance of the unit, which will relate terms in the balance equations to different phenomena.

Control Volumes

A key feature of the IDAES modeling framework is the use of Control Volume Blocks. As mentioned above, Control Volumes represent a volume of material over which material, energy and/or momentum balances can be performed. Control Volume Blocks contain methods to automate the task of writing common forms of these balance equations. Control Volume Blocks can also automate the creation of StateBlocks and ReactionBlocks associated with the control volume.

Property Blocks

Property blocks represent the state of a material at a given point in space and time within the process flowsheet, and contain the state variables, thermophysical, transport and reaction properties of a material (which are functions solely of the local state of the material). Within the IDAES process modeling framework, properties are divided into two types:

	Physical properties (StateBlocks), including thermophysical and transport properties, and

	Reaction properties (ReactionBlocks), which include all properties associated with chemical reactions.

Additionally, StateBlocks contain information on the extensive flow of material at that point in space and time, which is a departure from how engineers generally think about properties. This is required to facilitate the flexible formulation of the IDAES Framework by allowing the property package to dictate what form the balance equations will take, which requires the StateBlock to know the extensive flow information.

The calculations involved in property blocks of both types generally require a set of parameters which are constant across all instances of that type of property block. Rather than each property block containing its own copy of each of these parameters (thus duplicating parameters between blocks), each type of property block is associated with a Property Parameter Block (PhysicalParameterBlock or ReactionParameterBlock). Property Parameter Blocks serve as a centralized location for the constant parameters involved in property calculations, and all property blocks of the associated type link to the parameters contained in the parameter block.

Component References

There are many situations in the IDAES modeling framework where a developer may want to make use of a modeling component (e.g. a variable or parameter) from one Block in another Block. The time domain is a good example of this - almost all Blocks within an IDAES model need to make use of the time domain, however the time domain exists only at the top level of the flowsheet structure. In order to make use of the time domain in other parts of the framework, references to the time domain are used instead. By convention, all references within the IDAES modeling framework are indicated by the suffix “_ref” attached to the name of the reference. E.g. all references to the time domain within the framework are called “time_ref”.

What Belongs in Each Type of Block?

A common question with the hierarchical structure of the IDAES framework is where does a specific variable or constraint belong (or conversely, where can I find a specific variable or constraint). In general, variables and constraints are divided based on the following guidelines:

	Property Parameter Blocks - any parameter or quantity that is consistent across all instances of a Property Block belongs in the Property Parameter Block. This includes:

	component lists,

	lists of valid phases,

	universal constants (e.g. R, \(\pi\)),

	constants used in calculating properties (e.g. coefficients for calculating \(c_p\),

	reference states (e.g. \(P_{ref}\) and \(T_{ref}\)),

	lists of reaction identifiers,

	reaction stoichiometry.

	Property Blocks - all state variables (including extensive flow information) and any quantity that is a function only of state variables plus the constraints required to calculate these. These include:

	flow rates (can be of different forms, e.g. mass or molar flow, on a total or component basis),

	temperature,

	pressure,

	intensive and extensive state functions (e.g. enthalpy); both variables and constraints.

	Control Volume Blocks - material, energy and momentum balances and the associated terms. These include:

	balance equations,

	holdup volume,

	material and energy holdups; both variables and constraints,

	material and energy accumulation terms (Pyomo.dae handles the creation of the associated derivative constraints),

	material generation terms (kinetic reactions, chemical and phase equilibrium, mass transfer),

	extent of reaction terms and constraints relating these to the equivalent generation terms,

	phase fraction within the holdup volume and constrain on the sum of phase fractions,

	heat and work transfer terms,

	pressure change term

	diffusion and conduction terms (where applicable) and associated constraints,

	Mixer and Splitter blocks for handling multiple inlets/outlets.

	Unit Model - any unit performance constraints and associated variables, such as:

	constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to reaction rate and volume),

	constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints),

	unit level efficiency constraints (e.g. relating mechanical work to fluid work).

	Flowsheet Model - any constraints related to interaction of unit models and associated variables. Examples include:

	control constraints relating behavior between different units (e.g. a constraint on valve opening based on the level in another unit).

Flowsheet Model Class

Contents

	Flowsheet Model Class

	Default Property Packages

	Flowsheet Configuration Arguments

	Flowsheet Classes

Flowsheet models make up the top level of the IDAES modeling framework, and represent the flow of material and energy through a process. Flowsheets will generally contain a number of UnitModels to represent unit operations within the process, and will contain one or more Property Packages which represent the thermophysical and transport properties of material within the process.

Flowsheet models are responsible for establishing and maintaining the time domain of the model, including declaring whether the process model will be dynamic or steady-state. This time domain is passed on to all models attached to the flowsheet (such as Unit Models and sub-Flowsheets). The Flowsheet model also serves as a centralized location for organizing property packages, and can set one property package to use as a default throughout the flowsheet.

Flowsheet Blocks may contain other Flowsheet Blocks in order to create nested flowsheets and to better organize large, complex process configurations. In these cases, the top-level Flowsheet Block creates the time domain, and each sub-flowsheet creates a reference this time domain. Sub-flowsheets may make use of any property package declared at a higher level, or declare new property package for use within itself - any of these may be set as the default property package for a sub-Flowsheet.

Default Property Packages

Flowsheet Blocks may assign a property package to use as a default for all UnitModels within the Flowsheet. If a specific property package is not provided as an argument when constructing a UnitModel, the UnitModel will search up the model tree until it finds a default property package declared. The UnitModel will use the first default property package it finds during the search, and will return an error if no default is found.

Flowsheet Configuration Arguments

Flowsheet blocks have three configuration arguments which are stored within a Config block (flowsheet.config). These arguments can be set by passing arguments when instantiating the class, and are described below:

	dynamic - indicates whether the flowsheet should be dynamic or steady-state. If dynamic = True, the flowsheet is declared to be a dynamic flowsheet, and the time domain will be a Pyomo ContunuousSet. If dynamic = False, the flowsheet is declared to be steady-state, and the time domain will be an ordered Pyomo Set. For top level Flowsheets, dynamic defaults to False if not provided. For lower level Flowsheets, the dynamic will take the same value as that of the parent model if not provided. It is possible to declare steady-state sub-Flowsheets as part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Flowsheets within steady-state Flowsheets).

	time - a reference to the time domain for the flowsheet. During flowsheet creation, users may provide a Set or ContinuousSet that the flowsheet should use as the time domain. If not provided, then the flowsheet will look for a parent flowsheet and set this equal to the parent’s time domain, otherwise a new time domain will be created and assigned here.

	time_set - used to initialize the time domain in top-level Flowsheets. When constructing the time domain in top-level Flowsheets, time_set is used to initialize the ContinuousSet or Set created. This can be used to set start and end times, and to establish points of interest in time (e.g. times when disturbances will occur). If dynamic = True, time_set defaults to [0.0, 1.0] if not provided, if dynamic = False time_set defaults to [0.0]. time_set is not used in sub-Flowsheets and will be ignored.

	default_property_package - can be used to assign the default property package for a Flowsheet. Defaults to None if not provided.

Flowsheet Classes

	
class idaes.core.flowsheet_model.FlowsheetBlockData(component)

	The FlowsheetBlockData Class forms the base class for all IDAES process
flowsheet models. The main purpose of this class is to automate the tasks
common to all flowsheet models and ensure that the necessary attributes of
a flowsheet model are present.

The most signfiicant role of the FlowsheetBlockData class is to
automatically create the time domain for the flowsheet.

	
build()

	General build method for FlowsheetBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of flowsheets.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
is_flowsheet()

	Method which returns True to indicate that this component is a
flowsheet.

	Parameters

	None –

	Returns

	True

	
model_check()

	This method runs model checks on all unit models in a flowsheet.

This method searches for objects which inherit from UnitModelBlockData
and executes the model_check method if it exists.

	Parameters

	None –

	Returns

	None

	
serialize(file_base_name, overwrite=False)

	Serializes the flowsheet and saves it to a file that can be read by the
idaes-model-vis jupyter lab extension.

	Parameters

	
	file_base_name – The file prefix to the .idaes.vis file produced.
The file is created/saved in the directory that
you ran from Jupyter Lab.

	overwrite – Boolean to overwrite an existing file_base_name.idaes.vis.
If True, the existing file with the same file_base_name will be
overwritten. This will cause you to lose any saved layout.
If False and there is an existing file with that file_base_name,
you will get an error message stating that you cannot save a file
to the file_base_name (and therefore overwriting the saved layout).
If there is not an existing file with that file_base_name then it
saves as normal. Defaults to False.

	Returns

	None

	
stream_table(true_state=False, time_point=0, orient='columns')

	Method to generate a stream table by iterating over all Arcs in the
flowsheet.

	Parameters

	
	true_state – whether the state variables (True) or display
variables (False, default) from the StateBlocks should
be used in the stream table.

	time_point – point in the time domain at which to create stream
table (default = 0)

	orient – whether stream should be shown by columns (“columns”) or
rows (“index”)

	Returns

	A pandas dataframe containing stream table information

	
class idaes.core.flowsheet_model.FlowsheetBlock(*args, **kwargs)

	FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and
contains instances of FlowsheetBlockData.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent or False, True - set as a dynamic
model, False - set as a steady-state model.}

	time

	Pointer to the time domain for the flowsheet. Users may
provide an existing time domain from another flowsheet,
otherwise the flowsheet will search for a parent with a
time domain or create a new time domain and reference it
here.

	time_set

	Set of points for initializing time domain. This should be
a list of floating point numbers, default - [0].

	default_property_package

	Indicates the default property package to be used by
models within this flowsheet if not otherwise specified,
default - None. Valid values: { None - no
default property package, a ParameterBlock object.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(FlowsheetBlock) New instance

Property Packages

	Physical Property Package Classes

	Reaction Property Package Classes

IDAES Property Packages

The IDAES process modeling framework divides property calculations into two parts;

	physical and transport properties

	chemical reaction properties

Defining the calculations to be used when calculating properties is done via “property packages”, which contain a set of related calculations for a number of properties of interest. Property packages may be general in purpose, such as ideal gas equations, or specific to a certain application.

As Needed Properties

Process flow sheets often require a large number of properties to be calculate, but not all of these are required in every unit operation. Calculating additional properties that are not required is undesirable, as it leads to larger problem sizes and unnecessary complexity of the resulting model.

To address this, the IDAES modeling framework supports “as needed” construction of properties, where the variables and constraints required to calculate a given quantity are not added to a model unless the model calls for this quantity. To designate a property as an “as needed” quantity, a method can be declared in the associated property BlockData class (StateBlockData or ReactionBlockData) which contains the instructions for constructing the variables and constraints associated with the quantity (rather than declaring these within the BlockData’s build method). The name of this method can then be associated with the property via the add_properties metadata in the property packages ParameterBlock, which indicates to the framework that when this property is called for, the associated method should be run.

The add_properties metadata can also indicate that a property should always be present (i.e. constructed in the BlockData’s build method) by setting the method to None, or that it is not supported by setting the method to False.

Physical Property Package Classes

Contents

	Physical Property Package Classes

	Physical Parameter Blocks

	State Blocks

Physical property packages represent a collection of calculations necessary to determine the state properties of a given material. Property calculations form a critical part of any process model, and thus property packages form the core of the IDAES modeling framework.

Physical property packages consist of two parts:

	PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being modeled, and

	StateBlocks, which contain the actual calculations of the state variables and functions.

Physical Parameter Blocks

Physical Parameter blocks serve as a central location for linking to a property package, and contain all the parameters and indexing sets used by a given property package.

PhysicalParameterBlock Class

The role of the PhysicalParameterBlock class is to set up the references required by the rest of the IDAES framework for constructing instances of StateBlocks and attaching these to the PhysicalParameter block for ease of use. This allows other models to be pointed to the PhysicalParameter block in order to collect the necessary information and to construct the necessary StateBlocks without the need for the user to do this manually.

Physical property packages form the core of any process model in the IDAES modeling framework, and are used by all of the other modeling components to inform them of what needs to be constructed. In order to do this, the IDAES modeling framework looks for a number of attributes in the PhysicalParameter block which are used to inform the construction of other components.

	state_block_class - a pointer to the associated class that should be called when constructing StateBlocks.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species within the mixture. This is used when doing elemental material balances.

	element_comp - (optional) a dict-like object which defines the elemental composition of each species in component_list. Form: component: {element_1: value, element_2: value, …}.

	supported properties metadata - a list of supported physical properties that the property package supports, along with instruction to the framework on how to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

Physical Parameter Configuration Arguments

Physical Parameter blocks have one standard configuration argument:

	default_arguments - this allows the user to provide a set of default values for construction arguments in associated StateBlocks, which will be passed to all StateBlocks when they are constructed.

	
class idaes.core.property_base.PhysicalParameterBlock(component)

	This is the base class for thermophysical parameter blocks. These are
blocks that contain a set of parameters associated with a specific
thermophysical property package, and are linked to by all instances of
that property package.

	
build()

	General build method for PropertyParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

	
get_phase_component_set()

	Method to get phase-component set for property package. If a phase-
component set has not been constructed yet, this method will construct
one.

	Parameters

	None –

	Returns

	Phase-component Set object

State Blocks

State Blocks are used within all IDAES Unit models (generally within ControlVolume Blocks) in order to calculate physical properties given the state of the material. State Blocks are notably different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well). There are two base Classes associated with State Blocks:

	StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to construct each instance of a State Block.

	StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

State Block Construction Arguments

State Blocks have the following construction arguments:

	parameters - a reference to the associated Physical Parameter block which will be used to make references to all necessary parameters.

	defined_state - this argument indicates whether the State Block should expect the material state to be fully defined by another part of the flowsheet (such as by an upstream unit operation). This argument is used to determine whether constraints such as sums of mole fractions should be enforced.

	has_phase_equilibrium - indicates whether the associated Control Volume or Unit model expects phase equilibrium to be enforced (if applicable).

StateBlockData Class

StateBlockData contains the code necessary for implementing the as needed construction of variables and constraints.

	
class idaes.core.property_base.StateBlockData(component)

	This is the base class for state block data objects. These are
blocks that contain the Pyomo components associated with calculating a
set of thermophysical and transport properties for a given material.

	
build()

	General build method for StateBlockDatas.

	Parameters

	None –

	Returns

	None

	
calculate_bubble_point_pressure(*args, **kwargs)

	Method which computes the bubble point pressure for a multi-
component mixture given a temperature and mole fraction.

	
calculate_bubble_point_temperature(*args, **kwargs)

	Method which computes the bubble point temperature for a multi-
component mixture given a pressure and mole fraction.

	
calculate_dew_point_pressure(*args, **kwargs)

	Method which computes the dew point pressure for a multi-
component mixture given a temperature and mole fraction.

	
calculate_dew_point_temperature(*args, **kwargs)

	Method which computes the dew point temperature for a multi-
component mixture given a pressure and mole fraction.

	
define_display_vars()

	Method used to specify components to use to generate stream tables and
other outputs. Defaults to define_state_vars, and developers should
overload as required.

	
define_port_members()

	Method used to specify components to populate Ports with. Defaults to
define_state_vars, and developers should overload as required.

	
define_state_vars()

	Method that returns a dictionary of state variables used in property
package. Implement a placeholder method which returns an Exception to
force users to overload this.

	
get_energy_density_terms(*args, **kwargs)

	Method which returns a valid expression for enthalpy density to use in
the energy balances.

	
get_energy_diffusion_terms(*args, **kwargs)

	Method which returns a valid expression for energy diffusion to use in
the energy balances.

	
get_enthalpy_flow_terms(*args, **kwargs)

	Method which returns a valid expression for enthalpy flow to use in
the energy balances.

	
get_material_density_terms(*args, **kwargs)

	Method which returns a valid expression for material density to use in
the material balances .

	
get_material_diffusion_terms(*args, **kwargs)

	Method which returns a valid expression for material diffusion to use
in the material balances.

	
get_material_flow_basis(*args, **kwargs)

	Method which returns an Enum indicating the basis of the material flow
term.

	
get_material_flow_terms(*args, **kwargs)

	Method which returns a valid expression for material flow to use in
the material balances.

StateBlock Class

	
class idaes.core.property_base.StateBlock(*args, **kwargs)

	This is the base class for state block objects. These are used when
constructing the SimpleBlock or IndexedBlock which will contain the
PropertyData objects, and contains methods that can be applied to
multiple StateBlockData objects simultaneously.

	
initialize(*args, **kwargs)

	This is a default initialization routine for StateBlocks to ensure
that a routine is present. All StateBlockData classes should
overload this method with one suited to the particular property package

	Parameters

	None –

	Returns

	None

	
report(index=0, true_state=False, dof=False, ostream=None, prefix='')

	Default report method for StateBlocks. Returns a Block report populated
with either the display or state variables defined in the
StateBlockData class.

	Parameters

	
	index – tuple of Block indices indicating which point in time (and
space if applicable) to report state at.

	true_state – whether to report the display variables (False
default) or the actual state variables (True)

	dof – whether to show local degrees of freedom in the report
(default=False)

	ostream – output stream to write report to

	prefix – string to append to the beginning of all output lines

	Returns

	Printed output to ostream

Reaction Property Package Classes

Contents

	Reaction Property Package Classes

	Reaction Parameter Blocks

	Reaction Blocks

Reaction property packages represent a collection of calculations necessary to determine the reaction behavior of a mixture at a given state. Reaction properties depend upon the state and physical properties of the material, and thus must be linked to a StateBlock which provides the necessary state and physical property information.

Reaction property packages consist of two parts:

	ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being modeled, and

	ReactionBlocks, which contain the actual calculations of the reaction behavior.

Reaction Parameter Blocks

Reaction Parameter blocks serve as a central location for linking to a reaction property package, and contain all the parameters and indexing sets used by a given reaction package.

ReactionParameterBlock Class

The role of the ReactionParameterBlock class is to set up the references required by the rest of the IDAES framework for constructing instances of ReactionBlocks and attaching these to the ReactionParameter block for ease of use. This allows other models to be pointed to the ReactionParameter block in order to collect the necessary information and to construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of what needs to be constructed when dealing with chemical reactions. In order to do this, the IDAES modeling framework looks for a number of attributes in the ReactionParameter block which are used to inform the construction of other components.

	reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

	rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions. Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of interest.

	equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	supported properties metadata - a list of supported reaction properties that the property package supports, along with instruction to the framework on how to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

	required properties metadata - a list of physical properties that the reaction property calculations depend upon, and must be supported by the associated StateBlock. This information is set using the add_required_properties attribute of the define_metadata class method.

Reaction Parameter Configuration Arguments

Reaction Parameter blocks have two standard configuration arguments:

	property_package - a pointer to a PhysicalParameterBlock which will be used to construct the StateBlocks to which associated ReactionBlocks will be linked. Reaction property packages must be tied to a single Physical property package, and this is used to validate the connections made later when constructing ReactionBlocks.

	default_arguments - this allows the user to provide a set of default values for construction arguments in associated ReactionBlocks, which will be passed to all ReactionBlocks when they are constructed.

	
class idaes.core.reaction_base.ReactionParameterBlock(component)

	This is the base class for reaction parameter blocks. These are blocks
that contain a set of parameters associated with a specific reaction
package, and are linked to by all instances of that reaction package.

	
build()

	General build method for ReactionParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

Reaction Blocks

Reaction Blocks are used within IDAES Unit models (generally within ControlVolume Blocks) in order to calculate reaction properties given the state of the material (provided by an associated StateBlock). Reaction Blocks are notably different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well), and are also not fully self contained (in that they depend upon the associated state block for certain variables). There are two bases Classes associated with Reaction Blocks:

	ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions on how to construct each instance of a Reaction Block.

	ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

Reaction Block Construction Arguments

Reaction Blocks have the following construction arguments:

	parameters - a reference to the associated Reaction Parameter block which will be used to make references to all necessary parameters.

	state_block - a reference to the associated StateBlock which will provide the necessary state and physical property information.

	has_equilibrium - indicates whether the associated Control Volume or Unit model expects chemical equilibrium to be enforced (if applicable).

ReactionBlockDataBase Class

ReactionBlockDataBase contains the code necessary for implementing the as needed construction of variables and constraints.

	
class idaes.core.reaction_base.ReactionBlockDataBase(component)

	This is the base class for reaction block data objects. These are
blocks that contain the Pyomo components associated with calculating a
set of reacion properties for a given material.

	
build()

	General build method for PropertyBlockDatas. Inheriting models should
call super().build.

	Parameters

	None –

	Returns

	None

	
get_reaction_rate_basis()

	Method which returns an Enum indicating the basis of the reaction rate
term.

ReactionBlockBase Class

	
class idaes.core.reaction_base.ReactionBlockBase(*args, **kwargs)

	This is the base class for reaction block objects. These are used when
constructing the SimpleBlock or IndexedBlock which will contain the
PropertyData objects, and contains methods that can be applied to
multiple ReactionBlockData objects simultaneously.

	
initialize(*args)

	This is a default initialization routine for ReactionBlocks to ensure
that a routine is present. All ReactionBlockData classes should
overload this method with one suited to the particular reaction package

	Parameters

	None –

	Returns

	None

Unit Model Class

The UnitModelBlock is class is designed to form the basis of all IDAES Unit Models, and contains a number of methods which are common to all Unit Models.

UnitModelBlock Construction Arguments

The UnitModelBlock class by default has only one construction argument, which is listed below. However, most models inheriting from UnitModelBlock should declare their own set of configuration arguments which contain more information on how the model should be constructed.

	dynamic - indicates whether the Unit model should be dynamic or steady-state, and if dynamic = True, the unit is declared to be a dynamic model. dynamic defaults to useDefault if not provided when instantiating the Unit model (see below for more details). It is possible to declare steady-state Unit models as part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Unit models within steady-state Flowsheets).

Collecting Time Domain

The next task of the UnitModelBlock class is to establish the time domain for the unit by collecting the necessary information from the parent Flowsheet model. If the dynamic construction argument is set to useDefault then the Unit model looks to its parent model for the dynamic argument, otherwise the value provided at construction is used.

Finally, if the Unit model has a construction argument named “has_holdup” (not part of the base class), then this is checked to ensure that if dynamic = True then has_holdup is also True. If this check fails then a ConfigurationError exception will be thrown.

Modeling Support Methods

The UnitModelBlock class also contains a number of methods designed to facilitate the construction of common components of a model, and these are described below.

Build Inlets Method

All (or almost all) Unit Models will have inlets and outlets which allow material to flow in and out of the unit being modeled. In order to save the model developer from having to write the code for each inlet themselves, UnitModelBlock contains a method named build_inlet_port which can automatically create an inlet to a specified ControlVolume block (or linked to a specified StateBlock). The build_inlet_port method is described in more detail in the documentation below.

Build Outlets Method

Similar to build_inlet_port, UnitModelBlock also has a method named build_outlet_port for constructing outlets from Unit models. The build_outlet_port method is described in more detail in the documentation below.

Model Check Method

In order to support the IDAES Model Check tools, UnitModelBlock contains a simple model_check method which assumes a single Holdup block and calls the model_check method on this block. Model developers are encouraged to create their own model_check methods for their particular applications.

Initialization Routine

All Unit Models need to have an initialization routine, which should be customized for each Unit model, In order to ensure that all Unit models have at least a basic initialization routine, UnitModelBlock contains a generic initialization procedure which may be sufficient for simple models with only one Holdup Block. Model developers are strongly encouraged to write their own initialization routines rather than relying on the default method.

UnitModelBlock Classes

	
class idaes.core.unit_model.UnitModelBlockData(component)

	This is the class for process unit operations models. These are models that
would generally appear in a process flowsheet or superstructure.

	
add_inlet_port(name=None, block=None, doc=None)

	This is a method to build inlet Port objects in a unit model and
connect these to a specified control volume or state block.

The name and block arguments are optional, but must be used together.
i.e. either both arguments are provided or neither.

	Keyword Arguments

	
	name – name to use for Port object (default = “inlet”).

	block – an instance of a ControlVolume or StateBlock to use as the
source to populate the Port object. If a ControlVolume is
provided, the method will use the inlet state block as
defined by the ControlVolume. If not provided, method will
attempt to default to an object named control_volume.

	doc – doc string for Port object (default = “Inlet Port”)

	Returns

	A Pyomo Port object and associated components.

	
add_outlet_port(name=None, block=None, doc=None)

	This is a method to build outlet Port objects in a unit model and
connect these to a specified control volume or state block.

The name and block arguments are optional, but must be used together.
i.e. either both arguments are provided or neither.

	Keyword Arguments

	
	name – name to use for Port object (default = “outlet”).

	block – an instance of a ControlVolume or StateBlock to use as the
source to populate the Port object. If a ControlVolume is
provided, the method will use the outlet state block as
defined by the ControlVolume. If not provided, method will
attempt to default to an object named control_volume.

	doc – doc string for Port object (default = “Outlet Port”)

	Returns

	A Pyomo Port object and associated components.

	
add_port(name=None, block=None, doc=None)

	This is a method to build Port objects in a unit model and
connect these to a specified StateBlock.

	Keyword Arguments

	
	name – name to use for Port object.

	block – an instance of a StateBlock to use as the source to
populate the Port object

	doc – doc string for Port object

	Returns

	A Pyomo Port object and associated components.

	
add_state_material_balances(balance_type, state_1, state_2)

	Method to add material balances linking two State Blocks in a Unit
Model. This method is not intended to replace Control Volumes, but
to automate writing material balances linking isolated State Blocks
in those models where this is required.

	Parameters

	
	- a MaterialBalanceType Enum indicating the type (balance_type) – of material balances to write

	- first State Block to be linked by balances (state_1) –

	- second State Block to be linked by balances (state_2) –

	Returns

	None

	
build()

	General build method for UnitModelBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
initialize(state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	This is a general purpose initialization routine for simple unit
models. This method assumes a single ControlVolume block called
controlVolume, and first initializes this and then attempts to solve
the entire unit.

More complex models should overload this method with their own
initialization routines,

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()

	This is a general purpose initialization routine for simple unit
models. This method assumes a single ControlVolume block called
controlVolume and tries to call the model_check method of the
controlVolume block. If an AttributeError is raised, the check is
passed.

More complex models should overload this method with a model_check
suited to the particular application, especially if there are multiple
ControlVolume blocks present.

	Parameters

	None –

	Returns

	None

	
class idaes.core.unit_model.UnitModelBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(UnitModelBlock) New instance

Control Volume Classes

	0D Control Volume Class

	1D Control Volume Class

Control Volumes are the center of the IDAES process modeling framework, and serve as the fundamental building block of all unit operations. Control Volumes represent a single, well-defined volume of material over which material, energy and/or momentum balances will be performed.

The IDAES Control Volume classes are designed to facilitate the construction of these balance equations by providing the model developer with a set of pre-built methods to perform the most common tasks in developing models of unit operations. The Control Volume classes contain methods for creating and linking the necessary property calculations and writing common forms of the balance equations so that the model developer can focus their time on the aspects that make each unit model unique.

The IDAES process modeling framework currently supports two types of Control Volume:

	ControlVolume0DBlock represents a single well-mixed volume of material with a single inlet and a single outlet. This type of control volume is sufficient to model most inlet-outlet type unit operations which do not require spatial discretization.

	ControlVolume1DBlock represents a volume with spatial variation in one dimension parallel to the material flow. This type of control volume is useful for representing flow in pipes and simple 1D flow reactors.

Common Control Volume Tasks

All of the IDAES Control Volume classes are built on a common core (ControlVolumeBlockData) which defines a set of common tasks required for all Control Volumes. The more specific Control Volume classes then build upon these common tasks to provide tools appropriate for their specific application.

All Control Volume classes begin with the following tasks:

	Determine if the ControlVolume should be steady-state or dynamic.

	Get the time domain.

	Determine whether material and energy holdups should be calculated.

	Collect information necessary for creating StateBlocks and ReactionBlocks.

	Create references to phase_list and component_list Sets in the PhysicalParameterBlock.

More details on these steps is provided later.

Setting up the time domain

The first common task the Control Volume block performs is to determine if it should be dynamic or steady-state and to collect the time domain from the UnitModel. Control Volume blocks have an argument dynamic which can be provided during construction which specifies if the Control Volume should be dynamic (dynamic=True) or steady-state (dynamic=False). If the argument is not provided, the Control Volume block will inherit this argument from its parent UnitModel.

Finally, the Control Volume checks that the has_holdup argument is consistent with the dynamic argument, and raises a ConfigurationError if it is not.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument, the Control Volume first checks to see if the UnitModel has a property_package argument set, and uses this if present. Otherwise, the Control Volume block begins searching up the model tree looking for an argument named default_property_package and uses the first of these that it finds. If no default_property_package is found, a ConfigurationError is returned.

Collecting Indexing Sets for Property Package

The final common step for all Control Volumes is to collect any required indexing sets from the physical property package (for example component and phase lists). These are used by the Control Volume for determining what balance equations need to be written, and what terms to create.

The indexing sets the Control Volume looks for are:

	component_list - used to determine what components are present, and thus what material balances are required

	phase_list - used to determine what phases are present, and thus what balance equations are required

ControlVolume and ControlVolumeBlockData Classes

A key purpose of Control Volumes is to automate as much of the task of writing a unit model as possible. For this purpose, Control Volumes support a number of methods for common tasks model developers may want to perform. The specifics of these methods will be different between different types of Control Volumes, and certain methods may not be applicable to some types of Control Volumes (in which case a NotImplementedError will be returned). A full list of potential methods is provided here, however users should check the documentation for the specific Control Volume they are using for more details on what methods are supported in that specific Control Volume.

	
class idaes.core.control_volume_base.ControlVolume(*args, **kwargs)

	This class is not usually used directly. Use ControlVolume0DBlock or ControlVolume1DBlock instead.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent, True - set as a dynamic model,
False - set as a steady-state model}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	auto_construct

	If set to True, this argument will trigger the
auto_construct method which will attempt to construct a
set of material, energy and momentum balance equations
based on the parent unit’s config block. The parent unit
must have a config block which derives from CONFIG_Base,
default - False. Valid values: { True - use
automatic construction, False - do not use automatic
construciton.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ControlVolume) New instance

	
class idaes.core.control_volume_base.ControlVolumeBlockData(component)

	The ControlVolumeBlockData Class forms the base class for all IDAES
ControlVolume models. The purpose of this class is to automate the tasks
common to all control volume blockss and ensure that the necessary
attributes of a control volume block are present.

The most signfiicant role of the ControlVolumeBlockData class is to set up
the construction arguments for the control volume block, automatically link
to the time domain of the parent block, and to get the information about
the property and reaction packages.

	
add_energy_balances(balance_type=<EnergyBalanceType.useDefault: -1>, **kwargs)

	General method for adding energy balances to a control volume.
This method makes calls to specialised sub-methods for each type of
energy balance.

	Parameters

	
	balance_type (EnergyBalanceType) – Enum indicating which type of
energy balance should be constructed.

	has_heat_of_reaction (bool [https://docs.python.org/3/library/functions.html#bool]) – whether terms for heat of reaction
should be included in energy balance

	has_heat_transfer (bool [https://docs.python.org/3/library/functions.html#bool]) – whether generic heat transfer terms
should be included in energy balances

	has_work_transfer (bool [https://docs.python.org/3/library/functions.html#bool]) – whether generic mass transfer terms
should be included in energy balances

	custom_term (Expression) – a Pyomo Expression representing custom
terms to be included in energy balances

	Returns

	Constraint objects constructed by sub-method

	
add_geometry(*args, **kwargs)

	Method for defining the geometry of the control volume.

See specific control volume documentation for details.

	
add_material_balances(balance_type=<MaterialBalanceType.useDefault: -1>, **kwargs)

	General method for adding material balances to a control volume.
This method makes calls to specialised sub-methods for each type of
material balance.

	Parameters

	
	- MaterialBalanceType Enum indicating which type of (balance_type) – material balance should be constructed.

	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom terms to (custom_mass_term) – be included in material balances on a molar basis.

	- a Pyomo Expression representing custom terms to – be included in material balances on a mass basis.

	Returns

	Constraint objects constructed by sub-method

	
add_momentum_balances(balance_type=<MomentumBalanceType.pressureTotal: 1>, **kwargs)

	General method for adding momentum balances to a control volume.
This method makes calls to specialised sub-methods for each type of
momentum balance.

	Parameters

	
	balance_type (MomentumBalanceType) – Enum indicating which type of
momentum balance should be constructed. Default =
MomentumBalanceType.pressureTotal.

	has_pressure_change (bool [https://docs.python.org/3/library/functions.html#bool]) – whether default generation terms for
pressure change should be included in momentum balances

	custom_term (Expression) – a Pyomo Expression representing custom
terms to be included in momentum balances

	Returns

	Constraint objects constructed by sub-method

	
add_phase_component_balances(*args, **kwargs)

	Method for adding material balances indexed by phase and component to
the control volume.

See specific control volume documentation for details.

	
add_phase_energy_balances(*args, **kwargs)

	Method for adding energy balances (including kinetic energy) indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_phase_enthalpy_balances(*args, **kwargs)

	Method for adding enthalpy balances indexed by phase to
the control volume.

See specific control volume documentation for details.

	
add_phase_momentum_balances(*args, **kwargs)

	Method for adding momentum balances indexed by phase to the control
volume.

See specific control volume documentation for details.

	
add_phase_pressure_balances(*args, **kwargs)

	Method for adding pressure balances indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_reaction_blocks(*args, **kwargs)

	Method for adding ReactionBlocks to the control volume.

See specific control volume documentation for details.

	
add_state_blocks(*args, **kwargs)

	Method for adding StateBlocks to the control volume.

See specific control volume documentation for details.

	
add_total_component_balances(*args, **kwargs)

	Method for adding material balances indexed by component to
the control volume.

See specific control volume documentation for details.

	
add_total_element_balances(*args, **kwargs)

	Method for adding total elemental material balances indexed to
the control volume.

See specific control volume documentation for details.

	
add_total_energy_balances(*args, **kwargs)

	Method for adding a total energy balance (including kinetic energy)
to the control volume.

See specific control volume documentation for details.

	
add_total_enthalpy_balances(*args, **kwargs)

	Method for adding a total enthalpy balance to
the control volume.

See specific control volume documentation for details.

	
add_total_material_balances(*args, **kwargs)

	Method for adding a total material balance to
the control volume.

See specific control volume documentation for details.

	
add_total_momentum_balances(*args, **kwargs)

	Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

	
add_total_pressure_balances(*args, **kwargs)

	Method for adding a total pressure balance to the control volume.

See specific control volume documentation for details.

	
build()

	General build method for Control Volumes blocks. This method calls a
number of sub-methods which automate the construction of expected
attributes of all ControlVolume blocks.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

Auto-Construct Method

To reduce the demands on unit model developers even further, Control Volumes have an optional auto-construct feature that will attempt to populate the Control Volume based on a set of instructions provided at the Unit Model level. If the auto_construct configuration argument is set to True, the following methods are called automatically in the following order when instantiating the Control Volume.

	add_geometry

	add_state_blocks

	add_reaction_blocks

	add_material_balances

	add_energy_balances

	add_momentum_balances

	apply_transformation

To determine what terms are required for the balance equations, the Control Volume expects the Unit Model to have the following configuration arguments, which are used as arguments to the methods above.

	dynamic

	has_holdup

	material_balance_type

	energy_balance_type

	momentum_balance_type

	has_rate_reactions

	has_equilibrium_reactions

	has_phase_equilibrium

	has_mass_transfer

	has_heat_of_reaction

	has_heat_transfer

	has_work_transfer

	has_pressure_change

	property_package

	property_package_args

	reaction_package

	reaction_package_args

For convenience, a template ConfigBlock (named CONFIG_Template) is available in the control_volume_base.py module which contains all the necessary arguments which can be inherited by unit models wishing to use the auto-construct feature.

0D Control Volume Class

Contents

	0D Control Volume Class

	ControlVolume0DBlock Equations

The ControlVolume0DBlock block is the most commonly used Control Volume class, and is used for systems where there is a well-mixed volume of fluid, or where variations in spatial domains are considered to be negligible. ControlVolume0DBlock blocks generally contain two StateBlocks - one for the incoming material and one for the material within and leaving the volume - and one StateBlocks.

	
class idaes.core.control_volume0d.ControlVolume0DBlock(*args, **kwargs)

	ControlVolume0DBlock is a specialized Pyomo block for IDAES non-discretized
control volume blocks, and contains instances of ControlVolume0DBlockData.

ControlVolume0DBlock should be used for any control volume with a defined
volume and distinct inlets and outlets which does not require spatial
discretization. This encompases most basic unit models used in process
modeling.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent, True - set as a dynamic model,
False - set as a steady-state model}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	auto_construct

	If set to True, this argument will trigger the
auto_construct method which will attempt to construct a
set of material, energy and momentum balance equations
based on the parent unit’s config block. The parent unit
must have a config block which derives from CONFIG_Base,
default - False. Valid values: { True - use
automatic construction, False - do not use automatic
construciton.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ControlVolume0DBlock) New instance

	
class idaes.core.control_volume0d.ControlVolume0DBlockData(component)

	0-Dimensional (Non-Discretised) ControlVolume Class

This class forms the core of all non-discretized IDAES models. It provides
methods to build property and reaction blocks, and add mass, energy and
momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

	
add_geometry()

	Method to create volume Var in ControlVolume.

	Parameters

	None –

	Returns

	None

	
add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)

	This method constructs a set of 0D material balances indexed by time,
phase and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, phase list and
component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, phase list and
component list

	Returns

	Constraint object representing material balances

	
add_phase_energy_balances(*args, **kwargs)

	Method for adding energy balances (including kinetic energy) indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_phase_enthalpy_balances(*args, **kwargs)

	Method for adding enthalpy balances indexed by phase to
the control volume.

See specific control volume documentation for details.

	
add_phase_momentum_balances(*args, **kwargs)

	Method for adding momentum balances indexed by phase to the control
volume.

See specific control volume documentation for details.

	
add_phase_pressure_balances(*args, **kwargs)

	Method for adding pressure balances indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_reaction_blocks(has_equilibrium=None)

	This method constructs the reaction block for the control volume.

	Parameters

	
	has_equilibrium – indicates whether equilibrium calculations
will be required in reaction block

	package_arguments – dict-like object of arguments to be passed to
reaction block as construction arguments

	Returns

	None

	
add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)

	This method constructs the inlet and outlet state blocks for the
control volume.

	Parameters

	
	information_flow – a FlowDirection Enum indicating whether
information flows from inlet-to-outlet or
outlet-to-inlet

	has_phase_equilibrium – indicates whether equilibrium calculations
will be required in state blocks

	package_arguments – dict-like object of arguments to be passed to
state blocks as construction arguments

	Returns

	None

	
add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)

	This method constructs a set of 0D material balances indexed by time
and component.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom terms to (custom_mass_term) – be included in material balances on a molar basis.
Expression must be indexed by time, phase list and
component list

	- a Pyomo Expression representing custom terms to – be included in material balances on a mass basis.
Expression must be indexed by time, phase list and
component list

	Returns

	Constraint object representing material balances

	
add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_elemental_term=None)

	This method constructs a set of 0D element balances indexed by time.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom (custom_elemental_term) – terms to be included in material balances on a molar
elemental basis. Expression must be indexed by time and
element list

	Returns

	Constraint object representing material balances

	
add_total_energy_balances(*args, **kwargs)

	Method for adding a total energy balance (including kinetic energy)
to the control volume.

See specific control volume documentation for details.

	
add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=False, custom_term=None)

	This method constructs a set of 0D enthalpy balances indexed by time
and phase.

	Parameters

	
	- whether terms for heat of reaction should (has_heat_of_reaction) – be included in enthalpy balance

	- whether terms for heat transfer should be (has_heat_transfer) – included in enthalpy balances

	- whether terms for work transfer should be (has_work_transfer) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in enthalpy balances.
Expression must be indexed by time and phase list

	Returns

	Constraint object representing enthalpy balances

	
add_total_material_balances(*args, **kwargs)

	Method for adding a total material balance to
the control volume.

See specific control volume documentation for details.

	
add_total_momentum_balances(*args, **kwargs)

	Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

	
add_total_pressure_balances(has_pressure_change=False, custom_term=None)

	This method constructs a set of 0D pressure balances indexed by time.

	Parameters

	
	- whether terms for pressure change should be (has_pressure_change) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in pressure balances.
Expression must be indexed by time

	Returns

	Constraint object representing pressure balances

	
build()

	Build method for ControlVolume0DBlock blocks.

	Returns

	None

	
initialize(state_args=None, outlvl=0, optarg=None, solver='ipopt', hold_state=True)

	Initialization routine for 0D control volume (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output log level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - True. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

ControlVolume0DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVolume0DBlock class.

	\(t\) indicates time index

	\(p\) indicates phase index

	\(j\) indicates component index

	\(e\) indicates element index

	\(r\) indicates reaction name index

add_geometry

The add_geometry method creates a single variable within the control volume named volume indexed by time (allowing for varying volume over time). A number of other methods depend on this variable being present, thus this method should generally be called first.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	volume

	\(V_t\)

	t

	None

Constraints

No additional constraints

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam). Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,p,j}\)

	t, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,p,j}}{\partial t}\)

	t, p, j

	dynamic = True

	rate_reaction_generation

	\(N_{kinetic,t,p,j}\)

	t, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,r}\)

	t, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,p,j}\)

	t, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,r}\)

	t, r

	has_equilibrium_reactions = True

	phase_equilibrium_generation

	\(N_{pe,t,p,j}\)

	t, p ,j

	has_phase_equilibrium = True

	mass_transfer_term

	\(N_{transfer,t,p,j}\)

	t, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, p, j):

\[\frac{\partial M_{t, p, j}}{\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}\]

The \(N_{custom, t, p, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

\[M_{t, p, j} = \rho_{t, p, j} \times V_{t} \times \phi_{t, p}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, p, j):

\[N_{kinetic, t, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

\[N_{equilibrium, t, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam). Most terms in the balance equations are still indexed by both phase and component however. Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,p,j}\)

	t, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,p,j}}{\partial t}\)

	t, p, j

	dynamic = True

	rate_reaction_generation

	\(N_{kinetic,t,p,j}\)

	t, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,r}\)

	t, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,p,j}\)

	t, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,r}\)

	t, r

	has_equilibrium_reactions = True

	mass_transfer_term

	\(N_{transfer,t,p,j}\)

	t, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, j):

\[\sum_p{\frac{\partial M_{t, p, j}}{\partial t}} = \sum_p{F_{in, t, p, j}} - \sum_p{F_{out, t, p, j}} + \sum_p{N_{kinetic, t, p, j}} + \sum_p{N_{equilibrium, t, p, j}} + \sum_p{N_{pe, t, p, j}} + \sum_p{N_{transfer, t, p, j}} + N_{custom, t, j}\]

The \(N_{custom, t, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

\[M_{t, p, j} = \rho_{t, p, j} \times V_{t} \times \phi_{t, p}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True,, rate_reaction_stoichiometry_constraint(t, p, j):

\[N_{kinetic, t, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

\[N_{equilibrium, t, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	element_holdup

	\(M_{t,e}\)

	t, e

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	element_accumulation

	\(\frac{\partial M_{t,e}}{\partial t}\)

	t, e

	dynamic = True

	elemental_mass_transfer_term

	\(N_{transfer,t,e}\)

	t, e

	has_mass_transfer = True

Expressions

elemental_flow_in(t, p, e):

\[F_{in,t,p,e} = \sum_j{F_{in, t, p, j}} \times n_{j, e}\]

elemental_flow_out(t, p, e):

\[F_{out,t,p,e} = \sum_j{F_{out, t, p, j}} \times n_{j, e}\]

where \(n_{j, e}\) is the number of moles of element \(e\) in component \(j\).

Constraints

element_balances(t, e):

\[\frac{\partial M_{t, e}}{\partial t} = \sum_p{F_{in, t, p, e}} - \sum_p{F_{out, t, p, e}} + \sum_p{N_{transfer, t, e}} + N_{custom, t, e}\]

The \(N_{custom, t, e}\) term allows the user to provide custom terms (variables or expressions) which will be added into the material balances.

If has_holdup is True, elemental_holdup_calculation(t, e):

\[M_{t, e} = V_{t} \times \sum_{p, j}{\phi_{t, p} \times \rho_{t, p, j} \times n_{j, e}}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,e}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	enthalpy_holdup

	\(E_{t,p}\)

	t, p

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	enthalpy_accumulation

	\(\frac{\partial E_{t,p}}{\partial t}\)

	t, p

	dynamic = True

	heat

	\(Q_{t}\)

	t

	has_heat_transfer = True

	work

	\(W_{t}\)

	t

	has_work_transfer = True

Expressions

heat_of_reaction(t):

\[Q_{rxn, t} = sum_r{X_{kinetic, t, r} \times \Delta H_{rxn, r}} + sum_r{X_{equilibrium, t, r} \times \Delta H_{rxn, r}}\]

where \(Q_{rxn, t}\) is the total enthalpy released by both kinetic and equilibrium reactions, and \(\Delta H_{rxn, r}\) is the specific heat of reaction for reaction \(r\).

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_energy

	\(s_{energy}\)

	1E-6

Constraints

enthalpy_balance(t):

\[s_{energy} \times \sum_p{\frac{\partial E_{t, p}}{\partial t}} = s_{energy} \times \sum_p{H_{in, t, p}} - s_{energy} \times \sum_p{H_{out, t, p}} + s_{energy} \times Q_t + s_{energy} \times W_t + s_{energy} \times Q_{rxn, t} + s_{energy} \times E_{custom, t}\]

The \(E_{custom, t}\) term allows the user to provide custom terms which will be added into the energy balance.

If has_holdup is True, enthalpy_holdup_calculation(t, p):

\[E_{t, p} = h_{t, p} \times V_{t} \times \phi_{t, p}\]

where \(h_{t, p}\) is the enthalpy density (specific enthalpy) of phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial E_{t,p}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	deltaP

	\(\Delta P_{t}\)

	t

	has_pressure_change = True

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_pressure

	\(s_{pressure}\)

	1E-4

Constraints

pressure_balance(t):

\[0 = s_{pressure} \times P_{in, t} - s_{pressure} \times P_{out, t} + s_{pressure} \times \Delta P_t + s_{pressure} \times \Delta P_{custom, t}\]

The \(\Delta P_{custom, t}\) term allows the user to provide custom terms which will be added into the pressure balance.

1D Control Volume Class

Contents

	1D Control Volume Class

	ControlVolume1DBlock Equations

The ControlVolume1DBlock block is used for systems with one spatial dimension where material flows parallel to the spatial domain. Examples of these types of unit operations include plug flow reactors and pipes. ControlVolume1DBlock blocks are discretized along the length domain and contain one StateBlock and one ReactionBlock (if applicable) at each point in the domain (including the inlet and outlet).

	
class idaes.core.control_volume1d.ControlVolume1DBlock(*args, **kwargs)

	ControlVolume1DBlock is a specialized Pyomo block for IDAES control volume
blocks discretized in one spatial direction, and contains instances of
ControlVolume1DBlockData.

ControlVolume1DBlock should be used for any control volume with a defined
volume and distinct inlets and outlets where there is a single spatial
domain parallel to the material flow direction. This encompases unit
operations such as plug flow reactors and pipes.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent, True - set as a dynamic model,
False - set as a steady-state model}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	auto_construct

	If set to True, this argument will trigger the
auto_construct method which will attempt to construct a
set of material, energy and momentum balance equations
based on the parent unit’s config block. The parent unit
must have a config block which derives from CONFIG_Base,
default - False. Valid values: { True - use
automatic construction, False - do not use automatic
construciton.}

	area_definition

	Argument defining whether area variable should be
spatially variant or not. default -
DistributedVars.uniform. Valid values: {
DistributedVars.uniform - area does not vary across
spatial domian, DistributedVars.variant - area can vary
over the domain and is indexed by time and space.}

	transformation_method

	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory.

	transformation_scheme

	Scheme to use when transformating domain. See Pyomo
documentation for supported schemes.

	finite_elements

	Number of finite elements to use in transformation
(equivalent to Pyomo nfe argument).

	collocation_points

	Number of collocation points to use (equivalent to Pyomo
ncp argument).

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ControlVolume1DBlock) New instance

	
class idaes.core.control_volume1d.ControlVolume1DBlockData(component)

	1-Dimensional ControlVolume Class

This class forms the core of all 1-D IDAES models. It provides
methods to build property and reaction blocks, and add mass, energy and
momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

	
add_geometry(length_domain=None, length_domain_set=[0.0, 1.0], flow_direction=<FlowDirection.forward: 1>)

	Method to create spatial domain and volume Var in ControlVolume.

	Parameters

	
	- (length_domain_set) – domain for the ControlVolume. If not provided, a
new ContinuousSet will be created (default=None).
ContinuousSet should be normalized to run between
0 and 1.

	- – a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0]).

	- argument indicating direction of material flow (flow_direction) –
	relative to length domain. Valid values:

	
	FlowDirection.forward (default), flow goes
from 0 to 1.

	FlowDirection.backward, flow goes from 1 to 0

	Returns

	None

	
add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)

	This method constructs a set of 1D material balances indexed by time,
length, phase and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, length domain, phase
list and component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, length domain, phase
list and component list

	Returns

	Constraint object representing material balances

	
add_phase_energy_balances(*args, **kwargs)

	Method for adding energy balances (including kinetic energy) indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_phase_enthalpy_balances(*args, **kwargs)

	Method for adding enthalpy balances indexed by phase to
the control volume.

See specific control volume documentation for details.

	
add_phase_momentum_balances(*args, **kwargs)

	Method for adding momentum balances indexed by phase to the control
volume.

See specific control volume documentation for details.

	
add_phase_pressure_balances(*args, **kwargs)

	Method for adding pressure balances indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_reaction_blocks(has_equilibrium=None)

	This method constructs the reaction block for the control volume.

	Parameters

	
	has_equilibrium – indicates whether equilibrium calculations
will be required in reaction block

	package_arguments – dict-like object of arguments to be passed to
reaction block as construction arguments

	Returns

	None

	
add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)

	This method constructs the state blocks for the
control volume.

	Parameters

	
	information_flow – a FlowDirection Enum indicating whether
information flows from inlet-to-outlet or
outlet-to-inlet

	has_phase_equilibrium – indicates whether equilibrium calculations
will be required in state blocks

	package_arguments – dict-like object of arguments to be passed to
state blocks as construction arguments

	Returns

	None

	
add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)

	This method constructs a set of 1D material balances indexed by time
length and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, length domain and
component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, length domain and
component list

	Returns

	Constraint object representing material balances

	
add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_elemental_term=None)

	This method constructs a set of 1D element balances indexed by time and
length.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom (custom_elemental_term) – terms to be included in material balances on a molar
elemental basis. Expression must be indexed by time, length
and element list

	Returns

	Constraint object representing material balances

	
add_total_energy_balances(*args, **kwargs)

	Method for adding a total energy balance (including kinetic energy)
to the control volume.

See specific control volume documentation for details.

	
add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=False, custom_term=None)

	This method constructs a set of 1D enthalpy balances indexed by time
and phase.

	Parameters

	
	- whether terms for heat of reaction should (has_heat_of_reaction) – be included in enthalpy balance

	- whether terms for heat transfer should be (has_heat_transfer) – included in enthalpy balances

	- whether terms for work transfer should be (has_work_transfer) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in enthalpy balances.
Expression must be indexed by time, length and phase list

	Returns

	Constraint object representing enthalpy balances

	
add_total_material_balances(*args, **kwargs)

	Method for adding a total material balance to
the control volume.

See specific control volume documentation for details.

	
add_total_momentum_balances(*args, **kwargs)

	Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

	
add_total_pressure_balances(has_pressure_change=False, custom_term=None)

	This method constructs a set of 1D pressure balances indexed by time.

	Parameters

	
	- whether terms for pressure change should be (has_pressure_change) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in pressure balances.
Expression must be indexed by time and length domain

	Returns

	Constraint object representing pressure balances

	
apply_transformation()

	Method to apply DAE transformation to the Control Volume length domain.
Transformation applied will be based on the Control Volume
configuration arguments.

	
build()

	Build method for ControlVolume1DBlock blocks.

	Returns

	None

	
initialize(state_args=None, outlvl=0, optarg=None, solver='ipopt', hold_state=True)

	Initialization routine for 1D control volume (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - True. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization else the release state is
triggered.

	
model_check()

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

	
report(time_point=0, dof=False, ostream=None, prefix='')

	No report method defined for ControlVolume1D class. This is due to the
difficulty of presenting spatially discretized data in a readable form
without plotting.

ControlVolume1DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVolume0DBlock class.

	\(t\) indicates time index

	\(x\) indicates spatial (length) index

	\(p\) indicates phase index

	\(j\) indicates component index

	\(e\) indicates element index

	\(r\) indicates reaction name index

Most terms within the balance equations written by ControlVolume1DBlock are on a basis of per unit length (e.g. \(mol/m \cdot s\)).

add_geometry

The add_geometry method creates the normalized length domain for the control volume (or a reference to an external domain). All constraints in ControlVolume1DBlock assume a normalized length domain, with values between 0 and 1.

This method also adds variables and constraints to describe the geometry of the control volume. ControlVolume1DBlock does not support varying dimensions of the control volume with time at this stage.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	length_domain

	\(x\)

	None

	None

	volume

	\(V\)

	None

	None

	area

	\(A\)

	None

	None

	length

	\(L\)

	None

	None

Constraints

geometry_constraint:

\[V = A \times L\]

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam). Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,x,p,j}\)

	t, x, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,x,p,j}}{\partial t}\)

	t, x, p, j

	dynamic = True

	_flow_terms

	\(F_{t, x, p, j}\)

	t, x, p, j

	None

	material_flow_dx

	\(\frac{\partial F_{t,x,p,j}}{\partial x}\)

	t, x, p, j

	None

	rate_reaction_generation

	\(N_{kinetic,t,x,p,j}\)

	t, x, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,x,r}\)

	t, x, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,x,p,j}\)

	t, x, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,x,r}\)

	t, x, r

	has_equilibrium_reactions = True

	phase_equilibrium_generation

	\(N_{pe,t,x,p,j}\)

	t, x, p ,j

	has_phase_equilibrium = True

	mass_transfer_term

	\(N_{transfer,t,x,p,j}\)

	t, x, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

\[L \times \frac{\partial M_{t, x, p, j}}{\partial t} = fd \times \frac{\partial F_{t, x, p, j}}{\partial x} + L \times N_{kinetic, t, x, p, j} + L \times N_{equilibrium, t, x, p, j} + L \times N_{pe, t, x, p, j} + L \times N_{transfer, t, x, p, j} + L \times N_{custom, t, x, p, j}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, p, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

\[M_{t, x, p, j} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{kinetic, t, x, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{equilibrium, t, x, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam). Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,x,p,j}\)

	t, x, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,x,p,j}}{\partial t}\)

	t, x, p, j

	dynamic = True

	_flow_terms

	\(F_{t, x, p, j}\)

	t, x, p, j

	None

	material_flow_dx

	\(\frac{\partial F_{t,x,p,j}}{\partial x}\)

	t, x, p, j

	None

	rate_reaction_generation

	\(N_{kinetic,t,x,p,j}\)

	t, x, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,x,r}\)

	t, x, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,x,p,j}\)

	t, x, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,x,r}\)

	t, x, r

	has_equilibrium_reactions = True

	mass_transfer_term

	\(N_{transfer,t,x,p,j}\)

	t, x, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

\[L \times \sum_p{\frac{\partial M_{t, x, p, j}}{\partial t}} = fd \times \sum{\frac{\partial F_{t, x, p, j}}{\partial x}} + L \times \sum_p{N_{kinetic, t, x, p, j}} + L \times \sum_p{N_{equilibrium, t, x, p, j}} + L \times \sum_p{N_{transfer, t, x, p, j}} + L \times N_{custom, t, x, j}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

\[M_{t, x, p, j} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{kinetic, t, x, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{equilibrium, t, x, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	element_holdup

	\(M_{t,x,e}\)

	t, x, e

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	element_accumulation

	\(\frac{\partial M_{t,x,e}}{\partial t}\)

	t, x, e

	dynamic = True

	elemental_mass_transfer_term

	\(N_{transfer,t,x,e}\)

	t, x, e

	has_mass_transfer = True

	elemental_flow_term

	\(F_{t,x,e}\)

	t, x, e

	None

Constraints

elemental_flow_constraint(t, x, e):

\[F_{t,x,e} = \sum_p{\sum_j{F_{t,x,p,j} \times n_{j, e}}}\]

where \(n_{j, e}\) is the number of moles of element \(e\) in component \(j\).

element_balances(t, x, e):

\[L \times \frac{\partial M_{t, x, e}}{\partial t} = fd \times \frac{\partial F_{t, x, e}}{\partial x} + L \times N_{transfer, t, p, j} + L \times N_{custom, t, e}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, e}\) term allows the user to provide custom terms (variables or expressions) which will be added into the material balances.

If has_holdup is True, elemental_holdup_calculation(t, x, e):

\[M_{t, x, e} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture at each point in the spatial domain.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	enthalpy_holdup

	\(E_{t,x,p}\)

	t, x, p

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	enthalpy_accumulation

	\(\frac{\partial E_{t,x,p}}{\partial t}\)

	t, x, p

	dynamic = True

	_enthalpy_flow

	\(H_{t,x,p}\)

	t, x, p

	None

	enthalpy_flow_dx

	\(\frac{\partial H_{t,x,p}}{\partial x}\)

	t, x, p

	None

	heat

	\(Q_{t,x}\)

	t, x

	has_heat_transfer = True

	work

	\(W_{t,x}\)

	t, x

	has_work_transfer = True

Expressions

heat_of_reaction(t, x):

\[Q_{rxn, t, x} = sum_r{X_{kinetic, t, x, r} \times \Delta H_{rxn, r}} + sum_r{X_{equilibrium, t, x, r} \times \Delta H_{rxn, r}}\]

where \(Q_{rxn, t, x}\) is the total enthalpy released by both kinetic and equilibrium reactions, and \(\Delta H_{rxn, r}\) is the specific heat of reaction for reaction \(r\).

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_energy

	\(s_{energy}\)

	1E-6

Constraints

enthalpy_balance(t):

\[s_{energy} \times L \times \sum_p{\frac{\partial E_{t, x, p}}{\partial t}} = s_{energy} \times fd \ times \sum_p{\frac{\partial H_{t, x, p}}{\partial x}} + s_{energy} \times L \times Q_{t,x} + s_{energy} \times L \times W_{t,x} + s_{energy} \times L \times Q_{rxn, t, x} + s_{energy} \times L \times E_{custom, t, x}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(E_{custom, t, x}\) term allows the user to provide custom terms which will be added into the energy balance.

enthalpy_flow_linking_constraints(t, x, p):

This constraint is an internal constraint used to link the extensive enthalpy flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, enthalpy_holdup_calculation(t, x, p):

\[E_{t, x, p} = h_{t, x, p} \times A \times \phi_{t, x, p}\]

where \(h_{t, x, p}\) is the enthalpy density (specific enthalpy) of phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial E_{t,x,p}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture at all points in the spatial domain.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	pressure

	\(P_{t,x}\)

	t, x

	None

	pressure_dx

	\(\frac{\partial P_{t,x}}{\partial x}\)

	t, x

	None

	deltaP

	\(\Delta P_{t,x}\)

	t, x

	has_pressure_change = True

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_pressure

	\(s_{pressure}\)

	1E-4

Constraints

pressure_balance(t, x):

\[0 = s_{pressure} \times fd \times \frac{\partial P_{t,x}}{\partial x} + s_{pressure} \times L \times \Delta P_{t,x} + s_{pressure} \times L \times \Delta P_{custom, t, x}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(\Delta P_{custom, t, x}\) term allows the user to provide custom terms which will be added into the pressure balance.

pressure_linking_constraint(t, x):

This constraint is an internal constraint used to link the pressure terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

Utility Methods

	Utilities for Dynamic Flowsheets

	Homotopy Meta-Solver

	Initialization Methods

	Model State Serialization

	Model Statistics Methods

	Scaling

	Table Methods

Utilities for Dynamic Flowsheets

These are utility functions for working with dynamic IDAES flowsheets.

Methods

This module contains utility functions for dynamic IDAES models.

	
idaes.core.util.dyn_utils.copy_non_time_indexed_values(fs_tgt, fs_src, copy_fixed=True)

	Function to set the values of all variables that are not (implicitly
or explicitly) indexed by time to their values in a different flowsheet.

	Parameters

	
	fs_tgt – Flowsheet into which values will be copied.

	fs_src – Flowsheet from which values will be copied.

	copy_fixed – Bool marking whether or not to copy over fixed variables
in the target flowsheet.

	Returns

	None

	
idaes.core.util.dyn_utils.copy_values_at_time(fs_tgt, fs_src, t_target, t_source, copy_fixed=True, outlvl=0)

	Function to set the values of all (explicitly or implicitly) time-indexed
variables in a flowsheet to similar values (with the same name) but at
different points in time and (potentially) in different flowsheets.

	Parameters

	
	fs_tgt – Target flowsheet, whose variables’ values will get set

	fs_src – Source flowsheet, whose variables’ values will be used to
set those of the target flowsheet. Could be the target
flowsheet

	t_target – Target time point

	t_source – Source time point

	copy_fixed – Bool of whether or not to copy over fixed variables in
target model

	outlvl – IDAES logger output level

	Returns

	None

	
idaes.core.util.dyn_utils.deactivate_constraints_unindexed_by(b, time)

	Searches block b for and constraints not indexed by time
and deactivates them.

	Parameters

	
	b – Block to search

	time – Set with respect to which to find unindexed constraints

	Returns

	List of constraints deactivated

	
idaes.core.util.dyn_utils.deactivate_model_at(b, cset, pts, outlvl=0)

	Finds any block or constraint in block b, indexed explicitly (and not
implicitly) by cset, and deactivates it at points specified.
Implicitly indexed components are excluded because one of their parent
blocks will be deactivated, so deactivating them too would be redundant.

	Parameters

	
	b – Block to search

	cset – ContinuousSet of interest

	pts – Value or list of values, in ContinuousSet, to deactivate at

	Returns

	A dictionary mapping points in pts to lists of
component data that have been deactivated there

	
idaes.core.util.dyn_utils.fix_vars_unindexed_by(b, time)

	Searches block b for variables not indexed by time
and fixes them.

	Parameters

	
	b – Block to search

	time – Set with respect to which to find unindexed variables

	Returns

	List of variables fixed

	
idaes.core.util.dyn_utils.get_activity_dict(b)

	Function that builds a dictionary telling whether or not each
ConstraintData and BlockData object in a model is active.
Uses the objects’ ids as the hash.

	Parameters

	b – A Pyomo Block to be searched for active components

	Returns

	A dictionary mapping id of constraint and block data objects
to a bool indicating if they are active

	
idaes.core.util.dyn_utils.get_derivatives_at(b, time, pts)

	Finds derivatives with respect to time at points specified.
No distinction made for multiple derivatives or mixed partials.

	Parameters

	
	b – Block to search for derivatives

	time – ContinuousSet to look for derivatives with respect to

	pts – Value or list of values in time set at which to return
derivatives

	Returns

	Dictionary mapping time points to lists of derivatives
at those points

	
idaes.core.util.dyn_utils.get_index_set_except(comp, *sets)

	Function for getting indices of a component over a product of its
indexing sets other than those specified. Indices for the specified
sets can be used to construct indices of the proper dimension for the
original component via the index_getter function.

	Parameters

	
	comp – Component whose indexing sets are to be manipulated

	sets – Sets to omit from the set_except product

	Returns

	A dictionary. Maps ‘set_except’ to a Pyomo Set or SetProduct
of comp’s index set, excluding those in sets. Maps
‘index_getter’ to a function that returns an index of the
proper dimension for comp, given an element of set_except
and a value for each set excluded. These values must be provided
in the same order their Sets were provided in the sets argument.

	
idaes.core.util.dyn_utils.is_explicitly_indexed_by(comp, *sets)

	Function for determining whether a pyomo component is indexed by a
set or group of sets.

	Parameters

	
	comp – some Pyomo component, possibly indexed

	sets – Pyomo Sets to check indexing by

	Returns

	A bool that is True if comp is directly indexed each set in sets.

	
idaes.core.util.dyn_utils.is_implicitly_indexed_by(comp, s, stop_at=None)

	Function for determining whether a component is contained in a
block that is indexed by a particular set.

	Parameters

	
	comp – Component whose parent blocks are checked

	s – Set for which indices are checked

	stop_at – Block at which to stop searching if reached, regardless
of whether or not it is indexed by s

	Returns

	Bool that is true if comp is contained in a block indexed by s

	
idaes.core.util.dyn_utils.path_from_block(comp, blk, include_comp=False)

	Returns a list of tuples with (local_name, index) pairs required
to locate comp from blk

	Parameters

	
	comp – Component(Data) object to locate

	blk – Block(Data) to locate comp from

	include_comp – Bool of whether or not to include the
local_name, index of the component itself

	Returns

	A list of string, index tuples that can be used to locate
comp from blk

Homotopy Meta-Solver

The IDAES homotopy meta-solver is useful for cases where a user has a feasible solution to a well-defined (i.e. square) problem at one set of conditions (i.e. value of fixed variables), and wishes to find a feasible solution to the same problem at a different set of conditions. In many situations this can be achieved by directly changing the values of the fixed variables to their new values and solving the problem, but cases exist where this is challenging. Homotopy solvers try to find a feasible path to the new solution by taking smaller steps in the value of the fixed variables to progressively find a solution at the new point.

Note

A homotopy solver should not be considered a fix to a poorly posed or
ill-conditioned problem, and users should first consider whether their
problem can be reformulated for better performance.

Homotopy Routine

The IDAES homotopy routine starts from a feasible solution to the problem at the initial values for the fixed variables (\(v_0\)) and a set of target values for these (\(t\)). The routine then calculates a set of new values for the fixed variables during the first homotopy evaluation based on an initial step size \(s_0\) such that:

\[v_1 = t \times s_0 + v_0 \times (1-s_0)\]

The problem is then passed to Ipopt to try to find a solution at the current values for the fixed variables. Based on the success or failure of the solver step, the following occurs:

	If the solver returns an optimal solution, the step is accepted and the solution to the current state of the model is saved (to provide a feasible point to revert to in case a future step fails). If the current meta-solver progress is 1 (i.e. it has converged to the target values), the meta-solver terminates otherwise the meta-solver progress (\(p_i\)) is then updated, \(p_i = p_{i-1} + s_i\), and the size of the next homotopy step is then calculated based on an adaptive step size method such that:

\[s_{i+1} = s_i \times \left(1 + a \times \left[\frac{I_t}{I_a}-1\right]\right)\]

where \(I_a\) is the number of solver iterations required in the current homotopy step, \(I_t\) is the desired number of solver iterations per homotopy step (an input parameter to the homotopy routine) and \(a\) is a step size acceleration factor (another input parameter). As such, the size of the homotopy step is adjusted to try to achieve a desired number of solver iterations per step as a proxy for difficulty in solving each step. If new step would overshoot the target values, then the step size is cut back to match the target values. The user can also specify a maximum and/or minimum size for the homotopy which can be used to limit the homotopy step.

A new set of values for the fixed variables is calculated using \(v_{i+1} = t \times (p_i+s_{i+1}) + v_0 \times (1-(p_i+s_{i+1}))\) and the process repeated.

	If the solver fails to find an optimal solution (for any reason), the current step is rejected and solution to the previous successful step is reloaded. If the last homotopy step was equal to the minimum homotopy step size, the meta-solver terminates, otherwise, a reduced homotopy step is calculated using:

\[s_{i+1} = s_i \times c\]

where \(c\) is a step cut factor (an input parameter between 0.1 and 0.9). If the new step homotopy step is less than the minimum homotopy step size, the minimum step is used instead.

A new set of fixed variable values are then calculated and another attempt to solve the problem is made.

Possible Termination Conditions

The homotopy meta-solver has the following possible termination conditions (using the Pyomo TerminationCondition Enum):

	TerminationCondition.optimal - meta-solver successfully converged at the target values for the fixed variables.

	TerminationCondition.other - the meta-solver successfully converged at the target values for the fixed variables, but with regularization of during final step. Users are recommended to discard this solution.

	TerminationCondition.minStepLength - the meta-solver was unable to find a feasible path to the target values, as the solver failed to find a solution using the minimum homotopy step size.

	TerminationCondition.maxEvaluations - the meta-solver terminated due to reaching the maximum allowed number of attempted homotopy steps

	TerminationCondition.infeasible - could not find feasible solution to the problem at the initial values for the fixed variables.

Available Methods

IDAES Homotopy meta-solver routine.

	
idaes.core.util.homotopy.homotopy(model, variables, targets, max_solver_iterations=50, max_solver_time=10, step_init=0.1, step_cut=0.5, iter_target=4, step_accel=0.5, max_step=1, min_step=0.05, max_eval=200)

	Homotopy meta-solver routine using Ipopt as the non-linear solver. This
routine takes a model along with a list of fixed variables in that model
and a list of target values for those variables. The routine then tries to
iteratively move the values of the fixed variables to their target values
using an adaptive step size.

	Parameters

	
	model – model to be solved

	variables – list of Pyomo Var objects to be varied using homotopy.
Variables must be fixed.

	targets – list of target values for each variable

	max_solver_iterations – maximum number of solver iterations per
homotopy step (default=50)

	max_solver_time – maximum cpu time for the solver per homotopy step
(default=10)

	step_init – initial homotopy step size (default=0.1)

	step_cut – factor by which to reduce step size on failed step
(default=0.5)

	step_accel – acceleration factor for adjusting step size on successful
step (default=0.5)

	iter_target – target number of solver iterations per homotopy step
(default=4)

	max_step – maximum homotopy step size (default=1)

	min_step – minimum homotopy step size (default=0.05)

	max_eval – maximum number of homotopy evaluations (both successful and
unsuccessful) (default=200)

	Returns

	
	A Pyomo TerminationCondition Enum indicating

	how the meta-solver terminated (see documentation)

	Solver Progressa fraction indication how far the solver progressed

	from the initial values to the target values

	Number of Iterationsnumber of homotopy evaluations before solver

	terminated

	Return type

	Termination Condition

Initialization Methods

The IDAES toolset contains a number of utility functions to assist users with initializing models.

Available Methods

This module contains utility functions for initialization of IDAES models.

	
idaes.core.util.initialization.fix_state_vars(blk, state_args={})

	Method for fixing state variables within StateBlocks. Method takes an
optional argument of values to use when fixing variables.

	Parameters

	
	blk – An IDAES StateBlock object in which to fix the state variables

	state_args – a dict containing values to use when fixing state
variables. Keys must match with names used in the
define_state_vars method, and indices of any variables must
agree.

	Returns

	A dict keyed by block index, state variable name (as defined by
define_state_variables) and variable index indicating the fixed status
of each variable before the fix_state_vars method was applied.

	
idaes.core.util.initialization.initialize_by_time_element(fs, time, **kwargs)

	Function to initialize Flowsheet fs element-by-element along
ContinuousSet time. Assumes sufficient initialization/correct degrees
of freedom such that the first finite element can be solved immediately
and each subsequent finite element can be solved by fixing differential
and derivative variables at the initial time point of that finite element.

	Parameters

	
	fs – Flowsheet to initialize

	time – Set whose elements will be solved for individually

	solver – Pyomo solver object initialized with user’s desired options

	outlvl – IDAES logger outlvl

	ignore_dof – Bool. If True, checks for square problems will be skipped.

	Returns

	None

	
idaes.core.util.initialization.propagate_state(stream, direction='forward')

	This method propagates values between Ports along Arcs. Values can be
propagated in either direction using the direction argument.

	Parameters

	
	stream – Arc object along which to propagate values

	direction – direction in which to propagate values. Default = ‘forward’
Valid value: ‘forward’, ‘backward’.

	Returns

	None

	
idaes.core.util.initialization.revert_state_vars(blk, flags)

	Method to revert the fixed state of the state variables within an IDAES
StateBlock based on a set of flags of the previous state.

	Parameters

	
	blk – an IDAES StateBlock

	flags – a dict of bools indicating previous state with keys in the form
(StateBlock index, state variable name (as defined by
define_state_vars), var indices).

	Returns

	None

	
idaes.core.util.initialization.solve_indexed_blocks(solver, blocks, **kwds)

	This method allows for solving of Indexed Block components as if they were
a single Block. A temporary Block object is created which is populated with
the contents of the objects in the blocks argument and then solved.

	Parameters

	
	solver – a Pyomo solver object to use when solving the Indexed Block

	blocks – an object which inherits from Block, or a list of Blocks

	kwds – a dict of argumnets to be passed to the solver

	Returns

	A Pyomo solver results object

Model State Serialization

The IDAES framework has some utility functions for serializing the state of a
Pyomo model. These functions can save and load attributes of Pyomo components,
but cannot reconstruct the Pyomo objects (it is not a replacement for pickle).
It does have some advantages over pickle though. Not all Pyomo models are
picklable. Serialization and deserialization of the model state to/from json is
more secure in that it only deals with data and not executable code. It should
be safe to use the from_json() function with data from untrusted sources,
while, unpickling an object from an untrusted source is not secure. Storing a
model state using these functions is also probably more robust against Python
and Python package version changes, and possibly more suitable for long-term storage
of results.

Below are a few example use cases for this module.

	Some models are very complex and may take minutes to initialize. Once a model is initialized it’s state can be saved. For future runs, the initialized state can be reloaded instead of rerunning the initialization procedure.

	Results can be stored for later evaluation without needing to rerun the model. These results can be archived in a data management system if needed later.

	These functions may be useful in writing initialization procedures. For example, a model may be constructed and ready to run but first it may need to be initialized. Which components are active and which variables are fixed can be stored. The initialization can change which variables are fixed and which components are active. The original state can be read back after initialization, but where only values of variables that were originally fixed are read back in. This is an easy way to ensure that whatever the initialization procedure may do, the result is exactly the same problem (with only better initial values for unfixed variables).

	These functions can be used to send and receive model data to/from JavaScript user interface components.

Examples

This section provides a few very simple examples of how to use these functions.

Example Models

This section provides some boilerplate and functions to create a couple simple
test models. The second model is a little more complicated and includes suffixes.

from pyomo.environ import *
from idaes.core.util import to_json, from_json, StoreSpec

def setup_model01():
 model = ConcreteModel()
 model.b = Block([1,2,3])
 a = model.b[1].a = Var(bounds=(-100, 100), initialize=2)
 b = model.b[1].b = Var(bounds=(-100, 100), initialize=20)
 model.b[1].c = Constraint(expr=b==10*a)
 a.fix(2)
 return model

def setup_model02():
 model = ConcreteModel()
 a = model.a = Param(default=1, mutable=True)
 b = model.b = Param(default=2, mutable=True)
 c = model.c = Param(initialize=4)
 x = model.x = Var([1,2], initialize={1:1.5, 2:2.5}, bounds=(-10,10))
 model.f = Objective(expr=(x[1] - a)**2 + (x[2] - b)**2)
 model.g = Constraint(expr=x[1] + x[2] - c >= 0)
 model.dual = Suffix(direction=Suffix.IMPORT)
 model.ipopt_zL_out = Suffix(direction=Suffix.IMPORT)
 model.ipopt_zU_out = Suffix(direction=Suffix.IMPORT)
 return model

Serialization

These examples can be appended to the boilerplate code above.

The first example creates a model, saves the state, changes a value, then reads
back the initial state.

model = setup_model01()
to_json(model, fname="ex.json.gz", gz=True, human_read=True)
model.b[1].a = 3000.4
from_json(model, fname="ex.json.gz", gz=True)
print(value(model.b[1].a))

2

This next example show how to save only suffixes.

model = setup_model02()
Suffixes here are read back from solver, so to have suffix data,
need to solve first
solver = SolverFactory("ipopt")
solver.solve(model)
store_spec = StoreSpec.suffix()
to_json(model, fname="ex.json", wts=store_spec)
Do something and now I want my suffixes back
from_json(model, fname="ex.json", wts=store_spec)

to_json

Despite the name of the to_json function it is capable of creating Python
dictionaries, json files, gzipped json files, and json strings. The function
documentation is below. A StoreSpec
object provides the function with details on what to store and how to handle
special cases of Pyomo component attributes.

	
idaes.core.util.model_serializer.to_json(o, fname=None, human_read=False, wts=None, metadata={}, gz=None, return_dict=False, return_json_string=False)

	Save the state of a model to a Python dictionary, and optionally dump it
to a json file. To load a model state, a model with the same structure must
exist. The model itself cannot be recreated from this.

	Parameters

	
	o – The Pyomo component object to save. Usually a Pyomo model, but could
also be a subcomponent of a model (usually a sub-block).

	fname – json file name to save model state, if None only create
python dict

	gz – If fname is given and gv is True gzip the json file. The default is
True if the file name ends with ‘.gz’ otherwise False.

	human_read – if True, add indents and spacing to make the json file more
readable, if false cut out whitespace and make as compact as
possilbe

	metadata – A dictionary of addtional metadata to add.

	wts – is What To Save, this is a StoreSpec object that specifies what
object types and attributes to save. If None, the default is used
which saves the state of the compelte model state.

	metadata – addtional metadata to save beyond the standard format_version,
date, and time.

	return_dict – default is False if true returns a dictionary representation

	return_json_string – default is False returns a json string

	Returns

	If return_dict is True returns a dictionary serialization of the Pyomo
component. If return_dict is False and return_json_string is True
returns a json string dump of the dict. If fname is given the dictionary
is also written to a json file. If gz is True and fname is given, writes
a gzipped json file.

from_json

The from_json function puts data from Python dictionaries, json files,
gzipped json files, and json strings back into a Pyomo model. The function
documentation is below. A StoreSpec
object provides the function with details on what to read and how to handle
special cases of Pyomo component attributes.

	
idaes.core.util.model_serializer.from_json(o, sd=None, fname=None, s=None, wts=None, gz=None)

	Load the state of a Pyomo component state from a dictionary, json file, or
json string. Must only specify one of sd, fname, or s as a non-None value.
This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is
ignored. If the save state doesn’t contain an enetry for a model component
that is to be loaded an error will be raised, unless ignore_missing = True.

	Parameters

	
	o – Pyomo component to for which to load state

	sd – State dictionary to load, if None, check fname and s

	fname – JSON file to load, only used if sd is None

	s – JSON string to load only used if both sd and fname are None

	wts – StoreSpec object specifying what to load

	gz – If True assume the file specified by fname is gzipped. The default is
True if fname ends with ‘.gz’ otherwise False.

	Returns

	Dictionary with some perfomance information. The keys are
“etime_load_file”, how long in seconds it took to load the json file
“etime_read_dict”, how long in seconds it took to read models state
“etime_read_suffixes”, how long in seconds it took to read suffixes

StoreSpec

StoreSpec is a class for objects that tell the to_json() and from_json()
functions how to read and write Pyomo component attributes. The default
initialization provides an object that would load and save attributes usually
needed to save a model state. There are several other class methods that
provide canned objects for specific uses. Through initialization arguments, the
behavior is highly customizable. Attributes can be read or written using callback
functions to handle attributes that can not be directly read or written (e.g.
a variable lower bound is set by calling setlb()). See the class documentation below.

	
class idaes.core.util.model_serializer.StoreSpec(classes=((<class 'pyomo.core.base.param.Param'>, ('_mutable',)), (<class 'pyomo.core.base.var.Var'>, ()), (<class 'pyomo.core.base.expression.Expression'>, ()), (<class 'pyomo.core.base.component.Component'>, ('active',))), data_classes=((<class 'pyomo.core.base.var._VarData'>, ('fixed', 'stale', 'value', 'lb', 'ub')), (<class 'pyomo.core.base.param._ParamData'>, ('value',)), (<class 'int'>, ('value',)), (<class 'float'>, ('value',)), (<class 'pyomo.core.base.expression._ExpressionData'>, ()), (<class 'pyomo.core.base.component.ComponentData'>, ('active',))), skip_classes=(<class 'pyomo.core.base.external.ExternalFunction'>, <class 'pyomo.core.base.set.Set'>, <class 'pyomo.network.port.Port'>, <class 'pyomo.core.base.expression.Expression'>, <class 'pyomo.core.base.set.RangeSet'>), ignore_missing=True, suffix=True, suffix_filter=None)

	A StoreSpec object tells the serializer functions what to read or write.
The default settings will produce a StoreSpec configured to load/save the
typical attributes required to load/save a model state.

	Parameters

	
	classes – A list of classes to save. Each class is represented by a
list (or tupple) containing the following elements: (1) class
(compared using isinstance) (2) attribute list or None, an emptry
list store the object, but none of its attributes, None will not
store objects of this class type (3) optional load filter function.
The load filter function returns a list of attributes to read based
on the state of an object and its saved state. The allows, for
example, loading values for unfixed variables, or only loading
values whoes current value is less than one. The filter function
only applies to load not save. Filter functions take two arguments
(a) the object (current state) and (b) the dictionary containing the
saved state of an object. More specific classes should come before
more general classes. For example if an obejct is a HeatExchanger
and a UnitModel, and HeatExchanger is listed first, it will follow
the HeatExchanger settings. If UnitModel is listed first in the
classes list, it will follow the UnitModel settings.

	data_classes – This takes the same form as the classes argument.
This is for component data classes.

	skip_classes – This is a list of classes to skip. If a class appears
in the skip list, but also appears in the classes argument, the
classes argument will override skip_classes. The use for this is to
specifically exclude certain classes that would get caught by more
general classes (e.g. UnitModel is in the class list, but you want
to exclude HeatExchanger which is derived from UnitModel).

	ignore_missing – If True will ignore a component or attribute that exists
in the model, but not in the stored state. If false an excpetion
will be raised for things in the model that should be loaded but
aren’t in the stored state. Extra items in the stored state will not
raise an exception regaurdless of this argument.

	suffix – If True store suffixes and component ids. If false, don’t store
suffixes.

	suffix_filter – None to store all siffixes if suffix=True, or a list of
suffixes to store if suffix=True

	
classmethod bound()

	Returns a StoreSpec object to store variable bounds only.

	
get_class_attr_list(o)

	Look up what attributes to save/load for an Component object.
:param o: Object to look up attribute list for.

	Returns

	A list of attributes and a filter function for object type

	
get_data_class_attr_list(o)

	Look up what attributes to save/load for an ComponentData object.
:param o: Object to look up attribute list for.

	Returns

	A list of attributes and a filter function for object type

	
classmethod isfixed()

	Returns a StoreSpec object to store if variables are fixed.

	
set_read_callback(attr, cb=None)

	Set a callback to set an attribute, when reading from json or dict.

	
set_write_callback(attr, cb=None)

	Set a callback to get an attribute, when writing to json or dict.

	
classmethod value()

	Returns a StoreSpec object to store variable values only.

	
classmethod value_isfixed(only_fixed)

	Return a StoreSpec object to store variable values and if fixed.

	Parameters

	only_fixed – Only load fixed variable values

	
classmethod value_isfixed_isactive(only_fixed)

	Retur a StoreSpec object to store variable values, if variables are
fixed and if components are active.

	Parameters

	only_fixed – Only load fixed variable values

Structure

Python dictionaries, json strings, or json files are generated, in any case the
structure of the data is the same. The current data structure version is 3.

The example json below shows the top-level structure. The
"top_level_component" would be the name of the Pyomo component that is being
serialized. The top level component is the only place were the component name does
not matter when reading the serialized data.

{
 "__metadata__": {
 "format_version": 3,
 "date": "2018-12-21",
 "time": "11:34:39.714323",
 "other": {
 },
 "__performance__": {
 "n_components": 219,
 "etime_make_dict": 0.003}
 },
 "top_level_component":{
 "...": "..."
 },
}

The data structure of a Pyomo component is shown below. Here "attribute_1"
and "attribute_2" are just examples the actual attributes saved depend on
the “wts” argument to to_json(). Scalar and indexed components have the
same structure. Scalar components have one entry in "data" with an index of
"None". Only components derived from Pyomo’s _BlockData
have a "__pyomo_components__" field, and components appearing there are keyed
by thier name. The data structure duplicates the hierarchical structure of the
Pyomo model.

Suffixes store extra attributes for Pyomo components that are not stored on the
components themselves. Suffixes are a Pyomo structure that comes from the AMPL
solver interface. If a component is a suffix, keys in the data section are the
serial integer component IDs generated by to_json(), and the value is the
value of the suffix for the corresponding component.

{
 "__type__": "<class 'some.class'>",
 "__id__": 0,
 "data":{
 "index_1":{
 "__type__":"<usually a component class but for params could be float, int, ...>",
 "__id__": 1,
 "__pyomo_components__":{
 "child_component_1": {
 "...": "..."
 }
 },
 "attribute_1": "... could be any number of attributes like 'value': 1.0,",
 "attribute_2": "..."
 }
 },
 "attribute_1": "... could be any number of attributes like 'active': true,",
 "attribute_2": "..."
}

As a more concrete example, here is the json generated for example model 2 in
Examples.
This code can be appended to the example boilerplate above.
To generate the example json shown.

model = setup_model02()
solver = SolverFactory("ipopt")
solver.solve(model)
to_json(model, fname="ex.json")

The resulting json is shown below. The top-level component
in this case is given as “unknown,” because the model was not given a name. The
top level object name is not needed when reading back data, since the top level
object is specified in the call to from_json(). Types are not used when
reading back data, they may have some future application, but at this point they
just provide a little extra information.

{
 "__metadata__":{
 "format_version":3,
 "date":"2019-01-02",
 "time":"10:22:25.833501",
 "other":{
 },
 "__performance__":{
 "n_components":18,
 "etime_make_dict":0.0009555816650390625
 }
 },
 "unknown":{
 "__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
 "__id__":0,
 "active":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
 "__id__":1,
 "active":true,
 "__pyomo_components__":{
 "a":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":2,
 "_mutable":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":3,
 "value":1
 }
 }
 },
 "b":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":4,
 "_mutable":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":5,
 "value":2
 }
 }
 },
 "c":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":6,
 "_mutable":false,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":7,
 "value":4
 }
 }
 },
 "x":{
 "__type__":"<class 'pyomo.core.base.var.IndexedVar'>",
 "__id__":8,
 "data":{
 "1":{
 "__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
 "__id__":9,
 "fixed":false,
 "stale":false,
 "value":1.5,
 "lb":-10,
 "ub":10
 },
 "2":{
 "__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
 "__id__":10,
 "fixed":false,
 "stale":false,
 "value":2.5,
 "lb":-10,
 "ub":10
 }
 }
 },
 "f":{
 "__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>",
 "__id__":11,
 "active":true,
 "data":{
 "None":{"__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>",
 "__id__":12,
 "active":true
 }
 }
 },
 "g":{
 "__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
 "__id__":13,
 "active":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
 "__id__":14,
 "active":true
 }
 }
 },
 "dual":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":15,
 "active":true,
 "data":{
 "14":0.9999999626149493
 }
 },
 "ipopt_zL_out":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":16,
 "active":true,
 "data":{
 "9":2.1791814146763388e-10,
 "10":2.004834508495852e-10
 }
 },
 "ipopt_zU_out":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":17,
 "active":true,
 "data":{
 "9":-2.947875485096964e-10,
 "10":-3.3408951850535573e-10
 }
 }
 }
 }
 }
 }
}

Model Statistics Methods

The IDAES toolset contains a number of utility functions which are useful for quantifying model statistics such as the number of variable and constraints, and calculating the available degrees of freedom in a model. These methods can be found in idaes.core.util.model_statistics.

The most commonly used methods are degrees_of_freedom and report_statistics, which are described below.

Degrees of Freedom Method

The degrees_of_freedom method calculates the number of degrees of freedom available in a given model. The calcuation is based on the number of unfixed variables which appear in active constraints, minus the number of active equality constraints in the model. Users should note that this method does not consider inequality or deactived constraints, or variables which do not appear in active equality constraints.

	
idaes.core.util.model_statistics.degrees_of_freedom(block)

	Method to return the degrees of freedom of a model.

	Parameters

	block – model to be studied

	Returns

	Number of degrees of freedom in block.

Report Statistics Method

The report_statistics method provides the user with a summary of the contents of their model, including the degrees of freedom and a break down of the different Variables, Constraints, Objectives, Blocks and Expressions. This method also includes numbers of deactivated components for the user to use in debugging complex models.

Note

This method only considers Pyomo components in activated Blocks. The number of deactivated Blocks is reported, but any components within these Blocks are not included.

Example Output

Model Statistics

Degrees of Freedom: 0

Total No. Variables: 52

No. Fixed Variables: 12

No. Unused Variables: 0 (Fixed: 0)

No. Variables only in Inequalities: 0 (Fixed: 0)

Total No. Constraints: 40

No. Equality Constraints: 40 (Deactivated: 0)

No. Inequality Constraints: 0 (Deactivated: 0)

No. Objectives: 0 (Deactivated: 0)

No. Blocks: 14 (Deactivated: 0)

No. Expressions: 2

	
idaes.core.util.model_statistics.report_statistics(block, ostream=None)

	Method to print a report of the model statistics for a Pyomo Block

	Parameters

	
	block – the Block object to report statistics from

	ostream – output stream for printing (defaults to sys.stdout)

	Returns

	Printed output of the model statistics

Other Statistics Methods

In addition to the methods discussed above, the model_statistics module also contains a number of methods for quantifying model statistics which may be of use to the user in debugging models. These methods come in three types:

	Number methods (start with number_) return the number of components which meet a given criteria, and are useful for quickly quantifying differnt types of components within a model for determining where problems may exist.

	Set methods (end with _set) return a Pyomo ComponentSet containing all components which meet a given criteria. These methods are useful for determining where a problem may exist, as the ComponentSet indicates which components may be causing a problem.

	Generator methods (end with _generator) contain Python generators which return all components which meet a given criteria.

Available Methods

This module contains utility functions for reporting structural statistics of
IDAES models.

	
idaes.core.util.model_statistics.activated_block_component_generator(block, ctype)

	Generator which returns all the components of a given ctype which exist in
activated Blocks within a model.

	Parameters

	
	block – model to be studied

	ctype – type of Pyomo component to be returned by generator.

	Returns

	A generator which returns all components of ctype which appear in
activated Blocks in block

	
idaes.core.util.model_statistics.activated_blocks_set(block)

	Method to return a ComponentSet of all activated Block components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Block components in block
(including block itself)

	
idaes.core.util.model_statistics.activated_constraints_generator(block)

	Generator which returns all activated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated Constraint components block

	
idaes.core.util.model_statistics.activated_constraints_set(block)

	Method to return a ComponentSet of all activated Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Constraint components in block

	
idaes.core.util.model_statistics.activated_equalities_generator(block)

	Generator which returns all activated equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated equality Constraint components
block

	
idaes.core.util.model_statistics.activated_equalities_set(block)

	Method to return a ComponentSet of all activated equality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated equality Constraint components
in block

	
idaes.core.util.model_statistics.activated_inequalities_generator(block)

	Generator which returns all activated inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated inequality Constraint
components block

	
idaes.core.util.model_statistics.activated_inequalities_set(block)

	Method to return a ComponentSet of all activated inequality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated inequality Constraint components
in block

	
idaes.core.util.model_statistics.activated_objectives_generator(block)

	Generator which returns all activated Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated Objective components block

	
idaes.core.util.model_statistics.activated_objectives_set(block)

	Method to return a ComponentSet of all activated Objective components which
appear in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Objective components which
appear in block

	
idaes.core.util.model_statistics.active_variables_in_deactivated_blocks_set(block)

	Method to return a ComponentSet of any Var components which appear within
an active Constraint but belong to a deacitvated Block in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including any Var components which belong to a
deacitvated Block but appear in an activate Constraint in block

	
idaes.core.util.model_statistics.deactivated_blocks_set(block)

	Method to return a ComponentSet of all deactivated Block components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Block components in block
(including block itself)

	
idaes.core.util.model_statistics.deactivated_constraints_generator(block)

	Generator which returns all deactivated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated Constraint components block

	
idaes.core.util.model_statistics.deactivated_constraints_set(block)

	Method to return a ComponentSet of all deactivated Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Constraint components in block

	
idaes.core.util.model_statistics.deactivated_equalities_generator(block)

	Generator which returns all deactivated equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated equality Constraint
components block

	
idaes.core.util.model_statistics.deactivated_equalities_set(block)

	Method to return a ComponentSet of all deactivated equality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated equality Constraint components
in block

	
idaes.core.util.model_statistics.deactivated_inequalities_generator(block)

	Generator which returns all deactivated inequality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all indeactivated equality Constraint
components block

	
idaes.core.util.model_statistics.deactivated_inequalities_set(block)

	Method to return a ComponentSet of all deactivated inequality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated inequality Constraint
components in block

	
idaes.core.util.model_statistics.deactivated_objectives_generator(block)

	Generator which returns all deactivated Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated Objective components block

	
idaes.core.util.model_statistics.deactivated_objectives_set(block)

	Method to return a ComponentSet of all deactivated Objective components
which appear in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Objective components which
appear in block

	
idaes.core.util.model_statistics.derivative_variables_set(block)

	Method to return a ComponentSet of all DerivativeVar components which
appear in a model. Users should note that DerivativeVars are converted to
ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all DerivativeVar components which appear in
block

	
idaes.core.util.model_statistics.expressions_set(block)

	Method to return a ComponentSet of all Expression components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Expression components which appear in
block

	
idaes.core.util.model_statistics.fixed_unused_variables_set(block)

	Method to return a ComponentSet of all fixed Var components which do not
appear within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which do not appear
within any Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_generator(block)

	Generator which returns all fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all fixed Var components block

	
idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set(block)

	Method to return a ComponentSet of all fixed Var components which appear
within an equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_only_in_inequalities(block)

	Method to return a ComponentSet of all fixed Var components which appear
only within activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which appear only
within activated inequality Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_set(block)

	Method to return a ComponentSet of all fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components in block

	
idaes.core.util.model_statistics.large_residuals_set(block, tol=1e-05)

	Method to return a ComponentSet of all Constraint components with a
residual greater than a given threshold which appear in a model.

	Parameters

	
	block – model to be studied

	tol – residual threshold for inclusion in ComponentSet

	Returns

	A ComponentSet including all Constraint components with a residual
greater than tol which appear in block

	
idaes.core.util.model_statistics.number_activated_blocks(block)

	Method to return the number of activated Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Block components in block (including block itself)

	
idaes.core.util.model_statistics.number_activated_constraints(block)

	Method to return the number of activated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Constraint components in block

	
idaes.core.util.model_statistics.number_activated_equalities(block)

	Method to return the number of activated equality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated equality Constraint components in block

	
idaes.core.util.model_statistics.number_activated_inequalities(block)

	Method to return the number of activated inequality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated inequality Constraint components in block

	
idaes.core.util.model_statistics.number_activated_objectives(block)

	Method to return the number of activated Objective components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Objective components which appear in block

	
idaes.core.util.model_statistics.number_active_variables_in_deactivated_blocks(block)

	Method to return the number of Var components which appear within an active
Constraint but belong to a deacitvated Block in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which belong to a deacitvated Block but appear
in an activate Constraint in block

	
idaes.core.util.model_statistics.number_deactivated_blocks(block)

	Method to return the number of deactivated Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Block components in block (including block
itself)

	
idaes.core.util.model_statistics.number_deactivated_constraints(block)

	Method to return the number of deactivated Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_equalities(block)

	Method to return the number of deactivated equality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated equality Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_inequalities(block)

	Method to return the number of deactivated inequality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated inequality Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_objectives(block)

	Method to return the number of deactivated Objective components which
appear in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Objective components which appear in block

	
idaes.core.util.model_statistics.number_derivative_variables(block)

	Method to return the number of DerivativeVar components which
appear in a model. Users should note that DerivativeVars are converted to
ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

	Parameters

	block – model to be studied

	Returns

	Number of DerivativeVar components which appear in block

	
idaes.core.util.model_statistics.number_expressions(block)

	Method to return the number of Expression components which appear in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of Expression components which appear in block

	
idaes.core.util.model_statistics.number_fixed_unused_variables(block)

	Method to return the number of fixed Var components which do not appear
within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which do not appear within any activated
Constraints in block

	
idaes.core.util.model_statistics.number_fixed_variables(block)

	Method to return the number of fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components in block

	
idaes.core.util.model_statistics.number_fixed_variables_in_activated_equalities(block)

	Method to return the number of fixed Var components which appear within
activated equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_fixed_variables_only_in_inequalities(block)

	Method to return the number of fixed Var components which only appear
within activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which only appear within activated
inequality Constraints in block

	
idaes.core.util.model_statistics.number_large_residuals(block, tol=1e-05)

	Method to return the number Constraint components with a residual greater
than a given threshold which appear in a model.

	Parameters

	
	block – model to be studied

	tol – residual threshold for inclusion in ComponentSet

	Returns

	Number of Constraint components with a residual greater than tol which
appear in block

	
idaes.core.util.model_statistics.number_total_blocks(block)

	Method to return the number of Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Block components in block (including block itself)

	
idaes.core.util.model_statistics.number_total_constraints(block)

	Method to return the total number of Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Constraint components in block

	
idaes.core.util.model_statistics.number_total_equalities(block)

	Method to return the total number of equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of equality Constraint components in block

	
idaes.core.util.model_statistics.number_total_inequalities(block)

	Method to return the total number of inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of inequality Constraint components in block

	
idaes.core.util.model_statistics.number_total_objectives(block)

	Method to return the number of Objective components which appear in a model

	Parameters

	block – model to be studied

	Returns

	Number of Objective components which appear in block

	
idaes.core.util.model_statistics.number_unfixed_variables(block)

	Method to return the number of unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of unfixed Var components in block

	
idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities(block)

	Method to return the number of unfixed Var components which appear within
activated equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of unfixed Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_unused_variables(block)

	Method to return the number of Var components which do not appear within
any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which do not appear within any activagted
Constraints in block

	
idaes.core.util.model_statistics.number_variables(block)

	Method to return the number of Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components in block

	
idaes.core.util.model_statistics.number_variables_in_activated_constraints(block)

	Method to return the number of Var components that appear within active
Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within active Constraints in
block

	
idaes.core.util.model_statistics.number_variables_in_activated_equalities(block)

	Method to return the number of Var components which appear within activated
equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_variables_in_activated_inequalities(block)

	Method to return the number of Var components which appear within activated
inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within activated inequality
Constraints in block

	
idaes.core.util.model_statistics.number_variables_near_bounds(block, tol=0.0001)

	Method to return the number of all Var components in a model which have
a value within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	Number of components block that are close to a bound

	
idaes.core.util.model_statistics.number_variables_only_in_inequalities(block)

	Method to return the number of Var components which appear only within
activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear only within activated inequality
Constraints in block

	
idaes.core.util.model_statistics.total_blocks_set(block)

	Method to return a ComponentSet of all Block components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Block components in block (including block
itself)

	
idaes.core.util.model_statistics.total_constraints_set(block)

	Method to return a ComponentSet of all Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Constraint components in block

	
idaes.core.util.model_statistics.total_equalities_generator(block)

	Generator which returns all equality Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all equality Constraint components block

	
idaes.core.util.model_statistics.total_equalities_set(block)

	Method to return a ComponentSet of all equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all equality Constraint components in block

	
idaes.core.util.model_statistics.total_inequalities_generator(block)

	Generator which returns all inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all inequality Constraint components block

	
idaes.core.util.model_statistics.total_inequalities_set(block)

	Method to return a ComponentSet of all inequality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all inequality Constraint components in block

	
idaes.core.util.model_statistics.total_objectives_generator(block)

	Generator which returns all Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all Objective components block

	
idaes.core.util.model_statistics.total_objectives_set(block)

	Method to return a ComponentSet of all Objective components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Objective components which appear in block

	
idaes.core.util.model_statistics.unfixed_variables_generator(block)

	Generator which returns all unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all unfixed Var components block

	
idaes.core.util.model_statistics.unfixed_variables_in_activated_equalities_set(block)

	Method to return a ComponentSet of all unfixed Var components which appear
within an activated equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all unfixed Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.unfixed_variables_set(block)

	Method to return a ComponentSet of all unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all unfixed Var components in block

	
idaes.core.util.model_statistics.unused_variables_set(block)

	Method to return a ComponentSet of all Var components which do not appear
within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which do not appear within
any Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_constraints_set(block)

	Method to return a ComponentSet of all Var components which appear within a
Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_equalities_set(block)

	Method to return a ComponentSet of all Var components which appear within
an equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_inequalities_set(block)

	Method to return a ComponentSet of all Var components which appear within
an inequality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated inequality Constraints in block

	
idaes.core.util.model_statistics.variables_near_bounds_generator(block, tol=0.0001)

	Generator which returns all Var components in a model which have a value
within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	A generator which returns all Var components block that are close to a
bound

	
idaes.core.util.model_statistics.variables_near_bounds_set(block, tol=0.0001)

	Method to return a ComponentSet of all Var components in a model which have
a value within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	A ComponentSet including all Var components block that are close to a
bound

	
idaes.core.util.model_statistics.variables_only_in_inequalities(block)

	Method to return a ComponentSet of all Var components which appear only
within inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear only within
inequality Constraints in block

	
idaes.core.util.model_statistics.variables_set(block)

	Method to return a ComponentSet of all Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components in block

Scaling

This section describes scaling utility functions and methods.

Standard Practice

Scaling factors can be specified for any variable or constraint. Pyomo and many
solvers support the scaling_factor suffix. IDAES, as described below, also
supports the scaling_expression suffix which can be used to calculate
scaling_factor values (e.g. based on state block units of measure).

To eliminate the possibility of defining, conflicting scaling factors in various
places in the model the IDAES standard is to define the scaling_factor and
scaling_expression suffixes in the same block as the variable or constraint
that they are scaling. This ensures that each scale factor is defined in only
one place, and is organized based on the model block structure.

Scaling factors in IDAES (and Pyomo) are multiplied by the variable or constraint
they scale. For example, a Pressure variable in Pa units may be expected to have
a magnitude of around \(1\times10^6\) for a specific process. To scale the
variable to a more reasonable magnitude the scale factor for the variable could
be defined to be \(1\times10^-5\).

Specifying Variable Scaling

Suffixes are used to specify scaling factors for IDAES models. Some solvers, such
as Ipopt, support supplying scale factors. Pyomo also supplies scaling
transformations for models when solver scaling is not supported.

To supply variable and constraint scaling factors, a suffix called scaling_factor
should be created in the same block as the variable or constraint. For example:

from pyomo.environ import Suffix, ConcreteModel, Var

m = ConcreteModel()
m.scaling_factor = Suffix(direction=Suffix.EXPORT)
m.P = Var(initialize=1e6, doc="Pressure [Pa]")
m.conc = Var(["Na+", "Cl-"], initialize=1e-4)
m.scaling_factor[m.P] = 1e-5
m.scaling_factor[m.conc["Na+"]] = 1e3
m.scaling_factor[m.conc["Cl-"]] = 1e3

Variable scaling in state blocks is provided by the developer of a state
block and can be used as a basis for scaling other model variables and
constraints. Scaling factors can be modified by users to better
represent the process they are modeling.

Specifying Scaling Factor Expressions

Scaling factors for variables and constraints can be calculated based on variable
scaling factors, bounds, or values that have been provided. The calculation for
a scaling factor can be provided as a python expression using model variables in
the scaling_expression suffix. For variables, generally the expression should
only depend on variables where scaling factors have been defined.

The calculate_scaling_factors(m, basis) function replaces the variables in the scaling
expression with the specified basis values, calculates the scaling factors, and
puts the scaling factor in the scaling_factor suffix.

from pyomo.environ import Suffix, ConcreteModel, Var, Constraint
from idaes.core.util.scaling import (
 ScalingBasis,
 calculate_scaling_factors,
)

m = ConcreteModel()
m.scaling_factor = Suffix(direction=Suffix.EXPORT)
m.scaling_expression = Suffix(direction=Suffix.LOCAL)

m.x = Var(initialize=1e6)
m.y = Var(initialize=1e6)
m.z = Var(initialize=1e12)

m.scaling_factor[m.x] = 1e-5
m.scaling_factor[m.y] = 1e-5
m.scaling_expression[m.z] = 1/(m.x*m.y)

m.c = Constraint(expr=m.z == m.x*m.y)
m.scaling_expression[m.c] = 1/(m.x*m.y)

calculate_scaling_factors(m, basis=ScalingBasis.InverseVarScale)

Show that the constraint scaling factor is 1/((1/1e-5)*(1/1e-5))
assert(m.scaling_factor[m.c] - 1e-10 < 1e-12)
Show that the z variable scaling factor is 1/((1/1e-5)*(1/1e-5))
assert(m.scaling_factor[m.z] - 1e-10 < 1e-12)

In the scaling expression the general guideline is that a scaling factor is being
calculated based on the expected magnitude of the variable values. The magnitude
could be estimated in different ways, but the most common way should be the inverse
variable scale. The list below shows variable scaling bases that are provided.

	ScalingBasis.InverseVarScale:

	Use the inverse variable scaling factors in scaling expressions.

	ScalingBasis.Value:

	Use the current variable values in scaling expressions.

	ScalingBasis.Mid:

	Use the mid-point between the upper and lower bounds in scaling expressions.

	ScalingBasis.Lower:

	Use the lower bound of variables in scaling expressions.

	ScalingBasis.Upper:

	Use the lower bound of variables in scaling expressions.

	ScalingBasis.VarScale:

	This is less common, but it uses the variable scales directly. This can be
used if you are using alternative scaling methods with divide by the scaling
factor.

	
idaes.core.util.scaling.calculate_scaling_factors(m, basis=(<ScalingBasis.InverseVarScale: 3>, <ScalingBasis.Mid: 6>, <ScalingBasis.Value: 1>))

	Set scale factors for variables and constraints from expressions stored in
the scaling_expression suffix. The variables and Expressions in the scaling
expressions are replaced by the scaling basis values before calculating
the scaling factor. Variable scale factors are calculated first, and variable
scaling expressions should be based on variables whose scale factors are
supplied directly. Constraint scaling expressions can be based on any variables.

	Parameters

	
	m (Block) – A Pyomo model or block to apply the scaling expressions to.

	basis – (ScalingBasis or List-like of ScalingBasis): Value to use
when evaluating scaling expressions. A list-like of ScalingBasis can
be used to provide fall-back values in the event that the first
choice is not available. If none of the bases are available, 1 is used.

	Returns

	None

Scaling Utility Functions

IDAES includes some utility functions to help evaluate model scaling and to
auto-scale constraints.

	
idaes.core.util.scaling.badly_scaled_var_generator(blk, large=10000.0, small=0.001, zero=1e-10)

	This provides a rough check for variables with poor scaling based on their
current scale factors and values. For each potentially poorly scaled variable
it returns the var and its current scaled value.

	Parameters

	
	large – Magnitude that is considered to be too large

	small – Magnitude that is considered to be too small

	zero – Magnitude that is considered to be zero, variables with a value of
zero are okay, and not reported.

	Yields

	variable data object, current absolute value of scaled value

	
idaes.core.util.scaling.grad_fd(c, scaled=False, h=1e-06)

	Finite difference the gradient for a constraint, objective or named
expression. This is only for use in examining scaling. For faster more
accurate gradients refer to pynumero.

	Parameters

	
	c – constraint to evaluate

	scaled – if True calculate the scaled grad (default=False)

	h – step size for calculating finite differnced derivatives

	Returns

	
	(list of gradient values, list for varibles in the constraint) The order

	of the variables coresoponds to the gradient values.

	
idaes.core.util.scaling.scale_constraint(c, v=None)

	This transforms a constraint with its scaling factor or a given scaling
factor value. If it uses the scaling factor suffix value, the scaling factor
suffix is set to 1 to avoid double scaling the constraint. This can be used
when to scale constraints before sending the model to the solver.

	Parameters

	
	c – Pyomo constraint

	v – Scale factor. If None, use value from scaling factor suffix and set
suffix value to 1.

	Returns

	None

	
idaes.core.util.scaling.constraint_fd_autoscale(c, min_scale=1e-06, max_grad=100)

	Autoscale constraints so that if there maximum partial derivative with
respect to any variable is greater than max_grad at the current variable
values, the method will attempt to assign a scaling factor to the constraint
that makes the maximum derivative max_grad. The min_scale value provides a
lower limit allowed for constraint scaling factors. If the caclulated
scaling factor to make the maxium derivative max_grad is less than min_scale,
min_scale is used instead. Derivatives are approximated using finite
differnce.

	Parameters

	
	c – constraint object

	max_grad – the largest derivative after scaling subject to min_scale

	min_scale – the minimum scale factor allowed

	Returns

	None

	
idaes.core.util.scaling.set_scaling_factor(c, v)

	Set a scaling factor for a model component. This function creates the
scaling_factor suffix if needed.

	Parameters

	
	c – component to supply scaling factor for

	v – scaling factor

	Returns

	None

Scaling with Ipopt

To use the supplied scaling factors with Ipopt the nlp_scaling_method solver
option should be set to “user-scaling.”

Table Methods

The IDAES toolset contians a number of methods for generating and dislpaying summary tables of data in the form of pandas DataFrames.

Available Methods

	
idaes.core.util.tables.arcs_to_stream_dict(blk, descend_into=True)

	Creates a stream dictionary from the Arcs in a model, using the Arc names as
keys. This can be used to automate the creation of the streams dictionary
needed for the create_stream_table_dataframe() and stream_states_dict()
functions.

	Parameters

	
	blk (pyomo.environ._BlockData) – Pyomo model to search for Arcs

	descend_into (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, search subblocks for Arcs as well. The
default is True.

	Returns

	Dictionary with Arc names as keys and the Arcs as values.

	
idaes.core.util.tables.create_stream_table_dataframe(streams, true_state=False, time_point=0, orient='columns')

	Method to create a stream table in the form of a pandas dataframe. Method
takes a dict with name keys and stream values. Use an OrderedDict to list
the streams in a specific order, otherwise the dataframe can be sorted
later.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	true_state – indicated whether the stream table should contain the
display variables define in the StateBlock (False, default) or the
state variables (True).

	time_point – point in the time domain at which to generate stream table
(default = 0)

	orient – orientation of stream table. Accepted values are ‘columns’
(default) where streams are displayed as columns, or ‘index’ where
stream are displayed as rows.

	Returns

	A pandas DataFrame containing the stream table data.

	
idaes.core.util.tables.generate_table(blocks, attributes, heading=None)

	Create a Pandas DataFrame that contains a list of user-defined attributes
from a set of Blocks.

	Parameters

	
	blocks (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with name keys and BlockData objects for
values. Any name can be associated with a block. Use an OrderedDict
to show the blocks in a specific order, otherwise the dataframe can
be sorted later.

	attributes (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of strings) – Attributes to report from a
Block, can be a Var, Param, or Expression. If an attribute doesn’t
exist or doesn’t have a valid value, it will be treated as missing
data.

	heading (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of srings) – A list of strings that will be used
as column headings. If None the attribute names will be used.

	Returns

	A Pandas dataframe containing a data table

	Return type

	(DataFrame)

	
idaes.core.util.tables.stream_states_dict(streams, time_point=0)

	Method to create a dictionary of state block representing stream states.
This takes a dict with stream name keys and stream values.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	time_point – point in the time domain at which to generate stream table
(default = 0)

	Returns

	A pandas DataFrame containing the stream table data.

	
idaes.core.util.tables.stream_table_dataframe_to_string(stream_table, **kwargs)

	Method to print a stream table from a dataframe. Method takes any argument
understood by DataFrame.to_string

Transformations

Transformations offer a convenient way to make systematic changes to a model.

	Variable Replacement
	Example

	Usage

	ReplaceVariables Class

Variable Replacement

There are a number of cases where it can be convenient to replace one variable
for another. IDAES offers a convenient variable replacement transformation. This
transformation is not reversible and can significantly alter the model structure.

An example use of this transformation, is a parameter estimation problem where
a model contains several instances of a particular sub-model and each model
contains a variable (\(\beta\)) for a model parameter to be estimated. In
many cases \(\beta\) should be the same across all sub-models. One approach
to this problem would be to add equality constraints to equate all the
\(\beta\)’s. Another approach would be to use the variable replacement
transformation to replace the individual \(\beta\)’s with a single global
\(\beta\) variable.

Example

The following example demonstrates the basic usage of the transformation.

import idaes.core.plugins # Load IDAES plugins
import pyomo.environ as pyo

Use Pyomo's transformation factory to create the transformation object
rp = pyo.TransformationFactory("replace_variables")

Create an example model
m = pyo.ConcreteModel()
m.x = pyo.Var({1,2,3}, initialize=2)
m.new_x = pyo.Var({1,2,3}, initialize=3)
m.e1 = pyo.Expression(expr=sum(m.x[i] for i in m.x))

Apply the transformation to the model, the substitute argument contains a list
of replacements, each element is a list-like object where the first element is
a variable to be replaced by the second element.
rp.apply_to(m, substitute=[(m.x, m.new_x)])

See that the variable was replaced
print(pyo.value(m.e1)) # since new_x has a value of 3 the expression value is 9

Output:

9

Usage

There are three basic steps to using the variable replacement transformation.

	Import anything from the idaes package; this will cause the IDAES
plugins to be loaded.

	Use Pyomo’s transformation factory to create a variable replacement
transformation object (e.g.
rp = TransformationFactory("replace_variables").

	Call the transformation object’s apply_to() method to apply the
transformation.

The apply_to(instance, substitute) method takes two arguments instance and
substitute. The instance argument is a model or block to apply the transformation
to. The substitute argument is a list-like object with substitutions. Each element
is a two-element list-like object where the first element is a Pyomo Var, IndexedVar
element or Reference to the variable to replace and the second element is a Pyomo
Var, IndexedVar element or Reference to replace the first element with.

Indexed variables are allowed. The index set of the variable to replace must be
a subset of the index set of the variable to replace it with. It can also be
useful to use a Pyomo Reference to emulate an indexed variable, so this is also
supported.

ReplaceVariables Class

The transformation object class is ReplaceVariables.

	
class idaes.core.plugins.variable_replace.ReplaceVariables(**kwds)

	Replace variables in a model or block with other variables.

Keyword arguments below are specified for the apply_to(instance, **kwargs)
method.

	Keyword Arguments

	substitute – List-like of tuples where the first item in a tuple is a Pyomo variable to be replaced and the second item in the tuple is a Pyomo variable to replace it with. This transformation is not reversible.

IDAES Model Libraries

The IDAES toolset contains a number of libraries of models for different application areas. All models within these libraries are built upon the core IDAES modeling framework, but are specialsied for the needs of different applications. In many cases these models can be used together in the same flowsheet, however some appllications may make specific assumptions whcih are not compatable with other application libraries.

Contents

	Core IDAES Model Library

	Power Generation Model Library

Core IDAES Model Library

This library contains a suite of generic models that are applicable across most process applications. This library also forms the foundation for many of the specialized application libraries which build off these core models.

Contents

	Property Model Library

	Unit Model Library

	Control Model Library

Property Model Library

	Cubic Equations of State

	Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

	Water/Steam - IAPWS95

	Generic Property Package Framework

	Property Interrogator Tool

Cubic Equations of State

This property package implements a general form of a cubic equation of state which can be used for most cubic-type equations of state. This package supports phase equilibrium calculations with a smooth phase transition formulation that makes it amenable for equation oriented optimization. The following equations of state are currently supported:

	Peng-Robinson

	Soave-Redlich-Kwong

Flow basis: Molar

Units: SI units

State Variables:

The state block uses the following state variables:

	Total molar flow rate (mol/s) - flow_mol
	Temperature (K) - temperature
	Pressure (Pa) - pressure
	Mole fraction of the mixture - mole_frac_comp

 Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

This property package supports phase equilibrium calucations with a smooth phase transition formulation that makes it amenable for equation oriented optimization. The gas phase is assumed to be ideal and for the liquid phase,
the package supports an ideal liquid or a non-ideal liquid using an activity
coefficient model. To compute the activity coefficient, the package currently supports the Non Random Two Liquid Model (NRTL) or the
Wilson model. Therefore, this property package supports the following combinations for gas-liquid mixtures for VLE calculations:

	Ideal (vapor) - Ideal (liquid)

	Ideal (vapor) - NRTL (liquid)

	Ideal (vapor) - Wilson (liquid)

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following two sets of state variables:

Option 1 - “FTPz”:

	Total molar flow rate (mol/s) - flow_mol
	Temperature (K) - temperature
	Presure (Pa) - pressure
	Mole fraction of the mixture - mole_frac_comp

 Water/Steam - IAPWS95

Water/Steam - IAPWS95

Accurate and thermodynamically consistent steam properties are provided for the
IDAES framework by implementing the International Association for the Properties
of Water and Steam’s “Revised Release on the IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Non-analytic terms designed to improve accuracy
very near the critical point were omitted, because they cause a singularity at
the critical point, a feature which is undesirable in optimization problems. The
IDAES implementation provides features which make the water and steam property
calculations amenable to rigorous mathematical optimization.

Example

Theses modules can be imported as:

from idaes.generic_models.properties import iapws95

The Heater unit model example, provides a simple
example for using water properties.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, MaterialBalanceType
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock(default={
 "phase_presentation":iapws95.PhaseType.LG,
 "state_vars":iapws95.StateVars.PH})

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={
 "property_package": model.fs.properties,
 "material_balance_type": MaterialBalanceType.componentTotal})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Since all properties except the state variables are Pyomo Expressions in the
water properties module, after solving the problem any property can be
calculated in any state block. Continuing from the heater example, to get the
viscosity of both phases, the lines below could be added.

mu_l = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Liq"])
mu_v = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Vap"])

For more information about how StateBlocks and PropertyParameterBlocks work see
the StateBlock documentation.

Units

The iapws95 property module uses SI units (m, kg, s, J, mol) for all public
variables and expressions. Temperature is in K. Note that this means molecular
weight is in the unusual unit of kg/mol.

A few expressions intended to be used internally and all external function calls
use units of kg, kJ, kPa, and K. These generally are not needed by the end user.

Methods

These methods use the IAPWS-95 formulation for scientific use for thermodynamic
properties (Wagner and Pruss, 2002; IAPWS, 2016). To solve the phase equilibrium, the method of Akasaka
(2008) was used. For solving these equations, some relations from
the IAPWS-97 formulation for industrial use are used as initial values
(Wagner et al., 2002). The industrial formulation is
slightly discontinuous between different regions, so it may not be suitable for
optimization. In addition to thermodynamic quantities, viscosity and thermal
conductivity are calculated (IAPWS, 2008;
IAPWS, 2011).

External Functions

The IAPWS-95 formulation uses density and temperature as state variables. For
most applications those state variables are not the most convenient choices.
Using other state variables requires solving equations to get density and
temperature from the chosen state variables. These equations can have numerous
solutions only one of which is physically meaningful. Rather than solve these
equations as part of the full process simulation, external functions were
developed that can solve the equations required to change state variables and
guarantee the correct roots.

The external property functions are written in C++ and complied such that they
can be called by AMPL solvers. See the Installation page for
information about compiling these functions. The external functions provide
both first and second derivatives for all property function calls, however at
phase transitions some of these functions may be non-smooth.

IDAES Framework Wrapper

A wrapper for the external functions is provided for compatibility with the IDAES
framework. Most properties are available as Pyomo Expressions from the wrapper.
Only the state variables are model variables. Benefits of using mostly
expressions in the property package are: no initialization is required
specifically for the property package, the model has fewer equations, and
all properties can be easily calculated after the model is solved from the
state variable values even if they were not used in the model. Calls to the
external functions are used within expressions so users do not need to directly
call any functions. The potential downside of the extensive use of expressions
here is that combining the expressions to form constraints could yield equations
that are more difficult to solve than, they would have been if an equivalent
system of equations was written with more variables and simpler equations.
Quantifying the effect of writing larger equations with fewer variables is
difficult. Experience suggests in this particular case more expressions and fewer
variables is better.

Although not generally used, the wrapper provides direct access to the
ExternalFunctions, including intermediate functions. For more information see
section ExternalFunctions.
These are mostly available for testing purposes.

Phase Presentation

The property package wrapper can present fluid phase information to the
IDAES framework in different ways. See the
class reference for details
on how to set these options. The phase_presentation=PhaseType.MIX option
looks like one phase called “Mix” to the IDAES framework. The property
package will calculate a phase fraction. This will bypass any two phase
handling equations written for unit models, and should work with any unit model
options as long as you do not want to separate the phases. The benefit of this
option is that it can potentially lead to a simpler set of equations.

The phase_presentation=PhaseType.LG option appears to the IDAES framework to
be two phases “Vap” and “Liq”. This option requires one of two unit model
options to be set. You can use the total material balance option for unit
models, to specify that only one material balance equation should be written
not one per phase. The other possible option is to specify
has_phase_equlibrium=True. This will still write a material balance
per phase, but will add a phase generation term to the model. For the IAPWS-95
package, it is generally recommended that specifying total material balances is
best because it results in a problem with fewer variables.

There are also two single phase options phase_presentation=PhaseType.L and
phase_presentation=PhaseType.G, these present a single phase “Liq” or “Vap”
to the framework. The vapor fraction will also always return 0 or 1 as
appropriate. These options can be used when the phase of a fluid is know for
certain to only be liquid or only be vapor. For the temperature-pressure-vapor
fraction formulation, this eliminates the complementarity constraint, but for the
enthalpy-pressure formulation, where the vapor fraction is always calculated,
the single phase options probably do not provide any real benefit.

Pressure-Enthalpy Formulation

The advantage of this choice of state variables is that it is very robust when
phase changes occur, and is especially useful when it is not known if a phase
change will occur. The disadvantage of this choice of state variables is that
for equations like heat transfer equations that are highly dependent on
temperature, a model could be harder to solve near regions with phase change.
Temperature is a non-smooth function with non-smoothness when transitioning
from the single-phase to the two-phase region. Temperature also has a zero
derivative with respect to enthalpy in the two-phase region, so near the
two-phase region solving a constraint that specifies a specific temperature
may not be possible.

The variables for this form are flow_mol (mol/s), pressure (Pa), and
enth_mol (J/mol).

Since temperature and vapor fraction are not state variables in this formulation,
they are provided by expressions, and cannot be fixed. For example, to set a
temperature to a specific value, a constraint could be added which says the
temperature expression equals a fixed value.

These expressions are specific to the P-H formulation:

	temperature

	Expression that calculates temperature by calling an ExternalFunction of
enthalpy and pressure. This expression is non-smooth in the transition from
single-phase to two-phase and has a zero derivative with respect to enthalpy
in the two-phase region.

	vapor_frac

	Expression that calculates vapor fraction by calling an ExternalFunction of
enthalpy and pressure. This expression is non-smooth in the transition from
single-phase to two-phase and has a zero derivative with respect to enthalpy
in the single-phase region, where the value is 0 (liquid) or 1 (vapor).

Temperature-Pressure-Vapor Fraction

This formulation uses temperature (K), pressure (Pa), and vapor fraction as
state variables. When a single phase option is given, the vapor fraction is
fixed to the appropriate value and not included in the state variable set. For
single phase, the complementarity constraint is also deactivated.

A complementarity constraint is required for the T-P-x formulation. First, two
expressions are defined below where \(P^-\) is pressure under saturation
pressure and \(P^+\) is pressure over saturation pressure. The max function
is provided by an IDAES utility function which provides a smooth max expression.

\[P^- = \max(0, P_{\text{sat}} - P)\]

\[P^+ = \max(0, P - P_{\text{sat}})\]

With the pressure over and pressure under saturated pressure expressions a
complementarity constraint can be written. If the pressure under saturation is
more than zero, only vapor exists. If the pressure over saturation is greater
than zero only a liquid exists. If both are about zero two phases can exist.
The saturation pressure function maxes out at the critical pressure and any
temperature above the critical temperature will yield a saturation pressure that
is the critical pressure, so supercritical fluids will be classified as liquids
as the convention for this property package.

\[0 = xP^+ - (1 - x)P^-\]

Assuming the vapor fraction (\(x\)) is positive and noting that only one of
\(P^+\) and \(P^-\) can be nonzero (approximately), the complementarity
equation above requires \(x\) to be 0 when \(P^+\) is not zero (liquid)
or \(x\) to be 1 when \(P^-\) is not zero (vapor). When both
\(P^+\) and \(P^-\) are about 0, the complementarity constraint says
nothing about x, but it does provide another constraint, that
\(P=P_{\text{sat}}\). When two phases are present \(x\) can be found
by the unit model energy balance and the temperature will be
\(T_{\text{sat}}\).

An alternative approach is sometimes useful. If you know for certain that you
have two phases, the complementarity constraint can be deactivated and a
\(P=P_{\text{sat}}\) or \(T=T_{\text{sat}}\) constraint can be added.

Using the T-P-x formulation requires better initial guesses than the P-H form.
It is not strictly necessary but it is best to try to get an initial guess that
is in the correct phase region for the expected result model.

Expressions

Unless otherwise noted, the property expressions are common to both the
T-P-x and P-H formulations. For phase specific properties, valid phase indexes
are "Liq" and "Vap"

	Expression

	Description

	mw

	Molecular weight (kg/mol)

	tau

	Critical temperature divided by temperature (unitless)

	temperature

	Temperature (K) if PH form

	temperature_red

	Reduced temperature, temperature divided by critical temperature (unitless)

	temperature_sat

	Saturation temperature (K)

	tau_sat

	Critical temperature divided by saturation temperature (unitless)

	pressure_sat

	Saturation pressure (Pa)

	dens_mass_phase[phase]

	Density phase (kg/m3)

	dens_phase_red[phase]

	Phase reduced density (\(\delta\)), mass density divided by critical density (unitless)

	dens_mass

	Total mixed phase mass density (kg/m3)

	dens_mol

	Total mixed phase mole density (kg/m3)

	flow_vol

	Total volumetric flow rate (m3/s)

	enth_mass

	Mass enthalpy (J/kg)

	enth_mol_sat_phase[phase]

	Saturation enthalpy of phase, enthalpy at P and Tsat (J/mol)

	enth_mol

	Molar enthalpy (J/mol) if TPx form

	enth_mol_phase[phase]

	Molar enthalpy of phase (J/mol)

	energy_internal_mol

	molar internal energy (J/mol)

	energy_internal_mol_phase[phase]

	Molar internal energy of phase (J/mol)

	entr_mol_phase

	Molar entropy of phase (J/mol/K)

	entr_mol

	Total mixed phase entropy (J/mol/K)

	cp_mol_phase[phase]

	Constant pressure molar heat capacity of phase (J/mol/K)

	cv_mol_phase[phase]

	Constant pressure volume heat capacity of phase (J/mol/K)

	cp_mol

	Total mixed phase constant pressure heat capacity (J/mol/K)

	cv_mol

	Total mixed phase constant volume heat capacity (J/mol/K)

	heat_capacity_ratio

	cp_mol/cv_mol

	speed_sound_phase[phase]

	Speed of sound in phase (m/s)

	dens_mol_phase[phase]

	Mole density of phase (mol/m3)

	therm_cond_phase[phase]

	Thermal conductivity of phase (W/K/m)

	vapor_frac

	Vapor fraction, if PH form

	visc_d_phase[phase]

	Viscosity of phase (Pa/s)

	visc_k_phase[phase]

	Kinimatic viscosity of phase (m2/s)

	phase_frac[phase]

	Phase fraction

	flow_mol_comp["H2O"]

	Same as total flow since only water (mol/s)

	P_under_sat

	Pressure under saturation pressure (kPA)

	P_over_sat

	Pressure over saturation pressure (kPA)

ExternalFunctions

This provides a list of ExternalFuctions available in the wrapper. These
functions do not use SI units and are not usually called directly. If these
functions are needed, they should be used with caution. Some of these are used
in the property expressions, some are just provided to allow easier testing with
a Python framework.

All of these functions provide first and second derivative and are generally
suited to optimization (including the ones that return derivatives of Helmholtz
free energy). Some functions may have non-smoothness at phase transitions. The
delta_vap and delta_liq functions return the same values in the critical
region. They will also return real values when a phase doesn’t exist, but those
values do not necessarily have physical meaning.

There are a few variables that are common to a lot of these functions, so they
are summarized here \(\tau\) is the critical temperature divided by the
temperature \(\frac{T_c}{T}\), \(\delta\) is density divided by the
critical density \(\frac{\rho}{\rho_c}\), and \(\phi\) is Helmholtz free
energy divided by the ideal gas constant and temperature \(\frac{f}{RT}\).

	Pyomo Function

	C Function

	Returns

	Arguments

	func_p

	p

	pressure (kPa)

	\(\delta, \tau\)

	func_u

	u

	internal energy (kJ/kg)

	\(\delta, \tau\)

	func_s

	s

	entropy (kJ/K/kg)

	\(\delta, \tau\)

	func_h

	h

	enthalpy (kJ/kg)

	\(\delta, \tau\)

	func_hvpt

	hvpt

	vapor enthalpy (kJ/kg)

	P (kPa), \(\tau\)

	func_hlpt

	hlpt

	liquid enthalpy (kJ/kg)

	P (kPa), \(\tau\)

	func_tau

	tau

	\(\tau\) (unitless)

	h (kJ/kg), P (kPa)

	func_vf

	vf

	vapor fraction (unitless)

	h (kJ/kg), P (kPa)

	func_g

	g

	Gibbs free energy (kJ/kg)

	\(\delta, \tau\)

	func_f

	f

	Helmholtz free energy (kJ/kg)

	\(\delta, \tau\)

	func_cv

	cv

	const. volume heat capacity (kJ/K/kg)

	\(\delta, \tau\)

	func_cp

	cp

	const. pressure heat capacity (kJ/K/kg)

	\(\delta, \tau\)

	func_w

	w

	speed of sound (m/s)

	\(\delta, \tau\)

	func_delta_liq

	delta_liq

	liquid \(\delta\) (unitless)

	P (kPa), \(\tau\)

	func_delta_vap

	delta_vap

	vapor \(\delta\) (unitless)

	P (kPa), \(\tau\)

	func_delta_sat_l

	delta_sat_l

	sat. liquid \(\delta\) (unitless)

	\(\tau\)

	func_delta_sat_v

	delta_sat_v

	sat. vapor \(\delta\) (unitless)

	\(\tau\)

	func_p_sat

	p_sat

	sat. pressure (kPa)

	\(\tau\)

	func_tau_sat

	tau_sat

	sat. \(\tau\) (unitless)

	P (kPa)

	func_phi0

	phi0

	\(\phi\) idaes gas part (unitless)

	\(\delta, \tau\)

	func_phi0_delta

	phi0_delta

	\(\frac{\partial \phi_0}{\partial \delta}\)

	\(\delta\)

	func_phi0_delta2

	phi0_delta2

	\(\frac{\partial^2 \phi_0}{\partial \delta^2}\)

	\(\delta\)

	func_phi0_tau

	phi0_tau

	\(\frac{\partial \phi_0}{\partial \tau}\)

	\(\tau\)

	func_phi0_tau2

	phi0_tau2

	\(\frac{\partial^2 \phi_0}{\partial \tau^2}\)

	\(\tau\)

	func_phir

	phir

	\(\phi\) real gas part (unitless)

	\(\delta, \tau\)

	func_phir_delta

	phir_delta

	\(\frac{\partial \phi_r}{\partial \delta}\)

	\(\delta, \tau\)

	func_phir_delta2

	phir_delta2

	\(\frac{\partial^2 \phi_r}{\partial \delta^2}\)

	\(\delta, \tau\)

	func_phir_tau

	phir_tau

	\(\frac{\partial \phi_r}{\partial \tau}\)

	\(\delta, \tau\)

	func_phir_tau2

	phir_tau2

	\(\frac{\partial^2 \phi_r}{\partial \tau^2}\)

	\(\delta, \tau\)

	func_phir_delta_tau

	phir_delta_tau

	\(\frac{\partial^2 \phi_r}{\partial \delta \partial \tau}\)

	\(\delta, \tau\)

Initialization

The IAPWS-95 property functions do provide initialization functions for general
compatibility with the IDAES framework, but as long as the state variables are
specified to some reasonable value, initialization is not required. All required
solves are handled by external functions.

References

International Association for the Properties of Water and Steam (2016).
IAPWS R6-95 (2016), “Revised Release on the IAPWS Formulation 1995 for
the Properties of Ordinary Water Substance for General Scientific Use,”
URL: http://iapws.org/relguide/IAPWS95-2016.pdf

Wagner, W., A. Pruss (2002). “The IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” J. Phys. Chem. Ref. Data, 31, 387-535.

Wagner, W. et al. (2000). “The IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam,” ASME J. Eng. Gas Turbines
and Power, 122, 150-182.

Akasaka, R. (2008). “A Reliable and Useful Method to Determine the Saturation
State from Helmholtz Energy Equations of State.” Journal of Thermal
Science and Technology, 3(3), 442-451.

International Association for the Properties of Water and Steam (2011).
IAPWS R15-11, “Release on the IAPWS Formulation 2011 for the
Thermal Conductivity of Ordinary Water Substance,”
URL: http://iapws.org/relguide/ThCond.pdf.

International Association for the Properties of Water and Steam (2008).
IAPWS R12-08, “Release on the IAPWS Formulation 2008 for the Viscosity of
Ordinary Water Substance,”
URL: http://iapws.org/relguide/visc.pdf.

Convenience Functions

	
idaes.generic_models.properties.iapws95.htpx(T, P=None, x=None)

	Convenience function to calculate steam enthalpy from temperature and
either pressure or vapor fraction. This function can be used for inlet
streams and initialization where temperature is known instead of enthalpy.

User must provided values for one (and only one) of arguments P and x.

	Parameters

	
	T – Temperature [K] (between 200 and 3000)

	P – Pressure [Pa] (between 1 and 1e9), None if saturated steam

	x – Vapor fraction [mol vapor/mol total] (between 0 and 1), None if

	or subcooled (superheated) –

	Returns

	Total molar enthalpy [J/mol].

Iapws95StateBlock Class

	
class idaes.generic_models.properties.iapws95.Iapws95StateBlock(*args, **kwargs)

	This is some placeholder doc.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	parameters

	A reference to an instance of the Property Parameter Block
associated with this property package.

	defined_state

	Flag indicating whether the state should be considered
fully defined, and thus whether constraints such as sum of
mass/mole fractions should be included, default -
False. Valid values: { True - state variables will
be fully defined, False - state variables will not be
fully defined.}

	has_phase_equilibrium

	Flag indicating whether phase equilibrium constraints
should be constructed in this state block, default -
True. Valid values: { True - StateBlock should
calculate phase equilibrium, False - StateBlock should
not calculate phase equilibrium.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Iapws95StateBlock) New instance

Iapws95StateBlockData Class

	
class idaes.generic_models.properties.iapws95.Iapws95StateBlockData(component)

	This is a property package for calculating thermophysical properties of
water.

	
build(*args)

	Callable method for Block construction

Iapws95ParameterBlock Class

	
class idaes.generic_models.properties.iapws95.Iapws95ParameterBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	default_arguments

	Default arguments to use with Property Package

	phase_presentation

	Set the way phases are presented to models. The MIX option
appears to the framework to be a mixed phase containing
liquid and/or vapor. The mixed option can simplify
calculations at the unit model level since it can be
treated as a single phase, but unit models such as flash
vessels will not be able to treat the phases
independently. The LG option presents as two separate
phases to the framework. The L or G options can be used if
it is known for sure that only one phase is present.
default - PhaseType.MIX Valid values: {
PhaseType.MIX - Present a mixed phase with liquid
and/or vapor, PhaseType.LG - Present a liquid and
vapor phase, PhaseType.L - Assume only liquid can be
present, PhaseType.G - Assume only vapor can be
present}

	state_vars

	The set of state variables to use. Depending on the use,
one state variable set or another may be better
computationally. Usually pressure and enthalpy are the
best choice because they are well behaved during a phase
change. default - StateVars.PH Valid values: {
StateVars.PH - Pressure-Enthalpy, StateVars.TPX -
Temperature-Pressure-Quality}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Iapws95ParameterBlock) New instance

Iapws95ParameterBlockData Class

	
class idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData(component)

	
	
build()

	General build method for PropertyParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

 Generic Property Package Framework

Generic Property Package Framework

Contents

	Defining Property Packages

	Configuration Options

	Defining State Variables

	Equations of State

	Defining Pure Component Properties

	Bubble and Dew Point Methods

	Phase Equilibrium Formulations

	Developing New Property Libraries

Introduction

Note

The generic property package framework is still under development. Whilst the current framework is functional, features are still being developed and added to increase functionality.

The generic property package framework builds upon the existing framework for implementing property packages within IDAES, and will not prevent the user of custom written property packages in the future. However, it is envisioned that the generic property package framework will provide a more streamlined interface for developing property packages in most circumstances, and it is hoped that most property packages will migrate to using the generic property framework in the future.

Property packages represent the core of any process model, and having a suitable property package is key to successfully modeling any process system. However, developing property packages is a significant challenge even for the most experienced modelers, as they involve complex, non-linear equations. The goal of the IDAES Generic Property Package Framework is to provide a flexible platform on which users can build custom property packages by calling upon libraries of modular sub-models to build up complex property calculations with the least effort possible.

The Generic Property Package Framework breaks down property packages into a number of components which can be assembled in a modular fashion. Users need only provide those components which they require for their system of interest, and components can be drawn from libraries of existing components or provided by the user as custom code. The components which make up a generic property package are as follows:

	Definition of the component list and phases of interest, along with any phase equilibrium the user wishes to include.

	A definition of the variables the user wishes to use to define the state of their material (state variables), along with any bounds on these.

	An equation of state to describe each phase within the user’s property package.

	Correlations for the pure component properties of each component in the users system. Correlations are only required for those properties the user will use within their model.

	Methods to calculate the bubble and dew points of mixtures.

	A formulation to use for defining any phase equilibrium within the user’s system.

The following section will describe how to define a property package using the Generic Property Package Framework along with the libraries of sub-models currently available. Finally, the developers section describes how to go about defining your own custom components to use when creating custom property packages.

 Defining Property Packages

Defining Property Packages

Contents

	Defining Property Packages

	Introduction

	Configure

	Build

	Examples

Introduction

In order to define a property package using the IDAES Generic Property Package Framework, users need to define a Property Parameter Block in order to describe their material and its properties. The class should inherit from the IDAES GenericParameterData class and contain two methods;

	configure, which defines the users selection of sub-models, and

	build, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Property Parameter Block is shown below.

@declare_process_block_class("UserParameterBlock")
class UserParameterData(GenericParameterData):
 def configure(self):
 # Set configuration options
 def build(self):
 # Define parameters

Users should populate the configure and build methods as discussed below.

Configure

The ‘configure` method is used to select the sub-models and methods to be used when constructing the StateBlocks associated with this property package within a process model. These options define the behavior of the property package, and allow users to customize the property package to their needs.

Configuration options are set by assigning an appropriate method to self.configure.option_name within the configure method. A full list of the available property options is given here.

Build

The build method is used to define and specify values for all the parameters associated with the property calculations. All property calculations depend on a set of empirically derived parameters to describe the behavior of the material. The list of parameters which need to be defined will depend upon the configuration options chosen, and the documentation for each method lists the expected parameters which need to be defined in this section. Users need only define those parameters required by the options they have chosen.

Property parameters can be defined as either Pyomo Params or Vars depending upon the application. Whilst Params would seem to be the logical choice, be aware that for parameter estimation problems, the parameters being estimated need to be defined as Vars so that the solver is free to vary them.

Note

If using Params, users should consider whether these should be mutable or not - Params that are not mutable have their value defined upon creation and this cannot be changed later.

If using Vars, remember that you will need to fix the value unless you are trying to estimate the value of that parameter.

Property parameters need to have the correct set of indices and follow the naming convention laid out in the standard naming conventions and described in the documentation for each property method. Property parameters are created using Pyomo code as shown below:

Param

self.parameter = Param([indices], initialize=value(s), mutable=True/False)

Var

self.parameter = Var([indices], initialize=value(s))
self.parameter.fix()

Examples

Examples of using the IDAES Generic Property Package Framework can be found in the idaes/property_models/core/examples folder.

 Configuration Options

Configuration Options

Contents

	Configuration Options

	Mandatory Configuration Options

	Additional Configuration Options

	Pure Component Property Options

The following configuration options are available in the IDAES Generic Property Package Framework.

Mandatory Configuration Options

Users must provide a selection for the following options in all property packages.

Component List

Argument: config.component_list

The list of chemical species of interest in the material.

Phase List

Argument: config.phase_list

The list of thermodynamic phases that should be included in the model. Phases may or may not interact via phase equilibrium.

State Definition

Argument: config.state_definition

An IDAES state definition module which creates the desired set of state variables along with any necessary auxiliary variables.

Equation of State

Argument: config.equation_of_state

A dict indicating an equation of state to use for each phase in the property package. The expected form is:

config.equation_of_state = {'phase_1': eos_1, 'phase_2': eos_2, ...}

Each phase in config.phase_list must be assigned an equation of state, which should take the form of an IDAES equation of state module which defines methods for calculating all thermophysical and transport properties.

Additional Configuration Options

The following configuration options are not necessary, but are useful or required in some circumstances.

Phase Component Dictionary

Argument: config.phase_component_dict

The option allows users to specify different component lists for each phase in their system. This is useful in circumstances where certain species will only ever appear in a given phase (e.g. a non-condensible gas). The expected form of this argument is:

config.phase_component_dict = {'phase_1': [list of components in phase 1], 'phase_2': [list of components in phase 2], ...}

Component lists for each phase must be a subset of config.component_list, and all components in config.component_list should appear in at least one phase.

State Bounds

Argument: config.state_bounds

The option allows users to specify custom bounds on the state variables in their property package during construction. This is important for bounding the resulting problem and ensuring solutions do not stray outside the regions over which property parameters were fitted. The expected form of this argument is:

config.state_bounds = {'state_var_1': (lower, upper), 'state_var_2': (lower, upper), ...}

Users should consult the documentation for the state definition they are using to determine the state variables which can be bounded.

Phase Equilibrium Formulation

Argument: config.phase_equilibrium_formulation

The option allows users to specify the formulation to use for expressing phase equilibrium in their property package. This argument should be an IDAES phase equilibrium module which creates constraint describing the equilibria between phases. If the user wishes to include phase equilibria in their property package, both this argument and the phase_equilibrium_dict argument must be provided.

Phase Equilibrium Dictionary

Argument: config.phase_equilibrium_dict

The option allows users to specify which components in their system are in equilibrium between different phases. The expected form of this argument is:

config.phase_equilibrium_dict = {id1: [component, (phase_1, phase_2)], id2: [component, (phase_1, phase_2)], ...}

Here the id is used to identify each phase equilibrium reaction, component identifies the component in equilibrium and phase1 and phase2 identify the two phases over which this component should be in equilibrium. For cases where a given component is in equilibrium across more than 2 phases, multiple entries for the component are required identifying each pair of phases which should be in equilibrium (this is the reason for the id to identify reactions rather than just component name).

If the user wishes to include phase equilibria in their property package, both this argument and the phase_equilibrium_formulation argument must be provided.

Bubble Temperature

Argument: config.temperature_bubble

This argument allows users to specify a method for calculating the bubble temperature of the mixture in their property package.

Dew Temperature

Argument: config.temperature_dew

This argument allows users to specify a method for calculating the dew temperature of the mixture in their property package.

Bubble Pressure

Argument: config.pressure_bubble

This argument allows users to specify a method for calculating the bubble pressure of the mixture in their property package.

Dew Pressure

Argument: config.pressure_dew

This argument allows users to specify a method for calculating the dew pressure of the mixture in their property package.

Pure Component Property Options

The remaining options allow users to select methods to use for calculating each pure component property, and users must provide a selection for every method that will be used within their process flowsheet. A full list of supported pure component properties can be found here.

 Defining State Variables

Defining State Variables

An important part of defining a set of property calculations is choosing the set of variables which will describe the state of the material. The set of state variables needs to include information on the extensive flow, composition and thermodynamic state of the material. However, there are many ways in which this information can be described, and the best choice of state variables depends on many factors.

Within the IDAES Generic Property Package Framework, the definition of state variables is done using sub-modules which create the necessary variables supporting information for the property package. A state definition sub-module may define any set of state variables the user feel appropriate, but must define the following components as either state variables or functions of the state variables:

	temperature

	pressure

	mole_frac_phase_comp

	phase_frac

The IDAES Generic Property Package Framework has a library of prebuilt state definition sub-modules for users to use which are listed below.

State Definition Libraries

	FTPx

 Equations of State

Equations of State

Equations of State (or equivalent methods) describe the relationship between different thermophysical properties and ensure that the behavior of these are thermodynamically consistent. A wide range of equations of state have been develop for different applications and levels of rigor. Equations of state generally start with ideal pure component properties, and provide a set of relationships which describe how these are combined and deviate from ideality in real mixtures. Equation of state packages within the IDAES Generic Property Package Framework need to implement equations (either Constraints or Expressions) for all of the mixture properties of interest to the user relating these to the pure component properties and state variables.

The IDAES Generic Property Package Framework provides a number of prebuilt equation of state packages for users to use, which are listed below.

Equation of State Libraries

	Ideal Gases and Liquids

 Defining Pure Component Properties

Defining Pure Component Properties

Most methods for calculating the thermophysical properties of materials start from estimating the properties of each component in its pure form, before applying mixing rules to determine the properties of the mixture. Pure component properties generally take the form of empirical correlations as a function of material state (generally temperature) derived from experimental data. Data and correlations for many components are readily available in literature. However due to the empirical nature of these correlations and the wide range of data available, different sources use different forms for their correlations.

Within the IDAES Generic Property Package Framework, pure component property correlations are provided in the form of Python methods which return a Pyomo expression relating the pure component property to the material state (using the standard naming conventions. IDAES provides a number of libraries containing common forms for these correlations, and a list of the libraries currently supported by IDAES is given below.

A list of all the pure component properties currently supported by the IDAES Generic Property Package Framework can be found after the list of pure component libraries.

Pure Component Libraries

	NIST Webbook

	Perry’s Chemical Engineers’ Handbook

	Properties of Gases and Liquids

Supported Properties

The following pure component properties are supported by IDAES Generic Property Package Framework.

	Property

	Method

	Arguments

	Ideal Gas Molar Heat Capacity

	cp_mol_ig_comp

	component, temperature

	Ideal Gas Molar Enthalpy

	enth_mol_ig_comp

	component, temperature

	Ideal Gas Molar Entropy

	entr_mol_ig_comp

	component, temperature

	Ideal Liquid Molar Heat Capacity

	cp_mol_liq_comp

	component, temperature

	Ideal Liquid Molar Enthalpy

	enth_mol_liq_comp

	component, temperature

	Ideal Liquid Molar Entropy

	entr_mol_liq_comp

	component, temperature

	Liquid Molar Density

	dens_mol_liq_comp

	component, temperature

	Saturation Pressure

	pressure_sat_comp

	component, temperature

 Bubble and Dew Point Methods

Bubble and Dew Point Methods

Contents

	Bubble and Dew Point Methods

	Introduction

	Ideal Assumptions

	Ideal Bubble Pressure

	Ideal Bubble Temperature

	Ideal Dew Pressure

	Ideal Dew Temperature

Introduction

Bubble and dew points are often of interest to process engineers for designing process equipment, and appear in some calculations of other thermodynamic properties. Whilst calculation of the saturation pressure for single components is relatively simple, calculating the bubble and dew points of mixtures is more challenging due to the non-linear nature of the equations.

The IDAES Generic Property Package Framework has a number of prebuilt methods for calculating the bubble and dew points of mixtures which are listed below.

Ideal Assumptions

In the case where ideal behavior can be assumed, i.e. Raoult’s Law holds, the bubble and dew points can be calculated directly from the saturation pressure using the following equations.

Ideal Bubble Pressure

This method is implemented as bubble_press_ideal.

\[P_{bub} = \sum_j{x_j \times P_{sat, j}(T)}\]

\[x_j(P_{bub}) \times P_{bub} = x_j \times P_{sat, j}(T)\]

where \(P_{bub}\) is the bubble pressure of the mixture, \(P_{sat, j}(T)\) is the saturation pressure of component \(j\) at the system temperature, \(T\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{bub})\) is the mole fraction of the vapor phase at the bubble pressure.

Ideal Bubble Temperature

This method is implemented as bubble_temp_ideal.

\[\sum_j{\left(x_j \times P_{sat, j}(T_{bub})\right)} - P = 0\]

\[x_j(T_{bub}) \times P = x_j \times P_{sat, j}(T_{bub})\]

where \(P\) is the system pressure, \(P_{sat, j}(T_{bub})\) is the saturation pressure of component \(j\) at the bubble temperature, \(T_{bub}\), \(x_j\) is the overall mixture mole fraction and \(x_j(T_{bub})\) is the mole fraction of the vapor phase at the bubble temperature.

Ideal Dew Pressure

This method is implemented as dew_press_ideal.

\[0 = 1 - P_{dew} \times \sum_j{x_j \times P_{sat, j}(T)}\]

\[x_j(P_{dew}) \times P_{sat, j}(T) = x_j \times P_{dew}\]

where \(P_{dew}\) is the dew pressure of the mixture, \(P_{sat, j}(T)\) is the saturation pressure of component \(j\) at the system temperature, \(T\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{dew})\) is the mole fraction of the liquid phase at the dew pressure.

Ideal Dew Temperature

This method is implemented as dew_temp_ideal.

\[P \times \sum_j{\left(x_j \times P_{sat, j}(T_{dew})\right)} - 1 = 0\]

\[x_j(T_{dew}) \times P_{sat, j}(T_{dew}) = x_j \times P\]

where \(P\) is the system pressure, \(P_{sat, j}(T_{dew})\) is the saturation pressure of component \(j\) at the dew temperature, \(T_{bub}\), \(x_j\) is the overall mixture mole fraction and \(y_j(T_{dew})\) is the mole fraction of the liquid phase at the dew temperature.

 Phase Equilibrium Formulations

Phase Equilibrium Formulations

Phase equilibrium and separation is a key part of almost all chemical processes, and also represent some of the most complex and non-linear constraints in a model, especially when dealing with systems which may cross phase boundaries. As such, good formulations of these constraints is key to a robust and tractable model.

To assist users with formulating the phase equilibrium constraints in their models, the IDAES Generic Property Package Framework contains a library of different formulations for phase equilibrium.

Phase Equilibrium Libraries

	Smooth Vapor-Liquid Equilibrium Formulation

 Developing New Property Libraries

Developing New Property Libraries

Information on how to develop new components for the IDAES Generic Property Package Framework are given in the following sections.

Contents

	Developing Pure Component Methods

	Developing Equation of State Modules

	Developing State Definitions

	Developing Phase Equilibrium Methods

 Property Interrogator Tool

Property Interrogator Tool

When preparing to model a process flowsheet, it is necessary to specify models for all the thermophysical and kinetic properties that will be required by the different unit operations to simulate the process. However, it is often difficult to know what properties will be required a priori. The IDAES Property Interrogator tool allows a user to define a general flowsheet structure and interrogate it for the full list of properties that will be required, thus informing them of what methods they will need to define in their property package(s).

Tool Usage

The IDAES Properties Interrogator tool consists of two classes; a PropertiesInterrogatorBlock and a ReactionInterrogatorBlock. These blocks are used in place of the normal PhysicalParameterBlock and ReactionParameterBlock whilst declaring a flowsheet, however rather than constructing a solvable flowsheet they record all calls for properties made whilst constructing the flowsheet. These Blocks then contain a number of methods for reporting the logged property calls for the user.

An example of how Property Interrogator tool is used is shown below:

import pyomo.environ as pyo # Pyomo environment
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import CSTR
from idaes.generic_models.properties.interrogator import PropertyInterrogatorBlock, ReactionInterrogatorBlock

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": True})

m.fs.params = PropertyInterrogatorBlock()
m.fs.rxn_params = ReactionInterrogatorBlock(
 default={"property_package": m.fs.params})

m.fs.R01 = CSTR(default={"property_package": m.fs.params,
 "reaction_package": m.fs.rxn_params,
 "has_heat_of_reaction": True})

Note

Flowsheets constructed using the Property Interrogator tools are not solvable flowsheets, and will result in errors if sent to a solver.

Output and Display Methods

Both the PropertiesInterrogatorBlock and ReactionInterrogatorBlock support the following methods for reporting the results of the flowsheet interrogation. The PropertiesInterrogatorBlock will contain a summary of all thermophysical properties expected of a StateBlock in the flowsheet, whilst the ReactionInterrogatorBlock will contain a summary of all reaction related properties required of a ReactionBlock.

	list_required_properties() - returns a list containing all properties called for by the flowsheet.

	print_required_properties() - prints a summary of the required properties

	list_models_requiring_property(property) - returns a list of unit models within the flowsheet that require the given property

	print_models_requiring_property(property) - prints the name of all unit models within the flowsheet that require the given property

	list_properties_required_by_model(model) - returns a list of all properties required by a given unit model in the flowsheet

	print_properties_required_by_model(model) - prints a summary of all properties required by a given unit model in the flowsheet

For more details on these methods, see the detailed class documentation below.

Additionally, the PropertiesInterrogatorBlock and ReactionInterrogatorBlock contain a dict named required_properties which stores the data regarding the properties required by the model. The keys of this dict are the names of all the properties required (as strings) and the values are a list of names for the unit models requiring the given property.

Class Documentation

	
class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	default_arguments

	Default arguments to use with Property Package

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PropertyInterrogatorBlock) New instance

	
class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData(component)

	Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying
the properties requried by the flowsheet.

	
build()

	Callable method for Block construction.

	
classmethod define_metadata(obj)

	Set all the metadata for properties and units.

This method should be implemented by subclasses.
In the implementation, they should set information into the
object provided as an argument.

	Parameters

	pcm (PropertyClassMetadata) – Add metadata to this object.

	Returns

	None

	
list_models_requiring_property(prop)

	Method to list all models in the flowsheet requiring the given
property.

	Parameters

	prop – the property of interest

	Returns

	A list of unit model names which require prop

	
list_properties_required_by_model(model)

	Method to list all thermophysical properties required by a given unit
model.

	Parameters

	model – the unit model of interest. Can be given as either a model
component or the unit name as a string

	Returns

	A list of thermophysical properties required by model

	
list_required_properties()

	Method to list all thermophysical properties required by the flowsheet.

	Parameters

	None –

	Returns

	A list of properties required

	
print_models_requiring_property(prop, ostream=None)

	Method to print a summary of the models in the flowsheet requiring a
given property.

	Parameters

	
	prop – the property of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_properties_required_by_model(model, ostream=None)

	Method to print a summary of the thermophysical properties required by
a given unit model.

	Parameters

	
	model – the unit model of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_required_properties(ostream=None)

	Method to print a summary of the thermophysical properties required by
the flowsheet.

	Parameters

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	property_package

	Reference to associated PropertyPackageParameter object

	default_arguments

	Default arguments to use with Property Package

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ReactionInterrogatorBlock) New instance

	
class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData(component)

	Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying
the reaction properties requried by the flowsheet.

	
build()

	Callable method for Block construction.

	
classmethod define_metadata(obj)

	Set all the metadata for properties and units.

This method should be implemented by subclasses.
In the implementation, they should set information into the
object provided as an argument.

	Parameters

	pcm (PropertyClassMetadata) – Add metadata to this object.

	Returns

	None

	
list_models_requiring_property(prop)

	Method to list all models in the flowsheet requiring the given
property.

	Parameters

	prop – the property of interest

	Returns

	A list of unit model names which require prop

	
list_properties_required_by_model(model)

	Method to list all reaction properties required by a given unit model.

	Parameters

	model – the unit model of interest. Can be given as either a model
component or the unit name as a string

	Returns

	A list of reaction properties required by model

	
list_required_properties()

	Method to list all reaction properties required by the flowsheet.

	Parameters

	None –

	Returns

	A list of properties required

	
print_models_requiring_property(prop, ostream=None)

	Method to print a summary of the models in the flowsheet requiring a
given property.

	Parameters

	
	prop – the property of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_properties_required_by_model(model, ostream=None)

	Method to print a summary of the reaction properties required by
a given unit model.

	Parameters

	
	model – the unit model of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_required_properties(ostream=None)

	Method to print a summary of the reaction properties required by the
flowsheet.

	Parameters

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

 Unit Model Library

Unit Model Library

	Compressor

	Continuous Stirred Tank Reactor

	Equilibrium Reactor

	Feed Block

	Feed Block with Flash

	Flash Unit

	Gibbs Reactor

	Heater

	HeatExchanger (0D)

	Heat Exchangers (1D)

	Mixer

	Plug Flow Reactor

	Pressure Changer

	Product Block

	Pump

	Separator

	StateJunction Block

	Stoichiometric (Yield) Reactor

	Translator Block

	Turbine

 Compressor

Compressor

The Compressor model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be True,
and the default “thermodynamic_assumption” is “isentropic.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Compressor model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Compressor
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Compressor(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(4000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(50000)
m.fs.unit.efficiency_isentropic.fix(0.9)

 Continuous Stirred Tank Reactor

Continuous Stirred Tank Reactor

The IDAES CSTR model represents a unit operation where a material stream undergoes some chemical reaction(s) in a well-mixed vessel.

Degrees of Freedom

CSTRs generally have one degree of freedom. Typically, the fixed variable is reactor volume.

Model Structure

The core CSTR unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

CSTR units write the following additional Constraints beyond those written by the ControlVolume Block.

\[X_{t,r} = V_t \times r_{t,r}\]

where \(X_{t,r}\) is the extent of reaction of reaction \(r\) at time \(t\), \(V_t\) is the volume of the reacting material at time \(t\) (allows for varying reactor volume with time) and \(r_{t,r}\) is the volumetric rate of reaction of reaction \(r\) at time \(t\) (from the outlet property package).

Variables

CSTR units add the following additional Variables beyond those created by the ControlVolume Block.

	Variable

	Name

	Notes

	\(V_t\)

	volume

	If has_holdup = True this is a reference to control_volume.volume, otherwise a Var attached to the Unit Model

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

CSTR Class

	
class idaes.generic_models.unit_models.cstr.CSTR(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_equilibrium_reactions

	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_heat_of_reaction

	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(CSTR) New instance

CSTRData Class

	
class idaes.generic_models.unit_models.cstr.CSTRData(component)

	Standard CSTR Unit Model Class

	
build()

	Begin building model (pre-DAE transformation).
:param None:

	Returns

	None

 Equilibrium Reactor

Equilibrium Reactor

The IDAES Equilibrium reactor model represents a unit operation where a material stream undergoes some chemical reaction(s) to reach an equilibrium state. This model is for systems with reaction with equilibrium coefficients - for Gibbs energy minimization see Gibbs reactor documentation.

Degrees of Freedom

Equilibrium reactors generally have 1 degree of freedom.

Typical fixed variables are:

	reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Equilibrium reactor unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

Equilibrium reactors units write the following additional Constraints beyond those written by the Control Volume if rate controlled reactions are present.

\[r_{t,r} = 0\]

where \(r_{t,r}\) is the rate of reaction for reaction \(r\) at time \(t\). This enforces equilibrium in any reversible rate controlled reactions which are present. Any non-reversible reaction that may be present will proceed to completion.

Variables

Equilibrium reactor units add the following additional Variables beyond those created by the Control Volume.

	Variable

	Name

	Notes

	\(V_t\)

	volume

	If has_holdup = True this is a reference to control_volume.volume, otherwise a Var attached to the Unit Model

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

EquilibriumReactor Class

	
class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Equilibrium Reactors do not support
dynamic behavior.

	has_holdup

	Indicates whether holdup terms should be constructed or
not. default - False. Equilibrium reactors do not have
defined volume, thus this must be False.

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_rate_reactions

	Indicates whether terms for rate controlled reactions
should be constructed, along with constraints equating
these to zero, default - True. Valid values: {
True - include rate reaction terms, False -
exclude rate reaction terms.}

	has_equilibrium_reactions

	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default - True. Valid values: {
True - include phase equilibrium term, False -
exclude phase equlibirum terms.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_heat_of_reaction

	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(EquilibriumReactor) New instance

EquilibriumReactorData Class

	
class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData(component)

	Standard Equilibrium Reactor Unit Model Class

	
build()

	Begin building model.

	Parameters

	None –

	Returns

	None

 Feed Block

Feed Block

Feed Blocks are used to represent sources of material in Flowsheets. Feed blocks do not calculate phase equilibrium of the feed stream, and the composition of the material in the outlet stream will be exactly as specified in the input. For applications where the users wishes the outlet stream to be in phase equilibrium, see the Feed_Flash unit model.

Degrees of Freedom

The degrees of freedom of Feed blocks depends on the property package being used and the number of state variables necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

Feed Blocks consists of a single StateBlock (named properties), each with one Outlet Port (named outlet). Feed Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Feed Blocks write no additional constraints to the model.

Variables

Feed blocks add no additional Variables.

Feed Class

	
class idaes.generic_models.unit_models.feed.Feed(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Feed blocks are always steady-state.

	has_holdup

	Feed blocks do not contain holdup, thus this must be
False.

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Feed) New instance

FeedData Class

	
class idaes.generic_models.unit_models.feed.FeedData(component)

	Standard Feed Block Class

	
build()

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	This method calls the initialization method of the state block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Feed Block with Flash

Feed Block with Flash

Feed Blocks are used to represent sources of material in Flowsheets. In some cases, users may have a situation where a feed stream may be in a multi-phase state, but may not know the full details of the equilibrium state. The IDAES Feed Block with Flash (FeedFlash) allows users to define a feed block where the outlet is in phase equilibrium based on calculations from the chosen property package and a sufficient set of state variables prior to being passed to the first unit operation. The phase equilibrium is performed assuming an isobaric and isothermal flash operation.

A Feed Block with Flash is only required in cases where the feed may be in phase equilibrium AND the chosen property package uses a state definition that includes phase separations. Some property packages support phase equilibrium, but use a state definition that involves only total flows - in these cases a flash calculation is performed at the inlet of every unit and thus it is not necessary to perform a flash calculation at the feed block.

Degrees of Freedom

The degrees of freedom of FeedFlash blocks depends on the property package being used and the number of state variables necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

FeedFlash Blocks contain a single ControlVolume0D (named control_volume) with one Outlet Port (named outlet). FeedFlash Blocks also contain References to the state variables defined within the inlet StateBlock of the ControlVolume (representing the unflashed state of the feed).

FeedFlash Blocks do not write a set of energy balances within the Control Volume - instead a constraint is written which enforces an isothermal flash.

Additional Constraints

The FeedFlash Block writes one additional constraint to enforce isothermal behavior.

\[T_{in, t} = T_{out, t}\]

where \(T_{in, t}\) and \(T_{out, t}\) are the temperatures of the material before and after the flash operation.

Variables

FeedFlash blocks add no additional Variables.

FeedFlash Class

	
class idaes.generic_models.unit_models.feed_flash.FeedFlash(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Feed units do not support dynamic behavior.

	has_holdup

	Feed units do not have defined volume, thus this must be
False.

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	flash_type

	Indicates what type of flash operation should be used.
default - FlashType.isothermal. Valid values: {
FlashType.isothermal - specify temperature,
FlashType.isenthalpic - specify enthalpy.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(FeedFlash) New instance

FeedFlashData Class

	
class idaes.generic_models.unit_models.feed_flash.FeedFlashData(component)

	Standard Feed block with phase equilibrium

	
build()

	Begin building model.

	Parameters

	None –

	Returns

	None

 Flash Unit

Flash Unit

The IDAES Flash model represents a unit operation where a single stream undergoes a flash separation into two phases. The Flash model supports mutile types of flash operations, including pressure changes and addition or removal of heat.

Degrees of Freedom

Flash units generally have 2 degrees of freedom.

Typical fixed variables are:

	heat duty or outlet temperature (see note),

	pressure change or outlet pressure.

Note: When setting the outlet temeprature of a Flash unit, it is best to set control_volume.properties_out[t].temperature. Setting the temperature in one of the outlet streams directly results in a much harder problme to solve, and may be degenerate or unbounded in some cases.

Model Structure

The core Flash unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) connected to a Separator unit model with two outlet Ports named ‘vap_outlet’ and ‘liq_outlet’. The Flash model utilizes the separator unit model in IDAES to split the outlets by phase flows to the liquid and vapor outlets respectively.

The Separator unit model supports both direct splitting of state variables and writting of full splitting constraints via the ideal_separation construction argument. Full details on the Separator unit model can be found in the documentation for that unit. To support direct splitting, the property package must use one of a specified set of state variables and support a certain set of property calacuations, as outlined in the table below.

	State Variables

	Required Properties

	Material flow and composition

	flow_mol & mole_frac

	flow_mol_phase & mole_frac_phase

	flow_mol_phase & mole_frac_phase

	flow_mol_phase & mole_frac_phase

	flow_mol_comp

	flow_mol_phase_comp

	flow_mol_phase_comp

	flow_mol_phase_comp

	flow_mass & mass_frac

	flow_mass_phase & mass_frac_phase

	flow_mass_phase & mass_frac_phase

	flow_mass_phase & mass_frac_phase

	flow_mass_comp

	flow_mass_phase_comp

	flow_mass_phase_comp

	flow_mass_phase_comp

	Energy state

	temperature

	temperature

	enth_mol

	enth_mol_phase

	enth_mol_phase

	enth_mol_phase

	enth_mass

	enth_mass_phase

	enth_mass_phase

	enth_mass_phase

	Pressure state

	pressure

	pressure

Construction Arguments

Flash units have the following construction arguments:

	property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the Property Blocks when they are created.

Additionally, Flash units have the following construction arguments which are passed to the Holdup Block for determining which terms to construct in the balance equations.

	Argument

	Default Value

	dynamic

	False

	include_holdup

	False

	material_balance_type

	MaterialBalanceType.componentPhase

	energy_balance_type

	EnergyBalanceType.enthalpyTotal

	momentum_balance_type

	MomentumBalanceType.pressureTotal

	has_phase_equilibrium

	True

	has_heat_transfer

	True

	has_pressure_change

	True

Finally, Flash units also have the following arguments which are passed to the Separator block for determining how to split to two-phase mixture.

	Argument

	Default Value

	ideal_separation

	True

	energy_split_basis

	EnergySplittingType.equal_temperature

Additional Constraints

Flash units write no additional Constraints beyond those written by the ControlVolume0DBlock and the Separator block.

Variables

	Name

	Notes

	heat_duty

	Reference to control_volume.heat

	deltaP

	Reference to control_volume.deltaP

Flash Class

	
class idaes.generic_models.unit_models.flash.Flash(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Flash units do not support dynamic
behavior.

	has_holdup

	Indicates whether holdup terms should be constructed or
not. default - False. Flash units do not have defined
volume, thus this must be False.

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	energy_split_basis

	Argument indicating basis to use for splitting energy this
is not used for when ideal_separation == True. default
- EnergySplittingType.equal_temperature. Valid values:
{ EnergySplittingType.equal_temperature - outlet
temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar
enthalpies equal inlet,
EnergySplittingType.enthalpy_split - apply split
fractions to enthalpy flows.}

	ideal_separation

	Argument indicating whether ideal splitting should be
used. Ideal splitting assumes perfect separation of
material, and attempts to avoid duplication of StateBlocks
by directly partitioning outlet flows to ports,
default - True. Valid values: { True - use
ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True, False - use explicit
splitting equations with split fractions.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - True. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Flash) New instance

FlashData Class

	
class idaes.generic_models.unit_models.flash.FlashData(component)

	Standard Flash Unit Model Class

	
build()

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Gibbs Reactor

Gibbs Reactor

The IDAES Gibbs reactor model represents a unit operation where a material stream undergoes some set of reactions such that the Gibbs energy of the resulting mixture is minimized. Gibbs reactors rely on conservation of individual elements within the system, and thus require element balances, and make use of Lagrange multipliers to find the minimum Gibbs energy state of the system.

Degrees of Freedom

Gibbs reactors generally have between 0 and 2 degrees of freedom, depending on construction arguments.

Typical fixed variables are:

	reactor heat duty (has_heat_transfer = True only).

	reactor pressure change (has_pressure_change = True only).

Model Structure

The core Gibbs reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

Gibbs reactor units add the following additional Variables beyond those created by the Control Volume Block.

	Variable Name

	Symbol

	Notes

	lagrange_mult

	\(L_{t,e}\)

	Lagrange multipliers

	heat_duty

	\(Q_t\)

	Only if has_heat_transfer = True, reference

	deltaP

	\(\Delta P_t\)

	Only if has_pressure_change = True, reference

Constraints

Gibbs reactor models write the following additional constraints to calculate the state that corresponds to the minimum Gibbs energy of the system.

gibbs_minimization(time, phase, component):

\[0 = g_{partial,t,j} + \sum_e{(L_{t,e} \times \alpha_{j,e})}\]

where \(g_{partial,t,j}\) is the partial molar Gibbs energy of component \(j\) at time \(t\), \(L_{t,e}\) is the Lagrange multiplier for element \(e\) at time \(t\) and \(\alpha_{j,e}\) is the number of moles of element \(e\) in one mole of component \(j\). \(g_{partial,t,j}\) and \(\alpha_{j,e}\) come from the outlet StateBlock.

GibbsReactor Class

	
class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Gibbs reactors do not support dynamic models, thus this
must be False.

	has_holdup

	Gibbs reactors do not have defined volume, thus this must
be False.

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(GibbsReactor) New instance

GibbsReactorData Class

	
class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData(component)

	Standard Gibbs Reactor Unit Model Class

This model assume all possible reactions reach equilibrium such that the
system partial molar Gibbs free energy is minimized.
Since some species mole flow rate might be very small,
the natural log of the species molar flow rate is used.
Instead of specifying the system Gibbs free energy as an objective
function, the equations for zero partial derivatives of the grand function
with Lagrangian multiple terms with repect to product species mole flow
rates and the multiples are specified as constraints.

	
build()

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Heater

Heater

The Heater model is a simple 0D model that adds or removes heat from a
material stream.

Example

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={"property_package": model.fs.properties})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heater model usually has one degree of
freedom, which is the heat duty.

Model Structure

A heater model contains one ControlVolume0DBlock block.

Variables

The heat_duty variable is a reference to control_volume.heat.

Constraints

A heater model contains no additional constraints beyond what are contained in
a ControlVolume0DBlock model.

Heater Class

	
class idaes.generic_models.unit_models.heater.Heater(*args, **kwargs)

	Simple 0D heater/cooler model.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Heater) New instance

HeaterData Class

	
class idaes.generic_models.unit_models.heater.HeaterData(component)

	Simple 0D heater unit.
Unit model to add or remove heat from a material.

	
build()

	Building model

	Parameters

	None –

	Returns

	None

 HeatExchanger (0D)

HeatExchanger (0D)

The HeatExchanger model can be imported from idaes.generic_models.unit_models,
while additional rules and utility functions can be imported from
idaes.generic_models.unit_models.heat_exchanger.

Example

The example below demonstrates how to initialize the HeatExchanger model, and
override the default temperature difference calculation.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import HeatExchanger
from idaes.generic_models.unit_models.heat_exchanger import delta_temperature_amtd_callback
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heat_exchanger = HeatExchanger(default={
 "delta_temperature_callback":delta_temperature_amtd_callback,
 "shell":{"property_package": model.fs.properties},
 "tube":{"property_package": model.fs.properties}})

model.fs.heat_exchanger.area.fix(1000)
model.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(100)
model.fs.heat_exchanger.shell_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.shell_inlet.pressure.fix(101325)
model.fs.heat_exchanger.shell_inlet.enth_mol.fix(4000)
model.fs.heat_exchanger.tube_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.tube_inlet.pressure.fix(101325)
model.fs.heat_exchanger.tube_inlet.enth_mol.fix(3000)

Initialize the model
model.fs.heat_exchanger.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees
of freedom, which can be fixed for it to be fully specified. Things that are
frequently fixed are two of:

	heat transfer area,

	heat transfer coefficient, or

	temperature approach.

The user may also provide constants to calculate the heat transfer coefficient.

Model Structure

The HeatExchanger model contains two ControlVolume0DBlock blocks. By default the
hot side is named shell and the cold side is named tube. These names are configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side. Aside from the sign convention there is no requirement that the hot side be hotter
than the cold side.

The control volumes are configured the same as the ControlVolume0DBlock in the
Heater model. The HeatExchanger model contains additional
constraints that calculate the amount of heat transferred from the hot side to the cold side.

The HeatExchanger has two inlet ports and two outlet ports. By default these are
shell_inlet, tube_inlet, shell_outlet, and tube_outlet. If the user
supplies different hot and cold side names the inlet and outlets are named accordingly.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	t

	Heat transferred from hot side to the cold side

	area

	\(A\)

	None

	Heat transfer area

	heat_transfer_coefficient

	\(U\)

	t

	Heat transfer coefficient

	delta_temperature

	\(\Delta T\)

	t

	Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified cold side is hotter
than the specified hot side this value will be negative.

Constraints

The default constants can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, and heat transfer coefficient. The section
describes the default constraints.

Heat transfer from shell to tube:

\[Q = UA\Delta T\]

Temperature difference is an expression:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

The heat transfer coefficient is a variable with no associated constraints by default.

Class Documentation

Note

The hot_side_config and cold_side_config can also be supplied using the name of
the hot and cold sides (shell and tube by default) as in the example.

	
class idaes.generic_models.unit_models.heat_exchanger.HeatExchanger(*args, **kwargs)

	Simple 0D heat exchanger model.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	hot_side_name

	Hot side name, sets control volume and inlet and outlet
names

	cold_side_name

	Cold side name, sets control volume and inlet and outlet
names

	hot_side_config

	A config block used to construct the hot side control
volume. This config can be given by the hot side name
instead of hot_side_config.

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	cold_side_config

	A config block used to construct the cold side control
volume. This config can be given by the cold side name
instead of cold_side_config.

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	delta_temperature_callback

	Callback for for temperature difference calculations

	flow_pattern

	Heat exchanger flow pattern, default -
HeatExchangerFlowPattern.countercurrent. Valid values:
{ HeatExchangerFlowPattern.countercurrent -
countercurrent flow,
HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow,
factor times countercurrent temperature difference.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchanger) New instance

	
class idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData(component)

	Simple 0D heat exchange unit.
Unit model to transfer heat from one material to another.

	
build()

	Building model

	Parameters

	None –

	Returns

	None

	
initialize(state_args_1=None, state_args_2=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06}, duty=1000)

	Heat exchanger initialization method.

	Parameters

	
	state_args_1 – a dict of arguments to be passed to the property
initialization for side_1 (see documentation of the specific
property package) (default = {}).

	state_args_2 – a dict of arguments to be passed to the property
initialization for side_2 (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	duty – an initial guess for the amount of heat transfered
(default = 10000)

	Returns

	None

	
set_scaling_factor_energy(f)

	This function sets scaling_factor_energy for both side_1 and side_2.
This factor multiplies the energy balance and heat transfer equations
in the heat exchnager. The value of this factor should be about
1/(expected heat duty).

	Parameters

	f – Energy balance scaling factor

Callbacks

A selection of functions for constructing the delta_temperature variable or
expression are provided in the idaes.generic_models.unit_models.heat_exchanger module.
The user may also provide their own function. These callbacks should all take
one argument (the HeatExchanger block). With the block argument, the function
can add any additional variables, constraints, and expressions needed. The only
requirement is that either a variable or expression called delta_temperature
must be added to the block.

Defined Callbacks for the delta_temperature_callback Option

These callbacks provide expressions for the temperature difference used in the
heat transfer equations.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_lmtd_callback(b)

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using log-mean temperature
difference (LMTD). It can be supplied to “delta_temperature_callback”
HeatExchanger configuration option.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_amtd_callback(b)

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using arithmetic-mean
temperature difference (AMTD). It can be supplied to
“delta_temperature_callback” HeatExchanger configuration option.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_underwood_callback(b)

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using log-mean temperature
difference (LMTD) approximation given by Underwood (1970). It can be
supplied to “delta_temperature_callback” HeatExchanger configuration option.
This uses a cube root function that works with negative numbers returning
the real negative root. This should always evaluate successfully.

 Heat Exchangers (1D)

Heat Exchangers (1D)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. The IDAES 1-D Heat Exchanger model is used for detailed modeling of heat exchanger units with variations in one spatial dimension. For a simpler representation of a heat exchanger unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7 degrees of freedom.

Typical fixed variables are:

	shell length and diameter,

	tube length and diameter,

	number of tubes,

	heat transfer coefficients (at all spatial points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model unit model consists of two ControlVolume1DBlock Blocks (named shell and tube), each with one Inlet Port (named shell_inlet and tube_inlet) and one Outlet Port (named shell_outlet and tube_outlet).

Construction Arguments

1-D Heat Exchanger units have construction arguments specific to the shell side, tube side and for the unit as a whole.

Arguments that are applicable to the heat exchanger unit are as follows:

	flow_type - indicates the flow arrangement within the unit to be modeled. Options are:

	‘co-current’ - (default) shell and tube both flow in the same direction (from x=0 to x=1)

	‘counter-current’ - shell and tube flow in opposite directions (shell from x=0 to x=1 and tube from x=1 to x=0).

	finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 20). This is used for both shell and tube side domains.

	collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default = 5, collocation methods only). This is used for both shell and tube side domains.

	
	has_wall_conduction - option to enable a model for heat conduction across the tube wall:

	
	‘none’ - 0D wall model

	‘1D’ - 1D heat conduction equation along the thickness of the tube wall

	‘2D’ - 2D heat conduction equation along the length and thickness of the tube wall

Arguments that are applicable to the shell side:

	property_package - property package to use when constructing shell side Property Blocks (default = ‘use_parent_value’). This is provided as a Physical Parameter Block by the Flowsheet when creating the model. If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the shell side Property Blocks when they are created.

	transformation_method - argument to specify the DAE transformation method for the shell side; should be compatible with the Pyomo DAE TransformationFactory

	transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method; should be compatible with the Pyomo DAE TransformationFactory

Arguments that are applicable to the tube side:

	property_package - property package to use when constructing tube side Property Blocks (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the tube side Property Blocks when they are created.

	transformation_method - argument to specify the DAE transformation method for the tube side; should be compatible with the Pyomo DAE TransformationFactory

	transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method; should be compatible with the Pyomo DAE TransformationFactory

Additionally, 1-D Heat Exchanger units have the following construction arguments which are passed to the ControlVolume1DBlock Block for determining which terms to construct in the balance equations for the shell and tube side.

	Argument

	Default Value

	dynamic

	useDefault

	has_holdup

	False

	material_balance_type

	‘componentTotal’

	energy_balance_type

	‘enthalpyTotal’

	momentum_balance_type

	‘pressureTotal’

	has_phase_equilibrium

	False

	has_heat_transfer

	True

	has_pressure_change

	False

Additional Constraints

1-D Heat Exchanger models write the following additional Constraints to describe the heat transfer between the two sides of the heat exchanger. Firstly, the shell- and tube-side heat transfer is calculated as:

\[Q_{shell,t,x} = - N_{tubes} \times (\pi \times U_{shell,t,x} \times D_{tube,outer} \times (T_{shell,t,x}-T_{wall,t,x}))\]

where \(Q_{shell,t,x}\) is the shell-side heat duty at point \(x\) and time \(t\), \(N_{tubes}\) \(D_{tube}\) are the number of and diameter of the tubes in the heat exchanger, \(U_{shell,t,x}\) is the shell-side heat transfer coefficient, and \(T_{shell,t,x}\) and \(T_{wall,t,x}\) are the shell-side and tube wall temperatures respectively.

\[Q_{tube,t,x} = N_{tubes} \times (\pi \times U_{tube,t,x} \times D_{tube,inner} \times (T_{wall,t,x}-T_{tube,t,x}))\]

where \(Q_{tube,t,x}\) is the tube-side heat duty at point \(x\) and time \(t\), \(U_{tube,t,x}\) is the tube-side heat transfer coefficient and \(T_{tube,t,x}\) is the tube-side temperature.

If a OD wall model is used for the tube wall conduction, the following constraint is implemented to connect the heat terms on the shell and tube side:

\[N_{tubes} \times Q_{tube,t,x} = - Q_{shell,t,x}\]

Finally, the following Constraints are written to describe the unit geometry:

\[4 \times A_{tube} = \pi \times D_{tube}^2\]

\[4 \times A_{shell} = \pi \times (D_{shell}^2 - N_{tubes} \times D_{tube}^2)\]

where \(A_{shell}\) and \(A_{tube}\) are the shell and tube areas respectively and \(D_{shell}\) and \(D_{tube}\) are the shell and tube diameters.

Variables

1-D Heat Exchanger units add the following additional Variables beyond those created by the ControlVolume1DBlock Block.

	Variable

	Name

	Notes

	\(L_{shell}\)

	shell_length

	Reference to shell.length

	\(A_{shell}\)

	shell_area

	Reference to shell.area

	\(D_{shell}\)

	d_shell

	

	\(L_{tube}\)

	tube_length

	Reference to tube.length

	\(A_{tube}\)

	tube_area

	Reference to tube.area

	\(D_{tube}\)

	d_tube

	

	\(N_{tubes}\)

	N_tubes

	

	\(T_{wall,t,x}\)

	temperature_wall

	

	\(U_{shell,t,x}\)

	shell_heat_transfer_coefficient

	

	\(U_{tube,t,x}\)

	tube_heat_transfer_coefficient

	

HeatExchanger1dClass

	
class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1D(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	shell_side

	shell side config arguments

	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_phase_equilibrium

	Argument to enable phase equilibrium on the shell
side. - True - include phase equilibrium term - False
- do not include phase equilibrium term

	property_package

	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args

	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	transformation_method

	Discretization method to use for DAE transformation.
See Pyomo documentation for supported transformations.

	transformation_scheme

	Discretization scheme to use when transformating
domain. See Pyomo documentation for supported schemes.

	tube_side

	tube side config arguments

	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_phase_equilibrium

	Argument to enable phase equilibrium on the shell
side. - True - include phase equilibrium term - False
- do not include phase equilibrium term

	property_package

	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args

	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	transformation_method

	Discretization method to use for DAE transformation.
See Pyomo documentation for supported transformations.

	transformation_scheme

	Discretization scheme to use when transformating
domain. See Pyomo documentation for supported schemes.

	finite_elements

	Number of finite elements to use when discretizing length
domain (default=20)

	collocation_points

	Number of collocation points to use per finite element
when discretizing length domain (default=3)

	flow_type

	Flow configuration of heat exchanger -
HeatExchangerFlowPattern.cocurrent: shell and tube flows
from 0 to 1 (default) -
HeatExchangerFlowPattern.countercurrent: shell side flows
from 0 to 1 tube side flows from 1 to 0

	has_wall_conduction

	Argument to enable type of wall heat conduction model. -
WallConductionType.zero_dimensional - 0D wall model
(default), - WallConductionType.one_dimensional - 1D wall
model along the thickness of the tube, -
WallConductionType.two_dimensional - 2D wall model along
the lenghth and thickness of the tube

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchanger1D) New instance

HeatExchanger1dDataClass

	
class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData(component)

	Standard Heat Exchanger 1D Unit Model Class.

	
build()

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

	
initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	Initialization routine for the unit (default solver ipopt).

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Mixer

Mixer

The IDAES Mixer unit model represents operations where multiple streams of material are combined into a single flow. The Mixer class can be used to create either a stand-alone mixer unit, or as part of a unit model where multiple streams need to be mixed.

Degrees of Freedom

Mixer units have zero degrees of freedom.

Model Structure

The IDAES Mixer unit model does not use ControlVolumes, and instead writes a set of material, energy and momentum balances to combine the inlet streams into a single mixed stream. Mixer models have a user-defined number of inlet Ports (by default named inlet_1, inlet_2, etc.) and one outlet Port (named outlet).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation by linking multiple inlet streams to a single existing StateBlock.

Variables

Mixer units have the following variables (\(i\) indicates index by inlet):

	Variable Name

	Symbol

	Notes

	phase_equilibrium_generation

	\(X_{eq, t, r}\)

	Only if has_phase_equilibrium = True, Generation term for phase equilibrium

	minimum_pressure

	\(P_{min, t, i}\)

	Only if momentum_mixing_type = MomemntumMixingType.minimize

Parameters

Mixer units have the following parameters:

	Variable Name

	Symbol

	Notes

	eps_pressure

	\(\epsilon\)

	Only if momentum_mixing_type = MomemntumMixingType.minimize, smooth minimum parameter

Constraints

The constraints written by the Mixer model depend upon the construction arguments chosen.

If material_mixing_type is extensive:

	If material_balance_type is componentPhase:

material_mixing_equations(t, p, j):

\[0 = \sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}}\]

	If material_balance_type is componentTotal:

material_mixing_equations(t, j):

\[0 = \sum_p{(\sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}})}\]

	If material_balance_type is total:

material_mixing_equations(t):

\[0 = \sum_p{\sum_j{(\sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}})}}\]

where \(n_{r, p, j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) in reaction \(r\).

If ‘energy_mixing_type` is extensive:

enthalpy_mixing_equations(t):

\[0 = \sum_i{\sum_p{H_{in, i, p}}} - \sum_p{H_{out, p}}\]

If ‘momentum_mixing_type` is minimize, a series of smooth minimum operations are performed:

minimum_pressure_constraint(t, i):

For the first inlet:

\[P_{min, t, i} = P_{t, i}\]

Otherwise:

\[P_{min, t, i} = smin(P_{min, t, i-1}, P_{t, i}, eps)\]

Here, \(P_{t, i}\) is the pressure in inlet \(i\) at time \(t\), \(P_{min, t, i}\) is the minimum pressure in all inlets up to inlet \(i\), and \(smin\) is the smooth minimum operator (see IDAES Utility Function documentation).

The minimum pressure in all inlets is then:

mixture_pressure(t):

\[P_{mix, t} = P_{min, t, i=last}\]

If momentum_mixing_type is equality, the pressure in all inlets and the outlet are equated.

Note

This may result in an over-specified problem if the user is not careful.

pressure_equality_constraints(t, i):

\[P_{mix, t} = P_{t, i}\]

Often the minimum inlet pressure constraint is useful for sequential modular type initialization, but the equal pressure constants are required for pressure-driven flow models. In these cases it may be convenient to use the minimum pressure constraint for some initialization steps, them deactivate it and use the equal pressure constraints. The momentum_mixing_type is minimum_and_equality this will create the constraints for both with the minimum pressure constraint being active.

The mixture_pressure(t) and pressure_equality_constraints(t, i) can be directly activated and deactivated, but only one set of constraints should be active at a time. The use_minimum_inlet_pressure_constraint() and use_equal_pressure_constraint() methods are also provided to switch between constant sets.

Mixer Class

	
class idaes.generic_models.unit_models.mixer.Mixer(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Mixer blocks are always steady-state.

	has_holdup

	Mixer blocks do not contain holdup, thus this must be
False.

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	inlet_list

	A list containing names of inlets, default - None.
Valid values: { None - use num_inlets argument,
list - a list of names to use for inlets.}

	num_inlets

	Argument indicating number (int) of inlets to construct,
not used if inlet_list arg is provided, default -
None. Valid values: { None - use inlet_list arg
instead, or default to 2 if neither argument provided,
int - number of inlets to create (will be named with
sequential integers from 1 to num_inlets).}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	has_phase_equilibrium

	Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream, default -
False. Valid values: { True - calculate phase
equilibrium in mixed stream, False - do not calculate
equilibrium in mixed stream.}

	energy_mixing_type

	Argument indicating what method to use when mixing energy
flows of incoming streams, default -
MixingType.extensive. Valid values: {
MixingType.none - do not include energy mixing
equations, MixingType.extensive - mix total enthalpy
flows of each phase.}

	momentum_mixing_type

	Argument indicating what method to use when mixing
momentum/ pressure of incoming streams, default -
MomentumMixingType.minimize. Valid values: {
MomentumMixingType.none - do not include momentum
mixing equations, MomentumMixingType.minimize - mixed
stream has pressure equal to the minimimum pressure of the
incoming streams (uses smoothMin operator),
MomentumMixingType.equality - enforces equality of
pressure in mixed and all incoming streams.,
MomentumMixingType.minimize_and_equality - add
constraints for pressure equal to the minimum pressure of
the inlets and constraints for equality of pressure in
mixed and all incoming streams. When the model is
initially built, the equality constraints are deactivated.
This option is useful for switching between flow and
pressure driven simulations.}

	mixed_state_block

	An existing state block to use as the outlet stream from
the Mixer block, default - None. Valid values: {
None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the destination for
the mixed stream.}

	construct_ports

	Argument indicating whether model should construct Port
objects linked to all inlet states and the mixed state,
default - True. Valid values: { True -
construct Ports for all states, False - do not
construct Ports.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Mixer) New instance

MixerData Class

	
class idaes.generic_models.unit_models.mixer.MixerData(component)

	This is a general purpose model for a Mixer block with the IDAES modeling
framework. This block can be used either as a stand-alone Mixer unit
operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the incoming
streams, then writes a set of phase-component material balances, an
overall enthalpy balance and a momentum balance (2 options) linked to a
mixed-state StateBlock. The mixed-state StateBlock can either be specified
by the user (allowing use as a sub-model), or created by the Mixer.

When being used as a sub-model, Mixer should only be used when a set
of new StateBlocks are required for the streams to be mixed. It should not
be used to mix streams from mutiple ControlVolumes in a single unit model -
in these cases the unit model developer should write their own mixing
equations.

	
add_energy_mixing_equations(inlet_blocks, mixed_block)

	Add energy mixing equations (total enthalpy balance).

	
add_inlet_state_blocks(inlet_list)

	Construct StateBlocks for all inlet streams.

	Parameters

	of strings to use as StateBlock names (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	Returns

	list of StateBlocks

	
add_material_mixing_equations(inlet_blocks, mixed_block, mb_type)

	Add material mixing equations.

	
add_mixed_state_block()

	Constructs StateBlock to represent mixed stream.

	Returns

	New StateBlock object

	
add_port_objects(inlet_list, inlet_blocks, mixed_block)

	Adds Port objects if required.

	Parameters

	
	list of inlet StateBlock objects (a) –

	mixed state StateBlock object (a) –

	Returns

	None

	
add_pressure_equality_equations(inlet_blocks, mixed_block)

	Add pressure equality equations. Note that this writes a number of
constraints equal to the number of inlets, enforcing equality between
all inlets and the mixed stream.

	
add_pressure_minimization_equations(inlet_blocks, mixed_block)

	Add pressure minimization equations. This is done by sequential
comparisons of each inlet to the minimum pressure so far, using
the IDAES smooth minimum fuction.

	
build()

	General build method for MixerData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
create_inlet_list()

	Create list of inlet stream names based on config arguments.

	Returns

	list of strings

	
get_mixed_state_block()

	Validates StateBlock provided in user arguments for mixed stream.

	Returns

	The user-provided StateBlock or an Exception

	
initialize(outlvl=6, optarg={}, solver='ipopt', hold_state=False)

	Initialization routine for mixer (default solver ipopt)

	Keyword Arguments

	
	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - False. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

	
use_equal_pressure_constraint()

	Deactivate the mixer pressure = mimimum inlet pressure constraint
and activate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

	
use_minimum_inlet_pressure_constraint()

	Activate the mixer pressure = mimimum inlet pressure constraint and
deactivate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

 Plug Flow Reactor

Plug Flow Reactor

The IDAES Plug Flow Reactor (PFR) model represents a unit operation where a material stream passes through a linear reactor vessel whilst undergoing some chemical reaction(s). This model requires modeling the system in one spatial dimension.

Degrees of Freedom

PFRs generally have at least 2 degrees of freedom.

Typical fixed variables are:

	2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a single ControlVolume1DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

PFR units add the following additional Variables:

	Variable

	Name

	Notes

	\(L\)

	length

	Reference to control_volume.length

	\(A\)

	area

	Reference to control_volume.area

	\(V\)

	volume

	Reference to control_volume.volume

	\(Q_{t,x}\)

	heat

	Only if has_heat_transfer = True, reference to holdup.heat

	\(\Delta P_{t,x}\)

	deltaP

	Only if has_pressure_change = True, reference to holdup.deltaP

Constraints

PFR units write the following additional Constraints at all points in the spatial domain:

\[X_{t,x,r} = A \times r_{t,x,r}\]

where \(X_{t,x,r}\) is the extent of reaction of reaction \(r\) at point \(x\) and time \(t\), \(A\) is the cross-sectional area of the reactor and \(r_{t,r}\) is the volumetric rate of reaction of reaction \(r\) at point \(x\) and time \(t\) (from the outlet StateBlock).

PFR Class

	
class idaes.generic_models.unit_models.plug_flow_reactor.PFR(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_equilibrium_reactions

	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_heat_of_reaction

	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	length_domain_set

	A list of values to be used when constructing the length
domain of the reactor. Point must lie between 0.0 and 1.0,
default - [0.0, 1.0]. Valid values: { a list of
floats}

	transformation_method

	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory, default
- “dae.finite_difference”.

	transformation_scheme

	Scheme to use when transformating domain. See Pyomo
documentation for supported schemes, default -
“BACKWARD”.

	finite_elements

	Number of finite elements to use when transforming length
domain, default - 20.

	collocation_points

	Number of collocation points to use when transforming
length domain, default - 3.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PFR) New instance

PFRData Class

	
class idaes.generic_models.unit_models.plug_flow_reactor.PFRData(component)

	Standard Plug Flow Reactor Unit Model Class

	
build()

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Pressure Changer

Pressure Changer

The IDAES Pressure Changer model represents a unit operation with a single stream of material which undergoes a change in pressure due to the application of a work. The Pressure Changer model contains support for a number of different thermodynamic assumptions regarding the working fluid.

Degrees of Freedom

Pressure Changer units generally have one or more degrees of freedom, depending on the thermodynamic assumption used.

Typical fixed variables are:

	outlet pressure, \(P_{ratio}\) or \(\Delta P\),

	unit efficiency (isentropic or pump assumption).

Model Structure

The core Pressure Changer unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet). Additionally, if an isentropic pressure changer is used, the unit model contains an additional StateBlock named properties_isentropic at the unit model level.

Variables

Pressure Changers contain the following Variables (not including those contained within the control volume Block):

	Variable

	Name

	Notes

	\(P_{ratio}\)

	ratioP

	

	\(V_t\)

	volume

	Only if has_rate_reactions = True, reference to control_volume.rate_reaction_extent

	\(W_{mechanical,t}\)

	work_mechanical

	Reference to control_volume.work

	\(W_{fluid,t}\)

	work_fluid

	Pump assumption only

	\(\eta_{pump,t}\)

	efficiency_pump

	Pump assumption only

	\(W_{isentropic,t}\)

	work_isentropic

	Isentropic assumption only

	\(\eta_{isentropic,t}\)

	efficiency_isentropic

	Isentropic assumption only

Isentropic Pressure Changers also have an additional Property Block named properties_isentropic (attached to the Unit Model).

Constraints

In addition to the Constraints written by the Control Volume block, Pressure Changer writes additional Constraints which depend on the thermodynamic assumption chosen. All Pressure Changers add the following Constraint to calculate the pressure ratio:

\[P_{ratio,t} \times P_{in,t} = P_{out,t}\]

Isothermal Assumption

The isothermal assumption writes one additional Constraint:

\[T_{out} = T_{in}\]

Adiabatic Assumption

The isothermal assumption writes one additional Constraint:

\[H_{out} = H_{in}\]

Isentropic Assumption

The isentropic assumption creates an additional set of Property Blocks (indexed by time) for the isentropic fluid calculations (named properties_isentropic). This requires a set of balance equations relating the inlet state to the isentropic conditions, which are shown below:

\[F_{in,t,p,j} = F_{isentropic,t,p,j}\]

\[s_{in,t} = s_{isentropic,t}\]

\[P_{in,t} \times P_{ratio,t} = P_{isentropic,t}\]

where \(F_{t,p,j}\) is the flow of component \(j\) in phase \(p\) at time \(t\) and \(s\) is the specific entropy of the fluid at time \(t\).

Next, the isentropic work is calculated as follows:

\[W_{isentropic,t} = \sum_p{H_{isentropic,t,p}} - \sum_p{H_{in,t,p}}\]

where \(H_{t,p}\) is the total energy flow of phase \(p\) at time \(t\). Finally, a constraint which relates the fluid work to the actual mechanical work via an efficiency term \(\eta\).

If compressor is True, \(W_{isentropic,t} = W_{mechanical,t} \times \eta_t\)

If compressor is False, \(W_{isentropic,t} \times \eta_t = W_{mechanical,t}\)

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption writes two additional constraints. Firstly, a Constraint is written which relates fluid work to the pressure change of the fluid.

\[W_{fluid,t} = (P_{out,t}-P_{in,t})\times F_{vol,t}\]

where \(F_{vol,t}\) is the total volumetric flowrate of material at time \(t\) (from the outlet Property Block). Secondly, a constraint which relates the fluid work to the actual mechanical work via an efficiency term \(\eta\).

If compressor is True, \(W_{fluid,t} = W_{mechanical,t} \times \eta_t\)

If compressor is False, \(W_{fluid,t} \times \eta_t = W_{mechanical,t}\)

PressureChanger Class

	
class idaes.generic_models.unit_models.pressure_changer.PressureChanger(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor

	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption

	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PressureChanger) New instance

PressureChangerData Class

	
class idaes.generic_models.unit_models.pressure_changer.PressureChangerData(component)

	Standard Compressor/Expander Unit Model Class

	
add_adiabatic()

	Add constraints for adiabatic assumption.

	Parameters

	None –

	Returns

	None

	
add_isentropic()

	Add constraints for isentropic assumption.

	Parameters

	None –

	Returns

	None

	
add_isothermal()

	Add constraints for isothermal assumption.

	Parameters

	None –

	Returns

	None

	
add_pump()

	Add constraints for the incompressible fluid assumption

	Parameters

	None –

	Returns

	None

	
build()

	
	Parameters

	None –

	Returns

	None

	
init_isentropic(state_args, outlvl, solver, optarg)

	Initialization routine for unit (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
initialize(state_args=None, routine=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	General wrapper for pressure changer initialization routines

	Keyword Arguments

	
	routine – str stating which initialization routine to execute
* None - use routine matching thermodynamic_assumption
* ‘isentropic’ - use isentropic initialization routine
* ‘isothermal’ - use isothermal initialization routine

	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()

	Check that pressure change matches with compressor argument (i.e. if
compressor = True, pressure should increase or work should be positive)

	Parameters

	None –

	Returns

	None

 Product Block

Product Block

Product Blocks are used to represent sinks of material in Flowsheets. These can be used as a conventient way to mark the final destination of a material stream and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero degrees of freedom.

Model Structure

Product Blocks consists of a single StateBlock (named properties), each with one Inlet Port (named inlet). Product Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Product Blocks write no additional constraints to the model.

Variables

Product blocks add no additional Variables.

Product Class

	
class idaes.generic_models.unit_models.product.Product(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-
state.

	has_holdup

	Product blocks do not contain holdup, thus this must be
False.

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Product) New instance

ProductData Class

	
class idaes.generic_models.unit_models.product.ProductData(component)

	Standard Product Block Class

	
build()

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	This method calls the initialization method of the state block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Pump

Pump

The Pump model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be True,
and the default “thermodynamic_assumption” is “pump.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Pump model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Pump
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Pump(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(2000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(100000)
m.fs.unit.efficiency_pump.fix(0.8)

 Separator

Separator

The IDAES Separator unit model represents operations where a single stream is split into multiple flows. The Separator model supports separation using split fractions, or by ideal separation of flows. The Separator class can be used to create either a stand-alone separator unit, or as part of a unit model where a flow needs to be separated.

Degrees of Freedom

Separator units have a number of degrees of freedom based on the separation type chosen.

	If split_basis = ‘phaseFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases\)

	If split_basis = ‘componentFlow’, degrees of freedom are generally \((no. outlets-1) \times no. components\)

	If split_basis = ‘phaseComponentFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases \times no. components\)

	If split_basis = ‘totalFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases \times no. components\)

Typical fixed variables are:

	split fractions.

Model Structure

The IDAES Separator unit model does not use ControlVolumes, and instead writes a set of material, energy and momentum balances to split the inlet stream into a number of outlet streams. Separator models have a single inlet Port (named inlet) and a user-defined number of outlet Ports (by default named outlet_1, outlet_2, etc.).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation by linking to an existing StateBlock.

Ideal Separation

The IDAES Separator model supports ideal separations, where all of a given subset of the mixed stream is sent to a single outlet (i.e. split fractions are equal to zero or one). In these cases, no Constraints are necessary for performing the separation, as the mixed stream states can be directly partitioned to the outlets.

Ideal separations will not work for all choices of state variables, and thus will not work for all property packages. To use ideal separations, the user must provide a map of what part of the mixed flow should be partitioned to each outlet. The ideal_split_map should be a dict-like object with keys as tuples matching the split_basis argument and values indicating which outlet this subset should be partitioned to.

Variables

Separator units have the following variables (\(o\) indicates index by outlet):

	Variable Name

	Symbol

	Notes

	split_fraction

	\(\phi_{t, o, *}\)

	Indexing sets depend upon split_basis

Constraints

Separator units have the following Constraints, unless ideal_separation is True.

	If material_balance_type is componentPhase:

material_splitting_eqn(t, o, p, j):

\[F_{in, t, p, j} = \phi_{t, p, *} \times F_{t, o, p, j}\]

	If material_balance_type is componentTotal:

material_splitting_eqn(t, o, j):

\[\sum_p{F_{in, t, p, j}} = \sum_p{\phi_{t, p, *} \times F_{t, o, p, j}}\]

	If material_balance_type is total:

material_splitting_eqn(t, o):

\[\sum_p{\sum_j{F_{in, t, p, j}}} = \sum_p{\sum_j{\phi_{t, p, *} \times F_{t, o, p, j}}}\]

If energy_split_basis is equal_temperature:

temperature_equality_eqn(t, o):

\[T_{in, t} = T_{t, o}\]

If energy_split_basis is equal_molar_enthalpy:

molar_enthalpy_equality_eqn(t, o):

\[h_{in, t} = h_{t, o}\]

If energy_split_basis is enthalpy_split:

molar_enthalpy_splitting_eqn(t, o):

\[sum_p{h_{in, t, p}*sf_{t, o, p}} = sum_p{h_{t, o, p}}\]

pressure_equality_eqn(t, o):

\[P_{in, t} = P_{t, o}\]

Separator Class

	
class idaes.generic_models.unit_models.separator.Separator(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-
state.

	has_holdup

	Product blocks do not contain holdup, thus this must be
False.

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	outlet_list

	A list containing names of outlets, default - None.
Valid values: { None - use num_outlets argument,
list - a list of names to use for outlets.}

	num_outlets

	Argument indicating number (int) of outlets to construct,
not used if outlet_list arg is provided, default -
None. Valid values: { None - use outlet_list arg
instead, or default to 2 if neither argument provided,
int - number of outlets to create (will be named with
sequential integers from 1 to num_outlets).}

	split_basis

	Argument indicating basis to use for splitting mixed
stream, default - SplittingType.totalFlow. Valid
values: { SplittingType.totalFlow - split based on
total flow (split fraction indexed only by time and
outlet), SplittingType.phaseFlow - split based on
phase flows (split fraction indexed by time, outlet and
phase), SplittingType.componentFlow - split based on
component flows (split fraction indexed by time, outlet
and components), SplittingType.phaseComponentFlow -
split based on phase-component flows (split fraction
indexed by both time, outlet, phase and components).}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	has_phase_equilibrium

	Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream, default -
False. Valid values: { True - calculate phase
equilibrium in mixed stream, False - do not calculate
equilibrium in mixed stream.}

	energy_split_basis

	Argument indicating basis to use for splitting energy this
is not used for when ideal_separation == True. default
- EnergySplittingType.equal_temperature. Valid values:
{ EnergySplittingType.equal_temperature - outlet
temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar
enthalpies equal inlet,
EnergySplittingType.enthalpy_split - apply split
fractions to enthalpy flows. Does not work with component
or phase-component splitting.}

	ideal_separation

	Argument indicating whether ideal splitting should be
used. Ideal splitting assumes perfect spearation of
material, and attempts to avoid duplication of StateBlocks
by directly partitioning outlet flows to ports,
default - False. Valid values: { True - use
ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True, False - use explicit
splitting equations with split fractions.}

	ideal_split_map

	Dictionary containing information on how extensive
variables should be partitioned when using ideal splitting
(ideal_separation = True). default - None. Valid
values: { dict with keys of indexing set members and
values indicating which outlet this combination of keys
should be partitioned to. E.g. {(“Vap”, “H2”):
“outlet_1”}}

	mixed_state_block

	An existing state block to use as the source stream from
the Separator block, default - None. Valid values:
{ None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the source for the
mixed stream.}

	construct_ports

	Argument indicating whether model should construct Port
objects linked the mixed state and all outlet states,
default - True. Valid values: { True -
construct Ports for all states, False - do not
construct Ports.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Separator) New instance

SeparatorData Class

	
class idaes.generic_models.unit_models.separator.SeparatorData(component)

	This is a general purpose model for a Separator block with the IDAES
modeling framework. This block can be used either as a stand-alone
Separator unit operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the outgoing
streams, then writes a set of phase-component material balances, an
overall enthalpy balance (2 options), and a momentum balance (2 options)
linked to a mixed-state StateBlock. The mixed-state StateBlock can either
be specified by the user (allowing use as a sub-model), or created by the
Separator.

When being used as a sub-model, Separator should only be used when a
set of new StateBlocks are required for the streams to be separated. It
should not be used to separate streams to go to mutiple ControlVolumes in a
single unit model - in these cases the unit model developer should write
their own splitting equations.

	
add_energy_splitting_constraints(mixed_block)

	Creates constraints for splitting the energy flows - done by equating
temperatures in outlets.

	
add_inlet_port_objects(mixed_block)

	Adds inlet Port object if required.

	Parameters

	mixed state StateBlock object (a) –

	Returns

	None

	
add_material_splitting_constraints(mixed_block)

	Creates constraints for splitting the material flows

	
add_mixed_state_block()

	Constructs StateBlock to represent mixed stream.

	Returns

	New StateBlock object

	
add_momentum_splitting_constraints(mixed_block)

	Creates constraints for splitting the momentum flows - done by equating
pressures in outlets.

	
add_outlet_port_objects(outlet_list, outlet_blocks)

	Adds outlet Port objects if required.

	Parameters

	list of outlet StateBlock objects (a) –

	Returns

	None

	
add_outlet_state_blocks(outlet_list)

	Construct StateBlocks for all outlet streams.

	Parameters

	of strings to use as StateBlock names (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	Returns

	list of StateBlocks

	
add_split_fractions(outlet_list)

	Creates outlet Port objects and tries to partiton mixed stream flows
between these

	Parameters

	
	representing the mixed flow to be split (StateBlock) –

	list of names for outlets (a) –

	Returns

	None

	
build()

	General build method for SeparatorData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
create_outlet_list()

	Create list of outlet stream names based on config arguments.

	Returns

	list of strings

	
get_mixed_state_block()

	Validates StateBlock provided in user arguments for mixed stream.

	Returns

	The user-provided StateBlock or an Exception

	
initialize(outlvl=0, optarg={}, solver='ipopt', hold_state=False)

	Initialization routine for separator (default solver ipopt)

	Keyword Arguments

	
	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - False. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
partition_outlet_flows(mb, outlet_list)

	Creates outlet Port objects and tries to partiton mixed stream flows
between these

	Parameters

	
	representing the mixed flow to be split (StateBlock) –

	list of names for outlets (a) –

	Returns

	None

	
release_state(flags, outlvl=0)

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

 StateJunction Block

StateJunction Block

The IDAES StateJunction block represents a pass-through unit or simple pipe with no holdup. The primary use for this unit is in conceptual design applications for linking Arcs to/from different process alternatives.

Degrees of Freedom

StateJunctions have no degrees of freedom.

Model Structure

A StateJunction consists of a single StateBlock with two Ports (inlet and outlet), where the state variables in the state block are simultaneously connected to both Ports.

Additional Constraints

StateJunctions write no additional constraints beyond those in the StateBlock.

Variables

StateJunctions have no additional variables.

StateJunction Class

	
class idaes.generic_models.unit_models.statejunction.StateJunction(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this unit will be dynamic or not,
default = False.

	has_holdup

	Indicates whether holdup terms should be constructed or
not. default - False. StateJunctions do not have
defined volume, thus this must be False.

	property_package

	Property parameter object used to define property state
block, default - useDefault. Valid values: {
useDefault - use default package from parent model or
flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(StateJunction) New instance

StateJunctionData Class

	
class idaes.generic_models.unit_models.statejunction.StateJunctionData(component)

	Standard StateJunction Unit Model Class

	
build()

	Begin building model.
:param None:

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	This method initializes the StateJunction block by calling the
initialize method on the property block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Stoichiometric (Yield) Reactor

Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor model represents a unit operation where a single material stream undergoes some chemical reaction(s) subject to a set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have degrees of freedom equal to the number of reactions + 1.

Typical fixed variables are:

	reaction extents or yields (1 per reaction),

	reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Stoichiometric reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

Stoichiometric reactors units add the following variables:

	Variable

	Name

	Notes

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

	\(deltaP_t\)

	pressure change

	Only if has_pressure_change = True, reference to control_volume.deltaP

Constraints

Stoichiometric reactor units write no additional Constraints beyond those written by the control_volume Block.

StoichiometricReactor Class

	
class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_of_reaction

	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_heat_transfer

	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package

	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args

	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(StoichiometricReactor) New instance

StoichiometricReactorData Class

	
class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData(component)

	Standard Stoichiometric Reactor Unit Model Class
This model assumes that all given reactions are irreversible, and that each
reaction has a fixed rate_reaction extent which has to be specified by the
user.

	
build()

	Begin building model (pre-DAE transformation).
:param None:

	Returns

	None

 Translator Block

Translator Block

Translator blocks are used in complex flowsheets where the user desires to use different property packages for different parts of the flowsheet. In order to link two streams using different property packages, a translator block is required.

The core translator block provides a general framework for constructing Translator Blocks, however users need to add constraints to map the incoming states to the outgoing states as required by their specific application.

Degrees of Freedom

The degrees of freedom of Translator blocks depends on the property packages being used, and the user should write a sufficient number of constraints mapping inlet states to outlet states to satisfy these degrees of freedom.

Model Structure

The core Translator Block consists of two State Blocks, names properties_in and properties_out, which are linked to two Ports names inlet and outlet respectively.

Additional Constraints

The core Translator Block writes no additional constraints. Users should add constraints to their instances as required.

Variables

Translator blocks add no additional Variables.

Translator Class

	
class idaes.generic_models.unit_models.translator.Translator(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Translator blocks are always steady-state.

	has_holdup

	Translator blocks do not contain holdup.

	outlet_state_defined

	Indicates whether unit model will fully define outlet
state. If False, the outlet property package will enforce
constraints such as sum of mole fractions and phase
equilibrium. default - True. Valid values: {
True - outlet state will be fully defined, False -
outlet property package should enforce sumation and
equilibrium constraints.}

	has_phase_equilibrium

	Indicates whether outlet property package should enforce
phase equilibrium constraints. default - False.
Valid values: { True - outlet property package
should calculate phase equilibrium, False - outlet
property package should notcalculate phase equilibrium.}

	inlet_property_package

	Property parameter object used to define property
calculations for the incoming stream, default - None.
Valid values: { PhysicalParameterObject - a
PhysicalParameterBlock object.}

	inlet_property_package_args

	A ConfigBlock with arguments to be passed to the property
block associated with the incoming stream, default -
None. Valid values: { see property package for
documentation.}

	outlet_property_package

	Property parameter object used to define property
calculations for the outgoing stream, default - None.
Valid values: { PhysicalParameterObject - a
PhysicalParameterBlock object.}

	outlet_property_package_args

	A ConfigBlock with arguments to be passed to the property
block associated with the outgoing stream, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Translator) New instance

TranslatorData Class

	
class idaes.generic_models.unit_models.translator.TranslatorData(component)

	Standard Translator Block Class

	
build()

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args_in={}, state_args_out={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})

	This method calls the initialization method of the state blocks.

	Keyword Arguments

	
	state_args_in – a dict of arguments to be passed to the inlet
property package (to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	state_args_out – a dict of arguments to be passed to the outlet
property package (to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Turbine

Turbine

The Turbine model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be False,
and the default “thermodynamic_assumption” is “isentropic.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Turbine model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Turbine
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Turbine(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(1000)
m.fs.unit.inlet.enth_mol[0].fix(iapws95.htpx(T=800, P=1e7))
m.fs.unit.inlet.pressure[0].fix(1e7)
m.fs.unit.deltaP.fix(-2e6)
m.fs.unit.efficiency_isentropic.fix(0.9)

 Control Model Library

Control Model Library

This section contains documentation for core IDAES control models.

Contents

	Proportional-Integral-Derivative (PID) Controller

 Proportional-Integral-Derivative (PID) Controller

Proportional-Integral-Derivative (PID) Controller

The IDAES framework contains a basic PID control implementation, which is described
in this section.

Example

The following code demonstrated the creation of a PIDBlock, but for simplicity, it does
not create a dynamic process model. A full example of a dynamic process with PID control
is being prepared for the IDAES examples repository and will be referenced here once completed.

The valve opening is the controlled output variable and pressure “1” is the measured variable.
The controller output for the valve opening is restricted to be between 0 and 1. The measured
and output variables should be indexed only by time. Fortunately there is no need to create
new variables if the variables are in a property block or not indexed only by time. Pyomo’s
Reference objects can be use to create references to existing variables with the proper
indexing as shown in the example.

The calculate_initial_integral option calculates the integral error in the first time
step to match the initial controller output. This keeps the controller output from
immediately jumping to a new value. Unless the initial integral error is known, this option
should usually be True.

The controller should be added after the DAE expansion is done. There are several variables
in the controller that are usually meant to be fixed; as shown in the example, they are
gain, time_i, time_d, and setpoint. For more information about the
variables, expressions, and parameters in the PIDBlock, model see Variables and Expressions.

from idaes.generic_models.control import PIDBlock, PIDForm
from idaes.core import FlowsheetBlock
import pyomo.environ as pyo

m = pyo.ConcreteModel(name="PID Example")
m.fs = FlowsheetBlock(default={"dynamic":True, "time_set":[0,10]})

m.fs.valve_opening = pyo.Var(m.fs.time, doc="Valve opening")
m.fs.pressure = pyo.Var(m.fs.time, [1,2], doc="Pressure in unit 1 and 2")

pyo.TransformationFactory('dae.finite_difference').apply_to(
 m.fs,
 nfe=10,
 wrt=m.fs.time,
 scheme='BACKWARD',
)

m.fs.measured_variable = pyo.Reference(m.fs.pressure[:,1])

m.fs.ctrl = PIDBlock(
 default={
 "pv":m.fs.measured_variable,
 "output":m.fs.valve_opening,
 "upper":1.0,
 "lower":0.0,
 "calculate_initial_integral":True,
 "pid_form":PIDForm.velocity,
 }
)

m.fs.ctrl.gain.fix(1e-6)
m.fs.ctrl.time_i.fix(0.1)
m.fs.ctrl.time_d.fix(0.1)
m.fs.ctrl.setpoint.fix(3e5)

Controller Windup

The current PID controller model has no integral windup prevention. This will be added
to the model in the near future.

Class Documentation

	
class idaes.generic_models.control.pid_controller.PIDBlock(*args, **kwargs)

	This is a PID controller block. The PID Controller block must be added
after the DAE transformation.

	Args:

	rule (function): A rule function or None. Default rule calls build().
concrete (bool): If True, make this a toplevel model. Default - False.
ctype (str): Pyomo ctype of the block. Default - “Block”
default (dict): Default ProcessBlockData config

	Keys

	
	pv

	A Pyomo Var, Expression, or Reference for the measured
process variable. Should be indexed by time.

	output

	A Pyomo Var, Expression, or Reference for the controlled
process variable. Should be indexed by time.

	upper

	The upper limit for the controller output, default=1

	lower

	The lower limit for the controller output, default=0

	calculate_initial_integral

	Calculate the initial integral term value if true,
otherwise provide a variable err_i0, which can be fixed,
default=True

	pid_form

	Velocity or standard form

	initialize (dict): ProcessBlockData config for individual elements. Keys

	are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function): Function to take the index of a BlockData element and

	return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns:

	(PIDBlock) New instance

	
class idaes.generic_models.control.pid_controller.PIDBlockData(component)

	
	
build()

	Build the PID block

Variables and Expressions

	Symbol

	Name in Model

	Description

	\(v_{sp}(t)\)

	setpoint[t]

	Setpoint variable (usually fixed)

	\(v_{mv}(t)\)

	pv[t]

	Measured process variable reference

	\(u(t)\)

	output[t]

	Controller output variable reference

	\(K_p(t)\)

	gain[t]

	Controller gain (usually fixed)

	\(T_i(t)\)

	time_i[t]

	Integral time (usually fixed)

	\(T_d(t)\)

	time_d[t]

	Derivative time (usually fixed)

	\(e(t)\)

	err[t]

	Error expression (setpoint - pv)

	–

	err_d[t]

	Derivative error expression

	–

	err_i[t]

	Integral error expression (standard form)

	–

	err_d0

	Initial derivative error value (fixed)

	\(e_{integral}(0)\)

	err_i0

	Initial integral error value (fixed)

	–

	err_i_end

	Last initial integral error expression

	–

	limits["h"]

	Upper limit of output parameter

	–

	limits["l"]

	Lower limit of output parameter

	–

	smooth_eps

	Smooth min/max parameter

Formulation

There are two forms of the PID controller equation. The standard formulation
can result in equations with very large summations. In the velocity form of the
equation the controller output can be calculated based only on the previous state.

The two forms of the equations are equivalent, but the choice of form will affect
robustness and solution time. It is not necessarily clear that the velocity form
of the equation is always more numerically favorable, however it would usually be
the default choice. Both forms are provided in case the standard form works better
in some situations.

Standard Formulation

The PID controller equations are given by the following equations

\[e(t) = v_{sp}(t) - v_{mv}(t)\]

\[u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(s) \text{d}s + T_d \frac{\text{d}e(t)}{\text{d}t} \right]\]

The PID equation now must be discretized.

\[u(t_i) = K_p \left[
 e(t_i) +
 \frac{e_{integral}(0)}{T_i} + \frac{1}{T_i} \sum_{j=0}^{i-1} \Delta t_j \frac{e(t_j) + e(t_{j+1})}{2} +
 T_d \frac{e(t_i) - e(t_{i-1})}{\Delta t_{i-1}} \right]\]

Velocity Formulation

The velocity formulation of the PID equation may also be useful. The way the
equations are written in the PID model, the integral term is a summation expression
and as time increases the integral term will build up an increasing number of terms
potentially becoming very large. This potentially has two affects, increasing
round off error and computation time. The velocity formulation allows the controller
output to be calculated based on the previous output.

First the usual PID controller equation can be rearranged to solve for the integral
error.

\[\frac{1}{T_i} \int_0^t e(s) \text{d}s = \frac{u(t)}{K_p} - e(t) - T_d \frac{\text{d}e(t)}{\text{d}t}\]

The PID equation for some time (\(t + \Delta t\)) is

\[u(t + \Delta t) = K_p \left[
 e(t + \Delta t) +
 \frac{1}{T_i} \int_0^{t+\Delta t} e(s) \text{d}s +
 T_d \frac{\text{d}e(t+\Delta t)}{\text{d}t}
\right]\]

\[u(t + \Delta t) = K_p \left[
 e(t + \Delta t) +
 \frac{1}{T_i} \int_t^{t+\Delta t} e(s) \text{d}s +
 \frac{1}{T_i} \int_0^{t} e(s) \text{d}s +
 T_d \frac{\text{d}e(t+\Delta t)}{\text{d}t}
\right]\]

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{1}{T_i} \int_t^{t+\Delta t} e(s) \text{d}s +
 T_d \left(\frac{\text{d}e(t+\Delta t)}{\text{d}t} - \frac{\text{d}e(t)}{\text{d}t}\right)
\right]\]

Now we can discretize the equation using the trapezoid rule for the integral.

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{\Delta t}{T_i} \left(\frac{e(t+\Delta t) + e(t)}{2} \right) +
 T_d \left(\frac{\text{d}e(t+\Delta t)}{\text{d}t} - \frac{\text{d}e(t)}{\text{d}t}\right)
\right]\]

Since the derivative error term will require the error at the previous time step
to calculate, this form will still result in a large summation being formed since
in the model there is no derivative error variable. To avoid this problem, the
derivative error term can equivalently be replaced with the derivative of the
negative measured process variable.

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{\Delta t}{T_i} \left(\frac{e(t+\Delta t) + e(t)}{2} \right)+
 T_d \left(\frac{\text{d}v_{mv}(t+\Delta t)}{\text{d}t} - \frac{\text{d}v_{mv}(t)}{\text{d}t}\right)
\right]\]

Now the velocity form of the PID controller equation can be calculated at each time
point from just the state at the previous time point.

Substitution

In both the proportional and integral terms, error can be replaced with the negative
measured process variable yielding equivalent results. This substitution is provided
by the PID class and is done by default.

Output Limits

Smooth min and smooth max expressions are used to keep the controller output between
a minimum and maximum value.

 Power Generation Model Library

Power Generation Model Library

The IDAES Process Modeling Framework contains a library of models specifically developed for modeling power generation systems. These models all built off of the core IDAES modeling framework and model libraries.

	Power Generation Unit Models

	Power Generation Properties

	Power Generation Flowsheets

 Power Generation Unit Models

Power Generation Unit Models

	Feedwater Heater (0D)

	Feedwater Heater (Condensing Section 0D)

	Turbine (Inlet Stage)

	Turbine (Outlet Stage)

	Turbine (Stage)

	Turbine (Multistage)

	Steam/Water Valve

	BoilerHeatExchanger

 Feedwater Heater (0D)

Feedwater Heater (0D)

The FWH0D model is a 0D feedwater heater model suitable for steady state modeling. It is intended to be used primarily used with the IAWPS95 property package. The feedwater heater is split into three sections the condensing section is required while the desuperheating and drain cooling sections are optional. There is also an optional mixer for adding a drain stream from another feedwater heater to the condensing section. The figure below shows the layout of the feedwater heater. All but the condensing section are optional.

[image: ../../../_images/feedwater_heater_0D.svg]Feedwater Heater

Example

The example below shows how to setup a feedwater heater with all tree sections. The feedwater flow rate, steam conditions, heat transfer coefficients and areas are not necessarily realistic.

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models.heat_exchanger import (delta_temperature_underwood_callback,
 delta_temperature_lmtd_callback)
from idaes.generic_models.properties import iapws95
from idaes.power_generation.unit_models import FWH0D

def make_fwh_model():
 model = pyo.ConcreteModel()
 model.fs = FlowsheetBlock(default={
 "dynamic": False,
 "default_property_package": iapws95.Iapws95ParameterBlock()})
 model.fs.properties = model.fs.config.default_property_package
 model.fs.fwh = FWH0D(default={
 "has_desuperheat":True,
 "has_drain_cooling":True,
 "has_drain_mixer":True,
 "property_package":model.fs.properties})

 model.fs.fwh.desuperheat.inlet_1.flow_mol.fix(100)
 model.fs.fwh.desuperheat.inlet_1.flow_mol.unfix()
 model.fs.fwh.desuperheat.inlet_1.pressure.fix(201325)
 model.fs.fwh.desuperheat.inlet_1.enth_mol.fix(60000)
 model.fs.fwh.drain_mix.drain.flow_mol.fix(1)
 model.fs.fwh.drain_mix.drain.pressure.fix(201325)
 model.fs.fwh.drain_mix.drain.enth_mol.fix(20000)
 model.fs.fwh.cooling.inlet_2.flow_mol.fix(400)
 model.fs.fwh.cooling.inlet_2.pressure.fix(101325)
 model.fs.fwh.cooling.inlet_2.enth_mol.fix(3000)
 model.fs.fwh.condense.area.fix(1000)
 model.fs.fwh.condense.overall_heat_transfer_coefficient.fix(100)
 model.fs.fwh.desuperheat.area.fix(1000)
 model.fs.fwh.desuperheat.overall_heat_transfer_coefficient.fix(10)
 model.fs.fwh.cooling.area.fix(1000)
 model.fs.fwh.cooling.overall_heat_transfer_coefficient.fix(10)

 model.fs.fwh.initialize()
 return(model)

create a feedwater heater model with all optional units and initialize
model = make_fwh_model()

Model Structure

The condensing section uses the FWHCondensing0D model to calculate a steam flow rate such that all steam is condensed in the condensing section. This allows turbine steam extraction rates to be calculated. The other sections are regular HeatExchanger models. The table below shows the unit models which make up the feedwater heater, and the option to include or exclude them.

	Unit

	Option

	Doc

	condense

	–

	Condensing section (FWHCondensing0D)

	desuperheat

	has_desuperheat

	Desuperheating section (HeatExchanger)

	cooling

	has_drain_cooling

	Drain cooling section (HeatExchanger)

	drain_mix

	has_drain_mixer

	Mixer for steam and other FWH drain (Mixer)

Degrees of Freedom

The area and overall_heat_transfer_coefficient should be fixed or constraints should be provided to calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate (inlet_1.flow_mol), the model will have 0 degrees of freedom.

See FWH0D and FWH0DData for full Python class details.

 Feedwater Heater (Condensing Section 0D)

Feedwater Heater (Condensing Section 0D)

The condensing feedwater heater is the same as the HeatExchanger model with one additional constraint to calculate the inlet flow rate such that all the entering steam is condensed. This model is suitable for steady state modeling, and is intended to be used with the IAWPS95 property package. For dynamic modeling, the 1D feedwater heater models should be used (not yet publicly available).

Degrees of Freedom

Usually area and overall_heat_transfer_coefficient are fixed or constraints are provided to calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate (inlet_1.flow_mol), the model will have 0 degrees of freedom.

Variables

The variables are the same as HeatExchanger.

Constraints

In addition to the HeatExchanger constraints, there is one additional constraint to calculate the inlet steam flow such that all steam condenses. The constraint is called extraction_rate_constraint, and is defined below.

\[h_{steam, out} = h_{sat, liquid}(P)\]

Where \(h\) is molar enthalpy, and the saturated liquid enthalpy is a function of pressure.

FWHCondensing0D Class

	
class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0D(*args, **kwargs)

	Feedwater Heater Condensing Section
The feedwater heater condensing section model is a normal 0D heat exchanger
model with an added constraint to calculate the steam flow such that the outlet
of shell is a saturated liquid.

	Args:

	rule (function): A rule function or None. Default rule calls build().
concrete (bool): If True, make this a toplevel model. Default - False.
ctype (str): Pyomo ctype of the block. Default - “Block”
default (dict): Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	hot_side_name

	Hot side name, sets control volume and inlet and outlet
names

	cold_side_name

	Cold side name, sets control volume and inlet and outlet
names

	hot_side_config

	A config block used to construct the hot side control
volume. This config can be given by the hot side name
instead of hot_side_config.

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	cold_side_config

	A config block used to construct the cold side control
volume. This config can be given by the cold side name
instead of cold_side_config.

	material_balance_type

	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	delta_temperature_callback

	Callback for for temperature difference calculations

	flow_pattern

	Heat exchanger flow pattern, default -
HeatExchangerFlowPattern.countercurrent. Valid values:
{ HeatExchangerFlowPattern.countercurrent -
countercurrent flow,
HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow,
factor times countercurrent temperature difference.}

	initialize (dict): ProcessBlockData config for individual elements. Keys

	are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function): Function to take the index of a BlockData element and

	return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns:

	(FWHCondensing0D) New instance

FWHCondensing0DData Class

	
class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData(component)

	
	
build()

	Building model

	Parameters

	None –

	Returns

	None

	
initialize(*args, **kwargs)

	Use the regular heat exchanger initialization, with the extraction rate
constraint deactivated; then it activates the constraint and calculates
a steam inlet flow rate.

 Turbine (Inlet Stage)

Turbine (Inlet Stage)

This is a steam power generation turbine model for the inlet stage.
The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineInletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineInletStage(default={"property_package": m.fs.properties})
hin = iapws95.htpx(T=880, P=2.4233e7)
set inlet
m.fs.turb.inlet[:].enth_mol.fix(hin)
m.fs.turb.inlet[:].flow_mol.fix(26000/4.0)
m.fs.turb.inlet[:].pressure.fix(2.4233e7)
m.fs.turb.eff_nozzle.fix(0.95)
m.fs.turb.blade_reaction.fix(0.9)
m.fs.turb.flow_coeff.fix(1.053/3600.0)
m.fs.turb.blade_velocity.fix(110.0)
m.fs.turb.efficiency_mech.fix(0.98)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge
pressure are fixed. There are also a few variables which are turbine parameters
and are usually fixed. See the variables section for more information.

Model Structure

The turbine inlet stage model contains one ControlVolume0DBlock block called control_volume and
inherits the PressureChanger model using the isentropic option.

Variables

The variables below are defined in the TurbineInletStage model. Additional variables
are inherited from the PressureChanger model model.

	Variable

	Symbol

	Index Sets

	Doc

	blade_reaction

	\(R\)

	None

	Blade reaction

	eff_nozzle

	\(\eta_{nozzle}\)

	None

	Nozzle efficiency

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

	flow_coeff

	\(C_{flow}\)

	None

	Turbine stage flow coefficient [kg*C^0.5/Pa/s]

	blade_velocity

	\(V_{rbl}\)

	None

	Turbine blade velocity (should be constant while running) [m/s]

	delta_enth_isentropic

	\(\Delta h_{isen}\)

	time

	Isentropic enthalpy change through stage [J/mol]

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

Expressions

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

	steam_entering_velocity

	\(V_0\)

	time

	Steam velocity entering stage [m/s]

The expression defined below provides a calculation for steam velocity entering
the stage, which is used in the efficiency calculation.

\[V_0 = 1.414\sqrt{\frac{-(1 - R)\Delta h_{isen}}{WT_{in}\eta_{nozzel}}}\]

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this
model contains two more constraints, one to estimate efficiency and one pressure-flow
relation. From the isentropic pressure changer model, these constraints eliminate the
need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

\[\eta_{isen} = 2 \frac{V_{rbl}}{V_0}\left[\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right) +
 \sqrt{\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right)^2 + R}\right]\]

The pressure-flow relation is given by:

\[\dot{m} = C_{flow}\frac{P_{in}}{\sqrt{T_{in}-273.15}}\sqrt{\frac{\gamma}{\gamma-1} \left[
 \left(\frac{P_{out}}{P_{in}}\right)^{\frac{2}{\gamma}} -
 \left(\frac{P_{out}}{P_{in}}\right)^{\frac{\gamma+1}{\gamma}} \right]}\]

Initialization

The initialization method for this model will save the current state of the model
before commencing initialization and reloads it afterwards. The state of the model
will be the same after initialization, only the initial guesses for
unfixed variables will be changed. To initialize this model, provide a starting
value for the inlet port variables. Then provide a guess for one of: discharge
pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow
coefficient that is incompatible with the given flow rate resulting in an
infeasible problem.

TurbineInletStage Class

	
class idaes.power_generation.unit_models.turbine_inlet.TurbineInletStage(*args, **kwargs)

	Inlet stage steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor

	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption

	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(TurbineInletStage) New instance

TurbineInletStageData Class

	
class idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData(component)

	
	
build()

	
	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06})

	Initialize the inlet turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl (int [https://docs.python.org/3/library/functions.html#int]) – Amount of output (0 to 3) 0 is lowest

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 Turbine (Outlet Stage)

Turbine (Outlet Stage)

This is a steam power generation turbine model for the outlet stage. The turbine outlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineOutletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineOutletStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(47115)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e4)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge
pressure are fixed. There are also a few variables which are turbine parameters
and are usually fixed. See the variables section for more information.

Model Structure

The turbine outlet stage model contains one ControlVolume0DBlock block called control_volume and
inherits the PressureChanger model using the isentropic option.

Variables

The variables below are defined int the TurbineInletStage model. Additional variables
are in inherited from the PressureChanger model model.

	Variable

	Symbol

	Index Sets

	Doc

	eff_dry

	\(\eta_{dry}\)

	None

	Turbine efficiency when no liquid is present.

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

	flow_coeff

	\(C_{flow}\)

	None

	Turbine stage flow coefficient [kg*C^0.5/Pa/s]

	design_exhaust_flow_vol

	\(V_{des,exhaust}\)

	None

	Design volumetric flow out of stage [m^3/s]

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

Expressions

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

	tel

	\(\text{TEL}\)

	time

	Total exhaust loss [J/mol]

The expression defined below provides a total exhaust loss.

\[\text{TEL} = 1\times 10^6*\left(-0.0035f^5 + 0.022f^4 - 0.0542f^3 + 0.0638f^2 - 0.0328f + 0.0064\right)\]

Where \(f\) is the total volumetric flow of the exhaust divided by the design flow.

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this
model contains two more constraints, one to estimate efficiency and one pressure-flow
relation. From the isentropic pressure changer model, these constraints eliminate the
need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

\[\eta_{isen} = \eta_{dry}x\left(1 - 0.65(1 - x)\right)*\left(1 + \frac{\text{TEL}}{\Delta h_{isen}}\right)\]

Where \(x\) is the steam quality (vapor fraction).

The pressure-flow relation is given by the Stodola Equation:

\[\dot{m}\sqrt{Tin - 273.15} = C_{flow}P_{in}\sqrt{1 - Pr^2}\]

Initialization

The initialization method for this model will save the current state of the model
before commencing initialization and reloads it afterwards. The state of the model
will be the same after initialization, only the initial guesses for
unfixed variables will be changed. To initialize this model, provide a starting
value for the inlet port variables. Then provide a guess for one of: discharge
pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow
coefficient that is incompatible with the given flow rate resulting in an
infeasible problem.

TurbineOutletStage Class

	
class idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStage(*args, **kwargs)

	Outlet stage steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor

	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption

	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(TurbineOutletStage) New instance

TurbineOutletStageData Class

	
class idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData(component)

	
	
build()

	
	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06})

	Initialize the outlet turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl – sets output level of initialization routine

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 Turbine (Stage)

Turbine (Stage)

This is a steam power generation turbine model for the stages between the inlet
and outlet.
This model inherits the PressureChanger model with the isentropic options. The
initialization scheme is the same as the TurbineInletStage model.

Example

from pyomo.environ import ConcreteModel, SolverFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(70000)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e6)
m.fs.turb.efficiency_isentropic[:].fix(0.8)
m.fs.turb.ratioP[:].fix(0.7)
m.fs.turb.initialize()

Variables

This model adds a variable to the base PressureChanger model to account
for mechanical efficiency .

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

\(\eta_{isentropic,t}\) efficiency_isentropic Isentropic assumption only

Expressions

This model provides two expressions that are not available in the
pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

Constraints

There are no additional constraints.

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in
a function to ensure the state after initialization is the same as before initialization.
The arguments to the initialization method are the same as PressureChanger.

TurbineStage Class

	
class idaes.power_generation.unit_models.turbine_stage.TurbineStage(*args, **kwargs)

	Basic steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor

	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption

	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(TurbineStage) New instance

TurbineStageData Class

	
class idaes.power_generation.unit_models.turbine_stage.TurbineStageData(component)

	
	
build()

	
	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06})

	Initialize the turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl – sets output level of initialization routine

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 Turbine (Multistage)

Turbine (Multistage)

This is a composite model for a power plant turbine with high, intermediate and
low pressure sections. This model contains an inlet stage with throttle valves
for partial arc admission and optional splitters for steam extraction.

The figure below shows the layout of the mutistage turbine model. Optional splitters
provide for steam extraction. The splitters can have two or more outlets (one being
the main steam outlet). The streams that connect one stage to the next can also be
omitted. This allows for connecting additional unit models (usually reheaters) between
stages.

[image: ../../../_images/turbine_multistage.svg]MultiStage Turbine Model

Example

This example sets up a turbine multistage turbine model similar to what could be
found in a power plant steam cycle. There are 7 high-pressure stages, 14
intermediate-pressure stages, and 11 low-pressure stages. Steam extractions
are provided after stages hp4, hp7, ip5, ip14, lp4, lp7, lp9, lp11. The
extraction at ip14 uses a splitter with three outlets, one for the main steam,
one for the boiler feed pump, and one for a feedwater heater. There is a
disconnection between the HP and IP sections so that steam can be sent to a
reheater. In this example, a heater block is a stand-in for a reheater model.

from pyomo.environ import (ConcreteModel, SolverFactory, TransformationFactory,
 Constraint, value)
from pyomo.network import Arc

from idaes.core import FlowsheetBlock
from idaes.unit_models import Heater
from idaes.power_generation.unit_models import (
 TurbineMultistage, TurbineStage, TurbineInletStage, TurbineOutletStage)
from idaes.generic_models.properties import iapws95

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineMultistage(default={
 "property_package": m.fs.properties,
 "num_hp": 7,
 "num_ip": 14,
 "num_lp": 11,
 "hp_split_locations": [4,7],
 "ip_split_locations": [5, 14],
 "lp_split_locations": [4,7,9,11],
 "hp_disconnect": [7], # 7 is last stage in hp so disconnect hp from ip
 "ip_split_num_outlets": {14:3}})
Add reheater (for example using a simple heater block)
m.fs.reheat = Heater(default={"property_package": m.fs.properties})
Add Arcs (streams) to connect the HP and IP sections through reheater
m.fs.hp_to_reheat = Arc(source=m.fs.turb.hp_split[7].outlet_1,
 destination=m.fs.reheat.inlet)
m.fs.reheat_to_ip = Arc(source=m.fs.reheat.outlet,
 destination=m.fs.turb.ip_stages[1].inlet)
Set the turbine inlet conditions and an initial flow guess
p = 2.4233e7
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.inlet_split.inlet.enth_mol[0].fix(hin)
m.fs.turb.inlet_split.inlet.flow_mol[0].fix(26000)
m.fs.turb.inlet_split.inlet.pressure[0].fix(p)

Set the inlet of the ip section for initialization, since it is disconnected
p = 7.802e+06
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.ip_stages[1].inlet.enth_mol[0].value = hin
m.fs.turb.ip_stages[1].inlet.flow_mol[0].value = 25220.0
m.fs.turb.ip_stages[1].inlet.pressure[0].value = p
Set the efficency and pressure ratios of stages other than inlet and outlet
for i, s in turb.hp_stages.items():
 s.ratioP[:] = 0.88
 s.efficiency_isentropic[:] = 0.9
for i, s in turb.ip_stages.items():
 s.ratioP[:] = 0.85
 s.efficiency_isentropic[:] = 0.9
for i, s in turb.lp_stages.items():
 s.ratioP[:] = 0.82
 s.efficiency_isentropic[:] = 0.9
Usually these fractions would be determined by the boiler feed water heater
network. Since this example doesn't include them, just fix split fractions
turb.hp_split[4].split_fraction[0,"outlet_2"].fix(0.03)
turb.hp_split[7].split_fraction[0,"outlet_2"].fix(0.03)
turb.ip_split[5].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_3"].fix(0.15)
turb.lp_split[4].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[7].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[9].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[11].split_fraction[0,"outlet_2"].fix(0.04)
unfix inlet flow for pressure driven simulation
turb.inlet_split.inlet.flow_mol.unfix()
Set the inlet steam mixer to use the constraints that the pressures of all
inlet streams are equal
turb.inlet_mix.use_equal_pressure_constraint()
Initialize turbine
turb.initialize(outlvl=1)
Copy conditions out of turbine to initialize the reheater
for t in m.fs.time:
 m.fs.reheat.inlet.flow_mol[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].flow_mol)
 m.fs.reheat.inlet.enth_mol[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].enth_mol)
 m.fs.reheat.inlet.pressure[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].pressure)
initialize the reheater
m.fs.reheat.initialize(outlvl=4)
Add constraint to the reheater to result in 880K outlet temperature
def reheat_T_rule(b, t):
 return m.fs.reheat.control_volume.properties_out[t].temperature == 880
m.fs.reheat.temperature_out_equation = Constraint(m.fs.reheat.time_ref,
 rule=reheat_T_rule)
Expand the Arcs connecting the turbine to the reheater
TransformationFactory("network.expand_arcs").apply_to(m)
Fix the outlet pressure (usually determined by condenser)
m.fs.turb.outlet_stage.control_volume.properties_out[0].pressure.fix()

Solve the pressure driven flow model with reheat
solver.solve(m, tee=True)

Unit Models

The multistage turbine model contains the models in the table below. The splitters for steam extraction are not present if a turbine section contains no steam extractions.

	Unit

	Index Sets

	Doc

	inlet_split

	None

	Splitter to split the main steam feed into steams for each arc (Separator)

	throttle_valve

	Admission Arcs

	Throttle valves for each admission arc (SteamValve)

	inlet_stage

	Admission Arcs

	Parallel inlet turbine stages that represent admission arcs (TurbineInlet)

	inlet_mix

	None

	Mixer to combine the streams from each arc back to one stream (Mixer)

	hp_stages

	HP stages

	Turbine stages in the high-pressure section (TurbineStage)

	ip_stages

	IP stages

	Turbine stages in the intermediate-pressure section (TurbineStage)

	lp_stages

	LP stages

	Turbine stages in the low-pressure section (TurbineStage)

	hp_splits

	subset of HP stages

	Extraction splitters in the high-pressure section (Separator)

	ip_splits

	subset of IP stages

	Extraction splitters in the high-pressure section (Separator)

	lp_splits

	subset of LP stages

	Extraction splitters in the high-pressure section (Separator)

	outlet_stage

	None

	The final stage in the turbine, which calculates exhaust losses (TurbineOutlet)

Initialization

The initialization approach is to sequentially initialize each sub-unit using the outlet of the previous
model. Before initializing the model, the inlet of the turbine, and any stage that is disconnected should
be given a reasonable guess. The efficiency and pressure ration of the stages in the HP, IP and LP
sections should be specified. For the inlet and outlet stages the flow coefficient should be specified.
Valve coefficients should also be specified. A reasonable guess for split fractions should also be given
for any extraction splitters present. The most likely cause of initialization failure is flow coefficients
in inlet stage, outlet stage, or valves that do not pair well with the specified flow rates.

TurbineMultistage Class

	
class idaes.power_generation.unit_models.turbine_multistage.TurbineMultistage(*args, **kwargs)

	Multistage steam turbine with optional reheat and extraction

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether the model is dynamic.

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	has_phase_equilibrium

	Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream, default -
False. Valid values: { True - calculate phase
equilibrium in mixed stream, False - do not calculate
equilibrium in mixed stream.}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal`. Valid
values: { MaterialBalanceType.none - exclude
material balances, MaterialBalanceType.componentPhase
- use phase component balances,
MaterialBalanceType.componentTotal - use total
component balances, MaterialBalanceType.elementTotal -
use total element balances, MaterialBalanceType.total
- use total material balance.}

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	num_parallel_inlet_stages

	Number of parallel inlet stages to simulate partial arc
admission. Default=4

	num_hp

	Number of high pressure stages not including inlet stage

	num_ip

	Number of intermediate pressure stages

	num_lp

	Number of low pressure stages not including outlet stage

	hp_split_locations

	A list of index locations of splitters in the HP section.
The indexes indicate after which stage to include
splitters. 0 is between the inlet stage and the first
regular HP stage.

	ip_split_locations

	A list of index locations of splitters in the IP section.
The indexes indicate after which stage to include
splitters.

	lp_split_locations

	A list of index locations of splitters in the LP section.
The indexes indicate after which stage to include
splitters.

	hp_disconnect

	HP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	ip_disconnect

	IP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	lp_disconnect

	LP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	hp_split_num_outlets

	Dict, hp split index: number of splitter outlets, if not 2

	ip_split_num_outlets

	Dict, ip split index: number of splitter outlets, if not 2

	lp_split_num_outlets

	Dict, lp split index: number of splitter outlets, if not 2

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(TurbineMultistage) New instance

TurbineMultistageData Class

	
class idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData(component)

	
	
build()

	General build method for UnitModelBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
initialize(outlvl=0, solver='ipopt', optarg={'max_iter': 35, 'tol': 1e-06}, copy_disconneted_flow=True)

	Initialize

	
throttle_cv_fix(value)

	Fix the thottle valve coefficients. These are generally the same for
each of the parallel stages so this provides a convenient way to set
them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

	
turbine_inlet_cf_fix(value)

	Fix the inlet turbine stage flow coefficient. These are
generally the same for each of the parallel stages so this provides
a convenient way to set them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

	
turbine_outlet_cf_fix(value)

	Fix the inlet turbine stage flow coefficient. These are
generally the same for each of the parallel stages so this provides
a convenient way to set them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

 Steam/Water Valve

Steam/Water Valve

This is a steam power generation turbine model for the stages between the inlet
and outlet.
This model inherits the PressureChanger model with the adiabatic options. Beyond
the base pressure changer model this provides a pressure flow relation as a
function of the valve opening fraction.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import SteamValve
from idaes.generic_models.properties import iapws95
from idaes.ui.report import degrees_of_freedom, active_equalities

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.valve = SteamValve(default={"property_package": m.fs.properties})

hin = iapws95.htpx(T=880, P=2.4233e7)
set inlet
m.fs.valve.inlet.enth_mol[0].fix(hin)
m.fs.valve.inlet.flow_mol[0].fix(26000/4.0)
m.fs.valve.inlet.pressure[0].fix(2.5e7)
m.fs.valve.Cv.fix(0.01)
m.fs.valve.valve_opening.fix(0.5)
m.fs.valve.initialize(outlvl=1)

Parameters

	Expression

	Symbol

	Index Sets

	Doc

	flow_scale

	\(s_f\)

	None

	Factor for scaling the pressure-flow equation, should be same magnitude as expected flow rate

Variables

This model adds a variable to account for mechanical efficiency to the base PressureChanger
model.

	Variable

	Symbol

	Index Sets

	Doc

	Cv

	\(C_v\)

	None

	Valve coefficient for liquid [mol/s/Pa^0.5] for vapor [mol/s/Pa]

	valve_opening

	\(x\)

	time

	The fraction that the valve is open from 0 to 1

Expressions

Currently this model provides two additional expressions, with are not available
in the pressure changer model.

	Expression

	Symbol

	Index Sets

	Doc

	valve_function

	\(f(x)\)

	time

	This is a valve function that describes how the fraction open affects flow.

Constraints

The pressure flow relation is added to the inherited constraints from the PressureChanger model.

If the phase option is set to "Liq" the following equation describes the pressure-flow relation.

\[\frac{1}{s_f^2}F^2 = \frac{1}{s_f^2}C_v^2\left(P_{in} - P_{out}\right)f(x)^2\]

If the phase option is set to "Vap" the following equation describes the pressure-flow relation.

\[\frac{1}{s_f^2}F^2 = \frac{1}{s_f^2}C_v^2\left(P_{in}^2 - P_{out}^2\right)f(x)^2\]

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in
a function to ensure the state after initialization is the same as before initialization.
The arguments to the initialization method are the same as PressureChanger.

SteamValve Class

	
class idaes.power_generation.unit_models.valve_steam.SteamValve(*args, **kwargs)

	Basic steam valve models

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type

	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium

	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor

	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption

	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	valve_function

	The type of valve function, if custom provide an
expression rule with the valve_function_rule argument.
default - ValveFunctionType.linear Valid values -
{ ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom}

	valve_function_rule

	This is a rule that returns a time indexed valve function
expression. This is required only if
valve_function==ValveFunctionType.custom

	phase

	Expected phase of fluid in valve in {“Liq”, “Vap”}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(SteamValve) New instance

SteamValveData Class

	
class idaes.power_generation.unit_models.valve_steam.SteamValveData(component)

	
	
build()

	
	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06})

	Initialize the turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl – sets output level of initialization routine

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 BoilerHeatExchanger

BoilerHeatExchanger

The BoilerHeatExchanger model can be used to represent boiler heat exchangers in
sub-critical and super critical power plant flowsheets (i.e. econmizer, primary superheater, secondary superheater, finishing superheater, reheater, etc.).
The model consists of a shell and tube crossflow heat exchanger, in which the shell is used as the gas side and the tube is used as the water or steam side.
Rigorous heat transfer calculations (convective heat transfer for shell side, and convective heat transfer for tube side) and shell and tube pressure drop calculations have been included.

The BoilerHeatExchanger model can be imported from idaes.power_generation.unit_models,
while additional rules and utility functions can be imported from
idaes.power_generation.unit_models.boiler_heat_exchanger.

Example

The example below demonstrates how to initialize the BoilerHeatExchanger model,
and override the default temperature difference calculation.

Import Pyomo libraries
from pyomo.environ import ConcreteModel, SolverFactory, value
Import IDAES core
from idaes.core import FlowsheetBlock
Import Unit Model Modules
from idaes.generic_models.properties import iapws95
import ideal flue gas prop pack
from idaes.power_generation.properties.IdealProp_FlueGas import FlueGasParameterBlock
Import Power Plant HX Unit Model
from idaes.power_generation.unit_models.boiler_heat_exchanger import BoilerHeatExchanger, TubeArrangement, \
 DeltaTMethod
import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.unit_models.heat_exchanger import delta_temperature_amtd_callback
from idaes.generic_models.properties import iapws95

Create a Concrete Model as the top level object
m = ConcreteModel()

Add a flowsheet object to the model
m.fs = FlowsheetBlock(default={"dynamic": False})

Add property packages to flowsheet library
m.fs.prop_water = iapws95.Iapws95ParameterBlock()
m.fs.prop_fluegas = FlueGasParameterBlock()

Create unit models
m.fs.ECON = BoilerHeatExchanger(default=
 {"side_1_property_package": m.fs.prop_water,
 "side_2_property_package": m.fs.prop_fluegas,
 "has_pressure_change": True,
 "has_holdup": False,
 "delta_T_method": DeltaTMethod.counterCurrent,
 "tube_arrangement": TubeArrangement.inLine,
 "side_1_water_phase": "Liq",
 "has_radiation": False})

Set Inputs
BFW Boiler Feed Water inlet temeperature = 555 F = 563.706 K
inputs based on NETL Baseline Report v3 (SCPC 650 MW net, no carbon capture case)
h = iapws95.htpx(563.706, 2.5449e7)
m.fs.ECON.side_1_inlet.flow_mol[0].fix(24678.26) # mol/s
m.fs.ECON.side_1_inlet.enth_mol[0].fix(h)
m.fs.ECON.side_1_inlet.pressure[0].fix(2.5449e7) # Pa

FLUE GAS Inlet from Primary Superheater
FGrate = 28.3876e3 # mol/s equivalent of ~1930.08 klb/hr
Use FG molar composition to set component flow rates (baseline report)
m.fs.ECON.side_2_inlet.flow_component[0,"H2O"].fix(FGrate*8.69/100)
m.fs.ECON.side_2_inlet.flow_component[0,"CO2"].fix(FGrate*14.49/100)
m.fs.ECON.side_2_inlet.flow_component[0,"N2"].fix(FGrate*(8.69
 +14.49+2.47+0.06+0.2)/100)
m.fs.ECON.side_2_inlet.flow_component[0,"O2"].fix(FGrate*2.47/100)
m.fs.ECON.side_2_inlet.flow_component[0,"NO"].fix(FGrate*0.0006)
m.fs.ECON.side_2_inlet.flow_component[0,"SO2"].fix(FGrate*0.002)
m.fs.ECON.side_2_inlet.temperature[0].fix(682.335) # K
m.fs.ECON.side_2_inlet.pressure[0].fix(100145) # Pa
economizer design variables and parameters
ITM = 0.0254 # inch to meter conversion
Based on NETL Baseline Report Rev3
m.fs.ECON.tube_di.fix((2-2*0.188)*ITM) # calc inner diameter
(2 = outer diameter, thickness = 0.188)
m.fs.ECON.tube_thickness.fix(0.188*ITM) # tube thickness
m.fs.ECON.pitch_x.fix(3.5*ITM)
pitch_y = (54.5) gas path transverse width /columns
m.fs.ECON.pitch_y.fix(5.03*ITM)
m.fs.ECON.tube_length.fix(53.41*12*ITM) # use tube length (53.41 ft)
m.fs.ECON.tube_nrow.fix(36*2.5) # use to match baseline performance
m.fs.ECON.tube_ncol.fix(130) # 130 from NETL report
m.fs.ECON.nrow_inlet.fix(2)
m.fs.ECON.delta_elevation.fix(50)
parameters
heat transfer resistance due to tube side fouling (water scales)
m.fs.ECON.tube_rfouling = 0.000176
heat transfer resistance due to tube shell fouling (ash deposition)
m.fs.ECON.shell_rfouling = 0.00088
if m.fs.ECON.config.has_radiation is True:
 m.fs.ECON.emissivity_wall.fix(0.7) # wall emissivity
correction factor for overall heat transfer coefficient
m.fs.ECON.fcorrection_htc.fix(1.5)
correction factor for pressure drop calc tube side
m.fs.ECON.fcorrection_dp_tube.fix(1.0)
correction factor for pressure drop calc shell side
m.fs.ECON.fcorrection_dp_shell.fix(1.0)

Initialize the model
m.fs.ECON.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees
of freedom, which can be fixed for it to be fully specified. Things that are
frequently fixed are two of:

	heat transfer area,

	heat transfer coefficient, or

	temperature approach.

In order to capture off design conditions and heat transfer coefficients at ramp up/down or load following conditions, the BoilerHeatExanger
model includes rigorous heat transfer calculations. Therefore, additional degrees of freedom are required to calculate Nusselt, Prandtl, Reynolds numbers, such as:

	tube_di (inner diameter)

	tube length

	tube number of rows (tube_nrow), columns (tube_ncol), and inlet flow (nrow_inlet)

	pitch in x and y axis (pitch_x and pitch_y, respectively)

If pressure drop calculation is enabled, additional degrees of freedom are required:

	elevation with respect to ground level (delta_elevation)

	tube fouling resistance (tube_r_fouling)

	shell fouling resistance (shell_r_fouling)

Model Structure

The BoilerHeatExchanger model contains two ControlVolume0DBlock blocks. By default the
gas side is named shell and the water/steam side is named tube. These names are configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side.

The control volumes are configured the same as the ControlVolume0DBlock in the
Heater model. The BoilerHeatExchanger model contains additional
constraints that calculate the amount of heat transferred from the hot side to the cold side.

The BoilerHeatExchanger has two inlet ports and two outlet ports. By default these are
shell_inlet, tube_inlet, shell_outlet, and tube_outlet. If the user
supplies different hot and cold side names the inlet and outlets are named accordingly.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from hot side to the cold side

	area

	\(A\)

	None

	Heat transfer area

	U

	\(U\)

	time

	Heat transfer coefficient

	delta_temperature

	\(\Delta T\)

	time

	Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified cold side is hotter
than the specified hot side this value will be negative.

Constraints

The default constraints can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, heat transfer coefficient, shell and tube pressure drop. This section
describes the default constraints.

Heat transfer from shell to tube:

\[Q = UA\Delta T\]

Temperature difference is:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

The overall heat transfer coefficient is calculated as a function of convective heat transfer shell and tube, and wall conduction heat transfer resistance.

Convective heat transfer equations:

\[\frac{1}{U}*fcorrection_{htc} = [\frac{1}{hconv_{tube}} + \frac{1}{hconv_{shell}} + r + tube_{r fouling} + shell_{r fouling}]\]

\[hconv_{tube} = \frac{Nu_{tube} k}{tube_{di}}\]

\[Nu_{tube} = 0.023 Re_{tube}^{0.8} Pr_{tube}^{0.4}\]

\[Pr_{tube} = \frac{Cp \mu}{ k Mw}\]

\[Re_{tube} = \frac{tube_{di} V \rho}{\mu}\]

\[hconv_{shell} = \frac{Nu_{shell} k_{flue gas}}{tube_{do}}\]

\[Nu_{shell} = f_{arrangement} 0.33 Re_{tube}^{0.6} Pr_{tube}^{0.3333}\]

\[Pr_{shell} = \frac{Cp \mu}{ k Mw}\]

\[Re_{shell} = \frac{tube_{do} V \rho}{\mu}\]

\[tube_{do} = 2*tube_{thickness} + tube_{di}\]

Wall heat conduction resistance equation:

\[r = 0.5 * tube_{do} * \log{(\frac{tube_{do}}{tube_{di}})}*k\]

where:

	hconv_tube : convective heat transfer resistance tube side (fluid water/steam) (W / m2 / K)

	hconv_shell : convective heat transfer resistance shell side (fluid Flue Gas) (W / m2 / K)

	Nu : Nusselt number

	Pr : Prandtl number

	Re : Reynolds number

	V: velocity (m/s)

	tube_di : inner diameter of the tube (m)

	tube_do : outer diameter of the tube (m) (expression calculated by the model)

	tube_thickness : tube thickness (m)

	r = wall heat conduction resistance (K m^2 / W)

	k : thermal conductivity of the tube wall (W / m / K)

	\(\rho\) : density (kg/m^3)

	\(\mu\) : viscocity (kg/m/s)

	tube_r_fouling : tube side fouling resistance (K m^2 / W)

	shell_r_fouling : shell side fouling resistance (K m^2 / W)

	fcorrection_htc: correction factor for overall heat trasnfer

	f_arrangement: tube arrangement factor

Note:
by default fcorrection_htc is set to 1, however, this variable can be used to match unit performance (i.e. as a parameter estimation problem using real plant data).

Tube arrangement factor is a config argument with two different type of arrangements supported at the moment:
1.- In-line tube arrangement factor (f_arrangement = 0.788), and 2.- Staggered tube arrangement factor (f_arrangement = 1). f_arrangement is a parameter that can be adjusted by the user.

The BoilerHeatExchanger includes an argument to compute heat tranfer due to radiation of the flue gases. If has_radiation = True the model builds additional heat transfer calculations that will be added to the hconv_shell resistances.
Radiation effects are calculated based on the gas gray fraction and gas-surface radiation (between gas and shell).

\[Gas_{gray frac} = f (gas_{emissivity})\]

\[frad_{gas gray frac} = f (wall_{emissivity}, gas_{emissivity})\]

\[hconv_{shell_rad} = f (k_{boltzmann}, frad_{gas gray frac}, T_{gas in}, T_{gas out}, T_{fluid in}, T_{fluid out})\]

Note:
Gas emissivity is calculated with surrogate models (see more details in boiler_heat_exchanger.py).
Radiation = True when flue gas temperatures are higher than 700 K (for example, when the model is used for units like Primary superheater, Reheater, or Finishing Superheater;
while Radiation = False when the model is used to represent the economizer in a power plant flowsheet).

If pressure change is set to True, \(deltaP_{uturn} and friction_{factor}\) are calculated

Tube side:

\[\Delta P_{tube} = \Delta P_{tube friction} + \Delta P_{tube uturn} - elevation * g *\frac{\rho_{in} + \rho_{out}}{2}\]

\[\Delta P_{tube friction} = f(tube_{di} \rho, V_{tube}, number of tubes, tube_{length})\]

\[\Delta P_{tube uturn} = f(\rho, v_{tube}, k_{loss uturn})\]

where:

	\(k_{loss uturn}\) : pressure loss coeficient of a tube u-turn

	g : is the acceleration of gravity 9.807 (m/s^2)

Shell side:

\[\Delta P_{shell} = 1.4 \Delta P_{shell friction} \rho V_{shell}^2\]

\(\Delta P_{shell friction}\) is calculated based on the tube arrangement type:

In-line: \(\Delta P_{shell friction} = \frac{ 0.044 + \frac{0.08 (\frac{P_x}{tube_{do}}) } {(\frac{P_y}{tube_{do}}-1)^{0.43+\frac{1.13}{(\frac{P_x}{tube_{do}})}}}}{Re^{0.15}}\)

Staggered: \(\Delta P_{shell friction} = \frac{ 0.25 + \frac{0.118}{(\frac{P_y}{tube_{do}} -1)^{1.08}} }{Re^{0.16}}\)

Figure. Tube Arrangement

[image: ../../../_images/tube_arrangement.png]
Tube Arrangement

Class Documentation

Note

The hot_side_config and cold_side_config can also be supplied using the name of
the hot and cold sides (shell and tube by default) as in the example.

	
class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchanger(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys

	
	dynamic

	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup

	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	side_1_property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_1_property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	side_2_property_package

	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_2_property_package_args

	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	material_balance_type

	Indicates what type of material balance should be
constructed, default -
MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type

	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy
balance for material, EnergyBalanceType.enthalpyPhase
- ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type

	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_pressure_change

	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	delta_T_method

	Flag indicating type of flow arrangement to use for delta
default - DeltaTMethod.counterCurrent Valid
values: { DeltaTMethod.counterCurrent}

	tube_arrangement

	Tube arrangement could be in-line and staggered

	side_1_water_phase

	Define water phase for property calls

	has_radiation

	Define if side 2 gas radiation is to be considered

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(BoilerHeatExchanger) New instance

	
class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData(component)

	Standard Heat Exchanger Unit Model Class

	
build()

	Build method for Boiler heat exchanger model

	Parameters

	None –

	Returns

	None

	
initialize(state_args_1={}, state_args_2={}, outlvl=0, solver='ipopt', optarg={'max_iter': 100, 'tol': 1e-06})

	General Heat Exchanger initialisation routine.

	Keyword Arguments

	
	state_args_1 – a dict of arguments to be passed to the property
package(s) for side 1 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = {}).

	state_args_2 – a dict of arguments to be passed to the property
package(s) for side 2 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = {}).

	outlvl – sets output level of initialisation routine

	0 = no output (default)

	1 = return solver state for each step in routine

	2 = return solver state for each step in subroutines

	3 = include solver output infomation (tee=True)

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()

	Model checks for unit - calls model checks for both control volume
Blocks.

	Parameters

	None –

	Returns

	None

 Power Generation Properties

Power Generation Properties

	Flue Gas Property Package

 Flue Gas Property Package

Flue Gas Property Package

A flue gas property package has been developed to provide properties of combustion gases and air.
The ideal gas property package includes the main components in flue gas: O2, N2, NO, CO2, H2O, SO2

Main parameters:

	molecular weight in kg/kg-mol indexed by component list,

	reference pressure & temperature in Pa and Kelvin,

	critical pressure and temperature in Pa and Kelvin indexed by component list,

	gas constant in J/(mol K),

	constants for specific heat capacity in J/(mol K) indexed by component list and parameter A to H,

	vapor pressure coefficients (Antoine Eq.) P in Bar and T in K indexed by component list and parameters A to C,

Source: NIST webbook (last update: 01/08/2020)

The main methods supported are:

	heat capacity in J/(mol K),

	enthalpy in J/mol,

	entropy in J/(mol K),

	volumetric flowrate m3/s,

	viscosity of mixture in kg/(m s),

	thermal conductivity mixture in J / (m K s),

	molar density m3/mol,

	reduced pressure and temperature (unitless),

 Power Generation Flowsheets

Power Generation Flowsheets

	Supercritical Coal-Fired Power Plant Flowsheet

 Supercritical Coal-Fired Power Plant Flowsheet

Supercritical Coal-Fired Power Plant Flowsheet

	This is an example supercritical pulverized coal (SCPC) power plant.This simulation model consist of a ~595 MW gross coal fired power plant.

	The dimensions and operating conditions used for this simulation do not represent any specific coal-fired power plant.

This model is for demonstration and tutorial purposes only. Before looking at the
model, it may be useful to look at the process flow diagram (PFD).

SCPC Power Plant (simplified description)

Inputs:

	Throttle valve opening,

	Feed water pump pressure,

	BFW - boiler feed water (from Feed water heaters),

	Coal from pulverizers

Main Assumptions:

Coal flowrate is a function of the plant load, the coal HHV is fixed and heat dutty
from fire side to water wall and platen superheater are fixed.

	Boiler heat exchanger network:

	
	Water Flow:

	Fresh water -> FWH’s -> Economizer -> Water Wall -> Primary SH -> Platen SH -> Finishing Superheate -> HP Turbine -> Reheater -> IP Turbine

	Flue Gas Flow:

	
	Fire Ball -> Platen SH -> Finishing SH -> Reheater -> o -> Economizer -> Air Preheater

	-> Primary SH –^

	Steam Flow:

	Boiler -> HP Turbine -> Reheater -> IP Turbine -> Condenser
HP, IP, and LP steam extractions to Feed Water Heaters

	Main Models used:

	
	Mixers: Attemperator, Flue gas mix

	Heater: Platen SH, Fire/Water side (simplified model), Feed Water Heaters, Hot Tank, Condenser

	
	BoilerHeatExchanger: Economizer, Primary SH, Finishing SH, Reheater

	
	
	Shell and tube heat exchanger

	
	tube side: Steam (side 1 holdup)

	shell side: flue gas (side 2 holdup)

	Steam Turbines

	Pumps

	Property packages used:

	
	IAPWS: Water/steam side

	IDEAL GAS: Flue Gas side

Figures Process Flow Diagram:

[image: ../../../_images/Boiler_scpc_PFD.png]

 Data Management Framework

Data Management Framework

	DMF Command-line Interface

Overview

The Data Management Framework (DMF) is used to manage all the data needed by the
IDAES framework, including flowsheets, models, and results. It stores
metadata and data in persistent storage. It does not require that the user
run a server or connect to a remote service. The DMF can be accessed through its
Python API or command-line interfaces. There is work in progress on adding
graphical interfaces for Jupyter Notebooks and stand-alone desktop apps.

The DMF is designed to allow multiple separate threads of work. These are
organized in workspaces. Inside a given workspace, all the information is
represented by containers called resources. A resource describes some
data in the system in a standard way, so it can be searched and manipulated
by the rest of the IDAES framework.
Resources can be connected to each other with relations such as
“derived”, “contains”, “uses”, and “version”.

Below is an illustration of these components.

[image: ../_images/dmf-workspace-resource.png]

Configuration

The DMF is configured with an optional global configuration file and a
required per-workspace configuration file. By default the global file is
looked for as .dmf in the user’s home directory. Its main function at the
moment is to set the default workspace directory with the workspace
keyword. For example:

global DMF configuration
workspace: ~/data/workspaces/workspace1

The per-workspace configuration has more options. See the documentation
in the Workspace class for details.
The configuration file is in YAML (or JSON) format. Here is an example file, with some
description in comments:

settings: # Global settings
 workspace: /home/myuser/ws # Path to current workspace
workspace: # Per-workspace settings
 location: /home/myuser/ws # Path to this workspace
 name: myws # Name of this workspace
 description: my workspace # Description (if any) of this workspace
 created: 2019-04-09 12:55:05 # Date workspace was created
 modified: 2019-04-09 12:55:05 # Date workspace was modified
 files: # Basic information about data files
 count: 3 # How many files
 total_size: 1.3 MB # Total size of the files
 html_documentation_paths: # List of paths for HTML documentation
 -: /home/myuser/idaes/docs/build
 logging: # Logging configuration
 idaes.dmf: # Name of the logger
 level: DEBUG # Log level (Python logging constant)
 output: /tmp/debug.log # File path or "_stdout_" or "_stderr_"

This configuration file is used whether you use the DMF from the command-line,
Jupyter notebook, or in a Python program. For details see the
DMF package documentation.

Jupyter notebook usage

In the Jupyter Notebook, there are some “magics” defined that make
initializing the DMF pretty easy. For example:

from idaes.dmf import magics
%dmf init path/to/workspace

The code above loads the “%dmf” line magic in the first line, then uses it
to initialize the DMF with the workspace at “path/to/workspace”.

From there, other “line magics” will operate in the context of that DMF
workspace.

	%dmf help - Provide help on IDAES objects and classes. See dmf-help.

	%dmf info - Provide information about DMF current state for whatever ‘topics’ are provided

	%dmf list - List resources in the current workspace

	%dmf workspaces - List DMF workspaces; you can do this before %dmf init

DMF help

The IDAES Python interfaces are documented with Sphinx [https://www.sphinx-doc.org]. This includes
automatic translation of the comments and structure of the code into
formatted and hyperlinked HTML pages. The %dmf help command lets you easily
pull up this documentation for an IDAES module, class, or
object. Below are a couple of examples:

Initialize the DMF first
from idaes.dmf import magics
%dmf init path/to/workspace create

Get help on a module (imported)
from idaes.core import control_volume1d
%dmf help control_volume1d

Get help on a module (by name, no import)
%dmf help idaes.core.control_volume0d

Get help on a class
from idaes.core.control_volume1d import ControlVolume1DBlock
%dmf help ControlVolume1DBlock

Get help on a class (by name, no import)
%dmf help idaes.core.control_volume1d.ControlVolume1DBlock

Get help on an object (will show help for the object's class)
This will end up showing the same help as the previous two examples
obj = control_volume1d.ControlVolume1DBlock()
%dmf help obj

The help pages will open in a new window. The location of the built
documentation that they use is configured in the per-workspace DMF
configuration under the htmldocs keyword (a default value is filled in
when the DMF is first initialized).

Sharing

The contents of a DMF workspace can be shared quite simply because
the data is all contained within a directory in the local file system.
So, some ways to share (with one or many people) include:

	Put the workspace directory in a cloud/shared drive like Dropbox [https://www.dropbox.com/] ,
Box [https://www.box.com/] , Google Drive [https://google.com/drive/] , or OneDrive [https://onedrive.live.com/about/en-us/] .

	Put the workspace directory under version control like Git [https://git-scm.com/] and
share that versioned data using Git commands and a service like Github [https://github.com/] ,
BitBucket [https://bitbucket.org/] or Gitlab [https://gitlab.com/].

	Package up the directory with a standard archiving utility like “zip”
or “tar” and share it like any other file (e.g. attach it to an email).

Note

These modes of sharing allow users to see the same data, but are not
designed for real-time collaboration (reading and writing) of the same
data. That mode of operation requires a proper database server to mediate
operations on the same data. This is in the roadmap for the DMF, but
not currently implemented.

Reference

See the idaes.dmf package documentation that is generated
automatically from the source code.

 DMF Command-line Interface

DMF Command-line Interface

This page lists the commands and options for the DMF command-line interface,
which is a Python program called dmf. There are several usage examples for each
sub-command. These examples assume the UNIX bash shell.

Contents

	DMF Command-line Interface

	dmf

	dmf find

	dmf info

	dmf init

	dmf ls

	dmf register

	dmf related

	dmf rm

	dmf status

dmf

Data management framework command wrapper. This base command has
some options for verbosity that can be applied to any sub-command.

dmf options

	
-v

	

	
--verbose

	

Increase verbosity. Show warnings if given once, then info, and then
debugging messages.

	
-q

	

	
--quiet

	

Increase quietness. If given once, only show critical messages.
If given twice, show no messages.

dmf usage

Run sub-command with logging at level “error”:

$ dmf <sub-command>

Run sub-command and log warnings:

$ dmf <sub-command>

Run sub-command and log informational / warning messages:

$ dmf -vv <sub-command>

Run sub-command only logging fatal errors:

$ dmf -q <sub-command>

Run sub-command with no logging at all:

$ dmf -qq <sub-command>

dmf subcommands

The subcommands are listed alphabetically below. For each, keep in mind that any unique
prefix of that command will be accepted. For example, for dmf init, the
user may also type dmf ini. However, dmf in will not work because that
would also be a valid prefix for dmf info.

In addition, there are some aliases for some of the sub-commands:

	dmf info => dmf resource or dmf show

	dmf ls => dmf list

	dmf register => dmf add

	dmf related => dmf graph

	dmf rm => dmf delete

	dmf status => dmf describe

usage overview

To give a feel for the context in which you might actually run these
commands, below is a simple example that uses each command:

create a new workspace
$ dmf init ws --name workspace --desc "my workspace" --create
Configuration in '/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/config.yaml

view status of the workspace
$ dmf status
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: workspace
 description: my workspace
 created: 2019-04-20 08:32:59
 modified: 2019-04-20 08:32:59

add some resources from files
$ echo "one" > oldfile ; echo "two" > newfile
$ dmf register oldfile --version 0.0.1
2792c0ceb0734ed4b302c44884f2d404
$ dmf register newfile --version 0.0.2 --prev 2792c0ceb0734ed4b302c44884f2d404
6ddee9bb2bb3420ab10aaf4c74d186f6

list the current workspace contents
$ dmf ls
id type desc modified
2792 data oldfile 2019-04-20 15:33:11
6dde data newfile 2019-04-20 15:33:23

look at one one resource (newfile)
$ dmf info 6dde
 Resource 6ddee9bb2bb3420ab10aaf4c74d186f6
 created
 '2019-04-20 15:33:23'
 creator
 name: dang
 datafiles
 - desc: newfile
 is_copy: true
 path: newfile
 sha1: 7bbef45b3bc70855010e02460717643125c3beca
 datafiles_dir
 /home/myuser/ws/files/8027bf92628f41a0b146a5167d147e9d
 desc
 newfile
 doc_id
 2
 id_
 6ddee9bb2bb3420ab10aaf4c74d186f6
 modified
 '2019-04-20 15:33:23'
 relations
 - 2792c0ceb0734ed4b302c44884f2d404 --[version]--> ME
 type
 data
 version
 0.0.2 @ 2019-04-20 15:33:23

see relations
$ dmf related 2792
2792 data
 │
 └──┤version├─▶ 6dde data -

remove the "old" file
$ dmf rm 2792
id type desc modified
2792c0ceb0734ed4b302c44884f2d404 data oldfile 2019-04-20 15:33:11
Remove this resource [y/N]? y
resource removed

$ dmf ls
id type desc modified
6dde data newfile 2019-04-20 15:33:23

[image: ../_images/blue-white-band.png]

dmf find

Search for resources by a combination of their fields.
Several convenient fields are provided. At this time, a comprehensive
capability to search on any field is not available.

dmf find options

In addition to the options below, this command also accepts all the
dmf ls options, although the --color/--no-color option is
ignored for JSON output.

	
--output value

	

Output style/format. Possible values:

	list

	(Default) Show results as a listing, as from the ls subcommand.

	info

	Show results as individual records, as from the info subcommand.

	json

	Show results are JSON objects

	
--by value

	

Look for “value” in the value of the creator.name field.

	
--created value

	

Use “value” as a date or date range and filter on records that
have a created date in that range. Dates should be in the form:

YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]

To indicate a date range, separate two dates with a “..”.

	2012-03-19: On March 19, 2012

	2012-03-19..2012-03-22: From March 19 to March 22, 2012

	2012-03-19..: After March 19, 2012

	..2012-03-19: Before March 19, 2012

Note that times may also be part of the date strings.

	
--file value

	

Look for “value” in the value of the desc field in one of the datafiles.

	
--modified value

	

Use “value” as a date or date range and filter on records that
have a modified date in that range. See --created for
details on the date format.

	
--name value

	

Look for “value” as one of the values of the alias field.

	
--type value

	

Look for “value” as the value of the type field.

dmf find usage

By default, find will essentially provide a filtered listing of
resources. If used without options, it is basically an alias for
ls.

$ dmf ls
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59
$ dmf find
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59

The find-specific options add filters. In the example below, the find
filters for files that were modified after the given date and time.

$ dmf find --modified 2019-04-29T17:29:00..
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

[image: ../_images/blue-white-band.png]

dmf info

Show detailed information about a resource.
This command may also be referred to as dmf show.

dmf info options

	
identifier

	

Identifier, or unique prefix thereof, of the resource.
Any unique prefix of the identifier will work, but if that prefix
matches multiple identifiers, you need to add --multiple
to allow multiple records in the output.

	
--multiple

	

Allow multiple records in the output (see identifier)

	
-f,--format value

	

Output format. Accepts the following values:

	term

	Terminal output (colored, if the terminal supports it), with values
that are empty left out and some values simplified for easy reading.

	json

	Raw JSON value for the resource, with newlines and indents for readability.

	jsonc

	Raw JSON value for the resource, “compact” version with no extra whitespace
added.

dmf info usage

The default is to show, with some terminal colors, a summary of the resource:

$ dmf info 0b62

 Resource 0b62d999f0c44b678980d6a5e4f5d37d
 created
 '2019-03-23 17:49:35'
 creator
 name: dang
 datafiles
 - desc: foo13
 is_copy: true
 path: foo13
 sha1: feee44ad365b6b1ec75c5621a0ad067371102854
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52
 desc
 foo13
 doc_id
 4
 id_
 0b62d999f0c44b678980d6a5e4f5d37d
 modified
 '2019-03-23 17:49:35'
 relations
 - 1e41e6ae882b4622ba9043f4135f2143 --[derived]--> ME
 type
 data
 version
 0.0.0 @ 2019-03-23 17:49:35

The same resource in JSON format:

$ dmf info --format json 0b62
{
 "id_": "0b62d999f0c44b678980d6a5e4f5d37d",
 "type": "data",
 "aliases": [],
 "codes": [],
 "collaborators": [],
 "created": 1553363375.817961,
 "modified": 1553363375.817961,
 "creator": {
 "name": "dang"
 },
 "data": {},
 "datafiles": [
 {
 "desc": "foo13",
 "path": "foo13",
 "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854",
 "is_copy": true
 }
],
 "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52",
 "desc": "foo13",
 "relations": [
 {
 "predicate": "derived",
 "identifier": "1e41e6ae882b4622ba9043f4135f2143",
 "role": "object"
 }
],
 "sources": [],
 "tags": [],
 "version_info": {
 "created": 1553363375.817961,
 "version": [
 0,
 0,
 0,
 ""
],
 "name": ""
 },
 "doc_id": 4
}

And one more time, in “compact” JSON:

$ dmf info --format jsonc 0b62
{"id_": "0b62d999f0c44b678980d6a5e4f5d37d", "type": "data", "aliases": [], "codes": [], "collaborators": [], "created": 1553363375.817961, "modified": 1553363375.817961, "creator": {"name": "dang"}, "data": {}, "datafiles": [{"desc": "foo13", "path": "foo13", "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854", "is_copy": true}], "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52", "desc": "foo13", "relations": [{"predicate": "derived", "identifier": "1e41e6ae882b4622ba9043f4135f2143", "role": "object"}], "sources": [], "tags": [], "version_info": {"created": 1553363375.817961, "version": [0, 0, 0, ""], "name": ""}, "doc_id": 4}

[image: ../_images/blue-white-band.png]

dmf init

Initialize the current workspace. Optionally, create a new workspace.

dmf init options

	
path

	

Use the provided path as the workspace path. This is required.

	
--create

	

Create a new workspace at location provided by path. Use the
--name and --desc options to set the workspace name and
description, respectively. If these are not given, they will be prompted for
interactively.

	
--name

	

Workspace name, used by --create

	
--desc

	

Workspace description, used by --create

dmf init usage

Note

In the following examples, the current working directory is
set to /home/myuser.

This command sets a value in the user-global configuration file
in .dmf, in the user’s home directory, so that all other dmf
commands know which workspace to use. With the --create option,
a new empty workspace can be created.

Create new workspace in sub-directory ws, with given name and description:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml

Create new workspace in sub-directory ws, providing the name and
description interactively:

$ dmf init ws --create
New workspace name: foo
New workspace description: foo workspace description
Configuration in '/home/myuser/ws/config.yaml

Switch to workspace ws2:

$ dmf init ws2

If you try to switch to a non-existent workspace, you will get an error message:

$ dmf init doesnotexist
Existing workspace not found at path='doesnotexist'
Add --create flag to create a workspace.
$ mkdir some_random_directory
$ dmf init some_random_directory
Workspace configuration not found at path='some_random_directory/'

If the workspace exists, you cannot create it:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml
$ dmf init ws --create
Cannot create workspace: path 'ws' already exists

And, of course, you can’t create workspaces anywhere you don’t
have permissions to create directories:

$ mkdir forbidden
$ chmod 000 forbidden
$ dmf init forbidden/ws --create
Cannot create workspace: path 'forbidden/ws' not accessible

[image: ../_images/blue-white-band.png]

dmf ls

This command lists resources in the current workspace.

dmf ls options

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.

	
-s,--show

	

Pick field to show in output table. This option can be repeated to show
any known subset of fields. Also the option value can have commas
in it to hold multiple fields. Default fields, if this option is not
specified at all, are “type”, “desc”, and “modified”. The resource identifier
field is always shown first.

	codes

	List name of code(s) in resource. May be shortened with ellipses.

	created

	Date created.

	desc

	Description of resource.

	files

	List names of file(s) in resource. May be shortened with ellipses.

	modified

	Date modified.

	type

	Name of the type of resource.

	version

	Resource version.

You can specify other fields from the schema, as long as they are not
arrays of objects, i.e. you can say --show tags or --show version_info.version,
but --show sources is too complicated for a tabular listing. To
see detailed values in a record use the dmf info command.

	
-S,--sort

	

Sort by given field; if repeated, combine to make a compound sort key. These
fields are a subset of those in -s,--show, with the addition of
id for sorting by the identifier: “id”, “type”, “desc”, “created”, “modified”,
and/or “version”.

	
--no-prefix

	

By default, shown identifier is the shortest unique prefix, but if you don’t
want the identifier shortened, this option will force showing it in full.

	
-r,--reverse

	

Reverse the order of the sorting given by (or implied by absence of) the
-S,--sort option.

dmf ls usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Without arguments, show the resources in an arbitrary (though consistent)
order:

$ dmf ls
id type desc modified
0b62 data foo13 2019-03-23 17:49:35
1e41 data foo10 2019-03-23 17:47:53
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08

Add a sort key to sort by, e.g. modified date

$ dmf ls -S modified
id type desc modified
1e41 data foo10 2019-03-23 17:47:53
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08
0b62 data foo13 2019-03-23 17:49:35
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02

Especially for resources of type “data”, showing the first (possibly only) file
that is referred to by the resource is useful:

$ dmf ls -S modified -s type -s modified -s files
id type modified files
1e41 data 2019-03-23 17:47:53 foo10
e780 data 2019-03-23 17:48:11 foo11
eb60 data 2019-03-23 17:49:08 foo12
0b62 data 2019-03-23 17:49:35 foo13
6c9a data 2019-03-23 17:51:59 foo14
d3d5 data 2019-03-26 13:07:02 bar1

Note that you don’t actually have to show a field to sort by it (compare sort
order with results from command above):

$ dmf ls -S modified -s type -s files
id type files
1e41 data foo10
e780 data foo11
eb60 data foo12
0b62 data foo13
6c9a data foo14
d3d5 data bar1

Add --no-prefix to show the full identifier:

$ dmf ls -S modified -s type -s files --no-prefix
id type files
1e41e6ae882b4622ba9043f4135f2143 data foo10
e7809d25b390453487998e1f1ef0e937 data foo11
eb606172dde74aa79eea027e7eb6a1b6 data foo12
0b62d999f0c44b678980d6a5e4f5d37d data foo13
6c9a85629cb24e9796a2d123e9b03601 data foo14
d3d5981106ce4d9d8cccd4e86c2cd184 data bar1

[image: ../_images/blue-white-band.png]

dmf register

Register a new resource with the DMF, using a file as an input.
An alias for this command is dmf add.

dmf register options

	
--no-copy

	

Do not copy the file, instead remember path to current location.
Default is to copy the file under the workspace directory.

	
-t,--type

	

Explicitly specify the type of resource. If this is not given, then
try to infer the resource type from the file. The default will be ‘data’.
The full list of resource types is in idaes.dmf.resource.RESOURCE_TYPES

	
--strict

	

If inferring the type fails, report an error. With --no-strict, or no option,
if inferring the type fails, fall back to importing as a generic file.

	
--no-unique

	

Allow duplicate files. The default is --unique, which will
stop and print an error if another resource has a file matching this
file’s name and contents.

	
--contained resource

	

Add a ‘contained in’ relation to the given resource.

	
--derived resource

	

Add a ‘derived from’ relation to the given resource.

	
--used resource

	

Add a ‘used by’ relation to the given resource.

	
--prev resource

	

Add a ‘version of previous’ relation to the given resource.

	
--is-subject

	

If given, reverse the sense of any relation(s) added to the resource so that the
newly created resource is the subject and the existing resource is the object.
Otherwise, the new resource is the object of the relation.

	
--version

	

Set the semantic version of the resource.
From 1 to 4 part semantic versions are allowed, e.g.

	1

	1.0

	1.0.1

	1.0.1-alpha

See http://semver.org and the function idaes.dmf.resource.version_list() for more details.

dmf register usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Register a new file, which is a CSV data file, and use the --info
option to show the created resource.

 $ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > file.csv
 $ dmf reg file.csv --info
 Resource 117a42287aec4c5ca333e0ff3ac89639
created
 '2019-04-11 03:58:52'
creator
 name: dang
datafiles
 - desc: file.csv
 is_copy: true
 path: file.csv
 sha1: f1171a6442bd6ce22a718a0e6127866740c9b52c
datafiles_dir
 /home/myuser/ws/files/4db42d92baf3431ab31d4f91ab1a673b
desc
 file.csv
doc_id
 1
id_
 117a42287aec4c5ca333e0ff3ac89639
modified
 '2019-04-11 03:58:52'
type
 data
version
 0.0.0 @ 2019-04-11 03:58:52

If you try to register (add) the same file twice, it will be an error by default.
You need to add the --no-unique option to allow it.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > timeseries.csv
$ dmf add timeseries.csv
2315bea239c147e4bc6d2e1838e4101f
$ dmf add timeseries.csv
This file is already in 1 resource(s): 2315bea239c147e4bc6d2e1838e4101f
$ dmf add --no-unique timeseries.csv
3f95851e4931491b995726f410998491

If you register a file ending in “.json”, it will be parsed (unless it is
over 1MB) and, if it passes, registered as type JSON. If the parse fails, it
will be registerd as a generic file unless the --strict option is
given (with this option, failure to parse will be an error):

$ echo "totally bogus" > notreally.json
$ dmf reg notreally.json
2019-04-12 06:06:47,003 [WARNING] idaes.dmf.resource: File ending in '.json' is not valid JSON: treating as generic file
d22727c678a1499ab2c5224e2d83d9df
$ dmf reg --strict notreally.json
Failed to infer resource: File ending in '.json' is not valid JSON

You can explicitly specify the type of the resource with the
-t,--type option. In that case, any failure
to validate will be an error. For example, if you say the resource is a Jupyter
Notebook file, and it is not, it will fail. But the same file with type “data”
will be fine:

$ echo "Ceci n'est pas une notebook" > my.ipynb
$ dmf reg -t notebook my.ipynb
Failed to load resource: resource type 'notebook': not valid JSON
$ dmf reg -t data my.ipynb
0197a82abab44ecf980d6e42e299b258

You can add links to existing resources with the options --contained,
--derived, --used, and --prev. For all of these,
the new resource being registered is the target of the relation and the
option argument is the identifier of an existing resource that is the subject of the
relation.

For example, here we add a “shoebox” resource and then some “shoes” that are contained
in it:

$ touch shoebox.txt shoes.txt closet.txt
$ dmf add shoebox.txt
755374b6503a47a09870dfbdc572e561
$ dmf add shoes.txt --contained 755374b6503a47a09870dfbdc572e561
dba0a5dc7d194040ac646bf18ab5eb50
$ dmf info 7553 # the "shoebox" contains the "shoes"
 Resource 755374b6503a47a09870dfbdc572e561
 created
 '2019-04-11 20:16:50'
 creator
 name: dang
 datafiles
 - desc: shoebox.txt
 is_copy: true
 path: shoebox.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/7f3ff820676b41689bb32bc325fd2d1b
 desc
 shoebox.txt
 doc_id
 9
 id_
 755374b6503a47a09870dfbdc572e561
 modified
 '2019-04-11 20:16:50'
 relations
 - dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:16:50

$ dmf info dba0 # the "shoes" are in the "shoebox"
 Resource dba0a5dc7d194040ac646bf18ab5eb50
 created
 '2019-04-11 20:17:28'
 creator
 name: dang
 datafiles
 - desc: shoes.txt
 is_copy: true
 path: shoes.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/a27f98c24d1848eaba1b26e5ef87be88
 desc
 shoes.txt
 doc_id
 10
 id_
 dba0a5dc7d194040ac646bf18ab5eb50
 modified
 '2019-04-11 20:17:28'
 relations
 - 755374b6503a47a09870dfbdc572e561 --[contains]--> ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:17:28

To reverse the sense of the relation, add the --is-subject flag.
For example, we now add a “closet” resource that contains the existing “shoebox”.
This means the shoebox now has two different “contains” type of relations.

$ dmf add closet.txt --is-subject --contained 755374b6503a47a09870dfbdc572e561
22ace0f8ed914fa3ac3e7582748924e4
$ dmf info 7553
 Resource 755374b6503a47a09870dfbdc572e561
 created
 '2019-04-11 20:16:50'
 creator
 name: dang
 datafiles
 - desc: shoebox.txt
 is_copy: true
 path: shoebox.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/7f3ff820676b41689bb32bc325fd2d1b
 desc
 shoebox.txt
 doc_id
 9
 id_
 755374b6503a47a09870dfbdc572e561
 modified
 '2019-04-11 20:16:50'
 relations
 - dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
 - 22ace0f8ed914fa3ac3e7582748924e4 --[contains]--> ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:16:50

You can give your new resource a version with the --version option.
You can use this together with the --prev option to link
between multiple versions of the same underlying data:

note: following command stores the output of "dmf reg", which is the
id of the new resource, in the shell variable "oldid"
$ oldid=$(dmf reg oldfile.py --type code --version 0.0.1)
$ dmf reg newfile.py --type code --version 0.0.2 --prev $oldid
ef2d801ca29a4a0a8c6f79ee71d3fe07
$ dmf ls --show type --show version --show codes --sort version
id type version codes
44e7 code 0.0.1 oldfile.py
ef2d code 0.0.2 newfile.py
$ dmf related $oldid
44e7 code
 │
 └──┤version├─▶ ef2d code -

[image: ../_images/blue-white-band.png]

dmf related

This command shows resources related to a given resource.

dmf related options

	
-d,--direction

	

Direction of relationships to show / follow. The possible values are:

	in

	Show incoming connection/relationship edges. Since all relations have a
bi-directional counterpart, this effectively only shows the immediate neighbors
of the root resource. For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the incoming edge
from “B” to “A” but not the edge from “C” to “B”.

	out

	(Default) Show the outgoing connection/relationship edges. This will continue
until there are no more connections to show, avoiding cycles.
For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the outgoing edge
from “A” to “B” and also from “B” to “C”.

The default value is out.

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.

	
--unicode

	

Allow unicode drawing characters in the output. This is the default.

	
--no-unicode

	

Use only ASCII characters in the output.

dmf related usage

In the following examples, we work with 4 resources arranged as a fully
connected square (A, B, C, D). This is not currently possible just with the
command-line, but the following Python code does the job:

from idaes.dmf import DMF, resource
dmf = DMF()
rlist = [resource.Resource(value={"desc": ltr, "aliases": [ltr],
 "tags": ["graph"]})
 for ltr in "ABCD"]
relation = resource.PR_USES
for r in rlist:
 for r2 in rlist:
 if r is r2:
 continue
 resource.create_relation_args(r, relation, r2)
for r in rlist:
 dmf.add(r)

If you save that script as r4.py, then the following command-line
actions will run it and verify that everything is created.

$ python r4.py
$ dmf ls
id type desc modified
1e7f other B 2019-04-20 15:43:49
3bc5 other D 2019-04-20 15:43:49
ba67 other A 2019-04-20 15:43:49
f7e9 other C 2019-04-20 15:43:49

You can then see the connections by looking at any one of the
four resource (e.g., A):

$ dmf rel ba67
ba67 other A
 │
 ├──┤uses├─▶ 3bc5 other D
 ┆ │
 ┆ ├──┤uses├─▶ f7e9 other C
 ┆ │
 ┆ ├──┤uses├─▶ 1e7f other B
 ┆ │
 ┆ └──┤uses├─▶ ba67 other A
 │
 ├──┤uses├─▶ f7e9 other C
 ┆ │
 ┆ ├──┤uses├─▶ 3bc5 other D
 ┆ │
 ┆ ├──┤uses├─▶ 1e7f other B
 ┆ │
 ┆ └──┤uses├─▶ ba67 other A
 │
 └──┤uses├─▶ 1e7f other B
 │
 ├──┤uses├─▶ 3bc5 other D
 │
 ├──┤uses├─▶ f7e9 other C
 │
 └──┤uses├─▶ ba67 other A

If you change the direction of relations, you will get much the same
result, but with the arrows reversed.

[image: ../_images/blue-white-band.png]

dmf rm

Remove one or more resources. This also removes relations (links) to other resources.

dmf rm options

	
identifier

	

The identifier, or identifier prefix, of the resource(s) to remove

	
--list,--no-list

	

With the –list option, which is the default, the resources to remove,
or removed, will be listed as if by the dmf ls command. With
–no-list, then do not produce this output.

	
-y,--yes

	

If given, do not confirm removal of the resource(s) with a prompt.
This is useful for scripts that do not want to bother with input,
or people with lots of confidence.

	
--multiple

	

If given, allow multiple resources to be selected by an identifier prefix. Otherwise,
if the given identifier matches more than one resource, the program will print a message and stop.

dmf rm usage

Note

In the following examples, there are 5 text files named “file1.txt”, “file2.txt”, .., “file5.txt”, in the workspace.
The identifiers for these files may be different in each example.

Remove one resource, by its full identifier:

$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26
$ dmf rm c20f3a6e338a40ee8a3a4972544adb74
id type desc modified
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
Remove this resource [y/N]? y
resource removed
[dmfcli-167 !?]idaes-dev$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26

Remove a single resource by its prefix:

$ dmf ls
id type desc modified
6dd5 data file2.txt 2019-04-16 18:51:10
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm 6d
id type desc modified
6dd57ecc50a24efb824a66109dda0956 data file2.txt 2019-04-16 18:51:10
Remove this resource [y/N]? y
resource removed
$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

Remove multiple resources that share a common prefix. In this case, use the
-y,--yes option to remove without prompting.

$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm --multiple --yes 7
id type desc modified
7953e67db4a543419b9988c52c820b68 data file3.txt 2019-04-16 18:51:12
7a06435c39b54890a3d01a9eab114314 data file4.txt 2019-04-16 18:51:13
2 resources removed
$ dmf ls
id type desc modified
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

[image: ../_images/blue-white-band.png]

dmf status

This command shows basic information about the current active workspace
and, optionally, some additional details. It does not (yet) give any way
to modify the workspace configuration. To do that, you need to edit the
config.yaml file in the workspace root directory.
See Configuration.

dmf status options

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.
UNIX output streams to pipes should be detected and have color disabled,
but this option can force that behavior if detection is failing.

	
-s,--show info

	

Show one of the following types of information:

	files

	Count and total size of files in workspace

	htmldocs

	Configured paths to the HTML documentation (for “%dmf help” magic in the
Jupyter Notebook)

	logging

	Configuration for logging

	all

	Show all items above

	
-a,--all

	

This option is just an alias for “–show all”.

dmf status usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Also note that the output shown below is plain (black) text. This is due to our
limited understanding of how to do colored text in our documentation tool
(Sphinx). In a color-capable terminal, the output will be more colorful.

Show basic workspace status:

$ dmf status
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:46:40
 modified: 2019-04-09 12:46:40

Add the file information:

$ dmf status --show files
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:52:49
 modified: 2019-04-09 12:52:49
 files:
 count: 3
 total_size: 1.3 MB

You can repeat the -s,--show option to add more things:

$ dmf status --show files --show htmldocs
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:54:10
 modified: 2019-04-09 12:54:10
 files:
 count: 3
 total_size: 1.3 MB
 html_documentation_paths:
 -: /home/myuser/idaes/docs/build

However, showing everything is less typing, and not overwhelming:

$ dmf status -a
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:55:05
 modified: 2019-04-09 12:55:05
 files:
 count: 3
 total_size: 1.3 MB
 html_documentation_paths:
 -: /home/myuser/idaes/docs/build
 logging:
 not configured

 Surrogate modeling

Surrogate modeling

	ALAMOPY : ALAMO Python

	RIPE : Reaction Identification and Parameter Estimation

	HELMET : HELMholtz Energy Thermodynamics

	PySMO: Python-based Surrogate Modelling Objects

[image: ../_images/ddm-software.png]
ALAMOpy, RIPE, and HELMET are
data driven machine learning (ddm-learning) tools.
They are regression tools for the development of property models for kinetics and
thermodynamics of a system. The provided tools include both ALAMOpy and RIPE that can
access ALAMO and other solvers through the Python API.

[image: ../_images/pysmo-logo.png]
Python-based Surrogate Modeling Objects (PySMO) is a framework for general-purpose
surrogate modeling techniques, integrated with the Pyomo mathematical optimization
framework (on which IDAES is also based).

 ALAMOPY : ALAMO Python

ALAMOPY : ALAMO Python

	ALAMOPY.ALAMO Options

The purpose of ALAMOPY (Automatic Learning of Algebraic MOdels PYthon wrapper) is to provide a wrapper for the software ALAMO which generates algebraic surrogate models of black-box systems for which a simulator or experimental setup is available. Consider a system for which the outputs z are an unknown function f of the system inputs x. The software identifies a function f, i.e., a relationship between the inputs and outputs of the system, that best matches data (pairs of x and corresponding z values) that are collected via simulation or experimentation.

Basic Usage

ALAMOPY’s main function is alamopy.alamo. Data can be read in or simulated using available python packages. The main arguments of the alamopy.alamo python function are inputs and outputs, which are 2D arrays of data. For example

regression_results =alamopy.alamo(x_inputs, z_outputs, **kargs)

where **kargs is a set of named keyword arguments than can be passed to the alamo python function to customize the basis function set, names of output files, and other options available in ALAMO.

Warning

The alamopy.doalamo function is deprecated. It is being replaced with alamopy.alamo

Options for alamopy.alamo

Possible arguments to be passed to ALAMO through do alamo and additional arguments that govern the behavior of doalamo.

	xlabels - list of strings to label the input variables

	zlabels - list of strings to label the output variables

	functions - logfcns, expfcns, cosfcns, sinfcns, linfcns, intercept. These are ‘0-1’ options to activate these functions

	monomialpower, multi2power, multi3power, ratiopower. List of terms to be used in the respective basis functions

	modeler - integer 1-7 determines the choice of fitness metrice

	solvemip - ‘0-1’ option that will force the solving of the .gms file

These options are specific to alamopy and will not change the behavior of the underlying .alm file.

	expandoutput - ‘0-1’ option that can be used to collect more information from the ALAMO .lst and .trc file

	showalm - ‘0-1’ option that controlif the ALAMO output is printed to screen

	almname - A string that will assign the name of the .alm file

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	savetrace - ‘0-1’ option that controls the status of the trace file

	savescratch - ‘0-1’ option to save the .alm and .lst files

	almopt - A string option that will append a text file of the same name to the end of each .alm fille to faciliate advanced user access in an automated fashion

ALAMOPY Output

There are mutliple outputs from the running alamopy.alamo. Outputs include:

	f(model): A callable function

	pymodel: name of the python model written

	model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Additional Results

After the regression of a model, ALAMOPY provides confidence interval analysis and plotting capabilities using the results output.

Plotting

The plotting capabilities of ALAMOPY are available in the almplot function. Almplot will plot the function based on one of the inputs.

result = alamopy.alamo(x_in, z_out, kargs)
alamopy.almplot(result)

Confidence intervals

Confidence intervals can similarly be calculated for the weighting of selected basis functions using the almconfidence function.

This adds conf_inv (confidence intervals) and covariance (covariance matrix) to the results dictionary. This also gets incorporated into the plotting function if it is available.

result = alamopy.alamo(x_in, z_out, kargs)
result = alamopy.almconfidence(result)
alamopy.almplot(result)

[image: ../_images/almconf.png]

Advanced Regression Capabilities

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints on groups of selected basis functions. To define groups in ALAMOPY, you can use the following methods. Each Basis group has an index number that will be used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL (at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id number of excluded or required basis functions.

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

ALAMOPY Examples

Three examples are included with ALMAOPY. These examples demonstrate different use cases, and provide a template for utilizing user-defined mechanisms.

	ackley.py

	branin.py

	camel6.py with a Jupyter notebok

 ALAMOPY.ALAMO Options

ALAMOPY.ALAMO Options

This page lists in more detail the ALAMOPY options and the relation of ALAMO and ALAMOPY.

Contents

	ALAMOPY.ALAMO Options

	Basic ALAMOPY.ALAMO options

	Data Arguments

	Available Basis Functions

	ALAMO Regression Options

	Validation Capabilities

	File Options

	ALAMOPY results dictionary

	Output models

	Fitness metrics

	Regression description

	Performance specs

	Advanced user options in depth

	Custom Basis Functions

	Custom Constraints

	Basis Function Groups and Constraints

Basic ALAMOPY.ALAMO options

Data Arguments

	xmin, xmax: minimum/maximum values of inputs, if not given they are calculated

	zmin, zmax: minimum/maximum values of outputs, if not given they are calculated

	xlabels: user-specified labels given to the inputs

	zlabels: user-specified labels given to the outputs

alamo(x_inputs, z_outputs, xlabels=['x1','x2'], zlabels=['z1','z2'])
alamo(x_inputs, z_outputs, xmin=(-5,0),xmax=(10,15))

Available Basis Functions

	linfcns, expfcns, logfcns, sinfcns, cosfcns: 0-1 option to include linear, exponential, logarithmic, sine, and cosine transformations. For example

linfcns = 1, expfcns = 1, logfcns = 1, sinfcns = 1, cosfcns = 1

This results in basis functions = x1, exp(x1), log(x1), sin(x1), cos(x1)
* monomialpower, multi2power, multi3power: list of monomial, binomial, and trinomial powers. For example

monomialpower = (2,3,4), multi2power = (1,2,3), multi3power = (1,2,3)

This results in the following basis functions:

	Monomial functions = x^2, x^3, x^4

	Binomial functions = x1*x2, (x1*x2)^2, (x1*x2)^3

	Trinomial functions = (x1*x2*x3), (x1*x2*x3)^2, (x1*x2*x3)^3

	ratiopower: list of ratio powers. For example

ratiopower = (1,2,3)

This results in basis functions = (x1/x2), (x1/x2)^2, (x1/x2)^3

alamo(x_inputs, z_outputs, linfcns=1, logfcns=1, expfcns=1)
alamo(x_inputs, z_outputs, linfcns=1, multi2power=(2,3))

Note: Custom basis functions are discussed in the Advanced User Section.

ALAMO Regression Options

	showalm: print ALAMO output to the screen

	expandoutput: add a key to the output dictionary for multiple outputs

	solvemip, builder, linearerror: A 01 indicator to solve with an optimizer (GAMSSOLVER), use a greedy heuristic, or use a linear objective instead of squared error.

	modeler: Fitness metric to beused for model building (1-8)

	
	BIC: Bayesian infromation criterion

	
	Cp: Mallow’s Cp

	
	AICc: the corrected Akaike’s information criterion

	
	HQC: the Hannan-Quinn information criterion

	
	MSE: mean square error

	
	SSEp: sum of square error plus a penalty proportional to the model size (Note: convpen is the weight of the penalty)

	
	RIC: the risk information criterion

	
	MADp: the maximum absolute eviation plus a penalty proportional to model size (Note: convpen is the weight of the penalty)

	regularizer: Regularization method used to reduce the number of potential basis functions before optimization of the selected fitness metric. Possible values are 0 and 1, corresponding to no regularization and regularization with the lasso, respectively.

	maxterms: Maximum number of terms to be fit in the model

	convpen: When MODELER is set to 6 or 8 the size of the model is weighted by CONVPEN.

	almopt: name of the alamo option file

	simulator: a python function to be used as a simulator for ALAMO, a variable that is a python function (not a string)

	maxiter: max iteration of runs

Validation Capabilities

	xval, zval: validation input/output variables

	loo: leave-one-out evaluation

	lmo: leave-many-out evaluation

	cvfun: cross-validation function (True/False)

File Options

	almname: specify a name for the .alm file

	savescratch: saves .alm and .lst

	savetrace: saves tracefile

	saveopt: save .opt options file

	savegams: save the .gms gams file

ALAMOPY results dictionary

The results from alamopy.alamo are returned as a python dictionary. The data can be accessed by using the dictionary keys listed below. For example

regression_results = doalamo(x_input, z_output, **kargs)
model = regression_results['model']

Output models

	f(model): A callable function

	pymodel: name of the python model written

	model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Fitness metrics

	size: number of terms chosen in the regression

	R2: R2 value of the regression

	Objective value metrics: ssr, rmse, madp

Regression description

	version: Version of ALAMO

	xlabels, zlabels: The labels used for the inputs/outputs

	xdata, zdata: array of xdata/zdata

	ninputs, nbas: number of inputs/basis functions

Performance specs

There are three types of regression problems that are used: ordinary linear regression (olr), classic linear regression (clr), and a mixed integer program (mip). Performance metrics include the number of each problems and the time spent on each type of problem. Additionally, the time spent on other operations and the total time are included.

	numolr, olrtime, numclr, clrtime, nummip, miptime: number of type of regression problems solved and time

	othertime: Time spent on other operations

	totaltime: Total time spent on the regression

Advanced user options in depth

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. In ALAMO, this can be done with the following syntax

NCUSTOMBAS #
BEGIN_CUSTOMBAS
x1^2 * x2^2
END_CUSTOMBAS

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

CRNCUSTOM #
BEGIN_CUSTOMCON
1 z1 - x1 + x2 + 1
END_CUSTOMCON

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints on groups of selected basis functions. This can be accomplished using NGROUPS and identifying groups of basis functions. For ALAMO, this is achieved by first defining the groups with

NGROUPS 3
BEGIN_GROUPS
Group-id Member-type Member-indices <Powers>
1 LIN 1 2
2 MONO 1 2
3 GRP 1 2
END_GROUPS

To add groups to ALAMOPY, you can use the following methods. Each Basis group has an index number that will be used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL (at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id number of excluded or required basis functions.

BEGIN_GROUPCON
Group-id Output-id Constraint-type Integer-parameter
3 1 NMT 1
END_GROUPCON

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

 RIPE : Reaction Identification and Parameter Estimation

RIPE : Reaction Identification and Parameter Estimation

The RIPE module provides tools for reaction network identification. RIPE uses reactor data consisting of concentration, or conversion, values for multiple species that are obtained dynamically, or at multiple process conditions (temperatures, flow rates, working volumes) to identify probable reaction kinetics. The RIPE module also contains tools to facilitate adaptive experimental design. The experimental design tools in RIPE require the use of the python package RBFopt. More information for RBFopt is availible at www.github.com/coin-or/rbfopt

Basic Usage

RIPE can be used to build models for static datasets through the function ripe.ripemodel

ripe_results = ripe.ripemodel(data, kwargs)

	data is provided to RIPE as one, two, or three dimensional python data structures, where the first axis corresponds to observations at different process conditions, the second axis corresponds to observations of different chemical species, and the third axis corresponds to dynamic observation of a chemical species at a specified process condition.

RIPE adaptive experimental design can be accessed using ripe.ems

[proposed_x, errors] = ripe.ems(ripe_results, simulator, l_bounds, u_bounds, n_species, kwargs)

	ripe_results - The results from ripe.ripemodel, additional information provided in the results section

	simulator - a black-box simulator for the unknown process.

	l_bounds/u_bounds - lower and upper bounds for the input variables in the adaptive design

	nspecies - the number of chemical species present in the black-box system

Reaction stoichiometries and mechanisms are provided explicitly to ripemodel through the keyword arguments mechanisms and stoichiometry. Detailed explanations of the forms of these arguments are provided in the stoiciometry and mechanism specification section. Additional keyword arguments can be found in the additional options section.

RIPE Output

By default, one file will be generated

	riperesults.txt - a file containing the selected reactions and parameter estimates

Reaction Stiochiometry and Mechanism Specification

Considered reaction stiochiometries are provided through keyword arguments.

Stoichiometry

Considered reaction stoichiometries are defiend as a list of list, where reactants and products are defined as negative and positive integers , respectively, according to their stoichiometric coefficeints. A set of considered reaction stoichiometries must be provided. If process data consists of species conversion, a positive coefficient should be specified.

Mechanisms

Considered reaction mechanisms are provided explicitly to RIPE through q keyword argument. If no kinetic mechanisms are specified, mass action kinetics are ascribed to every considered stoichiometry. RIPE contains kinetic mechanisms defined internally, and called through ripe.mechs.<mechanism>. The availible mechanisms include:

	massact - mass action kinetics, order informed by reaction stoichiometry

19 empirical rate forms included relate specifically to catalyst conversion in chemical looping combustion reactors include:

	Random nucleation

	Power law models

	Avrami-Erofeev models

These internal kinetics can be specified by calling ripe.mechs.massact or ripe.mechs.clcforms respectively. User-defined kinetic mechanisms can also be supplied to RIPE as python functions. An example is provided in the file crac.py.

Additional Results and Options

In addition to the arguments stoichiometry and mechanism, a number of other optional arguments are availible, including:

Arguments relating to process conditions

	x0 - initial concentration at each process condition for every species

	time - time associated with dynamic samples for every process condition

	temp - temperature associated with every process condition

	flow - flow rate at every process condition for every species

	vol - reactor volume at every process condition

Arguments related to RIPE algorithmic function

	tref - reference termpeature for reformulated Arrhenius models

	ccon - specified cardinality constraint instead of BIC objective

	sigma - expected variance of noise, estimated if not provided

	onemechper - one mechanism per stoichiometry in selected model, true by default

Additional arguments

	minlp_path - path to baron or other minlp solver, can also be set in shared.py

	alamo_path - path to alamo, can also be set in shared.py

	expand_output - provide estimates for noise variance in model resutls

	zscale - linear scaling of observed responses between -1 and 1

	ascale - linear scaling of activities between -1 and 1

	hide_output - surpress output to terminal

	keepfiles - keep scratch files for debugging

	showpyomo - show pyomo output to terminal, false by default

RIPE Examples

Three examples are included with RIPE. These examples demonstrate different use cases, and provide a template for utilizing user-defined mechanisms.

	clc.py - a chemical looping combustion example in which catalyst conversion is observed over time

	isoT.py - an example that utilizes both ripe.ripemodel and ripe.ems

	crac.py - an example that utilizes user-defined reaction mechanisms

All of these examples are built for Linux machines. They can be called from the command line by calling python directly, or can be called from inside a python environment using execfile().

 HELMET : HELMholtz Energy Thermodynamics

HELMET : HELMholtz Energy Thermodynamics

The purpose of HELMET (HELMholtz Energy Thermodynamics) is to provide a framework for regressing multiparameter equations of state that identify an equation for Helmholtz energy and multiple thermodynamic properties simultaneously. HELMET uses best subset selection to simultaneously model various thermodynamic properties based on the properties thermodynamic relation to Helmholtz energy. The generated model is a function of reduced density and inverse reduced temperature and uses partial derivatives to calculate the different properties. Constraints are placed on the regression to maintain thermodynamically feasible values and improve extrapolation and behavior of the model based on physical restrictions.

Warning

This is the first public release of HELMET. Future work will include mixtures, regression using Pyomo models, and increased plotting and preprocessing capabilities.

Basic Usage

Warning

To use this software, ALAMOPY and the solver BARON are required.

For the basic use of HELMET, the main regression steps can be imported from helmet.HELMET. These functions provide general capabilities of HELMET for new users.

import helmet.Helmet as Helmet

The methods available in helmet.Helmet peform the necessary steps of the regression properties.

	initialize(**kargs)

Initializes key thermodynamic constants, the location of data and sampling, properties to be fit, and optimization settings

	molecule - name of the chemical of interest, directs naming of files and where the data should exist

	fluid_data - a tuple containing key thermodynamic constants (critical temperature, critical pressure, critical density, molecular weight, triple point, accentric factor)

	filename - used for location of data

	gamsname - used for naming of files

	max_time - max time used for the solver

	props - list of thermodynamic properties to be fit

Supported thermodynamic properties are

	Pressure: ‘PVT’

	Isochoric heat capacity: ‘CV’

	Isobaric heat capacity: ‘CP’

	Speed of Sound: ‘SND’

	sample - sample ratio, ex. sample = 3 then a third of datapoints will be used

	prepareAncillaryEquations(plot=True)

Fits equations to saturated vapor and liquid density and vapor pressure. The keyword argument plot defaults to False

	viewPropertyData()

Plots the different thermodynamic properties available and a way to check that the importing of data is successful

	setupRegression(numTerms = 12, gams=True)

Writes the optimization program for modelling the thermodynamic properties. Currently this is through GAMS but in the future it can also be solved using Pyomo.

	runRegression()

Begins the modelling of the multiparameter equation

	viewResults(filename)

Based on the optimization settings, the solution of the regression is parsed and fitness metrics are calculated. The results can be visualized with different plots.

HELMET Output

The output for HELMET is a single equation representing Helmholtz energy. Partial derivatives of this equation will give you the fit thermodynamic properties as well as other properties related to Helmholtz energy.

HELMET Examples

The provided HELMET example uses data modified for this application and made available by the IAPWS orgnization at http://www.iapws.org/95data.html for IAPWS Formulation 1995 for Thermodynamic Properties of Odrinary Water Substance for General and Scientific Use.

 PySMO: Python-based Surrogate Modelling Objects

PySMO: Python-based Surrogate Modelling Objects

The PySMO toolbox provides tools for generating different types of reduced order models. It provides IDAES users with
a set of surrogate modeling tools which supports flowsheeting and direct integration into an equation-oriented
modeling framework. It allows users to directly integrate reduced order models with algebraic high-fidelity process
models within an single IDAES flowsheet.

PySMO provides two sets of tools necessary for sampling and surrogate model generation.

Sampling

The PySMO package offers five common sampling methods for one-shot design:

	Latin Hypercube Sampling (LHS)

	Full-Factorial Sampling

	Halton Sampling

	Hammersley Sampling

	Centroidal voronoi tessellation (CVT) sampling

	More Information about PySMO’s Sampling Methods

Further information about the sampling tools and their input options may be found by accessing the individual
sampling methods. Examples and details of the characteristics of the sampling methods may be found at
More Information about PySMO’s Sampling Methods.

Surrogate Generation

PySMO offers tools for generating three types of surrogates:

	Generating Polynomial Models with PySMO

	Generating Radial Basis Function (RBF) models with PySMO

	Generating Kriging Models with PySMO

 Latin Hypercube Sampling (LHS)

Latin Hypercube Sampling (LHS)

LHS is a stratified random sampling method originally developed for efficient uncertainty assessment. LHS partitions the parameter space
into bins of equal probability with the goal of attaining a more even distribution of sample points in the parameter space that would be possible with pure random sampling.

The pysmo.sampling.LatinHypercubeSampling method carries out Latin Hypercube sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

Available Methods

	
class idaes.surrogate.pysmo.sampling.LatinHypercubeSampling(data_input, number_of_samples=None, sampling_type=None)

	A class that performs Latin Hypercube Sampling. The function returns LHS samples which have been selected randomly after sample space stratification.

It should be noted that no minimax criterion has been used in this implementation, so the LHS samples selected will not have space-filling properties.

To use: call class with inputs, and then run sample_points method.

Example:

To select 10 LHS samples from "data"
>>> b = rbf.LatinHypercubeSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)

	Initialization of LatinHypercubeSampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns

	self function containing the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The input data (data_input) is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When number_of_samples is invalid (not an integer, too large, zero, or negative)

	
sample_points()

	sample_points generates or selects Latin Hypercube samples from an input dataset or data range. When called, it:

	generates samples points from stratified regions by calling the lhs_points_generation,

	generates potential sample points by random shuffling, and

	when a dataset is provided, selects the closest available samples to the theoretical sample points from within the input data.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples points selected or generated by LHS.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

[3] Swiler, Laura and Slepoy, Raisa and Giunta, Anthony: “Evaluation of sampling methods in constructing response surface approximations”
https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827

 Full-Factorial Sampling

Full-Factorial Sampling

The pysmo.sampling.UniformSampling method carries out Uniform (full-factorial) sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

Available Methods

	
class idaes.surrogate.pysmo.sampling.UniformSampling(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)

	A class that performs Uniform Sampling. Depending on the settings, the algorithm either returns samples from an input dataset which have been selected using Euclidean distance minimization after the uniform samples have been generated,
or returns samples from a supplied data range.

Full-factorial samples are based on dividing the space of each variable randomly and then generating all possible variable combinations.

	The number of points to be sampled per variable needs to be specified in a list.

To use: call class with inputs, and then sample_points function

Example:

To select 50 samples on a (10 x 5) grid in a 2D space:
>>> b = rbf.UniformSampling(data, [10, 5], sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)

	Initialization of UniformSampling class. Three inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	list_of_samples_per_variable (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list containing the number of subdivisions for each variable. Each dimension (variable) must be represented by a positive integer variable greater than 1.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Keyword Arguments

	edges (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean variable representing bow the points should be selected. A value of True (default) indicates the points should be equally spaced edge to edge, otherwise they will be in the centres of the bins filling the unit cube

	Returns

	self function containing the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The data_input is the wrong type

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When list_of_samples_per_variable is of the wrong length, is not a list or contains elements other than integers

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When edges entry is not Boolean

	
sample_points()

	sample_points generates or selects full-factorial designs from an input dataset or data range.

	Returns

	A numpy array or Pandas dataframe containing the sample points generated or selected by full-factorial sampling.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

 Halton Sampling

Halton Sampling

Halton sampling is a low-discrepancy sampling method. It is a deterministic sampling method based on the Halton sequence, a sequence constructed by a set of co-prime bases. The Halton
sequence is an n-dimensional extension of the Van der Corput sequence; each individual Halton sequence is based on a radix inverse function defined on a prime number.

The pysmo.sampling.HaltonSampling method carries out Halton sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The Halton sampling method is only available for low-dimensional problems \(n \leq 10\). At higher dimensions, the performance of the sampling method has been shown to degrade.

Available Methods

	
class idaes.surrogate.pysmo.sampling.HaltonSampling(data_input, number_of_samples=None, sampling_type=None)

	A class that performs Halton Sampling.

Halton samples are based on the reversing/flipping the base conversion of numbers using primes.

To generate n samples in a \(p\)-dimensional space, the first \(p\) prime numbers are used to generate the samples.

Note

Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensions, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Halton samples in a 2-D space:
>>> b = rbf.HaltonSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)

	Initialization of HaltonSampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns

	self function containing the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The data_input is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the number_of_samples is invalid (not an integer, too large, zero or negative.)

	
sample_points()

	The sample_points method generates the Halton samples. The steps followed here are:

	Determine the number of features in the input data.

	Generate the list of primes to be considered by calling prime_number_generator from the sampling superclass.

	Create the first number_of_samples elements of the Halton sequence for each prime.

	Create the Halton samples by combining the corresponding elements of the Halton sequences for each prime.

	When in “selection” mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the nearest_neighbours method in the sampling superclass.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples Halton sample points.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

 Hammersley Sampling

Hammersley Sampling

Hammersley sampling is a low-discrepancy sampling method based on the Hammersley sequence. The Hammersley sequence is the same as the Halton sequence
except in the first dimension where points are located equidistant from each other.

The pysmo.sampling.HammersleySampling method carries out Hammersley sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The Hammersley sampling method is only available for low-dimensional problems \(n \leq 10\). At higher dimensions, the performance of the sampling method has been shown to degrade.

Available Methods

	
class idaes.surrogate.pysmo.sampling.HammersleySampling(data_input, number_of_samples=None, sampling_type=None)

	A class that performs Hammersley Sampling.

Hammersley samples are generated in a similar way to Halton samples - based on the reversing/flipping the base conversion of numbers using primes.

To generate \(n\) samples in a \(p\)-dimensional space, the first \(\left(p-1\right)\) prime numbers are used to generate the samples. The first dimension is obtained by uniformly dividing the region into no_samples points.

Note

Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensionalities, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Hammersley samples in a 2-D space:
>>> b = rbf.HammersleySampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)

	Initialization of HammersleySampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns – self function containing the input information.

	Raises – ValueError: When data_input is the wrong type.

Exception: When the number_of_samples is invalid (not an integer, too large, zero, negative)

	
sample_points()

	The sampling_type method generates the Hammersley sample points. The steps followed here are:

	Determine the number of features \(n_{f}\) in the input data.

	Generate the list of \(\left(n_{f}-1\right)\) primes to be considered by calling prime_number_generator.

	Divide the space [0,**number_of_samples**-1] into number_of_samples places to obtain the first dimension for the Hammersley sequence.

	For the other \(\left(n_{f}-1\right)\) dimensions, create first number_of_samples elements of the Hammersley sequence for each of the \(\left(n_{f}-1\right)\) primes.

	Create the Hammersley samples by combining the corresponding elements of the Hammersley sequences created in steps 3 and 4

	When in “selection” mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the nearest_neighbours method in the sampling superclass.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples Hammersley sample points.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

[3] Holger Dammertz’s webpage titled “Hammersley Points on the Hemisphere” which discusses Hammersley point set generation in two dimensional spaces,
http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html

 Centroidal voronoi tessellation (CVT) sampling

Centroidal voronoi tessellation (CVT) sampling

In CVT, the generating point of each Voronoi cell coincides with its center of mass; CVT sampling locates the design samples at the centroids of each Voronoi cell in
the input space. CVT sampling is a geometric, space-filling sampling method which is similar to k-means clustering in its simplest form.

The pysmo.sampling.CVTSampling method carries out CVT sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The CVT sampling algorithm implemented here is based on McQueen’s method which involves a series of random sampling and averaging steps,
see http://kmh-lanl.hansonhub.com/uncertainty/meetings/gunz03vgr.pdf.

Available Methods

	
class idaes.surrogate.pysmo.sampling.CVTSampling(data_input, number_of_samples=None, tolerance=None, sampling_type=None)

	A class that constructs Centroidal Voronoi Tessellation (CVT) samples.

CVT sampling is based on the generation of samples in which the generators of the Voronoi tessellations and the mass centroids coincide.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 CVT samples in a 2-D space:
>>> b = rbf.CVTSampling(data_bounds, 10, tolerance = 1e-5, sampling_type="creation")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, tolerance=None, sampling_type=None)

	Initialization of CVTSampling class. Two inputs are required, while an optional option to control the solution accuracy may be specified.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Keyword Arguments

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Maximum allowable Euclidean distance between centres from consectutive iterations of the algorithm. Termination condition for algorithm.

	The smaller the value of tolerance, the better the solution but the longer the algorithm requires to converge. Default value is \(10^{-7}\).

	Returns

	self function containing the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When data_input is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the number_of_samples is invalid (not an integer, too large, zero, negative)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the tolerance specified is too loose (tolerance > 0.1) or invalid

	warnings.warn – when the tolerance specified by the user is too tight (tolerance < \(10^{-9}\))

	
sample_points()

	The sample_points method determines the best/optimal centre points (centroids) for a data set based on the minimization of the total distance between points and centres.

Procedure based on McQueen’s algorithm: iteratively minimize distance, and re-position centroids.
Centre re-calculation done as the mean of each data cluster around each centre.

	Returns

	A numpy array or Pandas dataframe containing the final number_of_samples centroids obtained by the CVT algorithm.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Centroidal Voronoi Tessellations: Applications and Algorithms by Qiang Du, Vance Faber, and Max Gunzburger
https://doi.org/10.1137/S0036144599352836

[3] D. G. Loyola, M. Pedergnana, S. G. García, “Smart sampling and incremental function learning for very large high dimensional data”
https://www.sciencedirect.com/science/article/pii/S0893608015001768?via%3Dihub

 More Information about PySMO’s Sampling Methods

More Information about PySMO’s Sampling Methods

The sampling methods are able to generate samples based from variable bounds or select samples from
a user-provided dataset. To use any of the method, the class is first initialized with the required parameters,
and then the sample_points method is called.

Examples

The following code snippet shows basic usage of the package for generating samples from a set of bounds:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp

Declaration of lower and upper bounds of 3D space to be sampled
>>> bounds = [[0, 0, 0], [1.2, 0.1, 1]]

Initialize the Halton sampling method and generate 10 samples
>>> space_init = sp.HaltonSampling(bounds_list, sampling_type='creation', number_of_samples=10)
>>> samples = space_init.sample_points()

The following code snippet shows basic usage of the package for selecting sample points from an existing dataset:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the CVT sampling method and generate 25 samples
>>> space_init = sp.CVTSampling(xy_data, sampling_type='selection', number_of_samples=25)
>>> samples = space_init.sample_points()

Note

The results of the sampling process will be a Numpy array or Pandas dataframe, depending on the
format of the input data.

Characteristics of sampling methods available in PySMO

Characteristics of the different sampling methods

	
	Deterministic

	Stochastic

	Low-discrepancy

	Space-filling

	Geometric

	LHS

	
	\(\checkmark\)

	
	
	\(\checkmark\)

	Full-factorial

	\(\checkmark\)

	
	
	
	\(\checkmark\)

	Halton

	\(\checkmark\)

	
	\(\checkmark\)

	
	

	Hammersley

	\(\checkmark\)

	
	\(\checkmark\)

	
	

	CVT

	\(\checkmark\)

	
	
	\(\checkmark\)

	\(\checkmark\)

 Generating Polynomial Models with PySMO

Generating Polynomial Models with PySMO

The pysmo.polynomial_regression method learns polynomial models from data. Presented with a small
number of samples generated from experiments or computer simulations, the approach determines the most
accurate polynomial approximation by comparing the accuracy and performance of polynomials of different
orders and basis function forms.

pysmo.polynomial_regression considers three types of basis functions

	univariate polynomials,

	second-degree bivariate pilynomials, and

	user-specified basis functions.

Thus, for a problem with \(m\) sample points and \(n\) input variables, the resulting polynomial is of the form

\[\begin{equation}
y_{k}={\displaystyle \sum_{i=1}^{n}\beta_{i}x_{ik}^{\alpha}}+\sum_{i,j>i}^{n}\beta_{ij}x_{ik}x_{jk}+\beta_{\Phi}\Phi\left(x_{ik}\right)\qquad i,j=1,\ldots,n;i\neq j;k=1,\ldots,m;\alpha \leq 10\qquad\quad\label{eq:poly_eq}
\end{equation}\]

Basic Usage

To generate a polynomial model with PySMO, the pysmo.polynomial_regression class is first initialized,
and then the method poly_training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the PolynomialRegression class, extract the list of features and train the model
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=3, *kwargs)
>>> features = pr_init.get_feature_vector()
>>> polyfit = pr_init.poly_training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

	maximum_polynomial_order refers to the maximum polynomial order to be considered when training the surrogate.

Optional Arguments

	multinomials - boolean option which determines whether bivariate terms are considered in polynomial generation.

	training_split - option which determines fraction of training data to be used for training (the rest will be for testing). Default is 0.8.

	number_of_crossvalidations - Number of cross-validations during training. Default number is 3.

pysmo.polynomial_regression Output

The result of the pysmo.polynomial_regression method (polyfit in above example) is a python object containing information
about the optimal polynomial order, the polynomial coefficients and different error and quality-of-fit metrics such as
the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit. A Pyomo expression can be generated from the
object simply passing a list of variables into the function generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])
Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(polyfit.generate_expression(list_vars))

Prediction with pysmo.polynomial_regression models

Once a polynomial model has been trained, predictions for values at previously unsampled points :math:x_unsampled can be evaluated by calling the
poly_predict_output() method on the resulting model object and the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = pr_init.poly_predict_output(rbf_fit, x_unsampled)

Flowsheet Integration

The result of the polynomial training process can be passed directly into a process flowsheet as an objective or a constraint.
The following code snippet demonstrates how an output polynomial model may be integrated directly into a Pyomo flowsheet as
an objective:

Required imports
>>> import pyomo.environ as pyo
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Create a Pyomo model
>>> m = pyo.ConcreteModel()
>>> i = pyo.Set(initialize=[1, 2])

Create a Pyomo variable with indexed by the 2D-set i with initial values {0, 0}
>>> init_x = {1: 0, 2: 0}
>>> def x_init(m, i):
>>> return (init_x[i])
>>> m.x = pyo.Var(i, initialize=x_init)

Train a simple polynomial model on data available in csv format, resulting in the Python object polyfit
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=3)
>>> features = pr_init.get_feature_vector()
>>> polyfit = pr_init.poly_training()

Use the resulting polynomial as an objective, passing in the Pyomo variable x
>>> m.obj = pyo.Objective(expr=polyfit.generate_expression([m.x[1], m.x[2]]))

Solve the model
>>> instance = m
>>> opt = pyo.SolverFactory("ipopt")
>>> result = opt.solve(instance, tee=True)

Further details about pysmo.polynomial_regression may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.polynomial_regression.FeatureScaling

	A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling and data_unscaling

	
static data_scaling(data)

	data_scaling performs column-wise minimax scaling on the input dataset.

	Parameters

	data – The input data set to be scaled. Must be a numpy array or dataframe.

	Returns

	
	tuple containing:

	
	scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].

	data_minimum : A 2-D row vector containing the column-wise minimums of the input data.

	data_maximum : A 2-D row vector containing the column-wise maximums of the input data.

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised when the input data is not a numpy array or dataframe

	
static data_unscaling(x_scaled, x_min, x_max)

	data_unscaling performs column-wise un-scaling on the a minmax-scaled input dataset.

	Parameters

	
	x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and 1.

	x_min (NumPy vector) – \(n \times 1\) vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	x_max (NumPy vector) – \(n \times 1\) vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	Returns

	A 2-D numpy array containing the scaled data, \(x_{min} + x_{scaled} * (x_{max} - x_{min})\)

	Return type

	NumPy Array

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Raised when the dimensions of the arrays are inconsistent.

	
class idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression(original_data_input, regression_data_input, maximum_polynomial_order, number_of_crossvalidations=None, no_adaptive_samples=None, training_split=None, max_fraction_training_samples=None, max_iter=None, solution_method=None, multinomials=None)

	The PolynomialRegression class performs polynomial regression on a training data set.

The class must first be initialized by calling PolynomialRegression. Regression is then carried out by calling poly_training.

	For a given dataset with \(n\) features \(x_{1},x_{2},\ldots,x_{n}\), Polyregression is able to consider three types of basis functions:

	
	Mononomial terms (\(x_{i}^{p},p \leq 10\)) for all individual features. The maximum degree to be considered can be set by the user (maximum_polynomial_order)

	All first order interaction terms \(x_{1}x_{2}\), \(x_{1}x_{3}\) etc. This can be turned on or off by the user (set multinomials)

	User defined input features, e.g. \(\sin(x_{1})\). These must be Pyomo functions and should be provided as a list by the user calling set_additional_terms method before the polynomial training is done.

Example:

Initialize the class and set additional terms
>>> d = PolynomialRegression(full_data, training_data, maximum_polynomial_order=2, max_iter=20, multinomials=1, solution_method='pyomo')
>>> p = d.get_feature_vector()
>>> d.set_additional_terms([...extra terms...])

Train polynomial model and predict output for an test data x_test
>>> results = d.poly_training()
>>> predictions = d.poly_predict_output(results, x_test)

	Parameters

	
	regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for regression training. It is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.

	original_data_input (NumPy Array of Pandas Dataframe) – If regression_data_input was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.
When additional data is not available, the same data supplied for training_data can be supplied - this tells the algorithm not to carry out adaptive sampling.

	maximum_polynomial_order (int [https://docs.python.org/3/library/functions.html#int]) – The maximum polynomial order to be considered.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(original_data_input, regression_data_input, maximum_polynomial_order, number_of_crossvalidations=None, no_adaptive_samples=None, training_split=None, max_fraction_training_samples=None, max_iter=None, solution_method=None, multinomials=None)

	Initialization of PolynomialRegression class.

	Parameters

	
	regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for regression training. It is expected to contain features and output data, with the output values (Y) in the last column.

	original_data_input (NumPy Array of Pandas Dataframe) – If regression_data_input was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.

	maximum_polynomial_order (int [https://docs.python.org/3/library/functions.html#int]) – The maximum polynomial order to be considered.

	Keyword Arguments

	
	number_of_crossvalidations (int [https://docs.python.org/3/library/functions.html#int]) – The number of polynomial fittings and cross-validations to be carried out for each polynomial function/expression. Must be a positive, non-zero integer. Default=3.

	training_split (float [https://docs.python.org/3/library/functions.html#float]) – The training/test split to be used for regression_data_input. Must be between 0 and 1. Default = 0.75

	solution_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to be used for solving the least squares optimization problem for polynomial regression. Three options are available:

	”MLE” : The mle (maximum likelihood estimate) method solves the least squares problem using linear algebra. Details of the method may be found in Forrester et al.

	”BFGS” : This approach solves the least squares problem using scipy’s BFGS algorithm.

	”pyomo”: This option solves the optimization problem in pyomo with IPOPT as solver. This is the default option.

	multinomials (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not multinomial terms are considered during polynomial fitting. Takes 0 for No and 1 for Yes. Default = 1.

	Returns

	self object containing all the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – - The input datasets (original_data_input or regression_data_input) are of the wrong type (not Numpy arrays or Pandas Dataframes)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – * maximum_polynomial_order is not a positive, non-zero integer or maximum_polynomial_order is higher than the number of training samples available

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – * solution_method is not ‘mle’, ‘pyomo’ or ‘bfgs

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - multinomials is not binary (0 or 1)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - training_split is not between 0 and 1

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - number_of_crossvalidations is not a positive, non-zero integer

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - max_fraction_training_samples is not between 0 and 1

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - no_adaptive_samples is not a positive, non-zero integer

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - max_iter is not a positive, non-zero integer

	warnings.warn – - When the number of cross-validations is too high, i.e. number_of_crossvalidations > 10

	
get_feature_vector()

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

Initialize the **PolynomialRegression** class and print the column headers for the variables
>>> f = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=1, multinomials=True, training_split=0.8)
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

	
poly_predict_output(results_vector, x_data)

	The poly_predict_output method generates output predictions for input data x_data based a previously generated polynomial fitting.

	Parameters

	
	results_vector – Python object containing results of polynomial fit generated by calling the poly_training function.

	x_data – Numpy array of designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the polynomial fit.

	Return type

	Numpy Array

	
poly_training()

	The poly_training method trains a polynomial model to an input dataset.
It calls the core method which is called in the PolynomialRegression class (polynomial_regression_fitting).
It accepts no user input, inheriting the information passed in class initialization.

	Returns

	
	Python Object (results) containing the results of the polynomial regression process including:

	
	the polynomial order (self.polynomial_order)

	polynomial coefficients (self.optimal_weights_array), and

	MAE and MSE errors as well as the \(R^{2}\) (results.errors).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
set_additional_terms(term_list)

	set_additional_terms accepts additional user-defined features for consideration during regression.

	Parameters

	term_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of additional terms to be considered as regression features. Each term in the list must be a Pyomo-supported intrinsic function.

Example:

To add the sine and cosine of a variable with header 'X1' in the dataset as additional regression features:
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['X1', 'X2', 'Y'])
>>> A = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=5)
>>> p = A.get_feature_vector()
>>> A.set_additional_terms([pyo.sin(p['X1']) , pyo.cos(p['X1'])])

	
class idaes.surrogate.pysmo.polynomial_regression.ResultReport(optimal_weight_vector, polynomial_order, multinomials, mae_error, mse_error, R2, adjusted_R2, number_of_iterations, results_vector, additional_features_array, final_regression_data, df_coefficients, extra_terms_coeffs, extra_terms_feature_vector, extra_terms_expressions)

	
	
generate_expression(variable_list)

	The generate_expression method returns the Pyomo expression for the polynomial model trained.

The expression is constructed based on a supplied list of variables variable_list and the output of poly_training.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the results of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the polynomial model based on the variables provided in variable_list.

	Return type

	Pyomo Expression

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

 Generating Radial Basis Function (RBF) models with PySMO

Generating Radial Basis Function (RBF) models with PySMO

The pysmo.radial_basis_function package has the capability to generate different types of RBF surrogates from data
based on the basis function selected. RBFs models are usually of the form
where

\[\begin{equation}
y_{k}=\sum_{j=1}^{\Omega}w_{j}\psi\left(\Vert x_{k}-z_{j}\Vert\right)\qquad k=1,\ldots,m\quad\label{eq:RBF-expression}
\end{equation}\]

where \(z_{j}\) are basis function centers (in this case, the training data points), \(w_{j}\) are the radial
weights associated with each center \(z_{j}\), and \(\psi\) is a basis function transformation of the
Euclidean distances.

PySMO offers a range of basis function transformations \(\psi\), as shown in the table below.

List of available RBF basis transformations, \(d = \parallel x_{k}-z_{j}\parallel\)

	Transformation type

	PySMO option name

	\(\psi(d)\)

	Linear

	‘linear’

	\(d\)

	Cubic

	‘cubic’

	\(d^{3}\)

	Thin-plate spline

	‘spline’

	\(d^{2}\ln(d)\)

	Gaussian

	‘gaussian’

	\(e^{\left(-d^{2}\sigma^{2}\right)}\)

	Multiquadric

	‘mq’

	\(\sqrt{1+\left(\sigma d\right)^{2}}\)

	Inverse mMultiquadric

	‘imq’

	\(1/{\sqrt{1+\left(\sigma d\right)^{2}}}\)

Selection of parametric basis functions increase the flexibility of the radial basis function but adds an extra
parameter (\(\sigma\))to be estimated.

Basic Usage

To generate an RBF model with PySMO, the pysmo.radial_basis_function class is first initialized,
and then the function rbf_training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import radial_basis_function
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the RadialBasisFunctions class, extract the list of features and train the model
>>> rbf_init = radial_basis_function.RadialBasisFunctions(xy_data, *kwargs)
>>> features = rbf_init.get_feature_vector()
>>> rbf_fit = rbf_init.rbf_training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

Optional Arguments

	basis_function - option to specify the type of basis function to be used in the RBF model. Default is ‘gaussian’.

	regularization - boolean which determines whether regularization of the RBF model is considered. Default is True.

	When regularization is turned on, the resulting model is a regressing RBF model.

	When regularization is turned off, the resulting model is an interpolating RBF model.

pysmo.radial_basis_function Output

The result of pysmo.radial_basis_function (rbf_fit in above example) is a python object containing information
about the optimal radial basis function weights \(w_{j}\) and different error and quality-of-fit metrics such as
the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit. A Pyomo expression can be generated from the
object simply passing a list of variables into the function rbf_generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(rbf_fit.rbf_generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the rbf_generate_expression function can be passed
into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.radial_basis_function models

Once an RBF model has been trained, predictions for values at previously unsampled points x_unsampled can be evaluated by calling the
rbf_predict_output() function on the resulting Python object and the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = rbf_init.rbf_predict_output(rbf_fit, x_unsampled)

Further details about pysmo.radial_basis_function module may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.radial_basis_function.FeatureScaling

	A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling_minmax and data_unscaling_minmax

	
static data_scaling_minmax(data)

	data_scaling_minmax performs column-wise min-max scaling on the input dataset.

	Parameters

	data – The input data set to be scaled. Must be a numpy array or dataframe.

	Returns

	
	tuple containing:

	
	scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].

	data_minimum : A 2-D row vector containing the column-wise minimums of the input data.

	data_maximum : A 2-D row vector containing the column-wise maximums of the input data.

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised when the input data is not a numpy array or dataframe

	
static data_unscaling_minmax(x_scaled, x_min, x_max)

	data_unscaling_minmax performs column-wise un-scaling on the a minmax-scaled input dataset.

	Parameters

	
	x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and 1.

	x_min (NumPy vector) – \(n \times 1\) vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	x_max (NumPy vector) – \(n \times 1\) vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	Returns

	A 2-D numpy array containing the scaled data, \(x_{min} + x_{scaled} * (x_{max} - x_{min})\)

	Return type

	NumPy Array

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Raised when the dimensions of the arrays are inconsistent.

	
class idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions(XY_data, basis_function=None, solution_method=None, regularization=None)

	The RadialBasisFunctions class generates a radial basis function fitting for a training data set.

The class must first be initialized by calling RadialBasisFunctions. Regression is then carried out by calling the method rbf_training.

	For a given dataset with n features \(x_{1},\ldots,x_{n}\), RadialBasisFunctions is able to consider six types of basis transformations:

	
	Linear (‘linear’)

	Cubic (‘cubic’)

	Gaussian (‘gaussian’)

	Multiquadric (‘mq’)

	Inverse multiquadric (‘imq’)

	Thin-plate spline (‘spline’)

rbf_training selects the best hyperparameters (regularization parameter \(\lambda\) and shape parameter \(\sigma\), where necessary) by evaluating the leave-one-out cross-validation error for each (\(\lambda,\sigma\)) pair.

It should be noted that the all the training points are treated as centres for the RBF, resulting in a square system.

Example:

 # Initialize the class
>>> d = RadialBasisFunctions(training_data, basis_function='gaussian', solution_method='pyomo', regularization=True))
>>> p = d.get_feature_vector()

Train RBF model and predict output for an test data x_test
>>> results = d.rbf_training()
>>> predictions = d.rbf_predict_output(results, x_test)

	Parameters

	XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training. XY_data is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(XY_data, basis_function=None, solution_method=None, regularization=None)

	Initialization of RadialBasisFunctions class.

	Parameters

	XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training. XY_data is expected to contain feature and output information, with the output values (y) in the last column.

	Keyword Arguments

	
	basis_function (str [https://docs.python.org/3/library/stdtypes.html#str]) – The basis function transformation to be applied to the training data. Two classes of basis transformations are available for selection:

	Fixed basis transformations, which require no shape parameter \(\sigma\) :

	’cubic’ : Cubic basis transformation

	’linear’ : Linear basis transformation

	’spline’ : Thin-plate spline basis transformation

	Parametric basis transformations which require a shape parameter:

	’gaussian’ : Gaussian basis transformation (Default)

	’mq’ : Multiquadric basis transformation

	’imq’ : Inverse multiquadric basis transformation

	solution_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to be used for solving the RBF least squares optimization problem. Three options are available:

	’algebraic’ : The explicit algebraic method solves the least squares problem using linear algebra.

	’BFGS’ : This approach solves the least squares problem using SciPy’s BFGS algorithm.

	’pyomo’ : This option solves the optimization problem in Pyomo with IPOPT as solver. This is the default.

	regularization (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not the regularization parameter \(\lambda\) is considered during RBF fitting. Default setting is True.

	Returns

	self object with the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – * basis_function entry is not valid.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – * solution_method is not ‘algebraic’, ‘pyomo’ or ‘bfgs’.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - \(\lambda\) is not boolean.

Example:

Specify the gaussian basis transformation
>>> d = RadialBasisFunctions(XY_data, basis_function='gaussian')

	
get_feature_vector()

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

Initialize the **RadialBasisFunctions** class with a linear kernel and print the column headers for the variables
>>> f = RadialBasisFunctions(xy_data, basis_function='linear')
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

	
static r2_calculation(y_true, y_predicted)

	r2_calculation returns the \(R^{2}\) as a measure-of-fit between the true and predicted values of the output variable.

	Parameters

	
	y_true (NumPy Array) – Vector of actual values of the output variable

	y_predicted (NumPy Array) – Vector of predictions for the output variable based on the surrogate

	Returns

	\(R^{2}\) measure-of-fit between actual and predicted data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
rbf_predict_output(results_vector, x_data)

	The rbf_predict_output method generates output predictions for input data x_data based a previously generated RBF fitting.

	Parameters

	
	results_vector (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Results of RBF training generated by calling the rbf_training function.

	x_data (NumPy Array) – Designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the rbf fit.

	Return type

	Numpy Array

	
rbf_training()

	Main function for RBF training.

	To train the RBF:

	
	The best values of the hyperparameters (\(\sigma, \lambda\)) are selected via LOOCV.

	The necessary basis transformation at the optimal hyperparameters is generated.

	The condition number for the transformed matrix is calculated.

	The optimal radial weights are evaluated using the selected optimization method.

	The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the methods error_calculation and r2_calculation

	A results object is generated by calling the ResultsReport class.

The LOOCV error for each (\(\sigma, \lambda\)) pair is evaluated by calling the function loo_error_estimation_with_rippa_method.

The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000, while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

	Returns

	
	Python object (results) containing the all information about the best RBF fitting obtained, including:

	
	the optimal radial weights (results.radial_weights),

	when relevant, the optimal shape parameter found \(\sigma\) (results.sigma),

	when relevant, the optimal regularization parameter found \(\lambda\) (results.regularization),

	the RBF predictions for the training data (results.output_predictions), and

	the \(R^{2}\) value on the training data (results.R2)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
class idaes.surrogate.pysmo.radial_basis_function.ResultReport(radial_weights, best_r_value, best_lambda_param, centres, y_training_predictions, rmse_error, x_condition_number, reg_setting, r_square, basis_function, data_min, data_max)

	
	
rbf_generate_expression(variable_list)

	The rbf_generate_expression method returns the Pyomo expression for the RBF model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the previous RBF training process.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the output of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the RBF model based on the variables provided in variable_list

	Return type

	Pyomo Expression

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

[2] Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions, https://www.tandfonline.com/doi/full/10.1080/03052150500422294

[3] Rippa, S. (1999): An algorithm for selecting a good value for the parameter c in radial basis function interpolation, https://doi.org/10.1023/A:1018975909870

[4] Mongillo M.A. (2011) Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods, https://doi.org/10.1137/11S010840

 Generating Kriging Models with PySMO

Generating Kriging Models with PySMO

The pysmo.kriging trains Ordinary Kriging models. Interpolating kriging models assume that the outputs \(\hat{y}\in\mathbb{R}^{m\times1}\)
are correlated and may be treated as a normally distributed stochastic process. For a set of input measurements
\(X=\left\{ x_{1},x_{2},\ldots,x_{m}\right\} ;x_{i}\in\mathbb{R}^{n}\), the output \(\hat{y}\) is modeled
as the sum of a mean \(\left(\mu\right)\) and a Gaussian process error,

\[\begin{equation}
\hat{y_{k}}=\mu+\epsilon\left(x_{k}\right)\qquad k=1,\ldots,m \qquad\quad
\end{equation}\]

Kriging models assume that the errors in the outputs \(\epsilon\) are correlated proportionally to the distance
between corresponding points,

\[\begin{equation}
\text{cor}\left[\epsilon\left(x_{j}\right),\epsilon\left(x_{k}\right)\right]=\exp\left(-\sum_{i=1}^{n}\theta_{i}\mid x_{ij}-x_{ik}\mid^{\tau_{i}}\right)\qquad j,k=1,\ldots,m;\:\tau_{i}\in\left[1,2\right];\:\theta_{i}\geq0\qquad\quad\label{eq:corr-function}
\end{equation}\]

The hyperparameters of the Kriging model \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n},\tau_{1},\ldots,\tau_{n}\right)\)
are selected such that the concentrated log likelihood function is maximized.

Basic Usage

To generate a Kriging model with PySMO, the pysmo.kriging class is first initialized,
and then the function kriging_training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import kriging
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the KrigingModel class, extract the list of features and train the model
>>> krg_init = kriging.KrigingModel(xy_data, *kwargs)
>>> features = krg_init.get_feature_vector()
>>> krg_fit = krg_init.kriging_training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

Optional Arguments

	numerical_gradients: Whether or not numerical gradients should be used in training. This choice determines the algorithm used to solve the problem.

	True: The problem is solved with BFGS using central differencing with \(\Delta=10^{-6}\) to evaluate numerical gradients.

	False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

	regularization - Boolean option which determines whether or not regularization is considered during Kriging training. Default is True.

	When regularization is turned on, the resulting model is a regressing kriging model.

	When regularization is turned off, the resulting model is an interpolating kriging model.

pysmo.kriging Output

The result of pysmo.kriging (krg_fit in above example) is a python object containing information
about the optimal Kriging hyperparameters \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n}\right)\)
and different error and quality-of-fit metrics such as the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit.
A Pyomo expression can be generated from the object simply passing a list of variables into the function
kriging_generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(krg_fit.kriging_generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the kriging_generate_expression function can be passed
into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.kriging models

Once a Kriging model has been trained, predictions for values at previously unsampled points x_unsampled can be evaluated by calling the
kriging_predict_output() function on the resulting Python object and the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = kriging_init.kriging_predict_output(krg_fit, x_unsampled)

Further details about pysmo.kriging module may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.kriging.KrigingModel(XY_data, numerical_gradients=True, regularization=True)

	The KrigingModel class trains a Kriging model for a training data set.

The class must first be initialized by calling KrigingModel. Model training is then carried out by calling the kriging_training method.

KrigingModel is able to generate either an interpolating or a regressing Kriging model depending on the settings used during initialization..

Example:

Initialize the class
>>> d = KrigingModel(training_data, numerical_gradients=True, regularization=True))
>>> p = d.get_feature_vector()

Train Kriging model and predict output for an test data x_test
>>> results = d.kriging_training()
>>> predictions = d.kriging_predict_output(results, x_test)

	Parameters

	XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging training. XY_data is expected to contain both the features (X) and output (Y) information, with the output values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(XY_data, numerical_gradients=True, regularization=True)

	Initialization of KrigingModel class.

	Parameters

	XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging training. XY_data is expected to contain feature and output data, with the output values (y) in the last column.

	Keyword Arguments

	
	numerical_gradients (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not numerical gradients should be used in training. This choice determines the algorithm used to solve the problem.

	numerical_gradients = True: The problem is solved with BFGS using central differencing with a step size of \(10^{-6}\) to evaluate numerical gradients.

	numerical_gradients = False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

	regularization (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not regularization is considered during Kriging training. Default is True.

	When regularization is turned off, the model generates an interpolating kriging model.

	Returns

	self object with the input information and settings.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – - The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - numerical_gradients is not boolean

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – - regularization is not boolean

Example:

Initialize Kriging class with no numerical gradients - solution algorithm will be Basinhopping
>>> d = KrigingModel(XY_data, numerical_gradients=False)

	
get_feature_vector()

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

	
kriging_predict_output(kriging_params, x_pred)

	The kriging_predict_output method generates output predictions for input data x_pred based a previously trained Kriging model.

	Parameters

	
	kriging_params (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Results of Kriging training generated by calling the kriging_training method.

	x_pred (NumPy Array) – Array of designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the Kriging model.

	Return type

	NumPy Array

	
kriging_training()

	Main function for Kriging training.

	To train the Kriging model:

	
	The Kriging exponent \(\tau_{i}\) is fixed at 2.

	The optimal Kriging hyperparameters \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n}\right)\) are evaluated by calling the optimal_parameter_evaluation method using either BFGS or Basinhopping.

	The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the functions error_calculation and self.r2_calculation

	A results object is generated by calling the ResultsReport class.

	Returns

	
	Python object (results) containing the all information about the best Kriging model obtained, including:

	
	the Kriging model hyperparameters (results.optimal_weights),

	when relevant, the optimal regularization parameter found \(\lambda\) (results.regularization_parameter),

	the Kriging mean (results.optimal_mean),

	the Kriging variance (results.optimal_variance),

	the Kriging model regularized co-variance matrix (results.optimal_covariance_matrix),

	the inverse of the co-variance matrix (results.covariance_matrix_inverse),

	the RBF predictions for the training data (results.output_predictions),

	the RMSE of the training output predictions (results.training_rmse), and

	the \(R^{2}\) value on the training data (results.R2)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
static r2_calculation(y_true, y_predicted)

	r2_calculation returns the \(R^{2}\) as a measure-of-fit between the true and predicted values of the output variable.

	Parameters

	
	y_true (NumPy Array) – Vector of actual values of the output variable

	y_predicted (NumPy Array) – Vector of predictions for the output variable based on the surrogate

	Returns

	\(R^{2}\) measure-of-fit between actual and predicted data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
class idaes.surrogate.pysmo.kriging.ResultReport(theta, reg_param, mean, variance, cov_mat, cov_inv, ymu, y_training, r2_training, rmse_error, p, x_data, x_data_scaled, x_data_min, x_data_max)

	
	
kriging_generate_expression(variable_list)

	The kriging_generate_expression method returns the Pyomo expression for the Kriging model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the previous Kriging training process.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the output of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the Kriging model based on the variables provided in variable_list

	Return type

	Pyomo Expression

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

[2] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, https://link.springer.com/article/10.1023%2FA%3A1012771025575

 Applications

Applications

This section contains applications that can be used in conjunction with the IDAES
framework and libraries, but which are not closely tied to the implementation.

Contents

	MatOpt : Materials Optimization
	Basic Usage

	MatOpt Output

	MatOpt Examples

	References

 MatOpt : Materials Optimization

MatOpt : Materials Optimization

The MatOpt module provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used to design crystalline nanostructured materials, including but not limited to particles, wires, surfaces, and periodic bulk structures.

The main goals of this package are as follows:

	To automate many of the steps that are necessary for utilizing mathematical optimization to design materials, speeding up the development of new mathematical models and accelerating new materials discovery.

	To simplify the representation of nanostructured materials and their structure-function relationships as Pyomo objects, streamlining the creation of materials optimization problems in the Pyomo modeling language.

	To provide a simple interface so that users need not handle the details of casting efficient mathematical optimization models, invoking mathematical optimization solvers, or utilizing specialized Pyomo syntax to do this.

Thank you for your interest in MatOpt. We would love to hear your feedback! Please report any thoughts, questions or bugs to: gounaris@cmu.edu

If you are using MatOpt, please consider citing:

	Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials design using discrete optimization. In preparation.

Basic Usage

There are two main sub-modules contained in the package serving two distinct purposes:

	The matopt.materials module contains objects and methods for efficiently representing and manipulating a nanomaterial and its design space.

	The matopt.opt module contains objects and methods for speeding up the casting of a Mixed-integer Linear Programming (MILP) model with simplified modeling syntax and automatic model formulation.

Dependencies

User access to the MILP solver CPLEX through Pyomo is assumed. For users who do not have access to CPLEX, the use of NEOS-CPLEX [https://neos-guide.org/neos-interfaces#pyomo] is suggested as an alternative.

Define design canvas

Several pieces of information about the material and design space need to be specified in order to formulate a materials optimization problem. To fulfill this need, the matopt.materials module defines generic and simple objects for describing the type of material to be designed and its design space, also referred to as a “canvas”.

Some key objects are listed as follows:

	
class apps.matopt.materials.lattices.lattice.Lattice

	A class used to represent crystal lattice locations.

The class encodes methods for determining which Cartesian coordinates to
consider as sites on an infinite crystal lattice. A Lattice can be constructed from
a point on the lattice (i.e., a shift from the origin), an alignment (i.e., rotation from a
nominal orientation), and appropriate scaling factors. With these attributes, we generally
support the translation, rotation, and rescaling of lattices. Additionally, Lattice objects
include a method for determining which sites should be considered neighbors.

	
class apps.matopt.materials.canvas.Canvas(Points=None, NeighborhoodIndexes=None, DefaultNN=0)

	A class for combining geometric points and neighbors.

This class contains a list of Cartesian points coupled with a graph of nodes for sites and arcs
for bonds. A Canvas object establishes a mapping from the abstract, mathematical modeling of
materials as graphs to the geometry of the material lattice. The list of points and neighbor
connections necessary to create a Canvas object can be obtained from the combination of
Lattice, Shape, and Tiling objects.

	
class apps.matopt.materials.design.Design(Canvas_=None, Contents=None)

	A class used to represent material designs.

This class combines a Canvas objects and a list of contents.
It assigns an element (possibly None) to each point in the Canvas.
This generally works for any type of content, but it is intended
to work with Atom objects and can be used to generate CFG, PDB, POSCAR, and XYZ files.

Build model via descriptors

The material type and design space specified provide indices, sets, and parameters for the optimization model. Using simple syntax, inspired by materials-related terminology, MatOpt users define a MatOptModel object, which will be translated into a Pyomo ConcreteModel object automatically.

MatOpt uses MaterialDescriptor objects to represent variables, constraints, and objectives. A MatOptModel object holds lists of MaterialDescriptor objects. By default, several universal site descriptors are pre-defined in the model.

	Descriptor

	Explanation

	Yik

	Presence of a building block of type k at site i

	Yi

	Presence of any type of building block at site i

	Xijkl

	Presence of a building block of type k at site i and a building block of type l at site j

	Xij

	Presence of any building block at site i and any building block at site j

	Cikl

	Count of neighbors of type l next to a building block of type k at site i

	Ci

	Count of any type of neighbors next to a building block at site i

User-specified descriptors are defined by DescriptorRule objects in conjunction with Expr expression objects. Available expressions include:

	Expression

	Explanation

	LinearExpr

	Multiplication and addition of coefficients to distinct descriptors

	SiteCombination

	Summation of site contributions from two sites

	SumNeighborSites

	Summation of site contributions from all neighboring sites

	SumNeighborBonds

	Summation of bond contributions to all neighboring sites

	SumSites

	Summation across sites

	SumBonds

	Summation across bonds

	SumSiteTypes

	Summation across site types

	SumBondTypes

	Summation across bond types

	SumSitesAndTypes

	Summation across sites and site types

	SumBondsAndTypes

	Summation across bonds and bond types

	SumConfs

	Summation across conformation types

	SumSitesAndConfs

	Summation across sites and conformation types

Several types of DescriptorRules are available.

	Rule

	Explanation

	LessThan

	Descriptor less than or equal to an expression

	EqualTo

	Descriptor equal to an expression

	GreaterThan

	Descriptor greater than or equal to an expression

	FixedTo

	Descriptor fixed to a scalar value

	PiecewiseLinear

	Descriptor equal to the evaluation of a piecewise linear function

	Implies

	Indicator descriptor that imposes other constraints if equal to 1

	NegImplies

	Indicator descriptor that imposes other constraints if equal to 0

	ImpliesSiteCombination

	Indicator bond-indexed descriptor that imposes constraints on the two sites

	ImpliesNeighbors

	Indicator site-indexed descriptor that imposes constraints on neighboring sites

From the combination of the above pre-defined descriptors, expressions, and rules, a user can specify a wide variety of other descriptors, as necessary.

	
class apps.matopt.opt.mat_modeling.MaterialDescriptor(name, canv=None, atoms=None, confDs=None, bounds=(None, None), integer=False, binary=False, rules=[], **kwargs)

	A class to represent material geometric and energetic descriptors.

This class holds the information to define mathematical optimization
variables for the properties of materials. Additionally, each descriptor
has a ‘rules’ list to which the user can append rules defining the
descriptor and constraining the design space.

	
name

	A unique (otherwise Pyomo will complain) name

	Type

	string

	
canv

	The canvas that the descriptor will be indexed over

	Type

	Canvas

	
atoms

	The building blocks to index the descriptor over.

	Type

	list<BBlock>

	
confDs

	The designs for conformations to index over.

	Type

	list<Design>

	
integer

	Flag to indicate if the descriptor takes integer values.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
binary

	Flag to indicate if the descriptor takes boolean values.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rules

	List of rules to define and constrain the material descriptor design space.

	Type

	list<DescriptorRules>

	
bounds

	If tuple, the lower and upper bounds on the descriptor values across all indices. If dict, the bounds can be individually set for each index.

	Type

	tuple/dict/func

See IndexedElem for more information on indexing.
See DescriptorRule for information on defining descriptors.

Solve optimization model

Once the model is fully specified, the user can optimize it in light of a chosen descriptor to serve as the objective to be maximized or minimized, as appropriate. Several functions are provided for users to choose from.

	
class apps.matopt.opt.mat_modeling.MatOptModel(canv, atoms=None, confDs=None)

	A class for the specification of a materials optimization problem.

Once all the material information is specified, we use this class to
specify the material design problem of interest. This class is intended
to be interpretable without mathematical optimization background while
the conversion to Pyomo optimization models happens automatically.

	
canv

	The canvas of the material design space

	Type

	Canvas

	
atoms

	The list of building blocks to consider.
Note: This list does not need to include a void-atom type. We use ‘None’ to represent the absence of any building block at a given site.

	Type

	list<BBlock>

	
confDs

	The list of conformations to consider.

	Type

	list<Design>

	
maximize(func, **kwargs)

	Method to maximize a target functionality of the material model.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	**kwargs – Arguments to MatOptModel.optimize

	Returns

	(Design/list<Design>) Optimal designs.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

See MatOptModel.optimize method for details.

	
minimize(func, **kwargs)

	Method to minimize a target functionality of the material model.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	**kwargs – Arguments to MatOptModel.optimize

	Returns

	(Design/list<Design>) Optimal designs.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

See MatOptModel.optimize method for details.

	
optimize(func, sense, nSolns=1, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None, solver='cplex')

	Method to create and optimize the materials design problem.

This method automatically creates a new optimization model every
time it is called. Then, it solves the model via Pyomo with the
CPLEX solver.

If multiple solutions (called a ‘solution pool’) are desired, then
the nSolns argument can be provided and the populate method will
be called instead.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	sense (int [https://docs.python.org/3/library/functions.html#int]) – flag to indicate the choice to minimize or maximize the functionality of interest.
Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

	nSolns (int [https://docs.python.org/3/library/functions.html#int]) – Optional, number of Design objects to return.
Default: 1 (See MatOptModel.populate for more information)

	tee (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to turn on solver output.
Default: True

	disp (int [https://docs.python.org/3/library/functions.html#int]) – Optional, flag to control level of MatOpt output.
Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
Default: 1

	keepfiles (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to save temporary pyomo files.
Default: True

	tilim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver time limit (in seconds).
Default: 3600

	trelim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver tree memeory limit (in MB).
Default: None (i.e., Pyomo/CPLEX default)

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver choice. Currently only cplex or neos-cplex are supported
Default: cplex

	Returns

	(Design/list<Design>) Optimal design or designs, depending on the number of solutions requested by argument nSolns.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

	
populate(func, sense, nSolns, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None, solver='cplex')

	Method to a pool of solutions that optimize the material model.

This method automatically creates a new optimization model every
time it is called. Then, it solves the model via Pyomo with the
CPLEX solver.

The populate method iteratively solves the model, interprets the
solution as a Design object, creates a constraint to disallow that
design, and resolves to find the next best design. We build a pool
of Designs that are gauranteed to be the nSolns-best solutions in the
material design space.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	sense (int [https://docs.python.org/3/library/functions.html#int]) – flag to indicate the choice to minimize or maximize the functionality of interest.
Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

	nSolns (int [https://docs.python.org/3/library/functions.html#int]) – Optional, number of Design objects to return.
Default: 1 (See MatOptModel.populate for more information)

	tee (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to turn on solver output.
Default: True

	disp (int [https://docs.python.org/3/library/functions.html#int]) – Optional, flag to control level of MatOpt output.
Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
Default: 1

	keepfiles (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to save temporary pyomo files.
Default: True

	tilim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver time limit (in seconds).
Default: 3600

	trelim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver tree memeory limit (in MB).
Default: None (i.e., Pyomo/CPLEX default)

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver choice. Currently only cplex or neos-cplex are supported
Default: cplex

	Returns

	(list<Design>) A list of optimal Designs in order of decreasing optimality.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

MatOpt Output

The results of the optimization process will be loaded into Design objects automatically. Users can then save material design(s) into files for further analysis and visualization using suitable functions provided. MatOpt provides interfaces to several standard crystal structure file formats, including CFG, PDB, POSCAR, and XYZ.

MatOpt Examples

Five case studies [https://github.com/xiangyuy/matopt-examples] are provided to illustrate the detailed usage of MatOpt. In each case, a Jupyter notebook with explanations as well as an equivalent Python script is provided.

References

	Hanselman, C.L. and Gounaris, C.E., 2016. A mathematical optimization framework for the design of nanopatterned surfaces. [https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.15359] AIChE Journal, 62(9), pp.3250-3263.

	Hanselman, C.L., Alfonso, D.R., Lekse, J.W., Matranga, C., Miller, D.C. and Gounaris, C.E., 2019. A framework for optimizing oxygen vacancy formation in doped perovskites. [https://www.sciencedirect.com/science/article/pii/S0098135418310998] Computers & Chemical Engineering, 126, pp.168-177.

	Hanselman, C.L., Zhong, W., Tran, K., Ulissi, Z.W. and Gounaris, C.E., 2019. Optimization-based design of active and stable nanostructured surfaces. [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b08431] The Journal of Physical Chemistry C, 123(48), pp.29209-29218.

	Isenberg, N.M., Taylor, M.G., Yan, Z., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. Identification of optimally stable nanocluster geometries via mathematical optimization and density-functional theory. [https://pubs.rsc.org/en/content/articlelanding/2019/me/c9me00108e#!divAbstract] Molecular Systems Design & Engineering.

	Yin, X., Isenberg, N.M., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. A mathematical optimization-based design framework for identifying stable bimetallic nanoclusters. In preparation.

	Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials design using discrete optimization. In preparation.

 IDAES Versioning

IDAES Versioning

The IDAES Python package is versioned according to the general guidelines
of semantic versioning [https://semver.org/], following the recommendations of
PEP 440 [https://www.python.org/dev/peps/pep-0440/] with respect to
extended versioning descriptors (alpha, beta, release candidate, etc.).

Basic usage

You can see the version of the package at any time interactively by
printing out the __version__ variable in the top-level package:

import idaes
print(idaes.__version__)
prints a version like "1.2.3"

Advanced usage

This section describes the module’s variables and classes.

Overview

The API in this module is mostly for internal use, e.g. from ‘setup.py’ to get the version of
the package. But Version has been written to be usable as a general
versioning interface.

Example of using the class directly:

>>> from idaes.ver import Version
>>> my_version = Version(1, 2, 3)
>>> print(my_version)
1.2.3
>>> tuple(my_version)
(1, 2, 3)
>>> my_version = Version(1, 2, 3, 'alpha')
>>> print(my_version)
1.2.3.a
>>> tuple(my_version)
(1, 2, 3, 'alpha')
>>> my_version = Version(1, 2, 3, 'candidate', 1)
>>> print(my_version)
1.2.3.rc1
>>> tuple(my_version)
(1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then
simply inherit from HasVersion and initialize it with the
same arguments you would give the Version constructor:

>>> from idaes.ver import HasVersion
>>> class MyClass(HasVersion):
... def __init__(self):
... super(MyClass, self).__init__(1, 2, 3, 'alpha')
...
>>> obj = MyClass()
>>> print(obj.version)
1.2.3.a

	
idaes.ver.package_version = <idaes.ver.Version object>

	Package’s version as an object

	
idaes.ver.__version__ = '1.5.1.rc0'

	Package’s version as a simple string

Version class

The versioning semantics are encapsulated in a class called Version.

	
class idaes.ver.Version(major, minor, micro, releaselevel='final', serial=None, label=None)

	This class attempts to be compliant with a subset of
PEP 440 [https://www.python.org/dev/peps/pep-0440/].

Note: If you actually happen to read the PEP, you will notice
that pre- and post- releases, as well as “release epochs”, are not
supported.

	
__init__(major, minor, micro, releaselevel='final', serial=None, label=None)

	Create new version object.

Provided arguments are stored in public class
attributes by the same name.

	Parameters

	
	major (int [https://docs.python.org/3/library/functions.html#int]) – Major version

	minor (int [https://docs.python.org/3/library/functions.html#int]) – Minor version

	micro (int [https://docs.python.org/3/library/functions.html#int]) – Micro (aka patchlevel) version

	releaselevel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional PEP 440 specifier

	serial (int [https://docs.python.org/3/library/functions.html#int]) – Optional number associated with releaselevel

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional local version label

	
__iter__()

	Return version information as a sequence.

	
__str__()

	Return version information as a string.

HasVersion class

For adding versions to other classes in a simple and standard way,
you can use the HasVersion mixin class.

	
class idaes.ver.HasVersion(*args)

	Interface for a versioned class.

	
__init__(*args)

	Constructor creates a version attribute that is
an instance of Version initialized with the provided args.

	Parameters

	*args – Arguments to be passed to Version constructor.

 Developer Documentation

Developer Documentation

This section of the documentation is intended for developers, and much of it is
targeted at the IDAES internal team. Hopefully many of the principles and ideas are
also applicable to external contributors.

Developer Contents

	Developer introductory material

	Github repository overview

	Collaborative software development

	Testing

	Code Review

	Docker container

	IDAES contributor guide

 Developer introductory material

Developer introductory material

This section gives a high-level introduction for collaborative
software development on the IDAES project. It serves as background for understanding the collaborative
development procedures.

Please refer to the IDAES contributor guide for specifics on writing,
testing, and documenting code for the IDAES project.

There are many more useful
things to learn about git and Github. For more information, please refer to the
excellent Atlassian Github tutorials [https://www.atlassian.com/git/tutorials] and
the online Git documentation [https://git-scm.com/doc] and
Github help [https://help.github.com/].

Terminology

	Git [https://git-scm.com/]

	A “version control system”, for keeping track of changes in a set of files

	Github [https://github.com]

	A hosting service for Git
repositories that adds many other features that are useful for
collaborative software development.

	branch

	A name for a series of commits. See Branches.

	fork

	Copy of a repository in Github. See Forks.

	pull request (PR)

	A request to compare and merge code in a Github repository. See Pull Requests.

Git commands

The Git tool has many different commands, but there are several really
important ones that tend to get used as verbs in software development
conversations, and therefore are good to know:

	add

	Put a file onto the list of “things I want to commit” (see “commit”),
called “staging” the file.

	commit

	Save the changes in “staged” files into Git (since the last time you did
this), along with a user-provided description of what the changes mean
(called the “commit message”).

	push

	Move local committed changes to the Github-hosted “remote”
repository by “pushing” them across the network.

	pull

	Update your local files with changes from the Github-hosted
“remote” repository by “pulling” them across the network.

Note that the push and pull commands require Github (or some other service
that can host a remote copy of the repository).

Branches

There is a good description of what git branches are and how they work
here [https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is].
Understanding this takes a little study, but this pays off by making
git’s behavior much less mysterious. The short, practical version is
that a branch is a name for a series of commits that you want to group
together, and keep separable from other series of commits. From git’s perspective,
the branch is just a name for the first commit in that series.

It is recommended that you create new branches on which to develop your work,
and reserve the “master” branch for merging in work that has been completed
and approved on Github. One way to do this is to create branches that correspond
directly to issues on Github, and include the issue number in the branch name.

Forks

A fork is a copy of a repository, in the Github shared space (a copy of
a repository from Github down to your local disk is called a “clone”).
In this context, that means a copy of the “idaes-dev” repository from
the IDAES organization (https://github.com/IDAES/idaes-dev) to your
own user space, e.g., https://github.com/myname/idaes-dev). The
mechanics of creating and using forks on Github are given
here [https://help.github.com/articles/fork-a-repo/].

Pull Requests

A fundamental procedure in the development lifecycle is what is called a
“pull request”. Understanding what these are, and do, is important for
participating fully in the software development process. First,
understand that pull requests are for collaborative development (Github)
and not part of the core revision control functionality that is offered
by Git. The official Github description of pull requests is
here [https://help.github.com/articles/about-pull-requests]. However,
it gets technical rather quickly, so a higher-level explanation may be
helpful:

Pull requests are a mechanism that Github provides to look at what the
code on some branch from your fork of the repository would be like if it
were merged with the master branch in the main (e.g., idaes/idaes-dev)
repository. You can think of it as a staging area where the code is merged
and all the tests are run, without changing the target repository.
Everyone on the team can see a pull request, comment on it, and review
it.

 Github repository overview

Github repository overview

This section describes the layout of the
Github repositories [https://help.github.com/articles/about-repositories/].
Later sections will give guidelines for contributing code to these
repositories.

Repositories

	Repository name

	Public?

	Description

	idaes-pse

	Yes

	Main public
repository, including
core framework and
integrated tools

	idaes-dev

	No

	Main private
repository, where
code is contributed
before being
“mirrored” to the
public ideas-pse
repository

	workspace

	No

	Repository for code
that does not belong
to any particular
CRADA or NDA, but
also is never
intended to be
released open-source

The URL for an IDAES repository, e.g. “some-repo”, will be
https://github.com/IDAES/some-repo.

Public vs. Private

All these repositories except for “idaes-pse” will only be visible on
Github, on the web, for people who have been added to the IDAES
developer team in the IDAES “organization” (See About Github
organizations [https://help.github.com/articles/about-organizations/]).
If you are a member of the IDAES team and not in the IDAES Github organization,
please contact one of the core developers.
The idaes-pse repository will be visible to anyone, even
people without a Github account.

 Collaborative software development

Collaborative software development

This page gives guidance for all developers on the project.

Note

Many details here are targeted at members of the IDAES project team.
However, we strongly believe in the importance of transparency in the
project’s software practices and approaches. Also, understanding how we
develop the software internally should be generally useful to understand
the review process to expect for external contributors.

Although the main focus of this project is developing open source software (OSS),
it is also true that some of the software may be developed internally or in
coordination with industry under a CRADA or NDA.

It is the developer’s responsibility, for a given development effort,
to keep in mind what role you must assume and thus which set of procedures
must be followed.

	CRADA/NDA

	If you are developing software covered by a CRADA, NDA, or other legal
agreement that does not explicitly allow the data and/or code to be
released as open-source under the IDAES license, then you must follow
procedures under Developing Software with Proprietary Content.

	Internal

	If you are developing non-CRADA/NDA software, which is not intended to be
part of the core framework or (ever) released as open-source then follow procedures
under Developing Software for Internal Use.

	Core/open-source

	If you are developing software with no proprietary data or code, which
is intended to be released as open-source with the core framework, then follow
procedures under Developing software for Open-source Release.

Developing Software with Proprietary Content

Proprietary content is not currently being kept on Github, or any other collaborative
version control platform. When this changes, this section will be updated.

Developing Software for Internal Use

Software for internal use should be developed in the workspace repository of the
IDAES github organization. The requirements for reviews and testing of this code are
not as strict as for the idaes-dev repository, but otherwise the procedures are
the same as outlined for open-source development.

Developing software for Open-source Release

We can break the software development process into five distinct phases, illustrated in Figure 1
and summarized below:

	1. Setup: Prepare your local system for collaborative development

	2. Initiate: Notify collaborators of intent to make some changes

	3. Develop: Make local changes

	4. Collaborate: Push the changes to Github, get feedback and merge

[image: ../_images/sw-overview-workflow.png]
Figure 1. Overview of software development workflow

The rest of this page describes the what and how of each of these phases.

1. Setup

Before you can start developing software collaboratively,
you need to make sure you are set up in Github and set up your local development environment.

Github setup

To work within the project, you need to create a login on Github [https://github.com/]. You also
need to make sure that this login has been added to the IDAES organization by
contacting one of the core developers.

If these steps are successful, you should be able to login to Github, visit the
IDAES Github organization [https://github.com/IDAES/], and see “Private” repositories
such as idaes-dev and workspace.

Fork the repo

You use a “fork” of a repository (or “repo” for short) to create a space where you
can save changes without directly affecting the main repository. Then, as we will see,
you request that these changes be incorporated (after review).

This section assumes that the repository in question is idaes-dev,
but the idea is the same for any other repo.

You should first visit the repo on Github
by pointing your browser to https://github.com/IDAES/idaes-dev/. Then you should
fork the repo into a repo of the same name under your name.

[image: ../_images/github-fork-repo.png]
Figure 2. Screenshot showing where to click to fork the Github repo

Clone your fork

A “clone” is a copy of a Github repository on your local machine. This is what
you need to do in order to actually edit and change the files.
To make a clone of the fork you created in the previous step,
change to a directory where you want to put the source code and run the command:

git clone git@github.com:MYNAME/idaes-dev.git
cd idaes-dev

Of course, replace MYNAME with your login name. This will download all the files in
the latest version of the repository onto your local disk.

Note

After the git clone, subsequent git commands should be performed from
the “idaes-dev” directory.

Add upstream remote

In order to guarantee that your fork can be synchronized with the “main” idaes-dev
repo in the Github IDAES organization, you need to add a pointer to that repository
as a remote. This repository is called upstream (changes made there
by the whole team flow down to your fork), so we will use that name for it in our
command:

git remote add upstream git@github.com:IDAES/idaes-dev.git

Create the Python environment

Once you have the repo cloned, you can change into that directory (by default, it
will be called “idaes-dev” like the repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and
running. We use a Python packaging system called Conda [https://conda.io/].
Below are instructions for installing a minimal version of Conda, called Miniconda [https://conda.io/en/latest/miniconda.html].
The full version installs a large number of scientific analysis and visualization libraries
that are not required by the IDAES framework.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Create and activate a conda environment (along with its own copy of pip)
for the new IDAES installation (you will need to conda activate idaes
when you open a fresh terminal window and wish to use IDAES):

conda create -n idaes pip
conda activate idaes

Now that conda and pip are installed, and you are in the “idaes” conda environment,
you can run the standard steps for installing a Python package in development mode:

pip install -r requirements.txt
python setup.py develop

You can test that everything is installed properly by running the tests with
Pytest [https://pytest.org/]:

pytest

2. Initiate

We will call a set of changes that belong together, e.g. because they depend on
each other to work, a “topic”. This section describes how to start work on a new
topic. The workflow for initiating a topic is shown in Figure 3 below.

[image: ../_images/sw-init-workflow.png]
Figure 3. Initiate topic workflow

Create an issue on Github

To create an issue on Github, simply navigate to the repository page and click on
the “Issues” tab. Then click on the “Issues” button and fill in a title and brief
description of the issue. You do not need to list details about sub-steps required
for the issue, as this sort of information is better put in the (related) pull
request that you will create later. Assign the issue to the appropriate people,
which is often yourself.

There is one more important step to take, that will allow the rest of the project
to easily notice your issue: add the issue to the “Priorities” project. The screenshot
below shows where you need to click to do this.

[image: ../_images/github-issue-priority.png]
Figure 4. Screenshot for creating an issue on Github

Create a branch on your fork

It is certainly possible to do your work on your fork in the “master”
branch. The problem that can arise here is if you need to do two unrelated
things at the same time, for example working on a new feature and fixing
a bug in the current code. This can be quite tricky to manage as a single set
of changes, but very easy to handle by putting each new set of changes in
its own branch, which we call a topic branch.
When all the changes in the branch are done and merged, you can delete it
both locally and in your fork so you don’t end up with a bunch of old branches
cluttering up your git history.

The command for doing this is simple:

git checkout -b <BRANCH-NAME>

The branch name should be one word, with dashes or underscores as needed.
One convention for the name that can be helpful is to include the Issue number
at the end, e.g. git co -b mytopic-issue42. This is especially useful later
when you are cleaning up old branches, and you can quickly see which branches
are related to issues that are completed.

Make local edits and push changes

A new branch, while it feels like a change, is not really a change in the
eyes of Git or Github, and by itself will not allow you to start a new pull
request (which is the goal of this whole phase). The easiest thing to do is
a special “empty” commit:

git commit --allow-empty -m 'Empty commit so I can open a PR'

Since this is your first “push” to this branch, you are going to need to set an upstream
branch on the remote that should receive the changes. If this sounds complicated,
it’s OK because git actually gives you cut-and-paste instructions. Just run
the git push command with no other arguments:

$ git push
fatal: The current branch mybranch-issue3000 has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin mybranch-issue3000

Cut and paste the suggested command, and you’re ready to go. Subsequent
calls to “push” will not require any additional arguments to work.

Start a new Pull Request on Github

Finally, you are ready to initiate the pull request. Right after you perform the
push command above, head to the repository
URL in Github (https://github.com/IDAES/idaes-dev) and you should see a highlighted
bar below the tabs, as in Figure 5 below, asking if you want to start a pull-request.

[image: ../_images/github-start-pullrequest.png]
Figure 5. Screenshot for starting a Pull Request on Github

Click on this and fill in the requested information. Remember to link to the issue
you created earlier.

Depending on the Github plan, there may be a pull-down menu for creating the pull
request that lets you create a “draft” pull request. If that is not present, you
can signal this the old-fashioned way by adding “[WIP]” (for Work-in-Progress) at
the beginning of the pull request title.

Either way, create the pull request. Do not assign reviewers until you are done
making your changes (which is probably not now). This way the assigning of reviewers
becomes an unambiguous signal that the PR is actually ready for review.

Note

Avoid having pull requests that take months to complete. It is
better to divide up the work, even artificially, into a piece that
can be reviewed and merged into the main repository within a week or two.

3. Develop

The development process is a loop of adding code, testing and
debugging, and committing and pushing to Github. You may go through many (many!)
iterations of this loop before the code is ready for review. This workflow is
illustrated in Figure 6.

[image: ../_images/sw-dev-workflow.png]
Figure 6. Software development workflow

Running tests

After significant edits, you should make sure you have tests
for the new/changed functionality. This involves writing Unit tests as
well as running the test suite and examining the results of the Code coverage.

This project uses Pytest [https://pytest.org/] to help with running the unit tests. From the
top-level directory of the working tree, type:

pytest

Alternatively users of an IDE like PyCharm can run the tests from within the IDE.

Commit changes

The commands: git add, git status, and git commit are all used in combination to
save a snapshot of a Git project’s current state. 1.

The commit command is the equivalent of “saving” your changes. But unlike editing
a document, the set of changes may cover multiple files, including newly created
files. To allow the user flexibility in specifying exactly which changes to save
with each commit, the add command is used first to indicate files to “stage” for
the next commit command. The status command is used to show the current status
of the working tree.

A typical workflow goes like this:

$ ls
file1 file2
$ echo 'a' > file1 # edit existing file
$ echo '1' > file3 # create new file
$ git status --short # shows changed/unstaged and unknown file
 M file1
?? file3
$ git add file1 file3 # stage file1, file3 for commit
$ git status --short # M=modified, A=added
M file1
A file3
$ git commit -m "made some changes"
[master 067c16e] made some changes
2 files changed, 2 insertions(+)
create mode 100644 file3

Of course, in most IDEs you could use built-in commands for committing and adding
files. The basic flow would be the same.

Synchronize with upstream changes

Hopefully you are not the only one on the team doing work, and therefore you should
expect that the main repository may have new and changed content while you are in
the process of working. To synchronize with the latest content from the “upstream”
(IDAES organization) repository, you should periodically run one of the two following
commands:

git pull
OR -- explicit
git fetch --all
git merge upstream/master

You’ll notice that this merge command is using the name of the “upstream” remote
that you created earlier.

Push changes to Github

Once changes are tested and committed, they need to be
synchronized up to Github. This is done with the git push command, which typically
takes no options (assuming you have set up your fork, etc., as described so far):

git push

The output of this command on the console should be an informative, if slightly
cryptic, statement of how many changes were pushed and, at the bottom,
the name of your remote fork and the local/remote branches (which should be the
same). For example:

Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 528 bytes | 528.00 KiB/s, done.
Total 5 (delta 4), reused 0 (delta 0)
remote: Resolving deltas: 100% (4/4), completed with 4 local objects.
To github.com:dangunter/idaes-dev.git
 d535552..fe61fcc devdocs-issue65 -> devdocs-issue65

4. Collaborate

The collaboration phase of our journey, shown in Figure 7, is mostly about communicating what you
did to the other developers. Through the Github “review” mechanism, people will
be able to suggest changes and improvements. You can make changes to the code (other
people can also make changes, see Shared forks), and then push those
changes up into the same Pull Request. When you get enough approving reviews,
the code is merged into the master repository. At this point, you can delete the
“topic branch” used for the pull request, and go back to initiate your
next set of changes.

[image: ../_images/sw-collaborate-workflow.png]
Figure 7. Collaborate phase workflow

Request review

To request review of a pull request, navigate to the pull request in the main
(e.g., “idaes-dev”) repository and select some names in the “Reviewers”
pull-down on the right-hand side. You need to have two
approving reviews. The reviewers should get an email, but you can also “@” people
in a comment in the pull request to give them a little extra nudge.

See the full code review procedure for more details.

Make changes

You need to keep track of the comments and reviews, and make changes accordingly.
Think of a pull request as a discussion. Normally, the person who made the pull
request will make any requested edits. Occasionally, it may make sense for one
or more other developers to jump in and make edits too, so how to do this is
covered in the sub-section below.

Changes made while the code is being reviewed use the normal Develop
workflow.

Shared forks

Other developers can also make changes in your fork. All they need to do
is git clone your fork (not the main repository), switch to the correct
topic branch, and then git push work directly to that branch. Note since this
does not use the whole pull-request mechanism, all developers working on the
same branch this way need to make sure the git pull to synchronize with updates
from the other developers.

For example, if Jack wants to make some edits on Rose’s fork, on a topic
branch called “changes-issue51” he could do the following:

$ git clone https://github.com/rose/idaes-dev # clone Rose's fork
$ git checkout changes-issue51 # checkout the topic branch
$ echo "Hello" >> README.txt # make some important changes
$ pytest # always run tests!!
$ git add README.txt ; git commit -m "important changes"
$ git push # push changes to the fork

Hopefully it also is obvious that developers working this way have less safeguards
for overwriting each other’s work, and thus should make an effort to communicate
clearly and in a timely manner.

Merge

Once all the tests pass and you have enough approving reviews, it’s time to merge
the code! This is the easy part: go to the bottom of the Pull Request and hit the
big green “merge” button.

Before you close the laptop and go down to the pub, you should tidy up. First,
delete your local branch (you can also delete that branch on Github):

git checkout master # switch back to master branch
git branch -d mychanges-issue3000

Next, you should make sure your master reflects the current state of the main
master branch, i.e. go back and synchronize with the upstream remote,
i.e. run git pull.

Now you can go and enjoy a tasty beverage. Cheers!

[image: ../_images/beer-coffee-cheers-small.png]
Footnotes

	1

	Git has an additional saving mechanism called ‘the stash’.
The stash is an ephemeral storage area for changes that are not ready
to be committed. The stash operates on the working directory
and has extensive usage options.* See the documentation for
git stash [https://git-scm.com/docs/git-stash] for more information.

 Testing

Testing

Testing is essential to the process of creating software.
“If it isn’t tested, it doesn’t work” is a good rule of thumb.

For some specific advice for adding new tests in the IDAES code,
see IDAES contributor guide.

There are different kinds of tests: functional, acceptance, performance, usability.
We will primarily concern ourselves with functional testing here, i.e. whether the
thing being tested produces correct outputs for expected inputs, and gracefully handles
everything else. Within functional testing, we can classify
the testing according to the axes of time,
i.e. how long the test takes to run, and scope, i.e. the amount of the total
functionality being tested. Along these two axes we will pick out just two
points, as depicted in Figure 1. The main tests you will write are “unit tests”,
which run very quickly and test a focused amount of functionality. But sometimes
you need something more involved (e.g. running solvers, using data on disk), and here
we will label that kind of test “integration tests”.

[image: ../_images/testing-conceptual.png]
Figure 1. Conceptual space of functional testing

Unit tests

Testing individual pieces of functionality, including the
ability to report the correct kind of errors from bad inputs. Unit tests
must always run quickly. If it takes more than 10 seconds, it is not a unit
test, and it is expected that most unit tests take well under 1 second.
The reason for this is that the entire unit test suite is run on every
change in a Pull Request, and should also be run relatively frequently
on local developer machines. If this suite of hundreds of tests takes
more than a couple of minutes to run, it will introduce a significant
bottleneck in the development workflow.

For Python code, we use the pytest testing framework. This is
compatible with the built-in Python unittest [https://docs.python.org/3.7/library/unittest.html]
framework, but has many nice features that make it easier and more powerful.

The best way to learn how to use pytest is to look at existing unit tests, e.g.
the file “idaes/core/tests/test_process_block.py”. Test files are
found in a directory named “test/” in every Python package (directory with an “__init__.py”).
The tests are named “test_{something}.py”; this naming convention is important so
pytest can automatically find all the tests.

When writing your own tests, make sure to remember to keep each test
focused on a single piece of functionality. If a unit test
fails, it should be obvious which code is causing the problem.

Mocking

Mocking is a common, but important, technique for avoiding dependencies that make your tests
slow, fragile, and harder to understand. The basic idea is to
replace dependencies with fake, or “mock”, versions of them that will provide just
enough realism for the test. Python provides a library, unittest.mock [https://docs.python.org/dev/library/unittest.mock.html],
to help with this process by providing objects that can report how they were used,
and easily pretend to have certain functionality (returning, for example, fixed values).
To make this all more concrete, consider a simple problem where you want to test
a function that makes a system call (in this case, os.remove):

file: mymodule.py
import os
def rm(filename):
 os.remove(filename)

Normally, to test this you would create a temporary file, and then see if it got
removed. However, with mocking you can take a different approach entirely:

file: test_mymodule.py
from mymodule import rm
from unittest import mock

@mock.patch('mymodule.os')
def test_rm(mock_os):
 rm("any path")
 # test that rm called os.remove with the right parameters
 mock_os.remove.assert_called_with("any path")

Here, we have “patched” the os module that got imported into “mymodule” (note: had
to do mymodule.os instead of simply os, or the one mymodule uses would not get patched)
so that when rm calls os.remove, it is really calling a fake method in mock_os
that does nothing but record how it was called. The patched module is passed in to
the test as an argument so you can examine it. So, now, you are not doing any OS
operations at all! You can imagine how this is very useful with large files or
external services.

Integration tests

Integration tests exercise an end-to-end slice of the overall functionality. At this
time, the integration tests are all housed in Jupyter Notebooks, which serve
double-duty as examples and tutorials for end users. We execute these notebooks
and verify that they run correctly to completion at least once before each new
release of the software.

Code coverage

The “coverage” of the code refers to what percentage of
the code (“lines covered” divided by total lines) is executed by the
automated tests. This is important because passing automated tests is
only meaningful if the automated tests cover the majority of the code’s
behavior. This is not a perfect measure, of course, since simply
executing a line of code under one condition does not mean it would
execute correctly under all conditions. The code coverage is evaluated
locally and then integrated with Github through a tool called Coveralls [https://coveralls.io].

 Code Review

Code Review

“It’s a simple 3-step process. Step one: Fix! Step two: It! Step three:
Fix it!” – Oscar Rogers (Kenan Thompson), Saturday Night Live, 2/2009

Code review is the last line of defense between a mistake that the IDAES
team will see and a mistake the whole world will see. In the case of
that mistake being a leak of proprietary information, the entire project
is jeopardized, so we need to take this process seriously.

Summary

Warning

This section is an incomplete set of notes

Every piece of code must be reviewed by at least two people.

In every case, one of those people will be a designated “gatekeeper” and
the one or more others will be “technical reviewers”.

The technical reviewers are expected to consider various aspects of the
proposed changes (details below), and engage the author in a discussion
on any aspects that are deemed lacking or missing.

The gatekeeper is expected to make sure all criteria have been met, and
actually merge the PR.

Assigning Roles

The gatekeeper is a designated person, who will always be added to
review a Pull Request (PR)

Gatekeeper is a role that will be one (?) person for some period like a
week or two weeks

The role should rotate around the team, it’s expected to be a fair
amount of work and should be aligned with availability and paper
deadlines, etc.

The originator of the PR will add as reviewers the gatekeeper and 1+
technical reviewers.

Originator responsibilities

The originator of the PR should include in the PR itself information
about where to find:

Changes to code/data

Tests of the changes

Documentation of the changes

The originator should be responsive to the reviewers

Technical reviewer responsibilities

The technical reviewer(s) should look at the proposed changes for

Technical correctness (runs properly, good style, internal code
documentation, etc.)

Tests

Documentation

No proprietary / sensitive information

Until they approve, the conversation in the PR is between the technical
reviewers and the originator (the gatekeeper is not required to
participate, assuming they have many PRs to worry about)

Gatekeeper responsibilities

The gatekeeper does not need to engage until there is at least one
approving technical review.

Once there is, they should verify that:

Changes do not contain proprietary data

Tests are adequate and do not fail

Documentation is adequate

Once everything is verified, the gatekeeper merges the PR

Automated Checks

The first level of code review is a set of automated checks that must pass
before the code is ready for people to review it. These checks will run
on the initiation of a pull request and on every new commit to that pull
request that is pushed to Github (thus the name “continuous
integration”).

The “continuous integration” of the code is hosted by an online service
– we use CircleCI [https://circleci.com] – that can automatically
rerun the tests after every change (in this case, every new Pull Request
or update to the code in an existing Pull Request) and report the
results back to Github for display in the web pages. This status
information can then be used as an automatic gatekeeper on whether the
code can be merged into the master branch – if tests fail, then no merge
is allowed. Following this procedure, it is not possible for the master
branch to ever be failing its own tests.

 Docker container

Docker container

This page documents information needed by developers for working with the IDAES
docker container.

As is expected by Docker, the main file for creating the Docker
image is the “Dockerfile” in the top-level directory.

docker-idaes script

You can build new Docker images using the create option to the
docker-idaes script. For example:

./docker-idaes create

You need to have the IDAES installation activated. The script will automatically
find the current version and attempt to build a Docker image with the same version.
If it detects an existing image, it will skip the image build. Next, the script will
try to use docker save to save the image as a compressed archive. This will
also be skipped if an existing image file, with the same version as the “idaes”
Python package, is detected.

Pushing an image to S3

The Docker images are stored on Amazon S3. Before you can upload a new image,
you need to be part of the “IDAES-admin” group that is part of Amazon’s
IAM (Identity Access Management) system. Please contact one of the core
developers to learn how to join this IAM group.

Once you have the IAM keys, you need to create a file ~/.aws/credentials
that has the access key id and key from the IAM account. It will look like this:

[default]
aws_access_key_id = IDGOESHERE
aws_secret_access_key = accesskeygoeshere

The values for the ID and Access key are available from the AWS “IAM”
service console.

Next you need to use the AWS command-line tools to copy the local image
up to Amazon S3. For example, if the image was version “1.0.1”, you would
use the following command:

aws s3 cp idaes-pse-docker-1.0.1.tgz \
 s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz

If the new image should be the latest, you also need to do an S3 -> S3 copy to
create a new latest image:

aws s3 cp s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz \
 s3://idaes/idaes-pse/idaes-pse-docker-latest.tgz

 IDAES contributor guide

IDAES contributor guide

About

This page tries to give all the essential information needed
to contribute software to the IDAES project. It is designed
to be useful to both internal and external collaborators.

Code and other file locations

	Source code

	The main Python package is under the idaes/ directory.
Sub-directories, aka subpackages, should be documented elsewhere.
If you add a new directory in this tree, be sure to add a __init__.py in that directory
so Python knows it is a subpackage with Python modules.
Code that is not part of the core package is under apps/. This code can have any
layout that the creator wants.

	Documentation

	The documentation for the core package is under docs.

	Examples

	Examples are under the examples/ directory.
Tutorials from workshops are under the examples/workshops/ subdirectory.

Developer environment

Development of IDAES will require an extra set of required package not needed by regular users.
To install those extra developer tools use the command pip install -r requirements-dev.txt
rather than pip install -r requirements.txt

Code style

The code style is not entirely consistent. But some general guidelines are:

	follow the PEP8 [https://www.python.org/dev/peps/pep-0008/] style (or variants such as Black [https://github.com/python/black])

	use Google-style [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html] docstrings on classes, methods, and functions

	format your docstrings as reStructuredText [http://docutils.sourceforge.net/rst.html] so they can be nicely rendered as HTML by Sphinx

	add logging to your code by creating and using a global log object named
for the module, which can be created like: _log = logging.getLogger(__name__)

	take credit by adding a global author variable: __author__ = 'yourname'

Tests

For general information about writing tests in Python, see Testing.

There are three types of tests:

	Python source code

	The Python tests are integrated into the Python source code directories.
Every package (directory with .py modules and an __init__.py file)
should also have a tests/ sub-package, in which are test files. These,
by convention are named test_<something>.py.

	Doctests

	With some special reStructuredText “directives” (see “Writing tests”), the documentation
can contain tests. This is particularly useful for making sure examples in the
documentation still run without errors.

	Jupyter notebook tests

	(coming soon)

Writing tests

We use pytest [https://docs.pytest.org/en/latest/] to run our tests. The main advantage of this framework over
the built-in unittest that comes with Python is that almost no boilerplate
code is required. You write a function named test_<something>() and,
inside it, use the (pytest-modified) assert keyword to check that things
are correct.

Writing the Python unit tests in the tests/ directory is,
hopefully, quite straightforward.
Here is an example (out of context) that tests a couple of
things related to configuration in the core unit model library:

def test_config_block():
 m = ConcreteModel()

 m.u = Unit()

 assert len(m.u. config) == 2
 assert m.u.config.dynamic == useDefault

See the existing tests for many more examples.

For tests in the documentation, you need to wrap the test itself
in a directive called testcode. Here is an example:

.. testcode::

 from pyomo.environ import *
 from pyomo.common.config import ConfigValue
 from idaes.core import ProcessBlockData, declare_process_block_class

 @declare_process_block_class("MyBlock")
 class MyBlockData(ProcessBlockData):
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
 CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
 def build(self):
 super(MyBlockData, self).build()
 self.x = Var(initialize=self.config.xinit)
 self.y = Var(initialize=self.config.yinit)

First, note that reStructuredText directive and indented Python code. The indentation of the
Python code is important. You have to write an entire program here, so all the
imports are necessary (unless you use the testsetup and testcleanup directives,
but honestly this isn’t worth it unless you are doing a lot of tests in one file).
Then you write your Python code as usual.

Running tests

Running all tests is done by, at the top directory, running the command: pytest.

The documentation test code will actually be run by a special hook in the pytest configuration that
treats the Makefile like a special kind of test.
As a result, when you run pytest in any way
that includes the “docs/” directory (including the all tests mode), then all the documentation tests will run,
and errors/etc. will be reported through pytest. A useful corollary is that, to run
documentation tests, do: pytest docs/Makefile

You can run specific tests using the pytest syntax, see its documentation or pytest -h for details.

Documentation

The documentation is built from its sources with a tool called Sphinx.
The sources for the documentation are:

	hand-written text files, under docs/, with the extension “.rst” for reStructuredText [http://docutils.sourceforge.net/rst.html].

	the Python source code

	selected Jupyter Notebooks

Building documentation

Note

To build the documentation locally, you will need to have the Sphinx tools installed.
This will be done for you by running pip install requirements-dev.txt (“developer” setup)
as opposed to the regular pip install requirements.txt (“user” setup).

To build the documentation locally, use our custom build.py script.

cd docs
python build.py

The above commands will do a completely clean build to create HTML output.

If the command succeeds, the final line will look like:

=== SUCCESS

If it fails, it will instead print something like:

*** ERROR in 'html'

*** message about the command that failed
*** and any additional info

If you want to see the commands actually being run, add -v to the command line.

By default the build command removes all existing built files before running the
Sphinx commands. To turn this off, and rebuild only “new” things, add –dirty
to the command line.

Previewing documentation

The generated documentation can be previewed locally by opening
the generated HTML files in a web browser. The files are under the docs/build/
directory, so you can open the file docs/build/index.html to get started.

 Glossary

Glossary

	API

	Acronym for “Application Programming Interface”, this is the
set of functions used by an external program to invoke the
functionality of a library or application. For IDAES, it usually
refers to Python functions and classes/methods in a Python module.
By analogy, the APIs are to the IDAES library what a steering wheel,
gearshift and pedals are to a car.

	CRADA

	Cooperative Research and Development Agreement. A legal agreement between
two or more parties that involves a statement of work and terms for sharing
non-public data.

	NDA

	Non-Disclosure Agreement. A legal agreement between two or more parties
that involves terms for sharing non-public data.

 License

License

Institute for the Design of Advanced Energy Systems Process Systems Engineering
Framework (IDAES PSE Framework) Copyright (c) 2019, by the software owners: The
Regents of the University of California, through Lawrence Berkeley National
Laboratory, National Technology & Engineering Solutions of Sandia, LLC,
Carnegie Mellon University, West Virginia University Research Corporation, et al.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the Institute for the Design of Advanced Energy Systems
(IDAES), University of California, Lawrence Berkeley National Laboratory,
National Technology & Engineering Solutions of Sandia, LLC, Sandia National
Laboratories, Carnegie Mellon University, West Virginia University Research
Corporation, U.S. Dept. of Energy, nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
(“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory,
without imposing a separate written license agreement for such Enhancements,
then you hereby grant Lawrence Berkeley National Laboratory the following
license: a non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof, in
binary and source code form.

 Copyright

Copyright

Institute for the Design of Advanced Energy Systems Process Systems Engineering
Framework (IDAES PSE Framework) was produced under the DOE Institute for the
Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2019 by the
software owners: The Regents of the University of California, through Lawrence
Berkeley National Laboratory, National Technology & Engineering Solutions of
Sandia, LLC, Carnegie Mellon University, West Virginia University Research
Corporation, et al. All rights reserved.

NOTICE. This Software was developed under funding from the U.S. Department of
Energy and the U.S. Government consequently retains certain rights. As such, the
U.S. Government has been granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in the Software to
reproduce, distribute copies to the public, prepare derivative works, and
perform publicly and display publicly, and to permit other to do so. Copyright
(C) 2018-2019 IDAES - All Rights Reserved

 Python Module Index

 Python Module Index

 a |
 i

 		 	

 		
 a	

 	[image: -]
 	
 apps	

 	
 	
 apps.matopt.materials.canvas	

 	
 	
 apps.matopt.materials.design	

 	
 	
 apps.matopt.materials.lattices.lattice	

 	
 	
 apps.matopt.opt.mat_modeling	

 		 	

 		
 i	

 	[image: -]
 	
 idaes	

 	
 	
 idaes.core.control_volume0d	

 	
 	
 idaes.core.control_volume1d	

 	
 	
 idaes.core.control_volume_base	

 	
 	
 idaes.core.flowsheet_model	

 	
 	
 idaes.core.plugins.variable_replace	

 	
 	
 idaes.core.process_base	

 	
 	
 idaes.core.process_block	

 	
 	
 idaes.core.property_base	

 	
 	
 idaes.core.reaction_base	

 	
 	
 idaes.core.unit_model	

 	
 	
 idaes.core.util.dyn_utils	

 	
 	
 idaes.core.util.homotopy	

 	
 	
 idaes.core.util.initialization	

 	
 	
 idaes.core.util.model_serializer	

 	
 	
 idaes.core.util.model_statistics	

 	
 	
 idaes.core.util.scaling	

 	
 	
 idaes.core.util.tables	

 	
 	
 idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack	

 	
 	
 idaes.generic_models.properties.cubic_eos.cubic_prop_pack	

 	
 	
 idaes.generic_models.properties.iapws95	

 	
 	
 idaes.generic_models.unit_models.cstr	

 	
 	
 idaes.generic_models.unit_models.equilibrium_reactor	

 	
 	
 idaes.generic_models.unit_models.feed	

 	
 	
 idaes.generic_models.unit_models.feed_flash	

 	
 	
 idaes.generic_models.unit_models.flash	

 	
 	
 idaes.generic_models.unit_models.gibbs_reactor	

 	
 	
 idaes.generic_models.unit_models.heat_exchanger_1D	

 	
 	
 idaes.generic_models.unit_models.heater	

 	
 	
 idaes.generic_models.unit_models.mixer	

 	
 	
 idaes.generic_models.unit_models.plug_flow_reactor	

 	
 	
 idaes.generic_models.unit_models.pressure_changer	

 	
 	
 idaes.generic_models.unit_models.product	

 	
 	
 idaes.generic_models.unit_models.separator	

 	
 	
 idaes.generic_models.unit_models.statejunction	

 	
 	
 idaes.generic_models.unit_models.stoichiometric_reactor	

 	
 	
 idaes.generic_models.unit_models.translator	

 	
 	
 idaes.power_generation.unit_models.feedwater_heater_0D	

 	
 	
 idaes.power_generation.unit_models.turbine_inlet	

 	
 	
 idaes.power_generation.unit_models.turbine_multistage	

 	
 	
 idaes.power_generation.unit_models.turbine_outlet	

 	
 	
 idaes.power_generation.unit_models.turbine_stage	

 	
 	
 idaes.power_generation.unit_models.valve_steam	

 	
 	
 idaes.surrogate.pysmo.kriging	

 	
 	
 idaes.surrogate.pysmo.polynomial_regression	

 	
 	
 idaes.surrogate.pysmo.radial_basis_function	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

Symbols

 	
 	
 --by value

 	dmf-find command line option

 	
 --color

 	dmf-ls command line option

 	dmf-related command line option

 	dmf-status command line option

 	
 --contained resource

 	dmf-register command line option

 	
 --create

 	dmf-init command line option

 	idaes-bin-directory command line option

 	idaes-data-directory command line option

 	idaes-lib-directory command line option

 	
 --created value

 	dmf-find command line option

 	
 --derived resource

 	dmf-register command line option

 	
 --desc

 	dmf-init command line option

 	
 --exists

 	idaes-bin-directory command line option

 	idaes-data-directory command line option

 	idaes-lib-directory command line option

 	
 --file value

 	dmf-find command line option

 	
 --help

 	idaes-bin-directory command line option

 	idaes-copyright command line option

 	idaes-data-directory command line option

 	idaes-get-examples command line option

 	idaes-get-extensions command line option

 	idaes-lib-directory command line option

 	
 --is-subject

 	dmf-register command line option

 	
 --list,--no-list

 	dmf-rm command line option

 	
 --modified value

 	dmf-find command line option

 	
 --multiple

 	dmf-info command line option

 	dmf-rm command line option

 	
 --name

 	dmf-init command line option

 	
 --name value

 	dmf-find command line option

 	
 --no-color

 	dmf-ls command line option

 	dmf-related command line option

 	dmf-status command line option

 	
 --no-copy

 	dmf-register command line option

 	
 --no-prefix

 	dmf-ls command line option

 	
 --no-unicode

 	dmf-related command line option

 	
 --no-unique

 	dmf-register command line option

 	
 	
 --output value

 	dmf-find command line option

 	
 --prev resource

 	dmf-register command line option

 	
 --quiet

 	command line option

 	dmf command line option

 	
 --strict

 	dmf-register command line option

 	
 --type value

 	dmf-find command line option

 	
 --unicode

 	dmf-related command line option

 	
 --url

 	idaes-get-extensions command line option

 	
 --used resource

 	dmf-register command line option

 	
 --verbose

 	command line option

 	dmf command line option

 	
 --version

 	dmf-register command line option

 	
 -a,--all

 	dmf-status command line option

 	
 -d,--dir TEXT

 	idaes-get-examples command line option

 	
 -d,--direction

 	dmf-related command line option

 	
 -f,--format value

 	dmf-info command line option

 	
 -I, --no-install

 	idaes-get-examples command line option

 	
 -l, --list-releases

 	idaes-get-examples command line option

 	
 -N, --no-download

 	idaes-get-examples command line option

 	
 -q

 	command line option

 	dmf command line option

 	
 -r,--reverse

 	dmf-ls command line option

 	
 -s,--show

 	dmf-ls command line option

 	
 -s,--show info

 	dmf-status command line option

 	
 -S,--sort

 	dmf-ls command line option

 	
 -t,--type

 	dmf-register command line option

 	
 -U, --unstable

 	idaes-get-examples command line option

 	
 -v

 	command line option

 	dmf command line option

 	
 -V, --version TEXT

 	idaes-get-examples command line option

 	
 -y,--yes

 	dmf-rm command line option

_

 	
 	__init__() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	(idaes.surrogate.pysmo.sampling.CVTSampling method)

 	(idaes.surrogate.pysmo.sampling.HaltonSampling method)

 	(idaes.surrogate.pysmo.sampling.HammersleySampling method)

 	(idaes.surrogate.pysmo.sampling.LatinHypercubeSampling method)

 	(idaes.surrogate.pysmo.sampling.UniformSampling method)

A

 	
 	activated_block_component_generator() (in module idaes.core.util.model_statistics)

 	activated_blocks_set() (in module idaes.core.util.model_statistics)

 	activated_constraints_generator() (in module idaes.core.util.model_statistics)

 	activated_constraints_set() (in module idaes.core.util.model_statistics)

 	activated_equalities_generator() (in module idaes.core.util.model_statistics)

 	activated_equalities_set() (in module idaes.core.util.model_statistics)

 	activated_inequalities_generator() (in module idaes.core.util.model_statistics)

 	activated_inequalities_set() (in module idaes.core.util.model_statistics)

 	activated_objectives_generator() (in module idaes.core.util.model_statistics)

 	activated_objectives_set() (in module idaes.core.util.model_statistics)

 	active_variables_in_deactivated_blocks_set() (in module idaes.core.util.model_statistics)

 	ActivityCoeffParameterBlock (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	ActivityCoeffStateBlock (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	ActivityCoeffStateBlockData (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	add_adiabatic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_energy_balances() (idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_energy_mixing_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_energy_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_geometry() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_inlet_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_inlet_port_objects() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_inlet_state_blocks() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_isothermal() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_material_balances() (idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_material_mixing_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_material_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_mixed_state_block() (idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_momentum_balances() (idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_momentum_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_outlet_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_outlet_port_objects() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_outlet_state_blocks() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_phase_component_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_phase_energy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_phase_enthalpy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_phase_momentum_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_phase_pressure_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	
 	add_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_port_objects() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pressure_equality_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pressure_minimization_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pump() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_reaction_blocks() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_split_fractions() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_state_blocks() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_state_material_balances() (idaes.core.unit_model.UnitModelBlockData method)

 	add_total_component_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_element_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_energy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_enthalpy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_material_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_momentum_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	add_total_pressure_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	
 alamo

 	alamopy, [1]

 	
 alamopy

 	alamo, [1]

 	API

 	apply_transformation() (idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	apps.matopt.materials.canvas (module)

 	apps.matopt.materials.design (module)

 	apps.matopt.materials.lattices.lattice (module)

 	apps.matopt.opt.mat_modeling (module)

 	arcs_to_stream_dict() (in module idaes.core.util.tables)

 	atoms (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(apps.matopt.opt.mat_modeling.MatOptModel attribute)

B

 	
 	badly_scaled_var_generator() (in module idaes.core.util.scaling)

 	base_class_module() (idaes.core.process_block.ProcessBlock class method)

 	base_class_name() (idaes.core.process_block.ProcessBlock class method)

 	binary (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	
 BoilerHeatExchanger

 	idaes.power_generation.unit_models.boiler_heat_exchanger

 	BoilerHeatExchanger (class in idaes.power_generation.unit_models.boiler_heat_exchanger)

 	BoilerHeatExchangerData (class in idaes.power_generation.unit_models.boiler_heat_exchanger)

 	bound() (idaes.core.util.model_serializer.StoreSpec class method)

 	bounds (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	build() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.control_volume_base.ControlVolumeBlockData method)

 	(idaes.core.flowsheet_model.FlowsheetBlockData method)

 	(idaes.core.process_base.ProcessBlockData method)

 	(idaes.core.property_base.PhysicalParameterBlock method)

 	(idaes.core.property_base.StateBlockData method)

 	(idaes.core.reaction_base.ReactionBlockDataBase method)

 	(idaes.core.reaction_base.ReactionParameterBlock method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.generic_models.control.pid_controller.PIDBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	(idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData method)

 	(idaes.generic_models.properties.iapws95.Iapws95StateBlockData method)

 	(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	(idaes.generic_models.unit_models.cstr.CSTRData method)

 	(idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData method)

 	(idaes.generic_models.unit_models.feed.FeedData method)

 	(idaes.generic_models.unit_models.feed_flash.FeedFlashData method)

 	(idaes.generic_models.unit_models.flash.FlashData method)

 	(idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData method)

 	(idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData method)

 	(idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData method)

 	(idaes.generic_models.unit_models.heater.HeaterData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.plug_flow_reactor.PFRData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.product.ProductData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.generic_models.unit_models.statejunction.StateJunctionData method)

 	(idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData method)

 	(idaes.generic_models.unit_models.translator.TranslatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

 	(idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData method)

 	(idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData method)

 	(idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData method)

 	(idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData method)

 	(idaes.power_generation.unit_models.turbine_stage.TurbineStageData method)

 	(idaes.power_generation.unit_models.valve_steam.SteamValveData method)

C

 	
 	calculate_bubble_point_pressure() (idaes.core.property_base.StateBlockData method)

 	calculate_bubble_point_temperature() (idaes.core.property_base.StateBlockData method)

 	calculate_dew_point_pressure() (idaes.core.property_base.StateBlockData method)

 	calculate_dew_point_temperature() (idaes.core.property_base.StateBlockData method)

 	calculate_scaling_factors() (in module idaes.core.util.scaling)

 	canv (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(apps.matopt.opt.mat_modeling.MatOptModel attribute)

 	Canvas (class in apps.matopt.materials.canvas)

 	
 command line option

 	--quiet

 	--verbose

 	-q

 	-v

 	confDs (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(apps.matopt.opt.mat_modeling.MatOptModel attribute)

 	constraint_fd_autoscale() (in module idaes.core.util.scaling)

 	ControlVolume (class in idaes.core.control_volume_base)

 	
 	ControlVolume0DBlock (class in idaes.core.control_volume0d)

 	ControlVolume0DBlockData (class in idaes.core.control_volume0d)

 	ControlVolume1DBlock (class in idaes.core.control_volume1d)

 	ControlVolume1DBlockData (class in idaes.core.control_volume1d)

 	ControlVolumeBlockData (class in idaes.core.control_volume_base)

 	copy_non_time_indexed_values() (in module idaes.core.util.dyn_utils)

 	copy_values_at_time() (in module idaes.core.util.dyn_utils)

 	CRADA

 	create_inlet_list() (idaes.generic_models.unit_models.mixer.MixerData method)

 	create_outlet_list() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	create_stream_table_dataframe() (in module idaes.core.util.tables)

 	CSTR (class in idaes.generic_models.unit_models.cstr)

 	CSTRData (class in idaes.generic_models.unit_models.cstr)

 	CubicParameterData (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CubicStateBlock (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CubicStateBlockData (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CVTSampling (class in idaes.surrogate.pysmo.sampling)

D

 	
 	data_scaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling static method)

 	data_scaling_minmax() (idaes.surrogate.pysmo.radial_basis_function.FeatureScaling static method)

 	data_unscaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling static method)

 	data_unscaling_minmax() (idaes.surrogate.pysmo.radial_basis_function.FeatureScaling static method)

 	deactivate_constraints_unindexed_by() (in module idaes.core.util.dyn_utils)

 	deactivate_model_at() (in module idaes.core.util.dyn_utils)

 	deactivated_blocks_set() (in module idaes.core.util.model_statistics)

 	deactivated_constraints_generator() (in module idaes.core.util.model_statistics)

 	deactivated_constraints_set() (in module idaes.core.util.model_statistics)

 	deactivated_equalities_generator() (in module idaes.core.util.model_statistics)

 	deactivated_equalities_set() (in module idaes.core.util.model_statistics)

 	deactivated_inequalities_generator() (in module idaes.core.util.model_statistics)

 	deactivated_inequalities_set() (in module idaes.core.util.model_statistics)

 	deactivated_objectives_generator() (in module idaes.core.util.model_statistics)

 	deactivated_objectives_set() (in module idaes.core.util.model_statistics)

 	declare_process_block_class() (in module idaes.core.process_block)

 	define_display_vars() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	define_metadata() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData class method)

 	(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData class method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData class method)

 	define_port_members() (idaes.core.property_base.StateBlockData method)

 	define_state_vars() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	degrees_of_freedom() (in module idaes.core.util.model_statistics)

 	delta_temperature_amtd_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	delta_temperature_lmtd_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	delta_temperature_underwood_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	derivative_variables_set() (in module idaes.core.util.model_statistics)

 	Design (class in apps.matopt.materials.design)

 	
 DMF

 	dmf

 	
 dmf

 	DMF

 	Help

 	
 dmf command line option

 	--quiet

 	--verbose

 	-q

 	-v

 	
 dmf-find command line option

 	--by value

 	--created value

 	--file value

 	--modified value

 	--name value

 	--output value

 	--type value

 	
 	
 dmf-info command line option

 	--multiple

 	-f,--format value

 	identifier

 	
 dmf-init command line option

 	--create

 	--desc

 	--name

 	path

 	
 dmf-ls command line option

 	--color

 	--no-color

 	--no-prefix

 	-S,--sort

 	-r,--reverse

 	-s,--show

 	
 dmf-register command line option

 	--contained resource

 	--derived resource

 	--is-subject

 	--no-copy

 	--no-unique

 	--prev resource

 	--strict

 	--used resource

 	--version

 	-t,--type

 	
 dmf-related command line option

 	--color

 	--no-color

 	--no-unicode

 	--unicode

 	-d,--direction

 	
 dmf-rm command line option

 	--list,--no-list

 	--multiple

 	-y,--yes

 	identifier

 	
 dmf-status command line option

 	--color

 	--no-color

 	-a,--all

 	-s,--show info

E

 	
 	EquilibriumReactor (class in idaes.generic_models.unit_models.equilibrium_reactor)

 	
 	EquilibriumReactorData (class in idaes.generic_models.unit_models.equilibrium_reactor)

 	expressions_set() (in module idaes.core.util.model_statistics)

F

 	
 	FeatureScaling (class in idaes.surrogate.pysmo.polynomial_regression)

 	(class in idaes.surrogate.pysmo.radial_basis_function)

 	Feed (class in idaes.generic_models.unit_models.feed)

 	FeedData (class in idaes.generic_models.unit_models.feed)

 	FeedFlash (class in idaes.generic_models.unit_models.feed_flash)

 	FeedFlashData (class in idaes.generic_models.unit_models.feed_flash)

 	fix_initial_conditions() (idaes.core.process_base.ProcessBlockData method)

 	fix_state_vars() (in module idaes.core.util.initialization)

 	fix_vars_unindexed_by() (in module idaes.core.util.dyn_utils)

 	fixed_unused_variables_set() (in module idaes.core.util.model_statistics)

 	fixed_variables_generator() (in module idaes.core.util.model_statistics)

 	fixed_variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	fixed_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	fixed_variables_set() (in module idaes.core.util.model_statistics)

 	Flash (class in idaes.generic_models.unit_models.flash)

 	FlashData (class in idaes.generic_models.unit_models.flash)

 	flowsheet() (idaes.core.process_base.ProcessBlockData method)

 	
 FlowsheetBlock

 	idaes.core.flowsheet_model

 	
 	FlowsheetBlock (class in idaes.core.flowsheet_model)

 	
 FlowsheetBlockData

 	idaes.core.flowsheet_model

 	FlowsheetBlockData (class in idaes.core.flowsheet_model)

 	
 FlueGasParameterBlock

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasParameterData

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasStateBlock

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasStateBlockData

 	idaes.power_generation.properties.IdealProp_FlueGas

 	from_json() (in module idaes.core.util.model_serializer)

 	
 FWH0D

 	idaes.power_generation.unit_models.feedwater_heater_0D

 	
 FWHCondensing0D

 	idaes.power_generation.unit_models.feedwater_heater_0D

 	FWHCondensing0D (class in idaes.power_generation.unit_models.feedwater_heater_0D)

 	FWHCondensing0DData (class in idaes.power_generation.unit_models.feedwater_heater_0D)

G

 	
 	generate_expression() (idaes.surrogate.pysmo.polynomial_regression.ResultReport method)

 	generate_table() (in module idaes.core.util.tables)

 	get_activity_dict() (in module idaes.core.util.dyn_utils)

 	get_class_attr_list() (idaes.core.util.model_serializer.StoreSpec method)

 	get_data_class_attr_list() (idaes.core.util.model_serializer.StoreSpec method)

 	get_derivatives_at() (in module idaes.core.util.dyn_utils)

 	get_energy_density_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_energy_diffusion_terms() (idaes.core.property_base.StateBlockData method)

 	get_enthalpy_flow_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_feature_vector() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	get_index_set_except() (in module idaes.core.util.dyn_utils)

 	
 	get_material_density_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_material_diffusion_terms() (idaes.core.property_base.StateBlockData method)

 	get_material_flow_basis() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_material_flow_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_mixed_state_block() (idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	get_phase_component_set() (idaes.core.property_base.PhysicalParameterBlock method)

 	get_reaction_rate_basis() (idaes.core.reaction_base.ReactionBlockDataBase method)

 	GibbsReactor (class in idaes.generic_models.unit_models.gibbs_reactor)

 	GibbsReactorData (class in idaes.generic_models.unit_models.gibbs_reactor)

 	grad_fd() (in module idaes.core.util.scaling)

H

 	
 	HaltonSampling (class in idaes.surrogate.pysmo.sampling)

 	HammersleySampling (class in idaes.surrogate.pysmo.sampling)

 	
 Heater

 	idaes.generic_models.unit_models.heater

 	Heater (class in idaes.generic_models.unit_models.heater)

 	HeaterData (class in idaes.generic_models.unit_models.heater)

 	
 HeatExchanger

 	idaes.generic_models.unit_models.heat_exchanger

 	HeatExchanger (class in idaes.generic_models.unit_models.heat_exchanger)

 	
 	HeatExchanger1D (class in idaes.generic_models.unit_models.heat_exchanger_1D)

 	HeatExchanger1DData (class in idaes.generic_models.unit_models.heat_exchanger_1D)

 	HeatExchangerData (class in idaes.generic_models.unit_models.heat_exchanger)

 	
 Help

 	dmf

 	
 Home

 	idaes

 	homotopy() (in module idaes.core.util.homotopy)

 	htpx() (in module idaes.generic_models.properties.iapws95)

I

 	
 	Iapws95ParameterBlock (class in idaes.generic_models.properties.iapws95)

 	Iapws95ParameterBlockData (class in idaes.generic_models.properties.iapws95)

 	
 Iapws95StateBlock

 	idaes.generic_models.properties.iapws95

 	Iapws95StateBlock (class in idaes.generic_models.properties.iapws95)

 	Iapws95StateBlockData (class in idaes.generic_models.properties.iapws95)

 	
 idaes

 	Home

 	
 idaes-bin-directory command line option

 	--create

 	--exists

 	--help

 	
 idaes-copyright command line option

 	--help

 	
 idaes-data-directory command line option

 	--create

 	--exists

 	--help

 	
 idaes-get-examples command line option

 	--help

 	-I, --no-install

 	-N, --no-download

 	-U, --unstable

 	-V, --version TEXT

 	-d,--dir TEXT

 	-l, --list-releases

 	
 idaes-get-extensions command line option

 	--help

 	--url

 	
 idaes-lib-directory command line option

 	--create

 	--exists

 	--help

 	idaes.core.control_volume0d (module)

 	idaes.core.control_volume1d (module)

 	idaes.core.control_volume_base (module)

 	
 idaes.core.flowsheet_model

 	FlowsheetBlock

 	FlowsheetBlockData

 	idaes.core.flowsheet_model (module)

 	idaes.core.plugins.variable_replace (module)

 	idaes.core.process_base (module)

 	idaes.core.process_block (module)

 	idaes.core.property_base (module)

 	idaes.core.reaction_base (module)

 	idaes.core.unit_model (module)

 	idaes.core.util.dyn_utils (module)

 	idaes.core.util.homotopy (module)

 	idaes.core.util.initialization (module)

 	idaes.core.util.model_serializer (module)

 	idaes.core.util.model_statistics (module)

 	idaes.core.util.scaling (module)

 	idaes.core.util.tables (module)

 	idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack (module)

 	idaes.generic_models.properties.cubic_eos.cubic_prop_pack (module)

 	
 idaes.generic_models.properties.iapws95

 	Iapws95StateBlock

 	idaes.generic_models.properties.iapws95 (module)

 	idaes.generic_models.unit_models.cstr (module)

 	idaes.generic_models.unit_models.equilibrium_reactor (module)

 	idaes.generic_models.unit_models.feed (module)

 	idaes.generic_models.unit_models.feed_flash (module)

 	idaes.generic_models.unit_models.flash (module)

 	idaes.generic_models.unit_models.gibbs_reactor (module)

 	
 idaes.generic_models.unit_models.heat_exchanger

 	HeatExchanger

 	idaes.generic_models.unit_models.heat_exchanger_1D (module)

 	
 idaes.generic_models.unit_models.heater

 	Heater

 	idaes.generic_models.unit_models.heater (module)

 	
 	idaes.generic_models.unit_models.mixer (module)

 	idaes.generic_models.unit_models.plug_flow_reactor (module)

 	idaes.generic_models.unit_models.pressure_changer (module)

 	idaes.generic_models.unit_models.product (module)

 	idaes.generic_models.unit_models.separator (module)

 	idaes.generic_models.unit_models.statejunction (module)

 	idaes.generic_models.unit_models.stoichiometric_reactor (module)

 	idaes.generic_models.unit_models.translator (module)

 	
 idaes.power_generation.properties.IdealProp_FlueGas

 	FlueGasParameterBlock

 	FlueGasParameterData

 	FlueGasStateBlock

 	FlueGasStateBlockData

 	
 idaes.power_generation.unit_models.boiler_heat_exchanger

 	BoilerHeatExchanger

 	
 idaes.power_generation.unit_models.feedwater_heater_0D

 	FWH0D

 	FWHCondensing0D

 	idaes.power_generation.unit_models.feedwater_heater_0D (module)

 	
 idaes.power_generation.unit_models.turbine_inlet

 	TurbineInletStage

 	idaes.power_generation.unit_models.turbine_inlet (module)

 	
 idaes.power_generation.unit_models.turbine_multistage

 	TurbineMultistage

 	idaes.power_generation.unit_models.turbine_multistage (module)

 	
 idaes.power_generation.unit_models.turbine_outlet

 	TurbineOutletStage

 	idaes.power_generation.unit_models.turbine_outlet (module)

 	
 idaes.power_generation.unit_models.turbine_stage

 	TurbineStage

 	idaes.power_generation.unit_models.turbine_stage (module)

 	
 idaes.power_generation.unit_models.valve_steam

 	SteamValve

 	idaes.power_generation.unit_models.valve_steam (module)

 	idaes.surrogate.pysmo.kriging (module)

 	idaes.surrogate.pysmo.polynomial_regression (module)

 	idaes.surrogate.pysmo.radial_basis_function (module)

 	
 idaes.unit_models.heat_exchanger

 	Proportional-Integral-Derivative (PID) Controller

 	
 identifier

 	dmf-info command line option

 	dmf-rm command line option

 	init_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	initialize() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.property_base.StateBlock method)

 	(idaes.core.reaction_base.ReactionBlockBase method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.generic_models.unit_models.feed.FeedData method)

 	(idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData method)

 	(idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.product.ProductData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.generic_models.unit_models.statejunction.StateJunctionData method)

 	(idaes.generic_models.unit_models.translator.TranslatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

 	(idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData method)

 	(idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData method)

 	(idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData method)

 	(idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData method)

 	(idaes.power_generation.unit_models.turbine_stage.TurbineStageData method)

 	(idaes.power_generation.unit_models.valve_steam.SteamValveData method)

 	initialize_by_time_element() (in module idaes.core.util.initialization)

 	integer (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	is_explicitly_indexed_by() (in module idaes.core.util.dyn_utils)

 	is_flowsheet() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	is_implicitly_indexed_by() (in module idaes.core.util.dyn_utils)

 	isfixed() (idaes.core.util.model_serializer.StoreSpec class method)

K

 	
 	kriging_generate_expression() (idaes.surrogate.pysmo.kriging.ResultReport method)

 	kriging_predict_output() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	
 	kriging_training() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	KrigingModel (class in idaes.surrogate.pysmo.kriging)

L

 	
 	large_residuals_set() (in module idaes.core.util.model_statistics)

 	LatinHypercubeSampling (class in idaes.surrogate.pysmo.sampling)

 	Lattice (class in apps.matopt.materials.lattices.lattice)

 	list_models_requiring_property() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	
 	list_properties_required_by_model() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	list_required_properties() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

M

 	
 	MaterialDescriptor (class in apps.matopt.opt.mat_modeling)

 	MatOptModel (class in apps.matopt.opt.mat_modeling)

 	maximize() (apps.matopt.opt.mat_modeling.MatOptModel method)

 	minimize() (apps.matopt.opt.mat_modeling.MatOptModel method)

 	Mixer (class in idaes.generic_models.unit_models.mixer)

 	MixerData (class in idaes.generic_models.unit_models.mixer)

 	model_check() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.flowsheet_model.FlowsheetBlockData method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

N

 	
 	name (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	NDA

 	number_activated_blocks() (in module idaes.core.util.model_statistics)

 	number_activated_constraints() (in module idaes.core.util.model_statistics)

 	number_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_activated_inequalities() (in module idaes.core.util.model_statistics)

 	number_activated_objectives() (in module idaes.core.util.model_statistics)

 	number_active_variables_in_deactivated_blocks() (in module idaes.core.util.model_statistics)

 	number_deactivated_blocks() (in module idaes.core.util.model_statistics)

 	number_deactivated_constraints() (in module idaes.core.util.model_statistics)

 	number_deactivated_equalities() (in module idaes.core.util.model_statistics)

 	number_deactivated_inequalities() (in module idaes.core.util.model_statistics)

 	number_deactivated_objectives() (in module idaes.core.util.model_statistics)

 	number_derivative_variables() (in module idaes.core.util.model_statistics)

 	number_expressions() (in module idaes.core.util.model_statistics)

 	number_fixed_unused_variables() (in module idaes.core.util.model_statistics)

 	number_fixed_variables() (in module idaes.core.util.model_statistics)

 	
 	number_fixed_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_fixed_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	number_large_residuals() (in module idaes.core.util.model_statistics)

 	number_total_blocks() (in module idaes.core.util.model_statistics)

 	number_total_constraints() (in module idaes.core.util.model_statistics)

 	number_total_equalities() (in module idaes.core.util.model_statistics)

 	number_total_inequalities() (in module idaes.core.util.model_statistics)

 	number_total_objectives() (in module idaes.core.util.model_statistics)

 	number_unfixed_variables() (in module idaes.core.util.model_statistics)

 	number_unfixed_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_unused_variables() (in module idaes.core.util.model_statistics)

 	number_variables() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_constraints() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_inequalities() (in module idaes.core.util.model_statistics)

 	number_variables_near_bounds() (in module idaes.core.util.model_statistics)

 	number_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

O

 	
 	optimize() (apps.matopt.opt.mat_modeling.MatOptModel method)

P

 	
 	partition_outlet_flows() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	
 path

 	dmf-init command line option

 	path_from_block() (in module idaes.core.util.dyn_utils)

 	PFR (class in idaes.generic_models.unit_models.plug_flow_reactor)

 	PFRData (class in idaes.generic_models.unit_models.plug_flow_reactor)

 	PhysicalParameterBlock (class in idaes.core.property_base)

 	PIDBlock (class in idaes.generic_models.control.pid_controller)

 	PIDBlockData (class in idaes.generic_models.control.pid_controller)

 	poly_predict_output() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	poly_training() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	PolynomialRegression (class in idaes.surrogate.pysmo.polynomial_regression)

 	populate() (apps.matopt.opt.mat_modeling.MatOptModel method)

 	PressureChanger (class in idaes.generic_models.unit_models.pressure_changer)

 	PressureChangerData (class in idaes.generic_models.unit_models.pressure_changer)

 	
 	print_models_requiring_property() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	print_properties_required_by_model() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	print_required_properties() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	ProcessBlock (class in idaes.core.process_block)

 	ProcessBlockData (class in idaes.core.process_base)

 	Product (class in idaes.generic_models.unit_models.product)

 	ProductData (class in idaes.generic_models.unit_models.product)

 	propagate_state() (in module idaes.core.util.initialization)

 	PropertyInterrogatorBlock (class in idaes.generic_models.properties.interrogator.properties_interrogator)

 	PropertyInterrogatorData (class in idaes.generic_models.properties.interrogator.properties_interrogator)

 	
 Proportional-Integral-Derivative (PID) Controller

 	idaes.unit_models.heat_exchanger

R

 	
 	r2_calculation() (idaes.surrogate.pysmo.kriging.KrigingModel static method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions static method)

 	RadialBasisFunctions (class in idaes.surrogate.pysmo.radial_basis_function)

 	rbf_generate_expression() (idaes.surrogate.pysmo.radial_basis_function.ResultReport method)

 	rbf_predict_output() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	rbf_training() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	ReactionBlockBase (class in idaes.core.reaction_base)

 	ReactionBlockDataBase (class in idaes.core.reaction_base)

 	ReactionInterrogatorBlock (class in idaes.generic_models.properties.interrogator.reactions_interrogator)

 	ReactionInterrogatorData (class in idaes.generic_models.properties.interrogator.reactions_interrogator)

 	ReactionParameterBlock (class in idaes.core.reaction_base)

 	release_state() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	
 	ReplaceVariables (class in idaes.core.plugins.variable_replace)

 	report() (idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.property_base.StateBlock method)

 	report_statistics() (in module idaes.core.util.model_statistics)

 	ResultReport (class in idaes.surrogate.pysmo.kriging)

 	(class in idaes.surrogate.pysmo.polynomial_regression)

 	(class in idaes.surrogate.pysmo.radial_basis_function)

 	revert_state_vars() (in module idaes.core.util.initialization)

 	rules (apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

S

 	
 	sample_points() (idaes.surrogate.pysmo.sampling.CVTSampling method)

 	(idaes.surrogate.pysmo.sampling.HaltonSampling method)

 	(idaes.surrogate.pysmo.sampling.HammersleySampling method)

 	(idaes.surrogate.pysmo.sampling.LatinHypercubeSampling method)

 	(idaes.surrogate.pysmo.sampling.UniformSampling method)

 	scale_constraint() (in module idaes.core.util.scaling)

 	Separator (class in idaes.generic_models.unit_models.separator)

 	SeparatorData (class in idaes.generic_models.unit_models.separator)

 	serialize() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	set_additional_terms() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	set_read_callback() (idaes.core.util.model_serializer.StoreSpec method)

 	set_scaling_factor() (in module idaes.core.util.scaling)

 	set_scaling_factor_energy() (idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData method)

 	set_write_callback() (idaes.core.util.model_serializer.StoreSpec method)

 	
 	solve_indexed_blocks() (in module idaes.core.util.initialization)

 	StateBlock (class in idaes.core.property_base)

 	StateBlockData (class in idaes.core.property_base)

 	StateJunction (class in idaes.generic_models.unit_models.statejunction)

 	StateJunctionData (class in idaes.generic_models.unit_models.statejunction)

 	
 SteamValve

 	idaes.power_generation.unit_models.valve_steam

 	SteamValve (class in idaes.power_generation.unit_models.valve_steam)

 	SteamValveData (class in idaes.power_generation.unit_models.valve_steam)

 	StoichiometricReactor (class in idaes.generic_models.unit_models.stoichiometric_reactor)

 	StoichiometricReactorData (class in idaes.generic_models.unit_models.stoichiometric_reactor)

 	StoreSpec (class in idaes.core.util.model_serializer)

 	stream_states_dict() (in module idaes.core.util.tables)

 	stream_table() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	stream_table_dataframe_to_string() (in module idaes.core.util.tables)

T

 	
 	throttle_cv_fix() (idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData method)

 	to_json() (in module idaes.core.util.model_serializer)

 	total_blocks_set() (in module idaes.core.util.model_statistics)

 	total_constraints_set() (in module idaes.core.util.model_statistics)

 	total_equalities_generator() (in module idaes.core.util.model_statistics)

 	total_equalities_set() (in module idaes.core.util.model_statistics)

 	total_inequalities_generator() (in module idaes.core.util.model_statistics)

 	total_inequalities_set() (in module idaes.core.util.model_statistics)

 	total_objectives_generator() (in module idaes.core.util.model_statistics)

 	total_objectives_set() (in module idaes.core.util.model_statistics)

 	Translator (class in idaes.generic_models.unit_models.translator)

 	TranslatorData (class in idaes.generic_models.unit_models.translator)

 	turbine_inlet_cf_fix() (idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData method)

 	turbine_outlet_cf_fix() (idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData method)

 	
 TurbineInletStage

 	idaes.power_generation.unit_models.turbine_inlet

 	
 	TurbineInletStage (class in idaes.power_generation.unit_models.turbine_inlet)

 	TurbineInletStageData (class in idaes.power_generation.unit_models.turbine_inlet)

 	
 TurbineMultistage

 	idaes.power_generation.unit_models.turbine_multistage

 	TurbineMultistage (class in idaes.power_generation.unit_models.turbine_multistage)

 	TurbineMultistageData (class in idaes.power_generation.unit_models.turbine_multistage)

 	
 TurbineOutletStage

 	idaes.power_generation.unit_models.turbine_outlet

 	TurbineOutletStage (class in idaes.power_generation.unit_models.turbine_outlet)

 	TurbineOutletStageData (class in idaes.power_generation.unit_models.turbine_outlet)

 	
 TurbineStage

 	idaes.power_generation.unit_models.turbine_stage

 	TurbineStage (class in idaes.power_generation.unit_models.turbine_stage)

 	TurbineStageData (class in idaes.power_generation.unit_models.turbine_stage)

U

 	
 	unfix_initial_conditions() (idaes.core.process_base.ProcessBlockData method)

 	unfixed_variables_generator() (in module idaes.core.util.model_statistics)

 	unfixed_variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	unfixed_variables_set() (in module idaes.core.util.model_statistics)

 	UniformSampling (class in idaes.surrogate.pysmo.sampling)

 	
 	UnitModelBlock (class in idaes.core.unit_model)

 	UnitModelBlockData (class in idaes.core.unit_model)

 	unused_variables_set() (in module idaes.core.util.model_statistics)

 	use_equal_pressure_constraint() (idaes.generic_models.unit_models.mixer.MixerData method)

 	use_minimum_inlet_pressure_constraint() (idaes.generic_models.unit_models.mixer.MixerData method)

V

 	
 	value() (idaes.core.util.model_serializer.StoreSpec class method)

 	value_isfixed() (idaes.core.util.model_serializer.StoreSpec class method)

 	value_isfixed_isactive() (idaes.core.util.model_serializer.StoreSpec class method)

 	variables_in_activated_constraints_set() (in module idaes.core.util.model_statistics)

 	variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	
 	variables_in_activated_inequalities_set() (in module idaes.core.util.model_statistics)

 	variables_near_bounds_generator() (in module idaes.core.util.model_statistics)

 	variables_near_bounds_set() (in module idaes.core.util.model_statistics)

 	variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	variables_set() (in module idaes.core.util.model_statistics)

 Developing Equation of State Modules

Developing Equation of State Modules

Contents

	Developing Equation of State Modules

	Equations of State and Multiple Phases

	General Structure

	Phase Equilibrium

	Accessing Pure Component Property Methods

	Common Methods

	Mixture Property Methods

	Example

The central part of any property package are the equations of state or equivalent models which describe how the mixture behaves under the conditions of interest. For systems with multiple phases and phase equilibrium, each phase must have its own equation of state (or equivalent), which must provide information on phase equilibrium which is compatible with the other phases in the system.

Equations of State and Multiple Phases

The IDAES Generic Property Package Framework requires users to assign an equation of state module for each phase in their system, thus equations of state can be written for specific phases (e.g. an ideal gas equation of state). In some cases, developers may wish to write equations of state for multiple phases, and the generic framework supports this by indexing all properties by phase.

Developers are encouraged to add checks to their methods to ensure their equations of state are only applied to phases where they are appropriate (e.g. an ideal gas equation of state should raise an exception if the phase argument is not “Vap”).

General Structure

Equation of State Modules in the IDAES Generic Property Package Framework are files (modules) containing a number of methods which describe the behavior of the material. These method define how each of the properties associated with a given phase should be calculated, and the list of properties supported for a given phase is limited by the methods provided by the developer of the equation of state.

Phase Equilibrium

When calculating phase equilibrium, the IDAES Generic Property Package Framework uses the general form \(\Phi^e_{\text{phase 1, j}} = \Phi^e_{\text{phase 2, j}}\) where \(\Phi^e_{p, j}\) is the fugacity of component \(j\) in phase \(p\) calculated at the equilibrium tempearture (\(T_{eq}\), variable name self._teq). The equilibrium temperature is calculated using the users’ choice of phase equilibrium formulation and determines how the property packge will handle phase transitions.

All equation of state methods should contain a method for calculating fugacity if they are to support phase equilibrium calculations.

Accessing Pure Component Property Methods

In most cases, property calculations in the equation of state methods will require calculations of the pure component properties for the system. These can be accessed using get_method (imported from from idaes.property_models.core.generic.generic_property) using the form get_method(self, “property_name”). This will return the method defined by the user in the PropertyParameterBlock for the named property, which can then be used in the equation of state methods (note that users will need to call the method and provide it with the required arguments - generally self, component and a pointer to temperature).

Common Methods

For equations of state that support multiple phases, there may be certain calculations and/or variables that are common to all phases. To support this (and avoid duplication of these), equation of state methods should contain a method named common which implements any component which are common to multiple phases. This method should also contain checks to ensure that these components have not already been created for another phase in the system (to avoid duplication). In cases where there are no common components, this method can pass.

Mixture Property Methods

The main part of an equation of state method are a set of methods which describe properties of the mixture for a given phase. Any mixture property that the property package needs to support must be defined as a method in the equation of state module, which returns an expression for the given property (construction of the actual Pyomo component will be handled by the core framework code).

Mixture properties can be defined in any way the developer desires, and can cross-link and reference other mixture properties as required. Developers should recall that the State Definition method should have defined the following properties which can be used in mixture property correlations:

	pressure

	temperature

	mole_frac_phase_comp

	phase_frac

Other state variables may have been defined by the user’s choice of State Definition, however this cannot be guaranteed. Developers may chose to assume that certain state variables will be present, but this will limit the application of their equation of state module to certain state definitions which should be clearly documented.

Example

Below is an example method for a method in an equation of state module for calculating molar density that supports both liquid and vapor phases.

def dens_mol_phase(b, phase):
 if phase == "Vap":
 return b.pressure/(b.params.gas_const*b.temperature)
 elif phase == "Liq":
 return sum(b.mole_frac_phase_comp[phase, j] *
 get_method(b, "dens_mol_liq_comp")(b, j, b.temperature)
 for j in b.params.component_list)
 else:
 raise PropertyNotSupportedError("Phase not supported")

 Developing Phase Equilibrium Methods

Developing Phase Equilibrium Methods

Contents

	Developing Phase Equilibrium Methods

	phase_equil(self)

	phase_equil_initialization(self)

Handling phase equilibrium and phase transitions within an equation oriented framework can be challenging as it is necessary to ensure that all constraints and variables has feasible solution at all states. When dealing with disappearing phases and correlations that can become ill-defined or singular outside of the two phase envelope, it is necessary to either bound the problem to the two-phase region or reformulate the problem.

The IDAES Generic Property Package Framework provides support for reformulating the problem by defining an “equilibrium temperature” (self._teq) at which all phase equilibrium calculations are performed. Issues surrounding phase transitions can be avoided by providing a definition for the equilibrium temperature that satisfies the following constraints:

\[T_{\text{bubble}} <= T_{eq} <= T{\text{dew}}\]

The Phase Equilibrium module allows users to provide a definition for the equilibrium temperature, along with any necessary instructions on how to initialize the components associated with this definition.

A Phase Equilibrium module consists of two methods , which are described below.

phase_equil(self)

The phase_equil method is responsible for defining the variables and constraints necessary for calculating the equilibrium temperature, and at a minimum must contain one constraint relating the equilibrium temperature (self._teq) to the system temperature (self.temperature).

phase_equil_initialization(self)

This method is called by the Generic Property Package Framework initialization routine and should initialize the constraints associated with the phase equilibrium definition.

Note that the Generic Property Package Framework beings by deactivating all constraints in the StateBlock so the first step in the phase_equil_initialization method should be to activate any constraints defined in phase_equil. Additionally, this method may calculate initial values for any supporting variables defined in phase_equil based on variables that have already been initialized (primarily temperature and bubble and dew points if used). Developers should be careful however to fully understand the initialization sequence of the Generic Property Package Framework to understand which variables may have been initialized at this point.

 Developing Pure Component Methods

Developing Pure Component Methods

Contents

	Developing Pure Component Methods

	Naming Methods

	Method Arguments

	Method Parameters

	Method Body

	Example

The most common task developers of new property packages will need to do is writing methods for new pure component property calculations. Most equation of state type approaches rely on a set of calculations for pure components under ideal conditions which are then modified to account for mixing and deviations from ideality. These pure component property calculations tend to be empirical correlations based on experimental data (generally as functions of temperature) and due to their empirical nature a wide range of forms have been used in literature.

In order to support different forms for these calculations, the IDAES Generic Property Package Framework uses Python methods to define the form of pure component property calculations. This allows developers and users to easily enter the form they wish to use for their application with a minimum amount of code.

Naming Methods

The IDAES Generic Property Package Framework supports two ways of providing pure component property methods:

	Providing the method directly - users may directly provide their method of choice as a config argument (config.property_name) in the PropertyParameterBlock, in which case the method can use any name the user desires.

	Providing a library module - alternatively, users can provide a module containing a library of methods as the config argument (config.property_name), in which case the framework searches the module for a method with the same name as the property (and the config argument). E.g., for the property enth_mol_phase_comp the method name would be enth_mol_phase_comp (as would the associated config argument).

Method Arguments

Note

Currently, the IDAES Generic Property Package Framework assumes pure component property calculations will be a function of only temperature. If additional functionality is required, please contact the IDAES Developers.

Currently, all pure component property methods in the IDAES Generic Property Package Framework take three arguments:

	A reference to the StateBlock where the method will be used (generally self),

	An element of a component list,

	A pointer to the temperature variable to be used in the calculation. By using a pointer rather than an absolute reference (i.e. self.temperature), this allows the method to be applied at different temperatures as necessary (e.g. the reference temperature).

Method Parameters

Pure component property methods all depend on a number of parameters, often derived from empirical data. In order to avoid duplication of parameters and facilitate parameter estimation studies, all property parameters are stored in the PropertyParameterBlock and each StateBlock contains a reference to its associated parameter block (self.params).

For pure component property methods, parameter names are define in the associated methods thus developers can choose any name they desire. However, the IDAES standard is to use the name of the property appended with _coeff and developers are encouraged to follow this convention.

Method Body

The body of the pure component property method should assemble an expression describing the specified quantity for the component given in the method arguments. This expression should involve Pyomo components from the StateBlock (i.e. self), the associated PropertyParameterBlock (self.params) and be returned in the final step of the method.

Example

Below is an example of a pure component property method for the molar heat capacity of a component in the (ideal) gas phase with the form \(c_{\text{p, ig}, j} = A + B \times T\).

def cp_mol_ig_comp(self, component, temperature):
 # Method named using standard naming convention
 # Arguments are self, a component and temperature

 # Return an expression involving temperature and parameters
 return (self.params.cp_mol_ig_comp_coeff[component, "A"] +
 self.params.cp_mol_ig_comp_coeff[component, "B"]*temperature)

Note that the method only returns an expression representing the R.H.S. of the correlation.

 Developing State Definitions

Developing State Definitions

Contents

	Developing State Definitions

	define_state(self)

	State Variables

	define_state_vars

	Auxiliary Variables

	Supporting Constraints

	always_flash

	get_material_flow_terms(phase, comp)

	get_enthalpy_flow_terms(phase)

	get_material_density_terms(phase, component)

	get_energy_density_terms(phase)

	get_material_flow_basis()

	default_material_balance_type()

	default_energy_balance_type()

	define_port_members()

	define_display_vars()

	state_initialization(self)

	self.do_not_initialize

The primary purpose of the State Definition method is to define the state variables which will be used to describe the state of the mixture in the property package. However, a number of other key aspects of the property package definition are tied to the choice of state variables and must be declared here as well.

State definitions are defined as Python modules with two methods and one list, which are describe below.

define_state(self)

The first method in a State Definition module is the define_state method. This method is used to define the state variables and associated components and methods. The define_state method must define the following things:

State Variables

The most important part of a State Definition module is the definition of the state variables that should be used in the resulting property package. The choice of state variables is up to the module developer, however the set of variables selected must contain sufficient information to fully define the extensive and intensive state of the material. That is, if all the state variables are fixed, the resulting set of variables and constraints should form a square problem (i.e. 0 degrees of freedom). Beyond this requirement however, developers may choose any combination of state variables they wish.

State variables should be defined as Pyomo Vars with names drawn from the IDAES naming standard, and should include initial values and bounds. The Generic Property Package Framework includes an optional user input of bounds for the state variables (config.state_bounds) which developers are encouraged to make use of when setting bounds and initializing variables.

define_state_vars

In order to inform the IDAES Process Modeling Framework of which variables should be considered state variable, developers are required to define a method named define_state_vars. This method should return a dict where the keys are a string identifier for each state variable and the values being pointers to the associated Var component. For example:

def define_state_vars_state_definition():
 return {"flow_mol": self.flow_mol,
 "mole_frac_comp": self.mole_frac_comp,
 "pressure": self.pressure,
 "temperature": self.temperature,}
self.define_state_vars = define_state_vars_state_definition

Auxiliary Variables

Whilst the developer is free to choose any set of state variable they wish to define their system, there are certain properties/quantities associated with material state that are frequently used in process models. For example, most property calculation methods drawn upon empirical correlations for pure component properties which are most commonly expressed as functions of temperature (and sometimes pressure). Additionally, multiphase systems often require knowledge of the volume fractions of each phase present.

To ensure that these properties/quantities are available when required, it is required that State Definition modules define the following quantities if they are not already one of the state variables chosen:

	temperature - the temperature of the mixture,

	pressure - the pressure of the mixture,

	mole_frac_phase_comp - mole fraction of the mixture by phase and component (even if only one phase is present),

	phase_frac - volume fractions of each phase (even if only one phase is present).

These quantities can be defined as either Pyomo Vars with associated Constraints, or as Pyomo Expressions as the developer desires. Developers may choose to include additional auxiliary variables as required by their needs (e.g. different forms of flow rates).

Supporting Constraints

Depending upon the choice of state and auxiliary variables, developers may need to include a number of supporting constraints in their State Definitions. Common examples include constraints for the sum of mole fractions in the system, and relationships between different types of flow rates. Any number of constraints can be included by the developer to suit their needs, subject to the limitations of degrees of freedom.

However, developers need ot be aware of the difference between inlet and outlet states and how this affects which constraints can be written. In the case of inlet states, all state variables are defined by the upstream process and thus no constraint can be written that involves only state variables (e.g. sum of mole fractions). For outlet (and intermediate) states however, it is often necessary to include these types of constraints to fully define the system. The IDAES Process Modeling Framework uses the config.defined_state configuration argument to indicate situations where the state variables should be considered fully defined (e.g. inlets) which can be used in if statements to determine whether a constraint should be included.

always_flash

Whilst the set of state variables chosen must be sufficient for fully defining the state of the material, depending on the set of state variables chosen information of the phase separation (if applicable) may or may not be explicitly included. For example, using total flow rate and composition along with pressure and specific enthalpy is sufficient to define the state of the material, however it does not explicitly describe the phase fractions of the system. In these cases, it is necessary to perform a flash calculation at every state in the system to determine the phase fractions. However, If the state is defined in terms of flow rates by phase and component along with pressure and specific enthalpy, information on the phase separation is already included in the state definition and flash calculations are not required where the state is fully defined (i.e. config.state_defined is True).

To inform the Generic Property Package Framework of whether phase equilibrium calculations should be included when config.state_defined is True, all State Definitions are required to include a component named always_flash which is a boolean indicating whether equilibrium calculations should always be included (True) or only included when the state is not fully defined (False).

get_material_flow_terms(phase, comp)

In order to automate the construction of the material balance equations, the IDAES Process Modeling Framework expects property packages to provide expressions for the flow terms in these equations. This is done via the get_material_flow_terms method which should return an expression involving variables in the StateBlock which should be used as the flow term in the material balances.

There are many forms this expression can take depending upon the state variables chosen and how the developer wishes to formulate the material balance equations, and the framework endeavors to support as many of these as possible. Material flow terms are defined on a phase-component basis (i.e. a separate expression for each component in each phase). An example of a get_material_flow_term using flow rate and mole fractions by phase is shown below.

def get_material_flow_terms_definition(phase, component):
 return self.flow_mol_phase[phase] * self.mole_frac_phase_comp[phase, component]
self.get_material_flow_terms = get_material_flow_terms_definition

get_enthalpy_flow_terms(phase)

In the same way that get_material_flow_terms is used to automate construction of the material balance equations, automating the construction of the energy balance equations requires a get_enthalpy_flow_terms method. This method should return an expression for the enthalpy flow terms involving variables in the StateBlock.

There are many forms for the enthalpy flow terms as well, and developers may choose whichever best suits their needs. Enthalpy flow terms are defined on a phase basis, and an example is shown below using flow rate and specific enthalpy by phase.

def get_enthalpy_flow_terms_definition(phase):
 return self.flow_mol_phase[phase] * self.enth_mol_phase[phase]
self.get_enthalpy_flow_terms = get_enthalpy_flow_terms_definiton

get_material_density_terms(phase, component)

For dynamic system, calculation of the material holdups also requires a material density term which is defined using the get_material_density_terms method. This method is defined in a similar fashion to the get_material_flow_terms method and is also defined on a phase-component basis.

get_energy_density_terms(phase)

For dynamic system, calculation of the energy holdups also requires an energy density term which is defined using the get_energy_density_terms method. This method is defined in a similar fashion to the get_enthalpy_flow_terms method and is also defined on a phase basis. Note however that the energy density term should only include internal energy contributions, and not the full enthalpy density (i.e. excluding the PV term).

get_material_flow_basis()

To automate generation of some terms in the balance equations, the IDAES Process Modeling Framework needs to know the basis (mass, mole or other) of the flow terms. This is defined in the State Definition by providing a get_material_flow_basis method which returns a MaterialFlowBasis Enum (importable from idaes.core). E.g.:

def get_material_flow_basis_definition():
 return MaterialFlowBasis.molar
self.get_material_flow_basis = get_material_flow_basis_definition

default_material_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the material balance equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly encouraged to define a default form for the material balance equations.

To set the default material balance type, the State Definition must implement a method which returns a MaterialBalanceType Enum (importable from idaes.core. E.g.:

def default_material_balance_type_definition():
 return MaterialBalanceType.componentTotal
self.default_material_balance_type = default_material_balance_type_definition

default_energy_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the energy balance equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly encouraged to define a default form for the energy balance equations.

To set the default energy balance type, the State Definition must implement a method which returns an EnergyBalanceType Enum (importable from idaes.core. For an example, see default_material_balance_type above.

define_port_members()

In some situations, it is desirable to pass additional information between unit operations in a model beyond just the state variables. In these circumstance, the developer may define a define_port_members method which describes the information to be passed in Ports connecting units. This method should return a dict with a form similar to that of define_state_vars. Note that developers must also ensure that any additional information passed in Ports does not result in an over-specified problem, generally by excluding certain constraints in StateBlocks where config.defined_state is True.

If this method is not defined, Ports will default to using the variables described in define_state_vars instead.

define_display_vars()

Developers may also define a define_display_vars method which is used by the IDAES report methods to determine what information should be displayed for each state. The define_display_vars method should return a dict containing the information to display with the keys being the display name for the information and value being the quantity to display (similar to the define_state_Vars method). If this method is not defined then the define_state_vars method is used by the report methods instead.

state_initialization(self)

The state_initialization method is called as part of the Generic Property Package Framework initialize method and is expected to set initial guesses for any auxiliary variables defined by the State Definition based on the current values of the state variables. Note that the state variables will have been provided with initial guesses for the current state of the material from the process models, and thus will likely not be at their pre-defined initial conditions.

self.do_not_initialize

The do_not_initialize component is a list containing a list of Constraint names which should remain deactivated during initialization of the StateBlock and only reactivated during the final step on initialization. Common examples of these are those constraints that are only written for outlet Blocks (i.e. those when config.defined_state is False), such as overall sum of mole fraction constraints.

 Ideal Gases and Liquids

Ideal Gases and Liquids

Contents

	Ideal Gases and Liquids

	Introduction

	Mass Density by Phase

	Molar Density by Phase

	Molar Enthalpy by Phase

	Component Molar Enthalpy by Phase

	Molar Entropy by Phase

	Component Molar Entropy by Phase

	Component Fugacity by Phase

	Component Fugacity Coefficient by Phase

	Molar Gibbs Energy by Phase

	Component Gibbs Energy by Phase

Introduction

Ideal behavior represents the simplest possible equation of state that ensures thermodynamic consistency between different properties.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where \(p\) indicates a given phase:

\[\rho_{mass, p} = \rho_{mol, p} \times MW_p\]

where \(MW_p\) is the mixture molecular weight of phase \(p\).

Molar Density by Phase

For the vapor phase, the Ideal Gas Equation is used to calculate the molar density;

\[\rho_{mol, Vap} = \frac{P}{RT}\]

whilst for the liquid phase the molar density is the weighted sum of the pure component liquid densities:

\[\rho_{mol, Liq} = \sum_j{x_{Liq, j} \times \rho_{Liq, j}}\]

where \(x_{Liq, j}\) is the mole fraction of component \(j\) in the liquid phase.

Molar Enthalpy by Phase

For both liquid and vapor phases, the molar enthalpy is calculated as the weighted sum of the component molar enthalpies for the given phase:

\[h_{mol, p} = \sum_j{x_{p, j} \times h_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the property package configuration arguments.

Molar Entropy by Phase

For both liquid and vapor phases, the molar entropy is calculated as the weighted sum of the component molar entropies for the given phase:

\[s_{mol, p} = \sum_j{x_{p, j} \times s_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component method provided by the users in the property package configuration arguments.

Component Fugacity by Phase

For the vapor phase, ideal behavior is assumed:

\[\Phi_{Vap, j} = x_{Vap, j} \times P\]

For the liquid phase, Raoult’s Law is used:

\[\Phi_{Liq, j} = x_{Vap, j} \times P_{sat, j}\]

Component Fugacity Coefficient by Phase

Ideal behavior is assumed, so all \(\phi_{p, j} = 1\) for all components and phases.

Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar Gibbs energies for the given phase:

\[g_{mol, p} = \sum_j{x_{p, j} \times g_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

\[g_{mol, p, j} = h_{mol, p, j} - s_{mol, p, j} \times T\]

 Smooth Vapor-Liquid Equilibrium Formulation

Smooth Vapor-Liquid Equilibrium Formulation

Contents

	Smooth Vapor-Liquid Equilibrium Formulation

	Source

	Introduction

	Formulation

Source

Burgard, A.P., Eason, J.P., Eslick, J.C., Ghouse, J.H., Lee, A., Biegler, L.T., Miller, D.C., 2018, A Smooth, Square Flash Formulation for Equation-Oriented Flowsheet Optimization. Proceedings of the 13th International Symposium on Process Systems Engineering – PSE 2018, July 1-5, 2018, San Diego.

Introduction

Typically, equilibrium calculations are only used when the user knows the current state is within the two-phase envelope. For simulation only studies, the user may know a priori the condition of the stream but when the same set of equations are used for optimization, there is a high probability that the specifications can transcend the phase envelope. In these situations, the equilibrium calculations become trivial, thus it is necessary to find a formulation that has non-trivial solutions at all states.

To address this, the smooth vapor-liquid equilibrium (VLE) formulation always solves the equilibrium calculations at a condition where a valid two-phase solution exists. In situations where only a single phase is present, the phase equilibrium is solved at the either the bubble or dew point, where the non-existent phase exists but in negligible amounts. In this way, a non-trivial solution is guaranteed but still gives near-zero material in the non-existent phase in the single phase regions.

Formulation

The approach used by the smooth VLE formulation is to define an “equilibrium temperature” (\(T_{eq}\)) at which the equilibrium calculations will be performed. The equilibrium temperature is computed as follows:

\[T_{1} = max(T_{bubble}, T)\]

\[T_{eq} = min(T_{1}, T_{dew})\]

where \(T\) is the actual stream temperature, \(T_{1}\) is an intermediate temperature variable and \(T_{bubble}\) and \(T_{dew}\) are the bubble and dew point temperature of mixture. In order to express the maximum and minimum operators in a tractable form, these equations are reformulated using the IDAES smooth_max and smooth_min operators which results in the following equations:

\[T_{1} = 0.5{\left[T + T_{bubble} + \sqrt{(T-T_{bubble})^2 + \epsilon_{1}^2}\right]}\]

\[T_{eq} = 0.5{\left[T_{1} + T_{dew} - \sqrt{(T-T_{dew})^2 + \epsilon_{2}^2}\right]}\]

where \(\epsilon_1\) and \(\epsilon_2\) are smoothing parameters(mutable Params named eps_1 and eps_2). The default values are 0.01 and 0.0005 respectively, and it is recommended that \(\epsilon_1\) > \(\epsilon_2\). It can be seen that if the stream temperature is less than that of the bubble point temperature, the VLE calculations will be computed at the bubble point. Similarly, if the stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew point temperature. For all other conditions, the equilibrium calculations will be computed at the actual temperature.

Finally, the phase equilibrium is expressed using the following equation:

\[\Phi_{\text{Vap}, j}(T_{eq}) = \Phi_{\text{Liq}, j}(T_{eq})\]

where \(\Phi_{p, j}(T_{eq})\) is the fugacity of component \(j\) in the phase \(p\) calculated at \(T_{eq}\). The fugacities are calculated using methods defined by the equation of state chosen by the user for each phase.

 NIST Webbook

NIST Webbook

Contents

	NIST Webbook

	Source

	Ideal Gas Molar Heat Capacity (Constant Pressure)

	Ideal Gas Molar Enthalpy

	Ideal Gas Molar Entrorpy

	Saturation (Vapor) Pressure

Source

Pure component properties as used by the NIST WebBook

https://webbook.nist.gov/chemistry/ Retrieved: September 13th, 2019

Ideal Gas Molar Heat Capacity (Constant Pressure)

NIST uses the Shomate equation for the ideal gas molar heat capacity, which is shown below:

\[c_{\text{p ig}, j} = A + B \times t + C \times t^2 + D \times t^3 + \frac{E}{t^2}\]

where \(t = \frac{T}{1000}\).

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D, E\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’, ‘E’]

	

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[\frac{h_{\text{ig}, j} - h_{\text{ig ref}, j}}{1000} = A \times (t-t_{ref}) + \frac{B}{2} \times (t^2 - t_{ref}^2) + \frac{C}{3} \times (t^3 - t_{ref}^3) + \frac{D}{4} \times (t^4 - t_{ref}^4) + E \times (\frac{1}{t} - \frac{1}{t_{ref}}) + F - H\]

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D, E, F, H\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘H’]

	

	\(T_{ref}\)

	temperature_ref

	None

	Temperature at reference state

Note

This correlation uses the same parameters as for the ideal gas heat capacity with additional parameters F and H. These parameters account for the enthalpy at the reference state defined by NIST. Users wanting to use a different reference state will need to update H.

Ideal Gas Molar Entrorpy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{ig}, j} = A \times ln(t) + B \times t + \frac{C}{2} \times t^2 + \frac{D}{3} \times t^3 + \frac{E}{2 \times t^2} + G\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D, E, G\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘G’]

	

Note

This correlation uses the same parameters as for the ideal gas heat capacity with additional parameter G, which accounts for the standard entropy at the reference state defined by NIST. Users wanting to use a different reference state will need to update G.

Saturation (Vapor) Pressure

NIST uses the Antoine equation to calculate the vapor pressure of a component, which is given below:

\[log_{10}(P_{sat, j}) = A - \frac{B}{T+C}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C\)

	pressure_sat_comp_coeff

	component, [‘A’, ‘B’, ‘C’]

	

Note

The Antoine equation is generally written with saturation pressure expressed in bars. The units of the correlation can be converted to Pascals by adding 5 to \(A\).

 Perry’s Chemical Engineers’ Handbook

Perry’s Chemical Engineers’ Handbook

Contents

	Perry’s Chemical Engineers’ Handbook

	Source

	Ideal Liquid Molar Heat Capacity (Constant Pressure)

	Ideal Liquid Molar Enthalpy

	Ideal Liquid Molar Entropy

	Liquid Molar Density

Source

Methods for calculating pure component properties from:

Perry’s Chemical Engineers’ Handbook, 7th Edition
Perry, Green, Maloney, 1997, McGraw-Hill

Ideal Liquid Molar Heat Capacity (Constant Pressure)

Perry’s Handbook uses the following correlation for ideal liquid molar heat capacity:

\[\frac{c_{\text{p liq}, j}}{1000} = C_1 + C_2 \times T + C_3 \times T^2 + C_4 \times T^3 + C_5 \times T^4\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(C_1, C_2, C_3, C_4, C_5\)

	cp_mol_liq_comp_coeff

	component, [1, 2, 3, 4, 5]

	

Ideal Liquid Molar Enthalpy

The correlation for the ideal liquid molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[\frac{h_{\text{liq}, j} - h_{\text{liq ref}, j}}{1000} = C_1 \times (T-T_{ref}) + \frac{C_2}{2} \times (T^2 - T_{ref}^2) + \frac{C_3}{3} \times (T^3 - T_{ref}^3) + \frac{C_4}{4} \times (T^4 - T_{ref}^4) + \frac{C_5}{5} \times (T^5 - T_{ref}^5) + \Delta h_{\text{form, Liq}, j}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(C_1, C_2, C_3, C_4, C_5\)

	cp_mol_liq_comp_coeff

	component, [1, 2, 3, 4, 5]

	

	\(\Delta h_{\text{form}}\)

	enth_mol_form_phase_comp_ref

	phase, component

	Molar heat of formation at reference state

	\(T_{ref}\)

	temperature_ref

	None

	Temperature at reference state

Note

This correlation uses the same parameters as for the ideal gas heat capacity.

Ideal Liquid Molar Entropy

The correlation for the ideal liquid molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{liq}, j} = C_1 \times ln(T) + C_2 \times T + \frac{C_3}{2} \times T^2 + \frac{C_4}{3} \times T^3 + \frac{C_5}{4} \times T^4 + s_{\text{ref, Vap}, j}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(C_1, C_2, C_3, C_4, C_5\)

	cp_mol_liq_comp_coeff

	component, [1, 2, 3, 4, 5]

	

	\(s_{\text{ref}}\)

	entr_mol_phase_comp_ref

	phase, component

	Standard molar entropy at reference state

Note

This correlation uses the same parameters as for the ideal gas heat capacity.

Liquid Molar Density

Perry’s Handbook uses the following correlation for liquid molar density:

\[\rho_{liq, j} = \frac{C_1}{C_2^{1 + (1-\frac{T}{C_3})^{C_4}}}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(C_1, C_2, C_3, C_4\)

	dens_mol_comp_liq_coeff

	component, [1, 2, 3, 4]

	

Note

Currently, only the most common correlation form from Perry’s Handbook is implemented. Some components use different forms which are not yet supported.

 Properties of Gases and Liquids

Properties of Gases and Liquids

Contents

	Properties of Gases and Liquids

	Source

	Ideal Gas Molar Heat Capacity (Constant Pressure)

	Ideal Gas Molar Enthalpy

	Ideal Gas Molar Entropy

	Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 4th Edition
Reid, Prausnitz and Polling, 1987, McGraw-Hill

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

\[c_{\text{p ig}, j} = A + B \times T + C \times T^2 + D \times T^3\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’]

	

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[h_{\text{ig}, j} - h_{\text{ig ref}, j} = A \times (T-T_{ref}) + \frac{B}{2} \times (T^2 - T_{ref}^2) + \frac{C}{3} \times (T^3 - T_{ref}^3) + \frac{D}{4} \times (T^4 - T_{ref}^4) + \Delta h_{\text{form, Vap}, j}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’]

	

	\(\Delta h_{\text{form}}\)

	enth_mol_form_phase_comp_ref

	phase, component

	Molar heat of formation at reference state

	\(T_{ref}\)

	temperature_ref

	None

	Temperature at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{ig}, j} = A \times ln(T) + B \times T + \frac{C}{2} \times T^2 + \frac{D}{3} \times T^3 + s_{\text{ref, Vap}, j}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D\)

	cp_mol_ig_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’]

	

	\(s_{\text{ref}}\)

	entr_mol_phase_comp_ref

	phase, component

	Standard molar entropy at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation .

Saturation (Vapor) Pressure

Properties of Gases and Liquids uses the following correlation to calculate the vapor pressure of a component:

\[ln(\frac{P_{sat, j}}{P_{crit}}) \times (1-x) = A \times x + B \times x^1.5 + C \times x^3 + D \times x^6\]

where \(x = 1 - \frac{T}{T_{crit}}\).

	Symbol

	Parameter Name

	Indices

	Description

	\(A, B, C, D\)

	pressure_sat_comp_coeff

	component, [‘A’, ‘B’, ‘C’, ‘D’]

	

	\(P_{crit}\)

	pressure_crit_comp

	None

	Critical pressure

	\(T_{crit}\)

	temperature_crit_comp

	None

	Critical temperature

Note

This correlation is only valid at temperatures below the critical temperature. Above this point, there is no real solution to the equation.

 FTPx

FTPx

Contents

	FTPx

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (\(F\): flow_mol), overall (mixture) mole fractions (\(x_j\): mole_frac_comp), temperature (\(T\): temperature) and pressure (\(P\): pressure). As such, there are \(3 + N_{components}\) state variables, however only \(2 + N_{components}\) are independent as the mole fraction must sum to 1.

Application

This is the simplest approach to fully defining the state of a material, and one of the most easily accessible to the user as it is defined in terms of variables that are easily measured and understood. However, this approach has a number of limitations which the user should be aware of:

	If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit, as the state definition does not contain information on multiphase flow. This increases the number of complex equilibrium calculations that must be performed, which could be avoided by using a different state definition.

	State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FTPx module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol

	temperature

	pressure

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is implicitly defined by the sum of mole fractions constraint.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	flow_mol_phase (\(F_{mol, p}\))

	mole_frac_phase_comp (\(x_{p, j}\))

	phase_frac (\(\psi_p\))

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.

\[\sum_j{x_j} = 1\]

Note

The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the inlet stream.

If the property package supports only one phase:

\[F_{mol, p} = F_{mol}\]

\[x_{p, j} = x_{j} \text{ for all }j\]

\[\psi_p = 1\]

If the property package supports only two phases, the Rachford-Rice formulation is used:

\[\sum_p{F_{mol, p}} = F_{mol}\]

\[F_{mol} \times x_{j} = sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[\sum_j{x_{\text{phase 1}, j}} - \sum_j{x_{\text{phase 2}, j}} = 0\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

If the property package supports more than two phases, the following general formulation is used:

\[F_{mol} \times x_{j} = sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[sum_j{x_{p, j}} = 1 \text{ for all }p\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

_static/idaes-footer-logo.png
IDAES

Institute for the Design of
Advanced Energy Systems

_static/idaes-logo-100x100.png

_static/github-issue-priority.png
£ IDAES / idaes-devV | Private @unwatch~ 16 | %kstar 0 YFork 8

Code Q@ Issues 32 Pull requests 8 Projects 0 Wiki Insights Settings

My new issue Assignees

No one—assign yourself
Show related issues

@ R N Labels
norevet Click here..

Write Preview M B i [{ER =)

Solve a pressing problem that only | have the expertise to deal with.

Projects

Projects

..then click here

Recent Repository Organization

Priorities

Attach files by dragging & dropping, selecting them, or pasting from the clipboard. 2 IDAES

LI Styling with Markdown is supported 2019 April Release

73 IDAES

_static/github-start-pullrequest.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 8

<> Code () Issues 32 1 Pull requests 9 [Projects o

lili Insights 43 Settings

The internal development repository for the IDAES PSE Framework Edit

Manage topics

D 907 commits ¥ 1 branch © 1 release 42 12 contributors sfs View license

——
Your recently pushed branches:

¥ username:mybranch-issue3000 (8 minutes ago) 19 Compare & pull request
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

|:f| jghouse88 Merge pull request #81 from andrewlee94/issue_54 Latest commit 25f4a57 2 days ago

_static/plus.png

_static/idaes-logo.png

_static/minus.png

_static/pysmo-logo.png

_static/sw-overview-workflow.png
Steps for one set of changes, or "topic"

.—»‘ Setup F—»‘ Initiate }—»‘ Develop }—»‘ Collaborate

T l Merge
No Yes >®

Approved?

_static/testing-conceptual.png
Scope of test

End-to-end
application

Multiple
functions

One function

One line

<1s

10s minutes

Time for test to run

hours

_static/sw-dev-workflow.png
Steps for one set of changes, or “topic"

N, Merge

.-—[Setup },{ Initiate H Develop HCollaborateJ

No ™. g Yes ®

Ap‘fmgved ?

Make local

edits

Run tests

—

Tests fail

Tests

Commit

succeed

changes

_static/sw-init-workflow.png
Steps for one set of changes, or “topic"

Develop }»{Collaborate I

'_>| Setup]7*[Initiate l.»

AN No

Merge
Yes ®
Approved?

Initiate
Create issue Make local
on Github edits
Create new
l l PR in
Github
Create branch Push
in your fork changes to

your fork

_static/up.png

_static/up-pressed.png

_static/sw-collaborate-workflow.png
Steps for one set of changes, or “topic"

'->| Setup]7-»[Initiate }—»l Develop }»{CollaborateJ

,,—"(¢ \\Merge
- No Yes ®
e Approved?

Collaborate

Changes
requested?
<>—NO> Merge

Request
review

Yes
. To "Develop" :

S

(Tidy up)

_images/almconf.png
80

60

put
5
3

2 out

20

ALMPIot of ALAMO Results

— Regressed line
--- Confidence interval

08 10
x_input

12

14

16

_images/beer-coffee-cheers-small.png

_images/Boiler_scpc_PFD.png
SUPERCRITICAL BOILER HX NETWORK FLOWSHEET

R - EWCE
e 2 | :E»«;Um
i
2

SR [FRIRAR
o [o
PAFD Fan
et —— e
e
. i mass (kg o
T erpentre (0 |
7. e () b v
- Vepor rscoan — e =

_images/dmf-workspace-resource.png
Data Management Framework

Workspace

Resource Resource

Relations

Resource / Resource

N
~
~
~
~
~
~

Flowsheet, Property Data, Jupyter Notebook, etc.

_images/blue-white-band.png

_images/ddm-software.png
ALAMO | RIPE@®

_images/github-fork-repo.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 7

<> Code Issues 30 Pull requests 6 Projects 0 Wiki Insights Settings '
Click here
The internal development repository for the IDAES PSE Framework Edit
Manage topics
D 879 commits ¥ 1 branch © 1release 42 12 contributors &s View license
| I —

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

aclicki Marae nill ramiect #6872 fram oclickildran 27 tecte

1 atect ~rarmmit Ea12Fa2 2 hAatire ana

_images/github-issue-priority.png
£ IDAES / idaes-devV | Private @unwatch~ 16 | %kstar 0 YFork 8

Code Q@ Issues 32 Pull requests 8 Projects 0 Wiki Insights Settings

My new issue Assignees

No one—assign yourself
Show related issues

@ R N Labels
norevet Click here..

Write Preview M B i [{ER =)

Solve a pressing problem that only | have the expertise to deal with.

Projects

Projects

..then click here

Recent Repository Organization

Priorities

Attach files by dragging & dropping, selecting them, or pasting from the clipboard. 2 IDAES

LI Styling with Markdown is supported 2019 April Release

73 IDAES

_images/github-start-pullrequest.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 8

<> Code () Issues 32 1 Pull requests 9 [Projects o

lili Insights 43 Settings

The internal development repository for the IDAES PSE Framework Edit

Manage topics

D 907 commits ¥ 1 branch © 1 release 42 12 contributors sfs View license

——
Your recently pushed branches:

¥ username:mybranch-issue3000 (8 minutes ago) 19 Compare & pull request
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

|:f| jghouse88 Merge pull request #81 from andrewlee94/issue_54 Latest commit 25f4a57 2 days ago

nav.xhtml

 Table of Contents

 		
 Institute for the Design of Advanced Energy Systems (IDAES)

 		
 Installation

 		
 Windows

 		
 Linux

 		
 Mac/OSX

 		
 Generic install

 		
 Examples

 		
 IDAES Modeling Standards

 		
 Model Formatting and General Standards

 		
 Headers and Meta-data

 		
 Coding Standard

 		
 Model Organization

 		
 Commenting

 		
 Units of Measurement and Reference States

 		
 Standard Variable Names

 		
 Standard Naming Format

 		
 Constants

 		
 Thermophysical and Transport Properties

 		
 Reaction Properties

 		
 Solid Properties

 		
 Naming Examples

 		
 Configuration

 		
 Global Configuration

 		
 Windows

 		
 UNIX-Like

 		
 Other

 		
 Important Configuration Entries

 		
 logging

 		
 use_idaes_solvers

 		
 logger_capture_solver

 		
 logger_tags

 		
 valid_log_tags

 		
 Logging

 		
 Getting Loggers

 		
 idaes Logger

 		
 idaes.init Logger

 		
 idaes.model Logger

 		
 idaes.solve Logger

 		
 Tags

 		
 Levels

 		
 Utility Functions

 		
 Logging Solver Output

 		
 Command-line interface

 		
 idaes command

 		
 idaes bin-directory: Show IDAES executable file directory

 		
 idaes copyright: Show IDAES copyright information

 		
 idaes data-directory: Show IDAES data directory

 		
 idaes get-examples: Fetch example scripts and Jupyter Notebooks

 		
 idaes get-extensions: Get solvers and libraries

 		
 idaes lib-directory: Show IDAES library file directory

 		
 shared configuration

 		
 Core Library

 		
 Core Contents

 		
 Process Blocks

 		
 IDAES Modeling Concepts

 		
 Flowsheet Model Class

 		
 Property Packages

 		
 Unit Model Class

 		
 Control Volume Classes

 		
 Utility Methods

 		
 Core Overview

 		
 Transformations

 		
 Variable Replacement

 		
 Example

 		
 Usage

 		
 ReplaceVariables Class

 		
 IDAES Model Libraries

 		
 Contents

 		
 Core IDAES Model Library

 		
 Power Generation Model Library

 		
 Data Management Framework

 		
 DMF Command-line Interface

 		
 dmf

 		
 dmf find

 		
 dmf info

 		
 dmf init

 		
 dmf ls

 		
 dmf register

 		
 dmf related

 		
 dmf rm

 		
 dmf status

 		
 Overview

 		
 Configuration

 		
 Jupyter notebook usage

 		
 DMF help

 		
 Sharing

 		
 Reference

 		
 Surrogate modeling

 		
 ALAMOPY : ALAMO Python

 		
 ALAMOPY.ALAMO Options

 		
 Basic Usage

 		
 ALAMOPY Output

 		
 Additional Results

 		
 Advanced Regression Capabilities

 		
 ALAMOPY Examples

 		
 RIPE : Reaction Identification and Parameter Estimation

 		
 Basic Usage

 		
 RIPE Output

 		
 Reaction Stiochiometry and Mechanism Specification

 		
 Additional Results and Options

 		
 RIPE Examples

 		
 HELMET : HELMholtz Energy Thermodynamics

 		
 Basic Usage

 		
 HELMET Output

 		
 HELMET Examples

 		
 PySMO: Python-based Surrogate Modelling Objects

 		
 Sampling

 		
 Surrogate Generation

 		
 Applications

 		
 Contents

 		
 MatOpt : Materials Optimization

 		
 IDAES Versioning

 		
 Basic usage

 		
 Advanced usage

 		
 Overview

 		
 Version class

 		
 HasVersion class

 		
 Developer Documentation

 		
 Developer Contents

 		
 Developer introductory material

 		
 Github repository overview

 		
 Collaborative software development

 		
 Testing

 		
 Code Review

 		
 Docker container

 		
 IDAES contributor guide

 		
 Glossary

 		
 License

 		
 Copyright

_images/sw-dev-workflow.png
Steps for one set of changes, or “topic"

N, Merge

.-—[Setup },{ Initiate H Develop HCollaborateJ

No ™. g Yes ®

Ap‘fmgved ?

Make local

edits

Run tests

—

Tests fail

Tests

Commit

succeed

changes

_images/sw-init-workflow.png
Steps for one set of changes, or “topic"

Develop }»{Collaborate I

'_>| Setup]7*[Initiate l.»

AN No

Merge
Yes ®
Approved?

Initiate
Create issue Make local
on Github edits
Create new
l l PR in
Github
Create branch Push
in your fork changes to

your fork

_images/pysmo-logo.png

_images/sw-collaborate-workflow.png
Steps for one set of changes, or “topic"

'->| Setup]7-»[Initiate }—»l Develop }»{CollaborateJ

,,—"(¢ \\Merge
- No Yes ®
e Approved?

Collaborate

Changes
requested?
<>—NO> Merge

Request
review

Yes
. To "Develop" :

S

(Tidy up)

_images/tube_arrangement.png
v » Flow
m ¥ Direction

IO+ = 0,050
O O O On0p

In-line Tube Arrangement Staggered Tube Arrangement

. o [
54 096y
O

O
O

_images/sw-overview-workflow.png
Steps for one set of changes, or "topic"

.—»‘ Setup F—»‘ Initiate }—»‘ Develop }—»‘ Collaborate

T l Merge
No Yes >®

Approved?

_images/testing-conceptual.png
Scope of test

End-to-end
application

Multiple
functions

One function

One line

<1s

10s minutes

Time for test to run

hours

_static/ajax-loader.gif

_static/almconf.png
80

60

put
5
3

2 out

20

ALMPIot of ALAMO Results

— Regressed line
--- Confidence interval

08 10
x_input

12

14

16

_static/c-python-performance-graph.png
Comparing C and Embedded Python Performance

I Solver
rr— time

I Varsha.

[Tr— T Fropetty

funcion

-
et ruc oo
e
0 7500 15000 2800 30000

Time (milliseconds)

_static/clc_superstructure.jp