
IDAES Documentation
Release 1.5.1.rc0

IDAES team

May 08, 2020

Contents

1 Project Goals 1

2 Collaborating institutions 3

3 Contact, contributions and more information 5

4 Contents 7
4.1 Installation . 7
4.2 Examples . 9
4.3 IDAES Modeling Standards . 10
4.4 Configuration . 15
4.5 Logging . 18
4.6 Command-line interface . 22
4.7 Core Library . 27
4.8 Transformations . 103
4.9 IDAES Model Libraries . 105
4.10 Data Management Framework . 250
4.11 Surrogate modeling . 273
4.12 Applications . 314
4.13 IDAES Versioning . 320
4.14 Developer Documentation . 322
4.15 Glossary . 340
4.16 License . 340
4.17 Copyright . 341

5 Indices and tables 343

Python Module Index 345

Index 347

i

ii

CHAPTER 1

Project Goals

The Institute for the Design of Advanced Energy Systems (IDAES) will be the world’s premier resource for the
development and analysis of innovative advanced energy systems through the use of process systems engineering
tools and approaches. IDAES and its capabilities will be applicable to the development of the full range of advanced
fossil energy systems, including chemical looping and other transformational CO2 capture technologies, as well as
integration with other new technologies such as supercritical CO2.

1

IDAES Documentation, Release 1.5.1.rc0

2 Chapter 1. Project Goals

CHAPTER 2

Collaborating institutions

The IDAES team is comprised of collaborators from the following institutions:

• National Energy Technology Laboratory (Lead)

• Sandia National Laboratory

• Lawrence Berkeley National Laboratory

• Carnegie-Mellon University (subcontract to LBNL)

• West Virginia University (subcontract to LBNL)

• University of Notre Dame (subcontract to LBNL)

3

IDAES Documentation, Release 1.5.1.rc0

4 Chapter 2. Collaborating institutions

CHAPTER 3

Contact, contributions and more information

General, background and overview information is available at the IDAES main website. Framework development
happens at our GitHub repo where you can report issues/bugs or make contributions. For further enquiries, send an
email to: <idaes-support@idaes.org>

5

https://www.idaes.org
https://github.com/IDAES/idaes-pse
https://github.com/IDAES/idaes-pse/issues
https://github.com/IDAES/idaes-pse/pulls
mailto:idaes-support@idaes.org

IDAES Documentation, Release 1.5.1.rc0

6 Chapter 3. Contact, contributions and more information

CHAPTER 4

Contents

4.1 Installation

To install the IDAES PSE framework, follow the set of instructions below that are appropriate for your needs and
operating system. If you get stuck, please contact idaes-support@idaes.org.

The OS specific instructions provide information about optionally installing Miniconda. If you already have a Python
installation you prefer, you can skip the Miniconda install section.

Note: IDAES supports Python 3.6 and above.

System Section
Linux Linux
Windows Windows
Mac OSX Mac/OSX
Generic Generic install

Warning: If you are using Python for other complex projects, you may want to consider using environments of
some sort to avoid conflicting dependencies. There are several good options including conda environments if you
use Anaconda.

4.1.1 Windows

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

2. Install anaconda from the downloaded file in (1).

7

mailto:idaes-support@idaes.org
https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

IDAES Documentation, Release 1.5.1.rc0

3. Open the Anaconda Prompt (Start -> “Anaconda Prompt”).

4. In the Anaconda Prompt, follow the Generic install instructions.

4.1.2 Linux

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

2. Open a terminal window

3. Run the script you downloaded in (1).

Install Dependencies

1. The IPOPT solver depends on the GNU FORTRAN, GOMP, Blas, and Lapack libraries, If these libraries are
not already installed on your Linux system, you or your system administrator can use the sample commands
below to install them. If you have a Linux distribution that is not listed, IPOPT should still work, but you the
commands to install the required libraries may differ. If these libraries are already installed, you can skip this
and proceed with the next step.

Note: Depending on your distribution, you may need to prepend sudo to these commands or switch to the
“root” user.

apt-get (Current Ubuntu based distributions):

sudo apt-get install libgfortran4 libgomp1 liblapack3 libblas3

yum (Current RedHat based distributions, including CentOS):

yum install lapack blas libgfortran libgomp

Complete Generic Install

Follow the Generic install instructions.

4.1.3 Mac/OSX

Install Miniconda (optional)

1. Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

2. For the next steps, open a terminal window

3. Run the script you downloaded in (1).

Complete Generic Install

Follow the Generic install instructions.

4.1.4 Generic install

The remaining steps performed in either the Linux or OSX Terminal or Powershell. If you installed Miniconda on
Windows use the Anaconda Prompt or Anaconda Powershell Prompt. Regardless of OS and shell, the following steps
are the same.

Install IDAES

8 Chapter 4. Contents

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

IDAES Documentation, Release 1.5.1.rc0

1. Install IDAES with pip:

pip install idaes-pse

2. Run the idaes get-extensions command to install the compiled binaries:

idaes get-extensions

Warning: The IDAES binary extensions are not yet supported on Mac/OSX

Note: If you are installing on Linux, you can specify a specific platform. While most Linux builds
are interchangeable, specifying a build can make managing dependencies considerably easier. By default
Linux will use the CentOS 7 build. To specify a build use the command idaes get-extensions
--platform <platform>. Supported Linux platforms are: rhel6, rhel7, rhel8, cetos6, centos7,
centos8, ubuntu1804, ubuntu1910, and ubuntu2004. If you are not using a supported platform, everything
should still work, just choose the platform that best matches your Linux distribution. You can also use the
idaes get-extensions-platforms command to see a list of supported platforms.

3. Run the idaes get-examples command to download and install the example files:

idaes get-examples

By default this will install in a folder “examples” in the current directory. The command has many options,
but an important one is –dir, which specifies the folder in which to install.

for Mac and Linux users this would look like:

idaes get-examples --dir ~/idaes/examples

or, for Windows users, it would look like:

idaes get-examples --dir C:\Users\MyName\IDAES\Examples

Refer to the full idaes get-examples command documentation for more information.

4. Run tests:

pytest --pyargs idaes -W ignore

5. You should see the tests run and all should pass to ensure the installation worked. You may see some “Error”
level log messages, but they are okay, and produced by tests for error handling. The number of tests that failed
and succeeded is reported at the end of the pytest output. You can report problems on the Github issues page
(Please try to be specific about the command and the offending output.)

4.2 Examples

The IDAES PSE software includes a number of example scripts and Jupyter Notebooks. They are maintained the
repository https://github.com/IDAES/examples-pse on Github, and the online documentation can be found at https:
//examples-pse.readthedocs.io/ . This documentation includes browsable versions of the Jupyter Notebooks.

You can install the examples from within an IDAES installation by running idaes get-examples in a command-
line shell. This requires that you have installed the IDAES PSE toolkit. See the installation instructions for details.

4.2. Examples 9

https://github.com/IDAES/idaes-pse/issues
https://github.com/IDAES/examples-pse
https://examples-pse.readthedocs.io/
https://examples-pse.readthedocs.io/

IDAES Documentation, Release 1.5.1.rc0

4.3 IDAES Modeling Standards

Contents

• IDAES Modeling Standards

– Model Formatting and General Standards

* Headers and Meta-data

* Coding Standard

* Model Organization

* Commenting

– Units of Measurement and Reference States

– Standard Variable Names

* Standard Naming Format

* Constants

* Thermophysical and Transport Properties

* Reaction Properties

* Solid Properties

* Naming Examples

4.3.1 Model Formatting and General Standards

The section describes the recommended formatting used within the IDAES framework. Users are strongly encouraged
to follow these standards in developing their models in order to improve readability of their code.

Headers and Meta-data

Model developers are encouraged to include some documentation in the header of their model files which provides a
brief description of the purpose of the model and how it was developed. Some suggested information to include is:

• Model name,

• Model publication date,

• Model author

• Any necessary licensing and disclaimer information (see below).

• Any additional information the modeler feels should be included.

Coding Standard

All code developed as part of IDAES should conform to the PEP-8 standard.

10 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Model Organization

Whilst the overall IDAES modeling framework enforces a hierarchical structure on models, model developers are
still encouraged to arrange their models in a logical fashion to aid other users in understanding the model. Model
constraints should be grouped with similar constraints, and each grouping of constraints should be clearly commented.

For property packages, it is recommended that all the equations necessary for calculating a given property be grouped
together, clearly separated and identified by using comments.

Additionally, model developers are encouraged to consider breaking their model up into a number of smaller methods
where this makes sense. This can facilitate modification of the code by allowing future users to inherit from the base
model and selectively overload sub-methods where desired.

Commenting

To help other modelers and users understand the how a model works, model builders are strongly encouraged to
comment their code. It is suggested that every constraint should be commented with a description of the purpose
of the constraint, and if possible/necessary a reference to a source or more detailed explanation. Any deviations
from standard units or formatting should be clearly identified here. Any initialization procedures, or other procedures
required to get the model to converge should be clearly commented and explained where they appear in the code.
Additionally, modelers are strongly encouraged to add additional comments explaining how their model works to aid
others in understanding the model.

4.3.2 Units of Measurement and Reference States

Due to the flexibility provided by the IDAES modeling framework, there is no standard set of units of measurement
or standard reference state that should be used in models. This places the onus on the user to understand the units of
measurement being used within their models and to ensure that they are consistent.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by
the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been
consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.

4.3.3 Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have a standard naming conven-
tion for any variable that may need to be shared between different models. Within the IDAES modeling framework,
this occurs most frequently with information regarding the state and properties of the material within the system,
which is calculated in specialized property blocks, and then used in others parts of the model. This section of the
documentation discusses the standard naming conventions used within the IDAES modeling framework.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a number of different ways
in which these quantities can be expressed. In order to facilitate communication between different parts of models, a
naming convention has been established to standardize the naming of variables across models. Variable names within
IDAES follow to the format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list of standard variable
names given later in this document. If a particular quantity is not included in the list of standard names, users are
encouraged to contact the IDAES developers so that it can be included in a future release. This is followed by a

4.3. IDAES Modeling Standards 11

IDAES Documentation, Release 1.5.1.rc0

number of qualifiers which further indicate the specific conditions under which the quantity is being calculated. These
qualifiers are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis, that is quantity per
unit amount of material. There are a number of different bases that can be used when expressing intensive quantities,
and a list of standard basis qualifiers are given below.

Basis Standard Name
Mass Basis mass
Molar Basis mol
Volume Basis vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the
quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed
by a Pyomo Set.

Basis Standard Name Comments
Component comp Indexed by component list
Phase phase Indexed by phase list
Phase & Component phase_comp Indexed by phase and component list
Total Mixture No state qualifier

Phase Standard Name
Supercritical Fluid liq
Ionic Species ion
Liquid Phase liq
Solid Phase sol
Vapor Phase vap
Multiple Phases e.g. liq1

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the
system (e.g. at the critical point, or at equilibrium).

Basis Standard Name
Critical Point crit
Equilibrium State equil
Ideal Gas ideal
Reduced Properties red
Reference State ref

12 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Constants

IDAES contains a library of common physical constants of use in process systems engineering models, which can be
imported from idaes.core.util.constants. Below is a list of these constants with their standard names and values (SI
units).

Constant Standard Name Value Units
Acceleration due to Gravity acceleration_gravity 9.80665 𝑚𝑠−2

Avogadro’s Number avogadro_number 6.02214076e23 𝑚𝑜𝑙−1

Boltzmann Constant boltzmann_constant 1.38064900e-23 𝐽𝐾−1

Elementary Charge elementary_charge 1.602176634e-19 𝐶
Faraday’s Constant faraday_constant 96485.33212 𝐶𝑚𝑜𝑙−1

Gas Constant gas_constant 8.314462618 𝐽𝑚𝑜𝑙−1𝐾−1

Newtonian Constant of Gravitation gravitational_constant 6.67430e-11 𝑚3𝑘𝑔−1𝑠−2

Mass of an Electron mass_electron 9.1093837015e-31 𝑘𝑔
Pi (Archimedes’ Constant) pi 3.141592 [1]
Planck Constant planck_constant 6.62607015e-34 𝐽𝑠
Stefan-Boltzmann Constant stefan_constant 5.67037442e-8 𝑊𝑚−2𝐾−4

Speed of Light in a Vacuum speed_light 299792458 𝑚𝑠−1

[1] pi imported from the Python math library and is available to machine precision.

Values for fundamental constants and derived constants are drawn from the definitions of SI units (https://www.bipm.
org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf) and are generally defined to 9 significant figures.

Acceleration due to gravity, gravitational constant and electron mass are sourced from NIST (https://physics.nist.gov)
and used the significant figures reported there.

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which currently have a standard name associated with them in the
IDAES framework.

Variable Standard Name
Activity act
Activity Coefficient act_coeff
Bubble Pressure pressure_bubble
Bubble Temperature temperature_bubble
Compressibility Factor compress_fact
Concentration conc
Density dens
Dew Pressure pressure_dew
Dew Temperature temperature_dew
Diffusivity diffus
Diffusion Coefficient (binary) diffus_binary
Enthalpy enth
Entropy entr
Fugacity fug
Fugacity Coefficient fug_coeff
Gibbs Energy energy_gibbs
Heat Capacity (const. P) cp

Continued on next page

4.3. IDAES Modeling Standards 13

https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf
https://physics.nist.gov

IDAES Documentation, Release 1.5.1.rc0

Table 1 – continued from previous page
Variable Standard Name
Heat Capacity (const. V) cv
Heat Capacity Ratio heat_capacity_ratio
Helmholtz Energy energy_helmholtz
Henry’s Constant henry
Internal Energy energy_internal
Mass Fraction mass_frac
Material Flow flow
Molecular Weight mw
Mole Fraction mole_frac
pH pH
Pressure pressure
Speed of Sound speed_sound
Surface Tension surf_tens
Temperature temperature
Thermal Conductivity therm_cond
Vapor Pressure pressure_sat
Viscosity (dynamic) visc_d
Viscosity (kinematic) visc_k
Vapor Fraction vap_frac
Volume Fraction vol_frac

Reaction Properties

Below is a list of all the reaction properties which currently have a standard name associated with them in the IDAES
framework.

Variable Standard Name
Activation Energy energy_activation
Arrhenius Coefficient arrhenius
Heat of Reaction dh_rxn
Entropy of Reaction ds_rxn
Equilibrium Constant k_eq
Reaction Rate reaction_rate
Rate constant k_rxn
Solubility Constant k_sol

Solid Properties

Below is a list of all the properties of solid materials which currently have a standard name associated with them in
the IDAES framework.

14 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variable Standard Name
Min. Fluidization Velocity velocity_mf
Min. Fluidization Voidage voidage_mf
Particle Size particle_dia
Pore Size pore_dia
Porosity particle_porosity
Specific Surface Area area_{basis}
Sphericity sphericity
Tortuosity tort
Voidage bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

Variable Name Meaning
enth Specific enthalpy of the entire mixture (across all phases)
flow_comp[“H2O”] Total flow of H2O (across all phases)
entr_phase[“liq”] Specific entropy of the liquid phase mixture
conc_phase_comp[“liq”, “H2O”] Concentration of H2O in the liquid phase
temperature_red Reduced temperature
pressure_crit Critical pressure

4.4 Configuration

Some behavior of IDAES, especially logging, is configurable through configuration files. IDAES’s configuration is
obtained by first setting everything to internal defaults; then loading a global config file, if it exists; then loading a
config file from the current working directory, if it exists.

Configuration file are in JSON format. The default configuration is shown below and can be used as a template to
create new configuration files. This is the configuration used by IDAES if nothing else is provided.

{
"use_idaes_solvers":true,
"logger_capture_solver":true,
"logger_tags":[

"framework",
"model",
"flowsheet",
"unit",
"control_volume",
"properties",
"reactions"

],
"valid_logger_tags":[

"framework",
"model",
"flowsheet",
"unit",
"control_volume",
"properties",

(continues on next page)

4.4. Configuration 15

https://www.json.org/json-en.html

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

"reactions"
],
"logging":{

"version":1,
"disable_existing_loggers":false,
"formatters":{

"default_format":{
"format": "%(asctime)s [%(levelname)s] %(name)s: %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S"

}
},
"handlers":{

"console":{
"class": "logging.StreamHandler",
"formatter": "default_format",
"stream": "ext://sys.stdout"

}
},
"loggers":{

"idaes":{
"level": "INFO",
"propagate": true,
"handlers": ["console"]

},
"idaes.solve":{

"propagate": false,
"level": "INFO",
"handlers": ["console"]

},
"idaes.init":{

"propagate": false,
"level": "INFO",
"handlers": ["console"]

},
"idaes.model":{

"propagate":false,
"level": "INFO",
"handlers": ["console"]

}
}

}
}

4.4.1 Global Configuration

IDAES configuration files are named idaes.conf. The easiest way to find where the global configuration file
should be placed is to run the command idaes data-directory. A global configuration file won’t exist unless
a user creates one. The default configuration above can be used as a start.

Windows

On Windows the global configuration file is located at %LOCALAPPDATA%\idaes\idaes.conf.

16 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

UNIX-Like

On Unix-like systems the global configuration files is located at $HOME/.idaes/idaes.conf.

Other

On systems that have neither an %LOCALAPPDATA% or $HOME environment variable, global config files are not
currently supported.

4.4.2 Important Configuration Entries

The configuration file has several fields, but they are not all important to end-users. This section lists the commonly
used entries.

logging

This section of the file configures IDAES loggers. Once the configuration is read, Python’s standard logging.
config.dictConfig() is used to set the logger configuration. See Python’s logging documentation for more
information.

IDAES has four main loggers defined in the standard configuration, although additional loggers can be added if desired.
The standard loggers are:

1. idaes, this is the root logger of most IDAES logging, unless otherwise noted.

2. idaes.init, this is the root of IDAES initialization loggers.

3. idaes.solve, this is the root of IDAES solver loggers and solver information.

4. idaes.model, this is the root of model loggers. Model loggers are usually used by models written using the
IDAES framework, but not part of the idaes package.

use_idaes_solvers

This option can be set to false to direct the IDAES framework not to use solvers obtained with the idaes
get-extensions command. This can be used if a user would prefer to use solver versions they have installed
apart from IDAES.

logger_capture_solver

If a solver call is done from inside a solver logging context, this setting will send the solver output to the logger if
true, and not capture the solver output for the logger if false. If solver output is not captured it will be sent to the
screen, and not be logged.

logger_tags

Loggers created with the idaes.logging module can be assigned tags. Output from these loggers is recorded if
the loggers tag is in the logger_tags set. The default behavior can be configured in a configuration file. The tag
set can also be modified at any time via functions in the idaes.logging module.

4.4. Configuration 17

IDAES Documentation, Release 1.5.1.rc0

valid_log_tags

When setting logger tags for idaes.logging loggers they are compared against a list of valid tags. This is done to
guard against spelling errors. If the default set of defined tags is not sufficient tags can be added here, or later through
functions in the idaes.logging module.

4.5 Logging

IDAES provides some logging extensions to provide finer control over information logging and to allow solver output
to be logged.

4.5.1 Getting Loggers

There are four main roots of IDAES loggers (idaes, idaes.model, idaes.init, idaes.solve). All of these
loggers are standard Python loggers, and can be used as such. The main differences between using the IDAES logging
functions to get the loggers and plain Python methods are that the IDAES functions make it a little easier to get loggers
that fit into IDAES’s standard logging hierarchy, and the IDAES loggers have a few additional named logging levels,
which allow for finer control over the information displayed. Logging levels are described in detail later.

A tag can also be specified and used to filter logging records. By default the tag is None and log records
won’t be filtered. Valid tags are in the set {None, "framework", "model", "flowsheet", "unit",
"control_volume", "properties", "reactions"}. Users may add to the set of valid names. To see
how to control which logging tags are logged, see section “Tags” below. To avoid filtering out import warning and
error messages, records logged at the WARNING level and above are not filtered out regardless of tag.

idaes Logger

Loggers descending from idaes (other than idaes.init, idaes.model, or idaes.solve) are used for gen-
eral IDAES framework logging. Typically the module name __name__ is used for the logger name. Modules in the
idaes package already start with idaes, but if an IDAES logger is requested for a module outside of the idaes
package idaes. is prepended to the name.

idaes.logger.getLogger(name, level=None, tag=None)
Return an idaes logger.

Parameters

• name – usually __name__

• level – standard IDAES logging level (default use IDAES config)

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__, tag="framework")

18 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.init Logger

The init logger will always descend from “idaes.init”. This logger is used in IDAES model initialization methods, and
can be used in user models as well. Initialization methods are usually attached to a Pyomo Block. Blocks have a name
attribute. So the logger name is usually given as the block name, and the getInitLogger() function prepends
idaes.init.. The advantage of using the block name over the module name is that users can see exactly which
model instance the initialization log messages are coming from.

idaes.logger.getInitLogger(name, level=None, tag=None)
Get a model initialization logger

Parameters

• name – Object name (usually Pyomo Component name)

• level – Log level

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

class DummyBlock(object):
"""A dummy block for demonstration purposes"""
def __init__(name):
self.name = name

def initialize(outlvl=idaeslog.INFO):
init_log = idaeslog.getInitLogger(self.name, level=outlvl, tag="unit")

idaes.model Logger

The model logger is used to provide a standard way to produce log messages from user models that are not part of
the idaes package. The logger name has idaes.model prepended to the name provided by the user. This is
convenient because it provides a way to use a standard configuration system for user model loggers. The user can
choose any name they like for these loggers.

idaes.logger.getModelLogger(name, level=None, tag=None)
Get a logger for an IDAES model. This function helps users keep their loggers in a standard location and use
the IDAES logging config.

Parameters

• name – Name (usually __name__). Any starting ‘idaes.’ is stripped off, so if a model is
part of the idaes package, ‘idaes’ won’t be repeated.

• level – Standard Python logging level (default use IDAES config)

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getModelLogger("my_model", level=idaeslog.DEBUG, tag="model")

4.5. Logging 19

IDAES Documentation, Release 1.5.1.rc0

idaes.solve Logger

The solve logger will always descend from “idaes.solve”. This logger is used to log solver output. Since solvers may
produce a lot of output, it can be useful to specify different handlers for the solve logger to direct it to a separate file.

idaes.logger.getSolveLogger(name, level=None, tag=None)
Get a solver logger

Parameters

• name – logger name is “idaes.solve.” + name (if name starts with “idaes.” it is removed
before creating the logger name)

• level – Log level

• tag – logger tag for filtering, see valid_log_tags()

Returns logger

4.5.2 Tags

Logger tags are provided to allow control over what types of log records to display. The logger tag is just a string that
gets attached to a logger, which specifies that a logger generates records of a certain type. You can then specify what
tags you want to see information from. A filter removes any tags that are not in the list of tags to display at levels
below WARNING.

The set of tags to display information from is a global setting in the idaes.logger module. When getting a logger, you
can set its tag by providing the tag argument, see “Getting Loggers” above.

The following functions can be used to specify which logging tags to display:

idaes.logger.log_tags()
Returns a set of logging tags to be logged.

Returns (set) tags to be logged

idaes.logger.set_log_tags(tags)
Specify a set of tags to be logged

Parameters tags (iterable of str) – Tags to log

Returns None

idaes.logger.add_log_tag(tag)
Add a tag to the list of tags to log.

Parameters tag (str) – Tag to log

Returns None

idaes.logger.remove_log_tag(tag)
Remove a tag from the list of tags to log.

Parameters tag (str) – Tag to no longer log

Returns None

The tags are validated against a list of valid tags to provide error checking for typos and to enforce some standard tag
names. To provide more flexibility, users can add to the list of valid tag names, but cannot remove names.

idaes.logger.valid_log_tags()
Returns a set of valid logging tag names.

Returns (set) valid tag names

20 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

idaes.logger.add_valid_log_tag(tag)
Add a tag name to the list of valid names.

Parameters tag (str) – A tag name

Returns None

4.5.3 Levels

Several logging level constants are defined in the idaes.logger module. These include the standard Python
Levels. The following levels are provided for IDAES loggers. The additional levels of info provide finer control over
the amount of logging information produced by IDAES loggers.

Constant Name Value Name Log Method
CRITICAL 50 CRITICAL critial()
ERROR 40 ERROR error(), exception()
WARNING 30 WARNING warning()
INFO_LOW 21 INFO unit_low()
INFO 20 INFO info()
INFO_HIGH 19 INFO unit_high()
DEBUG 10 DEBUG debug()
NOTSET 0 NOTSET –

4.5.4 Utility Functions

There are some additional utility functions to perform logging tasks that are common in the IDAES framework.

idaes.logger.condition(res)
Get the solver termination condition to log. This isn’t a specifc value that you can really depend on, just a
message to pass on from the solver for the user’s benefit. Sometimes the solve is in a try-except, so we’ll handle
None and str for those cases, where you don’t have a real result.

4.5.5 Logging Solver Output

The solver output can be captured and directed to a logger using the idaes.logger.solver_log(logger,
level) context manager, which uses pyutilib.misc.capture_output() to temporarily redirect sys.
stdout and sys.stderr to a string buffer. The logger argument is the logger to log to, and the level ar-
gument is the level at which records are sent to the logger. The output is logged by a separate logging thread, so
output can be logged as it is produced instead of after the solve completes. If the solver_log() context manager is
used, it can be turned on and off by using the idaes.logger.solver_capture_on() and idaes.logger.
solver_capture_off() functions. If the capture is off solver output won’t be logged and it will go to standard
output as usual.

The solver_log context yields an object with tee and thread attributes. thread is the logging thread, which
is not needed for most uses. The tee attribute should be passed to the tee argument of the solve method. Tee tells
the Pyomo solver to display solver output. The solver log context can provide this argument by determining if the
solver output would be logged at the given level.

Example

import idaes.logger as idaeslog
import pyomo.environ as pyo

(continues on next page)

4.5. Logging 21

https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

solver = pyo.SolverFactory("ipopt")

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var()
model.x.fix(3)
model.c = pyo.Constraint(expr=model.y==model.x**2)

log = idaeslog.getSolveLogger("solver.demo")
log.setLevel(idaeslog.DEBUG)

with idaeslog.solver_log(log, idaeslog.DEBUG) as slc:
res = solver.solve(model, tee=slc.tee)

4.6 Command-line interface

The IDAES PSE Toolkit includes a command-line tool that can be invoked by typing idaes in a UNIX or Mac OSX
shell, or Windows Powershell, that is in an installed IDAES environment. For the most part, this means that wherever
you installed IDAES will have this command available.

This section of the documentation describes the capabilities of this command-line program.

4.6.1 idaes command

The base idaes command does not do anything by itself, besides set some shared configuration values. All the real
work is done by one of the sub-commands, each of which is described on a separate page below.

idaes bin-directory: Show IDAES executable file directory

This page lists the options for the idaes “bin-directory” bin-directory. This is invoked like:

idaes [general options] bin-directory [bin-directory options]

general options

The following general options from the idaes base command affect the bin-directory bin-directory. They should be
placed before the “bin-directory” bin-directory, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes bin-directory

This subcommand shows the IDAES executable file directory.

22 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.

idaes copyright: Show IDAES copyright information

This page lists the options for the idaes “copyright” subcommand. This is invoked like:

idaes [general options] copyright [subcommand options]

general options

The following general options from the idaes base command affect the copyright subcommand. They should be placed
before the “copyright” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes copyright

This subcommand prints the IDAES copyright notice to standard output.

options

--help
Show the help message and exit.

idaes data-directory: Show IDAES data directory

This page lists the options for the idaes “data-directory” subcommand. This is invoked like:

idaes [general options] data-directory [subcommand options]

general options

The following general options from the idaes base command affect the data-directory subcommand. They should be
placed before the “data-directory” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

4.6. Command-line interface 23

IDAES Documentation, Release 1.5.1.rc0

See the idaes command for details.

idaes data-directory

This subcommand shows the IDAES data directory.

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.

idaes get-examples: Fetch example scripts and Jupyter Notebooks

This page lists the options for the idaes “get-examples” subcommand. This is invoked like:

idaes [general options] get-examples [subcommand options]

general options

The following general options from the idaes base command affect the get-examples subcommand. They should be
placed before the “get-examples” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes get-examples

This subcommand fetches example scripts and Jupyter Notebooks from a given release in Github. and puts them in a
directory of the users’ choosing. If the user does not specify a directory, the default is examples.

options

--help
Show the help message and exit.

-d,--dir TEXT

Select the installation target directory. See example usage for several examples of this option.

-I, --no-install

Do not install examples into ‘idaes_examples’ package. Examples are installed by default so they can be imported
directly from Python. Not installing them might cause some tests, which import the examples, to fail.

24 Chapter 4. Contents

https://github.com/IDAES/examples-pse/releases

IDAES Documentation, Release 1.5.1.rc0

-l, --list-releases

List all available released versions, and stop. This lets people browse the releases and select one. By default, the
release that matches the version of the currently installed “idaes” package is used. See also the –unstable option.

-N, --no-download

Do not download anything. If the –no-install option is also given, this means the command will essentially do nothing.
Or, looked at another way, this option means that only action will be the installation of the “idaes_examples” package
from the selected directory.

-U, --unstable

Allow and list unstable/pre-release versions. This applies to both download and the –list-releases option. Unstable
releases are marked with “rcN” or similar suffixes.

-V, --version TEXT

Version of examples to download. The default version, which is shown for the –help option, is the same as the version
of the IDAES PSE toolkit for which the idaes command is installed. If the version to install is unstable (ends with
“rcN”) then you will need to add the –unstable option to avoid errors.

example usage

idaes get-examples Download examples from release matching release for the idaes command, install them in the
examples subdirectory of this directory, and install the modules found under examples/src as a package named
idaes_examples. The examples directory must not exist, i.e. the program will refuse to overwrite the contents of
an existing directory.

idaes get-examples -d /tmp/examples Same as above, but put downloaded code in /tmp/examples instead.

idaes get-examples -d /tmp/examples -I Download to /tmp/examples, but do not install.

idaes get-examples -d /tmp/examples -N Install the examples found under /tmp/examples.

idaes get-examples –version 1.4.2-pre Download examples from release 1.4.2-pre, install them in the examples
subdirectory of this directory, and install the modules found under examples/src as a package named
idaes_examples.

idaes get-examples –list-releases List available releases of the examples in Github repository, idaes/examples-pse.
Do not attempt to download or install anything.

idaes get-examples –list-releases –unstable Same as above, but include non-stable releases.

idaes get-extensions: Get solvers and libraries

This page lists the options for the idaes “get-extensions” subcommand. This is invoked like:

idaes [general options] get-extensions [subcommand options]

general options

The following general options from the idaes base command affect the get-extensions subcommand. They should be
placed before the “get-extensions” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

4.6. Command-line interface 25

IDAES Documentation, Release 1.5.1.rc0

See idaes command for details.

idaes get-extensions

This subcommand gets the compiled solvers and libraries from a remote repository, and installs them locally.

options

--help
Show the help message and exit.

--url
URL from which to download the solvers/libraries.

idaes lib-directory: Show IDAES library file directory

This page lists the options for the idaes “lib-directory” subcommand. This is invoked like:

idaes [general options] lib-directory [subcommand options]

general options

The following general options from the idaes base command affect the lib-directory subcommand. They should be
placed before the “lib-directory” subcommand, on the command-line.

• -v/–verbose

• -q/–quiet

See the idaes command for details.

idaes lib-directory

This subcommand shows the IDAES library file directory.

options

--help
Show the help message and exit.

--exists
Show if the directory exists.

--create
Create the directory.

26 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

shared configuration

-v

--verbose

Increase verbosity. Show warnings if given once, then info, and then debugging messages.

-q

--quiet

Increase quietness. If given once, only show critical messages. If given twice, show no messages.

4.7 Core Library

4.7.1 Core Contents

Process Blocks

Example

ProcessBlock is used to simplify inheritance of Pyomo’s Block. The code below provides an example of how a new
ProcessBlock class can be implemented. The new ProcessBlock class has a ConfigBlock that allows each element of
the block to be passed configuration options that affect how a block is built. ProcessBlocks have a rule set by default
that calls the build method of the contained ProcessBlockData class.

from pyomo.environ import *
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class("MyBlock")
class MyBlockData(ProcessBlockData):

CONFIG = ProcessBlockData.CONFIG()
CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
def build(self):

super(MyBlockData, self).build()
self.x = Var(initialize=self.config.xinit)
self.y = Var(initialize=self.config.yinit)

The following example demonstrates creating a scalar instance of the new class. The default key word argument is
used to pass information on the the MyBlockData ConfigBlock.

m = ConcreteModel()
m.b = MyBlock(default={"xinit":1, "yinit":2})

The next example creates an indexed MyBlock instance. In this case, each block is configured the same, using the
default argument.

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2})

The next example uses the initialize argument to override the configuration of the first block. Initialize is a
dictionary of dictionaries where the key of the top level dictionary is the block index and the second level dictionary
is arguments for the config block.

4.7. Core Library 27

IDAES Documentation, Release 1.5.1.rc0

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2},

initialize={0:{"xinit":1, "yinit":2}})

The next example shows a more complicated configuration where there are three configurations, one for the first block,
one for the last block, and one for the interior blocks. This is accomplished by providing the idx_map argument to
MyBlock, which is a function that maps a block index to a index in the initialize dictionary. In this case 0 is mapped
to 0, 4 is mapped to 4, and all elements between 0 and 4 are mapped to 1. A lambda function is used to convert the
block index to the correct index in initialize.

m = ConcreteModel()
m.b = MyBlock(

[0,1,2,3,4],
idx_map = lambda i: 1 if i > 0 and i < 4 else i,
initialize={0:{"xinit":2001, "yinit":2002},

1:{"xinit":5001, "yinit":5002},
4:{"xinit":7001, "yinit":7002}})

The build method

The core part of any IDAES Block is the build method, which contains the instructions on how to construct the
variables, constraints and other components that make up the model. The build method serves as the default rule for
constructing an instance of an IDAES Block, and is triggered automatically whenever an instance of an IDAES Block
is created unless a custom rule is provided by the user.

ProcessBlock Class

idaes.core.process_block.declare_process_block_class(name, block_class=<class
’idaes.core.process_block.ProcessBlock’>,
doc=”)

Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is derived from Pyomo’s _BlockData. It creates
a ProcessBlock subclass to contain the decorated class. The only requirment is that the subclass of _BlockData
contain a build() method. The purpose of this decorator is to simplify subclassing Pyomo’s block class.

Parameters

• name – name of class to create

• block_class – ProcessBlock or a subclass of ProcessBlock, this allows you to use a
subclass of ProcessBlock if needed. The typical use case for Subclassing ProcessBlock is to
impliment methods that operate on elements of an indexed block.

• doc – Documentation for the class. This should play nice with sphinx.

Returns Decorator function

class idaes.core.process_block.ProcessBlock(*args, **kwargs)
ProcessBlock is a Pyomo Block that is part of a system to make Pyomo Block easier to subclass. The main
difference between a Pyomo Block and ProcessBlock from the user perspective is that a ProcessBlock has a rule
assigned by default that calls the build() method for the contained ProcessBlockData objects. The default rule
can be overridden, but the new rule should always call build() for the ProcessBlockData object.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

28 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ProcessBlock) New instance

classmethod base_class_module()
Return module of the associated ProcessBase class.

Returns (str) Module of the class.

Raises AttributeError, if no base class module was set, e.g. this class – was not wrapped by the
declare_process_block_class decorator.

classmethod base_class_name()
Name given by the user to the ProcessBase class.

Returns (str) Name of the class.

Raises AttributeError, if no base class name was set, e.g. this class – was not wrapped by the
declare_process_block_class decorator.

class idaes.core.process_base.ProcessBlockData(component)
Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to handle arguments provided by the user
when constructing an object and to ensure that these arguments are stored in the config block.

Additionally, this class contains a number of methods common to all IDAES classes.

build()
The build method is called by the default ProcessBlock rule. If a rule is sepecified other than the default it
is important to call ProcessBlockData’s build method to put information from the “default” and “initialize”
arguments to a ProcessBlock derived class into the BlockData object’s ConfigBlock.

The the build method should usually be overloaded in a subclass derived from ProcessBlockData. This
method would generally add Pyomo components such as variables, expressions, and constraints to the
object. It is important for build() methods implimented in derived classes to call build() from the super
class.

Parameters None –

Returns None

fix_initial_conditions(state=’steady-state’)
This method fixes the initial conditions for dynamic models.

Parameters state – initial state to use for simulation (default = ‘steady-state’)

Returns : None

flowsheet()
This method returns the components parent flowsheet object, i.e. the flowsheet component to which the
model is attached. If the component has no parent flowsheet, the method returns None.

4.7. Core Library 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Parameters None –

Returns Flowsheet object or None

unfix_initial_conditions()
This method unfixed the initial conditions for dynamic models.

Parameters None –

Returns : None

IDAES Modeling Concepts

Contents

• IDAES Modeling Concepts

– Introduction

– Time Domain

– Flowsheets

– Unit Models

– Component References

– What Belongs in Each Type of Block?

Introduction

The purpose of this section of the documentation is to explain the different parts of the IDAES modeling framework,
and what components belong in each part for the hierarchy. Each component is described in greater detail later in the
documentation, however this section provides a general introduction to different types of components.

Time Domain

Before starting on the different types of models present in the IDAES framework, it is important to discuss how time is
handled by the framework. When a user first declares a Flowsheet model a time domain is created, the form of which
depends on whether the Flowsheet is declared to be dynamic or steady-state (see FlowsheetBlock documentation). In
situations where the user makes use of nested flowsheets, each sub-flowsheet refers to its parent flowsheet for the time
domain.

Different models may handle the time domain differently, but in general all IDAES models refer to the time domain
of their parent flowsheet. The only exception to this are blocks associated with Property calculations. PropertyBlocks
represent the state of the material at a single point in space and time, and thus do not contain the time domain. Instead,
PropertyBlocks are indexed by time (and space where applicable) - i.e. there is a separate PropertyBlock for each point
in time. The user should keep this in mind when working with IDAES models, as it is important for understanding
where the time index appears within a model.

In order to facilitate referencing of the time domain, all Flowsheet objects have a time configuration argument which
is a reference to the time domain for that flowsheet. All IDAES models contain a flowsheet method which returns
the parent flowsheet object, thus a reference to the time domain can always be found using the following code: flow-
sheet().config.time.

30 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Another important thing to note is that steady-state models do contain a time domain, however this is generally a
single point at time = 0.0. However, models still contain a reference to the time domain, and any components are still
indexed by time even in a steady-state model (e.g. PropertyBlocks).

Flowsheets

The top level of the IDAES modeling framework is the Flowsheet model. Flowsheet models represent traditional
process flowsheets, containing a number of Unit models representing process unit operations connected together into
a flow network. Flowsheets generally contain three types of components:

1. Unit models, representing unit operations,

2. Arcs, representing connections between Unit models, and,

3. Property Parameter blocks, representing the parameters associated with different materials present within the
flowsheet.

Flowsheet models may also contain additional constraints relating to how different Unit models behave and interact,
such as control and operational constraints. Generally speaking, if a Constraint is purely internal to a single unit, and
does not depend on information from other units in the flowsheet, then the Constraint should be placed inside the
relevant Unit model. Otherwise, the Constraint should be placed at the Flowsheet level.

Unit Models

Unit models generally represent individual pieces of equipment present within a process which perform a specific task.
Unit models in turn are generally composed of two main types of components:

1. Control Volume Blocks, which represent volume of material over which we wish to perform material, energy
and/or momentum balances, and,

2. StateBlocks and ReactionBlocks, which represent the thermophysical, transport and reaction properties of the
material at a specific point in space and time.

3. Inlets and Outlets, which allow Unit models to connect to other Unit models.

Unit models will also contain Constraints describing the performance of the unit, which will relate terms in the balance
equations to different phenomena.

Control Volumes

A key feature of the IDAES modeling framework is the use of Control Volume Blocks. As mentioned above, Control
Volumes represent a volume of material over which material, energy and/or momentum balances can be performed.
Control Volume Blocks contain methods to automate the task of writing common forms of these balance equations.
Control Volume Blocks can also automate the creation of StateBlocks and ReactionBlocks associated with the control
volume.

Property Blocks

Property blocks represent the state of a material at a given point in space and time within the process flowsheet, and
contain the state variables, thermophysical, transport and reaction properties of a material (which are functions solely
of the local state of the material). Within the IDAES process modeling framework, properties are divided into two
types:

• Physical properties (StateBlocks), including thermophysical and transport properties, and

4.7. Core Library 31

IDAES Documentation, Release 1.5.1.rc0

• Reaction properties (ReactionBlocks), which include all properties associated with chemical reactions.

Additionally, StateBlocks contain information on the extensive flow of material at that point in space and time, which is
a departure from how engineers generally think about properties. This is required to facilitate the flexible formulation
of the IDAES Framework by allowing the property package to dictate what form the balance equations will take, which
requires the StateBlock to know the extensive flow information.

The calculations involved in property blocks of both types generally require a set of parameters which are constant
across all instances of that type of property block. Rather than each property block containing its own copy of each
of these parameters (thus duplicating parameters between blocks), each type of property block is associated with a
Property Parameter Block (PhysicalParameterBlock or ReactionParameterBlock). Property Parameter Blocks serve
as a centralized location for the constant parameters involved in property calculations, and all property blocks of the
associated type link to the parameters contained in the parameter block.

Component References

There are many situations in the IDAES modeling framework where a developer may want to make use of a modeling
component (e.g. a variable or parameter) from one Block in another Block. The time domain is a good example of this
- almost all Blocks within an IDAES model need to make use of the time domain, however the time domain exists only
at the top level of the flowsheet structure. In order to make use of the time domain in other parts of the framework,
references to the time domain are used instead. By convention, all references within the IDAES modeling framework
are indicated by the suffix “_ref” attached to the name of the reference. E.g. all references to the time domain within
the framework are called “time_ref”.

What Belongs in Each Type of Block?

A common question with the hierarchical structure of the IDAES framework is where does a specific variable or
constraint belong (or conversely, where can I find a specific variable or constraint). In general, variables and constraints
are divided based on the following guidelines:

1. Property Parameter Blocks - any parameter or quantity that is consistent across all instances of a Property Block
belongs in the Property Parameter Block. This includes:

• component lists,

• lists of valid phases,

• universal constants (e.g. R, 𝜋),

• constants used in calculating properties (e.g. coefficients for calculating 𝑐𝑝,

• reference states (e.g. 𝑃𝑟𝑒𝑓 and 𝑇𝑟𝑒𝑓),

• lists of reaction identifiers,

• reaction stoichiometry.

2. Property Blocks - all state variables (including extensive flow information) and any quantity that is a function
only of state variables plus the constraints required to calculate these. These include:

• flow rates (can be of different forms, e.g. mass or molar flow, on a total or component basis),

• temperature,

• pressure,

• intensive and extensive state functions (e.g. enthalpy); both variables and constraints.

3. Control Volume Blocks - material, energy and momentum balances and the associated terms. These include:

32 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• balance equations,

• holdup volume,

• material and energy holdups; both variables and constraints,

• material and energy accumulation terms (Pyomo.dae handles the creation of the associated derivative con-
straints),

• material generation terms (kinetic reactions, chemical and phase equilibrium, mass transfer),

• extent of reaction terms and constraints relating these to the equivalent generation terms,

• phase fraction within the holdup volume and constrain on the sum of phase fractions,

• heat and work transfer terms,

• pressure change term

• diffusion and conduction terms (where applicable) and associated constraints,

• Mixer and Splitter blocks for handling multiple inlets/outlets.

4. Unit Model - any unit performance constraints and associated variables, such as:

• constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to
reaction rate and volume),

• constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints),

• unit level efficiency constraints (e.g. relating mechanical work to fluid work).

5. Flowsheet Model - any constraints related to interaction of unit models and associated variables. Examples
include:

• control constraints relating behavior between different units (e.g. a constraint on valve opening based on
the level in another unit).

Flowsheet Model Class

Contents

• Flowsheet Model Class

– Default Property Packages

– Flowsheet Configuration Arguments

– Flowsheet Classes

Flowsheet models make up the top level of the IDAES modeling framework, and represent the flow of material and
energy through a process. Flowsheets will generally contain a number of UnitModels to represent unit operations
within the process, and will contain one or more Property Packages which represent the thermophysical and transport
properties of material within the process.

Flowsheet models are responsible for establishing and maintaining the time domain of the model, including declaring
whether the process model will be dynamic or steady-state. This time domain is passed on to all models attached to
the flowsheet (such as Unit Models and sub-Flowsheets). The Flowsheet model also serves as a centralized location
for organizing property packages, and can set one property package to use as a default throughout the flowsheet.

4.7. Core Library 33

IDAES Documentation, Release 1.5.1.rc0

Flowsheet Blocks may contain other Flowsheet Blocks in order to create nested flowsheets and to better organize large,
complex process configurations. In these cases, the top-level Flowsheet Block creates the time domain, and each sub-
flowsheet creates a reference this time domain. Sub-flowsheets may make use of any property package declared at a
higher level, or declare new property package for use within itself - any of these may be set as the default property
package for a sub-Flowsheet.

Default Property Packages

Flowsheet Blocks may assign a property package to use as a default for all UnitModels within the Flowsheet. If a
specific property package is not provided as an argument when constructing a UnitModel, the UnitModel will search
up the model tree until it finds a default property package declared. The UnitModel will use the first default property
package it finds during the search, and will return an error if no default is found.

Flowsheet Configuration Arguments

Flowsheet blocks have three configuration arguments which are stored within a Config block (flowsheet.config). These
arguments can be set by passing arguments when instantiating the class, and are described below:

• dynamic - indicates whether the flowsheet should be dynamic or steady-state. If dynamic = True, the flowsheet
is declared to be a dynamic flowsheet, and the time domain will be a Pyomo ContunuousSet. If dynamic = False,
the flowsheet is declared to be steady-state, and the time domain will be an ordered Pyomo Set. For top level
Flowsheets, dynamic defaults to False if not provided. For lower level Flowsheets, the dynamic will take the
same value as that of the parent model if not provided. It is possible to declare steady-state sub-Flowsheets as
part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Flowsheets within
steady-state Flowsheets).

• time - a reference to the time domain for the flowsheet. During flowsheet creation, users may provide a Set or
ContinuousSet that the flowsheet should use as the time domain. If not provided, then the flowsheet will look for
a parent flowsheet and set this equal to the parent’s time domain, otherwise a new time domain will be created
and assigned here.

• time_set - used to initialize the time domain in top-level Flowsheets. When constructing the time domain in
top-level Flowsheets, time_set is used to initialize the ContinuousSet or Set created. This can be used to set start
and end times, and to establish points of interest in time (e.g. times when disturbances will occur). If dynamic
= True, time_set defaults to [0.0, 1.0] if not provided, if dynamic = False time_set defaults to [0.0]. time_set is
not used in sub-Flowsheets and will be ignored.

• default_property_package - can be used to assign the default property package for a Flowsheet. Defaults to
None if not provided.

Flowsheet Classes

class idaes.core.flowsheet_model.FlowsheetBlockData(component)
The FlowsheetBlockData Class forms the base class for all IDAES process flowsheet models. The main purpose
of this class is to automate the tasks common to all flowsheet models and ensure that the necessary attributes of
a flowsheet model are present.

The most signfiicant role of the FlowsheetBlockData class is to automatically create the time domain for the
flowsheet.

build()
General build method for FlowsheetBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of flowsheets.

Inheriting models should call super().build.

34 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Parameters None –

Returns None

is_flowsheet()
Method which returns True to indicate that this component is a flowsheet.

Parameters None –

Returns True

model_check()
This method runs model checks on all unit models in a flowsheet.

This method searches for objects which inherit from UnitModelBlockData and executes the model_check
method if it exists.

Parameters None –

Returns None

serialize(file_base_name, overwrite=False)
Serializes the flowsheet and saves it to a file that can be read by the idaes-model-vis jupyter lab extension.

Parameters

• file_base_name – The file prefix to the .idaes.vis file produced. The file is cre-
ated/saved in the directory that you ran from Jupyter Lab.

• overwrite – Boolean to overwrite an existing file_base_name.idaes.vis. If True, the
existing file with the same file_base_name will be overwritten. This will cause you to lose
any saved layout. If False and there is an existing file with that file_base_name, you will
get an error message stating that you cannot save a file to the file_base_name (and therefore
overwriting the saved layout). If there is not an existing file with that file_base_name then
it saves as normal. Defaults to False.

Returns None

stream_table(true_state=False, time_point=0, orient=’columns’)
Method to generate a stream table by iterating over all Arcs in the flowsheet.

Parameters

• true_state – whether the state variables (True) or display variables (False, default)
from the StateBlocks should be used in the stream table.

• time_point – point in the time domain at which to create stream table (default = 0)

• orient – whether stream should be shown by columns (“columns”) or rows (“index”)

Returns A pandas dataframe containing stream table information

class idaes.core.flowsheet_model.FlowsheetBlock(*args, **kwargs)
FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and contains instances of Flow-
sheetBlockData.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

4.7. Core Library 35

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent or False, True - set as a dynamic model,
False - set as a steady-state model.}

time Pointer to the time domain for the flowsheet. Users may provide an existing time
domain from another flowsheet, otherwise the flowsheet will search for a parent with a
time domain or create a new time domain and reference it here.

time_set Set of points for initializing time domain. This should be a list of floating point
numbers, default - [0].

default_property_package Indicates the default property package to be used by models
within this flowsheet if not otherwise specified, default - None. Valid values: { None
- no default property package, a ParameterBlock object.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (FlowsheetBlock) New instance

Property Packages

Physical Property Package Classes

Contents

• Physical Property Package Classes

– Physical Parameter Blocks

– State Blocks

Physical property packages represent a collection of calculations necessary to determine the state properties of a given
material. Property calculations form a critical part of any process model, and thus property packages form the core of
the IDAES modeling framework.

Physical property packages consist of two parts:

• PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being mod-
eled, and

• StateBlocks, which contain the actual calculations of the state variables and functions.

Physical Parameter Blocks

Physical Parameter blocks serve as a central location for linking to a property package, and contain all the parameters
and indexing sets used by a given property package.

36 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

PhysicalParameterBlock Class

The role of the PhysicalParameterBlock class is to set up the references required by the rest of the IDAES framework
for constructing instances of StateBlocks and attaching these to the PhysicalParameter block for ease of use. This
allows other models to be pointed to the PhysicalParameter block in order to collect the necessary information and to
construct the necessary StateBlocks without the need for the user to do this manually.

Physical property packages form the core of any process model in the IDAES modeling framework, and are used by
all of the other modeling components to inform them of what needs to be constructed. In order to do this, the IDAES
modeling framework looks for a number of attributes in the PhysicalParameter block which are used to inform the
construction of other components.

• state_block_class - a pointer to the associated class that should be called when constructing StateBlocks.

• phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

• component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

• element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species
within the mixture. This is used when doing elemental material balances.

• element_comp - (optional) a dict-like object which defines the elemental composition of each species in com-
ponent_list. Form: component: {element_1: value, element_2: value, . . . }.

• supported properties metadata - a list of supported physical properties that the property package supports, along
with instruction to the framework on how to construct the associated variables and constraints, and the units
of measurement used for the property. This information is set using the add_properties attribute of the de-
fine_metadata class method.

Physical Parameter Configuration Arguments

Physical Parameter blocks have one standard configuration argument:

• default_arguments - this allows the user to provide a set of default values for construction arguments in associ-
ated StateBlocks, which will be passed to all StateBlocks when they are constructed.

class idaes.core.property_base.PhysicalParameterBlock(component)
This is the base class for thermophysical parameter blocks. These are blocks that contain a set of parameters
associated with a specific thermophysical property package, and are linked to by all instances of that property
package.

build()
General build method for PropertyParameterBlocks. Inheriting models should call super().build.

Parameters None –

Returns None

get_phase_component_set()
Method to get phase-component set for property package. If a phase- component set has not been con-
structed yet, this method will construct one.

Parameters None –

Returns Phase-component Set object

4.7. Core Library 37

IDAES Documentation, Release 1.5.1.rc0

State Blocks

State Blocks are used within all IDAES Unit models (generally within ControlVolume Blocks) in order to calculate
physical properties given the state of the material. State Blocks are notably different to other types of Blocks within
IDAES as they are always indexed by time (and possibly space as well). There are two base Classes associated with
State Blocks:

• StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to
construct each instance of a State Block.

• StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks
(or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and
examples for more information.

State Block Construction Arguments

State Blocks have the following construction arguments:

• parameters - a reference to the associated Physical Parameter block which will be used to make references to all
necessary parameters.

• defined_state - this argument indicates whether the State Block should expect the material state to be fully
defined by another part of the flowsheet (such as by an upstream unit operation). This argument is used to
determine whether constraints such as sums of mole fractions should be enforced.

• has_phase_equilibrium - indicates whether the associated Control Volume or Unit model expects phase equilib-
rium to be enforced (if applicable).

StateBlockData Class

StateBlockData contains the code necessary for implementing the as needed construction of variables and constraints.

class idaes.core.property_base.StateBlockData(component)
This is the base class for state block data objects. These are blocks that contain the Pyomo components associ-
ated with calculating a set of thermophysical and transport properties for a given material.

build()
General build method for StateBlockDatas.

Parameters None –

Returns None

calculate_bubble_point_pressure(*args, **kwargs)
Method which computes the bubble point pressure for a multi- component mixture given a temperature
and mole fraction.

calculate_bubble_point_temperature(*args, **kwargs)
Method which computes the bubble point temperature for a multi- component mixture given a pressure
and mole fraction.

calculate_dew_point_pressure(*args, **kwargs)
Method which computes the dew point pressure for a multi- component mixture given a temperature and
mole fraction.

38 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

calculate_dew_point_temperature(*args, **kwargs)
Method which computes the dew point temperature for a multi- component mixture given a pressure and
mole fraction.

define_display_vars()
Method used to specify components to use to generate stream tables and other outputs. Defaults to de-
fine_state_vars, and developers should overload as required.

define_port_members()
Method used to specify components to populate Ports with. Defaults to define_state_vars, and developers
should overload as required.

define_state_vars()
Method that returns a dictionary of state variables used in property package. Implement a placeholder
method which returns an Exception to force users to overload this.

get_energy_density_terms(*args, **kwargs)
Method which returns a valid expression for enthalpy density to use in the energy balances.

get_energy_diffusion_terms(*args, **kwargs)
Method which returns a valid expression for energy diffusion to use in the energy balances.

get_enthalpy_flow_terms(*args, **kwargs)
Method which returns a valid expression for enthalpy flow to use in the energy balances.

get_material_density_terms(*args, **kwargs)
Method which returns a valid expression for material density to use in the material balances .

get_material_diffusion_terms(*args, **kwargs)
Method which returns a valid expression for material diffusion to use in the material balances.

get_material_flow_basis(*args, **kwargs)
Method which returns an Enum indicating the basis of the material flow term.

get_material_flow_terms(*args, **kwargs)
Method which returns a valid expression for material flow to use in the material balances.

StateBlock Class

class idaes.core.property_base.StateBlock(*args, **kwargs)
This is the base class for state block objects. These are used when constructing the SimpleBlock or IndexedBlock
which will contain the PropertyData objects, and contains methods that can be applied to multiple StateBlock-
Data objects simultaneously.

initialize(*args, **kwargs)
This is a default initialization routine for StateBlocks to ensure that a routine is present. All StateBlockData
classes should overload this method with one suited to the particular property package

Parameters None –

Returns None

report(index=0, true_state=False, dof=False, ostream=None, prefix=”)
Default report method for StateBlocks. Returns a Block report populated with either the display or state
variables defined in the StateBlockData class.

Parameters

• index – tuple of Block indices indicating which point in time (and space if applicable)
to report state at.

4.7. Core Library 39

IDAES Documentation, Release 1.5.1.rc0

• true_state – whether to report the display variables (False default) or the actual state
variables (True)

• dof – whether to show local degrees of freedom in the report (default=False)

• ostream – output stream to write report to

• prefix – string to append to the beginning of all output lines

Returns Printed output to ostream

Reaction Property Package Classes

Contents

• Reaction Property Package Classes

– Reaction Parameter Blocks

– Reaction Blocks

Reaction property packages represent a collection of calculations necessary to determine the reaction behavior of a
mixture at a given state. Reaction properties depend upon the state and physical properties of the material, and thus
must be linked to a StateBlock which provides the necessary state and physical property information.

Reaction property packages consist of two parts:

• ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being mod-
eled, and

• ReactionBlocks, which contain the actual calculations of the reaction behavior.

Reaction Parameter Blocks

Reaction Parameter blocks serve as a central location for linking to a reaction property package, and contain all the
parameters and indexing sets used by a given reaction package.

ReactionParameterBlock Class

The role of the ReactionParameterBlock class is to set up the references required by the rest of the IDAES framework
for constructing instances of ReactionBlocks and attaching these to the ReactionParameter block for ease of use. This
allows other models to be pointed to the ReactionParameter block in order to collect the necessary information and to
construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of what needs to be
constructed when dealing with chemical reactions. In order to do this, the IDAES modeling framework looks for a
number of attributes in the ReactionParameter block which are used to inform the construction of other components.

• reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks.

• phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

• component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

• rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

40 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions.
Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric
coefficient for that index.

• equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of
interest.

• equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled
reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to
the stoichiometric coefficient for that index.

• supported properties metadata - a list of supported reaction properties that the property package supports, along
with instruction to the framework on how to construct the associated variables and constraints, and the units
of measurement used for the property. This information is set using the add_properties attribute of the de-
fine_metadata class method.

• required properties metadata - a list of physical properties that the reaction property calculations depend upon,
and must be supported by the associated StateBlock. This information is set using the add_required_properties
attribute of the define_metadata class method.

Reaction Parameter Configuration Arguments

Reaction Parameter blocks have two standard configuration arguments:

• property_package - a pointer to a PhysicalParameterBlock which will be used to construct the StateBlocks to
which associated ReactionBlocks will be linked. Reaction property packages must be tied to a single Physical
property package, and this is used to validate the connections made later when constructing ReactionBlocks.

• default_arguments - this allows the user to provide a set of default values for construction arguments in associ-
ated ReactionBlocks, which will be passed to all ReactionBlocks when they are constructed.

class idaes.core.reaction_base.ReactionParameterBlock(component)
This is the base class for reaction parameter blocks. These are blocks that contain a set of parameters associated
with a specific reaction package, and are linked to by all instances of that reaction package.

build()
General build method for ReactionParameterBlocks. Inheriting models should call super().build.

Parameters None –

Returns None

Reaction Blocks

Reaction Blocks are used within IDAES Unit models (generally within ControlVolume Blocks) in order to calculate
reaction properties given the state of the material (provided by an associated StateBlock). Reaction Blocks are notably
different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well), and
are also not fully self contained (in that they depend upon the associated state block for certain variables). There are
two bases Classes associated with Reaction Blocks:

• ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions
on how to construct each instance of a Reaction Block.

• ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction
Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials
and examples for more information.

4.7. Core Library 41

IDAES Documentation, Release 1.5.1.rc0

Reaction Block Construction Arguments

Reaction Blocks have the following construction arguments:

• parameters - a reference to the associated Reaction Parameter block which will be used to make references to
all necessary parameters.

• state_block - a reference to the associated StateBlock which will provide the necessary state and physical prop-
erty information.

• has_equilibrium - indicates whether the associated Control Volume or Unit model expects chemical equilibrium
to be enforced (if applicable).

ReactionBlockDataBase Class

ReactionBlockDataBase contains the code necessary for implementing the as needed construction of variables and
constraints.

class idaes.core.reaction_base.ReactionBlockDataBase(component)
This is the base class for reaction block data objects. These are blocks that contain the Pyomo components
associated with calculating a set of reacion properties for a given material.

build()
General build method for PropertyBlockDatas. Inheriting models should call super().build.

Parameters None –

Returns None

get_reaction_rate_basis()
Method which returns an Enum indicating the basis of the reaction rate term.

ReactionBlockBase Class

class idaes.core.reaction_base.ReactionBlockBase(*args, **kwargs)
This is the base class for reaction block objects. These are used when constructing the SimpleBlock or In-
dexedBlock which will contain the PropertyData objects, and contains methods that can be applied to multiple
ReactionBlockData objects simultaneously.

initialize(*args)
This is a default initialization routine for ReactionBlocks to ensure that a routine is present. All Reaction-
BlockData classes should overload this method with one suited to the particular reaction package

Parameters None –

Returns None

IDAES Property Packages

The IDAES process modeling framework divides property calculations into two parts;

• physical and transport properties

• chemical reaction properties

Defining the calculations to be used when calculating properties is done via “property packages”, which contain a set
of related calculations for a number of properties of interest. Property packages may be general in purpose, such as
ideal gas equations, or specific to a certain application.

42 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

As Needed Properties

Process flow sheets often require a large number of properties to be calculate, but not all of these are required in every
unit operation. Calculating additional properties that are not required is undesirable, as it leads to larger problem sizes
and unnecessary complexity of the resulting model.

To address this, the IDAES modeling framework supports “as needed” construction of properties, where the variables
and constraints required to calculate a given quantity are not added to a model unless the model calls for this quantity.
To designate a property as an “as needed” quantity, a method can be declared in the associated property BlockData
class (StateBlockData or ReactionBlockData) which contains the instructions for constructing the variables and con-
straints associated with the quantity (rather than declaring these within the BlockData’s build method). The name of
this method can then be associated with the property via the add_properties metadata in the property packages Param-
eterBlock, which indicates to the framework that when this property is called for, the associated method should be
run.

The add_properties metadata can also indicate that a property should always be present (i.e. constructed in the Block-
Data’s build method) by setting the method to None, or that it is not supported by setting the method to False.

Unit Model Class

The UnitModelBlock is class is designed to form the basis of all IDAES Unit Models, and contains a number of
methods which are common to all Unit Models.

UnitModelBlock Construction Arguments

The UnitModelBlock class by default has only one construction argument, which is listed below. However, most
models inheriting from UnitModelBlock should declare their own set of configuration arguments which contain more
information on how the model should be constructed.

• dynamic - indicates whether the Unit model should be dynamic or steady-state, and if dynamic = True, the
unit is declared to be a dynamic model. dynamic defaults to useDefault if not provided when instantiating the
Unit model (see below for more details). It is possible to declare steady-state Unit models as part of dynamic
Flowsheets if desired, however the reverse is not true (cannot have dynamic Unit models within steady-state
Flowsheets).

Collecting Time Domain

The next task of the UnitModelBlock class is to establish the time domain for the unit by collecting the necessary
information from the parent Flowsheet model. If the dynamic construction argument is set to useDefault then the Unit
model looks to its parent model for the dynamic argument, otherwise the value provided at construction is used.

Finally, if the Unit model has a construction argument named “has_holdup” (not part of the base class), then this is
checked to ensure that if dynamic = True then has_holdup is also True. If this check fails then a ConfigurationError
exception will be thrown.

Modeling Support Methods

The UnitModelBlock class also contains a number of methods designed to facilitate the construction of common
components of a model, and these are described below.

4.7. Core Library 43

IDAES Documentation, Release 1.5.1.rc0

Build Inlets Method

All (or almost all) Unit Models will have inlets and outlets which allow material to flow in and out of the unit being
modeled. In order to save the model developer from having to write the code for each inlet themselves, UnitModel-
Block contains a method named build_inlet_port which can automatically create an inlet to a specified ControlVolume
block (or linked to a specified StateBlock). The build_inlet_port method is described in more detail in the documen-
tation below.

Build Outlets Method

Similar to build_inlet_port, UnitModelBlock also has a method named build_outlet_port for constructing outlets from
Unit models. The build_outlet_port method is described in more detail in the documentation below.

Model Check Method

In order to support the IDAES Model Check tools, UnitModelBlock contains a simple model_check method which
assumes a single Holdup block and calls the model_check method on this block. Model developers are encouraged to
create their own model_check methods for their particular applications.

Initialization Routine

All Unit Models need to have an initialization routine, which should be customized for each Unit model, In order to
ensure that all Unit models have at least a basic initialization routine, UnitModelBlock contains a generic initialization
procedure which may be sufficient for simple models with only one Holdup Block. Model developers are strongly
encouraged to write their own initialization routines rather than relying on the default method.

UnitModelBlock Classes

class idaes.core.unit_model.UnitModelBlockData(component)
This is the class for process unit operations models. These are models that would generally appear in a process
flowsheet or superstructure.

add_inlet_port(name=None, block=None, doc=None)
This is a method to build inlet Port objects in a unit model and connect these to a specified control volume
or state block.

The name and block arguments are optional, but must be used together. i.e. either both arguments are
provided or neither.

Keyword Arguments

• name – name to use for Port object (default = “inlet”).

• block – an instance of a ControlVolume or StateBlock to use as the source to populate
the Port object. If a ControlVolume is provided, the method will use the inlet state block
as defined by the ControlVolume. If not provided, method will attempt to default to an
object named control_volume.

• doc – doc string for Port object (default = “Inlet Port”)

Returns A Pyomo Port object and associated components.

44 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

add_outlet_port(name=None, block=None, doc=None)
This is a method to build outlet Port objects in a unit model and connect these to a specified control volume
or state block.

The name and block arguments are optional, but must be used together. i.e. either both arguments are
provided or neither.

Keyword Arguments

• name – name to use for Port object (default = “outlet”).

• block – an instance of a ControlVolume or StateBlock to use as the source to populate
the Port object. If a ControlVolume is provided, the method will use the outlet state block
as defined by the ControlVolume. If not provided, method will attempt to default to an
object named control_volume.

• doc – doc string for Port object (default = “Outlet Port”)

Returns A Pyomo Port object and associated components.

add_port(name=None, block=None, doc=None)
This is a method to build Port objects in a unit model and connect these to a specified StateBlock.

Keyword Arguments

• name – name to use for Port object.

• block – an instance of a StateBlock to use as the source to populate the Port object

• doc – doc string for Port object

Returns A Pyomo Port object and associated components.

add_state_material_balances(balance_type, state_1, state_2)
Method to add material balances linking two State Blocks in a Unit Model. This method is not intended to
replace Control Volumes, but to automate writing material balances linking isolated State Blocks in those
models where this is required.

Parameters

• - a MaterialBalanceType Enum indicating the type
(balance_type) – of material balances to write

• - first State Block to be linked by balances (state_1) –

• - second State Block to be linked by balances (state_2) –

Returns None

build()
General build method for UnitModelBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of unit models.

Inheriting models should call super().build.

Parameters None –

Returns None

initialize(state_args=None, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
This is a general purpose initialization routine for simple unit models. This method assumes a single
ControlVolume block called controlVolume, and first initializes this and then attempts to solve the entire
unit.

More complex models should overload this method with their own initialization routines,

4.7. Core Library 45

IDAES Documentation, Release 1.5.1.rc0

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

model_check()
This is a general purpose initialization routine for simple unit models. This method assumes a single
ControlVolume block called controlVolume and tries to call the model_check method of the controlVolume
block. If an AttributeError is raised, the check is passed.

More complex models should overload this method with a model_check suited to the particular application,
especially if there are multiple ControlVolume blocks present.

Parameters None –

Returns None

class idaes.core.unit_model.UnitModelBlock(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (UnitModelBlock) New instance

Control Volume Classes

0D Control Volume Class

46 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Contents

• 0D Control Volume Class

– ControlVolume0DBlock Equations

The ControlVolume0DBlock block is the most commonly used Control Volume class, and is used for systems where
there is a well-mixed volume of fluid, or where variations in spatial domains are considered to be negligible. Con-
trolVolume0DBlock blocks generally contain two StateBlocks - one for the incoming material and one for the material
within and leaving the volume - and one StateBlocks.

class idaes.core.control_volume0d.ControlVolume0DBlock(*args, **kwargs)
ControlVolume0DBlock is a specialized Pyomo block for IDAES non-discretized control volume blocks, and
contains instances of ControlVolume0DBlockData.

ControlVolume0DBlock should be used for any control volume with a defined volume and distinct inlets and
outlets which does not require spatial discretization. This encompases most basic unit models used in process
modeling.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton.}

4.7. Core Library 47

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolume0DBlock) New instance

class idaes.core.control_volume0d.ControlVolume0DBlockData(component)
0-Dimensional (Non-Discretised) ControlVolume Class

This class forms the core of all non-discretized IDAES models. It provides methods to build property and
reaction blocks, and add mass, energy and momentum balances. The form of the terms used in these constraints
is specified in the chosen property package.

add_geometry()
Method to create volume Var in ControlVolume.

Parameters None –

Returns None

add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 0D material balances indexed by time, phase and component.

Parameters

• has_rate_reactions – whether default generation terms for rate reactions should be
included in material balances

• has_equilibrium_reactions – whether generation terms should for chemical
equilibrium reactions should be included in material balances

• has_phase_equilibrium – whether generation terms should for phase equilibrium
behaviour should be included in material balances

• has_mass_transfer – whether generic mass transfer terms should be included in
material balances

• custom_molar_term – a Pyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, phase list and
component list

• custom_mass_term – a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, phase list and
component list

Returns Constraint object representing material balances

add_phase_energy_balances(*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy_balances(*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances(*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

48 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

See specific control volume documentation for details.

add_phase_pressure_balances(*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks(has_equilibrium=None)
This method constructs the reaction block for the control volume.

Parameters

• has_equilibrium – indicates whether equilibrium calculations will be required in
reaction block

• package_arguments – dict-like object of arguments to be passed to reaction block as
construction arguments

Returns None

add_state_blocks(information_flow=<FlowDirection.forward: 1>,
has_phase_equilibrium=None)

This method constructs the inlet and outlet state blocks for the control volume.

Parameters

• information_flow – a FlowDirection Enum indicating whether information flows
from inlet-to-outlet or outlet-to-inlet

• has_phase_equilibrium – indicates whether equilibrium calculations will be re-
quired in state blocks

• package_arguments – dict-like object of arguments to be passed to state blocks as
construction arguments

Returns None

add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 0D material balances indexed by time and component.

Parameters

• - whether default generation terms for rate
(has_rate_reactions) – reactions should be included in material balances

• - whether generation terms should for (has_equilibrium_reactions)
– chemical equilibrium reactions should be included in material balances

• - whether generation terms should for phase
(has_phase_equilibrium) – equilibrium behaviour should be included in
material balances

• - whether generic mass transfer terms should be
(has_mass_transfer) – included in material balances

• - a Pyomo Expression representing custom terms to
(custom_mass_term) – be included in material balances on a molar basis. Ex-
pression must be indexed by time, phase list and component list

• - a Pyomo Expression representing custom terms to – be included in
material balances on a mass basis. Expression must be indexed by time, phase list and
component list

4.7. Core Library 49

IDAES Documentation, Release 1.5.1.rc0

Returns Constraint object representing material balances

add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_elemental_term=None)

This method constructs a set of 0D element balances indexed by time.

Parameters

• - whether default generation terms for rate
(has_rate_reactions) – reactions should be included in material balances

• - whether generation terms should for (has_equilibrium_reactions)
– chemical equilibrium reactions should be included in material balances

• - whether generation terms should for phase
(has_phase_equilibrium) – equilibrium behaviour should be included in
material balances

• - whether generic mass transfer terms should be
(has_mass_transfer) – included in material balances

• - a Pyomo Expression representing custom
(custom_elemental_term) – terms to be included in material balances on a
molar elemental basis. Expression must be indexed by time and element list

Returns Constraint object representing material balances

add_total_energy_balances(*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False,
has_work_transfer=False, custom_term=None)

This method constructs a set of 0D enthalpy balances indexed by time and phase.

Parameters

• - whether terms for heat of reaction should
(has_heat_of_reaction) – be included in enthalpy balance

• - whether terms for heat transfer should be
(has_heat_transfer) – included in enthalpy balances

• - whether terms for work transfer should be
(has_work_transfer) – included in enthalpy balances

• - a Pyomo Expression representing custom terms to
(custom_term) – be included in enthalpy balances. Expression must be indexed
by time and phase list

Returns Constraint object representing enthalpy balances

add_total_material_balances(*args, **kwargs)
Method for adding a total material balance to the control volume.

See specific control volume documentation for details.

add_total_momentum_balances(*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

50 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

add_total_pressure_balances(has_pressure_change=False, custom_term=None)
This method constructs a set of 0D pressure balances indexed by time.

Parameters

• - whether terms for pressure change should be
(has_pressure_change) – included in enthalpy balances

• - a Pyomo Expression representing custom terms to
(custom_term) – be included in pressure balances. Expression must be indexed
by time

Returns Constraint object representing pressure balances

build()
Build method for ControlVolume0DBlock blocks.

Returns None

initialize(state_args=None, outlvl=0, optarg=None, solver=’ipopt’, hold_state=True)
Initialization routine for 0D control volume (default solver ipopt)

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output log level of initialization routine

• optarg – solver options dictionary object (default=None)

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

• hold_state – flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.

model_check()
This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)
Method to release state variables fixed during initialization.

Keyword Arguments

• flags – dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

• outlvl – sets output level of logging

Returns None

4.7. Core Library 51

IDAES Documentation, Release 1.5.1.rc0

ControlVolume0DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVol-
ume0DBlock class.

• 𝑡 indicates time index

• 𝑝 indicates phase index

• 𝑗 indicates component index

• 𝑒 indicates element index

• 𝑟 indicates reaction name index

add_geometry

The add_geometry method creates a single variable within the control volume named volume indexed by time (allow-
ing for varying volume over time). A number of other methods depend on this variable being present, thus this method
should generally be called first.

Variables

Variable Name Symbol Indices Conditions
volume 𝑉𝑡 t None

Constraints

No additional constraints

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑝,𝑗 t, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 t, p, j dynamic = True
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 t, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 t, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 t, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 t, r has_equilibrium_reactions = True
phase_equilibrium_generation 𝑁𝑝𝑒,𝑡,𝑝,𝑗 t, p ,j has_phase_equilibrium = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 t, p ,j has_mass_transfer = True

Constraints

material_balances(t, p, j):

𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡
= 𝐹𝑖𝑛,𝑡,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 +𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 +𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 +𝑁𝑝𝑒,𝑡,𝑝,𝑗 +𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑝,𝑗

52 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑝,𝑗 term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

𝑀𝑡,𝑝,𝑗 = 𝜌𝑡,𝑝,𝑗 × 𝑉𝑡 × 𝜑𝑡,𝑝

where 𝜌𝑡,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 , will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam).
Most terms in the balance equations are still indexed by both phase and component however. Physical property
packages may include information to indicate that certain species do not appear in all phases, and material balances
will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these
will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑝,𝑗 t, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 t, p, j dynamic = True
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 t, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 t, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 t, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 t, r has_equilibrium_reactions = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 t, p ,j has_mass_transfer = True

Constraints

material_balances(t, j):∑︁
𝑝

𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡
=
∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑗 −
∑︁
𝑝

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑝𝑒,𝑡,𝑝,𝑗 +
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑗

4.7. Core Library 53

IDAES Documentation, Release 1.5.1.rc0

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑗 term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

𝑀𝑡,𝑝,𝑗 = 𝜌𝑡,𝑝,𝑗 × 𝑉𝑡 × 𝜑𝑡,𝑝

where 𝜌𝑡,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑝,𝑗

𝜕𝑡 , will be performed by Pyomo.DAE.

If has_rate_reactions is True„ rate_reaction_stoichiometry_constraint(t, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

Variable Name Symbol Indices Conditions
element_holdup 𝑀𝑡,𝑒 t, e has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
element_accumulation 𝜕𝑀𝑡,𝑒

𝜕𝑡 t, e dynamic = True
elemental_mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑒 t, e has_mass_transfer = True

Expressions

elemental_flow_in(t, p, e):

𝐹𝑖𝑛,𝑡,𝑝,𝑒 =
∑︁
𝑗

𝐹𝑖𝑛,𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

elemental_flow_out(t, p, e):

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑒 =
∑︁
𝑗

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝑛𝑗,𝑒 is the number of moles of element 𝑒 in component 𝑗.

Constraints

54 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

element_balances(t, e):

𝜕𝑀𝑡,𝑒

𝜕𝑡
=
∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑒 −
∑︁
𝑝

𝐹𝑜𝑢𝑡,𝑡,𝑝,𝑒 +
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑒 +𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒 term allows the user to provide custom terms (variables or expressions) which will be added into the
material balances.

If has_holdup is True, elemental_holdup_calculation(t, e):

𝑀𝑡,𝑒 = 𝑉𝑡 ×
∑︁
𝑝,𝑗

𝜑𝑡,𝑝 × 𝜌𝑡,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝜌𝑡,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑒

𝜕𝑡 , will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture.

Variables

Variable Name Symbol Indices Conditions
enthalpy_holdup 𝐸𝑡,𝑝 t, p has_holdup = True
phase_fraction 𝜑𝑡,𝑝 t, p has_holdup = True
enthalpy_accumulation 𝜕𝐸𝑡,𝑝

𝜕𝑡 t, p dynamic = True
heat 𝑄𝑡 t has_heat_transfer = True
work 𝑊𝑡 t has_work_transfer = True

Expressions

heat_of_reaction(t):

𝑄𝑟𝑥𝑛,𝑡 = 𝑠𝑢𝑚𝑟𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟 + 𝑠𝑢𝑚𝑟𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟

where 𝑄𝑟𝑥𝑛,𝑡 is the total enthalpy released by both kinetic and equilibrium reactions, and ∆𝐻𝑟𝑥𝑛,𝑟 is the specific heat
of reaction for reaction 𝑟.

Parameters

Parameter Name Symbol Default Value
scaling_factor_energy 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 1E-6

Constraints

enthalpy_balance(t):

𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×
∑︁
𝑝

𝜕𝐸𝑡,𝑝

𝜕𝑡
= 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×

∑︁
𝑝

𝐻𝑖𝑛,𝑡,𝑝 − 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×
∑︁
𝑝

𝐻𝑜𝑢𝑡,𝑡,𝑝 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑄𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑊𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 ×𝑄𝑟𝑥𝑛,𝑡 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡

The 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡 term allows the user to provide custom terms which will be added into the energy balance.

If has_holdup is True, enthalpy_holdup_calculation(t, p):

𝐸𝑡,𝑝 = ℎ𝑡,𝑝 × 𝑉𝑡 × 𝜑𝑡,𝑝

4.7. Core Library 55

IDAES Documentation, Release 1.5.1.rc0

where ℎ𝑡,𝑝 is the enthalpy density (specific enthalpy) of phase 𝑝 at time 𝑡

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝐸𝑡,𝑝

𝜕𝑡 , will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture.

Variables

Variable Name Symbol Indices Conditions
deltaP ∆𝑃𝑡 t has_pressure_change = True

Parameters

Parameter Name Symbol Default Value
scaling_factor_pressure 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1E-4

Constraints

pressure_balance(t):

0 = 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑃𝑖𝑛,𝑡 − 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑃𝑜𝑢𝑡,𝑡 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × ∆𝑃𝑡 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡

The ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡 term allows the user to provide custom terms which will be added into the pressure balance.

1D Control Volume Class

Contents

• 1D Control Volume Class

– ControlVolume1DBlock Equations

The ControlVolume1DBlock block is used for systems with one spatial dimension where material flows parallel to
the spatial domain. Examples of these types of unit operations include plug flow reactors and pipes. ControlVol-
ume1DBlock blocks are discretized along the length domain and contain one StateBlock and one ReactionBlock (if
applicable) at each point in the domain (including the inlet and outlet).

class idaes.core.control_volume1d.ControlVolume1DBlock(*args, **kwargs)
ControlVolume1DBlock is a specialized Pyomo block for IDAES control volume blocks discretized in one
spatial direction, and contains instances of ControlVolume1DBlockData.

ControlVolume1DBlock should be used for any control volume with a defined volume and distinct inlets and
outlets where there is a single spatial domain parallel to the material flow direction. This encompases unit
operations such as plug flow reactors and pipes.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

56 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton.}

area_definition Argument defining whether area variable should be spatially variant or
not. default - DistributedVars.uniform. Valid values: { DistributedVars.uniform - area
does not vary across spatial domian, DistributedVars.variant - area can vary over the
domain and is indexed by time and space.}

transformation_method Method to use to transform domain. Must be a method recog-
nised by the Pyomo TransformationFactory.

transformation_scheme Scheme to use when transformating domain. See Pyomo doc-
umentation for supported schemes.

finite_elements Number of finite elements to use in transformation (equivalent to Pyomo
nfe argument).

collocation_points Number of collocation points to use (equivalent to Pyomo ncp argu-
ment).

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolume1DBlock) New instance

4.7. Core Library 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

class idaes.core.control_volume1d.ControlVolume1DBlockData(component)
1-Dimensional ControlVolume Class

This class forms the core of all 1-D IDAES models. It provides methods to build property and reaction blocks,
and add mass, energy and momentum balances. The form of the terms used in these constraints is specified in
the chosen property package.

add_geometry(length_domain=None, length_domain_set=[0.0, 1.0],
flow_direction=<FlowDirection.forward: 1>)

Method to create spatial domain and volume Var in ControlVolume.

Parameters

• - (length_domain_set) – domain for the ControlVolume. If not provided, a new
ContinuousSet will be created (default=None). ContinuousSet should be normalized to
run between 0 and 1.

• - – a new ContinuousSet if length_domain is not provided (default = [0.0, 1.0]).

• - argument indicating direction of material flow
(flow_direction) –

relative to length domain. Valid values:

– FlowDirection.forward (default), flow goes from 0 to 1.

– FlowDirection.backward, flow goes from 1 to 0

Returns None

add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 1D material balances indexed by time, length, phase and component.

Parameters

• has_rate_reactions – whether default generation terms for rate reactions should be
included in material balances

• has_equilibrium_reactions – whether generation terms should for chemical
equilibrium reactions should be included in material balances

• has_phase_equilibrium – whether generation terms should for phase equilibrium
behaviour should be included in material balances

• has_mass_transfer – whether generic mass transfer terms should be included in
material balances

• custom_molar_term – a Pyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, length domain,
phase list and component list

• custom_mass_term – a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, length domain,
phase list and component list

Returns Constraint object representing material balances

add_phase_energy_balances(*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

58 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

add_phase_enthalpy_balances(*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances(*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances(*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks(has_equilibrium=None)
This method constructs the reaction block for the control volume.

Parameters

• has_equilibrium – indicates whether equilibrium calculations will be required in
reaction block

• package_arguments – dict-like object of arguments to be passed to reaction block as
construction arguments

Returns None

add_state_blocks(information_flow=<FlowDirection.forward: 1>,
has_phase_equilibrium=None)

This method constructs the state blocks for the control volume.

Parameters

• information_flow – a FlowDirection Enum indicating whether information flows
from inlet-to-outlet or outlet-to-inlet

• has_phase_equilibrium – indicates whether equilibrium calculations will be re-
quired in state blocks

• package_arguments – dict-like object of arguments to be passed to state blocks as
construction arguments

Returns None

add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_molar_term=None, custom_mass_term=None)

This method constructs a set of 1D material balances indexed by time length and component.

Parameters

• has_rate_reactions – whether default generation terms for rate reactions should be
included in material balances

• has_equilibrium_reactions – whether generation terms should for chemical
equilibrium reactions should be included in material balances

• has_phase_equilibrium – whether generation terms should for phase equilibrium
behaviour should be included in material balances

• has_mass_transfer – whether generic mass transfer terms should be included in
material balances

4.7. Core Library 59

IDAES Documentation, Release 1.5.1.rc0

• custom_molar_term – a Pyomo Expression representing custom terms to be included
in material balances on a molar basis. Expression must be indexed by time, length domain
and component list

• custom_mass_term – a Pyomo Expression representing custom terms to be included
in material balances on a mass basis. Expression must be indexed by time, length domain
and component list

Returns Constraint object representing material balances

add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False,
has_phase_equilibrium=False, has_mass_transfer=False,
custom_elemental_term=None)

This method constructs a set of 1D element balances indexed by time and length.

Parameters

• - whether default generation terms for rate
(has_rate_reactions) – reactions should be included in material balances

• - whether generation terms should for (has_equilibrium_reactions)
– chemical equilibrium reactions should be included in material balances

• - whether generation terms should for phase
(has_phase_equilibrium) – equilibrium behaviour should be included in
material balances

• - whether generic mass transfer terms should be
(has_mass_transfer) – included in material balances

• - a Pyomo Expression representing custom
(custom_elemental_term) – terms to be included in material balances on a
molar elemental basis. Expression must be indexed by time, length and element list

Returns Constraint object representing material balances

add_total_energy_balances(*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False,
has_work_transfer=False, custom_term=None)

This method constructs a set of 1D enthalpy balances indexed by time and phase.

Parameters

• - whether terms for heat of reaction should
(has_heat_of_reaction) – be included in enthalpy balance

• - whether terms for heat transfer should be
(has_heat_transfer) – included in enthalpy balances

• - whether terms for work transfer should be
(has_work_transfer) – included in enthalpy balances

• - a Pyomo Expression representing custom terms to
(custom_term) – be included in enthalpy balances. Expression must be indexed
by time, length and phase list

Returns Constraint object representing enthalpy balances

add_total_material_balances(*args, **kwargs)
Method for adding a total material balance to the control volume.

60 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

See specific control volume documentation for details.

add_total_momentum_balances(*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

add_total_pressure_balances(has_pressure_change=False, custom_term=None)
This method constructs a set of 1D pressure balances indexed by time.

Parameters

• - whether terms for pressure change should be
(has_pressure_change) – included in enthalpy balances

• - a Pyomo Expression representing custom terms to
(custom_term) – be included in pressure balances. Expression must be indexed
by time and length domain

Returns Constraint object representing pressure balances

apply_transformation()
Method to apply DAE transformation to the Control Volume length domain. Transformation applied will
be based on the Control Volume configuration arguments.

build()
Build method for ControlVolume1DBlock blocks.

Returns None

initialize(state_args=None, outlvl=0, optarg=None, solver=’ipopt’, hold_state=True)
Initialization routine for 1D control volume (default solver ipopt)

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default=None)

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

• hold_state – flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - True. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization else the release state is triggered.

model_check()
This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)
Method to release state variables fixed during initialization.

4.7. Core Library 61

IDAES Documentation, Release 1.5.1.rc0

Keyword Arguments

• flags – dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

• outlvl – sets output level of logging

Returns None

report(time_point=0, dof=False, ostream=None, prefix=”)
No report method defined for ControlVolume1D class. This is due to the difficulty of presenting spatially
discretized data in a readable form without plotting.

ControlVolume1DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVol-
ume0DBlock class.

• 𝑡 indicates time index

• 𝑥 indicates spatial (length) index

• 𝑝 indicates phase index

• 𝑗 indicates component index

• 𝑒 indicates element index

• 𝑟 indicates reaction name index

Most terms within the balance equations written by ControlVolume1DBlock are on a basis of per unit length (e.g.
𝑚𝑜𝑙/𝑚 · 𝑠).

add_geometry

The add_geometry method creates the normalized length domain for the control volume (or a reference to an external
domain). All constraints in ControlVolume1DBlock assume a normalized length domain, with values between 0 and
1.

This method also adds variables and constraints to describe the geometry of the control volume. ControlVol-
ume1DBlock does not support varying dimensions of the control volume with time at this stage.

Variables

Variable Name Symbol Indices Conditions
length_domain 𝑥 None None
volume 𝑉 None None
area 𝐴 None None
length 𝐿 None None

Constraints

geometry_constraint:

𝑉 = 𝐴× 𝐿

62 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑥,𝑝,𝑗 t, x, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 t, x, p, j dynamic = True
_flow_terms 𝐹𝑡,𝑥,𝑝,𝑗 t, x, p, j None
material_flow_dx 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥 t, x, p, j None
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 t, x, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 t, x, r has_equilibrium_reactions = True
phase_equilibrium_generation 𝑁𝑝𝑒,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_phase_equilibrium = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

𝐿× 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡
= 𝑓𝑑× 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥
+ 𝐿×𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑝𝑒,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑝,𝑗

𝑓𝑑 is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑝,𝑗 term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

𝑀𝑡,𝑥,𝑝,𝑗 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡 and location 𝑥.

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟

4.7. Core Library 63

IDAES Documentation, Release 1.5.1.rc0

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam).
Physical property packages may include information to indicate that certain species do not appear in all phases, and
material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these
species, however these will be set to 0).

Variables

Variable Name Symbol Indices Conditions
material_holdup 𝑀𝑡,𝑥,𝑝,𝑗 t, x, p, j has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
material_accumulation 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 t, x, p, j dynamic = True
_flow_terms 𝐹𝑡,𝑥,𝑝,𝑗 t, x, p, j None
material_flow_dx 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥 t, x, p, j None
rate_reaction_generation 𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_rate_reactions = True
rate_reaction_extent 𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 t, x, r has_rate_reactions = True
equilibrium_reaction_generation 𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_equilibrium_reactions = True
equilibrium_reaction_extent 𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 t, x, r has_equilibrium_reactions = True
mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 t, x, p ,j has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

𝐿×
∑︁
𝑝

𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡
= 𝑓𝑑×

∑︁ 𝜕𝐹𝑡,𝑥,𝑝,𝑗

𝜕𝑥
+ 𝐿×

∑︁
𝑝

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 + 𝐿×
∑︁
𝑝

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 + 𝐿×
∑︁
𝑝

𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑗

𝑓𝑑 is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑗 term allows the user to provide custom terms (variables or expressions) in both mass and molar
basis which will be added into the material balances, which will be converted as necessary to the same basis as the
material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance
is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be
returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

𝑀𝑡,𝑥,𝑝,𝑗 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

64 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡 and location 𝑥.

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

𝑁𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

𝑁𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑝,𝑗 = 𝛼𝑟,𝑝,𝑗 ×𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟

where 𝛼𝑟,𝑝.𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 for reaction 𝑟 (as defined in the PhysicalPa-
rameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

Variable Name Symbol Indices Conditions
element_holdup 𝑀𝑡,𝑥,𝑒 t, x, e has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
element_accumulation 𝜕𝑀𝑡,𝑥,𝑒

𝜕𝑡 t, x, e dynamic = True
elemental_mass_transfer_term 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑥,𝑒 t, x, e has_mass_transfer = True
elemental_flow_term 𝐹𝑡,𝑥,𝑒 t, x, e None

Constraints

elemental_flow_constraint(t, x, e):

𝐹𝑡,𝑥,𝑒 =
∑︁
𝑝

∑︁
𝑗

𝐹𝑡,𝑥,𝑝,𝑗 × 𝑛𝑗,𝑒

where 𝑛𝑗,𝑒 is the number of moles of element 𝑒 in component 𝑗.

element_balances(t, x, e):

𝐿× 𝜕𝑀𝑡,𝑥,𝑒

𝜕𝑡
= 𝑓𝑑× 𝜕𝐹𝑡,𝑥,𝑒

𝜕𝑥
+ 𝐿×𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑡,𝑝,𝑗 + 𝐿×𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑒

𝑓𝑑 is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝑁𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥,𝑒 term allows the user to provide custom terms (variables or expressions) which will be added into
the material balances.

If has_holdup is True, elemental_holdup_calculation(t, x, e):

𝑀𝑡,𝑥,𝑒 = 𝜌𝑡,𝑥,𝑝,𝑗 ×𝐴× 𝜑𝑡,𝑥,𝑝

where 𝜌𝑡,𝑥,𝑝,𝑗 is the density of component 𝑗 in phase 𝑝 at time 𝑡 and location 𝑥.

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝑀𝑡,𝑥,𝑝,𝑗

𝜕𝑡 , will be performed by Pyomo.DAE.

4.7. Core Library 65

IDAES Documentation, Release 1.5.1.rc0

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture at each point in the spatial domain.

Variables

Variable Name Symbol Indices Conditions
enthalpy_holdup 𝐸𝑡,𝑥,𝑝 t, x, p has_holdup = True
phase_fraction 𝜑𝑡,𝑥,𝑝 t, x, p has_holdup = True
enthalpy_accumulation 𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡 t, x, p dynamic = True
_enthalpy_flow 𝐻𝑡,𝑥,𝑝 t, x, p None
enthalpy_flow_dx 𝜕𝐻𝑡,𝑥,𝑝

𝜕𝑥 t, x, p None
heat 𝑄𝑡,𝑥 t, x has_heat_transfer = True
work 𝑊𝑡,𝑥 t, x has_work_transfer = True

Expressions

heat_of_reaction(t, x):

𝑄𝑟𝑥𝑛,𝑡,𝑥 = 𝑠𝑢𝑚𝑟𝑋𝑘𝑖𝑛𝑒𝑡𝑖𝑐,𝑡,𝑥,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟 + 𝑠𝑢𝑚𝑟𝑋𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚,𝑡,𝑥,𝑟 × ∆𝐻𝑟𝑥𝑛,𝑟

where 𝑄𝑟𝑥𝑛,𝑡,𝑥 is the total enthalpy released by both kinetic and equilibrium reactions, and ∆𝐻𝑟𝑥𝑛,𝑟 is the specific
heat of reaction for reaction 𝑟.

Parameters

Parameter Name Symbol Default Value
scaling_factor_energy 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 1E-6

Constraints

enthalpy_balance(t):

𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×
∑︁
𝑝

𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡
= 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑓𝑑 𝑡𝑖𝑚𝑒𝑠

∑︁
𝑝

𝜕𝐻𝑡,𝑥,𝑝

𝜕𝑥
+ 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑄𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑊𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿×𝑄𝑟𝑥𝑛,𝑡,𝑥 + 𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝐿× 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥

𝑓𝑑 is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The 𝐸𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥 term allows the user to provide custom terms which will be added into the energy balance.

enthalpy_flow_linking_constraints(t, x, p):

This constraint is an internal constraint used to link the extensive enthalpy flow terms in the StateBlocks into a single
indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated Deriva-
tiveVars and their numerical expansions.

If has_holdup is True, enthalpy_holdup_calculation(t, x, p):

𝐸𝑡,𝑥,𝑝 = ℎ𝑡,𝑥,𝑝 ×𝐴× 𝜑𝑡,𝑥,𝑝

where ℎ𝑡,𝑥,𝑝 is the enthalpy density (specific enthalpy) of phase 𝑝 at time 𝑡 and location 𝑥.

If dynamic is True:

Numerical discretization of the derivative terms, 𝜕𝐸𝑡,𝑥,𝑝

𝜕𝑡 , will be performed by Pyomo.DAE.

66 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

add_total_pressure_balances

A single pressure balance is written for the entire mixture at all points in the spatial domain.

Variables

Variable Name Symbol Indices Conditions
pressure 𝑃𝑡,𝑥 t, x None
pressure_dx 𝜕𝑃𝑡,𝑥

𝜕𝑥 t, x None
deltaP ∆𝑃𝑡,𝑥 t, x has_pressure_change = True

Parameters

Parameter Name Symbol Default Value
scaling_factor_pressure 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 1E-4

Constraints

pressure_balance(t, x):

0 = 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑓𝑑× 𝜕𝑃𝑡,𝑥

𝜕𝑥
+ 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝐿× ∆𝑃𝑡,𝑥 + 𝑠𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝐿× ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥

𝑓𝑑 is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined
as forward, 𝑓𝑑 = −1, otherwise 𝑓𝑑 = 1.

The ∆𝑃𝑐𝑢𝑠𝑡𝑜𝑚,𝑡,𝑥 term allows the user to provide custom terms which will be added into the pressure balance.

pressure_linking_constraint(t, x):

This constraint is an internal constraint used to link the pressure terms in the StateBlocks into a single indexed variable.
This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their
numerical expansions.

Control Volumes are the center of the IDAES process modeling framework, and serve as the fundamental building
block of all unit operations. Control Volumes represent a single, well-defined volume of material over which material,
energy and/or momentum balances will be performed.

The IDAES Control Volume classes are designed to facilitate the construction of these balance equations by providing
the model developer with a set of pre-built methods to perform the most common tasks in developing models of unit
operations. The Control Volume classes contain methods for creating and linking the necessary property calculations
and writing common forms of the balance equations so that the model developer can focus their time on the aspects
that make each unit model unique.

The IDAES process modeling framework currently supports two types of Control Volume:

• ControlVolume0DBlock represents a single well-mixed volume of material with a single inlet and a single
outlet. This type of control volume is sufficient to model most inlet-outlet type unit operations which do not
require spatial discretization.

• ControlVolume1DBlock represents a volume with spatial variation in one dimension parallel to the mate-
rial flow. This type of control volume is useful for representing flow in pipes and simple 1D flow reactors.

Common Control Volume Tasks

All of the IDAES Control Volume classes are built on a common core (ControlVolumeBlockData) which defines
a set of common tasks required for all Control Volumes. The more specific Control Volume classes then build upon
these common tasks to provide tools appropriate for their specific application.

4.7. Core Library 67

IDAES Documentation, Release 1.5.1.rc0

All Control Volume classes begin with the following tasks:

• Determine if the ControlVolume should be steady-state or dynamic.

• Get the time domain.

• Determine whether material and energy holdups should be calculated.

• Collect information necessary for creating StateBlocks and ReactionBlocks.

• Create references to phase_list and component_list Sets in the PhysicalParameterBlock.

More details on these steps is provided later.

Setting up the time domain

The first common task the Control Volume block performs is to determine if it should be dynamic or steady-state and
to collect the time domain from the UnitModel. Control Volume blocks have an argument dynamic which can be
provided during construction which specifies if the Control Volume should be dynamic (dynamic=True) or steady-
state (dynamic=False). If the argument is not provided, the Control Volume block will inherit this argument from
its parent UnitModel.

Finally, the Control Volume checks that the has_holdup argument is consistent with the dynamic argument, and
raises a ConfigurationError if it is not.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument, the Control Vol-
ume first checks to see if the UnitModel has a property_package argument set, and uses this if present.
Otherwise, the Control Volume block begins searching up the model tree looking for an argument named
default_property_package and uses the first of these that it finds. If no default_property_package
is found, a ConfigurationError is returned.

Collecting Indexing Sets for Property Package

The final common step for all Control Volumes is to collect any required indexing sets from the physical property
package (for example component and phase lists). These are used by the Control Volume for determining what
balance equations need to be written, and what terms to create.

The indexing sets the Control Volume looks for are:

• component_list - used to determine what components are present, and thus what material balances are
required

• phase_list - used to determine what phases are present, and thus what balance equations are required

ControlVolume and ControlVolumeBlockData Classes

A key purpose of Control Volumes is to automate as much of the task of writing a unit model as possible. For this
purpose, Control Volumes support a number of methods for common tasks model developers may want to perform.
The specifics of these methods will be different between different types of Control Volumes, and certain methods may
not be applicable to some types of Control Volumes (in which case a NotImplementedError will be returned). A
full list of potential methods is provided here, however users should check the documentation for the specific Control
Volume they are using for more details on what methods are supported in that specific Control Volume.

68 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

class idaes.core.control_volume_base.ControlVolume(*args, **kwargs)
This class is not usually used directly. Use ControlVolume0DBlock or ControlVolume1DBlock instead.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic, default - useDefault. Valid
values: { useDefault - get flag from parent, True - set as a dynamic model, False - set
as a steady-state model}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

auto_construct If set to True, this argument will trigger the auto_construct method
which will attempt to construct a set of material, energy and momentum balance equa-
tions based on the parent unit’s config block. The parent unit must have a config block
which derives from CONFIG_Base, default - False. Valid values: { True - use auto-
matic construction, False - do not use automatic construciton.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ControlVolume) New instance

class idaes.core.control_volume_base.ControlVolumeBlockData(component)
The ControlVolumeBlockData Class forms the base class for all IDAES ControlVolume models. The purpose of
this class is to automate the tasks common to all control volume blockss and ensure that the necessary attributes
of a control volume block are present.

The most signfiicant role of the ControlVolumeBlockData class is to set up the construction arguments for the
control volume block, automatically link to the time domain of the parent block, and to get the information
about the property and reaction packages.

4.7. Core Library 69

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

add_energy_balances(balance_type=<EnergyBalanceType.useDefault: -1>, **kwargs)
General method for adding energy balances to a control volume. This method makes calls to specialised
sub-methods for each type of energy balance.

Parameters

• balance_type (EnergyBalanceType) – Enum indicating which type of energy
balance should be constructed.

• has_heat_of_reaction (bool) – whether terms for heat of reaction should be in-
cluded in energy balance

• has_heat_transfer (bool) – whether generic heat transfer terms should be included
in energy balances

• has_work_transfer (bool) – whether generic mass transfer terms should be in-
cluded in energy balances

• custom_term (Expression) – a Pyomo Expression representing custom terms to be
included in energy balances

Returns Constraint objects constructed by sub-method

add_geometry(*args, **kwargs)
Method for defining the geometry of the control volume.

See specific control volume documentation for details.

add_material_balances(balance_type=<MaterialBalanceType.useDefault: -1>, **kwargs)
General method for adding material balances to a control volume. This method makes calls to specialised
sub-methods for each type of material balance.

Parameters

• - MaterialBalanceType Enum indicating which type of
(balance_type) – material balance should be constructed.

• - whether default generation terms for rate
(has_rate_reactions) – reactions should be included in material balances

• - whether generation terms should for (has_equilibrium_reactions)
– chemical equilibrium reactions should be included in material balances

• - whether generation terms should for phase
(has_phase_equilibrium) – equilibrium behaviour should be included in
material balances

• - whether generic mass transfer terms should be
(has_mass_transfer) – included in material balances

• - a Pyomo Expression representing custom terms to
(custom_mass_term) – be included in material balances on a molar basis.

• - a Pyomo Expression representing custom terms to – be included in
material balances on a mass basis.

Returns Constraint objects constructed by sub-method

add_momentum_balances(balance_type=<MomentumBalanceType.pressureTotal: 1>, **kwargs)
General method for adding momentum balances to a control volume. This method makes calls to spe-
cialised sub-methods for each type of momentum balance.

Parameters

70 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

• balance_type (MomentumBalanceType) – Enum indicating which type of mo-
mentum balance should be constructed. Default = MomentumBalanceType.pressureTotal.

• has_pressure_change (bool) – whether default generation terms for pressure
change should be included in momentum balances

• custom_term (Expression) – a Pyomo Expression representing custom terms to be
included in momentum balances

Returns Constraint objects constructed by sub-method

add_phase_component_balances(*args, **kwargs)
Method for adding material balances indexed by phase and component to the control volume.

See specific control volume documentation for details.

add_phase_energy_balances(*args, **kwargs)
Method for adding energy balances (including kinetic energy) indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_enthalpy_balances(*args, **kwargs)
Method for adding enthalpy balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_momentum_balances(*args, **kwargs)
Method for adding momentum balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_phase_pressure_balances(*args, **kwargs)
Method for adding pressure balances indexed by phase to the control volume.

See specific control volume documentation for details.

add_reaction_blocks(*args, **kwargs)
Method for adding ReactionBlocks to the control volume.

See specific control volume documentation for details.

add_state_blocks(*args, **kwargs)
Method for adding StateBlocks to the control volume.

See specific control volume documentation for details.

add_total_component_balances(*args, **kwargs)
Method for adding material balances indexed by component to the control volume.

See specific control volume documentation for details.

add_total_element_balances(*args, **kwargs)
Method for adding total elemental material balances indexed to the control volume.

See specific control volume documentation for details.

add_total_energy_balances(*args, **kwargs)
Method for adding a total energy balance (including kinetic energy) to the control volume.

See specific control volume documentation for details.

add_total_enthalpy_balances(*args, **kwargs)
Method for adding a total enthalpy balance to the control volume.

See specific control volume documentation for details.

4.7. Core Library 71

https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

add_total_material_balances(*args, **kwargs)
Method for adding a total material balance to the control volume.

See specific control volume documentation for details.

add_total_momentum_balances(*args, **kwargs)
Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

add_total_pressure_balances(*args, **kwargs)
Method for adding a total pressure balance to the control volume.

See specific control volume documentation for details.

build()
General build method for Control Volumes blocks. This method calls a number of sub-methods which
automate the construction of expected attributes of all ControlVolume blocks.

Inheriting models should call super().build.

Parameters None –

Returns None

Auto-Construct Method

To reduce the demands on unit model developers even further, Control Volumes have an optional auto-construct feature
that will attempt to populate the Control Volume based on a set of instructions provided at the Unit Model level. If
the auto_construct configuration argument is set to True, the following methods are called automatically in the
following order when instantiating the Control Volume.

1. add_geometry

2. add_state_blocks

3. add_reaction_blocks

4. add_material_balances

5. add_energy_balances

6. add_momentum_balances

7. apply_transformation

To determine what terms are required for the balance equations, the Control Volume expects the Unit Model to have
the following configuration arguments, which are used as arguments to the methods above.

• dynamic

• has_holdup

• material_balance_type

• energy_balance_type

• momentum_balance_type

• has_rate_reactions

• has_equilibrium_reactions

• has_phase_equilibrium

• has_mass_transfer

72 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• has_heat_of_reaction

• has_heat_transfer

• has_work_transfer

• has_pressure_change

• property_package

• property_package_args

• reaction_package

• reaction_package_args

For convenience, a template ConfigBlock (named CONFIG_Template) is available in the
control_volume_base.py module which contains all the necessary arguments which can be inherited by
unit models wishing to use the auto-construct feature.

Utility Methods

Utilities for Dynamic Flowsheets

These are utility functions for working with dynamic IDAES flowsheets.

Methods

This module contains utility functions for dynamic IDAES models.

idaes.core.util.dyn_utils.copy_non_time_indexed_values(fs_tgt, fs_src,
copy_fixed=True)

Function to set the values of all variables that are not (implicitly or explicitly) indexed by time to their values in
a different flowsheet.

Parameters

• fs_tgt – Flowsheet into which values will be copied.

• fs_src – Flowsheet from which values will be copied.

• copy_fixed – Bool marking whether or not to copy over fixed variables in the target
flowsheet.

Returns None

idaes.core.util.dyn_utils.copy_values_at_time(fs_tgt, fs_src, t_target, t_source,
copy_fixed=True, outlvl=0)

Function to set the values of all (explicitly or implicitly) time-indexed variables in a flowsheet to similar values
(with the same name) but at different points in time and (potentially) in different flowsheets.

Parameters

• fs_tgt – Target flowsheet, whose variables’ values will get set

• fs_src – Source flowsheet, whose variables’ values will be used to set those of the target
flowsheet. Could be the target flowsheet

• t_target – Target time point

• t_source – Source time point

• copy_fixed – Bool of whether or not to copy over fixed variables in target model

4.7. Core Library 73

IDAES Documentation, Release 1.5.1.rc0

• outlvl – IDAES logger output level

Returns None

idaes.core.util.dyn_utils.deactivate_constraints_unindexed_by(b, time)
Searches block b for and constraints not indexed by time and deactivates them.

Parameters

• b – Block to search

• time – Set with respect to which to find unindexed constraints

Returns List of constraints deactivated

idaes.core.util.dyn_utils.deactivate_model_at(b, cset, pts, outlvl=0)
Finds any block or constraint in block b, indexed explicitly (and not implicitly) by cset, and deactivates it
at points specified. Implicitly indexed components are excluded because one of their parent blocks will be
deactivated, so deactivating them too would be redundant.

Parameters

• b – Block to search

• cset – ContinuousSet of interest

• pts – Value or list of values, in ContinuousSet, to deactivate at

Returns A dictionary mapping points in pts to lists of component data that have been deactivated
there

idaes.core.util.dyn_utils.fix_vars_unindexed_by(b, time)
Searches block b for variables not indexed by time and fixes them.

Parameters

• b – Block to search

• time – Set with respect to which to find unindexed variables

Returns List of variables fixed

idaes.core.util.dyn_utils.get_activity_dict(b)
Function that builds a dictionary telling whether or not each ConstraintData and BlockData object in a model is
active. Uses the objects’ ids as the hash.

Parameters b – A Pyomo Block to be searched for active components

Returns A dictionary mapping id of constraint and block data objects to a bool indicating if they are
active

idaes.core.util.dyn_utils.get_derivatives_at(b, time, pts)
Finds derivatives with respect to time at points specified. No distinction made for multiple derivatives or mixed
partials.

Parameters

• b – Block to search for derivatives

• time – ContinuousSet to look for derivatives with respect to

• pts – Value or list of values in time set at which to return derivatives

Returns Dictionary mapping time points to lists of derivatives at those points

74 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.dyn_utils.get_index_set_except(comp, *sets)
Function for getting indices of a component over a product of its indexing sets other than those specified. Indices
for the specified sets can be used to construct indices of the proper dimension for the original component via the
index_getter function.

Parameters

• comp – Component whose indexing sets are to be manipulated

• sets – Sets to omit from the set_except product

Returns A dictionary. Maps ‘set_except’ to a Pyomo Set or SetProduct of comp’s index set, exclud-
ing those in sets. Maps ‘index_getter’ to a function that returns an index of the proper dimension
for comp, given an element of set_except and a value for each set excluded. These values must
be provided in the same order their Sets were provided in the sets argument.

idaes.core.util.dyn_utils.is_explicitly_indexed_by(comp, *sets)
Function for determining whether a pyomo component is indexed by a set or group of sets.

Parameters

• comp – some Pyomo component, possibly indexed

• sets – Pyomo Sets to check indexing by

Returns A bool that is True if comp is directly indexed each set in sets.

idaes.core.util.dyn_utils.is_implicitly_indexed_by(comp, s, stop_at=None)
Function for determining whether a component is contained in a block that is indexed by a particular set.

Parameters

• comp – Component whose parent blocks are checked

• s – Set for which indices are checked

• stop_at – Block at which to stop searching if reached, regardless of whether or not it is
indexed by s

Returns Bool that is true if comp is contained in a block indexed by s

idaes.core.util.dyn_utils.path_from_block(comp, blk, include_comp=False)
Returns a list of tuples with (local_name, index) pairs required to locate comp from blk

Parameters

• comp – Component(Data) object to locate

• blk – Block(Data) to locate comp from

• include_comp – Bool of whether or not to include the local_name, index of the compo-
nent itself

Returns A list of string, index tuples that can be used to locate comp from blk

Homotopy Meta-Solver

The IDAES homotopy meta-solver is useful for cases where a user has a feasible solution to a well-defined (i.e.
square) problem at one set of conditions (i.e. value of fixed variables), and wishes to find a feasible solution to the
same problem at a different set of conditions. In many situations this can be achieved by directly changing the values
of the fixed variables to their new values and solving the problem, but cases exist where this is challenging. Homotopy
solvers try to find a feasible path to the new solution by taking smaller steps in the value of the fixed variables to
progressively find a solution at the new point.

4.7. Core Library 75

IDAES Documentation, Release 1.5.1.rc0

Note: A homotopy solver should not be considered a fix to a poorly posed or ill-conditioned problem, and users
should first consider whether their problem can be reformulated for better performance.

Homotopy Routine

The IDAES homotopy routine starts from a feasible solution to the problem at the initial values for the fixed variables
(𝑣0) and a set of target values for these (𝑡). The routine then calculates a set of new values for the fixed variables during
the first homotopy evaluation based on an initial step size 𝑠0 such that:

𝑣1 = 𝑡× 𝑠0 + 𝑣0 × (1 − 𝑠0)

The problem is then passed to Ipopt to try to find a solution at the current values for the fixed variables. Based on the
success or failure of the solver step, the following occurs:

1. If the solver returns an optimal solution, the step is accepted and the solution to the current state of the model is
saved (to provide a feasible point to revert to in case a future step fails). If the current meta-solver progress is
1 (i.e. it has converged to the target values), the meta-solver terminates otherwise the meta-solver progress (𝑝𝑖)
is then updated, 𝑝𝑖 = 𝑝𝑖−1 + 𝑠𝑖, and the size of the next homotopy step is then calculated based on an adaptive
step size method such that:

𝑠𝑖+1 = 𝑠𝑖 ×
(︂

1 + 𝑎×
[︂
𝐼𝑡
𝐼𝑎

− 1

]︂)︂
where 𝐼𝑎 is the number of solver iterations required in the current homotopy step, 𝐼𝑡 is the desired number of solver
iterations per homotopy step (an input parameter to the homotopy routine) and 𝑎 is a step size acceleration factor
(another input parameter). As such, the size of the homotopy step is adjusted to try to achieve a desired number of
solver iterations per step as a proxy for difficulty in solving each step. If new step would overshoot the target values,
then the step size is cut back to match the target values. The user can also specify a maximum and/or minimum size
for the homotopy which can be used to limit the homotopy step.

A new set of values for the fixed variables is calculated using 𝑣𝑖+1 = 𝑡× (𝑝𝑖 + 𝑠𝑖+1) + 𝑣0 × (1− (𝑝𝑖 + 𝑠𝑖+1)) and the
process repeated.

2. If the solver fails to find an optimal solution (for any reason), the current step is rejected and solution to the
previous successful step is reloaded. If the last homotopy step was equal to the minimum homotopy step size,
the meta-solver terminates, otherwise, a reduced homotopy step is calculated using:

𝑠𝑖+1 = 𝑠𝑖 × 𝑐

where 𝑐 is a step cut factor (an input parameter between 0.1 and 0.9). If the new step homotopy step is less than the
minimum homotopy step size, the minimum step is used instead.

A new set of fixed variable values are then calculated and another attempt to solve the problem is made.

Possible Termination Conditions

The homotopy meta-solver has the following possible termination conditions (using the Pyomo TerminationCondition
Enum):

• TerminationCondition.optimal - meta-solver successfully converged at the target values for the fixed variables.

• TerminationCondition.other - the meta-solver successfully converged at the target values for the fixed variables,
but with regularization of during final step. Users are recommended to discard this solution.

• TerminationCondition.minStepLength - the meta-solver was unable to find a feasible path to the target values, as
the solver failed to find a solution using the minimum homotopy step size.

76 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• TerminationCondition.maxEvaluations - the meta-solver terminated due to reaching the maximum allowed num-
ber of attempted homotopy steps

• TerminationCondition.infeasible - could not find feasible solution to the problem at the initial values for the
fixed variables.

Available Methods

IDAES Homotopy meta-solver routine.

idaes.core.util.homotopy.homotopy(model, variables, targets, max_solver_iterations=50,
max_solver_time=10, step_init=0.1, step_cut=0.5,
iter_target=4, step_accel=0.5, max_step=1,
min_step=0.05, max_eval=200)

Homotopy meta-solver routine using Ipopt as the non-linear solver. This routine takes a model along with a list
of fixed variables in that model and a list of target values for those variables. The routine then tries to iteratively
move the values of the fixed variables to their target values using an adaptive step size.

Parameters

• model – model to be solved

• variables – list of Pyomo Var objects to be varied using homotopy. Variables must be
fixed.

• targets – list of target values for each variable

• max_solver_iterations – maximum number of solver iterations per homotopy step
(default=50)

• max_solver_time – maximum cpu time for the solver per homotopy step (default=10)

• step_init – initial homotopy step size (default=0.1)

• step_cut – factor by which to reduce step size on failed step (default=0.5)

• step_accel – acceleration factor for adjusting step size on successful step (default=0.5)

• iter_target – target number of solver iterations per homotopy step (default=4)

• max_step – maximum homotopy step size (default=1)

• min_step – minimum homotopy step size (default=0.05)

• max_eval – maximum number of homotopy evaluations (both successful and unsuccess-
ful) (default=200)

Returns

A Pyomo TerminationCondition Enum indicating how the meta-solver terminated (see doc-
umentation)

Solver Progress [a fraction indication how far the solver progressed] from the initial values to
the target values

Number of Iterations [number of homotopy evaluations before solver] terminated

Return type Termination Condition

Initialization Methods

The IDAES toolset contains a number of utility functions to assist users with initializing models.

4.7. Core Library 77

IDAES Documentation, Release 1.5.1.rc0

Available Methods

This module contains utility functions for initialization of IDAES models.

idaes.core.util.initialization.fix_state_vars(blk, state_args={})
Method for fixing state variables within StateBlocks. Method takes an optional argument of values to use when
fixing variables.

Parameters

• blk – An IDAES StateBlock object in which to fix the state variables

• state_args – a dict containing values to use when fixing state variables. Keys must
match with names used in the define_state_vars method, and indices of any variables must
agree.

Returns A dict keyed by block index, state variable name (as defined by define_state_variables) and
variable index indicating the fixed status of each variable before the fix_state_vars method was
applied.

idaes.core.util.initialization.initialize_by_time_element(fs, time, **kwargs)
Function to initialize Flowsheet fs element-by-element along ContinuousSet time. Assumes sufficient initializa-
tion/correct degrees of freedom such that the first finite element can be solved immediately and each subsequent
finite element can be solved by fixing differential and derivative variables at the initial time point of that finite
element.

Parameters

• fs – Flowsheet to initialize

• time – Set whose elements will be solved for individually

• solver – Pyomo solver object initialized with user’s desired options

• outlvl – IDAES logger outlvl

• ignore_dof – Bool. If True, checks for square problems will be skipped.

Returns None

idaes.core.util.initialization.propagate_state(stream, direction=’forward’)
This method propagates values between Ports along Arcs. Values can be propagated in either direction using
the direction argument.

Parameters

• stream – Arc object along which to propagate values

• direction – direction in which to propagate values. Default = ‘forward’ Valid value:
‘forward’, ‘backward’.

Returns None

idaes.core.util.initialization.revert_state_vars(blk, flags)
Method to revert the fixed state of the state variables within an IDAES StateBlock based on a set of flags of the
previous state.

Parameters

• blk – an IDAES StateBlock

• flags – a dict of bools indicating previous state with keys in the form (StateBlock index,
state variable name (as defined by define_state_vars), var indices).

Returns None

78 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.initialization.solve_indexed_blocks(solver, blocks, **kwds)
This method allows for solving of Indexed Block components as if they were a single Block. A temporary Block
object is created which is populated with the contents of the objects in the blocks argument and then solved.

Parameters

• solver – a Pyomo solver object to use when solving the Indexed Block

• blocks – an object which inherits from Block, or a list of Blocks

• kwds – a dict of argumnets to be passed to the solver

Returns A Pyomo solver results object

Model State Serialization

The IDAES framework has some utility functions for serializing the state of a Pyomo model. These functions can
save and load attributes of Pyomo components, but cannot reconstruct the Pyomo objects (it is not a replacement for
pickle). It does have some advantages over pickle though. Not all Pyomo models are picklable. Serialization and
deserialization of the model state to/from json is more secure in that it only deals with data and not executable code. It
should be safe to use the from_json() function with data from untrusted sources, while, unpickling an object from
an untrusted source is not secure. Storing a model state using these functions is also probably more robust against
Python and Python package version changes, and possibly more suitable for long-term storage of results.

Below are a few example use cases for this module.

• Some models are very complex and may take minutes to initialize. Once a model is initialized it’s state can be
saved. For future runs, the initialized state can be reloaded instead of rerunning the initialization procedure.

• Results can be stored for later evaluation without needing to rerun the model. These results can be archived in a
data management system if needed later.

• These functions may be useful in writing initialization procedures. For example, a model may be constructed
and ready to run but first it may need to be initialized. Which components are active and which variables are
fixed can be stored. The initialization can change which variables are fixed and which components are active.
The original state can be read back after initialization, but where only values of variables that were originally
fixed are read back in. This is an easy way to ensure that whatever the initialization procedure may do, the result
is exactly the same problem (with only better initial values for unfixed variables).

• These functions can be used to send and receive model data to/from JavaScript user interface components.

Examples

This section provides a few very simple examples of how to use these functions.

Example Models

This section provides some boilerplate and functions to create a couple simple test models. The second model is a
little more complicated and includes suffixes.

from pyomo.environ import *
from idaes.core.util import to_json, from_json, StoreSpec

def setup_model01():
model = ConcreteModel()
model.b = Block([1,2,3])

(continues on next page)

4.7. Core Library 79

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

a = model.b[1].a = Var(bounds=(-100, 100), initialize=2)
b = model.b[1].b = Var(bounds=(-100, 100), initialize=20)
model.b[1].c = Constraint(expr=b==10*a)
a.fix(2)
return model

def setup_model02():
model = ConcreteModel()
a = model.a = Param(default=1, mutable=True)
b = model.b = Param(default=2, mutable=True)
c = model.c = Param(initialize=4)
x = model.x = Var([1,2], initialize={1:1.5, 2:2.5}, bounds=(-10,10))
model.f = Objective(expr=(x[1] - a)**2 + (x[2] - b)**2)
model.g = Constraint(expr=x[1] + x[2] - c >= 0)
model.dual = Suffix(direction=Suffix.IMPORT)
model.ipopt_zL_out = Suffix(direction=Suffix.IMPORT)
model.ipopt_zU_out = Suffix(direction=Suffix.IMPORT)
return model

Serialization

These examples can be appended to the boilerplate code above.

The first example creates a model, saves the state, changes a value, then reads back the initial state.

model = setup_model01()
to_json(model, fname="ex.json.gz", gz=True, human_read=True)
model.b[1].a = 3000.4
from_json(model, fname="ex.json.gz", gz=True)
print(value(model.b[1].a))

2

This next example show how to save only suffixes.

model = setup_model02()
Suffixes here are read back from solver, so to have suffix data,
need to solve first
solver = SolverFactory("ipopt")
solver.solve(model)
store_spec = StoreSpec.suffix()
to_json(model, fname="ex.json", wts=store_spec)
Do something and now I want my suffixes back
from_json(model, fname="ex.json", wts=store_spec)

to_json

Despite the name of the to_json function it is capable of creating Python dictionaries, json files, gzipped json files,
and json strings. The function documentation is below. A StoreSpec object provides the function with details on what
to store and how to handle special cases of Pyomo component attributes.

idaes.core.util.model_serializer.to_json(o, fname=None, human_read=False, wts=None,
metadata={}, gz=None, return_dict=False, re-
turn_json_string=False)

80 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Save the state of a model to a Python dictionary, and optionally dump it to a json file. To load a model state, a
model with the same structure must exist. The model itself cannot be recreated from this.

Parameters

• o – The Pyomo component object to save. Usually a Pyomo model, but could also be a
subcomponent of a model (usually a sub-block).

• fname – json file name to save model state, if None only create python dict

• gz – If fname is given and gv is True gzip the json file. The default is True if the file name
ends with ‘.gz’ otherwise False.

• human_read – if True, add indents and spacing to make the json file more readable, if
false cut out whitespace and make as compact as possilbe

• metadata – A dictionary of addtional metadata to add.

• wts – is What To Save, this is a StoreSpec object that specifies what object types and
attributes to save. If None, the default is used which saves the state of the compelte model
state.

• metadata – addtional metadata to save beyond the standard format_version, date, and
time.

• return_dict – default is False if true returns a dictionary representation

• return_json_string – default is False returns a json string

Returns If return_dict is True returns a dictionary serialization of the Pyomo component. If re-
turn_dict is False and return_json_string is True returns a json string dump of the dict. If fname
is given the dictionary is also written to a json file. If gz is True and fname is given, writes a
gzipped json file.

from_json

The from_json function puts data from Python dictionaries, json files, gzipped json files, and json strings back into
a Pyomo model. The function documentation is below. A StoreSpec object provides the function with details on what
to read and how to handle special cases of Pyomo component attributes.

idaes.core.util.model_serializer.from_json(o, sd=None, fname=None, s=None,
wts=None, gz=None)

Load the state of a Pyomo component state from a dictionary, json file, or json string. Must only specify one
of sd, fname, or s as a non-None value. This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is ignored. If the save state doesn’t contain
an enetry for a model component that is to be loaded an error will be raised, unless ignore_missing = True.

Parameters

• o – Pyomo component to for which to load state

• sd – State dictionary to load, if None, check fname and s

• fname – JSON file to load, only used if sd is None

• s – JSON string to load only used if both sd and fname are None

• wts – StoreSpec object specifying what to load

• gz – If True assume the file specified by fname is gzipped. The default is True if fname
ends with ‘.gz’ otherwise False.

4.7. Core Library 81

IDAES Documentation, Release 1.5.1.rc0

Returns Dictionary with some perfomance information. The keys are “etime_load_file”, how long
in seconds it took to load the json file “etime_read_dict”, how long in seconds it took to read
models state “etime_read_suffixes”, how long in seconds it took to read suffixes

StoreSpec

StoreSpec is a class for objects that tell the to_json() and from_json() functions how to read and write
Pyomo component attributes. The default initialization provides an object that would load and save attributes usually
needed to save a model state. There are several other class methods that provide canned objects for specific uses.
Through initialization arguments, the behavior is highly customizable. Attributes can be read or written using callback
functions to handle attributes that can not be directly read or written (e.g. a variable lower bound is set by calling
setlb()). See the class documentation below.

class idaes.core.util.model_serializer.StoreSpec(classes=((<class ’py-
omo.core.base.param.Param’>,
(’_mutable’,)), (<class ’py-
omo.core.base.var.Var’>,
()), (<class ’py-
omo.core.base.expression.Expression’>,
()), (<class ’py-
omo.core.base.component.Component’>,
(’active’,))), data_classes=((<class
’pyomo.core.base.var._VarData’>,
(’fixed’, ’stale’, ’value’,
’lb’, ’ub’)), (<class ’py-
omo.core.base.param._ParamData’>,
(’value’,)), (<class ’int’>,
(’value’,)), (<class ’float’>,
(’value’,)), (<class ’py-
omo.core.base.expression._ExpressionData’>,
()), (<class ’py-
omo.core.base.component.ComponentData’>,
(’active’,))),
skip_classes=(<class ’py-
omo.core.base.external.ExternalFunction’>,
<class ’pyomo.core.base.set.Set’>,
<class ’pyomo.network.port.Port’>,
<class ’py-
omo.core.base.expression.Expression’>,
<class ’py-
omo.core.base.set.RangeSet’>),
ignore_missing=True, suffix=True,
suffix_filter=None)

A StoreSpec object tells the serializer functions what to read or write. The default settings will produce a
StoreSpec configured to load/save the typical attributes required to load/save a model state.

Parameters

• classes – A list of classes to save. Each class is represented by a list (or tupple) containing
the following elements: (1) class (compared using isinstance) (2) attribute list or None,
an emptry list store the object, but none of its attributes, None will not store objects of
this class type (3) optional load filter function. The load filter function returns a list of
attributes to read based on the state of an object and its saved state. The allows, for example,
loading values for unfixed variables, or only loading values whoes current value is less than
one. The filter function only applies to load not save. Filter functions take two arguments

82 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(a) the object (current state) and (b) the dictionary containing the saved state of an object.
More specific classes should come before more general classes. For example if an obejct
is a HeatExchanger and a UnitModel, and HeatExchanger is listed first, it will follow the
HeatExchanger settings. If UnitModel is listed first in the classes list, it will follow the
UnitModel settings.

• data_classes – This takes the same form as the classes argument. This is for component
data classes.

• skip_classes – This is a list of classes to skip. If a class appears in the skip list, but
also appears in the classes argument, the classes argument will override skip_classes. The
use for this is to specifically exclude certain classes that would get caught by more general
classes (e.g. UnitModel is in the class list, but you want to exclude HeatExchanger which is
derived from UnitModel).

• ignore_missing – If True will ignore a component or attribute that exists in the model,
but not in the stored state. If false an excpetion will be raised for things in the model that
should be loaded but aren’t in the stored state. Extra items in the stored state will not raise
an exception regaurdless of this argument.

• suffix – If True store suffixes and component ids. If false, don’t store suffixes.

• suffix_filter – None to store all siffixes if suffix=True, or a list of suffixes to store if
suffix=True

classmethod bound()
Returns a StoreSpec object to store variable bounds only.

get_class_attr_list(o)
Look up what attributes to save/load for an Component object. :param o: Object to look up attribute list
for.

Returns A list of attributes and a filter function for object type

get_data_class_attr_list(o)
Look up what attributes to save/load for an ComponentData object. :param o: Object to look up attribute
list for.

Returns A list of attributes and a filter function for object type

classmethod isfixed()
Returns a StoreSpec object to store if variables are fixed.

set_read_callback(attr, cb=None)
Set a callback to set an attribute, when reading from json or dict.

set_write_callback(attr, cb=None)
Set a callback to get an attribute, when writing to json or dict.

classmethod value()
Returns a StoreSpec object to store variable values only.

classmethod value_isfixed(only_fixed)
Return a StoreSpec object to store variable values and if fixed.

Parameters only_fixed – Only load fixed variable values

classmethod value_isfixed_isactive(only_fixed)
Retur a StoreSpec object to store variable values, if variables are fixed and if components are active.

Parameters only_fixed – Only load fixed variable values

4.7. Core Library 83

IDAES Documentation, Release 1.5.1.rc0

Structure

Python dictionaries, json strings, or json files are generated, in any case the structure of the data is the same. The
current data structure version is 3.

The example json below shows the top-level structure. The "top_level_component" would be the name of the
Pyomo component that is being serialized. The top level component is the only place were the component name does
not matter when reading the serialized data.

{
"__metadata__": {

"format_version": 3,
"date": "2018-12-21",
"time": "11:34:39.714323",
"other": {
},
"__performance__": {

"n_components": 219,
"etime_make_dict": 0.003}

},
"top_level_component":{

"...": "..."
},

}

The data structure of a Pyomo component is shown below. Here "attribute_1" and "attribute_2" are just
examples the actual attributes saved depend on the “wts” argument to to_json(). Scalar and indexed components
have the same structure. Scalar components have one entry in "data" with an index of "None". Only components
derived from Pyomo’s _BlockData have a "__pyomo_components__" field, and components appearing there
are keyed by thier name. The data structure duplicates the hierarchical structure of the Pyomo model.

Suffixes store extra attributes for Pyomo components that are not stored on the components themselves. Suffixes are a
Pyomo structure that comes from the AMPL solver interface. If a component is a suffix, keys in the data section are the
serial integer component IDs generated by to_json(), and the value is the value of the suffix for the corresponding
component.

{
"__type__": "<class 'some.class'>",
"__id__": 0,
"data":{

"index_1":{
"__type__":"<usually a component class but for params could be float, int, .

→˓..>",
"__id__": 1,
"__pyomo_components__":{
"child_component_1": {
"...": "..."

}
},
"attribute_1": "... could be any number of attributes like 'value': 1.0,",
"attribute_2": "..."

}
},
"attribute_1": "... could be any number of attributes like 'active': true,",
"attribute_2": "..."

}

As a more concrete example, here is the json generated for example model 2 in Examples. This code can be appended

84 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

to the example boilerplate above. To generate the example json shown.

model = setup_model02()
solver = SolverFactory("ipopt")
solver.solve(model)
to_json(model, fname="ex.json")

The resulting json is shown below. The top-level component in this case is given as “unknown,” because the model
was not given a name. The top level object name is not needed when reading back data, since the top level object
is specified in the call to from_json(). Types are not used when reading back data, they may have some future
application, but at this point they just provide a little extra information.

{
"__metadata__":{
"format_version":3,
"date":"2019-01-02",
"time":"10:22:25.833501",
"other":{
},
"__performance__":{

"n_components":18,
"etime_make_dict":0.0009555816650390625

}
},
"unknown":{
"__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
"__id__":0,
"active":true,
"data":{

"None":{
"__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
"__id__":1,
"active":true,
"__pyomo_components__":{
"a":{
"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":2,
"_mutable":true,
"data":{
"None":{

"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":3,
"value":1

}
}

},
"b":{

"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":4,
"_mutable":true,
"data":{
"None":{

"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":5,
"value":2

}
}

},
(continues on next page)

4.7. Core Library 85

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

"c":{
"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":6,
"_mutable":false,
"data":{
"None":{

"__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
"__id__":7,
"value":4

}
}

},
"x":{

"__type__":"<class 'pyomo.core.base.var.IndexedVar'>",
"__id__":8,
"data":{
"1":{
"__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
"__id__":9,
"fixed":false,
"stale":false,
"value":1.5,
"lb":-10,
"ub":10

},
"2":{
"__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
"__id__":10,
"fixed":false,
"stale":false,
"value":2.5,
"lb":-10,
"ub":10

}
}

},
"f":{

"__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>",
"__id__":11,
"active":true,
"data":{
"None":{"__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>

→˓",
"__id__":12,
"active":true
}

}
},
"g":{

"__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
"__id__":13,
"active":true,
"data":{
"None":{

"__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
"__id__":14,
"active":true

(continues on next page)

86 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

}
}

},
"dual":{

"__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
"__id__":15,
"active":true,
"data":{
"14":0.9999999626149493

}
},
"ipopt_zL_out":{

"__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
"__id__":16,
"active":true,
"data":{
"9":2.1791814146763388e-10,
"10":2.004834508495852e-10

}
},
"ipopt_zU_out":{

"__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
"__id__":17,
"active":true,
"data":{
"9":-2.947875485096964e-10,
"10":-3.3408951850535573e-10

}
}

}
}

}
}

}

Model Statistics Methods

The IDAES toolset contains a number of utility functions which are useful for quantifying model statistics such as the
number of variable and constraints, and calculating the available degrees of freedom in a model. These methods can
be found in idaes.core.util.model_statistics.

The most commonly used methods are degrees_of_freedom and report_statistics, which are described
below.

Degrees of Freedom Method

The degrees_of_freedom method calculates the number of degrees of freedom available in a given model. The
calcuation is based on the number of unfixed variables which appear in active constraints, minus the number of ac-
tive equality constraints in the model. Users should note that this method does not consider inequality or deactived
constraints, or variables which do not appear in active equality constraints.

idaes.core.util.model_statistics.degrees_of_freedom(block)
Method to return the degrees of freedom of a model.

Parameters block – model to be studied

4.7. Core Library 87

IDAES Documentation, Release 1.5.1.rc0

Returns Number of degrees of freedom in block.

Report Statistics Method

The report_statistics method provides the user with a summary of the contents of their model, including the
degrees of freedom and a break down of the different Variables, Constraints, Objectives, Blocks and
Expressions. This method also includes numbers of deactivated components for the user to use in debugging
complex models.

Note: This method only considers Pyomo components in activated Blocks. The number of deactivated Blocks is
reported, but any components within these Blocks are not included.

Example Output

Model Statistics

Degrees of Freedom: 0

Total No. Variables: 52

No. Fixed Variables: 12

No. Unused Variables: 0 (Fixed: 0)

No. Variables only in Inequalities: 0 (Fixed: 0)

Total No. Constraints: 40

No. Equality Constraints: 40 (Deactivated: 0)

No. Inequality Constraints: 0 (Deactivated: 0)

No. Objectives: 0 (Deactivated: 0)

No. Blocks: 14 (Deactivated: 0)

No. Expressions: 2

idaes.core.util.model_statistics.report_statistics(block, ostream=None)
Method to print a report of the model statistics for a Pyomo Block

Parameters

• block – the Block object to report statistics from

• ostream – output stream for printing (defaults to sys.stdout)

Returns Printed output of the model statistics

Other Statistics Methods

In addition to the methods discussed above, the model_statistics module also contains a number of methods
for quantifying model statistics which may be of use to the user in debugging models. These methods come in three
types:

• Number methods (start with number_) return the number of components which meet a given criteria, and are
useful for quickly quantifying differnt types of components within a model for determining where problems
may exist.

88 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• Set methods (end with _set) return a Pyomo ComponentSet containing all components which meet a given
criteria. These methods are useful for determining where a problem may exist, as the ComponentSet indicates
which components may be causing a problem.

• Generator methods (end with _generator) contain Python generatorswhich return all components which
meet a given criteria.

Available Methods

This module contains utility functions for reporting structural statistics of IDAES models.

idaes.core.util.model_statistics.activated_block_component_generator(block,
ctype)

Generator which returns all the components of a given ctype which exist in activated Blocks within a model.

Parameters

• block – model to be studied

• ctype – type of Pyomo component to be returned by generator.

Returns A generator which returns all components of ctype which appear in activated Blocks in
block

idaes.core.util.model_statistics.activated_blocks_set(block)
Method to return a ComponentSet of all activated Block components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all activated Block components in block (including block itself)

idaes.core.util.model_statistics.activated_constraints_generator(block)
Generator which returns all activated Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all activated Constraint components block

idaes.core.util.model_statistics.activated_constraints_set(block)
Method to return a ComponentSet of all activated Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all activated Constraint components in block

idaes.core.util.model_statistics.activated_equalities_generator(block)
Generator which returns all activated equality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all activated equality Constraint components block

idaes.core.util.model_statistics.activated_equalities_set(block)
Method to return a ComponentSet of all activated equality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all activated equality Constraint components in block

idaes.core.util.model_statistics.activated_inequalities_generator(block)
Generator which returns all activated inequality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all activated inequality Constraint components block

4.7. Core Library 89

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.model_statistics.activated_inequalities_set(block)
Method to return a ComponentSet of all activated inequality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all activated inequality Constraint components in block

idaes.core.util.model_statistics.activated_objectives_generator(block)
Generator which returns all activated Objective components in a model.

Parameters block – model to be studied

Returns A generator which returns all activated Objective components block

idaes.core.util.model_statistics.activated_objectives_set(block)
Method to return a ComponentSet of all activated Objective components which appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all activated Objective components which appear in block

idaes.core.util.model_statistics.active_variables_in_deactivated_blocks_set(block)
Method to return a ComponentSet of any Var components which appear within an active Constraint but belong
to a deacitvated Block in a model.

Parameters block – model to be studied

Returns A ComponentSet including any Var components which belong to a deacitvated Block but
appear in an activate Constraint in block

idaes.core.util.model_statistics.deactivated_blocks_set(block)
Method to return a ComponentSet of all deactivated Block components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all deactivated Block components in block (including block
itself)

idaes.core.util.model_statistics.deactivated_constraints_generator(block)
Generator which returns all deactivated Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all deactivated Constraint components block

idaes.core.util.model_statistics.deactivated_constraints_set(block)
Method to return a ComponentSet of all deactivated Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all deactivated Constraint components in block

idaes.core.util.model_statistics.deactivated_equalities_generator(block)
Generator which returns all deactivated equality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all deactivated equality Constraint components block

idaes.core.util.model_statistics.deactivated_equalities_set(block)
Method to return a ComponentSet of all deactivated equality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all deactivated equality Constraint components in block

90 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.model_statistics.deactivated_inequalities_generator(block)
Generator which returns all deactivated inequality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all indeactivated equality Constraint components block

idaes.core.util.model_statistics.deactivated_inequalities_set(block)
Method to return a ComponentSet of all deactivated inequality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all deactivated inequality Constraint components in block

idaes.core.util.model_statistics.deactivated_objectives_generator(block)
Generator which returns all deactivated Objective components in a model.

Parameters block – model to be studied

Returns A generator which returns all deactivated Objective components block

idaes.core.util.model_statistics.deactivated_objectives_set(block)
Method to return a ComponentSet of all deactivated Objective components which appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all deactivated Objective components which appear in block

idaes.core.util.model_statistics.derivative_variables_set(block)
Method to return a ComponentSet of all DerivativeVar components which appear in a model. Users should note
that DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block – model to be studied

Returns A ComponentSet including all DerivativeVar components which appear in block

idaes.core.util.model_statistics.expressions_set(block)
Method to return a ComponentSet of all Expression components which appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Expression components which appear in block

idaes.core.util.model_statistics.fixed_unused_variables_set(block)
Method to return a ComponentSet of all fixed Var components which do not appear within any activated Con-
straint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all fixed Var components which do not appear within any Con-
straints in block

idaes.core.util.model_statistics.fixed_variables_generator(block)
Generator which returns all fixed Var components in a model.

Parameters block – model to be studied

Returns A generator which returns all fixed Var components block

idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set(block)
Method to return a ComponentSet of all fixed Var components which appear within an equality Constraint in a
model.

Parameters block – model to be studied

4.7. Core Library 91

IDAES Documentation, Release 1.5.1.rc0

Returns A ComponentSet including all fixed Var components which appear within activated equal-
ity Constraints in block

idaes.core.util.model_statistics.fixed_variables_only_in_inequalities(block)
Method to return a ComponentSet of all fixed Var components which appear only within activated inequality
Constraints in a model.

Parameters block – model to be studied

Returns A ComponentSet including all fixed Var components which appear only within activated
inequality Constraints in block

idaes.core.util.model_statistics.fixed_variables_set(block)
Method to return a ComponentSet of all fixed Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all fixed Var components in block

idaes.core.util.model_statistics.large_residuals_set(block, tol=1e-05)
Method to return a ComponentSet of all Constraint components with a residual greater than a given threshold
which appear in a model.

Parameters

• block – model to be studied

• tol – residual threshold for inclusion in ComponentSet

Returns A ComponentSet including all Constraint components with a residual greater than tol which
appear in block

idaes.core.util.model_statistics.number_activated_blocks(block)
Method to return the number of activated Block components in a model.

Parameters block – model to be studied

Returns Number of activated Block components in block (including block itself)

idaes.core.util.model_statistics.number_activated_constraints(block)
Method to return the number of activated Constraint components in a model.

Parameters block – model to be studied

Returns Number of activated Constraint components in block

idaes.core.util.model_statistics.number_activated_equalities(block)
Method to return the number of activated equality Constraint components in a model.

Parameters block – model to be studied

Returns Number of activated equality Constraint components in block

idaes.core.util.model_statistics.number_activated_inequalities(block)
Method to return the number of activated inequality Constraint components in a model.

Parameters block – model to be studied

Returns Number of activated inequality Constraint components in block

idaes.core.util.model_statistics.number_activated_objectives(block)
Method to return the number of activated Objective components which appear in a model.

Parameters block – model to be studied

Returns Number of activated Objective components which appear in block

92 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.model_statistics.number_active_variables_in_deactivated_blocks(block)
Method to return the number of Var components which appear within an active Constraint but belong to a
deacitvated Block in a model.

Parameters block – model to be studied

Returns Number of Var components which belong to a deacitvated Block but appear in an activate
Constraint in block

idaes.core.util.model_statistics.number_deactivated_blocks(block)
Method to return the number of deactivated Block components in a model.

Parameters block – model to be studied

Returns Number of deactivated Block components in block (including block itself)

idaes.core.util.model_statistics.number_deactivated_constraints(block)
Method to return the number of deactivated Constraint components in a model.

Parameters block – model to be studied

Returns Number of deactivated Constraint components in block

idaes.core.util.model_statistics.number_deactivated_equalities(block)
Method to return the number of deactivated equality Constraint components in a model.

Parameters block – model to be studied

Returns Number of deactivated equality Constraint components in block

idaes.core.util.model_statistics.number_deactivated_inequalities(block)
Method to return the number of deactivated inequality Constraint components in a model.

Parameters block – model to be studied

Returns Number of deactivated inequality Constraint components in block

idaes.core.util.model_statistics.number_deactivated_objectives(block)
Method to return the number of deactivated Objective components which appear in a model.

Parameters block – model to be studied

Returns Number of deactivated Objective components which appear in block

idaes.core.util.model_statistics.number_derivative_variables(block)
Method to return the number of DerivativeVar components which appear in a model. Users should note that
DerivativeVars are converted to ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

Parameters block – model to be studied

Returns Number of DerivativeVar components which appear in block

idaes.core.util.model_statistics.number_expressions(block)
Method to return the number of Expression components which appear in a model.

Parameters block – model to be studied

Returns Number of Expression components which appear in block

idaes.core.util.model_statistics.number_fixed_unused_variables(block)
Method to return the number of fixed Var components which do not appear within any activated Constraint in a
model.

Parameters block – model to be studied

4.7. Core Library 93

IDAES Documentation, Release 1.5.1.rc0

Returns Number of fixed Var components which do not appear within any activated Constraints in
block

idaes.core.util.model_statistics.number_fixed_variables(block)
Method to return the number of fixed Var components in a model.

Parameters block – model to be studied

Returns Number of fixed Var components in block

idaes.core.util.model_statistics.number_fixed_variables_in_activated_equalities(block)
Method to return the number of fixed Var components which appear within activated equality Constraints in a
model.

Parameters block – model to be studied

Returns Number of fixed Var components which appear within activated equality Constraints in
block

idaes.core.util.model_statistics.number_fixed_variables_only_in_inequalities(block)
Method to return the number of fixed Var components which only appear within activated inequality Constraints
in a model.

Parameters block – model to be studied

Returns Number of fixed Var components which only appear within activated inequality Constraints
in block

idaes.core.util.model_statistics.number_large_residuals(block, tol=1e-05)
Method to return the number Constraint components with a residual greater than a given threshold which appear
in a model.

Parameters

• block – model to be studied

• tol – residual threshold for inclusion in ComponentSet

Returns Number of Constraint components with a residual greater than tol which appear in block

idaes.core.util.model_statistics.number_total_blocks(block)
Method to return the number of Block components in a model.

Parameters block – model to be studied

Returns Number of Block components in block (including block itself)

idaes.core.util.model_statistics.number_total_constraints(block)
Method to return the total number of Constraint components in a model.

Parameters block – model to be studied

Returns Number of Constraint components in block

idaes.core.util.model_statistics.number_total_equalities(block)
Method to return the total number of equality Constraint components in a model.

Parameters block – model to be studied

Returns Number of equality Constraint components in block

idaes.core.util.model_statistics.number_total_inequalities(block)
Method to return the total number of inequality Constraint components in a model.

Parameters block – model to be studied

Returns Number of inequality Constraint components in block

94 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.model_statistics.number_total_objectives(block)
Method to return the number of Objective components which appear in a model

Parameters block – model to be studied

Returns Number of Objective components which appear in block

idaes.core.util.model_statistics.number_unfixed_variables(block)
Method to return the number of unfixed Var components in a model.

Parameters block – model to be studied

Returns Number of unfixed Var components in block

idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities(block)
Method to return the number of unfixed Var components which appear within activated equality Constraints in
a model.

Parameters block – model to be studied

Returns Number of unfixed Var components which appear within activated equality Constraints in
block

idaes.core.util.model_statistics.number_unused_variables(block)
Method to return the number of Var components which do not appear within any activated Constraint in a model.

Parameters block – model to be studied

Returns Number of Var components which do not appear within any activagted Constraints in block

idaes.core.util.model_statistics.number_variables(block)
Method to return the number of Var components in a model.

Parameters block – model to be studied

Returns Number of Var components in block

idaes.core.util.model_statistics.number_variables_in_activated_constraints(block)
Method to return the number of Var components that appear within active Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which appear within active Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_equalities(block)
Method to return the number of Var components which appear within activated equality Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which appear within activated equality Constraints in block

idaes.core.util.model_statistics.number_variables_in_activated_inequalities(block)
Method to return the number of Var components which appear within activated inequality Constraints in a model.

Parameters block – model to be studied

Returns Number of Var components which appear within activated inequality Constraints in block

idaes.core.util.model_statistics.number_variables_near_bounds(block,
tol=0.0001)

Method to return the number of all Var components in a model which have a value within tol (relative) of a
bound.

Parameters

• block – model to be studied

• tol – relative tolerance for inclusion in generator (default = 1e-4)

4.7. Core Library 95

IDAES Documentation, Release 1.5.1.rc0

Returns Number of components block that are close to a bound

idaes.core.util.model_statistics.number_variables_only_in_inequalities(block)
Method to return the number of Var components which appear only within activated inequality Constraints in a
model.

Parameters block – model to be studied

Returns Number of Var components which appear only within activated inequality Constraints in
block

idaes.core.util.model_statistics.total_blocks_set(block)
Method to return a ComponentSet of all Block components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Block components in block (including block itself)

idaes.core.util.model_statistics.total_constraints_set(block)
Method to return a ComponentSet of all Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Constraint components in block

idaes.core.util.model_statistics.total_equalities_generator(block)
Generator which returns all equality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all equality Constraint components block

idaes.core.util.model_statistics.total_equalities_set(block)
Method to return a ComponentSet of all equality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all equality Constraint components in block

idaes.core.util.model_statistics.total_inequalities_generator(block)
Generator which returns all inequality Constraint components in a model.

Parameters block – model to be studied

Returns A generator which returns all inequality Constraint components block

idaes.core.util.model_statistics.total_inequalities_set(block)
Method to return a ComponentSet of all inequality Constraint components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all inequality Constraint components in block

idaes.core.util.model_statistics.total_objectives_generator(block)
Generator which returns all Objective components in a model.

Parameters block – model to be studied

Returns A generator which returns all Objective components block

idaes.core.util.model_statistics.total_objectives_set(block)
Method to return a ComponentSet of all Objective components which appear in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Objective components which appear in block

96 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.model_statistics.unfixed_variables_generator(block)
Generator which returns all unfixed Var components in a model.

Parameters block – model to be studied

Returns A generator which returns all unfixed Var components block

idaes.core.util.model_statistics.unfixed_variables_in_activated_equalities_set(block)
Method to return a ComponentSet of all unfixed Var components which appear within an activated equality
Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all unfixed Var components which appear within activated
equality Constraints in block

idaes.core.util.model_statistics.unfixed_variables_set(block)
Method to return a ComponentSet of all unfixed Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all unfixed Var components in block

idaes.core.util.model_statistics.unused_variables_set(block)
Method to return a ComponentSet of all Var components which do not appear within any activated Constraint
in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components which do not appear within any Constraints
in block

idaes.core.util.model_statistics.variables_in_activated_constraints_set(block)
Method to return a ComponentSet of all Var components which appear within a Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components which appear within activated Constraints
in block

idaes.core.util.model_statistics.variables_in_activated_equalities_set(block)
Method to return a ComponentSet of all Var components which appear within an equality Constraint in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components which appear within activated equality
Constraints in block

idaes.core.util.model_statistics.variables_in_activated_inequalities_set(block)
Method to return a ComponentSet of all Var components which appear within an inequality Constraint in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components which appear within activated inequality
Constraints in block

idaes.core.util.model_statistics.variables_near_bounds_generator(block,
tol=0.0001)

Generator which returns all Var components in a model which have a value within tol (relative) of a bound.

Parameters

• block – model to be studied

• tol – relative tolerance for inclusion in generator (default = 1e-4)

4.7. Core Library 97

IDAES Documentation, Release 1.5.1.rc0

Returns A generator which returns all Var components block that are close to a bound

idaes.core.util.model_statistics.variables_near_bounds_set(block, tol=0.0001)
Method to return a ComponentSet of all Var components in a model which have a value within tol (relative) of
a bound.

Parameters

• block – model to be studied

• tol – relative tolerance for inclusion in generator (default = 1e-4)

Returns A ComponentSet including all Var components block that are close to a bound

idaes.core.util.model_statistics.variables_only_in_inequalities(block)
Method to return a ComponentSet of all Var components which appear only within inequality Constraints in a
model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components which appear only within inequality Con-
straints in block

idaes.core.util.model_statistics.variables_set(block)
Method to return a ComponentSet of all Var components in a model.

Parameters block – model to be studied

Returns A ComponentSet including all Var components in block

Scaling

This section describes scaling utility functions and methods.

Standard Practice

Scaling factors can be specified for any variable or constraint. Pyomo and many solvers support the
scaling_factor suffix. IDAES, as described below, also supports the scaling_expression suffix which
can be used to calculate scaling_factor values (e.g. based on state block units of measure).

To eliminate the possibility of defining, conflicting scaling factors in various places in the model the IDAES standard
is to define the scaling_factor and scaling_expression suffixes in the same block as the variable or
constraint that they are scaling. This ensures that each scale factor is defined in only one place, and is organized based
on the model block structure.

Scaling factors in IDAES (and Pyomo) are multiplied by the variable or constraint they scale. For example, a Pressure
variable in Pa units may be expected to have a magnitude of around 1×106 for a specific process. To scale the variable
to a more reasonable magnitude the scale factor for the variable could be defined to be 1 × 10−5.

Specifying Variable Scaling

Suffixes are used to specify scaling factors for IDAES models. Some solvers, such as Ipopt, support supplying scale
factors. Pyomo also supplies scaling transformations for models when solver scaling is not supported.

To supply variable and constraint scaling factors, a suffix called scaling_factor should be created in the same
block as the variable or constraint. For example:

98 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

from pyomo.environ import Suffix, ConcreteModel, Var

m = ConcreteModel()
m.scaling_factor = Suffix(direction=Suffix.EXPORT)
m.P = Var(initialize=1e6, doc="Pressure [Pa]")
m.conc = Var(["Na+", "Cl-"], initialize=1e-4)
m.scaling_factor[m.P] = 1e-5
m.scaling_factor[m.conc["Na+"]] = 1e3
m.scaling_factor[m.conc["Cl-"]] = 1e3

Variable scaling in state blocks is provided by the developer of a state block and can be used as a basis for scaling
other model variables and constraints. Scaling factors can be modified by users to better represent the process they are
modeling.

Specifying Scaling Factor Expressions

Scaling factors for variables and constraints can be calculated based on variable scaling factors, bounds, or values that
have been provided. The calculation for a scaling factor can be provided as a python expression using model variables
in the scaling_expression suffix. For variables, generally the expression should only depend on variables where
scaling factors have been defined.

The calculate_scaling_factors(m, basis) function replaces the variables in the scaling expression with
the specified basis values, calculates the scaling factors, and puts the scaling factor in the scaling_factor suffix.

from pyomo.environ import Suffix, ConcreteModel, Var, Constraint
from idaes.core.util.scaling import (

ScalingBasis,
calculate_scaling_factors,

)

m = ConcreteModel()
m.scaling_factor = Suffix(direction=Suffix.EXPORT)
m.scaling_expression = Suffix(direction=Suffix.LOCAL)

m.x = Var(initialize=1e6)
m.y = Var(initialize=1e6)
m.z = Var(initialize=1e12)

m.scaling_factor[m.x] = 1e-5
m.scaling_factor[m.y] = 1e-5
m.scaling_expression[m.z] = 1/(m.x*m.y)

m.c = Constraint(expr=m.z == m.x*m.y)
m.scaling_expression[m.c] = 1/(m.x*m.y)

calculate_scaling_factors(m, basis=ScalingBasis.InverseVarScale)

Show that the constraint scaling factor is 1/((1/1e-5)*(1/1e-5))
assert(m.scaling_factor[m.c] - 1e-10 < 1e-12)
Show that the z variable scaling factor is 1/((1/1e-5)*(1/1e-5))
assert(m.scaling_factor[m.z] - 1e-10 < 1e-12)

In the scaling expression the general guideline is that a scaling factor is being calculated based on the expected
magnitude of the variable values. The magnitude could be estimated in different ways, but the most common way
should be the inverse variable scale. The list below shows variable scaling bases that are provided.

ScalingBasis.InverseVarScale: Use the inverse variable scaling factors in scaling expressions.

4.7. Core Library 99

IDAES Documentation, Release 1.5.1.rc0

ScalingBasis.Value: Use the current variable values in scaling expressions.

ScalingBasis.Mid: Use the mid-point between the upper and lower bounds in scaling expressions.

ScalingBasis.Lower: Use the lower bound of variables in scaling expressions.

ScalingBasis.Upper: Use the lower bound of variables in scaling expressions.

ScalingBasis.VarScale: This is less common, but it uses the variable scales directly. This can be used if you are using
alternative scaling methods with divide by the scaling factor.

idaes.core.util.scaling.calculate_scaling_factors(m, ba-
sis=(<ScalingBasis.InverseVarScale:
3>, <ScalingBasis.Mid: 6>, <Scal-
ingBasis.Value: 1>))

Set scale factors for variables and constraints from expressions stored in the scaling_expression suffix. The
variables and Expressions in the scaling expressions are replaced by the scaling basis values before calculating
the scaling factor. Variable scale factors are calculated first, and variable scaling expressions should be based on
variables whose scale factors are supplied directly. Constraint scaling expressions can be based on any variables.

Parameters

• m (Block) – A Pyomo model or block to apply the scaling expressions to.

• basis – (ScalingBasis or List-like of ScalingBasis): Value to use when evaluating scaling
expressions. A list-like of ScalingBasis can be used to provide fall-back values in the event
that the first choice is not available. If none of the bases are available, 1 is used.

Returns None

Scaling Utility Functions

IDAES includes some utility functions to help evaluate model scaling and to auto-scale constraints.

idaes.core.util.scaling.badly_scaled_var_generator(blk, large=10000.0, small=0.001,
zero=1e-10)

This provides a rough check for variables with poor scaling based on their current scale factors and values. For
each potentially poorly scaled variable it returns the var and its current scaled value.

Parameters

• large – Magnitude that is considered to be too large

• small – Magnitude that is considered to be too small

• zero – Magnitude that is considered to be zero, variables with a value of zero are okay, and
not reported.

Yields variable data object, current absolute value of scaled value

idaes.core.util.scaling.grad_fd(c, scaled=False, h=1e-06)
Finite difference the gradient for a constraint, objective or named expression. This is only for use in examining
scaling. For faster more accurate gradients refer to pynumero.

Parameters

• c – constraint to evaluate

• scaled – if True calculate the scaled grad (default=False)

• h – step size for calculating finite differnced derivatives

Returns

100 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(list of gradient values, list for varibles in the constraint) The order of the variables coreso-
ponds to the gradient values.

idaes.core.util.scaling.scale_constraint(c, v=None)
This transforms a constraint with its scaling factor or a given scaling factor value. If it uses the scaling factor
suffix value, the scaling factor suffix is set to 1 to avoid double scaling the constraint. This can be used when to
scale constraints before sending the model to the solver.

Parameters

• c – Pyomo constraint

• v – Scale factor. If None, use value from scaling factor suffix and set suffix value to 1.

Returns None

idaes.core.util.scaling.constraint_fd_autoscale(c, min_scale=1e-06, max_grad=100)
Autoscale constraints so that if there maximum partial derivative with respect to any variable is greater than
max_grad at the current variable values, the method will attempt to assign a scaling factor to the constraint that
makes the maximum derivative max_grad. The min_scale value provides a lower limit allowed for constraint
scaling factors. If the caclulated scaling factor to make the maxium derivative max_grad is less than min_scale,
min_scale is used instead. Derivatives are approximated using finite differnce.

Parameters

• c – constraint object

• max_grad – the largest derivative after scaling subject to min_scale

• min_scale – the minimum scale factor allowed

Returns None

idaes.core.util.scaling.set_scaling_factor(c, v)
Set a scaling factor for a model component. This function creates the scaling_factor suffix if needed.

Parameters

• c – component to supply scaling factor for

• v – scaling factor

Returns None

Scaling with Ipopt

To use the supplied scaling factors with Ipopt the nlp_scaling_method solver option should be set to “user-
scaling.”

Table Methods

The IDAES toolset contians a number of methods for generating and dislpaying summary tables of data in the form of
pandas DataFrames.

Available Methods

idaes.core.util.tables.arcs_to_stream_dict(blk, descend_into=True)
Creates a stream dictionary from the Arcs in a model, using the Arc names as keys. This can be used to

4.7. Core Library 101

IDAES Documentation, Release 1.5.1.rc0

automate the creation of the streams dictionary needed for the create_stream_table_dataframe()
and stream_states_dict() functions.

Parameters

• blk (pyomo.environ._BlockData) – Pyomo model to search for Arcs

• descend_into (bool) – If True, search subblocks for Arcs as well. The default is True.

Returns Dictionary with Arc names as keys and the Arcs as values.

idaes.core.util.tables.create_stream_table_dataframe(streams, true_state=False,
time_point=0, ori-
ent=’columns’)

Method to create a stream table in the form of a pandas dataframe. Method takes a dict with name keys and
stream values. Use an OrderedDict to list the streams in a specific order, otherwise the dataframe can be sorted
later.

Parameters

• streams – dict with name keys and stream values. Names will be used as display names
for stream table, and streams may be Arcs, Ports or StateBlocks.

• true_state – indicated whether the stream table should contain the display variables
define in the StateBlock (False, default) or the state variables (True).

• time_point – point in the time domain at which to generate stream table (default = 0)

• orient – orientation of stream table. Accepted values are ‘columns’ (default) where
streams are displayed as columns, or ‘index’ where stream are displayed as rows.

Returns A pandas DataFrame containing the stream table data.

idaes.core.util.tables.generate_table(blocks, attributes, heading=None)
Create a Pandas DataFrame that contains a list of user-defined attributes from a set of Blocks.

Parameters

• blocks (dict) – A dictionary with name keys and BlockData objects for values. Any
name can be associated with a block. Use an OrderedDict to show the blocks in a specific
order, otherwise the dataframe can be sorted later.

• attributes (list or tuple of strings) – Attributes to report from a Block,
can be a Var, Param, or Expression. If an attribute doesn’t exist or doesn’t have a valid
value, it will be treated as missing data.

• heading (list or tuple of srings) – A list of strings that will be used as col-
umn headings. If None the attribute names will be used.

Returns A Pandas dataframe containing a data table

Return type (DataFrame)

idaes.core.util.tables.stream_states_dict(streams, time_point=0)
Method to create a dictionary of state block representing stream states. This takes a dict with stream name keys
and stream values.

Parameters

• streams – dict with name keys and stream values. Names will be used as display names
for stream table, and streams may be Arcs, Ports or StateBlocks.

• time_point – point in the time domain at which to generate stream table (default = 0)

Returns A pandas DataFrame containing the stream table data.

102 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

idaes.core.util.tables.stream_table_dataframe_to_string(stream_table, **kwargs)
Method to print a stream table from a dataframe. Method takes any argument understood by DataFrame.to_string

4.7.2 Core Overview

All components of the IDAES process modeling framework are built of Pyomo Block components (see Pyomo docu-
mentation).

The ProcessBlock class is the base class of IDAES models, and provides the common foundation for all other compo-
nents.

FlowsheetModel objects represent the top level of the IDAES modeling hierarchy, and contain connected networks of
unit models, or even contain other flowsheet models, which are connected by Pyomo Arcs.

Physical property packages supply information about a material’s state including physical properties and flow rates.
Reaction property packages are used in systems where chemical reactions may take place, and supply information on
reaction rates and stoichiometry, based on a material’s state.

Equipment models are derived from UnitModel. Unit models contain control volumes and have ports which can be
used to connect material and energy flows between unit models. On top of the balance equations usually contained
in control volumes unit models contain additional performance equations that may calculate things like heat and mass
transfer or efficiency curves.

ControlVolumes are the basic building block used to construct unit models that contain material and energy holdup
and flows in and out. These blocks contain energy, mass, and momentum balances, as well as state and reaction blocks
associated with the material within the control volume.

More detail on the different types of modeling objects is available in the Modeling Concepts section.

4.8 Transformations

Transformations offer a convenient way to make systematic changes to a model.

4.8.1 Variable Replacement

There are a number of cases where it can be convenient to replace one variable for another. IDAES offers a conve-
nient variable replacement transformation. This transformation is not reversible and can significantly alter the model
structure.

An example use of this transformation, is a parameter estimation problem where a model contains several instances of
a particular sub-model and each model contains a variable (𝛽) for a model parameter to be estimated. In many cases
𝛽 should be the same across all sub-models. One approach to this problem would be to add equality constraints to
equate all the 𝛽’s. Another approach would be to use the variable replacement transformation to replace the individual
𝛽’s with a single global 𝛽 variable.

Example

The following example demonstrates the basic usage of the transformation.

import idaes.core.plugins # Load IDAES plugins
import pyomo.environ as pyo

Use Pyomo's transformation factory to create the transformation object

(continues on next page)

4.8. Transformations 103

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

rp = pyo.TransformationFactory("replace_variables")

Create an example model
m = pyo.ConcreteModel()
m.x = pyo.Var({1,2,3}, initialize=2)
m.new_x = pyo.Var({1,2,3}, initialize=3)
m.e1 = pyo.Expression(expr=sum(m.x[i] for i in m.x))

Apply the transformation to the model, the substitute argument contains a list
of replacements, each element is a list-like object where the first element is
a variable to be replaced by the second element.
rp.apply_to(m, substitute=[(m.x, m.new_x)])

See that the variable was replaced
print(pyo.value(m.e1)) # since new_x has a value of 3 the expression value is 9

Output:

9

Usage

There are three basic steps to using the variable replacement transformation.

1. Import anything from the idaes package; this will cause the IDAES plugins to be loaded.

2. Use Pyomo’s transformation factory to create a variable replacement transformation object (e.g. rp =
TransformationFactory("replace_variables").

3. Call the transformation object’s apply_to() method to apply the transformation.

The apply_to(instance, substitute) method takes two arguments instance and substitute. The
instance argument is a model or block to apply the transformation to. The substitute argument is a list-like object with
substitutions. Each element is a two-element list-like object where the first element is a Pyomo Var, IndexedVar ele-
ment or Reference to the variable to replace and the second element is a Pyomo Var, IndexedVar element or Reference
to replace the first element with.

Indexed variables are allowed. The index set of the variable to replace must be a subset of the index set of the variable
to replace it with. It can also be useful to use a Pyomo Reference to emulate an indexed variable, so this is also
supported.

ReplaceVariables Class

The transformation object class is ReplaceVariables.

class idaes.core.plugins.variable_replace.ReplaceVariables(**kwds)
Replace variables in a model or block with other variables.

Keyword arguments below are specified for the apply_to(instance, **kwargs) method.

Keyword Arguments substitute – List-like of tuples where the first item in a tuple is a Pyomo
variable to be replaced and the second item in the tuple is a Pyomo variable to replace it with.
This transformation is not reversible.

104 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

4.9 IDAES Model Libraries

The IDAES toolset contains a number of libraries of models for different application areas. All models within these
libraries are built upon the core IDAES modeling framework, but are specialsied for the needs of different applications.
In many cases these models can be used together in the same flowsheet, however some appllications may make specific
assumptions whcih are not compatable with other application libraries.

4.9.1 Contents

Core IDAES Model Library

This library contains a suite of generic models that are applicable across most process applications. This library also
forms the foundation for many of the specialized application libraries which build off these core models.

Contents

Property Model Library

Cubic Equations of State

This property package implements a general form of a cubic equation of state which can be used for most cubic-type
equations of state. This package supports phase equilibrium calculations with a smooth phase transition formulation
that makes it amenable for equation oriented optimization. The following equations of state are currently supported:

• Peng-Robinson

• Soave-Redlich-Kwong

Flow basis: Molar

Units: SI units

State Variables:

The state block uses the following state variables:

Inputs

When instantiating the parameter block that uses this particular state block, 1 optional argument can be passed:

The valid_phase argument denotes the valid phases for a given set of inlet conditions. For example, if the user
knows a priori that the it will only be a single phase (for example liquid only), then it is best not to include the complex
flash equilibrium constraints in the model. If the user does not specify any option, then the package defaults to a 2
phase assumption meaning that the constraints to compute the phase equilibrium will be computed.

Degrees of Freedom

In general, the general cubic equation of state has a number of degrees of freedom equal to 2 + the number of compo-
nents in the system (total flow rate, temperature, pressure and N-1 mole fractions). In some cases (primarily inlets to
units), this is increased by 1 due to the removal of a constraint on the sum of mole fractions.

4.9. IDAES Model Libraries 105

IDAES Documentation, Release 1.5.1.rc0

General Cubic Equation of State

All equations come from “The Properties of Gases and Liquids, 4th Edition” by Reid, Prausnitz and Poling. The
general cubic equation of state is represented by the following equations:

0 = 𝑍3 − (1 +𝐵 − 𝑢𝐵)𝑍2 + (𝐴− 𝑢𝐵 − (𝑢− 𝑤)𝐵2)𝑍 −𝐴𝐵 − 𝑤𝐵2 − 𝑤𝐵3

𝐴 =
𝑎𝑚𝑃

𝑅2𝑇 2

𝐵 =
𝑏𝑚𝑃

𝑅𝑇

where 𝑍 is the compressibility factor of the mixture, 𝑎𝑚 and 𝑏𝑚 are properties of the mixture and 𝑢 and 𝑤 are
parameters which depend on the specific equation of state being used as show in the table below.

Equation 𝑢 𝑤 𝑂𝑚𝑒𝑔𝑎𝐴 𝑂𝑚𝑒𝑔𝑎𝐵 𝑘𝑎𝑝𝑝𝑎𝑗
Peng-Robinson 2 -1 0.45724 0.07780 (1 + (1− 𝑇 2

𝑟)(0.37464 + 1.54226𝜔𝑗 − 0.26992𝜔2
𝑗))2

Soave-Redlich-
Kwong

1 0 0.42748 0.08664 (1 + (1 − 𝑇 2
𝑟)(0.48 + 1.574𝜔𝑗 − 0.176𝜔2

𝑗))2

The properties 𝑎𝑚 and 𝑏𝑚 are calculated from component specific properties 𝑎𝑗 and 𝑏𝑗 as shown below:

𝑎𝑗 =
Ω𝐴𝑅

2𝑇 2
𝑐,𝑗

𝑃𝑐,𝑗
𝜅𝑗

𝑏𝑗 =
Ω𝐵𝑅𝑇𝑐,𝑗
𝑃𝑐,𝑗

𝑎𝑚 =
∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(𝑎𝑖𝑎𝑗)
1/2(1 − 𝑘𝑖𝑗)

𝑏𝑚 =
∑︁
𝑖

𝑦𝑖𝑏𝑖

where 𝑃𝑐,𝑗 and 𝑇𝑐,𝑗 are the component critical pressures and temperatures, 𝑦𝑗 is the mole fraction of component
:math‘j‘, 𝑘𝑖𝑗 are a set of binary interaction parameters which are specific to the equation of state and Ω𝐴, Ω𝐵 and 𝜅𝑗
are taken from the table above. 𝜔𝑗 is the Pitzer acentric factor of each component.

The cubic equation of state is solved for each phase via a call to an external function which automatically identifies
the correct root of the cubic and returns the value of 𝑍 as a function of 𝐴 and 𝐵 along with the first and second partial
derivatives.

VLE Model with Smooth Phase Transition

The flash equations consists of the following equations:

𝐹 𝑖𝑛 = 𝐹 𝑙𝑖𝑞 + 𝐹 𝑣𝑎𝑝

𝑧𝑖𝑛𝑖 𝐹
𝑖𝑛 = 𝑥𝑙𝑖𝑞𝑖 𝐹 𝑙𝑖𝑞 + 𝑦𝑣𝑎𝑝𝑖 𝐹 𝑣𝑎𝑝

At the equilibrium condition, the fugacity of the vapor and liquid phase are defined as follows:

ln 𝑓𝑣𝑎𝑝𝑖 = ln 𝑓 𝑙𝑖𝑞𝑖

𝑓𝑝ℎ𝑎𝑠𝑒𝑖 = 𝑦𝑝ℎ𝑎𝑠𝑒𝑖 𝜑𝑝ℎ𝑎𝑠𝑒𝑖 𝑃

106 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

ln𝜑𝑖 =
𝑏𝑖
𝑏𝑚

(𝑍 − 1) − ln (𝑍 −𝐵) +
𝐴

𝐵
√
𝑢2 − 4𝑤

(︂
𝑏𝑖
𝑏𝑚

− 𝛿𝑖

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

𝛿𝑖 =
2𝑎

1/2
𝑖

𝑎𝑚

∑︁
𝑗

𝑥𝑗𝑎
1/2
𝑗 (1 − 𝑘𝑖𝑗)

The cubic equation of state is solved to find 𝑍 for each phase subject to the composition of that phase. Typically,
the flash calculations are computed at a given temperature, 𝑇 . However, the flash calculations become trivial if the
given conditions do not fall in the two phase region. For simulation only studies, the user may know a priori the
condition of the stream but when the same set of equations are used for optimization, there is a high probability that
the specifications can transcend the phase envelope and hence the flash equations included may be trivial in the single
phase region (i.e. liquid or vapor only). To circumvent this problem, property packages in IDAES that support VLE
will compute the flash calculations at an “equilibrium” temperature 𝑇𝑒𝑞 . The equilibrium temperature is computed as
follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇)

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇𝑒𝑞 is the equilibrium temperature at which flash calculations are computed, 𝑇 is the stream temperature, 𝑇1 is
the intermediate temperature variable, 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 is the bubble point temperature of mixture, and 𝑇𝑑𝑒𝑤 is the dew point
temperature of the mixture. Note that, in the above equations, approximations are used for the max and min functions
as follows:

𝑇1 = 0.5[𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +
√︁

(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21]

𝑇𝑒𝑞 = 0.5[𝑇1 + 𝑇𝑑𝑒𝑤 −
√︁

(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22]

where 𝜖1 and 𝜖2 are smoothing parameters (mutable). The default values are 0.01 and 0.0005 respectively. It is
recommended that 𝜖1 > 𝜖2. Please refer to reference 4 for more details. Therefore, it can be seen that if the stream
temperature is less than that of the bubble point temperature, the VLE calculations will be computed at the bubble
point. Similarly, if the stream temperature is greater than the dew point temperature, then the VLE calculations are
computed at the dew point temperature. For all other conditions, the equilibrium calculations will be computed at the
actual temperature.

Other Constraints

Additional constraints are included in the model to compute the thermodynamic properties based on the cubic equation
of state, such as enthalpies and entropies. Please note that, these constraints are added only if the variable is called for
when building the model. This eliminates adding unnecessary constraints to compute properties that are not needed in
the model.

All thermophysical properties are calculated using an ideal and residual term, such that:

𝑝 = 𝑝0 + 𝑝𝑟

The residual term is derived from the partial derivatives of the cubic equation of state, whilst the ideal term is deter-
mined using empirical correlations.

Enthalpy

The ideal enthalpy term is given by:

ℎ0𝑖 =

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3)𝑑𝑇 + ∆ℎ298.15𝐾𝑓𝑜𝑟𝑚

4.9. IDAES Model Libraries 107

IDAES Documentation, Release 1.5.1.rc0

The residual enthalpy term is given by:

ℎ𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 =

(︂
𝑇
𝑑𝑎

𝑑𝑇
− 𝑎𝑚

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃
+𝑅𝑇 (𝑍 − 1)𝑏𝑚

√︀
𝑢2 − 4𝑤

𝑑𝑎

𝑑𝑇

√
𝑇 = −𝑅

2

√︀
Ω𝐴

∑︁
𝑖

∑︁
𝑗

𝑦𝑖𝑦𝑗(1 − 𝑘𝑖𝑗)

(︃
𝑓𝑤,𝑗

√︃
𝑎𝑖
𝑇𝑐,𝑗
𝑃𝑐,𝑗

+ 𝑓𝑤,𝑖

√︃
𝑎𝑗
𝑇𝑐,𝑖
𝑃𝑐,𝑖

)︃

Entropy

The ideal entropy term is given by:

𝑠0𝑖 =

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3)

𝑇
𝑑𝑇 + ∆𝑠298.15𝐾𝑓𝑜𝑟𝑚

The residual entropy term is given by:

𝑠𝑟𝑖 𝑏𝑚
√︀
𝑢2 − 4𝑤 = 𝑅 ln

𝑍 −𝐵

𝑍
𝑏𝑚
√︀
𝑢2 − 4𝑤 +𝑅 ln

𝑍𝑃 𝑟𝑒𝑓

𝑃
𝑏𝑚
√︀
𝑢2 − 4𝑤 +

𝑑𝑎

𝑑𝑇
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

Fugacity

Fugacity is calculated from the system pressure, mole fractions and fugacity coefficients as follows:

𝑓𝑖,𝑝 = 𝑥𝑖,𝑝𝜑𝑖,𝑝𝑃

Fugacity Coefficient

The fugacity coefficient is calculated from the departure function of the cubic equation of state as shown below:

ln𝜑𝑖 =
𝑏𝑖
𝑏𝑚

(𝑍 − 1) − ln (𝑍 −𝐵) +
𝐴

𝐵
√
𝑢2 − 4𝑤

(︂
𝑏𝑖
𝑏𝑚

− 𝛿𝑖

)︂
ln

(︃
2𝑍 +𝐵(𝑢+

√
𝑢2 − 4𝑤)

2𝑍 +𝐵(𝑢−
√
𝑢2 − 4𝑤)

)︃

𝛿𝑖 =
2𝑎

1/2
𝑖

𝑎𝑚

∑︁
𝑗

𝑥𝑗𝑎
1/2
𝑗 (1 − 𝑘𝑖𝑗)

Gibbs Energy

The Gibbs energy of the system is calculated using the definition of Gibbs energy:

𝑔𝑖 = ℎ𝑖 − 𝑇∆𝑠𝑖

108 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

List of Variables

Variable Name Description Units
flow_mol Total molar flow rate mol/s
mole_frac_comp Mixture mole fraction indexed by component None
temperature Temperature K
pressure Pressure Pa
flow_mol_phase Molar flow rate indexed by phase mol/s
mole_frac_phase_comp Mole fraction indexed by phase and component None
pressure_sat Saturation or vapor pressure indexed by component Pa
dens_mol_phase Molar density indexed by phase mol/m3
dens_mass_phase Mass density indexed by phase kg/m3
enth_mol_phase Molar enthalpy indexed by phase J/mol
enth_mol Molar enthalpy of mixture J/mol
entr_mol_phase Molar entropy indexed by phase J/mol.K
entr_mol Molar entropy of mixture J/mol.K
fug_phase_comp Fugacity indexed by phase and component Pa
fug_coeff_phase_comp Fugacity coefficient indexed by phase and component None
gibbs_mol_phase Molar Gibbs energy indexed by phase J/mol
mw Molecular weight of mixture kg/mol
mw_phase Molecular weight by phase kg/mol
temperature_bubble Bubble point temperature K
temperature_dew Dew point temperature K
pressure_bubble Bubble point pressure Pa
pressure_dew Dew point pressure Pa
_teq Temperature at which the VLE is calculated K

List of Parameters

Parameter Name Description Units
cubic_type Type of cubic equation of state to use, from CubicEoS Enum None
pressure_ref Reference pressure Pa
temperature_ref Reference temperature K
omega Pitzer acentricity factor None
kappa Binary interaction parameters for EoS (note that parameters are specific for a

given EoS
None

mw_comp Component molecular weights kg/mol
cp_ig Parameters for calculating component heat capacities varies
dh_form Component standard heats of formation (used for enthalpy at reference state) J/mol
ds_form Component standard entropies of formation (used for entropy at reference state) J/mol.K
antoine Component Antoine coefficients (used to initialize bubble and dew point calcu-

lations)
bar, K

Config Block Documentation

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData(component)
General Property Parameter Block Class

4.9. IDAES Model Libraries 109

IDAES Documentation, Release 1.5.1.rc0

build()
Callable method for Block construction.

classmethod define_metadata(obj)
Define properties supported and units.

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

parameters A reference to an instance of the Property Parameter Block associated with
this property package.

defined_state Flag indicating whether the state should be considered fully defined, and
thus whether constraints such as sum of mass/mole fractions should be included, de-
fault - False. Valid values: { True - state variables will be fully defined, False - state
variables will not be fully defined.}

has_phase_equilibrium Flag indicating whether phase equilibrium constraints should
be constructed in this state block, default - True. Valid values: { True - StateBlock
should calculate phase equilibrium, False - StateBlock should not calculate phase equi-
librium.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (CubicStateBlock) New instance

class idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData(component)
An general property package for cubic equations of state with VLE.

build()
Callable method for Block construction.

define_display_vars()
Method used to specify components to use to generate stream tables and other outputs. Defaults to de-
fine_state_vars, and developers should overload as required.

define_state_vars()
Define state vars.

get_energy_density_terms(p)
Create energy density terms.

get_enthalpy_flow_terms(p)
Create enthalpy flow terms.

get_material_density_terms(p, j)
Create material density terms.

110 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

get_material_flow_basis()
Method which returns an Enum indicating the basis of the material flow term.

get_material_flow_terms(p, j)
Create material flow terms for control volume.

model_check()
Model checks for property block.

Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

This property package supports phase equilibrium calucations with a smooth phase transition formulation that makes it
amenable for equation oriented optimization. The gas phase is assumed to be ideal and for the liquid phase, the package
supports an ideal liquid or a non-ideal liquid using an activity coefficient model. To compute the activity coefficient,
the package currently supports the Non Random Two Liquid Model (NRTL) or the Wilson model. Therefore, this
property package supports the following combinations for gas-liquid mixtures for VLE calculations:

1. Ideal (vapor) - Ideal (liquid)

2. Ideal (vapor) - NRTL (liquid)

3. Ideal (vapor) - Wilson (liquid)

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following two sets of state variables:

Option 1 - “FTPz”:

Option 2 - “FcTP”:

The user can specify the choice of state variables while instantiating the parameter block. See the Inputs section for
more details.

Support for other combinations of state variables will be made available in the future.

Inputs

When instantiating the parameter block that uses this particular state block, 2 arguments can be passed:

The valid_phase argument denotes the valid phases for a given set of inlet conditions. For example, if the user
knows a priori that the it will only be a single phase (for example liquid only), then it is best not to include the complex
flash equilibrium constraints in the model. If the user does not specify any option, then the package defaults to a 2
phase assumption meaning that the constraints to compute the phase equilibrium will be computed.

The activity_coeff_model denotes the liquid phase assumption to be used. If the user does not specify any
option, then the package defaults to asuming an ideal liquid assumption.

The state_vars denotes the preferred set of state variables to be used. If the user does not specify any option, then
the package defaults to using the total flow, mixture mole fraction, temperature and pressure as the state variables.

4.9. IDAES Model Libraries 111

IDAES Documentation, Release 1.5.1.rc0

Degrees of Freedom

The number of degrees of freedom that need to be fixed to yield a square problem (i.e. degrees of freedom = 0)
depends on the options selected. The following table provides a summary of the variables to be fixed and also the
corresponding variable names in the model.

Property Model Type State variables Additional
Variables

Total number of variables

Ideal (vapor) - Ideal (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

None 3 + 𝑁𝑐

Ideal (vapor) - NRTL (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

alpha,
tau

3 + 𝑁𝑐 + 2𝑁2
𝑐

Ideal (vapor) - Wilson (liquid) flow_mol,
temperature,
pressure,
mole_frac_comp

vol_mol_comp,
tau

3 + 𝑁𝑐 + 2𝑁2
𝑐

Please refer to reference 3 for recommended values for tau.

VLE Model with Smooth Phase Transition

The flash equations consists of the following equations depending on the choice of state variables selected by the user.

If the state variables are total flow, mole fraction, temperature, and pressure, then the following constraints are imple-
mented:

𝐹 𝑖𝑛 = 𝐹 𝑙𝑖𝑞 + 𝐹 𝑣𝑎𝑝

𝑧𝑖𝑛𝑖 𝐹
𝑖𝑛 = 𝑥𝑙𝑖𝑞𝑖 𝐹 𝑙𝑖𝑞 + 𝑦𝑣𝑎𝑝𝑖 𝐹 𝑣𝑎𝑝

If the state variables are component flow rates, temperature, and pressure, then the following constraints are imple-
mented:

𝐹 𝑖𝑛
𝑖 = 𝐹 𝑙𝑖𝑞

𝑖 + 𝐹 𝑣𝑎𝑝
𝑖

The equilibrium condition, the fugacity of the vapor and liquid phase are defined as follows:

𝑓𝑣𝑎𝑝𝑖 = 𝑓 𝑙𝑖𝑞𝑖

𝑓𝑣𝑎𝑝𝑖 = 𝑦𝑖𝜑𝑖𝑃

𝑓 𝑙𝑖𝑞𝑖 = 𝑥𝑖𝑝
𝑠𝑎𝑡
𝑖 𝜈𝑖

The equilibrium constraint is written as a generic constraint such that it can be extended easily for non-ideal gases and
liquids. As this property package only supports an ideal gas, the fugacity coefficient (𝜑𝑖) for the vapor phase is 1 and
hence the expression reduces to 𝑦𝑖𝑃 . For the liquid phase, if the ideal option is selected then the activity coefficient
(𝜈𝑖) is 1. If an activity coefficient model is selected then corresponding constraints are added to compute the activity
coefficient.

Typically, the flash calculations are computed at a given temperature, 𝑇 . However, the flash calculations become trivial
if the given conditions do not fall in the two phase region. For simulation only studies, the user may know a priori the

112 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

condition of the stream but when the same set of equations are used for optimization, there is a high probablity that
the specifications can transcend the phase envelope and hence the flash equations included may be trivial in the single
phase region (i.e. liquid or vapor only). To circumvent this problem, property packages in IDAES that support VLE
will compute the flash calculations at an “equilibrium” temperature 𝑇𝑒𝑞 . The equilibrium temperature is computed as
follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇)

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇𝑒𝑞 is the equilibrium temperature at which flash calculations are computed, 𝑇 is the stream temperature, 𝑇1 is
the intermediate temperature variable, 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 is the bubble point temperature of mixture, and 𝑇𝑑𝑒𝑤 is the dew point
temperature of the mixture. Note that, in the above equations, approximations are used for the max and min functions
as follows:

𝑇1 = 0.5[𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +
√︁

(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21]

𝑇𝑒𝑞 = 0.5[𝑇1 + 𝑇𝑑𝑒𝑤 −
√︁

(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22]

where 𝜖1 and 𝜖2 are smoothing parameters(mutable). The default values are 0.01 and 0.0005 respectively. It is rec-
ommended that 𝜖1 > 𝜖2. Please refer to reference 4 for more details. Therefore, it can be seen that if the stream
temperature is less than that of the bubble point temperature, the VLE calucalations will be computed at the bubble
point. Similarly, if the stream temperature is greater than the dew point temperature, then the VLE calculations are
computed at the dew point temperature. For all other conditions, the equilibrium calcualtions will be computed at the
actual temperature.

Additional constraints are included in the model to compute the thermodynamic properties such as component satu-
ration pressure, enthalpy, specific heat capacity. Please note that, these constraints are added only if the variable is
called for when building the model. This eliminates adding unnecessary constraints to compute properties that are not
needed in the model.

The saturation or vapor pressure (pressure_sat) for component 𝑖 is computed using the following correlation[1]:

log
𝑃 𝑠𝑎𝑡

𝑃𝑐
=
𝐴𝑥+𝐵𝑥1.5 + 𝐶𝑥3 +𝐷𝑥6

1 − 𝑥

𝑥 = 1 − 𝑇𝑒𝑞
𝑇𝑐

where 𝑃𝑐 is the critical pressure, 𝑇𝑐 is the critical temperature of the component and 𝑇𝑒𝑞 is the equilibrium temperature
at which the saturation pressure is computed. Please note that when using this expression, 𝑇𝑒𝑞 < 𝑇𝑐 is required and
when violated it results in a negative number raised to the power of a fraction.

The specific enthalpy (enthalpy_comp_liq) for component 𝑖 is computed using the following expression for the
liquid phase:

ℎ𝑙𝑖𝑞𝑖 = ∆ℎ𝑓𝑜𝑟𝑚,𝐿𝑖𝑞,𝑖 +

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4)𝑑𝑇

The specific enthalpy (enthalpy_comp_vap) for component 𝑖 is computed using the following expression for the
vapor phase:

ℎ𝑣𝑎𝑝𝑖 = ∆ℎ𝑓𝑜𝑟𝑚,𝑉 𝑎𝑝,𝑖 +

∫︁ 𝑇

298.15

(𝐴+𝐵𝑇 + 𝐶𝑇 2 +𝐷𝑇 3 + 𝐸𝑇 4)𝑑𝑇

The mixture specific enthapies (enthalpy_liq & enthalpy_vap) are computed using the following expressions
for the liquid and vapor phase respectively:

𝐻 𝑙𝑖𝑞 =
∑︁
𝑖

ℎ𝑙𝑖𝑞𝑖 𝑥𝑖

4.9. IDAES Model Libraries 113

IDAES Documentation, Release 1.5.1.rc0

𝐻𝑣𝑎𝑝 =
∑︁
𝑖

ℎ𝑣𝑎𝑝𝑖 𝑦𝑖

Similarly, specific entropies are calcuated as follows. The specific entropy (entropy_comp_liq) for component 𝑖
is computed using the following expression for the liquid phase:

𝑠𝑙𝑖𝑞𝑖 = ∆𝑠𝑓𝑜𝑟𝑚,𝐿𝑖𝑞,𝑖 +

∫︁ 𝑇

298.15

(𝐴/𝑇 +𝐵 + 𝐶𝑇 +𝐷𝑇 2 + 𝐸𝑇 3)𝑑𝑇

The specific entropy (entropy_comp_vap) for component 𝑖 is computed using the following expression for the
vapor phase:

𝑠𝑣𝑎𝑝𝑖 = ∆𝑠𝑓𝑜𝑟𝑚,𝑉 𝑎𝑝,𝑖 +

∫︁ 𝑇

298.15

(𝐴/𝑇 +𝐵 + 𝐶𝑇 +𝐷𝑇 2 + 𝐸𝑇 3)𝑑𝑇

Please refer to references 1 and 2 to get parameters for different components.

Activity Coefficient Model - NRTL

The activity coefficient for component 𝑖 is computed using the following equations when using the Non-Random Two
Liquid model [3]:

log 𝛾𝑖 =

∑︀
𝑗 𝑥𝑗𝜏𝑗𝐺𝑗𝑖∑︀
𝑘 𝑥𝑘𝐺𝑘𝑖

+
∑︁
𝑗

𝑥𝑗𝐺𝑖𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

[𝜏𝑖𝑗 −
∑︀

𝑚 𝑥𝑚𝜏𝑚𝑗𝐺𝑚𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

]

𝐺𝑖𝑗 = exp(−𝛼𝑖𝑗𝜏𝑖𝑗)

where 𝛼𝑖𝑗 is the non-randomness parameter and 𝜏𝑖𝑗 is the binary interaction parameter for the NRTL model. Note
that in the IDAES implementation, these are declared as variables that allows for more flexibility and the ability to
use these in a parameter estimation problem. These NRTL model specific variables need to be either fixed for a given
component set or need to be estimated from VLE data.

The bubble point is computed by enforcing the following condition:∑︁
𝑖

[𝑧𝑖𝑝
𝑠𝑎𝑡
𝑖 (𝑇𝑏𝑢𝑏𝑏𝑙𝑒)𝜈𝑖] − 𝑃 = 0

Activity Coefficient Model - Wilson

The activity coefficient for component 𝑖 is computed using the following equations when using the Wilson model [3]:

log 𝛾𝑖 = 1 − log
∑︁
𝑗

𝑥𝑗𝐺𝑗𝑖 −
∑︁
𝑗

𝑥𝑗𝐺𝑖𝑗∑︀
𝑘 𝑥𝑘𝐺𝑘𝑗

𝐺𝑖𝑗 = (𝑣𝑖/𝑣𝑗) exp(−𝜏𝑖𝑗)

where 𝑣𝑖 is the molar volume of component 𝑖 and 𝜏𝑖𝑗 is the binary interaction parameter. These are Wilson model
specific variables that either need to be fixed for a given component set or need to be estimated from VLE data.

The bubble point is computed by enforcing the following condition:∑︁
𝑖

[𝑧𝑖𝑝
𝑠𝑎𝑡
𝑖 (𝑇𝑏𝑢𝑏𝑏𝑙𝑒)𝜈𝑖] − 𝑃 = 0

114 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

List of Variables

Variable Name Description Units
flow_mol Total molar flow rate mol/s
mole_frac_comp Mixture mole fraction indexed by component None
temperature Temperature K
pressure Pressure Pa
flow_mol_phase Molar flow rate indexed by phase mol/s
mole_frac_phase_comp Mole fraction indexed by phase and component None
pressure_sat Saturation or vapor pressure indexed by component Pa
density_mol_phase Molar density indexed by phase mol/m3
ds_vap Molar entropy of vaporization J/mol.K
enthalpy_comp_liq Liquid molar enthalpy indexed by component J/mol
enthalpy_comp_vap Vapor molar enthalpy indexed by component J/mol
enthalpy_liq Liquid phase enthalpy J/mol
enthalpy_vap Vapor phase enthalpy J/mol
entropy_comp_liq Liquid molar entropy indexed by component J/mol
entropy_comp_vap Vapor molar entropy indexed by component J/mol
entrolpy_liq Liquid phase entropy J/mol
entropy_vap Vapor phase entropy J/mol
temperature_bubble Bubble point temperature K
temperature_dew Dew point temperature K
_temperature_equilibrium Temperature at which the VLE is calculated K

Table 2: NRTL model specific variables
Variable Name Description Units
alpha Non-randomness parameter indexed by component and component None
tau Binary interaction parameter indexed by component and component None
activity_coeff_comp Activity coefficient indexed by component None

Table 3: Wilson model specific variables
Variable Name Description Units
vol_mol_comp Molar volume of component indexed by component None
tau Binary interaction parameter indexed by component and component None
activity_coeff_comp Activity coefficient indexed by component None

Initialization

Config Block Documentation

class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffParameterBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

4.9. IDAES Model Libraries 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

• default (dict) – Default ProcessBlockData config

Keys

default_arguments Default arguments to use with Property Package

activity_coeff_model Flag indicating the activity coefficient model to be used for the
non-ideal liquid, and thus corresponding constraints should be included, default - Ideal
liquid. Valid values: { “NRTL” - Non Random Two Liquid Model, “Wilson” - Wil-
son Liquid Model,}

state_vars Flag indicating the choice for state variables to be used for the state block,
and thus corresponding constraints should be included, default - FTPz Valid values: {
“FTPx” - Total flow, Temperature, Pressure and Mole fraction, “FcTP” - Component
flow, Temperature and Pressure}

valid_phase Flag indicating the valid phase for a given set of conditions, and thus cor-
responding constraints should be included, default - (“Vap”, “Liq”). Valid values: {
“Liq” - Liquid only, “Vap” - Vapor only, (“Vap”, “Liq”) - Vapor-liquid equilibrium,
(“Liq”, “Vap”) - Vapor-liquid equilibrium,}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ActivityCoeffParameterBlock) New instance

class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

parameters A reference to an instance of the Property Parameter Block associated with
this property package.

defined_state Flag indicating whether the state should be considered fully defined, and
thus whether constraints such as sum of mass/mole fractions should be included, de-
fault - False. Valid values: { True - state variables will be fully defined, False - state
variables will not be fully defined.}

has_phase_equilibrium Flag indicating whether phase equilibrium constraints should
be constructed in this state block, default - True. Valid values: { True - StateBlock
should calculate phase equilibrium, False - StateBlock should not calculate phase equi-
librium.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

116 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Returns (ActivityCoeffStateBlock) New instance

class idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData(component)
An example property package for ideal VLE.

build()
Callable method for Block construction.

define_state_vars()
Define state vars.

get_energy_density_terms(p)
Create enthalpy density terms.

get_enthalpy_flow_terms(p)
Create enthalpy flow terms.

get_material_density_terms(p, j)
Create material density terms.

get_material_flow_basis()
Declare material flow basis.

get_material_flow_terms(p, j)
Create material flow terms for control volume.

model_check()
Model checks for property block.

References

1. “The properties of gases and liquids by Robert C. Reid”

2. “Perry’s Chemical Engineers Handbook by Robert H. Perry”.

3. H. Renon and J.M. Prausnitz, “Local compositions in thermodynamic excess functions for liquid mixtures.”,
AIChE Journal Vol. 14, No.1, 1968.

4. AP Burgard, JP Eason, JC Eslick, JH Ghouse, A Lee, LT Biegler, DC Miller. “A Smooth, Square Flash For-
mulation for Equation Oriented Flowsheet Optimization”, Computer Aided Chemical Engineering 44, 871-876,
2018

Water/Steam - IAPWS95

Accurate and thermodynamically consistent steam properties are provided for the IDAES framework by implementing
the International Association for the Properties of Water and Steam’s “Revised Release on the IAPWS Formulation
1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use.” Non-analytic
terms designed to improve accuracy very near the critical point were omitted, because they cause a singularity at the
critical point, a feature which is undesirable in optimization problems. The IDAES implementation provides features
which make the water and steam property calculations amenable to rigorous mathematical optimization.

Example

Theses modules can be imported as:

from idaes.generic_models.properties import iapws95

4.9. IDAES Model Libraries 117

IDAES Documentation, Release 1.5.1.rc0

The Heater unit model example, provides a simple example for using water properties.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, MaterialBalanceType
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock(default={

"phase_presentation":iapws95.PhaseType.LG,
"state_vars":iapws95.StateVars.PH})

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={

"property_package": model.fs.properties,
"material_balance_type": MaterialBalanceType.componentTotal})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Since all properties except the state variables are Pyomo Expressions in the water properties module, after solving the
problem any property can be calculated in any state block. Continuing from the heater example, to get the viscosity of
both phases, the lines below could be added.

mu_l = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Liq"])
mu_v = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Vap"])

For more information about how StateBlocks and PropertyParameterBlocks work see the StateBlock documentation.

Units

The iapws95 property module uses SI units (m, kg, s, J, mol) for all public variables and expressions. Temperature is
in K. Note that this means molecular weight is in the unusual unit of kg/mol.

A few expressions intended to be used internally and all external function calls use units of kg, kJ, kPa, and K. These
generally are not needed by the end user.

Methods

These methods use the IAPWS-95 formulation for scientific use for thermodynamic properties (Wagner and Pruss,
2002; IAPWS, 2016). To solve the phase equilibrium, the method of Akasaka (2008) was used. For solving these
equations, some relations from the IAPWS-97 formulation for industrial use are used as initial values (Wagner et al.,
2002). The industrial formulation is slightly discontinuous between different regions, so it may not be suitable for
optimization. In addition to thermodynamic quantities, viscosity and thermal conductivity are calculated (IAPWS,
2008; IAPWS, 2011).

118 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

External Functions

The IAPWS-95 formulation uses density and temperature as state variables. For most applications those state variables
are not the most convenient choices. Using other state variables requires solving equations to get density and temper-
ature from the chosen state variables. These equations can have numerous solutions only one of which is physically
meaningful. Rather than solve these equations as part of the full process simulation, external functions were developed
that can solve the equations required to change state variables and guarantee the correct roots.

The external property functions are written in C++ and complied such that they can be called by AMPL solvers.
See the Installation page for information about compiling these functions. The external functions provide both first
and second derivatives for all property function calls, however at phase transitions some of these functions may be
non-smooth.

IDAES Framework Wrapper

A wrapper for the external functions is provided for compatibility with the IDAES framework. Most properties are
available as Pyomo Expressions from the wrapper. Only the state variables are model variables. Benefits of using
mostly expressions in the property package are: no initialization is required specifically for the property package, the
model has fewer equations, and all properties can be easily calculated after the model is solved from the state variable
values even if they were not used in the model. Calls to the external functions are used within expressions so users
do not need to directly call any functions. The potential downside of the extensive use of expressions here is that
combining the expressions to form constraints could yield equations that are more difficult to solve than, they would
have been if an equivalent system of equations was written with more variables and simpler equations. Quantifying
the effect of writing larger equations with fewer variables is difficult. Experience suggests in this particular case more
expressions and fewer variables is better.

Although not generally used, the wrapper provides direct access to the ExternalFunctions, including intermediate
functions. For more information see section ExternalFunctions. These are mostly available for testing purposes.

Phase Presentation

The property package wrapper can present fluid phase information to the IDAES framework in different ways. See
the class reference for details on how to set these options. The phase_presentation=PhaseType.MIX option
looks like one phase called “Mix” to the IDAES framework. The property package will calculate a phase fraction. This
will bypass any two phase handling equations written for unit models, and should work with any unit model options
as long as you do not want to separate the phases. The benefit of this option is that it can potentially lead to a simpler
set of equations.

The phase_presentation=PhaseType.LG option appears to the IDAES framework to be two phases “Vap”
and “Liq”. This option requires one of two unit model options to be set. You can use the total material balance option
for unit models, to specify that only one material balance equation should be written not one per phase. The other
possible option is to specify has_phase_equlibrium=True. This will still write a material balance per phase,
but will add a phase generation term to the model. For the IAPWS-95 package, it is generally recommended that
specifying total material balances is best because it results in a problem with fewer variables.

There are also two single phase options phase_presentation=PhaseType.L and
phase_presentation=PhaseType.G, these present a single phase “Liq” or “Vap” to the framework.
The vapor fraction will also always return 0 or 1 as appropriate. These options can be used when the phase of a fluid
is know for certain to only be liquid or only be vapor. For the temperature-pressure-vapor fraction formulation, this
eliminates the complementarity constraint, but for the enthalpy-pressure formulation, where the vapor fraction is
always calculated, the single phase options probably do not provide any real benefit.

4.9. IDAES Model Libraries 119

IDAES Documentation, Release 1.5.1.rc0

Pressure-Enthalpy Formulation

The advantage of this choice of state variables is that it is very robust when phase changes occur, and is especially
useful when it is not known if a phase change will occur. The disadvantage of this choice of state variables is that for
equations like heat transfer equations that are highly dependent on temperature, a model could be harder to solve near
regions with phase change. Temperature is a non-smooth function with non-smoothness when transitioning from the
single-phase to the two-phase region. Temperature also has a zero derivative with respect to enthalpy in the two-phase
region, so near the two-phase region solving a constraint that specifies a specific temperature may not be possible.

The variables for this form are flow_mol (mol/s), pressure (Pa), and enth_mol (J/mol).

Since temperature and vapor fraction are not state variables in this formulation, they are provided by expressions, and
cannot be fixed. For example, to set a temperature to a specific value, a constraint could be added which says the
temperature expression equals a fixed value.

These expressions are specific to the P-H formulation:

temperature Expression that calculates temperature by calling an ExternalFunction of enthalpy and pressure. This
expression is non-smooth in the transition from single-phase to two-phase and has a zero derivative with respect
to enthalpy in the two-phase region.

vapor_frac Expression that calculates vapor fraction by calling an ExternalFunction of enthalpy and pressure.
This expression is non-smooth in the transition from single-phase to two-phase and has a zero derivative with
respect to enthalpy in the single-phase region, where the value is 0 (liquid) or 1 (vapor).

Temperature-Pressure-Vapor Fraction

This formulation uses temperature (K), pressure (Pa), and vapor fraction as state variables. When a single phase option
is given, the vapor fraction is fixed to the appropriate value and not included in the state variable set. For single phase,
the complementarity constraint is also deactivated.

A complementarity constraint is required for the T-P-x formulation. First, two expressions are defined below where
𝑃− is pressure under saturation pressure and 𝑃+ is pressure over saturation pressure. The max function is provided
by an IDAES utility function which provides a smooth max expression.

𝑃− = max(0, 𝑃sat − 𝑃)

𝑃+ = max(0, 𝑃 − 𝑃sat)

With the pressure over and pressure under saturated pressure expressions a complementarity constraint can be written.
If the pressure under saturation is more than zero, only vapor exists. If the pressure over saturation is greater than zero
only a liquid exists. If both are about zero two phases can exist. The saturation pressure function maxes out at the
critical pressure and any temperature above the critical temperature will yield a saturation pressure that is the critical
pressure, so supercritical fluids will be classified as liquids as the convention for this property package.

0 = 𝑥𝑃+ − (1 − 𝑥)𝑃−

Assuming the vapor fraction (𝑥) is positive and noting that only one of 𝑃+ and 𝑃− can be nonzero (approximately),
the complementarity equation above requires 𝑥 to be 0 when 𝑃+ is not zero (liquid) or 𝑥 to be 1 when 𝑃− is not zero
(vapor). When both 𝑃+ and 𝑃− are about 0, the complementarity constraint says nothing about x, but it does provide
another constraint, that 𝑃 = 𝑃sat. When two phases are present 𝑥 can be found by the unit model energy balance and
the temperature will be 𝑇sat.

An alternative approach is sometimes useful. If you know for certain that you have two phases, the complementarity
constraint can be deactivated and a 𝑃 = 𝑃sat or 𝑇 = 𝑇sat constraint can be added.

Using the T-P-x formulation requires better initial guesses than the P-H form. It is not strictly necessary but it is best
to try to get an initial guess that is in the correct phase region for the expected result model.

120 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Expressions

Unless otherwise noted, the property expressions are common to both the T-P-x and P-H formulations. For phase
specific properties, valid phase indexes are "Liq" and "Vap"

Expression Description
mw Molecular weight (kg/mol)
tau Critical temperature divided by temperature (unitless)
temperature Temperature (K) if PH form
temperature_red Reduced temperature, temperature divided by critical temperature (unitless)
temperature_sat Saturation temperature (K)
tau_sat Critical temperature divided by saturation temperature (unitless)
pressure_sat Saturation pressure (Pa)
dens_mass_phase[phase] Density phase (kg/m3)
dens_phase_red[phase] Phase reduced density (𝛿), mass density divided by critical density (unitless)
dens_mass Total mixed phase mass density (kg/m3)
dens_mol Total mixed phase mole density (kg/m3)
flow_vol Total volumetric flow rate (m3/s)
enth_mass Mass enthalpy (J/kg)
enth_mol_sat_phase[phase] Saturation enthalpy of phase, enthalpy at P and Tsat (J/mol)
enth_mol Molar enthalpy (J/mol) if TPx form
enth_mol_phase[phase] Molar enthalpy of phase (J/mol)
energy_internal_mol molar internal energy (J/mol)
energy_internal_mol_phase[phase] Molar internal energy of phase (J/mol)
entr_mol_phase Molar entropy of phase (J/mol/K)
entr_mol Total mixed phase entropy (J/mol/K)
cp_mol_phase[phase] Constant pressure molar heat capacity of phase (J/mol/K)
cv_mol_phase[phase] Constant pressure volume heat capacity of phase (J/mol/K)
cp_mol Total mixed phase constant pressure heat capacity (J/mol/K)
cv_mol Total mixed phase constant volume heat capacity (J/mol/K)
heat_capacity_ratio cp_mol/cv_mol
speed_sound_phase[phase] Speed of sound in phase (m/s)
dens_mol_phase[phase] Mole density of phase (mol/m3)
therm_cond_phase[phase] Thermal conductivity of phase (W/K/m)
vapor_frac Vapor fraction, if PH form
visc_d_phase[phase] Viscosity of phase (Pa/s)
visc_k_phase[phase] Kinimatic viscosity of phase (m2/s)
phase_frac[phase] Phase fraction
flow_mol_comp["H2O"] Same as total flow since only water (mol/s)
P_under_sat Pressure under saturation pressure (kPA)
P_over_sat Pressure over saturation pressure (kPA)

ExternalFunctions

This provides a list of ExternalFuctions available in the wrapper. These functions do not use SI units and are not
usually called directly. If these functions are needed, they should be used with caution. Some of these are used in the
property expressions, some are just provided to allow easier testing with a Python framework.

All of these functions provide first and second derivative and are generally suited to optimization (including the ones
that return derivatives of Helmholtz free energy). Some functions may have non-smoothness at phase transitions. The
delta_vap and delta_liq functions return the same values in the critical region. They will also return real values

4.9. IDAES Model Libraries 121

IDAES Documentation, Release 1.5.1.rc0

when a phase doesn’t exist, but those values do not necessarily have physical meaning.

There are a few variables that are common to a lot of these functions, so they are summarized here 𝜏 is the critical
temperature divided by the temperature 𝑇𝑐

𝑇 , 𝛿 is density divided by the critical density 𝜌
𝜌𝑐

, and 𝜑 is Helmholtz free

energy divided by the ideal gas constant and temperature 𝑓
𝑅𝑇 .

Pyomo Function C Function Returns Arguments
func_p p pressure (kPa) 𝛿, 𝜏
func_u u internal energy (kJ/kg) 𝛿, 𝜏
func_s s entropy (kJ/K/kg) 𝛿, 𝜏
func_h h enthalpy (kJ/kg) 𝛿, 𝜏
func_hvpt hvpt vapor enthalpy (kJ/kg) P (kPa), 𝜏
func_hlpt hlpt liquid enthalpy (kJ/kg) P (kPa), 𝜏
func_tau tau 𝜏 (unitless) h (kJ/kg), P (kPa)
func_vf vf vapor fraction (unitless) h (kJ/kg), P (kPa)
func_g g Gibbs free energy (kJ/kg) 𝛿, 𝜏
func_f f Helmholtz free energy (kJ/kg) 𝛿, 𝜏
func_cv cv const. volume heat capacity (kJ/K/kg) 𝛿, 𝜏
func_cp cp const. pressure heat capacity (kJ/K/kg) 𝛿, 𝜏
func_w w speed of sound (m/s) 𝛿, 𝜏
func_delta_liq delta_liq liquid 𝛿 (unitless) P (kPa), 𝜏
func_delta_vap delta_vap vapor 𝛿 (unitless) P (kPa), 𝜏
func_delta_sat_l delta_sat_l sat. liquid 𝛿 (unitless) 𝜏
func_delta_sat_v delta_sat_v sat. vapor 𝛿 (unitless) 𝜏
func_p_sat p_sat sat. pressure (kPa) 𝜏
func_tau_sat tau_sat sat. 𝜏 (unitless) P (kPa)
func_phi0 phi0 𝜑 idaes gas part (unitless) 𝛿, 𝜏

func_phi0_delta phi0_delta 𝜕𝜑0

𝜕𝛿 𝛿

func_phi0_delta2 phi0_delta2 𝜕2𝜑0

𝜕𝛿2 𝛿

func_phi0_tau phi0_tau 𝜕𝜑0

𝜕𝜏 𝜏

func_phi0_tau2 phi0_tau2 𝜕2𝜑0

𝜕𝜏2 𝜏
func_phir phir 𝜑 real gas part (unitless) 𝛿, 𝜏

func_phir_delta phir_delta 𝜕𝜑𝑟

𝜕𝛿 𝛿, 𝜏

func_phir_delta2 phir_delta2 𝜕2𝜑𝑟

𝜕𝛿2 𝛿, 𝜏

func_phir_tau phir_tau 𝜕𝜑𝑟

𝜕𝜏 𝛿, 𝜏

func_phir_tau2 phir_tau2 𝜕2𝜑𝑟

𝜕𝜏2 𝛿, 𝜏

func_phir_delta_tau phir_delta_tau 𝜕2𝜑𝑟

𝜕𝛿𝜕𝜏 𝛿, 𝜏

Initialization

The IAPWS-95 property functions do provide initialization functions for general compatibility with the IDAES frame-
work, but as long as the state variables are specified to some reasonable value, initialization is not required. All required
solves are handled by external functions.

References

International Association for the Properties of Water and Steam (2016). IAPWS R6-95 (2016), “Revised Release
on the IAPWS Formulation 1995 for the Properties of Ordinary Water Substance for General Scientific Use,” URL:
http://iapws.org/relguide/IAPWS95-2016.pdf

122 Chapter 4. Contents

http://iapws.org/relguide/IAPWS95-2016.pdf

IDAES Documentation, Release 1.5.1.rc0

Wagner, W., A. Pruss (2002). “The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water
Substance for General and Scientific Use.” J. Phys. Chem. Ref. Data, 31, 387-535.

Wagner, W. et al. (2000). “The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam,” ASME J. Eng. Gas Turbines and Power, 122, 150-182.

Akasaka, R. (2008). “A Reliable and Useful Method to Determine the Saturation State from Helmholtz Energy Equa-
tions of State.” Journal of Thermal Science and Technology, 3(3), 442-451.

International Association for the Properties of Water and Steam (2011). IAPWS R15-11, “Release on the IAPWS For-
mulation 2011 for the Thermal Conductivity of Ordinary Water Substance,” URL: http://iapws.org/relguide/ThCond.
pdf.

International Association for the Properties of Water and Steam (2008). IAPWS R12-08, “Release on the IAPWS
Formulation 2008 for the Viscosity of Ordinary Water Substance,” URL: http://iapws.org/relguide/visc.pdf.

Convenience Functions

idaes.generic_models.properties.iapws95.htpx(T, P=None, x=None)
Convenience function to calculate steam enthalpy from temperature and either pressure or vapor fraction. This
function can be used for inlet streams and initialization where temperature is known instead of enthalpy.

User must provided values for one (and only one) of arguments P and x.

Parameters

• T – Temperature [K] (between 200 and 3000)

• P – Pressure [Pa] (between 1 and 1e9), None if saturated steam

• x – Vapor fraction [mol vapor/mol total] (between 0 and 1), None if

• or subcooled (superheated) –

Returns Total molar enthalpy [J/mol].

Iapws95StateBlock Class

class idaes.generic_models.properties.iapws95.Iapws95StateBlock(*args,
**kwargs)

This is some placeholder doc.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

parameters A reference to an instance of the Property Parameter Block associated with
this property package.

defined_state Flag indicating whether the state should be considered fully defined, and
thus whether constraints such as sum of mass/mole fractions should be included, de-
fault - False. Valid values: { True - state variables will be fully defined, False - state
variables will not be fully defined.}

4.9. IDAES Model Libraries 123

http://iapws.org/relguide/ThCond.pdf
http://iapws.org/relguide/ThCond.pdf
http://iapws.org/relguide/visc.pdf
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_phase_equilibrium Flag indicating whether phase equilibrium constraints should
be constructed in this state block, default - True. Valid values: { True - StateBlock
should calculate phase equilibrium, False - StateBlock should not calculate phase equi-
librium.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Iapws95StateBlock) New instance

Iapws95StateBlockData Class

class idaes.generic_models.properties.iapws95.Iapws95StateBlockData(component)
This is a property package for calculating thermophysical properties of water.

build(*args)
Callable method for Block construction

Iapws95ParameterBlock Class

class idaes.generic_models.properties.iapws95.Iapws95ParameterBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

default_arguments Default arguments to use with Property Package

phase_presentation Set the way phases are presented to models. The MIX option ap-
pears to the framework to be a mixed phase containing liquid and/or vapor. The mixed
option can simplify calculations at the unit model level since it can be treated as a
single phase, but unit models such as flash vessels will not be able to treat the phases
independently. The LG option presents as two separate phases to the framework. The
L or G options can be used if it is known for sure that only one phase is present. de-
fault - PhaseType.MIX Valid values: { PhaseType.MIX - Present a mixed phase with
liquid and/or vapor, PhaseType.LG - Present a liquid and vapor phase, PhaseType.L -
Assume only liquid can be present, PhaseType.G - Assume only vapor can be present}

state_vars The set of state variables to use. Depending on the use, one state variable set
or another may be better computationally. Usually pressure and enthalpy are the best
choice because they are well behaved during a phase change. default - StateVars.PH
Valid values: { StateVars.PH - Pressure-Enthalpy, StateVars.TPX - Temperature-
Pressure-Quality}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

124 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Iapws95ParameterBlock) New instance

Iapws95ParameterBlockData Class

class idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData(component)

build()
General build method for PropertyParameterBlocks. Inheriting models should call super().build.

Parameters None –

Returns None

Generic Property Package Framework

Contents

Defining Property Packages

Contents

• Defining Property Packages

– Introduction

– Configure

– Build

– Examples

Introduction

In order to define a property package using the IDAES Generic Property Package Framework, users need to define
a Property Parameter Block in order to describe their material and its properties. The class should inherit from the
IDAES GenericParameterData class and contain two methods;

1. configure, which defines the users selection of sub-models, and

2. build, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Property Parameter Block is shown below.

@declare_process_block_class("UserParameterBlock")
class UserParameterData(GenericParameterData):

def configure(self):
Set configuration options

def build(self):
Define parameters

4.9. IDAES Model Libraries 125

IDAES Documentation, Release 1.5.1.rc0

Users should populate the configure and build methods as discussed below.

Configure

The ‘configure‘ method is used to select the sub-models and methods to be used when constructing the StateBlocks
associated with this property package within a process model. These options define the behavior of the property
package, and allow users to customize the property package to their needs.

Configuration options are set by assigning an appropriate method to self.configure.option_name within the configure
method. A full list of the available property options is given here.

Build

The build method is used to define and specify values for all the parameters associated with the property calculations.
All property calculations depend on a set of empirically derived parameters to describe the behavior of the material.
The list of parameters which need to be defined will depend upon the configuration options chosen, and the documen-
tation for each method lists the expected parameters which need to be defined in this section. Users need only define
those parameters required by the options they have chosen.

Property parameters can be defined as either Pyomo Params or Vars depending upon the application. Whilst Params
would seem to be the logical choice, be aware that for parameter estimation problems, the parameters being estimated
need to be defined as Vars so that the solver is free to vary them.

Note: If using Params, users should consider whether these should be mutable or not - Params that are not mutable
have their value defined upon creation and this cannot be changed later.

If using Vars, remember that you will need to fix the value unless you are trying to estimate the value of that parameter.

Property parameters need to have the correct set of indices and follow the naming convention laid out in the standard
naming conventions and described in the documentation for each property method. Property parameters are created
using Pyomo code as shown below:

Param

self.parameter = Param([indices], initialize=value(s), mutable=True/False)

Var

self.parameter = Var([indices], initialize=value(s))
self.parameter.fix()

Examples

Examples of using the IDAES Generic Property Package Framework can be found in the
idaes/property_models/core/examples folder.

126 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Configuration Options

Contents

• Configuration Options

– Mandatory Configuration Options

– Additional Configuration Options

– Pure Component Property Options

The following configuration options are available in the IDAES Generic Property Package Framework.

Mandatory Configuration Options

Users must provide a selection for the following options in all property packages.

Component List

Argument: config.component_list

The list of chemical species of interest in the material.

Phase List

Argument: config.phase_list

The list of thermodynamic phases that should be included in the model. Phases may or may not interact via phase
equilibrium.

State Definition

Argument: config.state_definition

An IDAES state definition module which creates the desired set of state variables along with any necessary auxiliary
variables.

Equation of State

Argument: config.equation_of_state

A dict indicating an equation of state to use for each phase in the property package. The expected form is:

config.equation_of_state = {'phase_1': eos_1, 'phase_2': eos_2, ...}

Each phase in config.phase_list must be assigned an equation of state, which should take the form of an IDAES
equation of state module which defines methods for calculating all thermophysical and transport properties.

4.9. IDAES Model Libraries 127

IDAES Documentation, Release 1.5.1.rc0

Additional Configuration Options

The following configuration options are not necessary, but are useful or required in some circumstances.

Phase Component Dictionary

Argument: config.phase_component_dict

The option allows users to specify different component lists for each phase in their system. This is useful in circum-
stances where certain species will only ever appear in a given phase (e.g. a non-condensible gas). The expected form
of this argument is:

config.phase_component_dict = {'phase_1': [list of components in phase 1], 'phase_2':
→˓[list of components in phase 2], ...}

Component lists for each phase must be a subset of config.component_list, and all components in config.component_list
should appear in at least one phase.

State Bounds

Argument: config.state_bounds

The option allows users to specify custom bounds on the state variables in their property package during construction.
This is important for bounding the resulting problem and ensuring solutions do not stray outside the regions over
which property parameters were fitted. The expected form of this argument is:

config.state_bounds = {'state_var_1': (lower, upper), 'state_var_2': (lower, upper), .
→˓..}

Users should consult the documentation for the state definition they are using to determine the state variables which
can be bounded.

Phase Equilibrium Formulation

Argument: config.phase_equilibrium_formulation

The option allows users to specify the formulation to use for expressing phase equilibrium in their property package.
This argument should be an IDAES phase equilibrium module which creates constraint describing the equilibria be-
tween phases. If the user wishes to include phase equilibria in their property package, both this argument and the
phase_equilibrium_dict argument must be provided.

Phase Equilibrium Dictionary

Argument: config.phase_equilibrium_dict

The option allows users to specify which components in their system are in equilibrium between different phases. The
expected form of this argument is:

config.phase_equilibrium_dict = {id1: [component, (phase_1, phase_2)], id2:
→˓[component, (phase_1, phase_2)], ...}

128 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Here the id is used to identify each phase equilibrium reaction, component identifies the component in equilibrium
and phase1 and phase2 identify the two phases over which this component should be in equilibrium. For cases where
a given component is in equilibrium across more than 2 phases, multiple entries for the component are required
identifying each pair of phases which should be in equilibrium (this is the reason for the id to identify reactions rather
than just component name).

If the user wishes to include phase equilibria in their property package, both this argument and the
phase_equilibrium_formulation argument must be provided.

Bubble Temperature

Argument: config.temperature_bubble

This argument allows users to specify a method for calculating the bubble temperature of the mixture in their property
package.

Dew Temperature

Argument: config.temperature_dew

This argument allows users to specify a method for calculating the dew temperature of the mixture in their property
package.

Bubble Pressure

Argument: config.pressure_bubble

This argument allows users to specify a method for calculating the bubble pressure of the mixture in their property
package.

Dew Pressure

Argument: config.pressure_dew

This argument allows users to specify a method for calculating the dew pressure of the mixture in their property
package.

Pure Component Property Options

The remaining options allow users to select methods to use for calculating each pure component property, and users
must provide a selection for every method that will be used within their process flowsheet. A full list of supported
pure component properties can be found here.

Defining State Variables

An important part of defining a set of property calculations is choosing the set of variables which will describe the
state of the material. The set of state variables needs to include information on the extensive flow, composition and
thermodynamic state of the material. However, there are many ways in which this information can be described, and
the best choice of state variables depends on many factors.

4.9. IDAES Model Libraries 129

IDAES Documentation, Release 1.5.1.rc0

Within the IDAES Generic Property Package Framework, the definition of state variables is done using sub-modules
which create the necessary variables supporting information for the property package. A state definition sub-module
may define any set of state variables the user feel appropriate, but must define the following components as either state
variables or functions of the state variables:

• temperature

• pressure

• mole_frac_phase_comp

• phase_frac

The IDAES Generic Property Package Framework has a library of prebuilt state definition sub-modules for users to
use which are listed below.

State Definition Libraries

FTPx

Contents

• FTPx

– State Definition

– Application

– Bounds

– Supporting Variables and Constraints

– Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (𝐹 : flow_mol), overall (mixture) mole fractions (𝑥𝑗 :
mole_frac_comp), temperature (𝑇 : temperature) and pressure (𝑃 : pressure). As such, there are 3 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 state
variables, however only 2 +𝑁𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 are independent as the mole fraction must sum to 1.

Application

This is the simplest approach to fully defining the state of a material, and one of the most easily accessible to the user
as it is defined in terms of variables that are easily measured and understood. However, this approach has a number of
limitations which the user should be aware of:

• If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each
unit, as the state definition does not contain information on multiphase flow. This increases the number of
complex equilibrium calculations that must be performed, which could be avoided by using a different state
definition.

• State becomes ill-defined when only one component is present and multiphase behavior can occur, as tempera-
ture and pressure are insufficient to fully define the thermodynamic state under these conditions.

130 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Bounds

The FTPx module supports bounding of the following variables through the state_bounds configuration argument:

• flow_mol

• temperature

• pressure

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is
implicitly defined by the sum of mole fractions constraint.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

• flow_mol_phase (𝐹𝑚𝑜𝑙,𝑝)

• mole_frac_phase_comp (𝑥𝑝,𝑗)

• phase_frac (𝜓𝑝)

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.∑︁
𝑗

𝑥𝑗 = 1

Note: The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the
inlet stream.

If the property package supports only one phase:

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝑥𝑝,𝑗 = 𝑥𝑗 for all 𝑗

𝜓𝑝 = 1

If the property package supports only two phases, the Rachford-Rice formulation is used:∑︁
𝑝

𝐹𝑚𝑜𝑙,𝑝 = 𝐹𝑚𝑜𝑙

𝐹𝑚𝑜𝑙 × 𝑥𝑗 = 𝑠𝑢𝑚𝑝𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗∑︁
𝑗

𝑥phase 1,𝑗 −
∑︁
𝑗

𝑥phase 2,𝑗 = 0

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

4.9. IDAES Model Libraries 131

IDAES Documentation, Release 1.5.1.rc0

If the property package supports more than two phases, the following general formulation is used:

𝐹𝑚𝑜𝑙 × 𝑥𝑗 = 𝑠𝑢𝑚𝑝𝐹𝑚𝑜𝑙,𝑝 × 𝑥𝑝,𝑗 for all 𝑗

𝑠𝑢𝑚𝑗𝑥𝑝,𝑗 = 1 for all 𝑝

𝜓𝑝 × 𝐹𝑚𝑜𝑙 = 𝐹𝑚𝑜𝑙,𝑝 for all 𝑝

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

• Material balances: total component balances

• Material flow basis: molar flow

• Energy balances: total enthalpy

Equations of State

Equations of State (or equivalent methods) describe the relationship between different thermophysical properties and
ensure that the behavior of these are thermodynamically consistent. A wide range of equations of state have been
develop for different applications and levels of rigor. Equations of state generally start with ideal pure component
properties, and provide a set of relationships which describe how these are combined and deviate from ideality in real
mixtures. Equation of state packages within the IDAES Generic Property Package Framework need to implement
equations (either Constraints or Expressions) for all of the mixture properties of interest to the user relating these to
the pure component properties and state variables.

The IDAES Generic Property Package Framework provides a number of prebuilt equation of state packages for users
to use, which are listed below.

Equation of State Libraries

Ideal Gases and Liquids

Contents

• Ideal Gases and Liquids

– Introduction

– Mass Density by Phase

– Molar Density by Phase

– Molar Enthalpy by Phase

– Component Molar Enthalpy by Phase

– Molar Entropy by Phase

– Component Molar Entropy by Phase

– Component Fugacity by Phase

– Component Fugacity Coefficient by Phase

132 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

– Molar Gibbs Energy by Phase

– Component Gibbs Energy by Phase

Introduction

Ideal behavior represents the simplest possible equation of state that ensures thermodynamic consistency between
different properties.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where 𝑝 indicates a given phase:

𝜌𝑚𝑎𝑠𝑠,𝑝 = 𝜌𝑚𝑜𝑙,𝑝 ×𝑀𝑊𝑝

where 𝑀𝑊𝑝 is the mixture molecular weight of phase 𝑝.

Molar Density by Phase

For the vapor phase, the Ideal Gas Equation is used to calculate the molar density;

𝜌𝑚𝑜𝑙,𝑉 𝑎𝑝 =
𝑃

𝑅𝑇

whilst for the liquid phase the molar density is the weighted sum of the pure component liquid densities:

𝜌𝑚𝑜𝑙,𝐿𝑖𝑞 =
∑︁
𝑗

𝑥𝐿𝑖𝑞,𝑗 × 𝜌𝐿𝑖𝑞,𝑗

where 𝑥𝐿𝑖𝑞,𝑗 is the mole fraction of component 𝑗 in the liquid phase.

Molar Enthalpy by Phase

For both liquid and vapor phases, the molar enthalpy is calculated as the weighted sum of the component molar
enthalpies for the given phase:

ℎ𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × ℎ𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the
property package configuration arguments.

4.9. IDAES Model Libraries 133

IDAES Documentation, Release 1.5.1.rc0

Molar Entropy by Phase

For both liquid and vapor phases, the molar entropy is calculated as the weighted sum of the component molar entropies
for the given phase:

𝑠𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × 𝑠𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component method provided by the users in the
property package configuration arguments.

Component Fugacity by Phase

For the vapor phase, ideal behavior is assumed:

Φ𝑉 𝑎𝑝,𝑗 = 𝑥𝑉 𝑎𝑝,𝑗 × 𝑃

For the liquid phase, Raoult’s Law is used:

Φ𝐿𝑖𝑞,𝑗 = 𝑥𝑉 𝑎𝑝,𝑗 × 𝑃𝑠𝑎𝑡,𝑗

Component Fugacity Coefficient by Phase

Ideal behavior is assumed, so all 𝜑𝑝,𝑗 = 1 for all components and phases.

Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar
Gibbs energies for the given phase:

𝑔𝑚𝑜𝑙,𝑝 =
∑︁
𝑗

𝑥𝑝,𝑗 × 𝑔𝑚𝑜𝑙,𝑝,𝑗

where 𝑥𝑝,𝑗 is the mole fraction of component 𝑗 in the phase 𝑝.

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

𝑔𝑚𝑜𝑙,𝑝,𝑗 = ℎ𝑚𝑜𝑙,𝑝,𝑗 − 𝑠𝑚𝑜𝑙,𝑝,𝑗 × 𝑇

134 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Defining Pure Component Properties

Most methods for calculating the thermophysical properties of materials start from estimating the properties of each
component in its pure form, before applying mixing rules to determine the properties of the mixture. Pure component
properties generally take the form of empirical correlations as a function of material state (generally temperature) de-
rived from experimental data. Data and correlations for many components are readily available in literature. However
due to the empirical nature of these correlations and the wide range of data available, different sources use different
forms for their correlations.

Within the IDAES Generic Property Package Framework, pure component property correlations are provided in the
form of Python methods which return a Pyomo expression relating the pure component property to the material state
(using the standard naming conventions. IDAES provides a number of libraries containing common forms for these
correlations, and a list of the libraries currently supported by IDAES is given below.

A list of all the pure component properties currently supported by the IDAES Generic Property Package Framework
can be found after the list of pure component libraries.

Pure Component Libraries

NIST Webbook

Contents

• NIST Webbook

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entrorpy

– Saturation (Vapor) Pressure

Source

Pure component properties as used by the NIST WebBook

https://webbook.nist.gov/chemistry/ Retrieved: September 13th, 2019

Ideal Gas Molar Heat Capacity (Constant Pressure)

NIST uses the Shomate equation for the ideal gas molar heat capacity, which is shown below:

𝑐p ig,𝑗 = 𝐴+𝐵 × 𝑡+ 𝐶 × 𝑡2 +𝐷 × 𝑡3 +
𝐸

𝑡2

where 𝑡 = 𝑇
1000 .

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷,𝐸 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’, ‘D’, ‘E’]

4.9. IDAES Model Libraries 135

https://webbook.nist.gov/chemistry/

IDAES Documentation, Release 1.5.1.rc0

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig,𝑗 − ℎig ref,𝑗

1000
= 𝐴× (𝑡− 𝑡𝑟𝑒𝑓) +

𝐵

2
× (𝑡2 − 𝑡2𝑟𝑒𝑓) +

𝐶

3
× (𝑡3 − 𝑡3𝑟𝑒𝑓) +

𝐷

4
× (𝑡4 − 𝑡4𝑟𝑒𝑓) + 𝐸 × (

1

𝑡
− 1

𝑡𝑟𝑒𝑓
) + 𝐹 −𝐻

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹,𝐻 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’, ‘D’, ‘F’,

‘H’]
𝑇𝑟𝑒𝑓 temperature_ref None Temperature at reference

state

Note: This correlation uses the same parameters as for the ideal gas heat capacity with additional parameters F and
H. These parameters account for the enthalpy at the reference state defined by NIST. Users wanting to use a different
reference state will need to update H.

Ideal Gas Molar Entrorpy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig,𝑗 = 𝐴× 𝑙𝑛(𝑡) +𝐵 × 𝑡+
𝐶

2
× 𝑡2 +

𝐷

3
× 𝑡3 +

𝐸

2 × 𝑡2
+𝐺

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷,𝐸,𝐺 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘G’]

Note: This correlation uses the same parameters as for the ideal gas heat capacity with additional parameter G, which
accounts for the standard entropy at the reference state defined by NIST. Users wanting to use a different reference
state will need to update G.

Saturation (Vapor) Pressure

NIST uses the Antoine equation to calculate the vapor pressure of a component, which is given below:

𝑙𝑜𝑔10(𝑃𝑠𝑎𝑡,𝑗) = 𝐴− 𝐵

𝑇 + 𝐶

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶 pressure_sat_comp_coeff component, [‘A’, ‘B’, ‘C’]

136 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Note: The Antoine equation is generally written with saturation pressure expressed in bars. The units of the correla-
tion can be converted to Pascals by adding 5 to 𝐴.

Perry’s Chemical Engineers’ Handbook

Contents

• Perry’s Chemical Engineers’ Handbook

– Source

– Ideal Liquid Molar Heat Capacity (Constant Pressure)

– Ideal Liquid Molar Enthalpy

– Ideal Liquid Molar Entropy

– Liquid Molar Density

Source

Methods for calculating pure component properties from:

Perry’s Chemical Engineers’ Handbook, 7th Edition Perry, Green, Maloney, 1997, McGraw-Hill

Ideal Liquid Molar Heat Capacity (Constant Pressure)

Perry’s Handbook uses the following correlation for ideal liquid molar heat capacity:

𝑐p liq,𝑗

1000
= 𝐶1 + 𝐶2 × 𝑇 + 𝐶3 × 𝑇 2 + 𝐶4 × 𝑇 3 + 𝐶5 × 𝑇 4

Parameters

Symbol Parameter Name Indices Description
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 cp_mol_liq_comp_coeff component, [1, 2, 3, 4, 5]

Ideal Liquid Molar Enthalpy

The correlation for the ideal liquid molar enthalpy is derived from the correlation for the molar heat capacity and is
given below:

ℎliq,𝑗 − ℎliq ref,𝑗

1000
= 𝐶1 × (𝑇 − 𝑇𝑟𝑒𝑓) +

𝐶2

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓) +
𝐶3

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓) +
𝐶4

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓) +
𝐶5

5
× (𝑇 5 − 𝑇 5

𝑟𝑒𝑓) + ∆ℎform, Liq,𝑗

Parameters

4.9. IDAES Model Libraries 137

IDAES Documentation, Release 1.5.1.rc0

Symbol Parameter Name Indices Description
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 cp_mol_liq_comp_coeff component, [1, 2, 3, 4,

5]
∆ℎform enth_mol_form_phase_comp_refphase, component Molar heat of formation at reference

state
𝑇𝑟𝑒𝑓 temperature_ref None Temperature at reference state

Note: This correlation uses the same parameters as for the ideal gas heat capacity.

Ideal Liquid Molar Entropy

The correlation for the ideal liquid molar entropy is derived from the correlation for the molar heat capacity and is
given below:

𝑠liq,𝑗 = 𝐶1 × 𝑙𝑛(𝑇) + 𝐶2 × 𝑇 +
𝐶3

2
× 𝑇 2 +

𝐶4

3
× 𝑇 3 +

𝐶5

4
× 𝑇 4 + 𝑠ref, Vap,𝑗

Parameters

Symbol Parameter Name Indices Description
𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5 cp_mol_liq_comp_coeff component, [1, 2, 3, 4,

5]
𝑠ref entr_mol_phase_comp_ref phase, component Standard molar entropy at reference

state

Note: This correlation uses the same parameters as for the ideal gas heat capacity.

Liquid Molar Density

Perry’s Handbook uses the following correlation for liquid molar density:

𝜌𝑙𝑖𝑞,𝑗 =
𝐶1

𝐶
1+(1− 𝑇

𝐶3
)𝐶4

2

Parameters

Symbol Parameter Name Indices Description
𝐶1, 𝐶2, 𝐶3, 𝐶4 dens_mol_comp_liq_coeff component, [1, 2, 3, 4]

Note: Currently, only the most common correlation form from Perry’s Handbook is implemented. Some components
use different forms which are not yet supported.

138 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Properties of Gases and Liquids

Contents

• Properties of Gases and Liquids

– Source

– Ideal Gas Molar Heat Capacity (Constant Pressure)

– Ideal Gas Molar Enthalpy

– Ideal Gas Molar Entropy

– Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 4th Edition Reid, Prausnitz and Polling, 1987, McGraw-Hill

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

𝑐p ig,𝑗 = 𝐴+𝐵 × 𝑇 + 𝐶 × 𝑇 2 +𝐷 × 𝑇 3

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’, ‘D’]

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given
below:

ℎig,𝑗 − ℎig ref,𝑗 = 𝐴× (𝑇 − 𝑇𝑟𝑒𝑓) +
𝐵

2
× (𝑇 2 − 𝑇 2

𝑟𝑒𝑓) +
𝐶

3
× (𝑇 3 − 𝑇 3

𝑟𝑒𝑓) +
𝐷

4
× (𝑇 4 − 𝑇 4

𝑟𝑒𝑓) + ∆ℎform, Vap,𝑗

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’,

‘D’]
∆ℎform enth_mol_form_phase_comp_refphase, component Molar heat of formation at reference

state
𝑇𝑟𝑒𝑓 temperature_ref None Temperature at reference state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation.

4.9. IDAES Model Libraries 139

IDAES Documentation, Release 1.5.1.rc0

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given
below:

𝑠ig,𝑗 = 𝐴× 𝑙𝑛(𝑇) +𝐵 × 𝑇 +
𝐶

2
× 𝑇 2 +

𝐷

3
× 𝑇 3 + 𝑠ref, Vap,𝑗

Parameters

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷 cp_mol_ig_comp_coeff component, [‘A’, ‘B’, ‘C’,

‘D’]
𝑠ref entr_mol_phase_comp_ref phase, component Standard molar entropy at reference

state

Note: This correlation uses the same parameters as the ideal gas heat capacity correlation .

Saturation (Vapor) Pressure

Properties of Gases and Liquids uses the following correlation to calculate the vapor pressure of a component:

𝑙𝑛(
𝑃𝑠𝑎𝑡,𝑗

𝑃𝑐𝑟𝑖𝑡
) × (1 − 𝑥) = 𝐴× 𝑥+𝐵 × 𝑥1.5 + 𝐶 × 𝑥3 +𝐷 × 𝑥6

where 𝑥 = 1 − 𝑇
𝑇𝑐𝑟𝑖𝑡

.

Symbol Parameter Name Indices Description
𝐴,𝐵,𝐶,𝐷 pressure_sat_comp_coeff component, [‘A’, ‘B’, ‘C’, ‘D’]
𝑃𝑐𝑟𝑖𝑡 pressure_crit_comp None Critical pressure
𝑇𝑐𝑟𝑖𝑡 temperature_crit_comp None Critical temperature

Note: This correlation is only valid at temperatures below the critical temperature. Above this point, there is no real
solution to the equation.

Supported Properties

The following pure component properties are supported by IDAES Generic Property Package Framework.

Property Method Arguments
Ideal Gas Molar Heat Capacity cp_mol_ig_comp component, temperature
Ideal Gas Molar Enthalpy enth_mol_ig_comp component, temperature
Ideal Gas Molar Entropy entr_mol_ig_comp component, temperature
Ideal Liquid Molar Heat Capacity cp_mol_liq_comp component, temperature
Ideal Liquid Molar Enthalpy enth_mol_liq_comp component, temperature
Ideal Liquid Molar Entropy entr_mol_liq_comp component, temperature
Liquid Molar Density dens_mol_liq_comp component, temperature
Saturation Pressure pressure_sat_comp component, temperature

140 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Bubble and Dew Point Methods

Contents

• Bubble and Dew Point Methods

– Introduction

– Ideal Assumptions

* Ideal Bubble Pressure

* Ideal Bubble Temperature

* Ideal Dew Pressure

* Ideal Dew Temperature

Introduction

Bubble and dew points are often of interest to process engineers for designing process equipment, and appear in some
calculations of other thermodynamic properties. Whilst calculation of the saturation pressure for single components is
relatively simple, calculating the bubble and dew points of mixtures is more challenging due to the non-linear nature
of the equations.

The IDAES Generic Property Package Framework has a number of prebuilt methods for calculating the bubble and
dew points of mixtures which are listed below.

Ideal Assumptions

In the case where ideal behavior can be assumed, i.e. Raoult’s Law holds, the bubble and dew points can be calculated
directly from the saturation pressure using the following equations.

Ideal Bubble Pressure

This method is implemented as bubble_press_ideal.

𝑃𝑏𝑢𝑏 =
∑︁
𝑗

𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇)

𝑥𝑗(𝑃𝑏𝑢𝑏) × 𝑃𝑏𝑢𝑏 = 𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇)

where 𝑃𝑏𝑢𝑏 is the bubble pressure of the mixture, 𝑃𝑠𝑎𝑡,𝑗(𝑇) is the saturation pressure of component 𝑗 at the system
temperature, 𝑇 , 𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑃𝑏𝑢𝑏) is the mole fraction of the vapor phase at the
bubble pressure.

Ideal Bubble Temperature

This method is implemented as bubble_temp_ideal.∑︁
𝑗

(𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏)) − 𝑃 = 0

4.9. IDAES Model Libraries 141

IDAES Documentation, Release 1.5.1.rc0

𝑥𝑗(𝑇𝑏𝑢𝑏) × 𝑃 = 𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏)

where 𝑃 is the system pressure, 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑏𝑢𝑏) is the saturation pressure of component 𝑗 at the bubble temperature, 𝑇𝑏𝑢𝑏,
𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑇𝑏𝑢𝑏) is the mole fraction of the vapor phase at the bubble temperature.

Ideal Dew Pressure

This method is implemented as dew_press_ideal.

0 = 1 − 𝑃𝑑𝑒𝑤 ×
∑︁
𝑗

𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇)

𝑥𝑗(𝑃𝑑𝑒𝑤) × 𝑃𝑠𝑎𝑡,𝑗(𝑇) = 𝑥𝑗 × 𝑃𝑑𝑒𝑤

where 𝑃𝑑𝑒𝑤 is the dew pressure of the mixture, 𝑃𝑠𝑎𝑡,𝑗(𝑇) is the saturation pressure of component 𝑗 at the system
temperature, 𝑇 , 𝑥𝑗 is the overall mixture mole fraction and 𝑥𝑗(𝑃𝑑𝑒𝑤) is the mole fraction of the liquid phase at the
dew pressure.

Ideal Dew Temperature

This method is implemented as dew_temp_ideal.

𝑃 ×
∑︁
𝑗

(𝑥𝑗 × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤)) − 1 = 0

𝑥𝑗(𝑇𝑑𝑒𝑤) × 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤) = 𝑥𝑗 × 𝑃

where 𝑃 is the system pressure, 𝑃𝑠𝑎𝑡,𝑗(𝑇𝑑𝑒𝑤) is the saturation pressure of component 𝑗 at the dew temperature, 𝑇𝑏𝑢𝑏,
𝑥𝑗 is the overall mixture mole fraction and 𝑦𝑗(𝑇𝑑𝑒𝑤) is the mole fraction of the liquid phase at the dew temperature.

Phase Equilibrium Formulations

Phase equilibrium and separation is a key part of almost all chemical processes, and also represent some of the most
complex and non-linear constraints in a model, especially when dealing with systems which may cross phase bound-
aries. As such, good formulations of these constraints is key to a robust and tractable model.

To assist users with formulating the phase equilibrium constraints in their models, the IDAES Generic Property Pack-
age Framework contains a library of different formulations for phase equilibrium.

Phase Equilibrium Libraries

Smooth Vapor-Liquid Equilibrium Formulation

Contents

• Smooth Vapor-Liquid Equilibrium Formulation

– Source

– Introduction

– Formulation

142 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Source

Burgard, A.P., Eason, J.P., Eslick, J.C., Ghouse, J.H., Lee, A., Biegler, L.T., Miller, D.C., 2018, A Smooth, Square
Flash Formulation for Equation-Oriented Flowsheet Optimization. Proceedings of the 13th International Symposium
on Process Systems Engineering – PSE 2018, July 1-5, 2018, San Diego.

Introduction

Typically, equilibrium calculations are only used when the user knows the current state is within the two-phase enve-
lope. For simulation only studies, the user may know a priori the condition of the stream but when the same set of
equations are used for optimization, there is a high probability that the specifications can transcend the phase enve-
lope. In these situations, the equilibrium calculations become trivial, thus it is necessary to find a formulation that has
non-trivial solutions at all states.

To address this, the smooth vapor-liquid equilibrium (VLE) formulation always solves the equilibrium calculations
at a condition where a valid two-phase solution exists. In situations where only a single phase is present, the phase
equilibrium is solved at the either the bubble or dew point, where the non-existent phase exists but in negligible
amounts. In this way, a non-trivial solution is guaranteed but still gives near-zero material in the non-existent phase in
the single phase regions.

Formulation

The approach used by the smooth VLE formulation is to define an “equilibrium temperature” (𝑇𝑒𝑞) at which the
equilibrium calculations will be performed. The equilibrium temperature is computed as follows:

𝑇1 = 𝑚𝑎𝑥(𝑇𝑏𝑢𝑏𝑏𝑙𝑒, 𝑇)

𝑇𝑒𝑞 = 𝑚𝑖𝑛(𝑇1, 𝑇𝑑𝑒𝑤)

where 𝑇 is the actual stream temperature, 𝑇1 is an intermediate temperature variable and 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 and 𝑇𝑑𝑒𝑤 are the
bubble and dew point temperature of mixture. In order to express the maximum and minimum operators in a tractable
form, these equations are reformulated using the IDAES smooth_max and smooth_min operators which results in the
following equations:

𝑇1 = 0.5

[︂
𝑇 + 𝑇𝑏𝑢𝑏𝑏𝑙𝑒 +

√︁
(𝑇 − 𝑇𝑏𝑢𝑏𝑏𝑙𝑒)2 + 𝜖21

]︂

𝑇𝑒𝑞 = 0.5

[︂
𝑇1 + 𝑇𝑑𝑒𝑤 −

√︁
(𝑇 − 𝑇𝑑𝑒𝑤)2 + 𝜖22

]︂
where 𝜖1 and 𝜖2 are smoothing parameters(mutable Params named eps_1 and eps_2). The default values are 0.01
and 0.0005 respectively, and it is recommended that 𝜖1 > 𝜖2. It can be seen that if the stream temperature is less
than that of the bubble point temperature, the VLE calculations will be computed at the bubble point. Similarly, if
the stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew
point temperature. For all other conditions, the equilibrium calculations will be computed at the actual temperature.

Finally, the phase equilibrium is expressed using the following equation:

ΦVap,𝑗(𝑇𝑒𝑞) = ΦLiq,𝑗(𝑇𝑒𝑞)

where Φ𝑝,𝑗(𝑇𝑒𝑞) is the fugacity of component 𝑗 in the phase 𝑝 calculated at 𝑇𝑒𝑞 . The fugacities are calculated using
methods defined by the equation of state chosen by the user for each phase.

4.9. IDAES Model Libraries 143

IDAES Documentation, Release 1.5.1.rc0

Developing New Property Libraries

Information on how to develop new components for the IDAES Generic Property Package Framework are given in the
following sections.

Contents

Developing Pure Component Methods

Contents

• Developing Pure Component Methods

– Naming Methods

– Method Arguments

– Method Parameters

– Method Body

– Example

The most common task developers of new property packages will need to do is writing methods for new pure compo-
nent property calculations. Most equation of state type approaches rely on a set of calculations for pure components
under ideal conditions which are then modified to account for mixing and deviations from ideality. These pure com-
ponent property calculations tend to be empirical correlations based on experimental data (generally as functions of
temperature) and due to their empirical nature a wide range of forms have been used in literature.

In order to support different forms for these calculations, the IDAES Generic Property Package Framework uses Python
methods to define the form of pure component property calculations. This allows developers and users to easily enter
the form they wish to use for their application with a minimum amount of code.

Naming Methods

The IDAES Generic Property Package Framework supports two ways of providing pure component property methods:

1. Providing the method directly - users may directly provide their method of choice as a config argument (con-
fig.property_name) in the PropertyParameterBlock, in which case the method can use any name the user desires.

2. Providing a library module - alternatively, users can provide a module containing a library of methods as the
config argument (config.property_name), in which case the framework searches the module for a method with
the same name as the property (and the config argument). E.g., for the property enth_mol_phase_comp the
method name would be enth_mol_phase_comp (as would the associated config argument).

Method Arguments

Note: Currently, the IDAES Generic Property Package Framework assumes pure component property calculations
will be a function of only temperature. If additional functionality is required, please contact the IDAES Developers.

144 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Currently, all pure component property methods in the IDAES Generic Property Package Framework take three argu-
ments:

1. A reference to the StateBlock where the method will be used (generally self),

2. An element of a component list,

3. A pointer to the temperature variable to be used in the calculation. By using a pointer rather than an absolute
reference (i.e. self.temperature), this allows the method to be applied at different temperatures as necessary (e.g.
the reference temperature).

Method Parameters

Pure component property methods all depend on a number of parameters, often derived from empirical data. In order
to avoid duplication of parameters and facilitate parameter estimation studies, all property parameters are stored in the
PropertyParameterBlock and each StateBlock contains a reference to its associated parameter block (self.params).

For pure component property methods, parameter names are define in the associated methods thus developers can
choose any name they desire. However, the IDAES standard is to use the name of the property appended with _coeff
and developers are encouraged to follow this convention.

Method Body

The body of the pure component property method should assemble an expression describing the specified quantity
for the component given in the method arguments. This expression should involve Pyomo components from the
StateBlock (i.e. self), the associated PropertyParameterBlock (self.params) and be returned in the final step of the
method.

Example

Below is an example of a pure component property method for the molar heat capacity of a component in the (ideal)
gas phase with the form 𝑐p, ig,𝑗 = 𝐴+𝐵 × 𝑇 .

def cp_mol_ig_comp(self, component, temperature):
Method named using standard naming convention
Arguments are self, a component and temperature

Return an expression involving temperature and parameters
return (self.params.cp_mol_ig_comp_coeff[component, "A"] +

self.params.cp_mol_ig_comp_coeff[component, "B"]*temperature)

Note that the method only returns an expression representing the R.H.S. of the correlation.

Developing Equation of State Modules

Contents

• Developing Equation of State Modules

– Equations of State and Multiple Phases

– General Structure

4.9. IDAES Model Libraries 145

IDAES Documentation, Release 1.5.1.rc0

– Phase Equilibrium

– Accessing Pure Component Property Methods

– Common Methods

– Mixture Property Methods

– Example

The central part of any property package are the equations of state or equivalent models which describe how the
mixture behaves under the conditions of interest. For systems with multiple phases and phase equilibrium, each phase
must have its own equation of state (or equivalent), which must provide information on phase equilibrium which is
compatible with the other phases in the system.

Equations of State and Multiple Phases

The IDAES Generic Property Package Framework requires users to assign an equation of state module for each phase
in their system, thus equations of state can be written for specific phases (e.g. an ideal gas equation of state). In some
cases, developers may wish to write equations of state for multiple phases, and the generic framework supports this by
indexing all properties by phase.

Developers are encouraged to add checks to their methods to ensure their equations of state are only applied to phases
where they are appropriate (e.g. an ideal gas equation of state should raise an exception if the phase argument is not
“Vap”).

General Structure

Equation of State Modules in the IDAES Generic Property Package Framework are files (modules) containing a num-
ber of methods which describe the behavior of the material. These method define how each of the properties associated
with a given phase should be calculated, and the list of properties supported for a given phase is limited by the methods
provided by the developer of the equation of state.

Phase Equilibrium

When calculating phase equilibrium, the IDAES Generic Property Package Framework uses the general form
Φ𝑒

phase 1, j = Φ𝑒
phase 2, j where Φ𝑒

𝑝,𝑗 is the fugacity of component 𝑗 in phase 𝑝 calculated at the equilibrium tempearture
(𝑇𝑒𝑞 , variable name self._teq). The equilibrium temperature is calculated using the users’ choice of phase equilibrium
formulation and determines how the property packge will handle phase transitions.

All equation of state methods should contain a method for calculating fugacity if they are to support phase equilibrium
calculations.

Accessing Pure Component Property Methods

In most cases, property calculations in the equation of state methods will require calculations of the pure
component properties for the system. These can be accessed using get_method (imported from from
idaes.property_models.core.generic.generic_property) using the form get_method(self, “property_name”). This will
return the method defined by the user in the PropertyParameterBlock for the named property, which can then be used
in the equation of state methods (note that users will need to call the method and provide it with the required arguments
- generally self, component and a pointer to temperature).

146 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Common Methods

For equations of state that support multiple phases, there may be certain calculations and/or variables that are common
to all phases. To support this (and avoid duplication of these), equation of state methods should contain a method
named common which implements any component which are common to multiple phases. This method should also
contain checks to ensure that these components have not already been created for another phase in the system (to avoid
duplication). In cases where there are no common components, this method can pass.

Mixture Property Methods

The main part of an equation of state method are a set of methods which describe properties of the mixture for a given
phase. Any mixture property that the property package needs to support must be defined as a method in the equation
of state module, which returns an expression for the given property (construction of the actual Pyomo component will
be handled by the core framework code).

Mixture properties can be defined in any way the developer desires, and can cross-link and reference other mixture
properties as required. Developers should recall that the State Definition method should have defined the following
properties which can be used in mixture property correlations:

• pressure

• temperature

• mole_frac_phase_comp

• phase_frac

Other state variables may have been defined by the user’s choice of State Definition, however this cannot be guaran-
teed. Developers may chose to assume that certain state variables will be present, but this will limit the application of
their equation of state module to certain state definitions which should be clearly documented.

Example

Below is an example method for a method in an equation of state module for calculating molar density that supports
both liquid and vapor phases.

def dens_mol_phase(b, phase):
if phase == "Vap":

return b.pressure/(b.params.gas_const*b.temperature)
elif phase == "Liq":

return sum(b.mole_frac_phase_comp[phase, j] *
get_method(b, "dens_mol_liq_comp")(b, j, b.temperature)
for j in b.params.component_list)

else:
raise PropertyNotSupportedError("Phase not supported")

Developing State Definitions

Contents

• Developing State Definitions

– define_state(self)

4.9. IDAES Model Libraries 147

IDAES Documentation, Release 1.5.1.rc0

* State Variables

* define_state_vars

* Auxiliary Variables

* Supporting Constraints

* always_flash

* get_material_flow_terms(phase, comp)

* get_enthalpy_flow_terms(phase)

* get_material_density_terms(phase, component)

* get_energy_density_terms(phase)

* get_material_flow_basis()

* default_material_balance_type()

* default_energy_balance_type()

* define_port_members()

* define_display_vars()

– state_initialization(self)

– self.do_not_initialize

The primary purpose of the State Definition method is to define the state variables which will be used to describe
the state of the mixture in the property package. However, a number of other key aspects of the property package
definition are tied to the choice of state variables and must be declared here as well.

State definitions are defined as Python modules with two methods and one list, which are describe below.

define_state(self)

The first method in a State Definition module is the define_state method. This method is used to define the state
variables and associated components and methods. The define_state method must define the following things:

State Variables

The most important part of a State Definition module is the definition of the state variables that should be used in the
resulting property package. The choice of state variables is up to the module developer, however the set of variables
selected must contain sufficient information to fully define the extensive and intensive state of the material. That is,
if all the state variables are fixed, the resulting set of variables and constraints should form a square problem (i.e. 0
degrees of freedom). Beyond this requirement however, developers may choose any combination of state variables
they wish.

State variables should be defined as Pyomo Vars with names drawn from the IDAES naming standard, and should
include initial values and bounds. The Generic Property Package Framework includes an optional user input of bounds
for the state variables (config.state_bounds) which developers are encouraged to make use of when setting bounds and
initializing variables.

148 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

define_state_vars

In order to inform the IDAES Process Modeling Framework of which variables should be considered state variable,
developers are required to define a method named define_state_vars. This method should return a dict where the
keys are a string identifier for each state variable and the values being pointers to the associated Var component. For
example:

def define_state_vars_state_definition():
return {"flow_mol": self.flow_mol,

"mole_frac_comp": self.mole_frac_comp,
"pressure": self.pressure,
"temperature": self.temperature,}

self.define_state_vars = define_state_vars_state_definition

Auxiliary Variables

Whilst the developer is free to choose any set of state variable they wish to define their system, there are certain
properties/quantities associated with material state that are frequently used in process models. For example, most
property calculation methods drawn upon empirical correlations for pure component properties which are most com-
monly expressed as functions of temperature (and sometimes pressure). Additionally, multiphase systems often require
knowledge of the volume fractions of each phase present.

To ensure that these properties/quantities are available when required, it is required that State Definition modules
define the following quantities if they are not already one of the state variables chosen:

• temperature - the temperature of the mixture,

• pressure - the pressure of the mixture,

• mole_frac_phase_comp - mole fraction of the mixture by phase and component (even if only one phase is
present),

• phase_frac - volume fractions of each phase (even if only one phase is present).

These quantities can be defined as either Pyomo Vars with associated Constraints, or as Pyomo Expressions as the
developer desires. Developers may choose to include additional auxiliary variables as required by their needs (e.g.
different forms of flow rates).

Supporting Constraints

Depending upon the choice of state and auxiliary variables, developers may need to include a number of supporting
constraints in their State Definitions. Common examples include constraints for the sum of mole fractions in the
system, and relationships between different types of flow rates. Any number of constraints can be included by the
developer to suit their needs, subject to the limitations of degrees of freedom.

However, developers need ot be aware of the difference between inlet and outlet states and how this affects which
constraints can be written. In the case of inlet states, all state variables are defined by the upstream process and thus no
constraint can be written that involves only state variables (e.g. sum of mole fractions). For outlet (and intermediate)
states however, it is often necessary to include these types of constraints to fully define the system. The IDAES
Process Modeling Framework uses the config.defined_state configuration argument to indicate situations where the
state variables should be considered fully defined (e.g. inlets) which can be used in if statements to determine whether
a constraint should be included.

4.9. IDAES Model Libraries 149

IDAES Documentation, Release 1.5.1.rc0

always_flash

Whilst the set of state variables chosen must be sufficient for fully defining the state of the material, depending on the
set of state variables chosen information of the phase separation (if applicable) may or may not be explicitly included.
For example, using total flow rate and composition along with pressure and specific enthalpy is sufficient to define
the state of the material, however it does not explicitly describe the phase fractions of the system. In these cases, it is
necessary to perform a flash calculation at every state in the system to determine the phase fractions. However, If the
state is defined in terms of flow rates by phase and component along with pressure and specific enthalpy, information
on the phase separation is already included in the state definition and flash calculations are not required where the state
is fully defined (i.e. config.state_defined is True).

To inform the Generic Property Package Framework of whether phase equilibrium calculations should be included
when config.state_defined is True, all State Definitions are required to include a component named always_flash which
is a boolean indicating whether equilibrium calculations should always be included (True) or only included when the
state is not fully defined (False).

get_material_flow_terms(phase, comp)

In order to automate the construction of the material balance equations, the IDAES Process Modeling Framework
expects property packages to provide expressions for the flow terms in these equations. This is done via the
get_material_flow_terms method which should return an expression involving variables in the StateBlock which
should be used as the flow term in the material balances.

There are many forms this expression can take depending upon the state variables chosen and how the developer
wishes to formulate the material balance equations, and the framework endeavors to support as many of these as
possible. Material flow terms are defined on a phase-component basis (i.e. a separate expression for each component
in each phase). An example of a get_material_flow_term using flow rate and mole fractions by phase is shown below.

def get_material_flow_terms_definition(phase, component):
return self.flow_mol_phase[phase] * self.mole_frac_phase_comp[phase, component]

self.get_material_flow_terms = get_material_flow_terms_definition

get_enthalpy_flow_terms(phase)

In the same way that get_material_flow_terms is used to automate construction of the material balance equations,
automating the construction of the energy balance equations requires a get_enthalpy_flow_terms method. This method
should return an expression for the enthalpy flow terms involving variables in the StateBlock.

There are many forms for the enthalpy flow terms as well, and developers may choose whichever best suits their needs.
Enthalpy flow terms are defined on a phase basis, and an example is shown below using flow rate and specific enthalpy
by phase.

def get_enthalpy_flow_terms_definition(phase):
return self.flow_mol_phase[phase] * self.enth_mol_phase[phase]

self.get_enthalpy_flow_terms = get_enthalpy_flow_terms_definiton

get_material_density_terms(phase, component)

For dynamic system, calculation of the material holdups also requires a material density term which is defined using
the get_material_density_terms method. This method is defined in a similar fashion to the get_material_flow_terms
method and is also defined on a phase-component basis.

150 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

get_energy_density_terms(phase)

For dynamic system, calculation of the energy holdups also requires an energy density term which is defined using the
get_energy_density_terms method. This method is defined in a similar fashion to the get_enthalpy_flow_terms method
and is also defined on a phase basis. Note however that the energy density term should only include internal energy
contributions, and not the full enthalpy density (i.e. excluding the PV term).

get_material_flow_basis()

To automate generation of some terms in the balance equations, the IDAES Process Modeling Framework needs
to know the basis (mass, mole or other) of the flow terms. This is defined in the State Definition by providing a
get_material_flow_basis method which returns a MaterialFlowBasis Enum (importable from idaes.core). E.g.:

def get_material_flow_basis_definition():
return MaterialFlowBasis.molar

self.get_material_flow_basis = get_material_flow_basis_definition

default_material_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the material balance
equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly
encouraged to define a default form for the material balance equations.

To set the default material balance type, the State Definition must implement a method which returns a MaterialBal-
anceType Enum (importable from idaes.core. E.g.:

def default_material_balance_type_definition():
return MaterialBalanceType.componentTotal

self.default_material_balance_type = default_material_balance_type_definition

default_energy_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the energy balance
equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly
encouraged to define a default form for the energy balance equations.

To set the default energy balance type, the State Definition must implement a method which returns an EnergyBal-
anceType Enum (importable from idaes.core. For an example, see default_material_balance_type above.

define_port_members()

In some situations, it is desirable to pass additional information between unit operations in a model beyond just the
state variables. In these circumstance, the developer may define a define_port_members method which describes the
information to be passed in Ports connecting units. This method should return a dict with a form similar to that of
define_state_vars. Note that developers must also ensure that any additional information passed in Ports does not result
in an over-specified problem, generally by excluding certain constraints in StateBlocks where config.defined_state is
True.

If this method is not defined, Ports will default to using the variables described in define_state_vars instead.

4.9. IDAES Model Libraries 151

IDAES Documentation, Release 1.5.1.rc0

define_display_vars()

Developers may also define a define_display_vars method which is used by the IDAES report methods to determine
what information should be displayed for each state. The define_display_vars method should return a dict containing
the information to display with the keys being the display name for the information and value being the quantity to
display (similar to the define_state_Vars method). If this method is not defined then the define_state_vars method is
used by the report methods instead.

state_initialization(self)

The state_initialization method is called as part of the Generic Property Package Framework initialize method and is
expected to set initial guesses for any auxiliary variables defined by the State Definition based on the current values of
the state variables. Note that the state variables will have been provided with initial guesses for the current state of the
material from the process models, and thus will likely not be at their pre-defined initial conditions.

self.do_not_initialize

The do_not_initialize component is a list containing a list of Constraint names which should remain deactivated during
initialization of the StateBlock and only reactivated during the final step on initialization. Common examples of these
are those constraints that are only written for outlet Blocks (i.e. those when config.defined_state is False), such as
overall sum of mole fraction constraints.

Developing Phase Equilibrium Methods

Contents

• Developing Phase Equilibrium Methods

– phase_equil(self)

– phase_equil_initialization(self)

Handling phase equilibrium and phase transitions within an equation oriented framework can be challenging as it is
necessary to ensure that all constraints and variables has feasible solution at all states. When dealing with disappearing
phases and correlations that can become ill-defined or singular outside of the two phase envelope, it is necessary to
either bound the problem to the two-phase region or reformulate the problem.

The IDAES Generic Property Package Framework provides support for reformulating the problem by defining an
“equilibrium temperature” (self._teq) at which all phase equilibrium calculations are performed. Issues surrounding
phase transitions can be avoided by providing a definition for the equilibrium temperature that satisfies the following
constraints:

𝑇bubble <= 𝑇𝑒𝑞 <= 𝑇dew

The Phase Equilibrium module allows users to provide a definition for the equilibrium temperature, along with any
necessary instructions on how to initialize the components associated with this definition.

A Phase Equilibrium module consists of two methods , which are described below.

152 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

phase_equil(self)

The phase_equil method is responsible for defining the variables and constraints necessary for calculating the equi-
librium temperature, and at a minimum must contain one constraint relating the equilibrium temperature (self._teq) to
the system temperature (self.temperature).

phase_equil_initialization(self)

This method is called by the Generic Property Package Framework initialization routine and should initialize the
constraints associated with the phase equilibrium definition.

Note that the Generic Property Package Framework beings by deactivating all constraints in the StateBlock so the first
step in the phase_equil_initialization method should be to activate any constraints defined in phase_equil. Addition-
ally, this method may calculate initial values for any supporting variables defined in phase_equil based on variables
that have already been initialized (primarily temperature and bubble and dew points if used). Developers should be
careful however to fully understand the initialization sequence of the Generic Property Package Framework to under-
stand which variables may have been initialized at this point.

Introduction

Note: The generic property package framework is still under development. Whilst the current framework is func-
tional, features are still being developed and added to increase functionality.

The generic property package framework builds upon the existing framework for implementing property packages
within IDAES, and will not prevent the user of custom written property packages in the future. However, it is envi-
sioned that the generic property package framework will provide a more streamlined interface for developing property
packages in most circumstances, and it is hoped that most property packages will migrate to using the generic property
framework in the future.

Property packages represent the core of any process model, and having a suitable property package is key to success-
fully modeling any process system. However, developing property packages is a significant challenge even for the
most experienced modelers, as they involve complex, non-linear equations. The goal of the IDAES Generic Property
Package Framework is to provide a flexible platform on which users can build custom property packages by calling
upon libraries of modular sub-models to build up complex property calculations with the least effort possible.

The Generic Property Package Framework breaks down property packages into a number of components which can
be assembled in a modular fashion. Users need only provide those components which they require for their system of
interest, and components can be drawn from libraries of existing components or provided by the user as custom code.
The components which make up a generic property package are as follows:

1. Definition of the component list and phases of interest, along with any phase equilibrium the user wishes to
include.

2. A definition of the variables the user wishes to use to define the state of their material (state variables), along
with any bounds on these.

3. An equation of state to describe each phase within the user’s property package.

4. Correlations for the pure component properties of each component in the users system. Correlations are only
required for those properties the user will use within their model.

5. Methods to calculate the bubble and dew points of mixtures.

6. A formulation to use for defining any phase equilibrium within the user’s system.

4.9. IDAES Model Libraries 153

IDAES Documentation, Release 1.5.1.rc0

The following section will describe how to define a property package using the Generic Property Package Framework
along with the libraries of sub-models currently available. Finally, the developers section describes how to go about
defining your own custom components to use when creating custom property packages.

Property Interrogator Tool

When preparing to model a process flowsheet, it is necessary to specify models for all the thermophysical and kinetic
properties that will be required by the different unit operations to simulate the process. However, it is often difficult to
know what properties will be required a priori. The IDAES Property Interrogator tool allows a user to define a general
flowsheet structure and interrogate it for the full list of properties that will be required, thus informing them of what
methods they will need to define in their property package(s).

Tool Usage

The IDAES Properties Interrogator tool consists of two classes; a PropertiesInterrogatorBlock and a ReactionInter-
rogatorBlock. These blocks are used in place of the normal PhysicalParameterBlock and ReactionParameterBlock
whilst declaring a flowsheet, however rather than constructing a solvable flowsheet they record all calls for properties
made whilst constructing the flowsheet. These Blocks then contain a number of methods for reporting the logged
property calls for the user.

An example of how Property Interrogator tool is used is shown below:

import pyomo.environ as pyo # Pyomo environment
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import CSTR
from idaes.generic_models.properties.interrogator import PropertyInterrogatorBlock,
→˓ReactionInterrogatorBlock

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": True})

m.fs.params = PropertyInterrogatorBlock()
m.fs.rxn_params = ReactionInterrogatorBlock(

default={"property_package": m.fs.params})

m.fs.R01 = CSTR(default={"property_package": m.fs.params,
"reaction_package": m.fs.rxn_params,
"has_heat_of_reaction": True})

Note: Flowsheets constructed using the Property Interrogator tools are not solvable flowsheets, and will result in
errors if sent to a solver.

Output and Display Methods

Both the PropertiesInterrogatorBlock and ReactionInterrogatorBlock support the following methods for reporting the
results of the flowsheet interrogation. The PropertiesInterrogatorBlock will contain a summary of all thermophysical
properties expected of a StateBlock in the flowsheet, whilst the ReactionInterrogatorBlock will contain a summary of
all reaction related properties required of a ReactionBlock.

• list_required_properties() - returns a list containing all properties called for by the flowsheet.

• print_required_properties() - prints a summary of the required properties

154 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• list_models_requiring_property(property) - returns a list of unit models within the flowsheet that require the
given property

• print_models_requiring_property(property) - prints the name of all unit models within the flowsheet that require
the given property

• list_properties_required_by_model(model) - returns a list of all properties required by a given unit model in the
flowsheet

• print_properties_required_by_model(model) - prints a summary of all properties required by a given unit model
in the flowsheet

For more details on these methods, see the detailed class documentation below.

Additionally, the PropertiesInterrogatorBlock and ReactionInterrogatorBlock contain a dict named re-
quired_properties which stores the data regarding the properties required by the model. The keys of this dict are
the names of all the properties required (as strings) and the values are a list of names for the unit models requiring the
given property.

Class Documentation

class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

default_arguments Default arguments to use with Property Package

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PropertyInterrogatorBlock) New instance

class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData(component)
Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying the properties requried by the flow-
sheet.

build()
Callable method for Block construction.

classmethod define_metadata(obj)
Set all the metadata for properties and units.

This method should be implemented by subclasses. In the implementation, they should set information
into the object provided as an argument.

Parameters pcm (PropertyClassMetadata) – Add metadata to this object.

4.9. IDAES Model Libraries 155

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Returns None

list_models_requiring_property(prop)
Method to list all models in the flowsheet requiring the given property.

Parameters prop – the property of interest

Returns A list of unit model names which require prop

list_properties_required_by_model(model)
Method to list all thermophysical properties required by a given unit model.

Parameters model – the unit model of interest. Can be given as either a model component or
the unit name as a string

Returns A list of thermophysical properties required by model

list_required_properties()
Method to list all thermophysical properties required by the flowsheet.

Parameters None –

Returns A list of properties required

print_models_requiring_property(prop, ostream=None)
Method to print a summary of the models in the flowsheet requiring a given property.

Parameters

• prop – the property of interest.

• ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

print_properties_required_by_model(model, ostream=None)
Method to print a summary of the thermophysical properties required by a given unit model.

Parameters

• model – the unit model of interest.

• ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

print_required_properties(ostream=None)
Method to print a summary of the thermophysical properties required by the flowsheet.

Parameters ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorBlock(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

property_package Reference to associated PropertyPackageParameter object

156 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

default_arguments Default arguments to use with Property Package

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (ReactionInterrogatorBlock) New instance

class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData(component)
Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying the reaction properties requried by
the flowsheet.

build()
Callable method for Block construction.

classmethod define_metadata(obj)
Set all the metadata for properties and units.

This method should be implemented by subclasses. In the implementation, they should set information
into the object provided as an argument.

Parameters pcm (PropertyClassMetadata) – Add metadata to this object.

Returns None

list_models_requiring_property(prop)
Method to list all models in the flowsheet requiring the given property.

Parameters prop – the property of interest

Returns A list of unit model names which require prop

list_properties_required_by_model(model)
Method to list all reaction properties required by a given unit model.

Parameters model – the unit model of interest. Can be given as either a model component or
the unit name as a string

Returns A list of reaction properties required by model

list_required_properties()
Method to list all reaction properties required by the flowsheet.

Parameters None –

Returns A list of properties required

print_models_requiring_property(prop, ostream=None)
Method to print a summary of the models in the flowsheet requiring a given property.

Parameters

• prop – the property of interest.

• ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

print_properties_required_by_model(model, ostream=None)
Method to print a summary of the reaction properties required by a given unit model.

Parameters

4.9. IDAES Model Libraries 157

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• model – the unit model of interest.

• ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

print_required_properties(ostream=None)
Method to print a summary of the reaction properties required by the flowsheet.

Parameters ostream – output stream to print to. If not provided will print to sys.stdout

Returns None

Unit Model Library

Compressor

The Compressor model is a PressureChanger, where the configuration is set so that the “compressor” option can only
be True, and the default “thermodynamic_assumption” is “isentropic.” See the PressureChanger documentation for
details.

Example

The example below demonstrates the basic Compressor model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Compressor
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Compressor(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(4000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(50000)
m.fs.unit.efficiency_isentropic.fix(0.9)

Continuous Stirred Tank Reactor

The IDAES CSTR model represents a unit operation where a material stream undergoes some chemical reaction(s) in
a well-mixed vessel.

Degrees of Freedom

CSTRs generally have one degree of freedom. Typically, the fixed variable is reactor volume.

158 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Model Structure

The core CSTR unit model consists of a single ControlVolume0D (named control_volume) with one Inlet
Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

CSTR units write the following additional Constraints beyond those written by the ControlVolume Block.

𝑋𝑡,𝑟 = 𝑉𝑡 × 𝑟𝑡,𝑟

where 𝑋𝑡,𝑟 is the extent of reaction of reaction 𝑟 at time 𝑡, 𝑉𝑡 is the volume of the reacting material at time 𝑡 (allows
for varying reactor volume with time) and 𝑟𝑡,𝑟 is the volumetric rate of reaction of reaction 𝑟 at time 𝑡 (from the outlet
property package).

Variables

CSTR units add the following additional Variables beyond those created by the ControlVolume Block.

Vari-
able

Name Notes

𝑉𝑡 vol-
ume

If has_holdup = True this is a reference to control_volume.volume, otherwise a Var
attached to the Unit Model

𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat

CSTR Class

class idaes.generic_models.unit_models.cstr.CSTR(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-

4.9. IDAES Model Libraries 159

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-
tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_heat_of_reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

160 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (CSTR) New instance

CSTRData Class

class idaes.generic_models.unit_models.cstr.CSTRData(component)
Standard CSTR Unit Model Class

build()
Begin building model (pre-DAE transformation). :param None:

Returns None

Equilibrium Reactor

The IDAES Equilibrium reactor model represents a unit operation where a material stream undergoes some chemical
reaction(s) to reach an equilibrium state. This model is for systems with reaction with equilibrium coefficients - for
Gibbs energy minimization see Gibbs reactor documentation.

Degrees of Freedom

Equilibrium reactors generally have 1 degree of freedom.

Typical fixed variables are:

• reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Equilibrium reactor unit model consists of a single ControlVolume0D (named control_volume) with
one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

Equilibrium reactors units write the following additional Constraints beyond those written by the Control Volume if
rate controlled reactions are present.

𝑟𝑡,𝑟 = 0

where 𝑟𝑡,𝑟 is the rate of reaction for reaction 𝑟 at time 𝑡. This enforces equilibrium in any reversible rate controlled
reactions which are present. Any non-reversible reaction that may be present will proceed to completion.

Variables

Equilibrium reactor units add the following additional Variables beyond those created by the Control Volume.

4.9. IDAES Model Libraries 161

IDAES Documentation, Release 1.5.1.rc0

Vari-
able

Name Notes

𝑉𝑡 vol-
ume

If has_holdup = True this is a reference to control_volume.volume, otherwise a Var
attached to the Unit Model

𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat

EquilibriumReactor Class

class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactor(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Equilib-
rium Reactors do not support dynamic behavior.

has_holdup Indicates whether holdup terms should be constructed or not. default -
False. Equilibrium reactors do not have defined volume, thus this must be False.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_rate_reactions Indicates whether terms for rate controlled reactions should be con-
structed, along with constraints equating these to zero, default - True. Valid values: {
True - include rate reaction terms, False - exclude rate reaction terms.}

162 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-
tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default - True. Valid values: { True - include phase equilibrium term, False
- exclude phase equlibirum terms.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_heat_of_reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (EquilibriumReactor) New instance

EquilibriumReactorData Class

class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData(component)
Standard Equilibrium Reactor Unit Model Class

build()
Begin building model.

Parameters None –

Returns None

4.9. IDAES Model Libraries 163

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Feed Block

Feed Blocks are used to represent sources of material in Flowsheets. Feed blocks do not calculate phase equilibrium
of the feed stream, and the composition of the material in the outlet stream will be exactly as specified in the input.
For applications where the users wishes the outlet stream to be in phase equilibrium, see the Feed_Flash unit model.

Degrees of Freedom

The degrees of freedom of Feed blocks depends on the property package being used and the number of state variables
necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

Feed Blocks consists of a single StateBlock (named properties), each with one Outlet Port (named outlet). Feed Blocks
also contain References to the state variables defined within the StateBlock

Additional Constraints

Feed Blocks write no additional constraints to the model.

Variables

Feed blocks add no additional Variables.

Feed Class

class idaes.generic_models.unit_models.feed.Feed(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Feed
blocks are always steady-state.

has_holdup Feed blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

164 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Feed) New instance

FeedData Class

class idaes.generic_models.unit_models.feed.FeedData(component)
Standard Feed Block Class

build()
Begin building model.

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
This method calls the initialization method of the state block.

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

Feed Block with Flash

Feed Blocks are used to represent sources of material in Flowsheets. In some cases, users may have a situation where
a feed stream may be in a multi-phase state, but may not know the full details of the equilibrium state. The IDAES
Feed Block with Flash (FeedFlash) allows users to define a feed block where the outlet is in phase equilibrium based
on calculations from the chosen property package and a sufficient set of state variables prior to being passed to the first
unit operation. The phase equilibrium is performed assuming an isobaric and isothermal flash operation.

A Feed Block with Flash is only required in cases where the feed may be in phase equilibrium AND the chosen
property package uses a state definition that includes phase separations. Some property packages support phase equi-
librium, but use a state definition that involves only total flows - in these cases a flash calculation is performed at the
inlet of every unit and thus it is not necessary to perform a flash calculation at the feed block.

Degrees of Freedom

The degrees of freedom of FeedFlash blocks depends on the property package being used and the number of state
variables necessary to fully define the system. Users should refer to documentation on the property package they are
using.

4.9. IDAES Model Libraries 165

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Model Structure

FeedFlash Blocks contain a single ControlVolume0D (named control_volume) with one Outlet Port (named
outlet). FeedFlash Blocks also contain References to the state variables defined within the inlet StateBlock of the
ControlVolume (representing the unflashed state of the feed).

FeedFlash Blocks do not write a set of energy balances within the Control Volume - instead a constraint is written
which enforces an isothermal flash.

Additional Constraints

The FeedFlash Block writes one additional constraint to enforce isothermal behavior.

𝑇𝑖𝑛,𝑡 = 𝑇𝑜𝑢𝑡,𝑡

where 𝑇𝑖𝑛,𝑡 and 𝑇𝑜𝑢𝑡,𝑡 are the temperatures of the material before and after the flash operation.

Variables

FeedFlash blocks add no additional Variables.

FeedFlash Class

class idaes.generic_models.unit_models.feed_flash.FeedFlash(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Feed units do not support dynamic behavior.

has_holdup Feed units do not have defined volume, thus this must be False.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

flash_type Indicates what type of flash operation should be used. default -
FlashType.isothermal. Valid values: { FlashType.isothermal - specify temperature,
FlashType.isenthalpic - specify enthalpy.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

166 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (FeedFlash) New instance

FeedFlashData Class

class idaes.generic_models.unit_models.feed_flash.FeedFlashData(component)
Standard Feed block with phase equilibrium

build()
Begin building model.

Parameters None –

Returns None

Flash Unit

The IDAES Flash model represents a unit operation where a single stream undergoes a flash separation into two phases.
The Flash model supports mutile types of flash operations, including pressure changes and addition or removal of heat.

Degrees of Freedom

Flash units generally have 2 degrees of freedom.

Typical fixed variables are:

• heat duty or outlet temperature (see note),

• pressure change or outlet pressure.

Note: When setting the outlet temeprature of a Flash unit, it is best to set con-
trol_volume.properties_out[t].temperature. Setting the temperature in one of the outlet streams directly results
in a much harder problme to solve, and may be degenerate or unbounded in some cases.

Model Structure

The core Flash unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port
(named inlet) connected to a Separator unit model with two outlet Ports named ‘vap_outlet’ and ‘liq_outlet’. The Flash
model utilizes the separator unit model in IDAES to split the outlets by phase flows to the liquid and vapor outlets
respectively.

The Separator unit model supports both direct splitting of state variables and writting of full splitting constraints via the
ideal_separation construction argument. Full details on the Separator unit model can be found in the documentation
for that unit. To support direct splitting, the property package must use one of a specified set of state variables and
support a certain set of property calacuations, as outlined in the table below.

4.9. IDAES Model Libraries 167

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

State Variables Required Properties
Material flow and composition
flow_mol & mole_frac flow_mol_phase & mole_frac_phase
flow_mol_phase & mole_frac_phase flow_mol_phase & mole_frac_phase
flow_mol_comp flow_mol_phase_comp
flow_mol_phase_comp flow_mol_phase_comp
flow_mass & mass_frac flow_mass_phase & mass_frac_phase
flow_mass_phase & mass_frac_phase flow_mass_phase & mass_frac_phase
flow_mass_comp flow_mass_phase_comp
flow_mass_phase_comp flow_mass_phase_comp
Energy state
temperature temperature
enth_mol enth_mol_phase
enth_mol_phase enth_mol_phase
enth_mass enth_mass_phase
enth_mass_phase enth_mass_phase
Pressure state
pressure pressure

Construction Arguments

Flash units have the following construction arguments:

• property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’).
This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not
provided, the Holdup Block will try to use the default property package if one is defined.

• property_package_args - set of arguments to be passed to the Property Blocks when they are created.

Additionally, Flash units have the following construction arguments which are passed to the Holdup Block for deter-
mining which terms to construct in the balance equations.

Argument Default Value
dynamic False
include_holdup False
material_balance_type MaterialBalanceType.componentPhase
energy_balance_type EnergyBalanceType.enthalpyTotal
momentum_balance_type MomentumBalanceType.pressureTotal
has_phase_equilibrium True
has_heat_transfer True
has_pressure_change True

Finally, Flash units also have the following arguments which are passed to the Separator block for determining how to
split to two-phase mixture.

Argument Default Value
ideal_separation True
energy_split_basis EnergySplittingType.equal_temperature

168 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Additional Constraints

Flash units write no additional Constraints beyond those written by the ControlVolume0DBlock and the Separator
block.

Variables

Name Notes
heat_duty Reference to control_volume.heat
deltaP Reference to control_volume.deltaP

Flash Class

class idaes.generic_models.unit_models.flash.Flash(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Flash
units do not support dynamic behavior.

has_holdup Indicates whether holdup terms should be constructed or not. default -
False. Flash units do not have defined volume, thus this must be False.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-

4.9. IDAES Model Libraries 169

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

energy_split_basis Argument indicating basis to use for splitting energy this is not used
for when ideal_separation == True. default - EnergySplittingType.equal_temperature.
Valid values: { EnergySplittingType.equal_temperature - outlet temperatures equal
inlet EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal in-
let, EnergySplittingType.enthalpy_split - apply split fractions to enthalpy flows.}

ideal_separation Argument indicating whether ideal splitting should be used. Ideal
splitting assumes perfect separation of material, and attempts to avoid duplication of
StateBlocks by directly partitioning outlet flows to ports, default - True. Valid values:
{ True - use ideal splitting methods. Cannot be combined with has_phase_equilibrium
= True, False - use explicit splitting equations with split fractions.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - True. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Flash) New instance

FlashData Class

class idaes.generic_models.unit_models.flash.FlashData(component)
Standard Flash Unit Model Class

build()
Begin building model (pre-DAE transformation).

Parameters None –

Returns None

Gibbs Reactor

The IDAES Gibbs reactor model represents a unit operation where a material stream undergoes some set of reactions
such that the Gibbs energy of the resulting mixture is minimized. Gibbs reactors rely on conservation of individual
elements within the system, and thus require element balances, and make use of Lagrange multipliers to find the
minimum Gibbs energy state of the system.

170 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Degrees of Freedom

Gibbs reactors generally have between 0 and 2 degrees of freedom, depending on construction arguments.

Typical fixed variables are:

• reactor heat duty (has_heat_transfer = True only).

• reactor pressure change (has_pressure_change = True only).

Model Structure

The core Gibbs reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet
Port (named inlet) and one Outlet Port (named outlet).

Variables

Gibbs reactor units add the following additional Variables beyond those created by the Control Volume Block.

Variable Name Symbol Notes
lagrange_mult 𝐿𝑡,𝑒 Lagrange multipliers
heat_duty 𝑄𝑡 Only if has_heat_transfer = True, reference
deltaP ∆𝑃𝑡 Only if has_pressure_change = True, reference

Constraints

Gibbs reactor models write the following additional constraints to calculate the state that corresponds to the minimum
Gibbs energy of the system.

gibbs_minimization(time, phase, component):

0 = 𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 +
∑︁
𝑒

(𝐿𝑡,𝑒 × 𝛼𝑗,𝑒)

where 𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 is the partial molar Gibbs energy of component 𝑗 at time 𝑡, 𝐿𝑡,𝑒 is the Lagrange multiplier for element
𝑒 at time 𝑡 and 𝛼𝑗,𝑒 is the number of moles of element 𝑒 in one mole of component 𝑗. 𝑔𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑡,𝑗 and 𝛼𝑗,𝑒 come from
the outlet StateBlock.

GibbsReactor Class

class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactor(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

4.9. IDAES Model Libraries 171

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

dynamic Gibbs reactors do not support dynamic models, thus this must be False.

has_holdup Gibbs reactors do not have defined volume, thus this must be False.

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (GibbsReactor) New instance

GibbsReactorData Class

class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData(component)
Standard Gibbs Reactor Unit Model Class

This model assume all possible reactions reach equilibrium such that the system partial molar Gibbs free energy
is minimized. Since some species mole flow rate might be very small, the natural log of the species molar flow
rate is used. Instead of specifying the system Gibbs free energy as an objective function, the equations for zero
partial derivatives of the grand function with Lagrangian multiple terms with repect to product species mole
flow rates and the multiples are specified as constraints.

build()
Begin building model (pre-DAE transformation).

172 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Parameters None –

Returns None

Heater

The Heater model is a simple 0D model that adds or removes heat from a material stream.

Example

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={"property_package": model.fs.properties})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heater model usually has one degree of freedom, which is the heat duty.

Model Structure

A heater model contains one ControlVolume0DBlock block.

Variables

The heat_duty variable is a reference to control_volume.heat.

Constraints

A heater model contains no additional constraints beyond what are contained in a ControlVolume0DBlockmodel.

4.9. IDAES Model Libraries 173

IDAES Documentation, Release 1.5.1.rc0

Heater Class

class idaes.generic_models.unit_models.heater.Heater(*args, **kwargs)
Simple 0D heater/cooler model.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

174 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Heater) New instance

HeaterData Class

class idaes.generic_models.unit_models.heater.HeaterData(component)
Simple 0D heater unit. Unit model to add or remove heat from a material.

build()
Building model

Parameters None –

Returns None

HeatExchanger (0D)

The HeatExchanger model can be imported from idaes.generic_models.unit_models, while ad-
ditional rules and utility functions can be imported from idaes.generic_models.unit_models.
heat_exchanger.

Example

The example below demonstrates how to initialize the HeatExchanger model, and override the default temperature
difference calculation.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import HeatExchanger
from idaes.generic_models.unit_models.heat_exchanger import delta_temperature_amtd_
→˓callback
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heat_exchanger = HeatExchanger(default={

"delta_temperature_callback":delta_temperature_amtd_callback,
"shell":{"property_package": model.fs.properties},
"tube":{"property_package": model.fs.properties}})

model.fs.heat_exchanger.area.fix(1000)

(continues on next page)

4.9. IDAES Model Libraries 175

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

model.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(100)
model.fs.heat_exchanger.shell_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.shell_inlet.pressure.fix(101325)
model.fs.heat_exchanger.shell_inlet.enth_mol.fix(4000)
model.fs.heat_exchanger.tube_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.tube_inlet.pressure.fix(101325)
model.fs.heat_exchanger.tube_inlet.enth_mol.fix(3000)

Initialize the model
model.fs.heat_exchanger.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees of freedom, which can be fixed for it
to be fully specified. Things that are frequently fixed are two of:

• heat transfer area,

• heat transfer coefficient, or

• temperature approach.

The user may also provide constants to calculate the heat transfer coefficient.

Model Structure

The HeatExchanger model contains two ControlVolume0DBlock blocks. By default the hot side is named
shell and the cold side is named tube. These names are configurable. The sign convention is that duty is positive
for heat flowing from the hot side to the cold side. Aside from the sign convention there is no requirement that the hot
side be hotter than the cold side.

The control volumes are configured the same as the ControlVolume0DBlock in the Heater model. The
HeatExchanger model contains additional constraints that calculate the amount of heat transferred from the hot
side to the cold side.

The HeatExchanger has two inlet ports and two outlet ports. By default these are shell_inlet, tube_inlet,
shell_outlet, and tube_outlet. If the user supplies different hot and cold side names the inlet and outlets are
named accordingly.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 t Heat transferred from hot side to the cold side
area 𝐴 None Heat transfer area
heat_transfer_coefficient 𝑈 t Heat transfer coefficient
delta_temperature ∆𝑇 t Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified
cold side is hotter than the specified hot side this value will be negative.

176 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Constraints

The default constants can be overridden by providing alternative rules for the heat transfer equation, temperature
difference, and heat transfer coefficient. The section describes the default constraints.

Heat transfer from shell to tube:

𝑄 = 𝑈𝐴∆𝑇

Temperature difference is an expression:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
The heat transfer coefficient is a variable with no associated constraints by default.

Class Documentation

Note: The hot_side_config and cold_side_config can also be supplied using the name of the hot and
cold sides (shell and tube by default) as in the example.

class idaes.generic_models.unit_models.heat_exchanger.HeatExchanger(*args,
**kwargs)

Simple 0D heat exchanger model.

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

hot_side_name Hot side name, sets control volume and inlet and outlet names

cold_side_name Cold side name, sets control volume and inlet and outlet names

hot_side_config A config block used to construct the hot side control volume. This
config can be given by the hot side name instead of hot_side_config.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Material-
BalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-

4.9. IDAES Model Libraries 177

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - en-
thalpy balances for each phase, EnergyBalanceType.energyTotal - single energy
balance for material, EnergyBalanceType.energyPhase - energy balances for each
phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock ob-
ject.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation.}

cold_side_config A config block used to construct the cold side control volume. This
config can be given by the cold side name instead of cold_side_config.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Material-
BalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - en-
thalpy balances for each phase, EnergyBalanceType.energyTotal - single energy
balance for material, EnergyBalanceType.energyPhase - energy balances for each
phase.}

178 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock ob-
ject.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation.}

delta_temperature_callback Callback for for temperature difference calculations

flow_pattern Heat exchanger flow pattern, default - HeatExchangerFlowPat-
tern.countercurrent. Valid values: { HeatExchangerFlowPattern.countercurrent
- countercurrent flow, HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow, factor times countercurrent
temperature difference.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (HeatExchanger) New instance

class idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData(component)
Simple 0D heat exchange unit. Unit model to transfer heat from one material to another.

build()
Building model

Parameters None –

Returns None

initialize(state_args_1=None, state_args_2=None, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-
06}, duty=1000)

Heat exchanger initialization method.

Parameters

• state_args_1 – a dict of arguments to be passed to the property initialization for
side_1 (see documentation of the specific property package) (default = {}).

• state_args_2 – a dict of arguments to be passed to the property initialization for
side_2 (see documentation of the specific property package) (default = {}).

4.9. IDAES Model Libraries 179

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

• duty – an initial guess for the amount of heat transfered (default = 10000)

Returns None

set_scaling_factor_energy(f)
This function sets scaling_factor_energy for both side_1 and side_2. This factor multiplies the energy bal-
ance and heat transfer equations in the heat exchnager. The value of this factor should be about 1/(expected
heat duty).

Parameters f – Energy balance scaling factor

Callbacks

A selection of functions for constructing the delta_temperature variable or expression are provided in the
idaes.generic_models.unit_models.heat_exchanger module. The user may also provide their own
function. These callbacks should all take one argument (the HeatExchanger block). With the block argument, the
function can add any additional variables, constraints, and expressions needed. The only requirement is that either a
variable or expression called delta_temperature must be added to the block.

Defined Callbacks for the delta_temperature_callback Option

These callbacks provide expressions for the temperature difference used in the heat transfer equations.

idaes.generic_models.unit_models.heat_exchanger.delta_temperature_lmtd_callback(b)
This is a callback for a temperature difference expression to calculate ∆𝑇 in the heat exchanger model using
log-mean temperature difference (LMTD). It can be supplied to “delta_temperature_callback” HeatExchanger
configuration option.

idaes.generic_models.unit_models.heat_exchanger.delta_temperature_amtd_callback(b)
This is a callback for a temperature difference expression to calculate ∆𝑇 in the heat exchanger model using
arithmetic-mean temperature difference (AMTD). It can be supplied to “delta_temperature_callback” HeatEx-
changer configuration option.

idaes.generic_models.unit_models.heat_exchanger.delta_temperature_underwood_callback(b)
This is a callback for a temperature difference expression to calculate ∆𝑇 in the heat exchanger model using
log-mean temperature difference (LMTD) approximation given by Underwood (1970). It can be supplied to
“delta_temperature_callback” HeatExchanger configuration option. This uses a cube root function that works
with negative numbers returning the real negative root. This should always evaluate successfully.

Heat Exchangers (1D)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. The IDAES 1-D
Heat Exchanger model is used for detailed modeling of heat exchanger units with variations in one spatial dimension.
For a simpler representation of a heat exchanger unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7 degrees of freedom.

180 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Typical fixed variables are:

• shell length and diameter,

• tube length and diameter,

• number of tubes,

• heat transfer coefficients (at all spatial points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model unit model consists of two ControlVolume1DBlock Blocks (named shell and
tube), each with one Inlet Port (named shell_inlet and tube_inlet) and one Outlet Port (named shell_outlet and
tube_outlet).

Construction Arguments

1-D Heat Exchanger units have construction arguments specific to the shell side, tube side and for the unit as a whole.

Arguments that are applicable to the heat exchanger unit are as follows:

• flow_type - indicates the flow arrangement within the unit to be modeled. Options are:

– ‘co-current’ - (default) shell and tube both flow in the same direction (from x=0 to x=1)

– ‘counter-current’ - shell and tube flow in opposite directions (shell from x=0 to x=1 and tube from x=1 to
x=0).

• finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 20).
This is used for both shell and tube side domains.

• collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default
= 5, collocation methods only). This is used for both shell and tube side domains.

• has_wall_conduction - option to enable a model for heat conduction across the tube wall:

– ‘none’ - 0D wall model

– ‘1D’ - 1D heat conduction equation along the thickness of the tube wall

– ‘2D’ - 2D heat conduction equation along the length and thickness of the tube wall

Arguments that are applicable to the shell side:

• property_package - property package to use when constructing shell side Property Blocks (default =
‘use_parent_value’). This is provided as a Physical Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

• property_package_args - set of arguments to be passed to the shell side Property Blocks when they are created.

• transformation_method - argument to specify the DAE transformation method for the shell side; should be
compatible with the Pyomo DAE TransformationFactory

• transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method;
should be compatible with the Pyomo DAE TransformationFactory

Arguments that are applicable to the tube side:

• property_package - property package to use when constructing tube side Property Blocks (default =
‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

4.9. IDAES Model Libraries 181

IDAES Documentation, Release 1.5.1.rc0

• property_package_args - set of arguments to be passed to the tube side Property Blocks when they are created.

• transformation_method - argument to specify the DAE transformation method for the tube side; should be
compatible with the Pyomo DAE TransformationFactory

• transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method;
should be compatible with the Pyomo DAE TransformationFactory

Additionally, 1-D Heat Exchanger units have the following construction arguments which are passed to the Con-
trolVolume1DBlock Block for determining which terms to construct in the balance equations for the shell and tube
side.

Argument Default Value
dynamic useDefault
has_holdup False
material_balance_type ‘componentTotal’
energy_balance_type ‘enthalpyTotal’
momentum_balance_type ‘pressureTotal’
has_phase_equilibrium False
has_heat_transfer True
has_pressure_change False

Additional Constraints

1-D Heat Exchanger models write the following additional Constraints to describe the heat transfer between the two
sides of the heat exchanger. Firstly, the shell- and tube-side heat transfer is calculated as:

𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 = −𝑁𝑡𝑢𝑏𝑒𝑠 × (𝜋 × 𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 ×𝐷𝑡𝑢𝑏𝑒,𝑜𝑢𝑡𝑒𝑟 × (𝑇𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 − 𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥))

where 𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 is the shell-side heat duty at point 𝑥 and time 𝑡, 𝑁𝑡𝑢𝑏𝑒𝑠 𝐷𝑡𝑢𝑏𝑒 are the number of and diameter of
the tubes in the heat exchanger, 𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 is the shell-side heat transfer coefficient, and 𝑇𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 and 𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 are the
shell-side and tube wall temperatures respectively.

𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 = 𝑁𝑡𝑢𝑏𝑒𝑠 × (𝜋 × 𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 ×𝐷𝑡𝑢𝑏𝑒,𝑖𝑛𝑛𝑒𝑟 × (𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 − 𝑇𝑡𝑢𝑏𝑒,𝑡,𝑥))

where 𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 is the tube-side heat duty at point 𝑥 and time 𝑡, 𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 is the tube-side heat transfer coefficient and
𝑇𝑡𝑢𝑏𝑒,𝑡,𝑥 is the tube-side temperature.

If a OD wall model is used for the tube wall conduction, the following constraint is implemented to connect the heat
terms on the shell and tube side:

𝑁𝑡𝑢𝑏𝑒𝑠 ×𝑄𝑡𝑢𝑏𝑒,𝑡,𝑥 = −𝑄𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥

Finally, the following Constraints are written to describe the unit geometry:

4 ×𝐴𝑡𝑢𝑏𝑒 = 𝜋 ×𝐷2
𝑡𝑢𝑏𝑒

4 ×𝐴𝑠ℎ𝑒𝑙𝑙 = 𝜋 × (𝐷2
𝑠ℎ𝑒𝑙𝑙 −𝑁𝑡𝑢𝑏𝑒𝑠 ×𝐷2

𝑡𝑢𝑏𝑒)

where𝐴𝑠ℎ𝑒𝑙𝑙 and𝐴𝑡𝑢𝑏𝑒 are the shell and tube areas respectively and𝐷𝑠ℎ𝑒𝑙𝑙 and𝐷𝑡𝑢𝑏𝑒 are the shell and tube diameters.

Variables

1-D Heat Exchanger units add the following additional Variables beyond those created by the ControlVolume1DBlock
Block.

182 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variable Name Notes
𝐿𝑠ℎ𝑒𝑙𝑙 shell_length Reference to shell.length
𝐴𝑠ℎ𝑒𝑙𝑙 shell_area Reference to shell.area
𝐷𝑠ℎ𝑒𝑙𝑙 d_shell
𝐿𝑡𝑢𝑏𝑒 tube_length Reference to tube.length
𝐴𝑡𝑢𝑏𝑒 tube_area Reference to tube.area
𝐷𝑡𝑢𝑏𝑒 d_tube
𝑁𝑡𝑢𝑏𝑒𝑠 N_tubes
𝑇𝑤𝑎𝑙𝑙,𝑡,𝑥 temperature_wall
𝑈𝑠ℎ𝑒𝑙𝑙,𝑡,𝑥 shell_heat_transfer_coefficient
𝑈𝑡𝑢𝑏𝑒,𝑡,𝑥 tube_heat_transfer_coefficient

HeatExchanger1dClass

class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1D(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

shell_side shell side config arguments

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { useDefault - get flag from
parent (default = False), True - construct holdup terms, False - do not construct
holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Material-
BalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

4.9. IDAES Model Libraries 183

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - en-
thalpy balances for each phase, EnergyBalanceType.energyTotal - single energy
balance for material, EnergyBalanceType.energyPhase - energy balances for each
phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms.}

has_phase_equilibrium Argument to enable phase equilibrium on the shell side. -
True - include phase equilibrium term - False - do not include phase equilibrium
term

property_package Property parameter object used to define property calculations (de-
fault = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

property_package_args A dict of arguments to be passed to the Property-
BlockData and used when constructing these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default = None) - a dict (see prop-
erty package for documentation)

transformation_method Discretization method to use for DAE transformation. See
Pyomo documentation for supported transformations.

transformation_scheme Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes.

tube_side tube side config arguments

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { useDefault - get flag from
parent (default = False), True - construct holdup terms, False - do not construct
holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Material-
BalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

184 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal
- single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - en-
thalpy balances for each phase, EnergyBalanceType.energyTotal - single energy
balance for material, EnergyBalanceType.energyPhase - energy balances for each
phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBal-
anceType.momentumPhase - momentum balances for each phase.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms,
False - exclude pressure change terms.}

has_phase_equilibrium Argument to enable phase equilibrium on the shell side. -
True - include phase equilibrium term - False - do not include phase equilibrium
term

property_package Property parameter object used to define property calculations (de-
fault = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

property_package_args A dict of arguments to be passed to the Property-
BlockData and used when constructing these (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default = None) - a dict (see prop-
erty package for documentation)

transformation_method Discretization method to use for DAE transformation. See
Pyomo documentation for supported transformations.

transformation_scheme Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes.

finite_elements Number of finite elements to use when discretizing length domain (de-
fault=20)

collocation_points Number of collocation points to use per finite element when dis-
cretizing length domain (default=3)

flow_type Flow configuration of heat exchanger - HeatExchangerFlowPattern.cocurrent:
shell and tube flows from 0 to 1 (default) - HeatExchangerFlowPattern.countercurrent:
shell side flows from 0 to 1 tube side flows from 1 to 0

has_wall_conduction Argument to enable type of wall heat conduction model. -
WallConductionType.zero_dimensional - 0D wall model (default), - WallConduction-
Type.one_dimensional - 1D wall model along the thickness of the tube, - WallCon-
ductionType.two_dimensional - 2D wall model along the lenghth and thickness of the
tube

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

4.9. IDAES Model Libraries 185

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (HeatExchanger1D) New instance

HeatExchanger1dDataClass

class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData(component)
Standard Heat Exchanger 1D Unit Model Class.

build()
Begin building model (pre-DAE transformation).

Parameters None –

Returns None

initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver=’ipopt’, optarg={’tol’:
1e-06})

Initialization routine for the unit (default solver ipopt).

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

Mixer

The IDAES Mixer unit model represents operations where multiple streams of material are combined into a single
flow. The Mixer class can be used to create either a stand-alone mixer unit, or as part of a unit model where multiple
streams need to be mixed.

Degrees of Freedom

Mixer units have zero degrees of freedom.

Model Structure

The IDAES Mixer unit model does not use ControlVolumes, and instead writes a set of material, energy and momentum
balances to combine the inlet streams into a single mixed stream. Mixer models have a user-defined number of inlet
Ports (by default named inlet_1, inlet_2, etc.) and one outlet Port (named outlet).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the
mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation
by linking multiple inlet streams to a single existing StateBlock.

186 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variables

Mixer units have the following variables (𝑖 indicates index by inlet):

Variable Name Sym-
bol

Notes

phase_equilibrium_generation 𝑋𝑒𝑞,𝑡,𝑟 Only if has_phase_equilibrium = True, Generation term for phase equi-
librium

minimum_pressure 𝑃𝑚𝑖𝑛,𝑡,𝑖 Only if momentum_mixing_type = MomemntumMixingType.minimize

Parameters

Mixer units have the following parameters:

Variable
Name

Sym-
bol

Notes

eps_pressure 𝜖 Only if momentum_mixing_type = MomemntumMixingType.minimize, smooth mini-
mum parameter

Constraints

The constraints written by the Mixer model depend upon the construction arguments chosen.

If material_mixing_type is extensive:

• If material_balance_type is componentPhase:

material_mixing_equations(t, p, j):

0 =
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟

• If material_balance_type is componentTotal:

material_mixing_equations(t, j):

0 =
∑︁
𝑝

(
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟)

• If material_balance_type is total:

material_mixing_equations(t):

0 =
∑︁
𝑝

∑︁
𝑗

(
∑︁
𝑖

𝐹𝑖𝑛,𝑖,𝑝,𝑗 − 𝐹𝑜𝑢𝑡,𝑝,𝑗 +
∑︁
𝑟

𝑛𝑟,𝑝,𝑗 ×𝑋𝑒𝑞,𝑡,𝑟)

where 𝑛𝑟,𝑝,𝑗 is the stoichiometric coefficient of component 𝑗 in phase 𝑝 in reaction 𝑟.

If ‘energy_mixing_type‘ is extensive:

enthalpy_mixing_equations(t):

0 =
∑︁
𝑖

∑︁
𝑝

𝐻𝑖𝑛,𝑖,𝑝 −
∑︁
𝑝

𝐻𝑜𝑢𝑡,𝑝

If ‘momentum_mixing_type‘ is minimize, a series of smooth minimum operations are performed:

minimum_pressure_constraint(t, i):

4.9. IDAES Model Libraries 187

IDAES Documentation, Release 1.5.1.rc0

For the first inlet:

𝑃𝑚𝑖𝑛,𝑡,𝑖 = 𝑃𝑡,𝑖

Otherwise:

𝑃𝑚𝑖𝑛,𝑡,𝑖 = 𝑠𝑚𝑖𝑛(𝑃𝑚𝑖𝑛,𝑡,𝑖−1, 𝑃𝑡,𝑖, 𝑒𝑝𝑠)

Here, 𝑃𝑡,𝑖 is the pressure in inlet 𝑖 at time 𝑡, 𝑃𝑚𝑖𝑛,𝑡,𝑖 is the minimum pressure in all inlets up to inlet 𝑖, and 𝑠𝑚𝑖𝑛 is
the smooth minimum operator (see IDAES Utility Function documentation).

The minimum pressure in all inlets is then:

mixture_pressure(t):

𝑃𝑚𝑖𝑥,𝑡 = 𝑃𝑚𝑖𝑛,𝑡,𝑖=𝑙𝑎𝑠𝑡

If momentum_mixing_type is equality, the pressure in all inlets and the outlet are equated.

Note: This may result in an over-specified problem if the user is not careful.

pressure_equality_constraints(t, i):

𝑃𝑚𝑖𝑥,𝑡 = 𝑃𝑡,𝑖

Often the minimum inlet pressure constraint is useful for sequential modular type initialization, but the equal pres-
sure constants are required for pressure-driven flow models. In these cases it may be convenient to use the minimum
pressure constraint for some initialization steps, them deactivate it and use the equal pressure constraints. The mo-
mentum_mixing_type is minimum_and_equality this will create the constraints for both with the minimum pressure
constraint being active.

The mixture_pressure(t) and pressure_equality_constraints(t, i) can be directly activated and deactivated, but only
one set of constraints should be active at a time. The use_minimum_inlet_pressure_constraint() and
use_equal_pressure_constraint() methods are also provided to switch between constant sets.

Mixer Class

class idaes.generic_models.unit_models.mixer.Mixer(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Mixer
blocks are always steady-state.

188 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_holdup Mixer blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

inlet_list A list containing names of inlets, default - None. Valid values: { None - use
num_inlets argument, list - a list of names to use for inlets.}

num_inlets Argument indicating number (int) of inlets to construct, not used if inlet_list
arg is provided, default - None. Valid values: { None - use inlet_list arg instead, or
default to 2 if neither argument provided, int - number of inlets to create (will be named
with sequential integers from 1 to num_inlets).}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream.}

energy_mixing_type Argument indicating what method to use when mixing energy
flows of incoming streams, default - MixingType.extensive. Valid values: { Mix-
ingType.none - do not include energy mixing equations, MixingType.extensive - mix
total enthalpy flows of each phase.}

momentum_mixing_type Argument indicating what method to use when mixing mo-
mentum/ pressure of incoming streams, default - MomentumMixingType.minimize.
Valid values: { MomentumMixingType.none - do not include momentum mixing
equations, MomentumMixingType.minimize - mixed stream has pressure equal to
the minimimum pressure of the incoming streams (uses smoothMin operator), Mo-
mentumMixingType.equality - enforces equality of pressure in mixed and all incom-
ing streams., MomentumMixingType.minimize_and_equality - add constraints for
pressure equal to the minimum pressure of the inlets and constraints for equality of
pressure in mixed and all incoming streams. When the model is initially built, the
equality constraints are deactivated. This option is useful for switching between flow
and pressure driven simulations.}

mixed_state_block An existing state block to use as the outlet stream from the Mixer
block, default - None. Valid values: { None - create a new StateBlock for the mixed
stream, StateBlock - a StateBock to use as the destination for the mixed stream.}

construct_ports Argument indicating whether model should construct Port objects
linked to all inlet states and the mixed state, default - True. Valid values: { True
- construct Ports for all states, False - do not construct Ports.

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

4.9. IDAES Model Libraries 189

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Mixer) New instance

MixerData Class

class idaes.generic_models.unit_models.mixer.MixerData(component)
This is a general purpose model for a Mixer block with the IDAES modeling framework. This block can be used
either as a stand-alone Mixer unit operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the incoming streams, then writes a set of phase-
component material balances, an overall enthalpy balance and a momentum balance (2 options) linked to a
mixed-state StateBlock. The mixed-state StateBlock can either be specified by the user (allowing use as a
sub-model), or created by the Mixer.

When being used as a sub-model, Mixer should only be used when a set of new StateBlocks are required for the
streams to be mixed. It should not be used to mix streams from mutiple ControlVolumes in a single unit model
- in these cases the unit model developer should write their own mixing equations.

add_energy_mixing_equations(inlet_blocks, mixed_block)
Add energy mixing equations (total enthalpy balance).

add_inlet_state_blocks(inlet_list)
Construct StateBlocks for all inlet streams.

Parameters of strings to use as StateBlock names (list) –

Returns list of StateBlocks

add_material_mixing_equations(inlet_blocks, mixed_block, mb_type)
Add material mixing equations.

add_mixed_state_block()
Constructs StateBlock to represent mixed stream.

Returns New StateBlock object

add_port_objects(inlet_list, inlet_blocks, mixed_block)
Adds Port objects if required.

Parameters

• list of inlet StateBlock objects (a) –

• mixed state StateBlock object (a) –

Returns None

add_pressure_equality_equations(inlet_blocks, mixed_block)
Add pressure equality equations. Note that this writes a number of constraints equal to the number of
inlets, enforcing equality between all inlets and the mixed stream.

add_pressure_minimization_equations(inlet_blocks, mixed_block)
Add pressure minimization equations. This is done by sequential comparisons of each inlet to the minimum
pressure so far, using the IDAES smooth minimum fuction.

build()
General build method for MixerData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

190 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

Inheriting models should call super().build.

Parameters None –

Returns None

create_inlet_list()
Create list of inlet stream names based on config arguments.

Returns list of strings

get_mixed_state_block()
Validates StateBlock provided in user arguments for mixed stream.

Returns The user-provided StateBlock or an Exception

initialize(outlvl=6, optarg={}, solver=’ipopt’, hold_state=False)
Initialization routine for mixer (default solver ipopt)

Keyword Arguments

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={})

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

• hold_state – flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - False. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.

model_check()
This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None –

Returns None

release_state(flags, outlvl=0)
Method to release state variables fixed during initialization.

Keyword Arguments

• flags – dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

• outlvl – sets output level of logging

Returns None

use_equal_pressure_constraint()
Deactivate the mixer pressure = mimimum inlet pressure constraint and activate the mixer pressure and
all inlet pressures are equal constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

use_minimum_inlet_pressure_constraint()
Activate the mixer pressure = mimimum inlet pressure constraint and deactivate the mixer pressure and
all inlet pressures are equal constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

4.9. IDAES Model Libraries 191

IDAES Documentation, Release 1.5.1.rc0

Plug Flow Reactor

The IDAES Plug Flow Reactor (PFR) model represents a unit operation where a material stream passes through a
linear reactor vessel whilst undergoing some chemical reaction(s). This model requires modeling the system in one
spatial dimension.

Degrees of Freedom

PFRs generally have at least 2 degrees of freedom.

Typical fixed variables are:

• 2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a single ControlVolume1DBlock (named control_volume) with one Inlet Port
(named inlet) and one Outlet Port (named outlet).

Variables

PFR units add the following additional Variables:

Variable Name Notes
𝐿 length Reference to control_volume.length
𝐴 area Reference to control_volume.area
𝑉 volume Reference to control_volume.volume
𝑄𝑡,𝑥 heat Only if has_heat_transfer = True, reference to holdup.heat
∆𝑃𝑡,𝑥 deltaP Only if has_pressure_change = True, reference to holdup.deltaP

Constraints

PFR units write the following additional Constraints at all points in the spatial domain:

𝑋𝑡,𝑥,𝑟 = 𝐴× 𝑟𝑡,𝑥,𝑟

where 𝑋𝑡,𝑥,𝑟 is the extent of reaction of reaction 𝑟 at point 𝑥 and time 𝑡, 𝐴 is the cross-sectional area of the reactor
and 𝑟𝑡,𝑟 is the volumetric rate of reaction of reaction 𝑟 at point 𝑥 and time 𝑡 (from the outlet StateBlock).

PFR Class

class idaes.generic_models.unit_models.plug_flow_reactor.PFR(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

192 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_equilibrium_reactions Indicates whether terms for equilibrium controlled reac-
tions should be constructed, default - True. Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction terms.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

has_heat_of_reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

4.9. IDAES Model Libraries 193

IDAES Documentation, Release 1.5.1.rc0

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

length_domain_set A list of values to be used when constructing the length domain of
the reactor. Point must lie between 0.0 and 1.0, default - [0.0, 1.0]. Valid values: { a
list of floats}

transformation_method Method to use to transform domain. Must be a method recog-
nised by the Pyomo TransformationFactory, default - “dae.finite_difference”.

transformation_scheme Scheme to use when transformating domain. See Pyomo doc-
umentation for supported schemes, default - “BACKWARD”.

finite_elements Number of finite elements to use when transforming length domain, de-
fault - 20.

collocation_points Number of collocation points to use when transforming length do-
main, default - 3.

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PFR) New instance

PFRData Class

class idaes.generic_models.unit_models.plug_flow_reactor.PFRData(component)
Standard Plug Flow Reactor Unit Model Class

build()
Begin building model (pre-DAE transformation).

Parameters None –

Returns None

Pressure Changer

The IDAES Pressure Changer model represents a unit operation with a single stream of material which undergoes a
change in pressure due to the application of a work. The Pressure Changer model contains support for a number of
different thermodynamic assumptions regarding the working fluid.

194 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Degrees of Freedom

Pressure Changer units generally have one or more degrees of freedom, depending on the thermodynamic assumption
used.

Typical fixed variables are:

• outlet pressure, 𝑃𝑟𝑎𝑡𝑖𝑜 or ∆𝑃 ,

• unit efficiency (isentropic or pump assumption).

Model Structure

The core Pressure Changer unit model consists of a single ControlVolume0D (named control_volume) with
one Inlet Port (named inlet) and one Outlet Port (named outlet). Additionally, if an isentropic pressure changer
is used, the unit model contains an additional StateBlock named properties_isentropic at the unit model
level.

Variables

Pressure Changers contain the following Variables (not including those contained within the control volume Block):

Variable Name Notes
𝑃𝑟𝑎𝑡𝑖𝑜 ratioP
𝑉𝑡 volume Only if has_rate_reactions = True, reference to con-

trol_volume.rate_reaction_extent
𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 work_mechanical Reference to control_volume.work
𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 work_fluid Pump assumption only
𝜂𝑝𝑢𝑚𝑝,𝑡 efficiency_pump Pump assumption only
𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 work_isentropic Isentropic assumption only
𝜂𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 effi-

ciency_isentropic
Isentropic assumption only

Isentropic Pressure Changers also have an additional Property Block named properties_isentropic (attached to the Unit
Model).

Constraints

In addition to the Constraints written by the Control Volume block, Pressure Changer writes additional Constraints
which depend on the thermodynamic assumption chosen. All Pressure Changers add the following Constraint to
calculate the pressure ratio:

𝑃𝑟𝑎𝑡𝑖𝑜,𝑡 × 𝑃𝑖𝑛,𝑡 = 𝑃𝑜𝑢𝑡,𝑡

Isothermal Assumption

The isothermal assumption writes one additional Constraint:

𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛

4.9. IDAES Model Libraries 195

IDAES Documentation, Release 1.5.1.rc0

Adiabatic Assumption

The isothermal assumption writes one additional Constraint:

𝐻𝑜𝑢𝑡 = 𝐻𝑖𝑛

Isentropic Assumption

The isentropic assumption creates an additional set of Property Blocks (indexed by time) for the isentropic fluid
calculations (named properties_isentropic). This requires a set of balance equations relating the inlet state to the
isentropic conditions, which are shown below:

𝐹𝑖𝑛,𝑡,𝑝,𝑗 = 𝐹𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡,𝑝,𝑗

𝑠𝑖𝑛,𝑡 = 𝑠𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡

𝑃𝑖𝑛,𝑡 × 𝑃𝑟𝑎𝑡𝑖𝑜,𝑡 = 𝑃𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡

where 𝐹𝑡,𝑝,𝑗 is the flow of component 𝑗 in phase 𝑝 at time 𝑡 and 𝑠 is the specific entropy of the fluid at time 𝑡.

Next, the isentropic work is calculated as follows:

𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 =
∑︁
𝑝

𝐻𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡,𝑝 −
∑︁
𝑝

𝐻𝑖𝑛,𝑡,𝑝

where 𝐻𝑡,𝑝 is the total energy flow of phase 𝑝 at time 𝑡. Finally, a constraint which relates the fluid work to the actual
mechanical work via an efficiency term 𝜂.

If compressor is True, 𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 = 𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 × 𝜂𝑡

If compressor is False, 𝑊𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 × 𝜂𝑡 = 𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption writes two additional constraints. Firstly, a Constraint is written which relates
fluid work to the pressure change of the fluid.

𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 = (𝑃𝑜𝑢𝑡,𝑡 − 𝑃𝑖𝑛,𝑡) × 𝐹𝑣𝑜𝑙,𝑡

where 𝐹𝑣𝑜𝑙,𝑡 is the total volumetric flowrate of material at time 𝑡 (from the outlet Property Block). Secondly, a
constraint which relates the fluid work to the actual mechanical work via an efficiency term 𝜂.

If compressor is True, 𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 = 𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡 × 𝜂𝑡

If compressor is False, 𝑊𝑓𝑙𝑢𝑖𝑑,𝑡 × 𝜂𝑡 = 𝑊𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙,𝑡

PressureChanger Class

class idaes.generic_models.unit_models.pressure_changer.PressureChanger(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

196 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

4.9. IDAES Model Libraries 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (PressureChanger) New instance

PressureChangerData Class

class idaes.generic_models.unit_models.pressure_changer.PressureChangerData(component)
Standard Compressor/Expander Unit Model Class

add_adiabatic()
Add constraints for adiabatic assumption.

Parameters None –

Returns None

add_isentropic()
Add constraints for isentropic assumption.

Parameters None –

Returns None

add_isothermal()
Add constraints for isothermal assumption.

Parameters None –

Returns None

add_pump()
Add constraints for the incompressible fluid assumption

Parameters None –

Returns None

build()

Parameters None –

Returns None

init_isentropic(state_args, outlvl, solver, optarg)
Initialization routine for unit (default solver ipopt)

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

198 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

initialize(state_args=None, routine=None, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
General wrapper for pressure changer initialization routines

Keyword Arguments

• routine – str stating which initialization routine to execute * None - use routine match-
ing thermodynamic_assumption * ‘isentropic’ - use isentropic initialization routine *
‘isothermal’ - use isothermal initialization routine

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

model_check()
Check that pressure change matches with compressor argument (i.e. if compressor = True, pressure should
increase or work should be positive)

Parameters None –

Returns None

Product Block

Product Blocks are used to represent sinks of material in Flowsheets. These can be used as a conventient way to mark
the final destination of a material stream and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero degrees of freedom.

Model Structure

Product Blocks consists of a single StateBlock (named properties), each with one Inlet Port (named inlet). Product
Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Product Blocks write no additional constraints to the model.

Variables

Product blocks add no additional Variables.

4.9. IDAES Model Libraries 199

IDAES Documentation, Release 1.5.1.rc0

Product Class

class idaes.generic_models.unit_models.product.Product(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Product
blocks are always steady- state.

has_holdup Product blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Product) New instance

ProductData Class

class idaes.generic_models.unit_models.product.ProductData(component)
Standard Product Block Class

build()
Begin building model.

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
This method calls the initialization method of the state block.

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

200 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Returns None

Pump

The Pump model is a PressureChanger, where the configuration is set so that the “compressor” option can only be
True, and the default “thermodynamic_assumption” is “pump.” See the PressureChanger documentation for details.

Example

The example below demonstrates the basic Pump model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Pump
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Pump(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(2000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(100000)
m.fs.unit.efficiency_pump.fix(0.8)

Separator

The IDAES Separator unit model represents operations where a single stream is split into multiple flows. The Separator
model supports separation using split fractions, or by ideal separation of flows. The Separator class can be used to
create either a stand-alone separator unit, or as part of a unit model where a flow needs to be separated.

Degrees of Freedom

Separator units have a number of degrees of freedom based on the separation type chosen.

• If split_basis = ‘phaseFlow’, degrees of freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠− 1) × 𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠

• If split_basis = ‘componentFlow’, degrees of freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠− 1) × 𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

• If split_basis = ‘phaseComponentFlow’, degrees of freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠 − 1) × 𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠 ×
𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

• If split_basis = ‘totalFlow’, degrees of freedom are generally (𝑛𝑜.𝑜𝑢𝑡𝑙𝑒𝑡𝑠− 1)×𝑛𝑜.𝑝ℎ𝑎𝑠𝑒𝑠×𝑛𝑜.𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

Typical fixed variables are:

• split fractions.

4.9. IDAES Model Libraries 201

IDAES Documentation, Release 1.5.1.rc0

Model Structure

The IDAES Separator unit model does not use ControlVolumes, and instead writes a set of material, energy and
momentum balances to split the inlet stream into a number of outlet streams. Separator models have a single inlet Port
(named inlet) and a user-defined number of outlet Ports (by default named outlet_1, outlet_2, etc.).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the
mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation
by linking to an existing StateBlock.

Ideal Separation

The IDAES Separator model supports ideal separations, where all of a given subset of the mixed stream is sent to a
single outlet (i.e. split fractions are equal to zero or one). In these cases, no Constraints are necessary for performing
the separation, as the mixed stream states can be directly partitioned to the outlets.

Ideal separations will not work for all choices of state variables, and thus will not work for all property packages. To
use ideal separations, the user must provide a map of what part of the mixed flow should be partitioned to each outlet.
The ideal_split_map should be a dict-like object with keys as tuples matching the split_basis argument and values
indicating which outlet this subset should be partitioned to.

Variables

Separator units have the following variables (𝑜 indicates index by outlet):

Variable Name Symbol Notes
split_fraction 𝜑𝑡,𝑜,* Indexing sets depend upon split_basis

Constraints

Separator units have the following Constraints, unless ideal_separation is True.

• If material_balance_type is componentPhase:

material_splitting_eqn(t, o, p, j):

𝐹𝑖𝑛,𝑡,𝑝,𝑗 = 𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

• If material_balance_type is componentTotal:

material_splitting_eqn(t, o, j): ∑︁
𝑝

𝐹𝑖𝑛,𝑡,𝑝,𝑗 =
∑︁
𝑝

𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

• If material_balance_type is total:

material_splitting_eqn(t, o): ∑︁
𝑝

∑︁
𝑗

𝐹𝑖𝑛,𝑡,𝑝,𝑗 =
∑︁
𝑝

∑︁
𝑗

𝜑𝑡,𝑝,* × 𝐹𝑡,𝑜,𝑝,𝑗

If energy_split_basis is equal_temperature:

202 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

temperature_equality_eqn(t, o):

𝑇𝑖𝑛,𝑡 = 𝑇𝑡,𝑜

If energy_split_basis is equal_molar_enthalpy:

molar_enthalpy_equality_eqn(t, o):

ℎ𝑖𝑛,𝑡 = ℎ𝑡,𝑜

If energy_split_basis is enthalpy_split:

molar_enthalpy_splitting_eqn(t, o):

𝑠𝑢𝑚𝑝ℎ𝑖𝑛,𝑡,𝑝 * 𝑠𝑓𝑡,𝑜,𝑝 = 𝑠𝑢𝑚𝑝ℎ𝑡,𝑜,𝑝

pressure_equality_eqn(t, o):

𝑃𝑖𝑛,𝑡 = 𝑃𝑡,𝑜

Separator Class

class idaes.generic_models.unit_models.separator.Separator(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = False. Product
blocks are always steady- state.

has_holdup Product blocks do not contain holdup, thus this must be False.

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

outlet_list A list containing names of outlets, default - None. Valid values: { None -
use num_outlets argument, list - a list of names to use for outlets.}

num_outlets Argument indicating number (int) of outlets to construct, not used if out-
let_list arg is provided, default - None. Valid values: { None - use outlet_list arg
instead, or default to 2 if neither argument provided, int - number of outlets to create
(will be named with sequential integers from 1 to num_outlets).}

split_basis Argument indicating basis to use for splitting mixed stream, default - Split-
tingType.totalFlow. Valid values: { SplittingType.totalFlow - split based on total
flow (split fraction indexed only by time and outlet), SplittingType.phaseFlow - split

4.9. IDAES Model Libraries 203

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

based on phase flows (split fraction indexed by time, outlet and phase), Splitting-
Type.componentFlow - split based on component flows (split fraction indexed by time,
outlet and components), SplittingType.phaseComponentFlow - split based on phase-
component flows (split fraction indexed by both time, outlet, phase and components).}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream.}

energy_split_basis Argument indicating basis to use for splitting energy this is not used
for when ideal_separation == True. default - EnergySplittingType.equal_temperature.
Valid values: { EnergySplittingType.equal_temperature - outlet temperatures equal
inlet EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal in-
let, EnergySplittingType.enthalpy_split - apply split fractions to enthalpy flows.
Does not work with component or phase-component splitting.}

ideal_separation Argument indicating whether ideal splitting should be used. Ideal
splitting assumes perfect spearation of material, and attempts to avoid duplication of
StateBlocks by directly partitioning outlet flows to ports, default - False. Valid values:
{ True - use ideal splitting methods. Cannot be combined with has_phase_equilibrium
= True, False - use explicit splitting equations with split fractions.}

ideal_split_map Dictionary containing information on how extensive variables should
be partitioned when using ideal splitting (ideal_separation = True). default - None.
Valid values: { dict with keys of indexing set members and values indicating which
outlet this combination of keys should be partitioned to. E.g. {(“Vap”, “H2”): “out-
let_1”}}

mixed_state_block An existing state block to use as the source stream from the Sepa-
rator block, default - None. Valid values: { None - create a new StateBlock for the
mixed stream, StateBlock - a StateBock to use as the source for the mixed stream.}

construct_ports Argument indicating whether model should construct Port objects
linked the mixed state and all outlet states, default - True. Valid values: { True -
construct Ports for all states, False - do not construct Ports.

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Separator) New instance

204 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

SeparatorData Class

class idaes.generic_models.unit_models.separator.SeparatorData(component)
This is a general purpose model for a Separator block with the IDAES modeling framework. This block can be
used either as a stand-alone Separator unit operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the outgoing streams, then writes a set of phase-
component material balances, an overall enthalpy balance (2 options), and a momentum balance (2 options)
linked to a mixed-state StateBlock. The mixed-state StateBlock can either be specified by the user (allowing use
as a sub-model), or created by the Separator.

When being used as a sub-model, Separator should only be used when a set of new StateBlocks are required
for the streams to be separated. It should not be used to separate streams to go to mutiple ControlVolumes in a
single unit model - in these cases the unit model developer should write their own splitting equations.

add_energy_splitting_constraints(mixed_block)
Creates constraints for splitting the energy flows - done by equating temperatures in outlets.

add_inlet_port_objects(mixed_block)
Adds inlet Port object if required.

Parameters mixed state StateBlock object (a) –

Returns None

add_material_splitting_constraints(mixed_block)
Creates constraints for splitting the material flows

add_mixed_state_block()
Constructs StateBlock to represent mixed stream.

Returns New StateBlock object

add_momentum_splitting_constraints(mixed_block)
Creates constraints for splitting the momentum flows - done by equating pressures in outlets.

add_outlet_port_objects(outlet_list, outlet_blocks)
Adds outlet Port objects if required.

Parameters list of outlet StateBlock objects (a) –

Returns None

add_outlet_state_blocks(outlet_list)
Construct StateBlocks for all outlet streams.

Parameters of strings to use as StateBlock names (list) –

Returns list of StateBlocks

add_split_fractions(outlet_list)
Creates outlet Port objects and tries to partiton mixed stream flows between these

Parameters

• representing the mixed flow to be split (StateBlock) –

• list of names for outlets (a) –

Returns None

build()
General build method for SeparatorData. This method calls a number of sub-methods which automate the
construction of expected attributes of unit models.

4.9. IDAES Model Libraries 205

https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

Inheriting models should call super().build.

Parameters None –

Returns None

create_outlet_list()
Create list of outlet stream names based on config arguments.

Returns list of strings

get_mixed_state_block()
Validates StateBlock provided in user arguments for mixed stream.

Returns The user-provided StateBlock or an Exception

initialize(outlvl=0, optarg={}, solver=’ipopt’, hold_state=False)
Initialization routine for separator (default solver ipopt)

Keyword Arguments

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default=None)

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

• hold_state – flag indicating whether the initialization routine should unfix any state
variables fixed during initialization, default - False. Valid values: True - states vari-
ables are not unfixed, and a dict of returned containing flags for which states were fixed
during initialization, False - state variables are unfixed after initialization by calling the
release_state method.

Returns If hold_states is True, returns a dict containing flags for which states were fixed during
initialization.

model_check()
This method executes the model_check methods on the associated state blocks (if they exist). This method
is generally called by a unit model as part of the unit’s model_check method.

Parameters None –

Returns None

partition_outlet_flows(mb, outlet_list)
Creates outlet Port objects and tries to partiton mixed stream flows between these

Parameters

• representing the mixed flow to be split (StateBlock) –

• list of names for outlets (a) –

Returns None

release_state(flags, outlvl=0)
Method to release state variables fixed during initialization.

Keyword Arguments

• flags – dict containing information of which state variables were fixed during initializa-
tion, and should now be unfixed. This dict is returned by initialize if hold_state = True.

• outlvl – sets output level of logging

Returns None

206 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

StateJunction Block

The IDAES StateJunction block represents a pass-through unit or simple pipe with no holdup. The primary use for
this unit is in conceptual design applications for linking Arcs to/from different process alternatives.

Degrees of Freedom

StateJunctions have no degrees of freedom.

Model Structure

A StateJunction consists of a single StateBlock with two Ports (inlet and outlet), where the state variables in the state
block are simultaneously connected to both Ports.

Additional Constraints

StateJunctions write no additional constraints beyond those in the StateBlock.

Variables

StateJunctions have no additional variables.

StateJunction Class

class idaes.generic_models.unit_models.statejunction.StateJunction(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this unit will be dynamic or not, default = False.

has_holdup Indicates whether holdup terms should be constructed or not. default -
False. StateJunctions do not have defined volume, thus this must be False.

property_package Property parameter object used to define property state block, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

4.9. IDAES Model Libraries 207

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (StateJunction) New instance

StateJunctionData Class

class idaes.generic_models.unit_models.statejunction.StateJunctionData(component)
Standard StateJunction Unit Model Class

build()
Begin building model. :param None:

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
This method initializes the StateJunction block by calling the initialize method on the property block.

Keyword Arguments

• state_args – a dict of arguments to be passed to the property package(s) to provide an
initial state for initialization (see documentation of the specific property package) (default
= {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor model represents a unit operation where a single material stream undergoes some
chemical reaction(s) subject to a set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have degrees of freedom equal to the number of reactions + 1.

Typical fixed variables are:

• reaction extents or yields (1 per reaction),

• reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Stoichiometric reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with
one Inlet Port (named inlet) and one Outlet Port (named outlet).

208 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variables

Stoichiometric reactors units add the following variables:

Variable Name Notes
𝑄𝑡 heat Only if has_heat_transfer = True, reference to control_volume.heat
𝑑𝑒𝑙𝑡𝑎𝑃𝑡 pressure change Only if has_pressure_change = True, reference to control_volume.deltaP

Constraints

Stoichiometric reactor units write no additional Constraints beyond those written by the control_volume Block.

StoichiometricReactor Class

class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactor(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

4.9. IDAES Model Libraries 209

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_heat_of_reaction Indicates whether terms for heat of reaction terms should be con-
structed, default - False. Valid values: { True - include heat of reaction terms, False
- exclude heat of reaction terms.}

has_heat_transfer Indicates whether terms for heat transfer should be constructed, de-
fault - False. Valid values: { True - include heat transfer terms, False - exclude heat
transfer terms.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

reaction_package Reaction parameter object used to define reaction calculations, de-
fault - None. Valid values: { None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

reaction_package_args A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default - None. Valid values: { see re-
action package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (StoichiometricReactor) New instance

StoichiometricReactorData Class

class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData(component)
Standard Stoichiometric Reactor Unit Model Class This model assumes that all given reactions are irreversible,
and that each reaction has a fixed rate_reaction extent which has to be specified by the user.

build()
Begin building model (pre-DAE transformation). :param None:

Returns None

210 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Translator Block

Translator blocks are used in complex flowsheets where the user desires to use different property packages for different
parts of the flowsheet. In order to link two streams using different property packages, a translator block is required.

The core translator block provides a general framework for constructing Translator Blocks, however users need to add
constraints to map the incoming states to the outgoing states as required by their specific application.

Degrees of Freedom

The degrees of freedom of Translator blocks depends on the property packages being used, and the user should write
a sufficient number of constraints mapping inlet states to outlet states to satisfy these degrees of freedom.

Model Structure

The core Translator Block consists of two State Blocks, names properties_in and properties_out, which
are linked to two Ports names inlet and outlet respectively.

Additional Constraints

The core Translator Block writes no additional constraints. Users should add constraints to their instances as required.

Variables

Translator blocks add no additional Variables.

Translator Class

class idaes.generic_models.unit_models.translator.Translator(*args, **kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Translator blocks are always steady-state.

has_holdup Translator blocks do not contain holdup.

outlet_state_defined Indicates whether unit model will fully define outlet state. If False,
the outlet property package will enforce constraints such as sum of mole fractions
and phase equilibrium. default - True. Valid values: { True - outlet state will be
fully defined, False - outlet property package should enforce sumation and equilibrium
constraints.}

4.9. IDAES Model Libraries 211

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_phase_equilibrium Indicates whether outlet property package should enforce phase
equilibrium constraints. default - False. Valid values: { True - outlet property pack-
age should calculate phase equilibrium, False - outlet property package should notcal-
culate phase equilibrium.}

inlet_property_package Property parameter object used to define property calculations
for the incoming stream, default - None. Valid values: { PhysicalParameterObject
- a PhysicalParameterBlock object.}

inlet_property_package_args A ConfigBlock with arguments to be passed to the prop-
erty block associated with the incoming stream, default - None. Valid values: { see
property package for documentation.}

outlet_property_package Property parameter object used to define property calcula-
tions for the outgoing stream, default - None. Valid values: { PhysicalParameter-
Object - a PhysicalParameterBlock object.}

outlet_property_package_args A ConfigBlock with arguments to be passed to the
property block associated with the outgoing stream, default - None. Valid values:
{ see property package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (Translator) New instance

TranslatorData Class

class idaes.generic_models.unit_models.translator.TranslatorData(component)
Standard Translator Block Class

build()
Begin building model.

Parameters None –

Returns None

initialize(state_args_in={}, state_args_out={}, outlvl=0, solver=’ipopt’, optarg={’tol’: 1e-06})
This method calls the initialization method of the state blocks.

Keyword Arguments

• state_args_in – a dict of arguments to be passed to the inlet property package (to pro-
vide an initial state for initialization (see documentation of the specific property package)
(default = {}).

• state_args_out – a dict of arguments to be passed to the outlet property package
(to provide an initial state for initialization (see documentation of the specific property
package) (default = {}).

• outlvl – sets output level of initialization routine

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating which solver to use during initialization (default = ‘ipopt’)

Returns None

212 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Turbine

The Turbine model is a PressureChanger, where the configuration is set so that the “compressor” option can only
be False, and the default “thermodynamic_assumption” is “isentropic.” See the PressureChanger documentation for
details.

Example

The example below demonstrates the basic Turbine model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Turbine
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Turbine(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(1000)
m.fs.unit.inlet.enth_mol[0].fix(iapws95.htpx(T=800, P=1e7))
m.fs.unit.inlet.pressure[0].fix(1e7)
m.fs.unit.deltaP.fix(-2e6)
m.fs.unit.efficiency_isentropic.fix(0.9)

Control Model Library

This section contains documentation for core IDAES control models.

Contents

Proportional-Integral-Derivative (PID) Controller

The IDAES framework contains a basic PID control implementation, which is described in this section.

Example

The following code demonstrated the creation of a PIDBlock, but for simplicity, it does not create a dynamic process
model. A full example of a dynamic process with PID control is being prepared for the IDAES examples repository
and will be referenced here once completed.

The valve opening is the controlled output variable and pressure “1” is the measured variable. The controller output
for the valve opening is restricted to be between 0 and 1. The measured and output variables should be indexed only
by time. Fortunately there is no need to create new variables if the variables are in a property block or not indexed
only by time. Pyomo’s Reference objects can be use to create references to existing variables with the proper indexing
as shown in the example.

The calculate_initial_integral option calculates the integral error in the first time step to match the initial
controller output. This keeps the controller output from immediately jumping to a new value. Unless the initial integral
error is known, this option should usually be True.

4.9. IDAES Model Libraries 213

IDAES Documentation, Release 1.5.1.rc0

The controller should be added after the DAE expansion is done. There are several variables in the controller that are
usually meant to be fixed; as shown in the example, they are gain, time_i, time_d, and setpoint. For more
information about the variables, expressions, and parameters in the PIDBlock, model see Variables and Expressions.

from idaes.generic_models.control import PIDBlock, PIDForm
from idaes.core import FlowsheetBlock
import pyomo.environ as pyo

m = pyo.ConcreteModel(name="PID Example")
m.fs = FlowsheetBlock(default={"dynamic":True, "time_set":[0,10]})

m.fs.valve_opening = pyo.Var(m.fs.time, doc="Valve opening")
m.fs.pressure = pyo.Var(m.fs.time, [1,2], doc="Pressure in unit 1 and 2")

pyo.TransformationFactory('dae.finite_difference').apply_to(
m.fs,
nfe=10,
wrt=m.fs.time,
scheme='BACKWARD',

)

m.fs.measured_variable = pyo.Reference(m.fs.pressure[:,1])

m.fs.ctrl = PIDBlock(
default={

"pv":m.fs.measured_variable,
"output":m.fs.valve_opening,
"upper":1.0,
"lower":0.0,
"calculate_initial_integral":True,
"pid_form":PIDForm.velocity,

}
)

m.fs.ctrl.gain.fix(1e-6)
m.fs.ctrl.time_i.fix(0.1)
m.fs.ctrl.time_d.fix(0.1)
m.fs.ctrl.setpoint.fix(3e5)

Controller Windup

The current PID controller model has no integral windup prevention. This will be added to the model in the near
future.

Class Documentation

class idaes.generic_models.control.pid_controller.PIDBlock(*args, **kwargs)
This is a PID controller block. The PID Controller block must be added after the DAE transformation.

Args: rule (function): A rule function or None. Default rule calls build(). concrete (bool): If True,
make this a toplevel model. Default - False. ctype (str): Pyomo ctype of the block. Default -
“Block” default (dict): Default ProcessBlockData config

Keys

214 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

pv A Pyomo Var, Expression, or Reference for the measured process variable.
Should be indexed by time.

output A Pyomo Var, Expression, or Reference for the controlled process variable.
Should be indexed by time.

upper The upper limit for the controller output, default=1

lower The lower limit for the controller output, default=0

calculate_initial_integral Calculate the initial integral term value if true, otherwise
provide a variable err_i0, which can be fixed, default=True

pid_form Velocity or standard form

initialize (dict): ProcessBlockData config for individual elements. Keys are BlockData in-
dexes and values are dictionaries described under the “default” argument above.

idx_map (function): Function to take the index of a BlockData element and return the in-
dex in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns: (PIDBlock) New instance

class idaes.generic_models.control.pid_controller.PIDBlockData(component)

build()
Build the PID block

Variables and Expressions

Symbol Name in Model Description
𝑣𝑠𝑝(𝑡) setpoint[t] Setpoint variable (usually fixed)
𝑣𝑚𝑣(𝑡) pv[t] Measured process variable reference
𝑢(𝑡) output[t] Controller output variable reference
𝐾𝑝(𝑡) gain[t] Controller gain (usually fixed)
𝑇𝑖(𝑡) time_i[t] Integral time (usually fixed)
𝑇𝑑(𝑡) time_d[t] Derivative time (usually fixed)
𝑒(𝑡) err[t] Error expression (setpoint - pv)
– err_d[t] Derivative error expression
– err_i[t] Integral error expression (standard form)
– err_d0 Initial derivative error value (fixed)
𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(0) err_i0 Initial integral error value (fixed)
– err_i_end Last initial integral error expression
– limits["h"] Upper limit of output parameter
– limits["l"] Lower limit of output parameter
– smooth_eps Smooth min/max parameter

Formulation

There are two forms of the PID controller equation. The standard formulation can result in equations with very large
summations. In the velocity form of the equation the controller output can be calculated based only on the previous
state.

4.9. IDAES Model Libraries 215

IDAES Documentation, Release 1.5.1.rc0

The two forms of the equations are equivalent, but the choice of form will affect robustness and solution time. It is
not necessarily clear that the velocity form of the equation is always more numerically favorable, however it would
usually be the default choice. Both forms are provided in case the standard form works better in some situations.

Standard Formulation

The PID controller equations are given by the following equations

𝑒(𝑡) = 𝑣𝑠𝑝(𝑡) − 𝑣𝑚𝑣(𝑡)

𝑢(𝑡) = 𝐾𝑝

[︂
𝑒(𝑡) +

1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡)

d𝑡

]︂
The PID equation now must be discretized.

𝑢(𝑡𝑖) = 𝐾𝑝

⎡⎣𝑒(𝑡𝑖) +
𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙(0)

𝑇𝑖
+

1

𝑇𝑖

𝑖−1∑︁
𝑗=0

∆𝑡𝑗
𝑒(𝑡𝑗) + 𝑒(𝑡𝑗+1)

2
+ 𝑇𝑑

𝑒(𝑡𝑖) − 𝑒(𝑡𝑖−1)

∆𝑡𝑖−1

⎤⎦

Velocity Formulation

The velocity formulation of the PID equation may also be useful. The way the equations are written in the PID model,
the integral term is a summation expression and as time increases the integral term will build up an increasing number
of terms potentially becoming very large. This potentially has two affects, increasing round off error and computation
time. The velocity formulation allows the controller output to be calculated based on the previous output.

First the usual PID controller equation can be rearranged to solve for the integral error.

1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠 =
𝑢(𝑡)

𝐾𝑝
− 𝑒(𝑡) − 𝑇𝑑

d𝑒(𝑡)
d𝑡

The PID equation for some time (𝑡+ ∆𝑡) is

𝑢(𝑡+ ∆𝑡) = 𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡+ ∆𝑡)

d𝑡

]︃

𝑢(𝑡+ ∆𝑡) = 𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

𝑡

𝑒(𝑠)d𝑠+
1

𝑇𝑖

∫︁ 𝑡

0

𝑒(𝑠)d𝑠+ 𝑇𝑑
d𝑒(𝑡+ ∆𝑡)

d𝑡

]︃

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︃
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

1

𝑇𝑖

∫︁ 𝑡+Δ𝑡

𝑡

𝑒(𝑠)d𝑠+ 𝑇𝑑

(︂
d𝑒(𝑡+ ∆𝑡)

d𝑡
− d𝑒(𝑡)

d𝑡

)︂]︃
Now we can discretize the equation using the trapezoid rule for the integral.

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︂
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

∆𝑡

𝑇𝑖

(︂
𝑒(𝑡+ ∆𝑡) + 𝑒(𝑡)

2

)︂
+ 𝑇𝑑

(︂
d𝑒(𝑡+ ∆𝑡)

d𝑡
− d𝑒(𝑡)

d𝑡

)︂]︂
Since the derivative error term will require the error at the previous time step to calculate, this form will still result in
a large summation being formed since in the model there is no derivative error variable. To avoid this problem, the
derivative error term can equivalently be replaced with the derivative of the negative measured process variable.

𝑢(𝑡+ ∆𝑡) = 𝑢(𝑡) +𝐾𝑝

[︂
𝑒(𝑡+ ∆𝑡) − 𝑒(𝑡) +

∆𝑡

𝑇𝑖

(︂
𝑒(𝑡+ ∆𝑡) + 𝑒(𝑡)

2

)︂
+ 𝑇𝑑

(︂
d𝑣𝑚𝑣(𝑡+ ∆𝑡)

d𝑡
− d𝑣𝑚𝑣(𝑡)

d𝑡

)︂]︂
Now the velocity form of the PID controller equation can be calculated at each time point from just the state at the
previous time point.

216 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Substitution

In both the proportional and integral terms, error can be replaced with the negative measured process variable yielding
equivalent results. This substitution is provided by the PID class and is done by default.

Output Limits

Smooth min and smooth max expressions are used to keep the controller output between a minimum and maximum
value.

Power Generation Model Library

The IDAES Process Modeling Framework contains a library of models specifically developed for modeling power
generation systems. These models all built off of the core IDAES modeling framework and model libraries.

Power Generation Unit Models

Feedwater Heater (0D)

The FWH0D model is a 0D feedwater heater model suitable for steady state modeling. It is intended to be used
primarily used with the IAWPS95 property package. The feedwater heater is split into three sections the condensing
section is required while the desuperheating and drain cooling sections are optional. There is also an optional mixer
for adding a drain stream from another feedwater heater to the condensing section. The figure below shows the layout
of the feedwater heater. All but the condensing section are optional.

Fig. 1: Feedwater Heater

Example

The example below shows how to setup a feedwater heater with all tree sections. The feedwater flow rate, steam
conditions, heat transfer coefficients and areas are not necessarily realistic.

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models.heat_exchanger import (delta_temperature_
→˓underwood_callback,

delta_temperature_lmtd_callback)
from idaes.generic_models.properties import iapws95
from idaes.power_generation.unit_models import FWH0D

def make_fwh_model():
model = pyo.ConcreteModel()
model.fs = FlowsheetBlock(default={

"dynamic": False,
"default_property_package": iapws95.Iapws95ParameterBlock()})

model.fs.properties = model.fs.config.default_property_package
model.fs.fwh = FWH0D(default={

"has_desuperheat":True,
"has_drain_cooling":True,

(continues on next page)

4.9. IDAES Model Libraries 217

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

"has_drain_mixer":True,
"property_package":model.fs.properties})

model.fs.fwh.desuperheat.inlet_1.flow_mol.fix(100)
model.fs.fwh.desuperheat.inlet_1.flow_mol.unfix()
model.fs.fwh.desuperheat.inlet_1.pressure.fix(201325)
model.fs.fwh.desuperheat.inlet_1.enth_mol.fix(60000)
model.fs.fwh.drain_mix.drain.flow_mol.fix(1)
model.fs.fwh.drain_mix.drain.pressure.fix(201325)
model.fs.fwh.drain_mix.drain.enth_mol.fix(20000)
model.fs.fwh.cooling.inlet_2.flow_mol.fix(400)
model.fs.fwh.cooling.inlet_2.pressure.fix(101325)
model.fs.fwh.cooling.inlet_2.enth_mol.fix(3000)
model.fs.fwh.condense.area.fix(1000)
model.fs.fwh.condense.overall_heat_transfer_coefficient.fix(100)
model.fs.fwh.desuperheat.area.fix(1000)
model.fs.fwh.desuperheat.overall_heat_transfer_coefficient.fix(10)
model.fs.fwh.cooling.area.fix(1000)
model.fs.fwh.cooling.overall_heat_transfer_coefficient.fix(10)

model.fs.fwh.initialize()
return(model)

create a feedwater heater model with all optional units and initialize
model = make_fwh_model()

Model Structure

The condensing section uses the FWHCondensing0D model to calculate a steam flow rate such that all steam is
condensed in the condensing section. This allows turbine steam extraction rates to be calculated. The other sections
are regular HeatExchanger models. The table below shows the unit models which make up the feedwater heater, and
the option to include or exclude them.

Unit Option Doc
condense – Condensing section (FWHCondensing0D)
desuperheat has_desuperheat Desuperheating section (HeatExchanger)
cooling has_drain_cooling Drain cooling section (HeatExchanger)
drain_mix has_drain_mixer Mixer for steam and other FWH drain (Mixer)

Degrees of Freedom

The area and overall_heat_transfer_coefficient should be fixed or constraints should be provided to
calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow
rate (inlet_1.flow_mol), the model will have 0 degrees of freedom.

See FWH0D and FWH0DData for full Python class details.

Feedwater Heater (Condensing Section 0D)

The condensing feedwater heater is the same as the HeatExchanger model with one additional constraint to calculate
the inlet flow rate such that all the entering steam is condensed. This model is suitable for steady state modeling, and

218 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

is intended to be used with the IAWPS95 property package. For dynamic modeling, the 1D feedwater heater models
should be used (not yet publicly available).

Degrees of Freedom

Usually area and overall_heat_transfer_coefficient are fixed or constraints are provided to calcu-
late overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate
(inlet_1.flow_mol), the model will have 0 degrees of freedom.

Variables

The variables are the same as HeatExchanger.

Constraints

In addition to the HeatExchanger constraints, there is one additional constraint to calculate the inlet steam flow such
that all steam condenses. The constraint is called extraction_rate_constraint, and is defined below.

ℎ𝑠𝑡𝑒𝑎𝑚,𝑜𝑢𝑡 = ℎ𝑠𝑎𝑡,𝑙𝑖𝑞𝑢𝑖𝑑(𝑃)

Where ℎ is molar enthalpy, and the saturated liquid enthalpy is a function of pressure.

FWHCondensing0D Class

class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0D(*args,
**kwargs)

Feedwater Heater Condensing Section The feedwater heater condensing section model is a normal 0D heat
exchanger model with an added constraint to calculate the steam flow such that the outlet of shell is a saturated
liquid.

Args: rule (function): A rule function or None. Default rule calls build(). concrete (bool): If True,
make this a toplevel model. Default - False. ctype (str): Pyomo ctype of the block. Default -
“Block” default (dict): Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be
True if dynamic = True, default - False. Valid values: { useDefault - get flag from
parent (default = False), True - construct holdup terms, False - do not construct
holdup terms}

hot_side_name Hot side name, sets control volume and inlet and outlet names

cold_side_name Cold side name, sets control volume and inlet and outlet names

hot_side_config A config block used to construct the hot side control volume. This
config can be given by the hot side name instead of hot_side_config.

4.9. IDAES Model Libraries 219

IDAES Documentation, Release 1.5.1.rc0

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Materi-
alBalanceType.useDefault - refer to property package for default balance
type **MaterialBalanceType.none - exclude material balances, MaterialBal-
anceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total -
use total material balance.}

energy_balance_type Indicates what type of energy balance should be con-
structed, default - EnergyBalanceType.useDefault. Valid values: { Ener-
gyBalanceType.useDefault - refer to property package for default bal-
ance type **EnergyBalanceType.none - exclude energy balances, Energy-
BalanceType.enthalpyTotal - single enthalpy balance for material, Energy-
BalanceType.enthalpyPhase - enthalpy balances for each phase, EnergyBal-
anceType.energyTotal - single energy balance for material, EnergyBalance-
Type.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be
constructed, default - MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances, Momentum-
BalanceType.pressureTotal - single pressure balance for material, Momen-
tumBalanceType.pressurePhase - pressure balances for each phase, Momen-
tumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each
phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be
constructed, default - False. Valid values: { True - include pressure change
terms, False - exclude pressure change terms.}

property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package
from parent model or flowsheet, PropertyParameterObject - a PropertyParam-
eterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values:
{ see property package for documentation.}

cold_side_config A config block used to construct the cold side control volume.
This config can be given by the cold side name instead of cold_side_config.

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Materi-
alBalanceType.useDefault - refer to property package for default balance
type **MaterialBalanceType.none - exclude material balances, MaterialBal-
anceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total -
use total material balance.}

energy_balance_type Indicates what type of energy balance should be con-
structed, default - EnergyBalanceType.useDefault. Valid values: { Ener-

220 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

gyBalanceType.useDefault - refer to property package for default bal-
ance type **EnergyBalanceType.none - exclude energy balances, Energy-
BalanceType.enthalpyTotal - single enthalpy balance for material, Energy-
BalanceType.enthalpyPhase - enthalpy balances for each phase, EnergyBal-
anceType.energyTotal - single energy balance for material, EnergyBalance-
Type.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be
constructed, default - MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances, Momentum-
BalanceType.pressureTotal - single pressure balance for material, Momen-
tumBalanceType.pressurePhase - pressure balances for each phase, Momen-
tumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each
phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: { True - include phase equilibrium
terms False - exclude phase equilibrium terms.}

has_pressure_change Indicates whether terms for pressure change should be
constructed, default - False. Valid values: { True - include pressure change
terms, False - exclude pressure change terms.}

property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package
from parent model or flowsheet, PropertyParameterObject - a PropertyParam-
eterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values:
{ see property package for documentation.}

delta_temperature_callback Callback for for temperature difference calculations

flow_pattern Heat exchanger flow pattern, default - HeatExchanger-
FlowPattern.countercurrent. Valid values: { HeatExchangerFlowPat-
tern.countercurrent - countercurrent flow, HeatExchangerFlowPat-
tern.cocurrent - cocurrent flow, HeatExchangerFlowPattern.crossflow -
cross flow, factor times countercurrent temperature difference.}

initialize (dict): ProcessBlockData config for individual elements. Keys are BlockData in-
dexes and values are dictionaries described under the “default” argument above.

idx_map (function): Function to take the index of a BlockData element and return the in-
dex in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns: (FWHCondensing0D) New instance

FWHCondensing0DData Class

class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData(component)

build()
Building model

4.9. IDAES Model Libraries 221

IDAES Documentation, Release 1.5.1.rc0

Parameters None –

Returns None

initialize(*args, **kwargs)
Use the regular heat exchanger initialization, with the extraction rate constraint deactivated; then it acti-
vates the constraint and calculates a steam inlet flow rate.

Turbine (Inlet Stage)

This is a steam power generation turbine model for the inlet stage. The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation
Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineInletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineInletStage(default={"property_package": m.fs.properties})
hin = iapws95.htpx(T=880, P=2.4233e7)
set inlet
m.fs.turb.inlet[:].enth_mol.fix(hin)
m.fs.turb.inlet[:].flow_mol.fix(26000/4.0)
m.fs.turb.inlet[:].pressure.fix(2.4233e7)
m.fs.turb.eff_nozzle.fix(0.95)
m.fs.turb.blade_reaction.fix(0.9)
m.fs.turb.flow_coeff.fix(1.053/3600.0)
m.fs.turb.blade_velocity.fix(110.0)
m.fs.turb.efficiency_mech.fix(0.98)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge pressure are fixed. There are also a few
variables which are turbine parameters and are usually fixed. See the variables section for more information.

Model Structure

The turbine inlet stage model contains one ControlVolume0DBlock block called control_volume and inherits the Pres-
sureChanger model using the isentropic option.

222 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variables

The variables below are defined in the TurbineInletStage model. Additional variables are inherited from the Pres-
sureChanger model model.

Variable Sym-
bol

Index
Sets

Doc

blade_reaction 𝑅 None Blade reaction
eff_nozzle 𝜂𝑛𝑜𝑧𝑧𝑙𝑒 None Nozzle efficiency
efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical Efficiency (accounts for losses in bearings. . .)
flow_coeff 𝐶𝑓𝑙𝑜𝑤 None Turbine stage flow coefficient [kg*C^0.5/Pa/s]
blade_velocity 𝑉𝑟𝑏𝑙 None Turbine blade velocity (should be constant while running)

[m/s]
delta_enth_isentropic∆ℎ𝑖𝑠𝑒𝑛 time Isentropic enthalpy change through stage [J/mol]

The table below shows important variables inherited from the pressure changer model.

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]

ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure
(︁

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁

Expressions

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss
[W]

power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bear-
ings. . .) [W]

steam_entering_velocity𝑉0 time Steam velocity entering stage [m/s]

The expression defined below provides a calculation for steam velocity entering the stage, which is used in the effi-
ciency calculation.

𝑉0 = 1.414

√︃
−(1 −𝑅)∆ℎ𝑖𝑠𝑒𝑛
𝑊𝑇𝑖𝑛𝜂𝑛𝑜𝑧𝑧𝑒𝑙

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this model con-
tains two more constraints, one to estimate efficiency and one pressure-flow relation. From the isentropic pressure
changer model, these constraints eliminate the need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

𝜂𝑖𝑠𝑒𝑛 = 2
𝑉𝑟𝑏𝑙
𝑉0

⎡⎣(︂√1 −𝑅− 𝑉𝑟𝑏𝑙
𝑉0

)︂
+

√︃(︂√
1 −𝑅− 𝑉𝑟𝑏𝑙

𝑉0

)︂2

+𝑅

⎤⎦

4.9. IDAES Model Libraries 223

IDAES Documentation, Release 1.5.1.rc0

The pressure-flow relation is given by:

�̇� = 𝐶𝑓𝑙𝑜𝑤
𝑃𝑖𝑛√

𝑇𝑖𝑛 − 273.15

⎯⎸⎸⎷ 𝛾

𝛾 − 1

[︃(︂
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︂ 2
𝛾

−
(︂
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︂ 𝛾+1
𝛾

]︃

Initialization

The initialization method for this model will save the current state of the model before commencing initialization and
reloads it afterwards. The state of the model will be the same after initialization, only the initial guesses for unfixed
variables will be changed. To initialize this model, provide a starting value for the inlet port variables. Then provide a
guess for one of: discharge pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow coefficient that is incompatible with the given
flow rate resulting in an infeasible problem.

TurbineInletStage Class

class idaes.power_generation.unit_models.turbine_inlet.TurbineInletStage(*args,
**kwargs)

Inlet stage steam turbine model

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

224 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineInletStage) New instance

TurbineInletStageData Class

class idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData(component)

build()

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’max_iter’: 30, ’tol’: 1e-06})
Initialize the inlet turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters

• state_args (dict) – Initial state for property initialization

• outlvl (int) – Amount of output (0 to 3) 0 is lowest

• solver (str) – Solver to use for initialization

• optarg (dict) – Solver arguments dictionary

4.9. IDAES Model Libraries 225

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Turbine (Outlet Stage)

This is a steam power generation turbine model for the outlet stage. The turbine outlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation
Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineOutletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineOutletStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(47115)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e4)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge pressure are fixed. There are also a few
variables which are turbine parameters and are usually fixed. See the variables section for more information.

Model Structure

The turbine outlet stage model contains one ControlVolume0DBlock block called control_volume and inherits the
PressureChanger model using the isentropic option.

Variables

The variables below are defined int the TurbineInletStage model. Additional variables are in inherited from the Pres-
sureChanger model model.

Variable Symbol Index
Sets

Doc

eff_dry 𝜂𝑑𝑟𝑦 None Turbine efficiency when no liquid is present.
efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical Efficiency (accounts for losses in bear-

ings. . .)
flow_coeff 𝐶𝑓𝑙𝑜𝑤 None Turbine stage flow coefficient [kg*C^0.5/Pa/s]
design_exhaust_flow_vol𝑉𝑑𝑒𝑠,𝑒𝑥ℎ𝑎𝑢𝑠𝑡 None Design volumetric flow out of stage [m^3/s]

The table below shows important variables inherited from the pressure changer model.

226 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]

ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure
(︁

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁

Expressions

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss [W]
power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bearings. . .)

[W]
tel TEL time Total exhaust loss [J/mol]

The expression defined below provides a total exhaust loss.

TEL = 1 × 106 *
(︀
−0.0035𝑓5 + 0.022𝑓4 − 0.0542𝑓3 + 0.0638𝑓2 − 0.0328𝑓 + 0.0064

)︀
Where 𝑓 is the total volumetric flow of the exhaust divided by the design flow.

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this model con-
tains two more constraints, one to estimate efficiency and one pressure-flow relation. From the isentropic pressure
changer model, these constraints eliminate the need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

𝜂𝑖𝑠𝑒𝑛 = 𝜂𝑑𝑟𝑦𝑥 (1 − 0.65(1 − 𝑥)) *
(︂

1 +
TEL

∆ℎ𝑖𝑠𝑒𝑛

)︂
Where 𝑥 is the steam quality (vapor fraction).

The pressure-flow relation is given by the Stodola Equation:

�̇�
√
𝑇𝑖𝑛− 273.15 = 𝐶𝑓𝑙𝑜𝑤𝑃𝑖𝑛

√︀
1 − 𝑃𝑟2

Initialization

The initialization method for this model will save the current state of the model before commencing initialization and
reloads it afterwards. The state of the model will be the same after initialization, only the initial guesses for unfixed
variables will be changed. To initialize this model, provide a starting value for the inlet port variables. Then provide a
guess for one of: discharge pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow coefficient that is incompatible with the given
flow rate resulting in an infeasible problem.

4.9. IDAES Model Libraries 227

IDAES Documentation, Release 1.5.1.rc0

TurbineOutletStage Class

class idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStage(*args,
**kwargs)

Outlet stage steam turbine model

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-

228 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineOutletStage) New instance

TurbineOutletStageData Class

class idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData(component)

build()

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’max_iter’: 30, ’tol’: 1e-06})
Initialize the outlet turbine stage model. This deactivates the specialized constraints, then does the isen-
tropic turbine initialization, then reactivates the constraints and solves.

Parameters

• state_args (dict) – Initial state for property initialization

• outlvl – sets output level of initialization routine

• solver (str) – Solver to use for initialization

• optarg (dict) – Solver arguments dictionary

Turbine (Stage)

This is a steam power generation turbine model for the stages between the inlet and outlet. This model inherits the
PressureChanger model with the isentropic options. The initialization scheme is the same as the TurbineInletStage
model.

Example

from pyomo.environ import ConcreteModel, SolverFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import TurbineStage

(continues on next page)

4.9. IDAES Model Libraries 229

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(70000)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e6)
m.fs.turb.efficiency_isentropic[:].fix(0.8)
m.fs.turb.ratioP[:].fix(0.7)
m.fs.turb.initialize()

Variables

This model adds a variable to the base PressureChanger model to account for mechanical efficiency .

Variable Symbol Index Sets Doc
efficiency_mech 𝜂𝑚𝑒𝑐ℎ None Mechanical Efficiency (accounts for losses in bearings. . .)

The table below shows important variables inherited from the pressure changer model.

Variable Symbol Index Sets Doc
efficiency_isentropic 𝜂𝑖𝑠𝑒𝑛 time Isentropic efficiency
deltaP ∆𝑃 time Pressure change (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) [Pa]

ratioP 𝑃𝑟𝑎𝑡𝑖𝑜 time Ratio of discharge pressure to inlet pressure
(︁

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛

)︁
𝜂𝑖𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐,𝑡 efficiency_isentropic Isentropic assumption only

Expressions

This model provides two expressions that are not available in the pressure changer model.

Variable Sym-
bol

Index
Sets

Doc

power_thermo �̇�𝑡ℎ𝑒𝑟𝑚𝑜 time Turbine stage power output not including mechanical loss [W]
power_shaft �̇�𝑠ℎ𝑎𝑓𝑡 time Turbine stage power output including mechanical loss (bearings. . .)

[W]

Constraints

There are no additional constraints.

230 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in a function to ensure the state
after initialization is the same as before initialization. The arguments to the initialization method are the same as
PressureChanger.

TurbineStage Class

class idaes.power_generation.unit_models.turbine_stage.TurbineStage(*args,
**kwargs)

Basic steam turbine model

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

4.9. IDAES Model Libraries 231

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineStage) New instance

TurbineStageData Class

class idaes.power_generation.unit_models.turbine_stage.TurbineStageData(component)

build()

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’max_iter’: 30, ’tol’: 1e-06})
Initialize the turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters

• state_args (dict) – Initial state for property initialization

• outlvl – sets output level of initialization routine

• solver (str) – Solver to use for initialization

• optarg (dict) – Solver arguments dictionary

Turbine (Multistage)

This is a composite model for a power plant turbine with high, intermediate and low pressure sections. This model
contains an inlet stage with throttle valves for partial arc admission and optional splitters for steam extraction.

232 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

The figure below shows the layout of the mutistage turbine model. Optional splitters provide for steam extraction. The
splitters can have two or more outlets (one being the main steam outlet). The streams that connect one stage to the
next can also be omitted. This allows for connecting additional unit models (usually reheaters) between stages.

Fig. 2: MultiStage Turbine Model

Example

This example sets up a turbine multistage turbine model similar to what could be found in a power plant steam cycle.
There are 7 high-pressure stages, 14 intermediate-pressure stages, and 11 low-pressure stages. Steam extractions are
provided after stages hp4, hp7, ip5, ip14, lp4, lp7, lp9, lp11. The extraction at ip14 uses a splitter with three outlets,
one for the main steam, one for the boiler feed pump, and one for a feedwater heater. There is a disconnection between
the HP and IP sections so that steam can be sent to a reheater. In this example, a heater block is a stand-in for a reheater
model.

from pyomo.environ import (ConcreteModel, SolverFactory, TransformationFactory,
Constraint, value)

from pyomo.network import Arc

from idaes.core import FlowsheetBlock
from idaes.unit_models import Heater
from idaes.power_generation.unit_models import (

TurbineMultistage, TurbineStage, TurbineInletStage, TurbineOutletStage)
from idaes.generic_models.properties import iapws95

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = TurbineMultistage(default={

"property_package": m.fs.properties,
"num_hp": 7,
"num_ip": 14,
"num_lp": 11,
"hp_split_locations": [4,7],
"ip_split_locations": [5, 14],
"lp_split_locations": [4,7,9,11],
"hp_disconnect": [7], # 7 is last stage in hp so disconnect hp from ip
"ip_split_num_outlets": {14:3}})

Add reheater (for example using a simple heater block)
m.fs.reheat = Heater(default={"property_package": m.fs.properties})
Add Arcs (streams) to connect the HP and IP sections through reheater
m.fs.hp_to_reheat = Arc(source=m.fs.turb.hp_split[7].outlet_1,

destination=m.fs.reheat.inlet)
m.fs.reheat_to_ip = Arc(source=m.fs.reheat.outlet,

destination=m.fs.turb.ip_stages[1].inlet)
Set the turbine inlet conditions and an initial flow guess
p = 2.4233e7
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.inlet_split.inlet.enth_mol[0].fix(hin)
m.fs.turb.inlet_split.inlet.flow_mol[0].fix(26000)
m.fs.turb.inlet_split.inlet.pressure[0].fix(p)

(continues on next page)

4.9. IDAES Model Libraries 233

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

Set the inlet of the ip section for initialization, since it is disconnected
p = 7.802e+06
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.ip_stages[1].inlet.enth_mol[0].value = hin
m.fs.turb.ip_stages[1].inlet.flow_mol[0].value = 25220.0
m.fs.turb.ip_stages[1].inlet.pressure[0].value = p
Set the efficency and pressure ratios of stages other than inlet and outlet
for i, s in turb.hp_stages.items():

s.ratioP[:] = 0.88
s.efficiency_isentropic[:] = 0.9

for i, s in turb.ip_stages.items():
s.ratioP[:] = 0.85
s.efficiency_isentropic[:] = 0.9

for i, s in turb.lp_stages.items():
s.ratioP[:] = 0.82
s.efficiency_isentropic[:] = 0.9

Usually these fractions would be determined by the boiler feed water heater
network. Since this example doesn't include them, just fix split fractions
turb.hp_split[4].split_fraction[0,"outlet_2"].fix(0.03)
turb.hp_split[7].split_fraction[0,"outlet_2"].fix(0.03)
turb.ip_split[5].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_3"].fix(0.15)
turb.lp_split[4].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[7].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[9].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[11].split_fraction[0,"outlet_2"].fix(0.04)
unfix inlet flow for pressure driven simulation
turb.inlet_split.inlet.flow_mol.unfix()
Set the inlet steam mixer to use the constraints that the pressures of all
inlet streams are equal
turb.inlet_mix.use_equal_pressure_constraint()
Initialize turbine
turb.initialize(outlvl=1)
Copy conditions out of turbine to initialize the reheater
for t in m.fs.time:

m.fs.reheat.inlet.flow_mol[t].value = \
value(turb.hp_split[7].outlet_1_state[t].flow_mol)

m.fs.reheat.inlet.enth_mol[t].value = \
value(turb.hp_split[7].outlet_1_state[t].enth_mol)

m.fs.reheat.inlet.pressure[t].value = \
value(turb.hp_split[7].outlet_1_state[t].pressure)

initialize the reheater
m.fs.reheat.initialize(outlvl=4)
Add constraint to the reheater to result in 880K outlet temperature
def reheat_T_rule(b, t):

return m.fs.reheat.control_volume.properties_out[t].temperature == 880
m.fs.reheat.temperature_out_equation = Constraint(m.fs.reheat.time_ref,

rule=reheat_T_rule)
Expand the Arcs connecting the turbine to the reheater
TransformationFactory("network.expand_arcs").apply_to(m)
Fix the outlet pressure (usually determined by condenser)
m.fs.turb.outlet_stage.control_volume.properties_out[0].pressure.fix()

Solve the pressure driven flow model with reheat
solver.solve(m, tee=True)

234 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Unit Models

The multistage turbine model contains the models in the table below. The splitters for steam extraction are not present
if a turbine section contains no steam extractions.

Unit Index Sets Doc
inlet_split None Splitter to split the main steam feed into steams for each arc (Separator)
throttle_valve Admission Arcs Throttle valves for each admission arc (SteamValve)
inlet_stage Admission Arcs Parallel inlet turbine stages that represent admission arcs (TurbineInlet)
inlet_mix None Mixer to combine the streams from each arc back to one stream (Mixer)
hp_stages HP stages Turbine stages in the high-pressure section (TurbineStage)
ip_stages IP stages Turbine stages in the intermediate-pressure section (TurbineStage)
lp_stages LP stages Turbine stages in the low-pressure section (TurbineStage)
hp_splits subset of HP

stages
Extraction splitters in the high-pressure section (Separator)

ip_splits subset of IP
stages

Extraction splitters in the high-pressure section (Separator)

lp_splits subset of LP
stages

Extraction splitters in the high-pressure section (Separator)

outlet_stage None The final stage in the turbine, which calculates exhaust losses (Turbine-
Outlet)

Initialization

The initialization approach is to sequentially initialize each sub-unit using the outlet of the previous model. Before
initializing the model, the inlet of the turbine, and any stage that is disconnected should be given a reasonable guess.
The efficiency and pressure ration of the stages in the HP, IP and LP sections should be specified. For the inlet and
outlet stages the flow coefficient should be specified. Valve coefficients should also be specified. A reasonable guess
for split fractions should also be given for any extraction splitters present. The most likely cause of initialization failure
is flow coefficients in inlet stage, outlet stage, or valves that do not pair well with the specified flow rates.

TurbineMultistage Class

class idaes.power_generation.unit_models.turbine_multistage.TurbineMultistage(*args,
**kwargs)

Multistage steam turbine with optional reheat and extraction

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether the model is dynamic.

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

4.9. IDAES Model Libraries 235

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_phase_equilibrium Argument indicating whether phase equilibrium should be cal-
culated for the resulting mixed stream, default - False. Valid values: { True - calcu-
late phase equilibrium in mixed stream, False - do not calculate equilibrium in mixed
stream.}

material_balance_type Indicates what type of mass balance should be constructed, de-
fault - MaterialBalanceType.componentTotal‘. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

num_parallel_inlet_stages Number of parallel inlet stages to simulate partial arc admis-
sion. Default=4

num_hp Number of high pressure stages not including inlet stage

num_ip Number of intermediate pressure stages

num_lp Number of low pressure stages not including outlet stage

hp_split_locations A list of index locations of splitters in the HP section. The indexes
indicate after which stage to include splitters. 0 is between the inlet stage and the first
regular HP stage.

ip_split_locations A list of index locations of splitters in the IP section. The indexes
indicate after which stage to include splitters.

lp_split_locations A list of index locations of splitters in the LP section. The indexes
indicate after which stage to include splitters.

hp_disconnect HP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

ip_disconnect IP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

lp_disconnect LP Turbine stages to not connect to next with an arc. This is usually used
to insert addtional units between stages on a flowsheet, such as a reheater

hp_split_num_outlets Dict, hp split index: number of splitter outlets, if not 2

ip_split_num_outlets Dict, ip split index: number of splitter outlets, if not 2

lp_split_num_outlets Dict, lp split index: number of splitter outlets, if not 2

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (TurbineMultistage) New instance

236 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

TurbineMultistageData Class

class idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData(component)

build()
General build method for UnitModelBlockData. This method calls a number of sub-methods which auto-
mate the construction of expected attributes of unit models.

Inheriting models should call super().build.

Parameters None –

Returns None

initialize(outlvl=0, solver=’ipopt’, optarg={’max_iter’: 35, ’tol’: 1e-06},
copy_disconneted_flow=True)

Initialize

throttle_cv_fix(value)
Fix the thottle valve coefficients. These are generally the same for each of the parallel stages so this
provides a convenient way to set them.

Parameters value – The value to fix the turbine inlet flow coefficients at

turbine_inlet_cf_fix(value)
Fix the inlet turbine stage flow coefficient. These are generally the same for each of the parallel stages so
this provides a convenient way to set them.

Parameters value – The value to fix the turbine inlet flow coefficients at

turbine_outlet_cf_fix(value)
Fix the inlet turbine stage flow coefficient. These are generally the same for each of the parallel stages so
this provides a convenient way to set them.

Parameters value – The value to fix the turbine inlet flow coefficients at

Steam/Water Valve

This is a steam power generation turbine model for the stages between the inlet and outlet. This model inherits the
PressureChanger model with the adiabatic options. Beyond the base pressure changer model this provides a pressure
flow relation as a function of the valve opening fraction.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import SteamValve
from idaes.generic_models.properties import iapws95
from idaes.ui.report import degrees_of_freedom, active_equalities

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})

(continues on next page)

4.9. IDAES Model Libraries 237

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.valve = SteamValve(default={"property_package": m.fs.properties})

hin = iapws95.htpx(T=880, P=2.4233e7)
set inlet
m.fs.valve.inlet.enth_mol[0].fix(hin)
m.fs.valve.inlet.flow_mol[0].fix(26000/4.0)
m.fs.valve.inlet.pressure[0].fix(2.5e7)
m.fs.valve.Cv.fix(0.01)
m.fs.valve.valve_opening.fix(0.5)
m.fs.valve.initialize(outlvl=1)

Parameters

Expres-
sion

Sym-
bol

Index
Sets

Doc

flow_scale 𝑠𝑓 None Factor for scaling the pressure-flow equation, should be same magnitude as
expected flow rate

Variables

This model adds a variable to account for mechanical efficiency to the base PressureChanger model.

Variable Symbol Index Sets Doc
Cv 𝐶𝑣 None Valve coefficient for liquid [mol/s/Pa^0.5] for vapor [mol/s/Pa]
valve_opening 𝑥 time The fraction that the valve is open from 0 to 1

Expressions

Currently this model provides two additional expressions, with are not available in the pressure changer model.

Expression Sym-
bol

Index
Sets

Doc

valve_function 𝑓(𝑥) time This is a valve function that describes how the fraction open affects
flow.

Constraints

The pressure flow relation is added to the inherited constraints from the PressureChanger model.

If the phase option is set to "Liq" the following equation describes the pressure-flow relation.

1

𝑠2𝑓
𝐹 2 =

1

𝑠2𝑓
𝐶2

𝑣 (𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡) 𝑓(𝑥)2

If the phase option is set to "Vap" the following equation describes the pressure-flow relation.

1

𝑠2𝑓
𝐹 2 =

1

𝑠2𝑓
𝐶2

𝑣

(︀
𝑃 2
𝑖𝑛 − 𝑃 2

𝑜𝑢𝑡

)︀
𝑓(𝑥)2

238 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in a function to ensure the state
after initialization is the same as before initialization. The arguments to the initialization method are the same as
PressureChanger.

SteamValve Class

class idaes.power_generation.unit_models.valve_steam.SteamValve(*args,
**kwargs)

Basic steam valve models

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms, False - do not construct holdup terms}

material_balance_type Indicates what type of mass balance should be con-
structed, default - MaterialBalanceType.useDefault. Valid values: { Ma-
terialBalanceType.useDefault - refer to property package for default bal-
ance type **MaterialBalanceType.none - exclude material balances, Materi-
alBalanceType.componentPhase - use phase component balances, MaterialBal-
anceType.componentTotal - use total component balances, MaterialBalance-
Type.elementTotal - use total element balances, MaterialBalanceType.total - use
total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault. Valid values: { EnergyBalance-
Type.useDefault - refer to property package for default balance type **Energy-
BalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal -
single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase, EnergyBalanceType.energyTotal - single energy balance for
material, EnergyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

4.9. IDAES Model Libraries 239

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

has_phase_equilibrium Indicates whether terms for phase equilibrium should be con-
structed, default = False. Valid values: { True - include phase equilibrium terms
False - exclude phase equilibrium terms.}

compressor Indicates whether this unit should be considered a compressor (True (de-
fault), pressure increase) or an expander (False, pressure decrease).

thermodynamic_assumption Flag to set the thermodynamic assumption to use for
the unit. - ThermodynamicAssumption.isothermal (default) - ThermodynamicAs-
sumption.isentropic - ThermodynamicAssumption.pump - ThermodynamicAssump-
tion.adiabatic

property_package Property parameter object used to define property calculations, de-
fault - useDefault. Valid values: { useDefault - use default package from parent
model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

property_package_args A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default - None. Valid values: { see prop-
erty package for documentation.}

valve_function The type of valve function, if custom provide an expression rule with
the valve_function_rule argument. default - ValveFunctionType.linear Valid val-
ues - { ValveFunctionType.linear, ValveFunctionType.quick_opening, ValveFunction-
Type.equal_percentage, ValveFunctionType.custom}

valve_function_rule This is a rule that returns a time indexed valve function expression.
This is required only if valve_function==ValveFunctionType.custom

phase Expected phase of fluid in valve in {“Liq”, “Vap”}

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (SteamValve) New instance

SteamValveData Class

class idaes.power_generation.unit_models.valve_steam.SteamValveData(component)

build()

Parameters None –

Returns None

initialize(state_args={}, outlvl=0, solver=’ipopt’, optarg={’max_iter’: 30, ’tol’: 1e-06})
Initialize the turbine stage model. This deactivates the specialized constraints, then does the isentropic
turbine initialization, then reactivates the constraints and solves.

Parameters

• state_args (dict) – Initial state for property initialization

• outlvl – sets output level of initialization routine

• solver (str) – Solver to use for initialization

240 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

• optarg (dict) – Solver arguments dictionary

BoilerHeatExchanger

The BoilerHeatExchanger model can be used to represent boiler heat exchangers in sub-critical and super critical
power plant flowsheets (i.e. econmizer, primary superheater, secondary superheater, finishing superheater, reheater,
etc.). The model consists of a shell and tube crossflow heat exchanger, in which the shell is used as the gas side and
the tube is used as the water or steam side. Rigorous heat transfer calculations (convective heat transfer for shell side,
and convective heat transfer for tube side) and shell and tube pressure drop calculations have been included.

The BoilerHeatExchanger model can be imported from idaes.power_generation.unit_models, while
additional rules and utility functions can be imported from idaes.power_generation.unit_models.
boiler_heat_exchanger.

Example

The example below demonstrates how to initialize the BoilerHeatExchanger model, and override the default tempera-
ture difference calculation.

Import Pyomo libraries
from pyomo.environ import ConcreteModel, SolverFactory, value
Import IDAES core
from idaes.core import FlowsheetBlock
Import Unit Model Modules
from idaes.generic_models.properties import iapws95
import ideal flue gas prop pack
from idaes.power_generation.properties.IdealProp_FlueGas import FlueGasParameterBlock
Import Power Plant HX Unit Model
from idaes.power_generation.unit_models.boiler_heat_exchanger import
→˓BoilerHeatExchanger, TubeArrangement, \

DeltaTMethod
import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.unit_models.heat_exchanger import delta_temperature_amtd_callback
from idaes.generic_models.properties import iapws95

Create a Concrete Model as the top level object
m = ConcreteModel()

Add a flowsheet object to the model
m.fs = FlowsheetBlock(default={"dynamic": False})

Add property packages to flowsheet library
m.fs.prop_water = iapws95.Iapws95ParameterBlock()
m.fs.prop_fluegas = FlueGasParameterBlock()

Create unit models
m.fs.ECON = BoilerHeatExchanger(default=

{"side_1_property_package": m.fs.prop_water,
"side_2_property_package": m.fs.prop_fluegas,
"has_pressure_change": True,
"has_holdup": False,
"delta_T_method": DeltaTMethod.counterCurrent,
"tube_arrangement": TubeArrangement.inLine,
"side_1_water_phase": "Liq",

(continues on next page)

4.9. IDAES Model Libraries 241

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

"has_radiation": False})

Set Inputs
BFW Boiler Feed Water inlet temeperature = 555 F = 563.706 K
inputs based on NETL Baseline Report v3 (SCPC 650 MW net, no carbon capture case)
h = iapws95.htpx(563.706, 2.5449e7)
m.fs.ECON.side_1_inlet.flow_mol[0].fix(24678.26) # mol/s
m.fs.ECON.side_1_inlet.enth_mol[0].fix(h)
m.fs.ECON.side_1_inlet.pressure[0].fix(2.5449e7) # Pa

FLUE GAS Inlet from Primary Superheater
FGrate = 28.3876e3 # mol/s equivalent of ~1930.08 klb/hr
Use FG molar composition to set component flow rates (baseline report)
m.fs.ECON.side_2_inlet.flow_component[0,"H2O"].fix(FGrate*8.69/100)
m.fs.ECON.side_2_inlet.flow_component[0,"CO2"].fix(FGrate*14.49/100)
m.fs.ECON.side_2_inlet.flow_component[0,"N2"].fix(FGrate*(8.69

+14.49+2.47+0.06+0.2)/100)
m.fs.ECON.side_2_inlet.flow_component[0,"O2"].fix(FGrate*2.47/100)
m.fs.ECON.side_2_inlet.flow_component[0,"NO"].fix(FGrate*0.0006)
m.fs.ECON.side_2_inlet.flow_component[0,"SO2"].fix(FGrate*0.002)
m.fs.ECON.side_2_inlet.temperature[0].fix(682.335) # K
m.fs.ECON.side_2_inlet.pressure[0].fix(100145) # Pa
economizer design variables and parameters
ITM = 0.0254 # inch to meter conversion
Based on NETL Baseline Report Rev3
m.fs.ECON.tube_di.fix((2-2*0.188)*ITM) # calc inner diameter
(2 = outer diameter, thickness = 0.188)
m.fs.ECON.tube_thickness.fix(0.188*ITM) # tube thickness
m.fs.ECON.pitch_x.fix(3.5*ITM)
pitch_y = (54.5) gas path transverse width /columns
m.fs.ECON.pitch_y.fix(5.03*ITM)
m.fs.ECON.tube_length.fix(53.41*12*ITM) # use tube length (53.41 ft)
m.fs.ECON.tube_nrow.fix(36*2.5) # use to match baseline performance
m.fs.ECON.tube_ncol.fix(130) # 130 from NETL report
m.fs.ECON.nrow_inlet.fix(2)
m.fs.ECON.delta_elevation.fix(50)
parameters
heat transfer resistance due to tube side fouling (water scales)
m.fs.ECON.tube_rfouling = 0.000176
heat transfer resistance due to tube shell fouling (ash deposition)
m.fs.ECON.shell_rfouling = 0.00088
if m.fs.ECON.config.has_radiation is True:

m.fs.ECON.emissivity_wall.fix(0.7) # wall emissivity
correction factor for overall heat transfer coefficient
m.fs.ECON.fcorrection_htc.fix(1.5)
correction factor for pressure drop calc tube side
m.fs.ECON.fcorrection_dp_tube.fix(1.0)
correction factor for pressure drop calc shell side
m.fs.ECON.fcorrection_dp_shell.fix(1.0)

Initialize the model
m.fs.ECON.initialize()

242 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees of freedom, which can be fixed for it
to be fully specified. Things that are frequently fixed are two of:

• heat transfer area,

• heat transfer coefficient, or

• temperature approach.

In order to capture off design conditions and heat transfer coefficients at ramp up/down or load following conditions,
the BoilerHeatExanger model includes rigorous heat transfer calculations. Therefore, additional degrees of freedom
are required to calculate Nusselt, Prandtl, Reynolds numbers, such as:

• tube_di (inner diameter)

• tube length

• tube number of rows (tube_nrow), columns (tube_ncol), and inlet flow (nrow_inlet)

• pitch in x and y axis (pitch_x and pitch_y, respectively)

If pressure drop calculation is enabled, additional degrees of freedom are required:

• elevation with respect to ground level (delta_elevation)

• tube fouling resistance (tube_r_fouling)

• shell fouling resistance (shell_r_fouling)

Model Structure

The BoilerHeatExchanger model contains two ControlVolume0DBlock blocks. By default the gas side is
named shell and the water/steam side is named tube. These names are configurable. The sign convention is that
duty is positive for heat flowing from the hot side to the cold side.

The control volumes are configured the same as the ControlVolume0DBlock in the Heater model. The
BoilerHeatExchanger model contains additional constraints that calculate the amount of heat transferred from
the hot side to the cold side.

The BoilerHeatExchanger has two inlet ports and two outlet ports. By default these are shell_inlet,
tube_inlet, shell_outlet, and tube_outlet. If the user supplies different hot and cold side names the
inlet and outlets are named accordingly.

Variables

Variable Symbol Index Sets Doc
heat_duty 𝑄 time Heat transferred from hot side to the cold side
area 𝐴 None Heat transfer area
U 𝑈 time Heat transfer coefficient
delta_temperature ∆𝑇 time Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified
cold side is hotter than the specified hot side this value will be negative.

4.9. IDAES Model Libraries 243

IDAES Documentation, Release 1.5.1.rc0

Constraints

The default constraints can be overridden by providing alternative rules for the heat transfer equation, temperature
difference, heat transfer coefficient, shell and tube pressure drop. This section describes the default constraints.

Heat transfer from shell to tube:

𝑄 = 𝑈𝐴∆𝑇

Temperature difference is:

∆𝑇 =
∆𝑇1 − ∆𝑇2

log𝑒

(︁
Δ𝑇1

Δ𝑇2

)︁
The overall heat transfer coefficient is calculated as a function of convective heat transfer shell and tube, and wall
conduction heat transfer resistance.

Convective heat transfer equations:

1

𝑈
* 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛ℎ𝑡𝑐 = [

1

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒
+

1

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙
+ 𝑟 + 𝑡𝑢𝑏𝑒𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔 + 𝑠ℎ𝑒𝑙𝑙𝑟𝑓𝑜𝑢𝑙𝑖𝑛𝑔]

ℎ𝑐𝑜𝑛𝑣𝑡𝑢𝑏𝑒 =
𝑁𝑢𝑡𝑢𝑏𝑒𝑘

𝑡𝑢𝑏𝑒𝑑𝑖

𝑁𝑢𝑡𝑢𝑏𝑒 = 0.023𝑅𝑒0.8𝑡𝑢𝑏𝑒𝑃𝑟
0.4
𝑡𝑢𝑏𝑒

𝑃𝑟𝑡𝑢𝑏𝑒 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑡𝑢𝑏𝑒 =
𝑡𝑢𝑏𝑒𝑑𝑖𝑉 𝜌

𝜇

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙 =
𝑁𝑢𝑠ℎ𝑒𝑙𝑙𝑘𝑓𝑙𝑢𝑒𝑔𝑎𝑠

𝑡𝑢𝑏𝑒𝑑𝑜

𝑁𝑢𝑠ℎ𝑒𝑙𝑙 = 𝑓𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑚𝑒𝑛𝑡0.33𝑅𝑒0.6𝑡𝑢𝑏𝑒𝑃𝑟
0.3333
𝑡𝑢𝑏𝑒

𝑃𝑟𝑠ℎ𝑒𝑙𝑙 =
𝐶𝑝𝜇

𝑘𝑀𝑤

𝑅𝑒𝑠ℎ𝑒𝑙𝑙 =
𝑡𝑢𝑏𝑒𝑑𝑜𝑉 𝜌

𝜇

𝑡𝑢𝑏𝑒𝑑𝑜 = 2 * 𝑡𝑢𝑏𝑒𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 + 𝑡𝑢𝑏𝑒𝑑𝑖

Wall heat conduction resistance equation:

𝑟 = 0.5 * 𝑡𝑢𝑏𝑒𝑑𝑜 * log (
𝑡𝑢𝑏𝑒𝑑𝑜
𝑡𝑢𝑏𝑒𝑑𝑖

) * 𝑘

where:

• hconv_tube : convective heat transfer resistance tube side (fluid water/steam) (W / m2 / K)

• hconv_shell : convective heat transfer resistance shell side (fluid Flue Gas) (W / m2 / K)

• Nu : Nusselt number

• Pr : Prandtl number

• Re : Reynolds number

• V: velocity (m/s)

244 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• tube_di : inner diameter of the tube (m)

• tube_do : outer diameter of the tube (m) (expression calculated by the model)

• tube_thickness : tube thickness (m)

• r = wall heat conduction resistance (K m^2 / W)

• k : thermal conductivity of the tube wall (W / m / K)

• 𝜌 : density (kg/m^3)

• 𝜇 : viscocity (kg/m/s)

• tube_r_fouling : tube side fouling resistance (K m^2 / W)

• shell_r_fouling : shell side fouling resistance (K m^2 / W)

• fcorrection_htc: correction factor for overall heat trasnfer

• f_arrangement: tube arrangement factor

Note: by default fcorrection_htc is set to 1, however, this variable can be used to match unit performance (i.e. as a
parameter estimation problem using real plant data).

Tube arrangement factor is a config argument with two different type of arrangements supported at the moment: 1.-
In-line tube arrangement factor (f_arrangement = 0.788), and 2.- Staggered tube arrangement factor (f_arrangement =
1). f_arrangement is a parameter that can be adjusted by the user.

The BoilerHeatExchanger includes an argument to compute heat tranfer due to radiation of the flue gases.
If has_radiation = True the model builds additional heat transfer calculations that will be added to the hconv_shell
resistances. Radiation effects are calculated based on the gas gray fraction and gas-surface radiation (between gas and
shell).

𝐺𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐 = 𝑓(𝑤𝑎𝑙𝑙𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦, 𝑔𝑎𝑠𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦)

ℎ𝑐𝑜𝑛𝑣𝑠ℎ𝑒𝑙𝑙𝑟𝑎𝑑 = 𝑓(𝑘𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛, 𝑓𝑟𝑎𝑑𝑔𝑎𝑠𝑔𝑟𝑎𝑦𝑓𝑟𝑎𝑐, 𝑇𝑔𝑎𝑠𝑖𝑛, 𝑇𝑔𝑎𝑠𝑜𝑢𝑡, 𝑇𝑓𝑙𝑢𝑖𝑑𝑖𝑛, 𝑇𝑓𝑙𝑢𝑖𝑑𝑜𝑢𝑡)

Note: Gas emissivity is calculated with surrogate models (see more details in boiler_heat_exchanger.py). Radiation =
True when flue gas temperatures are higher than 700 K (for example, when the model is used for units like Primary
superheater, Reheater, or Finishing Superheater; while Radiation = False when the model is used to represent the
economizer in a power plant flowsheet).

If pressure change is set to True, 𝑑𝑒𝑙𝑡𝑎𝑃𝑢𝑡𝑢𝑟𝑛𝑎𝑛𝑑𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟 are calculated

Tube side:

∆𝑃𝑡𝑢𝑏𝑒 = ∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 * 𝑔 * 𝜌𝑖𝑛 + 𝜌𝑜𝑢𝑡
2

∆𝑃𝑡𝑢𝑏𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑡𝑢𝑏𝑒𝑑𝑖𝜌, 𝑉𝑡𝑢𝑏𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑢𝑏𝑒𝑠, 𝑡𝑢𝑏𝑒𝑙𝑒𝑛𝑔𝑡ℎ)

∆𝑃𝑡𝑢𝑏𝑒𝑢𝑡𝑢𝑟𝑛 = 𝑓(𝜌, 𝑣𝑡𝑢𝑏𝑒, 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛)

where:

• 𝑘𝑙𝑜𝑠𝑠𝑢𝑡𝑢𝑟𝑛 : pressure loss coeficient of a tube u-turn

• g : is the acceleration of gravity 9.807 (m/s^2)

4.9. IDAES Model Libraries 245

IDAES Documentation, Release 1.5.1.rc0

Shell side:

∆𝑃𝑠ℎ𝑒𝑙𝑙 = 1.4∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝜌𝑉
2
𝑠ℎ𝑒𝑙𝑙

∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is calculated based on the tube arrangement type:

In-line: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =

0.044+
0.08(

𝑃𝑥
𝑡𝑢𝑏𝑒𝑑𝑜

)

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)

0.43+ 1.13

(
𝑃𝑥

𝑡𝑢𝑏𝑒𝑑𝑜
)

𝑅𝑒0.15

Staggered: ∆𝑃𝑠ℎ𝑒𝑙𝑙𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =

0.25+ 0.118

(
𝑃𝑦

𝑡𝑢𝑏𝑒𝑑𝑜
−1)1.08

𝑅𝑒0.16

Figure. Tube Arrangement

Fig. 3: Tube Arrangement

Class Documentation

Note: The hot_side_config and cold_side_config can also be supplied using the name of the hot and
cold sides (shell and tube by default) as in the example.

class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchanger(*args,
**kwargs)

Parameters

• rule (function) – A rule function or None. Default rule calls build().

• concrete (bool) – If True, make this a toplevel model. Default - False.

• ctype (str) – Pyomo ctype of the block. Default - “Block”

246 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

• default (dict) – Default ProcessBlockData config

Keys

dynamic Indicates whether this model will be dynamic or not, default = useDefault.
Valid values: { useDefault - get flag from parent (default = False), True - set as a
dynamic model, False - set as a steady-state model.}

has_holdup Indicates whether holdup terms should be constructed or not. Must be True
if dynamic = True, default - False. Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

side_1_property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package from
parent model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock ob-
ject.}

side_1_property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation.}

side_2_property_package Property parameter object used to define property calcula-
tions, default - useDefault. Valid values: { useDefault - use default package from
parent model or flowsheet, PhysicalParameterObject - a PhysicalParameterBlock ob-
ject.}

side_2_property_package_args A ConfigBlock with arguments to be passed to a prop-
erty block(s) and used when constructing these, default - None. Valid values: { see
property package for documentation.}

material_balance_type Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase. Valid values: { MaterialBalance-
Type.none - exclude material balances, MaterialBalanceType.componentPhase - use
phase component balances, MaterialBalanceType.componentTotal - use total com-
ponent balances, MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}

energy_balance_type Indicates what type of energy balance should be constructed, de-
fault - EnergyBalanceType.enthalpyTotal. Valid values: { EnergyBalanceType.none
- exclude energy balances, EnergyBalanceType.enthalpyTotal - single ethalpy bal-
ance for material, EnergyBalanceType.enthalpyPhase - ethalpy balances for each
phase, EnergyBalanceType.energyTotal - single energy balance for material, Ener-
gyBalanceType.energyPhase - energy balances for each phase.}

momentum_balance_type Indicates what type of momentum balance should be con-
structed, default - MomentumBalanceType.pressureTotal. Valid values: { Mo-
mentumBalanceType.none - exclude momentum balances, MomentumBalance-
Type.pressureTotal - single pressure balance for material, MomentumBalance-
Type.pressurePhase - pressure balances for each phase, MomentumBalance-
Type.momentumTotal - single momentum balance for material, MomentumBalance-
Type.momentumPhase - momentum balances for each phase.}

has_pressure_change Indicates whether terms for pressure change should be con-
structed, default - False. Valid values: { True - include pressure change terms, False
- exclude pressure change terms.}

delta_T_method Flag indicating type of flow arrangement to use for delta default -
DeltaTMethod.counterCurrent Valid values: { DeltaTMethod.counterCurrent}

tube_arrangement Tube arrangement could be in-line and staggered

4.9. IDAES Model Libraries 247

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

side_1_water_phase Define water phase for property calls

has_radiation Define if side 2 gas radiation is to be considered

• initialize (dict) – ProcessBlockData config for individual elements. Keys are Block-
Data indexes and values are dictionaries described under the “default” argument above.

• idx_map (function) – Function to take the index of a BlockData element and return the
index in the initialize dict from which to read arguments. This can be provided to overide
the default behavior of matching the BlockData index exactly to the index in initialize.

Returns (BoilerHeatExchanger) New instance

class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData(component)
Standard Heat Exchanger Unit Model Class

build()
Build method for Boiler heat exchanger model

Parameters None –

Returns None

initialize(state_args_1={}, state_args_2={}, outlvl=0, solver=’ipopt’, optarg={’max_iter’: 100,
’tol’: 1e-06})

General Heat Exchanger initialisation routine.

Keyword Arguments

• state_args_1 – a dict of arguments to be passed to the property package(s) for side 1
of the heat exchanger to provide an initial state for initialization (see documentation of the
specific property package) (default = {}).

• state_args_2 – a dict of arguments to be passed to the property package(s) for side 2
of the heat exchanger to provide an initial state for initialization (see documentation of the
specific property package) (default = {}).

• outlvl – sets output level of initialisation routine

– 0 = no output (default)

– 1 = return solver state for each step in routine

– 2 = return solver state for each step in subroutines

– 3 = include solver output infomation (tee=True)

• optarg – solver options dictionary object (default={‘tol’: 1e-6})

• solver – str indicating whcih solver to use during initialization (default = ‘ipopt’)

Returns None

model_check()
Model checks for unit - calls model checks for both control volume Blocks.

Parameters None –

Returns None

Power Generation Properties

248 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict

IDAES Documentation, Release 1.5.1.rc0

Flue Gas Property Package

A flue gas property package has been developed to provide properties of combustion gases and air. The ideal gas
property package includes the main components in flue gas: O2, N2, NO, CO2, H2O, SO2

Main parameters:

• molecular weight in kg/kg-mol indexed by component list,

• reference pressure & temperature in Pa and Kelvin,

• critical pressure and temperature in Pa and Kelvin indexed by component list,

• gas constant in J/(mol K),

• constants for specific heat capacity in J/(mol K) indexed by component list and parameter A to H,

• vapor pressure coefficients (Antoine Eq.) P in Bar and T in K indexed by component list and parameters A to C,

Source: NIST webbook (last update: 01/08/2020)

The main methods supported are:

• heat capacity in J/(mol K),

• enthalpy in J/mol,

• entropy in J/(mol K),

• volumetric flowrate m3/s,

• viscosity of mixture in kg/(m s),

• thermal conductivity mixture in J / (m K s),

• molar density m3/mol,

• reduced pressure and temperature (unitless),

Power Generation Flowsheets

Supercritical Coal-Fired Power Plant Flowsheet

This is an example supercritical pulverized coal (SCPC) power plant.This simulation model consist of a ~595 MW gross coal fired power plant.
The dimensions and operating conditions used for this simulation do not represent any specific coal-fired power
plant.

This model is for demonstration and tutorial purposes only. Before looking at the model, it may be useful to look at
the process flow diagram (PFD).

SCPC Power Plant (simplified description)

Inputs:

• Throttle valve opening,

• Feed water pump pressure,

• BFW - boiler feed water (from Feed water heaters),

• Coal from pulverizers

Main Assumptions:

4.9. IDAES Model Libraries 249

IDAES Documentation, Release 1.5.1.rc0

Coal flowrate is a function of the plant load, the coal HHV is fixed and heat dutty from fire side to water
wall and platen superheater are fixed.

Boiler heat exchanger network:

Water Flow: Fresh water -> FWH’s -> Economizer -> Water Wall -> Primary SH -> Platen SH ->
Finishing Superheate -> HP Turbine -> Reheater -> IP Turbine

Flue Gas Flow:

Fire Ball -> Platen SH -> Finishing SH -> Reheater -> o -> Economizer -> Air Preheater
-> Primary SH –^

Steam Flow: Boiler -> HP Turbine -> Reheater -> IP Turbine -> Condenser HP, IP, and LP steam
extractions to Feed Water Heaters

Main Models used:

• Mixers: Attemperator, Flue gas mix

• Heater: Platen SH, Fire/Water side (simplified model), Feed Water Heaters, Hot Tank, Condenser

• BoilerHeatExchanger: Economizer, Primary SH, Finishing SH, Reheater

– Shell and tube heat exchanger

* tube side: Steam (side 1 holdup)

* shell side: flue gas (side 2 holdup)

• Steam Turbines

• Pumps

Property packages used:

• IAPWS: Water/steam side

• IDEAL GAS: Flue Gas side

Figures Process Flow Diagram:

4.10 Data Management Framework

4.10.1 DMF Command-line Interface

This page lists the commands and options for the DMF command-line interface, which is a Python program called
dmf. There are several usage examples for each sub-command. These examples assume the UNIX bash shell.

Contents

• DMF Command-line Interface

– dmf

– dmf find

– dmf info

– dmf init

– dmf ls

250 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

4.10. Data Management Framework 251

IDAES Documentation, Release 1.5.1.rc0

– dmf register

– dmf related

– dmf rm

– dmf status

dmf

Data management framework command wrapper. This base command has some options for verbosity that can be
applied to any sub-command.

dmf options

-v

--verbose

Increase verbosity. Show warnings if given once, then info, and then debugging messages.

-q

--quiet

Increase quietness. If given once, only show critical messages. If given twice, show no messages.

dmf usage

Run sub-command with logging at level “error”:

$ dmf <sub-command>

Run sub-command and log warnings:

$ dmf <sub-command>

Run sub-command and log informational / warning messages:

$ dmf -vv <sub-command>

Run sub-command only logging fatal errors:

$ dmf -q <sub-command>

Run sub-command with no logging at all:

$ dmf -qq <sub-command>

dmf subcommands

The subcommands are listed alphabetically below. For each, keep in mind that any unique prefix of that command
will be accepted. For example, for dmf init, the user may also type dmf ini. However, dmf in will not work
because that would also be a valid prefix for dmf info.

252 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

In addition, there are some aliases for some of the sub-commands:

• dmf info => dmf resource or dmf show

• dmf ls => dmf list

• dmf register => dmf add

• dmf related => dmf graph

• dmf rm => dmf delete

• dmf status => dmf describe

usage overview

To give a feel for the context in which you might actually run these commands, below is a simple example that uses
each command:

create a new workspace
$ dmf init ws --name workspace --desc "my workspace" --create
Configuration in '/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/config.yaml

view status of the workspace
$ dmf status
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: workspace
description: my workspace
created: 2019-04-20 08:32:59
modified: 2019-04-20 08:32:59

add some resources from files
$ echo "one" > oldfile ; echo "two" > newfile
$ dmf register oldfile --version 0.0.1
2792c0ceb0734ed4b302c44884f2d404
$ dmf register newfile --version 0.0.2 --prev 2792c0ceb0734ed4b302c44884f2d404
6ddee9bb2bb3420ab10aaf4c74d186f6

list the current workspace contents
$ dmf ls
id type desc modified
2792 data oldfile 2019-04-20 15:33:11
6dde data newfile 2019-04-20 15:33:23

look at one one resource (newfile)
$ dmf info 6dde

Resource 6ddee9bb2bb3420ab10aaf4c74d186f6
created

'2019-04-20 15:33:23'
creator

name: dang
datafiles

- desc: newfile
is_copy: true
path: newfile
sha1: 7bbef45b3bc70855010e02460717643125c3beca

(continues on next page)

4.10. Data Management Framework 253

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

datafiles_dir
/home/myuser/ws/files/8027bf92628f41a0b146a5167d147e9d

desc
newfile

doc_id
2

id_
6ddee9bb2bb3420ab10aaf4c74d186f6

modified
'2019-04-20 15:33:23'

relations
- 2792c0ceb0734ed4b302c44884f2d404 --[version]--> ME

type
data

version
0.0.2 @ 2019-04-20 15:33:23

see relations
$ dmf related 2792
2792 data

version 6dde data -

remove the "old" file
$ dmf rm 2792
id type desc modified
2792c0ceb0734ed4b302c44884f2d404 data oldfile 2019-04-20 15:33:11
Remove this resource [y/N]? y
resource removed

$ dmf ls
id type desc modified
6dde data newfile 2019-04-20 15:33:23

dmf find

Search for resources by a combination of their fields. Several convenient fields are provided. At this time, a compre-
hensive capability to search on any field is not available.

dmf find options

In addition to the options below, this command also accepts all the dmf ls options, although the --color/
--no-color option is ignored for JSON output.

--output value

Output style/format. Possible values:

list (Default) Show results as a listing, as from the ls subcommand.

info Show results as individual records, as from the info subcommand.

json Show results are JSON objects

--by value

254 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Look for “value” in the value of the creator.name field.

--created value

Use “value” as a date or date range and filter on records that have a created date in that range. Dates should be in the
form:

YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]

To indicate a date range, separate two dates with a “..”.

• 2012-03-19: On March 19, 2012

• 2012-03-19..2012-03-22: From March 19 to March 22, 2012

• 2012-03-19..: After March 19, 2012

• ..2012-03-19: Before March 19, 2012

Note that times may also be part of the date strings.

--file value

Look for “value” in the value of the desc field in one of the datafiles.

--modified value

Use “value” as a date or date range and filter on records that have a modified date in that range. See --created for
details on the date format.

--name value

Look for “value” as one of the values of the alias field.

--type value

Look for “value” as the value of the type field.

dmf find usage

By default, find will essentially provide a filtered listing of resources. If used without options, it is basically an alias
for ls.

$ dmf ls
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59
$ dmf find
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59

The find-specific options add filters. In the example below, the find filters for files that were modified after the given
date and time.

4.10. Data Management Framework 255

IDAES Documentation, Release 1.5.1.rc0

$ dmf find --modified 2019-04-29T17:29:00..
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

dmf info

Show detailed information about a resource. This command may also be referred to as dmf show.

dmf info options

identifier

Identifier, or unique prefix thereof, of the resource. Any unique prefix of the identifier will work, but if that prefix
matches multiple identifiers, you need to add --multiple to allow multiple records in the output.

--multiple

Allow multiple records in the output (see identifier)

-f,--format value

Output format. Accepts the following values:

term Terminal output (colored, if the terminal supports it), with values that are empty left out and some values
simplified for easy reading.

json Raw JSON value for the resource, with newlines and indents for readability.

jsonc Raw JSON value for the resource, “compact” version with no extra whitespace added.

dmf info usage

The default is to show, with some terminal colors, a summary of the resource:

$ dmf info 0b62

Resource 0b62d999f0c44b678980d6a5e4f5d37d
created

'2019-03-23 17:49:35'
creator

name: dang
datafiles

- desc: foo13
is_copy: true
path: foo13
sha1: feee44ad365b6b1ec75c5621a0ad067371102854

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/

→˓71d101327d224302aa8875802ed2af52
desc

foo13
doc_id

4

(continues on next page)

256 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

id_
0b62d999f0c44b678980d6a5e4f5d37d

modified
'2019-03-23 17:49:35'

relations
- 1e41e6ae882b4622ba9043f4135f2143 --[derived]--> ME

type
data

version
0.0.0 @ 2019-03-23 17:49:35

The same resource in JSON format:

$ dmf info --format json 0b62
{

"id_": "0b62d999f0c44b678980d6a5e4f5d37d",
"type": "data",
"aliases": [],
"codes": [],
"collaborators": [],
"created": 1553363375.817961,
"modified": 1553363375.817961,
"creator": {
"name": "dang"

},
"data": {},
"datafiles": [
{

"desc": "foo13",
"path": "foo13",
"sha1": "feee44ad365b6b1ec75c5621a0ad067371102854",
"is_copy": true

}
],
"datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/

→˓71d101327d224302aa8875802ed2af52",
"desc": "foo13",
"relations": [
{

"predicate": "derived",
"identifier": "1e41e6ae882b4622ba9043f4135f2143",
"role": "object"

}
],
"sources": [],
"tags": [],
"version_info": {
"created": 1553363375.817961,
"version": [

0,
0,
0,
""

],
"name": ""

},
"doc_id": 4

(continues on next page)

4.10. Data Management Framework 257

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

}

And one more time, in “compact” JSON:

$ dmf info --format jsonc 0b62
{"id_": "0b62d999f0c44b678980d6a5e4f5d37d", "type": "data", "aliases": [], "codes":
→˓[], "collaborators": [], "created": 1553363375.817961, "modified": 1553363375.
→˓817961, "creator": {"name": "dang"}, "data": {}, "datafiles": [{"desc": "foo13",
→˓"path": "foo13", "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854", "is_copy":
→˓true}], "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/
→˓71d101327d224302aa8875802ed2af52", "desc": "foo13", "relations": [{"predicate":
→˓"derived", "identifier": "1e41e6ae882b4622ba9043f4135f2143", "role": "object"}],
→˓"sources": [], "tags": [], "version_info": {"created": 1553363375.817961, "version
→˓": [0, 0, 0, ""], "name": ""}, "doc_id": 4}

dmf init

Initialize the current workspace. Optionally, create a new workspace.

dmf init options

path

Use the provided path as the workspace path. This is required.

--create

Create a new workspace at location provided by path. Use the --name and --desc options to set the workspace
name and description, respectively. If these are not given, they will be prompted for interactively.

--name

Workspace name, used by --create

--desc

Workspace description, used by --create

dmf init usage

Note: In the following examples, the current working directory is set to /home/myuser.

This command sets a value in the user-global configuration file in .dmf, in the user’s home directory, so that all other
dmf commands know which workspace to use. With the --create option, a new empty workspace can be created.

Create new workspace in sub-directory ws, with given name and description:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml

Create new workspace in sub-directory ws, providing the name and description interactively:

258 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

$ dmf init ws --create
New workspace name: foo
New workspace description: foo workspace description
Configuration in '/home/myuser/ws/config.yaml

Switch to workspace ws2:

$ dmf init ws2

If you try to switch to a non-existent workspace, you will get an error message:

$ dmf init doesnotexist
Existing workspace not found at path='doesnotexist'
Add --create flag to create a workspace.
$ mkdir some_random_directory
$ dmf init some_random_directory
Workspace configuration not found at path='some_random_directory/'

If the workspace exists, you cannot create it:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml
$ dmf init ws --create
Cannot create workspace: path 'ws' already exists

And, of course, you can’t create workspaces anywhere you don’t have permissions to create directories:

$ mkdir forbidden
$ chmod 000 forbidden
$ dmf init forbidden/ws --create
Cannot create workspace: path 'forbidden/ws' not accessible

dmf ls

This command lists resources in the current workspace.

dmf ls options

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output.

-s,--show

Pick field to show in output table. This option can be repeated to show any known subset of fields. Also the option
value can have commas in it to hold multiple fields. Default fields, if this option is not specified at all, are “type”,
“desc”, and “modified”. The resource identifier field is always shown first.

codes List name of code(s) in resource. May be shortened with ellipses.

created Date created.

4.10. Data Management Framework 259

IDAES Documentation, Release 1.5.1.rc0

desc Description of resource.

files List names of file(s) in resource. May be shortened with ellipses.

modified Date modified.

type Name of the type of resource.

version Resource version.

You can specify other fields from the schema, as long as they are not arrays of objects, i.e. you can say --show
tags or --show version_info.version, but --show sources is too complicated for a tabular listing.
To see detailed values in a record use the dmf info command.

-S,--sort

Sort by given field; if repeated, combine to make a compound sort key. These fields are a subset of those in -s,
--show , with the addition of id for sorting by the identifier: “id”, “type”, “desc”, “created”, “modified”, and/or
“version”.

--no-prefix

By default, shown identifier is the shortest unique prefix, but if you don’t want the identifier shortened, this option will
force showing it in full.

-r,--reverse

Reverse the order of the sorting given by (or implied by absence of) the -S,--sort option.

dmf ls usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

Without arguments, show the resources in an arbitrary (though consistent) order:

$ dmf ls
id type desc modified
0b62 data foo13 2019-03-23 17:49:35
1e41 data foo10 2019-03-23 17:47:53
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08

Add a sort key to sort by, e.g. modified date

$ dmf ls -S modified
id type desc modified
1e41 data foo10 2019-03-23 17:47:53
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08
0b62 data foo13 2019-03-23 17:49:35
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02

Especially for resources of type “data”, showing the first (possibly only) file that is referred to by the resource is useful:

260 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

$ dmf ls -S modified -s type -s modified -s files
id type modified files
1e41 data 2019-03-23 17:47:53 foo10
e780 data 2019-03-23 17:48:11 foo11
eb60 data 2019-03-23 17:49:08 foo12
0b62 data 2019-03-23 17:49:35 foo13
6c9a data 2019-03-23 17:51:59 foo14
d3d5 data 2019-03-26 13:07:02 bar1

Note that you don’t actually have to show a field to sort by it (compare sort order with results from command above):

$ dmf ls -S modified -s type -s files
id type files
1e41 data foo10
e780 data foo11
eb60 data foo12
0b62 data foo13
6c9a data foo14
d3d5 data bar1

Add --no-prefix to show the full identifier:

$ dmf ls -S modified -s type -s files --no-prefix
id type files
1e41e6ae882b4622ba9043f4135f2143 data foo10
e7809d25b390453487998e1f1ef0e937 data foo11
eb606172dde74aa79eea027e7eb6a1b6 data foo12
0b62d999f0c44b678980d6a5e4f5d37d data foo13
6c9a85629cb24e9796a2d123e9b03601 data foo14
d3d5981106ce4d9d8cccd4e86c2cd184 data bar1

dmf register

Register a new resource with the DMF, using a file as an input. An alias for this command is dmf add.

dmf register options

--no-copy

Do not copy the file, instead remember path to current location. Default is to copy the file under the workspace
directory.

-t,--type

Explicitly specify the type of resource. If this is not given, then try to infer the resource type from the file. The default
will be ‘data’. The full list of resource types is in idaes.dmf.resource.RESOURCE_TYPES

--strict

If inferring the type fails, report an error. With --no-strict, or no option, if inferring the type fails, fall back to
importing as a generic file.

--no-unique

Allow duplicate files. The default is --unique, which will stop and print an error if another resource has a file
matching this file’s name and contents.

4.10. Data Management Framework 261

IDAES Documentation, Release 1.5.1.rc0

--contained resource

Add a ‘contained in’ relation to the given resource.

--derived resource

Add a ‘derived from’ relation to the given resource.

--used resource

Add a ‘used by’ relation to the given resource.

--prev resource

Add a ‘version of previous’ relation to the given resource.

--is-subject

If given, reverse the sense of any relation(s) added to the resource so that the newly created resource is the subject and
the existing resource is the object. Otherwise, the new resource is the object of the relation.

--version

Set the semantic version of the resource. From 1 to 4 part semantic versions are allowed, e.g.

• 1

• 1.0

• 1.0.1

• 1.0.1-alpha

See http://semver.org and the function idaes.dmf.resource.version_list() for more details.

dmf register usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

Register a new file, which is a CSV data file, and use the --info option to show the created resource.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > file.csv
$ dmf reg file.csv --info

Resource 117a42287aec4c5ca333e0ff3ac89639
created

'2019-04-11 03:58:52'
creator

name: dang
datafiles

- desc: file.csv
is_copy: true
path: file.csv
sha1: f1171a6442bd6ce22a718a0e6127866740c9b52c

datafiles_dir
/home/myuser/ws/files/4db42d92baf3431ab31d4f91ab1a673b

desc
file.csv

doc_id
1

(continues on next page)

262 Chapter 4. Contents

http://semver.org

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

id_
117a42287aec4c5ca333e0ff3ac89639

modified
'2019-04-11 03:58:52'

type
data

version
0.0.0 @ 2019-04-11 03:58:52

If you try to register (add) the same file twice, it will be an error by default. You need to add the --no-unique
option to allow it.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > timeseries.csv
$ dmf add timeseries.csv
2315bea239c147e4bc6d2e1838e4101f
$ dmf add timeseries.csv
This file is already in 1 resource(s): 2315bea239c147e4bc6d2e1838e4101f
$ dmf add --no-unique timeseries.csv
3f95851e4931491b995726f410998491

If you register a file ending in “.json”, it will be parsed (unless it is over 1MB) and, if it passes, registered as type
JSON. If the parse fails, it will be registerd as a generic file unless the --strict option is given (with this option,
failure to parse will be an error):

$ echo "totally bogus" > notreally.json
$ dmf reg notreally.json
2019-04-12 06:06:47,003 [WARNING] idaes.dmf.resource: File ending in '.json' is not
→˓valid JSON: treating as generic file
d22727c678a1499ab2c5224e2d83d9df
$ dmf reg --strict notreally.json
Failed to infer resource: File ending in '.json' is not valid JSON

You can explicitly specify the type of the resource with the -t,--type option. In that case, any failure to validate
will be an error. For example, if you say the resource is a Jupyter Notebook file, and it is not, it will fail. But the same
file with type “data” will be fine:

$ echo "Ceci n'est pas une notebook" > my.ipynb
$ dmf reg -t notebook my.ipynb
Failed to load resource: resource type 'notebook': not valid JSON
$ dmf reg -t data my.ipynb
0197a82abab44ecf980d6e42e299b258

You can add links to existing resources with the options --contained, --derived, --used, and --prev . For
all of these, the new resource being registered is the target of the relation and the option argument is the identifier of
an existing resource that is the subject of the relation.

For example, here we add a “shoebox” resource and then some “shoes” that are contained in it:

$ touch shoebox.txt shoes.txt closet.txt
$ dmf add shoebox.txt
755374b6503a47a09870dfbdc572e561
$ dmf add shoes.txt --contained 755374b6503a47a09870dfbdc572e561
dba0a5dc7d194040ac646bf18ab5eb50
$ dmf info 7553 # the "shoebox" contains the "shoes"

Resource 755374b6503a47a09870dfbdc572e561
created

(continues on next page)

4.10. Data Management Framework 263

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

'2019-04-11 20:16:50'
creator

name: dang
datafiles

- desc: shoebox.txt
is_copy: true
path: shoebox.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓7f3ff820676b41689bb32bc325fd2d1b
desc

shoebox.txt
doc_id

9
id_

755374b6503a47a09870dfbdc572e561
modified

'2019-04-11 20:16:50'
relations

- dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
type

data
version

0.0.0 @ 2019-04-11 20:16:50

$ dmf info dba0 # the "shoes" are in the "shoebox"
Resource dba0a5dc7d194040ac646bf18ab5eb50

created
'2019-04-11 20:17:28'

creator
name: dang

datafiles
- desc: shoes.txt

is_copy: true
path: shoes.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓a27f98c24d1848eaba1b26e5ef87be88
desc

shoes.txt
doc_id

10
id_

dba0a5dc7d194040ac646bf18ab5eb50
modified

'2019-04-11 20:17:28'
relations

- 755374b6503a47a09870dfbdc572e561 --[contains]--> ME
type

data
version

0.0.0 @ 2019-04-11 20:17:28

To reverse the sense of the relation, add the --is-subject flag. For example, we now add a “closet” resource that
contains the existing “shoebox”. This means the shoebox now has two different “contains” type of relations.

264 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

$ dmf add closet.txt --is-subject --contained 755374b6503a47a09870dfbdc572e561
22ace0f8ed914fa3ac3e7582748924e4
$ dmf info 7553

Resource 755374b6503a47a09870dfbdc572e561
created

'2019-04-11 20:16:50'
creator

name: dang
datafiles

- desc: shoebox.txt
is_copy: true
path: shoebox.txt
sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709

datafiles_dir
/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/

→˓7f3ff820676b41689bb32bc325fd2d1b
desc

shoebox.txt
doc_id

9
id_

755374b6503a47a09870dfbdc572e561
modified

'2019-04-11 20:16:50'
relations

- dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
- 22ace0f8ed914fa3ac3e7582748924e4 --[contains]--> ME

type
data

version
0.0.0 @ 2019-04-11 20:16:50

You can give your new resource a version with the --version option. You can use this together with the --prev
option to link between multiple versions of the same underlying data:

note: following command stores the output of "dmf reg", which is the
id of the new resource, in the shell variable "oldid"
$ oldid=$(dmf reg oldfile.py --type code --version 0.0.1)
$ dmf reg newfile.py --type code --version 0.0.2 --prev $oldid
ef2d801ca29a4a0a8c6f79ee71d3fe07
$ dmf ls --show type --show version --show codes --sort version
id type version codes
44e7 code 0.0.1 oldfile.py
ef2d code 0.0.2 newfile.py
$ dmf related $oldid
44e7 code

version ef2d code -

dmf related

This command shows resources related to a given resource.

4.10. Data Management Framework 265

IDAES Documentation, Release 1.5.1.rc0

dmf related options

-d,--direction

Direction of relationships to show / follow. The possible values are:

in Show incoming connection/relationship edges. Since all relations have a bi-directional counterpart, this effectively
only shows the immediate neighbors of the root resource. For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the incoming edge from “B” to “A” but not the edge
from “C” to “B”.

out (Default) Show the outgoing connection/relationship edges. This will continue until there are no more connections
to show, avoiding cycles. For example, if the root resource is “A”, and “A” contains “B” and “B” contains “C”,
then this option shows the outgoing edge from “A” to “B” and also from “B” to “C”.

The default value is out.

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output.

--unicode

Allow unicode drawing characters in the output. This is the default.

--no-unicode

Use only ASCII characters in the output.

dmf related usage

In the following examples, we work with 4 resources arranged as a fully connected square (A, B, C, D). This is not
currently possible just with the command-line, but the following Python code does the job:

from idaes.dmf import DMF, resource
dmf = DMF()
rlist = [resource.Resource(value={"desc": ltr, "aliases": [ltr],

"tags": ["graph"]})
for ltr in "ABCD"]

relation = resource.PR_USES
for r in rlist:

for r2 in rlist:
if r is r2:

continue
resource.create_relation_args(r, relation, r2)

for r in rlist:
dmf.add(r)

If you save that script as r4.py, then the following command-line actions will run it and verify that everything is
created.

$ python r4.py
$ dmf ls
id type desc modified
1e7f other B 2019-04-20 15:43:49
3bc5 other D 2019-04-20 15:43:49

(continues on next page)

266 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

ba67 other A 2019-04-20 15:43:49
f7e9 other C 2019-04-20 15:43:49

You can then see the connections by looking at any one of the four resource (e.g., A):

$ dmf rel ba67
ba67 other A

uses 3bc5 other D

uses f7e9 other C

uses 1e7f other B

uses ba67 other A

uses f7e9 other C

uses 3bc5 other D

uses 1e7f other B

uses ba67 other A

uses 1e7f other B

uses 3bc5 other D

uses f7e9 other C

uses ba67 other A

If you change the direction of relations, you will get much the same result, but with the arrows reversed.

dmf rm

Remove one or more resources. This also removes relations (links) to other resources.

dmf rm options

identifier

The identifier, or identifier prefix, of the resource(s) to remove

--list,--no-list

With the –list option, which is the default, the resources to remove, or removed, will be listed as if by the dmf ls
command. With –no-list, then do not produce this output.

-y,--yes

If given, do not confirm removal of the resource(s) with a prompt. This is useful for scripts that do not want to bother
with input, or people with lots of confidence.

--multiple

4.10. Data Management Framework 267

IDAES Documentation, Release 1.5.1.rc0

If given, allow multiple resources to be selected by an identifier prefix. Otherwise, if the given identifier matches more
than one resource, the program will print a message and stop.

dmf rm usage

Note: In the following examples, there are 5 text files named “file1.txt”, “file2.txt”, .., “file5.txt”, in the workspace.
The identifiers for these files may be different in each example.

Remove one resource, by its full identifier:

$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26
$ dmf rm c20f3a6e338a40ee8a3a4972544adb74
id type desc modified
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
Remove this resource [y/N]? y
resource removed
[dmfcli-167 !?]idaes-dev$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26

Remove a single resource by its prefix:

$ dmf ls
id type desc modified
6dd5 data file2.txt 2019-04-16 18:51:10
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm 6d
id type desc modified
6dd57ecc50a24efb824a66109dda0956 data file2.txt 2019-04-16 18:51:10
Remove this resource [y/N]? y
resource removed
$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

Remove multiple resources that share a common prefix. In this case, use the -y,--yes option to remove without
prompting.

268 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm --multiple --yes 7
id type desc modified
7953e67db4a543419b9988c52c820b68 data file3.txt 2019-04-16 18:51:12
7a06435c39b54890a3d01a9eab114314 data file4.txt 2019-04-16 18:51:13
2 resources removed
$ dmf ls
id type desc modified
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

dmf status

This command shows basic information about the current active workspace and, optionally, some additional details. It
does not (yet) give any way to modify the workspace configuration. To do that, you need to edit the config.yaml
file in the workspace root directory. See Configuration.

dmf status options

--color

Allow (if terminal supports it) colored terminal output. This is the default.

--no-color

Disallow, even if terminal supports it, colored terminal output. UNIX output streams to pipes should be detected and
have color disabled, but this option can force that behavior if detection is failing.

-s,--show info

Show one of the following types of information:

files Count and total size of files in workspace

htmldocs Configured paths to the HTML documentation (for “%dmf help” magic in the Jupyter Notebook)

logging Configuration for logging

all Show all items above

-a,--all

This option is just an alias for “–show all”.

dmf status usage

Note: In the following examples, the current working directory is set to /home/myuser and the workspace is
named ws.

4.10. Data Management Framework 269

IDAES Documentation, Release 1.5.1.rc0

Also note that the output shown below is plain (black) text. This is due to our limited understanding of how to do
colored text in our documentation tool (Sphinx). In a color-capable terminal, the output will be more colorful.

Show basic workspace status:

$ dmf status
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:46:40
modified: 2019-04-09 12:46:40

Add the file information:

$ dmf status --show files
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:52:49
modified: 2019-04-09 12:52:49
files:
count: 3
total_size: 1.3 MB

You can repeat the -s,--show option to add more things:

$ dmf status --show files --show htmldocs
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:54:10
modified: 2019-04-09 12:54:10
files:
count: 3
total_size: 1.3 MB

html_documentation_paths:
-: /home/myuser/idaes/docs/build

However, showing everything is less typing, and not overwhelming:

$ dmf status -a
settings:

workspace: /home/myuser/ws
workspace:

location: /home/myuser/ws
name: myws
description: my workspace
created: 2019-04-09 12:55:05
modified: 2019-04-09 12:55:05

(continues on next page)

270 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

files:
count: 3
total_size: 1.3 MB

html_documentation_paths:
-: /home/myuser/idaes/docs/build

logging:
not configured

4.10.2 Overview

The Data Management Framework (DMF) is used to manage all the data needed by the IDAES framework, including
flowsheets, models, and results. It stores metadata and data in persistent storage. It does not require that the user run a
server or connect to a remote service. The DMF can be accessed through its Python API or command-line interfaces.
There is work in progress on adding graphical interfaces for Jupyter Notebooks and stand-alone desktop apps.

The DMF is designed to allow multiple separate threads of work. These are organized in workspaces. Inside a
given workspace, all the information is represented by containers called resources. A resource describes some
data in the system in a standard way, so it can be searched and manipulated by the rest of the IDAES framework.
Resources can be connected to each other with relations such as “derived”, “contains”, “uses”, and “version”.

Below is an illustration of these components.

4.10.3 Configuration

The DMF is configured with an optional global configuration file and a required per-workspace configuration file. By
default the global file is looked for as .dmf in the user’s home directory. Its main function at the moment is to set the
default workspace directory with the workspace keyword. For example:

4.10. Data Management Framework 271

IDAES Documentation, Release 1.5.1.rc0

global DMF configuration
workspace: ~/data/workspaces/workspace1

The per-workspace configuration has more options. See the documentation in the Workspace class for details. The
configuration file is in YAML (or JSON) format. Here is an example file, with some description in comments:

settings: # Global settings
workspace: /home/myuser/ws # Path to current workspace

workspace: # Per-workspace settings
location: /home/myuser/ws # Path to this workspace
name: myws # Name of this workspace
description: my workspace # Description (if any) of this workspace
created: 2019-04-09 12:55:05 # Date workspace was created
modified: 2019-04-09 12:55:05 # Date workspace was modified
files: # Basic information about data files
count: 3 # How many files
total_size: 1.3 MB # Total size of the files

html_documentation_paths: # List of paths for HTML documentation
-: /home/myuser/idaes/docs/build

logging: # Logging configuration
idaes.dmf: # Name of the logger

level: DEBUG # Log level (Python logging constant)
output: /tmp/debug.log # File path or "_stdout_" or "_stderr_"

This configuration file is used whether you use the DMF from the command-line, Jupyter notebook, or in a Python
program. For details see the DMF package documentation.

4.10.4 Jupyter notebook usage

In the Jupyter Notebook, there are some “magics” defined that make initializing the DMF pretty easy. For example:

from idaes.dmf import magics
%dmf init path/to/workspace

The code above loads the “%dmf” line magic in the first line, then uses it to initialize the DMF with the workspace at
“path/to/workspace”.

From there, other “line magics” will operate in the context of that DMF workspace.

• %dmf help - Provide help on IDAES objects and classes. See dmf-help.

• %dmf info - Provide information about DMF current state for whatever ‘topics’ are provided

• %dmf list - List resources in the current workspace

• %dmf workspaces - List DMF workspaces; you can do this before %dmf init

DMF help

The IDAES Python interfaces are documented with Sphinx. This includes automatic translation of the comments and
structure of the code into formatted and hyperlinked HTML pages. The %dmf help command lets you easily pull
up this documentation for an IDAES module, class, or object. Below are a couple of examples:

Initialize the DMF first
from idaes.dmf import magics
%dmf init path/to/workspace create

(continues on next page)

272 Chapter 4. Contents

https://www.sphinx-doc.org

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

Get help on a module (imported)
from idaes.core import control_volume1d
%dmf help control_volume1d

Get help on a module (by name, no import)
%dmf help idaes.core.control_volume0d

Get help on a class
from idaes.core.control_volume1d import ControlVolume1DBlock
%dmf help ControlVolume1DBlock

Get help on a class (by name, no import)
%dmf help idaes.core.control_volume1d.ControlVolume1DBlock

Get help on an object (will show help for the object's class)
This will end up showing the same help as the previous two examples
obj = control_volume1d.ControlVolume1DBlock()
%dmf help obj

The help pages will open in a new window. The location of the built documentation that they use is configured in the
per-workspace DMF configuration under the htmldocs keyword (a default value is filled in when the DMF is first
initialized).

4.10.5 Sharing

The contents of a DMF workspace can be shared quite simply because the data is all contained within a directory in
the local file system. So, some ways to share (with one or many people) include:

• Put the workspace directory in a cloud/shared drive like Dropbox , Box , Google Drive , or OneDrive .

• Put the workspace directory under version control like Git and share that versioned data using Git commands
and a service like Github , BitBucket or Gitlab.

• Package up the directory with a standard archiving utility like “zip” or “tar” and share it like any other file (e.g.
attach it to an email).

Note: These modes of sharing allow users to see the same data, but are not designed for real-time collaboration
(reading and writing) of the same data. That mode of operation requires a proper database server to mediate operations
on the same data. This is in the roadmap for the DMF, but not currently implemented.

4.10.6 Reference

See the idaes.dmf package documentation that is generated automatically from the source code.

4.11 Surrogate modeling

4.11.1 ALAMOPY : ALAMO Python

4.11. Surrogate modeling 273

https://www.dropbox.com/
https://www.box.com/
https://google.com/drive/
https://onedrive.live.com/about/en-us/
https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://gitlab.com/

IDAES Documentation, Release 1.5.1.rc0

ALAMOPY.ALAMO Options

This page lists in more detail the ALAMOPY options and the relation of ALAMO and ALAMOPY.

Contents

• ALAMOPY.ALAMO Options

– Basic ALAMOPY.ALAMO options

* Data Arguments

* Available Basis Functions

* ALAMO Regression Options

* Validation Capabilities

* File Options

– ALAMOPY results dictionary

* Output models

* Fitness metrics

* Regression description

* Performance specs

– Advanced user options in depth

* Custom Basis Functions

* Custom Constraints

* Basis Function Groups and Constraints

Basic ALAMOPY.ALAMO options

Data Arguments

• xmin, xmax: minimum/maximum values of inputs, if not given they are calculated

• zmin, zmax: minimum/maximum values of outputs, if not given they are calculated

• xlabels: user-specified labels given to the inputs

• zlabels: user-specified labels given to the outputs

alamo(x_inputs, z_outputs, xlabels=['x1','x2'], zlabels=['z1','z2'])
alamo(x_inputs, z_outputs, xmin=(-5,0),xmax=(10,15))

Available Basis Functions

• linfcns, expfcns, logfcns, sinfcns, cosfcns: 0-1 option to include linear, exponential, logarithmic, sine, and
cosine transformations. For example

274 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

linfcns = 1, expfcns = 1, logfcns = 1, sinfcns = 1, cosfcns = 1

This results in basis functions = x1, exp(x1), log(x1), sin(x1), cos(x1) * monomialpower, multi2power, multi3power:
list of monomial, binomial, and trinomial powers. For example

monomialpower = (2,3,4), multi2power = (1,2,3), multi3power = (1,2,3)

This results in the following basis functions:

• Monomial functions = x^2, x^3, x^4

• Binomial functions = x1*x2, (x1*x2)^2, (x1*x2)^3

• Trinomial functions = (x1*x2*x3), (x1*x2*x3)^2, (x1*x2*x3)^3

• ratiopower: list of ratio powers. For example

ratiopower = (1,2,3)

This results in basis functions = (x1/x2), (x1/x2)^2, (x1/x2)^3

alamo(x_inputs, z_outputs, linfcns=1, logfcns=1, expfcns=1)
alamo(x_inputs, z_outputs, linfcns=1, multi2power=(2,3))

Note: Custom basis functions are discussed in the Advanced User Section.

ALAMO Regression Options

• showalm: print ALAMO output to the screen

• expandoutput: add a key to the output dictionary for multiple outputs

• solvemip, builder, linearerror: A 01 indicator to solve with an optimizer (GAMSSOLVER), use a greedy
heuristic, or use a linear objective instead of squared error.

• modeler: Fitness metric to beused for model building (1-8)

– 1. BIC: Bayesian infromation criterion

– 2. Cp: Mallow’s Cp

– 3. AICc: the corrected Akaike’s information criterion

– 4. HQC: the Hannan-Quinn information criterion

– 5. MSE: mean square error

– 6. SSEp: sum of square error plus a penalty proportional to the model size (Note: convpen is the weight
of the penalty)

– 7. RIC: the risk information criterion

– 8. MADp: the maximum absolute eviation plus a penalty proportional to model size (Note: convpen is
the weight of the penalty)

• regularizer: Regularization method used to reduce the number of potential basis functions before optimization
of the selected fitness metric. Possible values are 0 and 1, corresponding to no regularization and regularization
with the lasso, respectively.

• maxterms: Maximum number of terms to be fit in the model

• convpen: When MODELER is set to 6 or 8 the size of the model is weighted by CONVPEN.

4.11. Surrogate modeling 275

IDAES Documentation, Release 1.5.1.rc0

• almopt: name of the alamo option file

• simulator: a python function to be used as a simulator for ALAMO, a variable that is a python function (not a
string)

• maxiter: max iteration of runs

Validation Capabilities

• xval, zval: validation input/output variables

• loo: leave-one-out evaluation

• lmo: leave-many-out evaluation

• cvfun: cross-validation function (True/False)

File Options

• almname: specify a name for the .alm file

• savescratch: saves .alm and .lst

• savetrace: saves tracefile

• saveopt: save .opt options file

• savegams: save the .gms gams file

ALAMOPY results dictionary

The results from alamopy.alamo are returned as a python dictionary. The data can be accessed by using the dictionary
keys listed below. For example

regression_results = doalamo(x_input, z_output, **kargs)
model = regression_results['model']

Output models

• f(model): A callable function

• pymodel: name of the python model written

• model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported
and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

276 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Fitness metrics

• size: number of terms chosen in the regression

• R2: R2 value of the regression

• Objective value metrics: ssr, rmse, madp

Regression description

• version: Version of ALAMO

• xlabels, zlabels: The labels used for the inputs/outputs

• xdata, zdata: array of xdata/zdata

• ninputs, nbas: number of inputs/basis functions

Performance specs

There are three types of regression problems that are used: ordinary linear regression (olr), classic linear regression
(clr), and a mixed integer program (mip). Performance metrics include the number of each problems and the time
spent on each type of problem. Additionally, the time spent on other operations and the total time are included.

• numolr, olrtime, numclr, clrtime, nummip, miptime: number of type of regression problems solved and time

• othertime: Time spent on other operations

• totaltime: Total time spent on the regression

Advanced user options in depth

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by meth-
ods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function
groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. In ALAMO,
this can be done with the following syntax

NCUSTOMBAS #
BEGIN_CUSTOMBAS
x1^2 * x2^2
END_CUSTOMBAS

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

4.11. Surrogate modeling 277

IDAES Documentation, Release 1.5.1.rc0

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is
controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied
to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

CRNCUSTOM #
BEGIN_CUSTOMCON
1 z1 - x1 + x2 + 1
END_CUSTOMCON

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints
on groups of selected basis functions. This can be accomplished using NGROUPS and identifying groups of basis
functions. For ALAMO, this is achieved by first defining the groups with

NGROUPS 3
BEGIN_GROUPS
Group-id Member-type Member-indices <Powers>
1 LIN 1 2
2 MONO 1 2
3 GRP 1 2
END_GROUPS

To add groups to ALAMOPY, you can use the following methods. Each Basis group has an index number that will be
used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-
type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL
(at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members
in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id
number of excluded or required basis functions.

BEGIN_GROUPCON
Group-id Output-id Constraint-type Integer-parameter
3 1 NMT 1
END_GROUPCON

To add the basis constraints to alamopy, you can use the following methods.

278 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

The purpose of ALAMOPY (Automatic Learning of Algebraic MOdels PYthon wrapper) is to provide a wrapper
for the software ALAMO which generates algebraic surrogate models of black-box systems for which a simulator or
experimental setup is available. Consider a system for which the outputs z are an unknown function f of the system
inputs x. The software identifies a function f, i.e., a relationship between the inputs and outputs of the system, that
best matches data (pairs of x and corresponding z values) that are collected via simulation or experimentation.

Basic Usage

ALAMOPY’s main function is alamopy.alamo. Data can be read in or simulated using available python packages.
The main arguments of the alamopy.alamo python function are inputs and outputs, which are 2D arrays of data. For
example

regression_results =alamopy.alamo(x_inputs, z_outputs, **kargs)

where **kargs is a set of named keyword arguments than can be passed to the alamo python function to customize
the basis function set, names of output files, and other options available in ALAMO.

Warning: The alamopy.doalamo function is deprecated. It is being replaced with alamopy.alamo

Options for alamopy.alamo

Possible arguments to be passed to ALAMO through do alamo and additional arguments that govern the behavior of
doalamo.

• xlabels - list of strings to label the input variables

• zlabels - list of strings to label the output variables

• functions - logfcns, expfcns, cosfcns, sinfcns, linfcns, intercept. These are ‘0-1’ options to activate these func-
tions

• monomialpower, multi2power, multi3power, ratiopower. List of terms to be used in the respective basis func-
tions

• modeler - integer 1-7 determines the choice of fitness metrice

• solvemip - ‘0-1’ option that will force the solving of the .gms file

These options are specific to alamopy and will not change the behavior of the underlying .alm file.

• expandoutput - ‘0-1’ option that can be used to collect more information from the ALAMO .lst and .trc file

• showalm - ‘0-1’ option that controlif the ALAMO output is printed to screen

• almname - A string that will assign the name of the .alm file

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

• outkeys - ‘0-1’ option for dictionary indexing according to the output labels

4.11. Surrogate modeling 279

IDAES Documentation, Release 1.5.1.rc0

• savetrace - ‘0-1’ option that controls the status of the trace file

• savescratch - ‘0-1’ option to save the .alm and .lst files

• almopt - A string option that will append a text file of the same name to the end of each .alm fille to faciliate
advanced user access in an automated fashion

ALAMOPY Output

There are mutliple outputs from the running alamopy.alamo. Outputs include:

• f(model): A callable function

• pymodel: name of the python model written

• model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported
and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Additional Results

After the regression of a model, ALAMOPY provides confidence interval analysis and plotting capabilities using the
results output.

Plotting

The plotting capabilities of ALAMOPY are available in the almplot function. Almplot will plot the function based on
one of the inputs.

result = alamopy.alamo(x_in, z_out, kargs)
alamopy.almplot(result)

Confidence intervals

Confidence intervals can similarly be calculated for the weighting of selected basis functions using the almconfidence
function.

This adds conf_inv (confidence intervals) and covariance (covariance matrix) to the results dictionary. This also gets
incorporated into the plotting function if it is available.

result = alamopy.alamo(x_in, z_out, kargs)
result = alamopy.almconfidence(result)
alamopy.almplot(result)

280 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Advanced Regression Capabilities

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by meth-
ods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function
groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. To use this
advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to
the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is
controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied
to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels
assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

4.11. Surrogate modeling 281

IDAES Documentation, Release 1.5.1.rc0

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints
on groups of selected basis functions. To define groups in ALAMOPY, you can use the following methods. Each Basis
group has an index number that will be used as reference in the group constraints. The groups are defined by three
or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO,
GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL
(at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members
in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id
number of excluded or required basis functions.

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

ALAMOPY Examples

Three examples are included with ALMAOPY. These examples demonstrate different use cases, and provide a template
for utilizing user-defined mechanisms.

• ackley.py

• branin.py

• camel6.py with a Jupyter notebok

4.11.2 RIPE : Reaction Identification and Parameter Estimation

The RIPE module provides tools for reaction network identification. RIPE uses reactor data consisting of concen-
tration, or conversion, values for multiple species that are obtained dynamically, or at multiple process conditions
(temperatures, flow rates, working volumes) to identify probable reaction kinetics. The RIPE module also contains
tools to facilitate adaptive experimental design. The experimental design tools in RIPE require the use of the python
package RBFopt. More information for RBFopt is availible at www.github.com/coin-or/rbfopt

Basic Usage

RIPE can be used to build models for static datasets through the function ripe.ripemodel

ripe_results = ripe.ripemodel(data, kwargs)

• data is provided to RIPE as one, two, or three dimensional python data structures, where the first axis corre-
sponds to observations at different process conditions, the second axis corresponds to observations of different

282 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

chemical species, and the third axis corresponds to dynamic observation of a chemical species at a specified
process condition.

RIPE adaptive experimental design can be accessed using ripe.ems

[proposed_x, errors] = ripe.ems(ripe_results, simulator, l_bounds, u_bounds, n_
→˓species, kwargs)

• ripe_results - The results from ripe.ripemodel, additional information provided in the results section

• simulator - a black-box simulator for the unknown process.

• l_bounds/u_bounds - lower and upper bounds for the input variables in the adaptive design

• nspecies - the number of chemical species present in the black-box system

Reaction stoichiometries and mechanisms are provided explicitly to ripemodel through the keyword arguments mech-
anisms and stoichiometry. Detailed explanations of the forms of these arguments are provided in the stoiciometry and
mechanism specification section. Additional keyword arguments can be found in the additional options section.

RIPE Output

By default, one file will be generated

• riperesults.txt - a file containing the selected reactions and parameter estimates

Reaction Stiochiometry and Mechanism Specification

Considered reaction stiochiometries are provided through keyword arguments.

Stoichiometry

Considered reaction stoichiometries are defiend as a list of list, where reactants and products are defined as negative
and positive integers , respectively, according to their stoichiometric coefficeints. A set of considered reaction stoi-
chiometries must be provided. If process data consists of species conversion, a positive coefficient should be specified.

Mechanisms

Considered reaction mechanisms are provided explicitly to RIPE through q keyword argument. If no kinetic mech-
anisms are specified, mass action kinetics are ascribed to every considered stoichiometry. RIPE contains kinetic
mechanisms defined internally, and called through ripe.mechs.<mechanism>. The availible mechanisms include:

• massact - mass action kinetics, order informed by reaction stoichiometry

19 empirical rate forms included relate specifically to catalyst conversion in chemical looping combustion reactors
include:

• Random nucleation

• Power law models

• Avrami-Erofeev models

These internal kinetics can be specified by calling ripe.mechs.massact or ripe.mechs.clcforms respectively. User-
defined kinetic mechanisms can also be supplied to RIPE as python functions. An example is provided in the file
crac.py.

4.11. Surrogate modeling 283

IDAES Documentation, Release 1.5.1.rc0

Additional Results and Options

In addition to the arguments stoichiometry and mechanism, a number of other optional arguments are availible, in-
cluding:

Arguments relating to process conditions

• x0 - initial concentration at each process condition for every species

• time - time associated with dynamic samples for every process condition

• temp - temperature associated with every process condition

• flow - flow rate at every process condition for every species

• vol - reactor volume at every process condition

Arguments related to RIPE algorithmic function

• tref - reference termpeature for reformulated Arrhenius models

• ccon - specified cardinality constraint instead of BIC objective

• sigma - expected variance of noise, estimated if not provided

• onemechper - one mechanism per stoichiometry in selected model, true by default

Additional arguments

• minlp_path - path to baron or other minlp solver, can also be set in shared.py

• alamo_path - path to alamo, can also be set in shared.py

• expand_output - provide estimates for noise variance in model resutls

• zscale - linear scaling of observed responses between -1 and 1

• ascale - linear scaling of activities between -1 and 1

• hide_output - surpress output to terminal

• keepfiles - keep scratch files for debugging

• showpyomo - show pyomo output to terminal, false by default

RIPE Examples

Three examples are included with RIPE. These examples demonstrate different use cases, and provide a template for
utilizing user-defined mechanisms.

• clc.py - a chemical looping combustion example in which catalyst conversion is observed over time

• isoT.py - an example that utilizes both ripe.ripemodel and ripe.ems

• crac.py - an example that utilizes user-defined reaction mechanisms

All of these examples are built for Linux machines. They can be called from the command line by calling python
directly, or can be called from inside a python environment using execfile().

4.11.3 HELMET : HELMholtz Energy Thermodynamics

The purpose of HELMET (HELMholtz Energy Thermodynamics) is to provide a framework for regressing multi-
parameter equations of state that identify an equation for Helmholtz energy and multiple thermodynamic properties
simultaneously. HELMET uses best subset selection to simultaneously model various thermodynamic properties based

284 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

on the properties thermodynamic relation to Helmholtz energy. The generated model is a function of reduced den-
sity and inverse reduced temperature and uses partial derivatives to calculate the different properties. Constraints are
placed on the regression to maintain thermodynamically feasible values and improve extrapolation and behavior of the
model based on physical restrictions.

Warning: This is the first public release of HELMET. Future work will include mixtures, regression using Pyomo
models, and increased plotting and preprocessing capabilities.

Basic Usage

Warning: To use this software, ALAMOPY and the solver BARON are required.

For the basic use of HELMET, the main regression steps can be imported from helmet.HELMET. These functions
provide general capabilities of HELMET for new users.

import helmet.Helmet as Helmet

The methods available in helmet.Helmet peform the necessary steps of the regression properties.

1. initialize(**kargs)

Initializes key thermodynamic constants, the location of data and sampling, properties to be fit, and optimization
settings

• molecule - name of the chemical of interest, directs naming of files and where the data should exist

• fluid_data - a tuple containing key thermodynamic constants (critical temperature, critical pressure, critical
density, molecular weight, triple point, accentric factor)

• filename - used for location of data

• gamsname - used for naming of files

• max_time - max time used for the solver

• props - list of thermodynamic properties to be fit

Supported thermodynamic properties are

– Pressure: ‘PVT’

– Isochoric heat capacity: ‘CV’

– Isobaric heat capacity: ‘CP’

– Speed of Sound: ‘SND’

• sample - sample ratio, ex. sample = 3 then a third of datapoints will be used

2. prepareAncillaryEquations(plot=True)

Fits equations to saturated vapor and liquid density and vapor pressure. The keyword argument plot
defaults to False

3. viewPropertyData()

Plots the different thermodynamic properties available and a way to check that the importing of data is
successful

4. setupRegression(numTerms = 12, gams=True)

4.11. Surrogate modeling 285

IDAES Documentation, Release 1.5.1.rc0

Writes the optimization program for modelling the thermodynamic properties. Currently this is through
GAMS but in the future it can also be solved using Pyomo.

5. runRegression()

Begins the modelling of the multiparameter equation

6. viewResults(filename)

Based on the optimization settings, the solution of the regression is parsed and fitness metrics are calcu-
lated. The results can be visualized with different plots.

HELMET Output

The output for HELMET is a single equation representing Helmholtz energy. Partial derivatives of this equation will
give you the fit thermodynamic properties as well as other properties related to Helmholtz energy.

HELMET Examples

The provided HELMET example uses data modified for this application and made available by the IAPWS orgnization
at http://www.iapws.org/95data.html for IAPWS Formulation 1995 for Thermodynamic Properties of Odrinary Water
Substance for General and Scientific Use.

4.11.4 PySMO: Python-based Surrogate Modelling Objects

The PySMO toolbox provides tools for generating different types of reduced order models. It provides IDAES users
with a set of surrogate modeling tools which supports flowsheeting and direct integration into an equation-oriented
modeling framework. It allows users to directly integrate reduced order models with algebraic high-fidelity process
models within an single IDAES flowsheet.

PySMO provides two sets of tools necessary for sampling and surrogate model generation.

Sampling

The PySMO package offers five common sampling methods for one-shot design:

Latin Hypercube Sampling (LHS)

LHS is a stratified random sampling method originally developed for efficient uncertainty assessment. LHS partitions
the parameter space into bins of equal probability with the goal of attaining a more even distribution of sample points
in the parameter space that would be possible with pure random sampling.

The pysmo.sampling.LatinHypercubeSampling method carries out Latin Hypercube sampling. This can
be done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

286 Chapter 4. Contents

http://www.iapws.org/95data.html

IDAES Documentation, Release 1.5.1.rc0

Available Methods

class idaes.surrogate.pysmo.sampling.LatinHypercubeSampling(data_input, num-
ber_of_samples=None,
sam-
pling_type=None)

A class that performs Latin Hypercube Sampling. The function returns LHS samples which have been selected
randomly after sample space stratification.

It should be noted that no minimax criterion has been used in this implementation, so the LHS samples selected
will not have space-filling properties.

To use: call class with inputs, and then run sample_points method.

Example:

To select 10 LHS samples from "data"
>>> b = rbf.LatinHypercubeSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of LatinHypercubeSampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data
set or range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a
positive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects sam-
ples from an existing dataset (“selection”) or attempts to generate sample from a supplied
range (“creation”). Default is “creation”.

Returns self function containing the input information

Raises

• ValueError – The input data (data_input) is the wrong type.

• Exception – When number_of_samples is invalid (not an integer, too large, zero, or
negative)

sample_points()
sample_points generates or selects Latin Hypercube samples from an input dataset or data range.
When called, it:

1. generates samples points from stratified regions by calling the lhs_points_generation,

2. generates potential sample points by random shuffling, and

3. when a dataset is provided, selects the closest available samples to the theoretical sample points from
within the input data.

4.11. Surrogate modeling 287

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception

IDAES Documentation, Release 1.5.1.rc0

Returns A numpy array or Pandas dataframe containing number_of_samples points selected
or generated by LHS.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

[3] Swiler, Laura and Slepoy, Raisa and Giunta, Anthony: “Evaluation of sampling methods in constructing response
surface approximations” https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827

Full-Factorial Sampling

The pysmo.sampling.UniformSampling method carries out Uniform (full-factorial) sampling. This can be
done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

Available Methods

class idaes.surrogate.pysmo.sampling.UniformSampling(data_input,
list_of_samples_per_variable,
sampling_type=None,
edges=None)

A class that performs Uniform Sampling. Depending on the settings, the algorithm either returns samples from
an input dataset which have been selected using Euclidean distance minimization after the uniform samples have
been generated, or returns samples from a supplied data range.

Full-factorial samples are based on dividing the space of each variable randomly and then generating all possible
variable combinations.

• The number of points to be sampled per variable needs to be specified in a list.

To use: call class with inputs, and then sample_points function

Example:

To select 50 samples on a (10 x 5) grid in a 2D space:
>>> b = rbf.UniformSampling(data, [10, 5], sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)
Initialization of UniformSampling class. Three inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data
set or range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

288 Chapter 4. Contents

https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
http://planning.cs.uiuc.edu/node210.html
https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• list_of_samples_per_variable (list) – The list containing the number of
subdivisions for each variable. Each dimension (variable) must be represented by a posi-
tive integer variable greater than 1.

• sampling_type (str) – Option which determines whether the algorithm selects sam-
ples from an existing dataset (“selection”) or attempts to generate sample from a supplied
range (“creation”). Default is “creation”.

Keyword Arguments edges (bool) – Boolean variable representing bow the points should
be selected. A value of True (default) indicates the points should be equally spaced edge to
edge, otherwise they will be in the centres of the bins filling the unit cube

Returns self function containing the input information

Raises

• ValueError – The data_input is the wrong type

• ValueError – When list_of_samples_per_variable is of the wrong length, is not a list
or contains elements other than integers

• Exception – When edges entry is not Boolean

sample_points()
sample_points generates or selects full-factorial designs from an input dataset or data range.

Returns A numpy array or Pandas dataframe containing the sample points generated or selected
by full-factorial sampling.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

Halton Sampling

Halton sampling is a low-discrepancy sampling method. It is a deterministic sampling method based on the Halton
sequence, a sequence constructed by a set of co-prime bases. The Halton sequence is an n-dimensional extension of
the Van der Corput sequence; each individual Halton sequence is based on a radix inverse function defined on a prime
number.

The pysmo.sampling.HaltonSampling method carries out Halton sampling. This can be done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The Halton sampling method is only available for low-dimensional problems 𝑛 ≤ 10. At higher dimensions, the
performance of the sampling method has been shown to degrade.

4.11. Surrogate modeling 289

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

IDAES Documentation, Release 1.5.1.rc0

Available Methods

class idaes.surrogate.pysmo.sampling.HaltonSampling(data_input, num-
ber_of_samples=None, sam-
pling_type=None)

A class that performs Halton Sampling.

Halton samples are based on the reversing/flipping the base conversion of numbers using primes.

To generate n samples in a 𝑝-dimensional space, the first 𝑝 prime numbers are used to generate the samples.

Note: Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher
dimensions, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Halton samples in a 2-D space:
>>> b = rbf.HaltonSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of HaltonSampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data
set or range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a
positive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects sam-
ples from an existing dataset (“selection”) or attempts to generate sample from a supplied
range (“creation”). Default is “creation”.

Returns self function containing the input information.

Raises

• ValueError – The data_input is the wrong type.

• Exception – When the number_of_samples is invalid (not an integer, too large, zero
or negative.)

sample_points()
The sample_points method generates the Halton samples. The steps followed here are:

1. Determine the number of features in the input data.

290 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception

IDAES Documentation, Release 1.5.1.rc0

2. Generate the list of primes to be considered by calling prime_number_generator from the
sampling superclass.

3. Create the first number_of_samples elements of the Halton sequence for each prime.

4. Create the Halton samples by combining the corresponding elements of the Halton sequences for each
prime.

5. When in “selection” mode, determine the closest corresponding point in the input dataset using Eu-
clidean distance minimization. This is done by calling the nearest_neighbours method in the
sampling superclass.

Returns A numpy array or Pandas dataframe containing number_of_samples Halton sample
points.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

Hammersley Sampling

Hammersley sampling is a low-discrepancy sampling method based on the Hammersley sequence. The Hammersley
sequence is the same as the Halton sequence except in the first dimension where points are located equidistant from
each other.

The pysmo.sampling.HammersleySampling method carries out Hammersley sampling. This can be done in
two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The Hammersley sampling method is only available for low-dimensional problems 𝑛 ≤ 10. At higher dimensions, the
performance of the sampling method has been shown to degrade.

Available Methods

class idaes.surrogate.pysmo.sampling.HammersleySampling(data_input, num-
ber_of_samples=None,
sampling_type=None)

A class that performs Hammersley Sampling.

Hammersley samples are generated in a similar way to Halton samples - based on the reversing/flipping the base
conversion of numbers using primes.

To generate 𝑛 samples in a 𝑝-dimensional space, the first (𝑝− 1) prime numbers are used to generate the
samples. The first dimension is obtained by uniformly dividing the region into no_samples points.

Note: Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher
dimensionalities, the performance of the sampling method has been shown to degrade.

4.11. Surrogate modeling 291

https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
http://planning.cs.uiuc.edu/node210.html

IDAES Documentation, Release 1.5.1.rc0

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Hammersley samples in a 2-D space:
>>> b = rbf.HammersleySampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, sampling_type=None)
Initialization of HammersleySampling class. Two inputs are required.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data
set or range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a
positive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects sam-
ples from an existing dataset (“selection”) or attempts to generate sample from a supplied
range (“creation”). Default is “creation”.

• Returns – self function containing the input information.

• Raises – ValueError: When data_input is the wrong type.

Exception: When the number_of_samples is invalid (not an integer, too large, zero, neg-
ative)

sample_points()
The sampling_type method generates the Hammersley sample points. The steps followed here are:

1. Determine the number of features 𝑛𝑓 in the input data.

2. Generate the list of (𝑛𝑓 − 1) primes to be considered by calling prime_number_generator.

3. Divide the space [0,**number_of_samples**-1] into number_of_samples places to obtain the first
dimension for the Hammersley sequence.

4. For the other (𝑛𝑓 − 1) dimensions, create first number_of_samples elements of the Hammersley
sequence for each of the (𝑛𝑓 − 1) primes.

5. Create the Hammersley samples by combining the corresponding elements of the Hammersley se-
quences created in steps 3 and 4

6. When in “selection” mode, determine the closest corresponding point in the input dataset using Eu-
clidean distance minimization. This is done by calling the nearest_neighbours method in the
sampling superclass.

Returns A numpy array or Pandas dataframe containing number_of_samples Hammersley
sample points.

Return type NumPy Array or Pandas Dataframe

292 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods: http://planning.cs.uiuc.edu/node210.html

[3] Holger Dammertz’s webpage titled “Hammersley Points on the Hemisphere” which discusses Hammersley point
set generation in two dimensional spaces, http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html

Centroidal voronoi tessellation (CVT) sampling

In CVT, the generating point of each Voronoi cell coincides with its center of mass; CVT sampling locates the design
samples at the centroids of each Voronoi cell in the input space. CVT sampling is a geometric, space-filling sampling
method which is similar to k-means clustering in its simplest form.

The pysmo.sampling.CVTSampling method carries out CVT sampling. This can be done in two modes:

• The samples can be selected from a user-provided dataset, or

• The samples can be generated from a set of provided bounds.

The CVT sampling algorithm implemented here is based on McQueen’s method which involves a series of random
sampling and averaging steps, see http://kmh-lanl.hansonhub.com/uncertainty/meetings/gunz03vgr.pdf.

Available Methods

class idaes.surrogate.pysmo.sampling.CVTSampling(data_input, num-
ber_of_samples=None, toler-
ance=None, sampling_type=None)

A class that constructs Centroidal Voronoi Tessellation (CVT) samples.

CVT sampling is based on the generation of samples in which the generators of the Voronoi tessellations and
the mass centroids coincide.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 CVT samples in a 2-D space:
>>> b = rbf.CVTSampling(data_bounds, 10, tolerance = 1e-5, sampling_type="creation
→˓")
>>> samples = b.sample_points()

__init__(data_input, number_of_samples=None, tolerance=None, sampling_type=None)
Initialization of CVTSampling class. Two inputs are required, while an optional option to control the
solution accuracy may be specified.

Parameters

• data_input (NumPy Array, Pandas Dataframe or list) – The input data
set or range to be sampled.

– When the aim is to select a set of samples from an existing dataset, the dataset must
be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to
“selection”. The output variable (Y) is assumed to be supplied in the last column.

4.11. Surrogate modeling 293

https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
http://planning.cs.uiuc.edu/node210.html
http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
http://kmh-lanl.hansonhub.com/uncertainty/meetings/gunz03vgr.pdf
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

– When the aim is to generate a set of samples from a data range, the dataset must be a
list containing two lists of equal lengths which contain the variable bounds and sam-
pling_type option must be set to “creation”. It is assumed that no range contains no
output variable information in this case.

• number_of_samples (int) – The number of samples to be generated. Should be a
positive integer less than or equal to the number of entries (rows) in data_input.

• sampling_type (str) – Option which determines whether the algorithm selects sam-
ples from an existing dataset (“selection”) or attempts to generate sample from a supplied
range (“creation”). Default is “creation”.

Keyword Arguments tolerance (float) – Maximum allowable Euclidean distance be-
tween centres from consectutive iterations of the algorithm. Termination condition for al-
gorithm.

• The smaller the value of tolerance, the better the solution but the longer the algorithm
requires to converge. Default value is 10−7.

Returns self function containing the input information.

Raises

• ValueError – When data_input is the wrong type.

• Exception – When the number_of_samples is invalid (not an integer, too large, zero,
negative)

• Exception – When the tolerance specified is too loose (tolerance > 0.1) or invalid

• warnings.warn – when the tolerance specified by the user is too tight (tolerance <
10−9)

sample_points()
The sample_points method determines the best/optimal centre points (centroids) for a data set based
on the minimization of the total distance between points and centres.

Procedure based on McQueen’s algorithm: iteratively minimize distance, and re-position centroids. Centre
re-calculation done as the mean of each data cluster around each centre.

Returns A numpy array or Pandas dataframe containing the final number_of_samples centroids
obtained by the CVT algorithm.

Return type NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification” https:
//pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Centroidal Voronoi Tessellations: Applications and Algorithms by Qiang Du, Vance Faber, and Max Gunzburger
https://doi.org/10.1137/S0036144599352836

[3] D. G. Loyola, M. Pedergnana, S. G. García, “Smart sampling and incremental function learning for very large high
dimensional data” https://www.sciencedirect.com/science/article/pii/S0893608015001768?via%3Dihub

More Information about PySMO’s Sampling Methods

The sampling methods are able to generate samples based from variable bounds or select samples from a user-
provided dataset. To use any of the method, the class is first initialized with the required parameters, and then the

294 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf
https://doi.org/10.1137/S0036144599352836
https://www.sciencedirect.com/science/article/pii/S0893608015001768?via%3Dihub

IDAES Documentation, Release 1.5.1.rc0

sample_points method is called.

Examples

The following code snippet shows basic usage of the package for generating samples from a set of bounds:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp

Declaration of lower and upper bounds of 3D space to be sampled
>>> bounds = [[0, 0, 0], [1.2, 0.1, 1]]

Initialize the Halton sampling method and generate 10 samples
>>> space_init = sp.HaltonSampling(bounds_list, sampling_type='creation', number_of_
→˓samples=10)
>>> samples = space_init.sample_points()

The following code snippet shows basic usage of the package for selecting sample points from an existing dataset:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the CVT sampling method and generate 25 samples
>>> space_init = sp.CVTSampling(xy_data, sampling_type='selection', number_of_
→˓samples=25)
>>> samples = space_init.sample_points()

Note: The results of the sampling process will be a Numpy array or Pandas dataframe, depending on the format of
the input data.

Characteristics of sampling methods available in PySMO

Table 6: Characteristics of the different sampling methods
Deterministic Stochastic Low-discrepancy Space-filling Geometric

LHS X X
Full-factorial X X
Halton X X
Hammersley X X
CVT X X X

Further information about the sampling tools and their input options may be found by accessing the individual sam-
pling methods. Examples and details of the characteristics of the sampling methods may be found at More Information
about PySMO’s Sampling Methods.

4.11. Surrogate modeling 295

IDAES Documentation, Release 1.5.1.rc0

Surrogate Generation

PySMO offers tools for generating three types of surrogates:

Generating Polynomial Models with PySMO

The pysmo.polynomial_regression method learns polynomial models from data. Presented with a small number of
samples generated from experiments or computer simulations, the approach determines the most accurate polynomial
approximation by comparing the accuracy and performance of polynomials of different orders and basis function
forms.

pysmo.polynomial_regression considers three types of basis functions

• univariate polynomials,

• second-degree bivariate pilynomials, and

• user-specified basis functions.

Thus, for a problem with 𝑚 sample points and 𝑛 input variables, the resulting polynomial is of the form

𝑦𝑘 =

𝑛∑︁
𝑖=1

𝛽𝑖𝑥
𝛼
𝑖𝑘 +

𝑛∑︁
𝑖,𝑗>𝑖

𝛽𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘 + 𝛽ΦΦ (𝑥𝑖𝑘) 𝑖, 𝑗 = 1, . . . , 𝑛; 𝑖 ̸= 𝑗; 𝑘 = 1, . . . ,𝑚;𝛼 ≤ 10 (4.1)

Basic Usage

To generate a polynomial model with PySMO, the pysmo.polynomial_regression class is first initialized, and then the
method poly_training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the PolynomialRegression class, extract the list of features and train
→˓the model
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_
→˓polynomial_order=3, *kwargs)
>>> features = pr_init.get_feature_vector()
>>> polyfit = pr_init.poly_training()

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

• maximum_polynomial_order refers to the maximum polynomial order to be considered when training the
surrogate.

Optional Arguments

• multinomials - boolean option which determines whether bivariate terms are considered in polynomial genera-
tion.

296 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• training_split - option which determines fraction of training data to be used for training (the rest will be for
testing). Default is 0.8.

• number_of_crossvalidations - Number of cross-validations during training. Default number is 3.

pysmo.polynomial_regression Output

The result of the pysmo.polynomial_regression method (polyfit in above example) is a python object con-
taining information about the optimal polynomial order, the polynomial coefficients and different error and quality-of-
fit metrics such as the mean-squared-error (MSE) and the 𝑅2 coefficient-of-fit. A Pyomo expression can be generated
from the object simply passing a list of variables into the function generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])
Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(polyfit.generate_expression(list_vars))

Prediction with pysmo.polynomial_regression models

Once a polynomial model has been trained, predictions for values at previously unsampled points :math:x_unsampled
can be evaluated by calling the poly_predict_output() method on the resulting model object and the unsam-
pled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = pr_init.poly_predict_output(rbf_fit, x_unsampled)

Flowsheet Integration

The result of the polynomial training process can be passed directly into a process flowsheet as an objective or a
constraint. The following code snippet demonstrates how an output polynomial model may be integrated directly into
a Pyomo flowsheet as an objective:

Required imports
>>> import pyomo.environ as pyo
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Create a Pyomo model
>>> m = pyo.ConcreteModel()
>>> i = pyo.Set(initialize=[1, 2])

Create a Pyomo variable with indexed by the 2D-set i with initial values {0, 0}
>>> init_x = {1: 0, 2: 0}
>>> def x_init(m, i):
>>> return (init_x[i])
>>> m.x = pyo.Var(i, initialize=x_init)

Train a simple polynomial model on data available in csv format, resulting in the
→˓Python object polyfit
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

(continues on next page)

4.11. Surrogate modeling 297

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_
→˓polynomial_order=3)
>>> features = pr_init.get_feature_vector()
>>> polyfit = pr_init.poly_training()

Use the resulting polynomial as an objective, passing in the Pyomo variable x
>>> m.obj = pyo.Objective(expr=polyfit.generate_expression([m.x[1], m.x[2]]))

Solve the model
>>> instance = m
>>> opt = pyo.SolverFactory("ipopt")
>>> result = opt.solve(instance, tee=True)

Further details about pysmo.polynomial_regression may be found by consulting the examples or reading the paper
[. . .]

Available Methods

class idaes.surrogate.pysmo.polynomial_regression.FeatureScaling
A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling
and data_unscaling

static data_scaling(data)
data_scaling performs column-wise minimax scaling on the input dataset.

Parameters data – The input data set to be scaled. Must be a numpy array or dataframe.

Returns

tuple containing:

• scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be
between [0, 1].

• data_minimum : A 2-D row vector containing the column-wise minimums of the input
data.

• data_maximum : A 2-D row vector containing the column-wise maximums of the
input data.

Return type (tuple)

Raises TypeError – Raised when the input data is not a numpy array or dataframe

static data_unscaling(x_scaled, x_min, x_max)
data_unscaling performs column-wise un-scaling on the a minmax-scaled input dataset.

Parameters

• x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0
and 1.

• x_min (NumPy vector) – 𝑛× 1 vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

• x_max (NumPy vector) – 𝑛 × 1 vector vector containing the actual minimum value
for each column. Must contain same number of elements as the number of columns in
x_scaled.

Returns A 2-D numpy array containing the scaled data, 𝑥𝑚𝑖𝑛 + 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 * (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

298 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#TypeError

IDAES Documentation, Release 1.5.1.rc0

Return type NumPy Array

Raises IndexError – Raised when the dimensions of the arrays are inconsistent.

class idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression(original_data_input,
re-
gres-
sion_data_input,
max-
i-
mum_polynomial_order,
num-
ber_of_crossvalidations=None,
no_adaptive_samples=None,
train-
ing_split=None,
max_fraction_training_samples=None,
max_iter=None,
so-
lu-
tion_method=None,
multi-
no-
mi-
als=None)

The PolynomialRegression class performs polynomial regression on a training data set.

The class must first be initialized by calling PolynomialRegression. Regression is then carried out by calling
poly_training.

For a given dataset with 𝑛 features 𝑥1, 𝑥2, . . . , 𝑥𝑛, Polyregression is able to consider three types of basis functions:

(a) Mononomial terms (𝑥𝑝𝑖 , 𝑝 ≤ 10) for all individual features. The maximum degree to be considered
can be set by the user (maximum_polynomial_order)

(b) All first order interaction terms 𝑥1𝑥2, 𝑥1𝑥3 etc. This can be turned on or off by the user (set multino-
mials)

(c) User defined input features, e.g. sin(𝑥1). These must be Pyomo functions and should be provided as a
list by the user calling set_additional_terms method before the polynomial training is done.

Example:

Initialize the class and set additional terms
>>> d = PolynomialRegression(full_data, training_data, maximum_polynomial_order=2,
→˓ max_iter=20, multinomials=1, solution_method='pyomo')
>>> p = d.get_feature_vector()
>>> d.set_additional_terms([...extra terms...])

Train polynomial model and predict output for an test data x_test
>>> results = d.poly_training()
>>> predictions = d.poly_predict_output(results, x_test)

Parameters

• regression_data_input (NumPy Array of Pandas Dataframe) – The
dataset for regression training. It is expected to contain the features (X) and output (Y)
data, with the output values (Y) in the last column.

4.11. Surrogate modeling 299

https://docs.python.org/3/library/exceptions.html#IndexError

IDAES Documentation, Release 1.5.1.rc0

• original_data_input (NumPy Array of Pandas Dataframe) – If regres-
sion_data_input was drawn from a larger dataset by some sampling approach, the larger
dataset may be provided here. When additional data is not available, the same data supplied
for training_data can be supplied - this tells the algorithm not to carry out adaptive sampling.

• maximum_polynomial_order (int) – The maximum polynomial order to be consid-
ered.

Further details about the optional inputs may be found under the __init__ method.

__init__(original_data_input, regression_data_input, maximum_polynomial_order, num-
ber_of_crossvalidations=None, no_adaptive_samples=None, training_split=None,
max_fraction_training_samples=None, max_iter=None, solution_method=None, multino-
mials=None)

Initialization of PolynomialRegression class.

Parameters

• regression_data_input (NumPy Array of Pandas Dataframe) – The
dataset for regression training. It is expected to contain features and output data, with
the output values (Y) in the last column.

• original_data_input (NumPy Array of Pandas Dataframe) – If regres-
sion_data_input was drawn from a larger dataset by some sampling approach, the larger
dataset may be provided here.

• maximum_polynomial_order (int) – The maximum polynomial order to be con-
sidered.

Keyword Arguments

• number_of_crossvalidations (int) – The number of polynomial fittings and
cross-validations to be carried out for each polynomial function/expression. Must be a
positive, non-zero integer. Default=3.

• training_split (float) – The training/test split to be used for regres-
sion_data_input. Must be between 0 and 1. Default = 0.75

• solution_method (str) – The method to be used for solving the least squares opti-
mization problem for polynomial regression. Three options are available:

(a) ”MLE” : The mle (maximum likelihood estimate) method solves the least squares prob-
lem using linear algebra. Details of the method may be found in Forrester et al.

(b) ”BFGS” : This approach solves the least squares problem using scipy’s BFGS algo-
rithm.

(c) ”pyomo”: This option solves the optimization problem in pyomo with IPOPT as solver.
This is the default option.

• multinomials (bool) – This option determines whether or not multinomial terms are
considered during polynomial fitting. Takes 0 for No and 1 for Yes. Default = 1.

Returns self object containing all the input information.

Raises

• ValueError – - The input datasets (original_data_input or regression_data_input)
are of the wrong type (not Numpy arrays or Pandas Dataframes)

• Exception – * maximum_polynomial_order is not a positive, non-zero integer or
maximum_polynomial_order is higher than the number of training samples available

• Exception – * solution_method is not ‘mle’, ‘pyomo’ or ‘bfgs

300 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

IDAES Documentation, Release 1.5.1.rc0

• Exception – - multinomials is not binary (0 or 1)

• Exception – - training_split is not between 0 and 1

• Exception – - number_of_crossvalidations is not a positive, non-zero integer

• Exception – - max_fraction_training_samples is not between 0 and 1

• Exception – - no_adaptive_samples is not a positive, non-zero integer

• Exception – - max_iter is not a positive, non-zero integer

• warnings.warn – - When the number of cross-validations is too high, i.e. num-
ber_of_crossvalidations > 10

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers
of the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two
→˓rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
→˓orient='index', columns=['one', 'two', 'three'])

Initialize the **PolynomialRegression** class and print the column headers
→˓for the variables
>>> f = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=1,
→˓multinomials=True, training_split=0.8)
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

poly_predict_output(results_vector, x_data)
The poly_predict_output method generates output predictions for input data x_data based a previ-
ously generated polynomial fitting.

Parameters

• results_vector – Python object containing results of polynomial fit generated by
calling the poly_training function.

• x_data – Numpy array of designs for which the output is to be evaluated/predicted.

Returns Output variable predictions based on the polynomial fit.

Return type Numpy Array

poly_training()
The poly_training method trains a polynomial model to an input dataset. It calls the core method
which is called in the PolynomialRegression class (polynomial_regression_fitting). It accepts no user
input, inheriting the information passed in class initialization.

Returns

Python Object (results) containing the results of the polynomial regression process including:

4.11. Surrogate modeling 301

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

IDAES Documentation, Release 1.5.1.rc0

• the polynomial order (self.polynomial_order)

• polynomial coefficients (self.optimal_weights_array), and

• MAE and MSE errors as well as the 𝑅2 (results.errors).

Return type tuple

set_additional_terms(term_list)
set_additional_terms accepts additional user-defined features for consideration during regression.

Parameters term_list (list) – List of additional terms to be considered as regression fea-
tures. Each term in the list must be a Pyomo-supported intrinsic function.

Example:

To add the sine and cosine of a variable with header 'X1' in the dataset as
→˓additional regression features:
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
→˓orient='index', columns=['X1', 'X2', 'Y'])
>>> A = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=5)
>>> p = A.get_feature_vector()
>>> A.set_additional_terms([pyo.sin(p['X1']) , pyo.cos(p['X1'])])

class idaes.surrogate.pysmo.polynomial_regression.ResultReport(optimal_weight_vector,
polyno-
mial_order,
multinomials,
mae_error,
mse_error,
R2, ad-
justed_R2, num-
ber_of_iterations,
results_vector,
addi-
tional_features_array,
fi-
nal_regression_data,
df_coefficients,
ex-
tra_terms_coeffs,
ex-
tra_terms_feature_vector,
ex-
tra_terms_expressions)

generate_expression(variable_list)
The generate_expression method returns the Pyomo expression for the polynomial model trained.

The expression is constructed based on a supplied list of variables variable_list and the output of
poly_training.

Parameters variable_list (list) – List of input variables to be used in generating ex-
pression. This can be the a list generated from the results of get_feature_vector. The
user can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the polynomial model based on the variables provided in vari-
able_list.

Return type Pyomo Expression

302 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

IDAES Documentation, Release 1.5.1.rc0

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470770801

Generating Radial Basis Function (RBF) models with PySMO

The pysmo.radial_basis_function package has the capability to generate different types of RBF surrogates from data
based on the basis function selected. RBFs models are usually of the form where

𝑦𝑘 =

Ω∑︁
𝑗=1

𝑤𝑗𝜓 (‖𝑥𝑘 − 𝑧𝑗‖) 𝑘 = 1, . . . ,𝑚 (4.2)

where 𝑧𝑗 are basis function centers (in this case, the training data points), 𝑤𝑗 are the radial weights associated with
each center 𝑧𝑗 , and 𝜓 is a basis function transformation of the Euclidean distances.

PySMO offers a range of basis function transformations 𝜓, as shown in the table below.

Table 7: List of available RBF basis transformations, 𝑑 =‖ 𝑥𝑘 − 𝑧𝑗 ‖
Transformation type PySMO option name 𝜓(𝑑)
Linear ‘linear’ 𝑑
Cubic ‘cubic’ 𝑑3

Thin-plate spline ‘spline’ 𝑑2 ln(𝑑)

Gaussian ‘gaussian’ 𝑒(−𝑑2𝜎2)

Multiquadric ‘mq’
√︁

1 + (𝜎𝑑)
2

Inverse mMultiquadric ‘imq’ 1/

√︁
1 + (𝜎𝑑)

2

Selection of parametric basis functions increase the flexibility of the radial basis function but adds an extra parameter
(𝜎)to be estimated.

Basic Usage

To generate an RBF model with PySMO, the pysmo.radial_basis_function class is first initialized, and then the func-
tion rbf_training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import radial_basis_function
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the RadialBasisFunctions class, extract the list of features and train
→˓the model
>>> rbf_init = radial_basis_function.RadialBasisFunctions(xy_data, *kwargs)
>>> features = rbf_init.get_feature_vector()
>>> rbf_fit = rbf_init.rbf_training()

4.11. Surrogate modeling 303

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

IDAES Documentation, Release 1.5.1.rc0

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

Optional Arguments

• basis_function - option to specify the type of basis function to be used in the RBF model. Default is ‘gaussian’.

• regularization - boolean which determines whether regularization of the RBF model is considered. Default is
True.

– When regularization is turned on, the resulting model is a regressing RBF model.

– When regularization is turned off, the resulting model is an interpolating RBF model.

pysmo.radial_basis_function Output

The result of pysmo.radial_basis_function (rbf_fit in above example) is a python object containing information about
the optimal radial basis function weights 𝑤𝑗 and different error and quality-of-fit metrics such as the mean-squared-
error (MSE) and the 𝑅2 coefficient-of-fit. A Pyomo expression can be generated from the object simply passing a list
of variables into the function rbf_generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(rbf_fit.rbf_generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the rbf_generate_expression function can be passed
into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.radial_basis_function models

Once an RBF model has been trained, predictions for values at previously unsampled points x_unsampled can be
evaluated by calling the rbf_predict_output() function on the resulting Python object and the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = rbf_init.rbf_predict_output(rbf_fit, x_unsampled)

Further details about pysmo.radial_basis_function module may be found by consulting the examples or reading the
paper [. . .]

Available Methods

class idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
A class for scaling and unscaling input and output data. The class contains two main methods:
data_scaling_minmax and data_unscaling_minmax

static data_scaling_minmax(data)
data_scaling_minmax performs column-wise min-max scaling on the input dataset.

Parameters data – The input data set to be scaled. Must be a numpy array or dataframe.

Returns

tuple containing:

304 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

• scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be
between [0, 1].

• data_minimum : A 2-D row vector containing the column-wise minimums of the input
data.

• data_maximum : A 2-D row vector containing the column-wise maximums of the
input data.

Return type (tuple)

Raises TypeError – Raised when the input data is not a numpy array or dataframe

static data_unscaling_minmax(x_scaled, x_min, x_max)
data_unscaling_minmax performs column-wise un-scaling on the a minmax-scaled input dataset.

Parameters

• x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0
and 1.

• x_min (NumPy vector) – 𝑛× 1 vector containing the actual minimum value for each
column. Must contain same number of elements as the number of columns in x_scaled.

• x_max (NumPy vector) – 𝑛 × 1 vector vector containing the actual minimum value
for each column. Must contain same number of elements as the number of columns in
x_scaled.

Returns A 2-D numpy array containing the scaled data, 𝑥𝑚𝑖𝑛 + 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 * (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

Return type NumPy Array

Raises IndexError – Raised when the dimensions of the arrays are inconsistent.

class idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions(XY_data,
ba-
sis_function=None,
so-
lu-
tion_method=None,
reg-
u-
lar-
iza-
tion=None)

The RadialBasisFunctions class generates a radial basis function fitting for a training data set.

The class must first be initialized by calling RadialBasisFunctions. Regression is then carried out by calling
the method rbf_training.

For a given dataset with n features 𝑥1, . . . , 𝑥𝑛, RadialBasisFunctions is able to consider six types of basis transformations:

• Linear (‘linear’)

• Cubic (‘cubic’)

• Gaussian (‘gaussian’)

• Multiquadric (‘mq’)

• Inverse multiquadric (‘imq’)

• Thin-plate spline (‘spline’)

4.11. Surrogate modeling 305

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#IndexError

IDAES Documentation, Release 1.5.1.rc0

rbf_training selects the best hyperparameters (regularization parameter 𝜆 and shape parameter 𝜎, where
necessary) by evaluating the leave-one-out cross-validation error for each (𝜆, 𝜎) pair.

It should be noted that the all the training points are treated as centres for the RBF, resulting in a square system.

Example:

Initialize the class
>>> d = RadialBasisFunctions(training_data, basis_function='gaussian', solution_
→˓method='pyomo', regularization=True))
>>> p = d.get_feature_vector()

Train RBF model and predict output for an test data x_test
>>> results = d.rbf_training()
>>> predictions = d.rbf_predict_output(results, x_test)

Parameters XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF
training. XY_data is expected to contain the features (X) and output (Y) data, with the out-
put values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

__init__(XY_data, basis_function=None, solution_method=None, regularization=None)
Initialization of RadialBasisFunctions class.

Parameters XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF
training. XY_data is expected to contain feature and output information, with the output
values (y) in the last column.

Keyword Arguments

• basis_function (str) – The basis function transformation to be applied to the train-
ing data. Two classes of basis transformations are available for selection:

– Fixed basis transformations, which require no shape parameter 𝜎 :

(a) ’cubic’ : Cubic basis transformation

(b) ’linear’ : Linear basis transformation

(c) ’spline’ : Thin-plate spline basis transformation

– Parametric basis transformations which require a shape parameter:

(a) ’gaussian’ : Gaussian basis transformation (Default)

(b) ’mq’ : Multiquadric basis transformation

(c) ’imq’ : Inverse multiquadric basis transformation

• solution_method (str) – The method to be used for solving the RBF least squares
optimization problem. Three options are available:

(a) ’algebraic’ : The explicit algebraic method solves the least squares problem using linear
algebra.

(b) ’BFGS’ : This approach solves the least squares problem using SciPy’s BFGS algo-
rithm.

(c) ’pyomo’ : This option solves the optimization problem in Pyomo with IPOPT as solver.
This is the default.

• regularization (bool) – This option determines whether or not the regularization
parameter 𝜆 is considered during RBF fitting. Default setting is True.

306 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

Returns self object with the input information

Raises

• ValueError – The input dataset is of the wrong type (not a NumPy array or Pandas
Dataframe)

• Exception – * basis_function entry is not valid.

• Exception – * solution_method is not ‘algebraic’, ‘pyomo’ or ‘bfgs’.

• Exception – - 𝜆 is not boolean.

Example:

Specify the gaussian basis transformation
>>> d = RadialBasisFunctions(XY_data, basis_function='gaussian')

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers
of the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two
→˓rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
→˓orient='index', columns=['one', 'two', 'three'])

Initialize the **RadialBasisFunctions** class with a linear kernel and
→˓print the column headers for the variables
>>> f = RadialBasisFunctions(xy_data, basis_function='linear')
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

static r2_calculation(y_true, y_predicted)
r2_calculation returns the𝑅2 as a measure-of-fit between the true and predicted values of the output
variable.

Parameters

• y_true (NumPy Array) – Vector of actual values of the output variable

• y_predicted (NumPy Array) – Vector of predictions for the output variable based
on the surrogate

Returns 𝑅2 measure-of-fit between actual and predicted data

Return type float

rbf_predict_output(results_vector, x_data)
The rbf_predict_output method generates output predictions for input data x_data based a previ-
ously generated RBF fitting.

Parameters

4.11. Surrogate modeling 307

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#float

IDAES Documentation, Release 1.5.1.rc0

• results_vector (tuple) – Results of RBF training generated by calling the
rbf_training function.

• x_data (NumPy Array) – Designs for which the output is to be evaluated/predicted.

Returns Output variable predictions based on the rbf fit.

Return type Numpy Array

rbf_training()
Main function for RBF training.

To train the RBF:

(1) The best values of the hyperparameters (𝜎, 𝜆) are selected via LOOCV.

(2) The necessary basis transformation at the optimal hyperparameters is generated.

(3) The condition number for the transformed matrix is calculated.

(4) The optimal radial weights are evaluated using the selected optimization method.

(5) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling
the methods error_calculation and r2_calculation

(6) A results object is generated by calling the ResultsReport class.

The LOOCV error for each (𝜎, 𝜆) pair is evaluated by calling the function
loo_error_estimation_with_rippa_method.

The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000,
while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

Returns

Python object (results) containing the all information about the best RBF fitting obtained, including:

• the optimal radial weights (results.radial_weights),

• when relevant, the optimal shape parameter found 𝜎 (results.sigma),

• when relevant, the optimal regularization parameter found 𝜆 (results.regularization),

• the RBF predictions for the training data (results.output_predictions), and

• the 𝑅2 value on the training data (results.R2)

Return type tuple

class idaes.surrogate.pysmo.radial_basis_function.ResultReport(radial_weights,
best_r_value,
best_lambda_param,
centres,
y_training_predictions,
rmse_error,
x_condition_number,
reg_setting,
r_square, ba-
sis_function,
data_min,
data_max)

rbf_generate_expression(variable_list)
The rbf_generate_expression method returns the Pyomo expression for the RBF model trained.

308 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

IDAES Documentation, Release 1.5.1.rc0

The expression is constructed based on the supplied list of variables variable_list and the results of the
previous RBF training process.

Parameters variable_list (list) – List of input variables to be used in generating ex-
pression. This can be the a list generated from the output of get_feature_vector. The
user can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the RBF model based on the variables provided in variable_list

Return type Pyomo Expression

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470770801

[2] Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions, https:
//www.tandfonline.com/doi/full/10.1080/03052150500422294

[3] Rippa, S. (1999): An algorithm for selecting a good value for the parameter c in radial basis function interpolation,
https://doi.org/10.1023/A:1018975909870

[4] Mongillo M.A. (2011) Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods, https:
//doi.org/10.1137/11S010840

Generating Kriging Models with PySMO

The pysmo.kriging trains Ordinary Kriging models. Interpolating kriging models assume that the outputs 𝑦 ∈ R𝑚×1

are correlated and may be treated as a normally distributed stochastic process. For a set of input measurements
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} ;𝑥𝑖 ∈ R𝑛, the output 𝑦 is modeled as the sum of a mean (𝜇) and a Gaussian process error,

𝑦𝑘 = 𝜇+ 𝜖 (𝑥𝑘) 𝑘 = 1, . . . ,𝑚 (4.3)

Kriging models assume that the errors in the outputs 𝜖 are correlated proportionally to the distance between corre-
sponding points,

cor [𝜖 (𝑥𝑗) , 𝜖 (𝑥𝑘)] = exp

(︃
−

𝑛∑︁
𝑖=1

𝜃𝑖 | 𝑥𝑖𝑗 − 𝑥𝑖𝑘 |𝜏𝑖
)︃

𝑗, 𝑘 = 1, . . . ,𝑚; 𝜏𝑖 ∈ [1, 2] ; 𝜃𝑖 ≥ 0 (4.4)

The hyperparameters of the Kriging model
(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛, 𝜏1, . . . , 𝜏𝑛

)︀
are selected such that the concentrated log

likelihood function is maximized.

Basic Usage

To generate a Kriging model with PySMO, the pysmo.kriging class is first initialized, and then the function krig-
ing_training is called on the initialized object:

4.11. Surrogate modeling 309

https://docs.python.org/3/library/stdtypes.html#list
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801
https://www.tandfonline.com/doi/full/10.1080/03052150500422294
https://www.tandfonline.com/doi/full/10.1080/03052150500422294
https://doi.org/10.1023/A:1018975909870
https://doi.org/10.1137/11S010840
https://doi.org/10.1137/11S010840

IDAES Documentation, Release 1.5.1.rc0

Required imports
>>> from idaes.surrogates.pysmo import kriging
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the KrigingModel class, extract the list of features and train the model
>>> krg_init = kriging.KrigingModel(xy_data, *kwargs)
>>> features = krg_init.get_feature_vector()
>>> krg_fit = krg_init.kriging_training()

• xy_data is a two-dimensional python data structure containing the input and output training data. The output
values MUST be in the last column.

Optional Arguments

• numerical_gradients: Whether or not numerical gradients should be used in training. This choice determines
the algorithm used to solve the problem.

– True: The problem is solved with BFGS using central differencing with ∆ = 10−6 to evaluate numerical
gradients.

– False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

• regularization - Boolean option which determines whether or not regularization is considered during Kriging
training. Default is True.

– When regularization is turned on, the resulting model is a regressing kriging model.

– When regularization is turned off, the resulting model is an interpolating kriging model.

pysmo.kriging Output

The result of pysmo.kriging (krg_fit in above example) is a python object containing information about the optimal
Kriging hyperparameters

(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛

)︀
and different error and quality-of-fit metrics such as the mean-squared-

error (MSE) and the 𝑅2 coefficient-of-fit. A Pyomo expression can be generated from the object simply passing a list
of variables into the function kriging_generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(krg_fit.kriging_generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the kriging_generate_expression function can be
passed into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.kriging models

Once a Kriging model has been trained, predictions for values at previously unsampled points x_unsampled can be
evaluated by calling the kriging_predict_output() function on the resulting Python object and the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = kriging_init.kriging_predict_output(krg_fit, x_unsampled)

310 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

Further details about pysmo.kriging module may be found by consulting the examples or reading the paper [. . .]

Available Methods

class idaes.surrogate.pysmo.kriging.KrigingModel(XY_data, numerical_gradients=True,
regularization=True)

The KrigingModel class trains a Kriging model for a training data set.

The class must first be initialized by calling KrigingModel. Model training is then carried out by calling the
kriging_training method.

KrigingModel is able to generate either an interpolating or a regressing Kriging model depending on the settings
used during initialization..

Example:

Initialize the class
>>> d = KrigingModel(training_data, numerical_gradients=True,
→˓regularization=True))
>>> p = d.get_feature_vector()

Train Kriging model and predict output for an test data x_test
>>> results = d.kriging_training()
>>> predictions = d.kriging_predict_output(results, x_test)

Parameters XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging
training. XY_data is expected to contain both the features (X) and output (Y) information, with
the output values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

__init__(XY_data, numerical_gradients=True, regularization=True)
Initialization of KrigingModel class.

Parameters XY_data (NumPy Array or Pandas Dataframe) – The dataset for Krig-
ing training. XY_data is expected to contain feature and output data, with the output values
(y) in the last column.

Keyword Arguments

• numerical_gradients (bool) – Whether or not numerical gradients should be used
in training. This choice determines the algorithm used to solve the problem.

– numerical_gradients = True: The problem is solved with BFGS using central differenc-
ing with a step size of 10−6 to evaluate numerical gradients.

– numerical_gradients = False: The problem is solved with Basinhopping, a stochastic
optimization algorithm.

• regularization (bool) – This option determines whether or not regularization is
considered during Kriging training. Default is True.

– When regularization is turned off, the model generates an interpolating kriging model.

Returns self object with the input information and settings.

Raises

• ValueError – - The input dataset is of the wrong type (not a NumPy array or Pandas
Dataframe)

4.11. Surrogate modeling 311

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

IDAES Documentation, Release 1.5.1.rc0

• Exception – - numerical_gradients is not boolean

• Exception – - regularization is not boolean

Example:

Initialize Kriging class with no numerical gradients - solution algorithm
→˓will be Basinhopping
>>> d = KrigingModel(XY_data, numerical_gradients=False)

get_feature_vector()
The get_feature_vector method generates the list of regression features from the column headers
of the input dataset.

Returns An indexed parameter list of the variables supplied in the original data

Return type Pyomo IndexedParam

kriging_predict_output(kriging_params, x_pred)
The kriging_predict_output method generates output predictions for input data x_pred based a
previously trained Kriging model.

Parameters

• kriging_params (tuple) – Results of Kriging training generated by calling the
kriging_training method.

• x_pred (NumPy Array) – Array of designs for which the output is to be evalu-
ated/predicted.

Returns Output variable predictions based on the Kriging model.

Return type NumPy Array

kriging_training()
Main function for Kriging training.

To train the Kriging model:

(1) The Kriging exponent 𝜏𝑖 is fixed at 2.

(2) The optimal Kriging hyperparameters
(︀
𝜇, 𝜎2, 𝜃1, . . . , 𝜃𝑛

)︀
are evaluated by calling the

optimal_parameter_evaluation method using either BFGS or Basinhopping.

(3) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling
the functions error_calculation and self.r2_calculation

(4) A results object is generated by calling the ResultsReport class.

Returns

Python object (results) containing the all information about the best Kriging model obtained, including:

• the Kriging model hyperparameters (results.optimal_weights),

• when relevant, the optimal regularization parameter found 𝜆
(results.regularization_parameter),

• the Kriging mean (results.optimal_mean),

• the Kriging variance (results.optimal_variance),

• the Kriging model regularized co-variance matrix
(results.optimal_covariance_matrix),

312 Chapter 4. Contents

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple

IDAES Documentation, Release 1.5.1.rc0

• the inverse of the co-variance matrix (results.covariance_matrix_inverse),

• the RBF predictions for the training data (results.output_predictions),

• the RMSE of the training output predictions (results.training_rmse), and

• the 𝑅2 value on the training data (results.R2)

Return type tuple

static r2_calculation(y_true, y_predicted)
r2_calculation returns the𝑅2 as a measure-of-fit between the true and predicted values of the output
variable.

Parameters

• y_true (NumPy Array) – Vector of actual values of the output variable

• y_predicted (NumPy Array) – Vector of predictions for the output variable based
on the surrogate

Returns 𝑅2 measure-of-fit between actual and predicted data

Return type float

class idaes.surrogate.pysmo.kriging.ResultReport(theta, reg_param, mean, variance,
cov_mat, cov_inv, ymu, y_training,
r2_training, rmse_error, p, x_data,
x_data_scaled, x_data_min,
x_data_max)

kriging_generate_expression(variable_list)
The kriging_generate_expression method returns the Pyomo expression for the Kriging model
trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the
previous Kriging training process.

Parameters variable_list (list) – List of input variables to be used in generating ex-
pression. This can be the a list generated from the output of get_feature_vector. The
user can also choose to supply a new list of the appropriate length.

Returns Pyomo expression of the Kriging model based on the variables provided in vari-
able_list

Return type Pyomo Expression

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9780470770801

[2] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimiza-
tion, https://link.springer.com/article/10.1023%2FA%3A1012771025575

4.11. Surrogate modeling 313

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801
https://link.springer.com/article/10.1023%2FA%3A1012771025575

IDAES Documentation, Release 1.5.1.rc0

ALAMOpy, RIPE, and HELMET are data driven machine learning (ddm-learning) tools. They are regression tools for
the development of property models for kinetics and thermodynamics of a system. The provided tools include both
ALAMOpy and RIPE that can access ALAMO and other solvers through the Python API.

Python-based Surrogate Modeling Objects (PySMO) is a framework for general-purpose surrogate modeling tech-
niques, integrated with the Pyomo mathematical optimization framework (on which IDAES is also based).

4.12 Applications

This section contains applications that can be used in conjunction with the IDAES framework and libraries, but which
are not closely tied to the implementation.

4.12.1 Contents

MatOpt : Materials Optimization

The MatOpt module provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used
to design crystalline nanostructured materials, including but not limited to particles, wires, surfaces, and periodic bulk
structures.

The main goals of this package are as follows:

• To automate many of the steps that are necessary for utilizing mathematical optimization to design materials,
speeding up the development of new mathematical models and accelerating new materials discovery.

• To simplify the representation of nanostructured materials and their structure-function relationships as Pyomo
objects, streamlining the creation of materials optimization problems in the Pyomo modeling language.

• To provide a simple interface so that users need not handle the details of casting efficient mathematical op-
timization models, invoking mathematical optimization solvers, or utilizing specialized Pyomo syntax to do
this.

Thank you for your interest in MatOpt. We would love to hear your feedback! Please report any thoughts, questions
or bugs to: gounaris@cmu.edu

If you are using MatOpt, please consider citing:

314 Chapter 4. Contents

mailto:gounaris@cmu.edu

IDAES Documentation, Release 1.5.1.rc0

• Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials
design using discrete optimization. In preparation.

Basic Usage

There are two main sub-modules contained in the package serving two distinct purposes:

• The matopt.materials module contains objects and methods for efficiently representing and manipulating
a nanomaterial and its design space.

• The matopt.opt module contains objects and methods for speeding up the casting of a Mixed-integer Linear
Programming (MILP) model with simplified modeling syntax and automatic model formulation.

Dependencies

User access to the MILP solver CPLEX through Pyomo is assumed. For users who do not have access to CPLEX, the
use of NEOS-CPLEX is suggested as an alternative.

Define design canvas

Several pieces of information about the material and design space need to be specified in order to formulate a materials
optimization problem. To fulfill this need, the matopt.materials module defines generic and simple objects for
describing the type of material to be designed and its design space, also referred to as a “canvas”.

Some key objects are listed as follows:

class apps.matopt.materials.lattices.lattice.Lattice
A class used to represent crystal lattice locations.

The class encodes methods for determining which Cartesian coordinates to consider as sites on an infinite crystal
lattice. A Lattice can be constructed from a point on the lattice (i.e., a shift from the origin), an alignment
(i.e., rotation from a nominal orientation), and appropriate scaling factors. With these attributes, we generally
support the translation, rotation, and rescaling of lattices. Additionally, Lattice objects include a method for
determining which sites should be considered neighbors.

class apps.matopt.materials.canvas.Canvas(Points=None, NeighborhoodIndexes=None, De-
faultNN=0)

A class for combining geometric points and neighbors.

This class contains a list of Cartesian points coupled with a graph of nodes for sites and arcs for bonds. A
Canvas object establishes a mapping from the abstract, mathematical modeling of materials as graphs to the
geometry of the material lattice. The list of points and neighbor connections necessary to create a Canvas
object can be obtained from the combination of Lattice, Shape, and Tiling objects.

class apps.matopt.materials.design.Design(Canvas_=None, Contents=None)
A class used to represent material designs.

This class combines a Canvas objects and a list of contents. It assigns an element (possibly None) to each
point in the Canvas. This generally works for any type of content, but it is intended to work with Atom objects
and can be used to generate CFG, PDB, POSCAR, and XYZ files.

Build model via descriptors

The material type and design space specified provide indices, sets, and parameters for the optimization model. Using
simple syntax, inspired by materials-related terminology, MatOpt users define a MatOptModel object, which will
be translated into a Pyomo ConcreteModel object automatically.

MatOpt uses MaterialDescriptor objects to represent variables, constraints, and objectives. A MatOptModel
object holds lists of MaterialDescriptor objects. By default, several universal site descriptors are pre-defined
in the model.

4.12. Applications 315

https://neos-guide.org/neos-interfaces#pyomo

IDAES Documentation, Release 1.5.1.rc0

Descriptor Explanation
Yik Presence of a building block of type k at site i
Yi Presence of any type of building block at site i
Xijkl Presence of a building block of type k at site i and a building block of type l at site j
Xij Presence of any building block at site i and any building block at site j
Cikl Count of neighbors of type l next to a building block of type k at site i
Ci Count of any type of neighbors next to a building block at site i

User-specified descriptors are defined by DescriptorRule objects in conjunction with Expr expression objects.
Available expressions include:

Expression Explanation
LinearExpr Multiplication and addition of coefficients to distinct descriptors
SiteCombination Summation of site contributions from two sites
SumNeighborSites Summation of site contributions from all neighboring sites
SumNeighborBonds Summation of bond contributions to all neighboring sites
SumSites Summation across sites
SumBonds Summation across bonds
SumSiteTypes Summation across site types
SumBondTypes Summation across bond types
SumSitesAndTypes Summation across sites and site types
SumBondsAndTypes Summation across bonds and bond types
SumConfs Summation across conformation types
SumSitesAndConfs Summation across sites and conformation types

Several types of DescriptorRules are available.

Rule Explanation
LessThan Descriptor less than or equal to an expression
EqualTo Descriptor equal to an expression
GreaterThan Descriptor greater than or equal to an expression
FixedTo Descriptor fixed to a scalar value
PiecewiseLinear Descriptor equal to the evaluation of a piecewise linear function
Implies Indicator descriptor that imposes other constraints if equal to 1
NegImplies Indicator descriptor that imposes other constraints if equal to 0
ImpliesSiteCombination Indicator bond-indexed descriptor that imposes constraints on the two sites
ImpliesNeighbors Indicator site-indexed descriptor that imposes constraints on neighboring sites

From the combination of the above pre-defined descriptors, expressions, and rules, a user can specify a wide variety
of other descriptors, as necessary.

class apps.matopt.opt.mat_modeling.MaterialDescriptor(name, canv=None,
atoms=None, confDs=None,
bounds=(None, None), in-
teger=False, binary=False,
rules=[], **kwargs)

A class to represent material geometric and energetic descriptors.

This class holds the information to define mathematical optimization variables for the properties of materials.
Additionally, each descriptor has a ‘rules’ list to which the user can append rules defining the descriptor and
constraining the design space.

316 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

name
A unique (otherwise Pyomo will complain) name

Type string

canv
The canvas that the descriptor will be indexed over

Type Canvas

atoms
The building blocks to index the descriptor over.

Type list<BBlock>

confDs
The designs for conformations to index over.

Type list<Design>

integer
Flag to indicate if the descriptor takes integer values.

Type bool

binary
Flag to indicate if the descriptor takes boolean values.

Type bool

rules
List of rules to define and constrain the material descriptor design space.

Type list<DescriptorRules>

bounds
If tuple, the lower and upper bounds on the descriptor values across all indices. If dict, the bounds can be
individually set for each index.

Type tuple/dict/func

See IndexedElem for more information on indexing. See DescriptorRule for information on defining
descriptors.

Solve optimization model

Once the model is fully specified, the user can optimize it in light of a chosen descriptor to serve as the objective to be
maximized or minimized, as appropriate. Several functions are provided for users to choose from.

class apps.matopt.opt.mat_modeling.MatOptModel(canv, atoms=None, confDs=None)
A class for the specification of a materials optimization problem.

Once all the material information is specified, we use this class to specify the material design problem of interest.
This class is intended to be interpretable without mathematical optimization background while the conversion
to Pyomo optimization models happens automatically.

canv
The canvas of the material design space

Type Canvas

atoms
The list of building blocks to consider. Note: This list does not need to include a void-atom type. We use
‘None’ to represent the absence of any building block at a given site.

Type list<BBlock>

4.12. Applications 317

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

IDAES Documentation, Release 1.5.1.rc0

confDs
The list of conformations to consider.

Type list<Design>

maximize(func, **kwargs)
Method to maximize a target functionality of the material model.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• **kwargs – Arguments to MatOptModel.optimize

Returns (Design/list<Design>) Optimal designs.

Raises pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or
NEOS-CPLEX)

See MatOptModel.optimize method for details.

minimize(func, **kwargs)
Method to minimize a target functionality of the material model.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• **kwargs – Arguments to MatOptModel.optimize

Returns (Design/list<Design>) Optimal designs.

Raises pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or
NEOS-CPLEX)

See MatOptModel.optimize method for details.

optimize(func, sense, nSolns=1, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None,
solver=’cplex’)

Method to create and optimize the materials design problem.

This method automatically creates a new optimization model every time it is called. Then, it solves the
model via Pyomo with the CPLEX solver.

If multiple solutions (called a ‘solution pool’) are desired, then the nSolns argument can be provided and
the populate method will be called instead.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• sense (int) – flag to indicate the choice to minimize or maximize the functionality of
interest. Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

• nSolns (int) – Optional, number of Design objects to return. Default: 1 (See
MatOptModel.populate for more information)

• tee (bool) – Optional, flag to turn on solver output. Default: True

• disp (int) – Optional, flag to control level of MatOpt output. Choices: 0: No MatOpt
output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output
for solution pool & individual solns. Default: 1

• keepfiles (bool) – Optional, flag to save temporary pyomo files. Default: True

• tilim (float) – Optional, solver time limit (in seconds). Default: 3600

318 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

IDAES Documentation, Release 1.5.1.rc0

• trelim (float) – Optional, solver tree memeory limit (in MB). Default: None (i.e.,
Pyomo/CPLEX default)

• solver (str) – Solver choice. Currently only cplex or neos-cplex are supported Default:
cplex

Returns (Design/list<Design>) Optimal design or designs, depending on the number of so-
lutions requested by argument nSolns.

Raises pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or
NEOS-CPLEX)

populate(func, sense, nSolns, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None,
solver=’cplex’)

Method to a pool of solutions that optimize the material model.

This method automatically creates a new optimization model every time it is called. Then, it solves the
model via Pyomo with the CPLEX solver.

The populate method iteratively solves the model, interprets the solution as a Design object, creates a
constraint to disallow that design, and resolves to find the next best design. We build a pool of Designs
that are gauranteed to be the nSolns-best solutions in the material design space.

Parameters

• func (MaterialDescriptor/Expr) – Material functionality to optimize.

• sense (int) – flag to indicate the choice to minimize or maximize the functionality of
interest. Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

• nSolns (int) – Optional, number of Design objects to return. Default: 1 (See
MatOptModel.populate for more information)

• tee (bool) – Optional, flag to turn on solver output. Default: True

• disp (int) – Optional, flag to control level of MatOpt output. Choices: 0: No MatOpt
output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output
for solution pool & individual solns. Default: 1

• keepfiles (bool) – Optional, flag to save temporary pyomo files. Default: True

• tilim (float) – Optional, solver time limit (in seconds). Default: 3600

• trelim (float) – Optional, solver tree memeory limit (in MB). Default: None (i.e.,
Pyomo/CPLEX default)

• solver (str) – Solver choice. Currently only cplex or neos-cplex are supported Default:
cplex

Returns (list<Design>) A list of optimal Designs in order of decreasing optimality.

Raises pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or
NEOS-CPLEX)

MatOpt Output

The results of the optimization process will be loaded into Design objects automatically. Users can then save material
design(s) into files for further analysis and visualization using suitable functions provided. MatOpt provides interfaces
to several standard crystal structure file formats, including CFG, PDB, POSCAR, and XYZ.

4.12. Applications 319

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

MatOpt Examples

Five case studies are provided to illustrate the detailed usage of MatOpt. In each case, a Jupyter notebook with
explanations as well as an equivalent Python script is provided.

References

• Hanselman, C.L. and Gounaris, C.E., 2016. A mathematical optimization framework for the design of nanopat-
terned surfaces. AIChE Journal, 62(9), pp.3250-3263.

• Hanselman, C.L., Alfonso, D.R., Lekse, J.W., Matranga, C., Miller, D.C. and Gounaris, C.E., 2019. A frame-
work for optimizing oxygen vacancy formation in doped perovskites. Computers & Chemical Engineering, 126,
pp.168-177.

• Hanselman, C.L., Zhong, W., Tran, K., Ulissi, Z.W. and Gounaris, C.E., 2019. Optimization-based design of
active and stable nanostructured surfaces. The Journal of Physical Chemistry C, 123(48), pp.29209-29218.

• Isenberg, N.M., Taylor, M.G., Yan, Z., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. Identifi-
cation of optimally stable nanocluster geometries via mathematical optimization and density-functional theory.
Molecular Systems Design & Engineering.

• Yin, X., Isenberg, N.M., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. A mathematical
optimization-based design framework for identifying stable bimetallic nanoclusters. In preparation.

• Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials
design using discrete optimization. In preparation.

4.13 IDAES Versioning

The IDAES Python package is versioned according to the general guidelines of semantic versioning, following the
recommendations of PEP 440 with respect to extended versioning descriptors (alpha, beta, release candidate, etc.).

4.13.1 Basic usage

You can see the version of the package at any time interactively by printing out the __version__ variable in the top-level
package:

import idaes
print(idaes.__version__)
prints a version like "1.2.3"

4.13.2 Advanced usage

This section describes the module’s variables and classes.

Overview

The API in this module is mostly for internal use, e.g. from ‘setup.py’ to get the version of the package. But Version
has been written to be usable as a general versioning interface.

Example of using the class directly:

320 Chapter 4. Contents

https://github.com/xiangyuy/matopt-examples
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.15359
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.15359
https://www.sciencedirect.com/science/article/pii/S0098135418310998
https://www.sciencedirect.com/science/article/pii/S0098135418310998
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b08431
https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b08431
https://pubs.rsc.org/en/content/articlelanding/2019/me/c9me00108e#!divAbstract
https://pubs.rsc.org/en/content/articlelanding/2019/me/c9me00108e#!divAbstract
https://semver.org/
https://www.python.org/dev/peps/pep-0440/

IDAES Documentation, Release 1.5.1.rc0

>>> from idaes.ver import Version
>>> my_version = Version(1, 2, 3)
>>> print(my_version)
1.2.3
>>> tuple(my_version)
(1, 2, 3)
>>> my_version = Version(1, 2, 3, 'alpha')
>>> print(my_version)
1.2.3.a
>>> tuple(my_version)
(1, 2, 3, 'alpha')
>>> my_version = Version(1, 2, 3, 'candidate', 1)
>>> print(my_version)
1.2.3.rc1
>>> tuple(my_version)
(1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then simply inherit from HasVersion and initialize it with the
same arguments you would give the Version constructor:

>>> from idaes.ver import HasVersion
>>> class MyClass(HasVersion):
... def __init__(self):
... super(MyClass, self).__init__(1, 2, 3, 'alpha')
...
>>> obj = MyClass()
>>> print(obj.version)
1.2.3.a

idaes.ver.package_version = <idaes.ver.Version object>
Package’s version as an object

idaes.ver.__version__ = '1.5.1.rc0'
Package’s version as a simple string

Version class

The versioning semantics are encapsulated in a class called Version.

class idaes.ver.Version(major, minor, micro, releaselevel=’final’, serial=None, label=None)
This class attempts to be compliant with a subset of PEP 440.

Note: If you actually happen to read the PEP, you will notice that pre- and post- releases, as well as “release
epochs”, are not supported.

__init__(major, minor, micro, releaselevel=’final’, serial=None, label=None)
Create new version object.

Provided arguments are stored in public class attributes by the same name.

Parameters

• major (int) – Major version

• minor (int) – Minor version

• micro (int) – Micro (aka patchlevel) version

• releaselevel (str) – Optional PEP 440 specifier

4.13. IDAES Versioning 321

https://www.python.org/dev/peps/pep-0440/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

IDAES Documentation, Release 1.5.1.rc0

• serial (int) – Optional number associated with releaselevel

• label (str) – Optional local version label

__iter__()
Return version information as a sequence.

__str__()
Return version information as a string.

HasVersion class

For adding versions to other classes in a simple and standard way, you can use the HasVersion mixin class.

class idaes.ver.HasVersion(*args)
Interface for a versioned class.

__init__(*args)
Constructor creates a version attribute that is an instance of Version initialized with the provided args.

Parameters *args – Arguments to be passed to Version constructor.

4.14 Developer Documentation

This section of the documentation is intended for developers, and much of it is targeted at the IDAES internal team.
Hopefully many of the principles and ideas are also applicable to external contributors.

4.14.1 Developer Contents

Developer introductory material

This section gives a high-level introduction for collaborative software development on the IDAES project. It serves as
background for understanding the collaborative development procedures.

Please refer to the IDAES contributor guide for specifics on writing, testing, and documenting code for the IDAES
project.

There are many more useful things to learn about git and Github. For more information, please refer to the excellent
Atlassian Github tutorials and the online Git documentation and Github help.

Terminology

Git A “version control system”, for keeping track of changes in a set of files

Github A hosting service for Git repositories that adds many other features that are useful for collaborative software
development.

branch A name for a series of commits. See Branches.

fork Copy of a repository in Github. See Forks.

pull request (PR) A request to compare and merge code in a Github repository. See Pull Requests.

322 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://www.atlassian.com/git/tutorials
https://git-scm.com/doc
https://help.github.com/
https://git-scm.com/
https://github.com

IDAES Documentation, Release 1.5.1.rc0

Git commands

The Git tool has many different commands, but there are several really important ones that tend to get used as verbs in
software development conversations, and therefore are good to know:

add Put a file onto the list of “things I want to commit” (see “commit”), called “staging” the file.

commit Save the changes in “staged” files into Git (since the last time you did this), along with a user-provided
description of what the changes mean (called the “commit message”).

push Move local committed changes to the Github-hosted “remote” repository by “pushing” them across the network.

pull Update your local files with changes from the Github-hosted “remote” repository by “pulling” them across the
network.

Note that the push and pull commands require Github (or some other service that can host a remote copy of the
repository).

Branches

There is a good description of what git branches are and how they work here. Understanding this takes a little study,
but this pays off by making git’s behavior much less mysterious. The short, practical version is that a branch is a name
for a series of commits that you want to group together, and keep separable from other series of commits. From git’s
perspective, the branch is just a name for the first commit in that series.

It is recommended that you create new branches on which to develop your work, and reserve the “master” branch
for merging in work that has been completed and approved on Github. One way to do this is to create branches that
correspond directly to issues on Github, and include the issue number in the branch name.

Forks

A fork is a copy of a repository, in the Github shared space (a copy of a repository from Github down to your local
disk is called a “clone”). In this context, that means a copy of the “idaes-dev” repository from the IDAES organiza-
tion (https://github.com/IDAES/idaes-dev) to your own user space, e.g., https://github.com/myname/idaes-dev). The
mechanics of creating and using forks on Github are given here.

Pull Requests

A fundamental procedure in the development lifecycle is what is called a “pull request”. Understanding what these are,
and do, is important for participating fully in the software development process. First, understand that pull requests
are for collaborative development (Github) and not part of the core revision control functionality that is offered by
Git. The official Github description of pull requests is here. However, it gets technical rather quickly, so a higher-level
explanation may be helpful:

Pull requests are a mechanism that Github provides to look at what the code on some branch from your fork of
the repository would be like if it were merged with the master branch in the main (e.g., idaes/idaes-dev) repository.
You can think of it as a staging area where the code is merged and all the tests are run, without changing the target
repository. Everyone on the team can see a pull request, comment on it, and review it.

Github repository overview

This section describes the layout of the Github repositories. Later sections will give guidelines for contributing code
to these repositories.

4.14. Developer Documentation 323

https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is
https://github.com/IDAES/idaes-dev
https://github.com/myname/idaes-dev
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/about-pull-requests
https://help.github.com/articles/about-repositories/

IDAES Documentation, Release 1.5.1.rc0

Repositories

Repository
name

Pub-
lic?

Description

idaes-pse Yes Main public repository, including core framework and integrated tools
idaes-dev No Main private repository, where code is contributed before being “mirrored” to the public

ideas-pse repository
workspace No Repository for code that does not belong to any particular CRADA or NDA, but also is

never intended to be released open-source

The URL for an IDAES repository, e.g. “some-repo”, will be https://github.com/IDAES/some-repo.

Public vs. Private

All these repositories except for “idaes-pse” will only be visible on Github, on the web, for people who have been
added to the IDAES developer team in the IDAES “organization” (See About Github organizations). If you are a
member of the IDAES team and not in the IDAES Github organization, please contact one of the core developers. The
idaes-pse repository will be visible to anyone, even people without a Github account.

Collaborative software development

This page gives guidance for all developers on the project.

Note: Many details here are targeted at members of the IDAES project team. However, we strongly believe in the
importance of transparency in the project’s software practices and approaches. Also, understanding how we develop
the software internally should be generally useful to understand the review process to expect for external contributors.

Although the main focus of this project is developing open source software (OSS), it is also true that some of the
software may be developed internally or in coordination with industry under a CRADA or NDA.

It is the developer’s responsibility, for a given development effort, to keep in mind what role you must assume and
thus which set of procedures must be followed.

CRADA/NDA If you are developing software covered by a CRADA, NDA, or other legal agreement that does not
explicitly allow the data and/or code to be released as open-source under the IDAES license, then you must
follow procedures under Developing Software with Proprietary Content.

Internal If you are developing non-CRADA/NDA software, which is not intended to be part of the core framework
or (ever) released as open-source then follow procedures under Developing Software for Internal Use.

Core/open-source If you are developing software with no proprietary data or code, which is intended to be released
as open-source with the core framework, then follow procedures under Developing software for Open-source
Release.

Developing Software with Proprietary Content

Proprietary content is not currently being kept on Github, or any other collaborative version control platform. When
this changes, this section will be updated.

324 Chapter 4. Contents

https://help.github.com/articles/about-organizations/

IDAES Documentation, Release 1.5.1.rc0

Developing Software for Internal Use

Software for internal use should be developed in the workspace repository of the IDAES github organization. The
requirements for reviews and testing of this code are not as strict as for the idaes-dev repository, but otherwise the
procedures are the same as outlined for open-source development.

Developing software for Open-source Release

We can break the software development process into five distinct phases, illustrated in Figure 1 and summarized below:

1. Setup: Prepare your local system for collaborative development
2. Initiate: Notify collaborators of intent to make some changes
3. Develop: Make local changes
4. Collaborate: Push the changes to Github, get feedback and merge

Fig. 4: Figure 1. Overview of software development workflow

The rest of this page describes the what and how of each of these phases.

1. Setup

Before you can start developing software collaboratively, you need to make sure you are set up in Github and set up
your local development environment.

Github setup

To work within the project, you need to create a login on Github. You also need to make sure that this login has been
added to the IDAES organization by contacting one of the core developers.

If these steps are successful, you should be able to login to Github, visit the IDAES Github organization, and see
“Private” repositories such as idaes-dev and workspace.

Fork the repo

You use a “fork” of a repository (or “repo” for short) to create a space where you can save changes without directly
affecting the main repository. Then, as we will see, you request that these changes be incorporated (after review).

4.14. Developer Documentation 325

https://github.com/
https://github.com/IDAES/

IDAES Documentation, Release 1.5.1.rc0

This section assumes that the repository in question is idaes-dev, but the idea is the same for any other repo.

You should first visit the repo on Github by pointing your browser to https://github.com/IDAES/
idaes-dev/. Then you should fork the repo into a repo of the same name under your name.

Fig. 5: Figure 2. Screenshot showing where to click to fork the Github repo

Clone your fork

A “clone” is a copy
of a Github repos-
itory on your local
machine. This is
what you need to do
in order to actually
edit and change the
files. To make a
clone of the fork you
created in the previ-
ous step, change to a
directory where you
want to put the source code and run the command:

git clone git@github.com:MYNAME/idaes-dev.git
cd idaes-dev

Of course, replace MYNAME with your login name. This will download all the files in the latest version of the
repository onto your local disk.

Note: After the git clone, subsequent git commands should be performed from the “idaes-dev” directory.

Add upstream remote

In order to guarantee that your fork can be synchronized with the “main” idaes-dev repo in the Github IDAES orga-
nization, you need to add a pointer to that repository as a remote. This repository is called upstream (changes made
there by the whole team flow down to your fork), so we will use that name for it in our command:

git remote add upstream git@github.com:IDAES/idaes-dev.git

Create the Python environment

Once you have the repo cloned, you can change into that directory (by default, it will be called “idaes-dev” like the
repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and running. We use a Python packaging
system called Conda. Below are instructions for installing a minimal version of Conda, called Miniconda. The full
version installs a large number of scientific analysis and visualization libraries that are not required by the IDAES
framework.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

326 Chapter 4. Contents

https://github.com/IDAES/idaes-dev/
https://github.com/IDAES/idaes-dev/
https://conda.io/
https://conda.io/en/latest/miniconda.html

IDAES Documentation, Release 1.5.1.rc0

Create and activate a conda environment (along with its own copy of pip) for the new IDAES installation (you will
need to conda activate idaes when you open a fresh terminal window and wish to use IDAES):

conda create -n idaes pip
conda activate idaes

Now that conda and pip are installed, and you are in the “idaes” conda environment, you can run the standard steps
for installing a Python package in development mode:

pip install -r requirements.txt
python setup.py develop

You can test that everything is installed properly by running the tests with Pytest:

pytest

2. Initiate

We will call a set of changes that belong together, e.g. because they depend on each other to work, a “topic”. This
section describes how to start work on a new topic. The workflow for initiating a topic is shown in Figure 3 below.

Fig. 6: Figure 3. Initiate topic workflow

Create an issue on Github

To create an issue on Github,
simply navigate to the repos-
itory page and click on the
“Issues” tab. Then click on
the “Issues” button and fill
in a title and brief descrip-
tion of the issue. You do not
need to list details about sub-
steps required for the issue,
as this sort of information is
better put in the (related) pull
request that you will create
later. Assign the issue to the
appropriate people, which is
often yourself.

There is one more impor-
tant step to take, that will al-
low the rest of the project
to easily notice your issue:
add the issue to the “Prior-
ities” project. The screen-
shot below shows where you
need to click to do this.

Create a branch on your fork

It is certainly possible to do
your work on your fork in the

4.14. Developer Documentation 327

https://pytest.org/

IDAES Documentation, Release 1.5.1.rc0

“master” branch. The prob-
lem that can arise here is if
you need to do two unrelated things at the same time, for example working on a new feature and fixing a bug in the
current code. This can be quite tricky to manage as a single set of changes, but very easy to handle by putting each
new set of changes in its own branch, which we call a topic branch. When all the changes in the branch are done and
merged, you can delete it both locally and in your fork so you don’t end up with a bunch of old branches cluttering up
your git history.

Fig. 7: Figure 4. Screenshot for creating an issue on Github

The command for
doing this is simple:

git
→˓checkout -b
→˓<BRANCH-NAME>

The branch
name should
be one
word, with
dashes
or under-
scores as
needed.
One con-
vention for
the name
that can
be help-
ful is to
include
the Is-
sue num-
ber at
the end,
e.g. git
co -b
mytopic-issue42. This is especially useful later when you are cleaning up old branches, and you can
quickly see which branches are related to issues that are completed.

Make local edits and push changes

A new branch, while it feels like a change, is not really a change in the eyes of Git or Github, and by itself will not
allow you to start a new pull request (which is the goal of this whole phase). The easiest thing to do is a special
“empty” commit:

git commit --allow-empty -m 'Empty commit so I can open a PR'

Since this is your first “push” to this branch, you are going to need to set an upstream branch on the remote that should
receive the changes. If this sounds complicated, it’s OK because git actually gives you cut-and-paste instructions. Just
run the git push command with no other arguments:

$ git push
fatal: The current branch mybranch-issue3000 has no upstream branch.
To push the current branch and set the remote as upstream, use

(continues on next page)

328 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

git push --set-upstream origin mybranch-issue3000

Cut and paste the suggested command, and you’re ready to go. Subsequent calls to “push” will not require any
additional arguments to work.

Start a new Pull Request on Github

Finally, you are ready to initiate the pull request. Right after you perform the push command
above, head to the repository URL in Github (https://github.com/IDAES/idaes-dev) and you should see
a highlighted bar below the tabs, as in Figure 5 below, asking if you want to start a pull-request.

Fig. 8: Figure 5. Screenshot for starting a Pull Request on Github

Click on this and fill
in the requested in-
formation. Remem-
ber to link to the is-
sue you created ear-
lier.

Depending on the
Github plan, there
may be a pull-down
menu for creating
the pull request that
lets you create a
“draft” pull request.
If that is not present,
you can signal this
the old-fashioned
way by adding “[WIP]” (for Work-in-Progress) at the beginning of the pull request title.

Either way, create the pull request. Do not assign reviewers until you are done making your changes (which is probably
not now). This way the assigning of reviewers becomes an unambiguous signal that the PR is actually ready for review.

Note: Avoid having pull requests that take months to complete. It is better to divide up the work, even artificially,
into a piece that can be reviewed and merged into the main repository within a week or two.

3. Develop

The development process is a loop of adding code, testing and debugging, and commit-
ting and pushing to Github. You may go through many (many!) iterations of this
loop before the code is ready for review. This workflow is illustrated in Figure 6.

Fig. 9: Figure 6. Software development workflow

Running tests

After significant edits, you
should make sure you have
tests for the new/changed

4.14. Developer Documentation 329

https://github.com/IDAES/idaes-dev

IDAES Documentation, Release 1.5.1.rc0

functionality. This involves
writing Unit tests as well as
running the test suite and ex-
amining the results of the
Code coverage.

This project uses Pytest to
help with running the unit
tests. From the top-level di-
rectory of the working tree,
type:

pytest

Alternatively users of an IDE
like PyCharm can run the
tests from within the IDE.

Commit changes

The commands: git add, git
status, and git commit are all
used in combination to save
a snapshot of a Git project’s
current state.1.

The commit command is the
equivalent of “saving” your
changes. But unlike editing a
document, the set of changes
may cover multiple files, in-
cluding newly created files.
To allow the user flexibility in specifying exactly which changes to save with each commit, the add command is
used first to indicate files to “stage” for the next commit command. The status command is used to show the current
status of the working tree.

A typical workflow goes like this:

$ ls
file1 file2
$ echo 'a' > file1 # edit existing file
$ echo '1' > file3 # create new file
$ git status --short # shows changed/unstaged and unknown file
M file1

?? file3
$ git add file1 file3 # stage file1, file3 for commit
$ git status --short # M=modified, A=added
M file1
A file3
$ git commit -m "made some changes"
[master 067c16e] made some changes
2 files changed, 2 insertions(+)
create mode 100644 file3

1 Git has an additional saving mechanism called ‘the stash’. The stash is an ephemeral storage area for changes that are not ready to be committed.
The stash operates on the working directory and has extensive usage options.* See the documentation for git stash for more information.

330 Chapter 4. Contents

https://pytest.org/
https://git-scm.com/docs/git-stash

IDAES Documentation, Release 1.5.1.rc0

Of course, in most IDEs you could use built-in commands for committing and adding files. The basic flow would be
the same.

Synchronize with upstream changes

Hopefully you are not the only one on the team doing work, and therefore you should expect that the main repos-
itory may have new and changed content while you are in the process of working. To synchronize with the latest
content from the “upstream” (IDAES organization) repository, you should periodically run one of the two following
commands:

git pull
OR -- explicit
git fetch --all
git merge upstream/master

You’ll notice that this merge command is using the name of the “upstream” remote that you created earlier.

Push changes to Github

Once changes are tested and committed, they need to be synchronized up to Github. This is done with the git push
command, which typically takes no options (assuming you have set up your fork, etc., as described so far):

git push

The output of this command on the console should be an informative, if slightly cryptic, statement of how many
changes were pushed and, at the bottom, the name of your remote fork and the local/remote branches (which should
be the same). For example:

Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 528 bytes | 528.00 KiB/s, done.
Total 5 (delta 4), reused 0 (delta 0)
remote: Resolving deltas: 100% (4/4), completed with 4 local objects.
To github.com:dangunter/idaes-dev.git

d535552..fe61fcc devdocs-issue65 -> devdocs-issue65

4. Collaborate

The collaboration phase of our journey, shown in Figure 7, is mostly about communicating what you did to the other
developers. Through the Github “review” mechanism, people will be able to suggest changes and improvements. You
can make changes to the code (other people can also make changes, see Shared forks), and then push those changes up
into the same Pull Request. When you get enough approving reviews, the code is merged into the master repository. At
this point, you can delete the “topic branch” used for the pull request, and go back to initiate your next set of changes.

Fig. 10: Figure 7. Collaborate phase workflow

Request review

To
request
review

4.14. Developer Documentation 331

IDAES Documentation, Release 1.5.1.rc0

of a
pull
request,
navi-
gate to
the pull
request
in the
main
(e.g.,
“idaes-
dev”)
repos-
itory
and
select
some
names
in the
“Re-
view-
ers”
pull-
down
on the
right-hand side. You need to have two approving reviews. The reviewers should get an email, but you can also “@”
people in a comment in the pull request to give them a little extra nudge.

See the full code review procedure for more details.

Make changes

You need to keep track of the comments and reviews, and make changes accordingly. Think of a pull request as a
discussion. Normally, the person who made the pull request will make any requested edits. Occasionally, it may make
sense for one or more other developers to jump in and make edits too, so how to do this is covered in the sub-section
below.

Changes made while the code is being reviewed use the normal Develop workflow.

Shared forks

Other developers can also make changes in your fork. All they need to do is git clone your fork (not the main
repository), switch to the correct topic branch, and then git push work directly to that branch. Note since this does
not use the whole pull-request mechanism, all developers working on the same branch this way need to make sure the
git pull to synchronize with updates from the other developers.

For example, if Jack wants to make some edits on Rose’s fork, on a topic branch called “changes-issue51” he could
do the following:

$ git clone https://github.com/rose/idaes-dev # clone Rose's fork
$ git checkout changes-issue51 # checkout the topic branch
$ echo "Hello" >> README.txt # make some important changes
$ pytest # always run tests!!

(continues on next page)

332 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

(continued from previous page)

$ git add README.txt ; git commit -m "important changes"
$ git push # push changes to the fork

Hopefully it also is obvious that developers working this way have less safeguards for overwriting each other’s work,
and thus should make an effort to communicate clearly and in a timely manner.

Merge

Once all the tests pass and you have enough approving reviews, it’s time to merge the code! This is the easy part: go
to the bottom of the Pull Request and hit the big green “merge” button.

Before you close the laptop and go down to the pub, you should tidy up. First, delete your local branch (you can also
delete that branch on Github):

git checkout master # switch back to master branch
git branch -d mychanges-issue3000

Next, you should make sure your master reflects the current state of the main master branch, i.e. go back and synchro-
nize with the upstream remote, i.e. run git pull.

Now you can go and enjoy a tasty beverage. Cheers!

Testing

Testing is essential to the process of creating software. “If it isn’t tested, it doesn’t work” is a good rule of thumb.

For some specific advice for adding new tests in the IDAES code, see IDAES contributor guide.

There are different kinds of tests: functional, acceptance, performance, usability. We will primarily concern our-
selves with functional testing here, i.e. whether the thing being tested produces correct outputs for expected in-
puts, and gracefully handles everything else. Within functional testing, we can classify the testing according to the
axes of time, i.e. how long the test takes to run, and scope, i.e. the amount of the total functionality being tested.
Along these two axes we will pick out just two points, as depicted in Figure 1. The main tests you will write are
“unit tests”, which run very quickly and test a focused amount of functionality. But sometimes you need something
more involved (e.g. running solvers, using data on disk), and here we will label that kind of test “integration tests”.

Fig. 11: Figure 1. Conceptual space of functional testing

Unit tests

Testing individual pieces of functional-
ity, including the ability to report the
correct kind of errors from bad inputs.
Unit tests must always run quickly. If
it takes more than 10 seconds, it is not
a unit test, and it is expected that most

4.14. Developer Documentation 333

IDAES Documentation, Release 1.5.1.rc0

unit tests take well under 1 second. The
reason for this is that the entire unit test
suite is run on every change in a Pull
Request, and should also be run rela-
tively frequently on local developer ma-
chines. If this suite of hundreds of tests
takes more than a couple of minutes to
run, it will introduce a significant bot-
tleneck in the development workflow.

For Python code, we use the pytest test-
ing framework. This is compatible with
the built-in Python unittest framework,
but has many nice features that make it
easier and more powerful.

The best way to learn how to use pytest
is to look at existing unit tests, e.g. the
file “idaes/core/tests/test_process_block.py”. Test files are found in a directory named “test/” in every Python package
(directory with an “__init__.py”). The tests are named “test_{something}.py”; this naming convention is important so
pytest can automatically find all the tests.

When writing your own tests, make sure to remember to keep each test focused on a single piece of functionality. If a
unit test fails, it should be obvious which code is causing the problem.

Mocking

Mocking is a common, but important, technique for avoiding dependencies that make your tests slow, fragile, and
harder to understand. The basic idea is to replace dependencies with fake, or “mock”, versions of them that will
provide just enough realism for the test. Python provides a library, unittest.mock, to help with this process by providing
objects that can report how they were used, and easily pretend to have certain functionality (returning, for example,
fixed values). To make this all more concrete, consider a simple problem where you want to test a function that makes
a system call (in this case, os.remove):

file: mymodule.py
import os
def rm(filename):

os.remove(filename)

Normally, to test this you would create a temporary file, and then see if it got removed. However, with mocking you
can take a different approach entirely:

file: test_mymodule.py
from mymodule import rm
from unittest import mock

@mock.patch('mymodule.os')
def test_rm(mock_os):

rm("any path")
test that rm called os.remove with the right parameters
mock_os.remove.assert_called_with("any path")

Here, we have “patched” the os module that got imported into “mymodule” (note: had to do mymodule.os instead
of simply os, or the one mymodule uses would not get patched) so that when rm calls os.remove, it is really calling
a fake method in mock_os that does nothing but record how it was called. The patched module is passed in to the

334 Chapter 4. Contents

pytest.org
https://docs.python.org/3.7/library/unittest.html
https://docs.python.org/dev/library/unittest.mock.html

IDAES Documentation, Release 1.5.1.rc0

test as an argument so you can examine it. So, now, you are not doing any OS operations at all! You can imagine how
this is very useful with large files or external services.

Integration tests

Integration tests exercise an end-to-end slice of the overall functionality. At this time, the integration tests are all
housed in Jupyter Notebooks, which serve double-duty as examples and tutorials for end users. We execute these
notebooks and verify that they run correctly to completion at least once before each new release of the software.

Code coverage

The “coverage” of the code refers to what percentage of the code (“lines covered” divided by total lines) is executed by
the automated tests. This is important because passing automated tests is only meaningful if the automated tests cover
the majority of the code’s behavior. This is not a perfect measure, of course, since simply executing a line of code
under one condition does not mean it would execute correctly under all conditions. The code coverage is evaluated
locally and then integrated with Github through a tool called Coveralls.

Code Review

“It’s a simple 3-step process. Step one: Fix! Step two: It! Step three: Fix it!” – Oscar Rogers (Kenan Thompson),
Saturday Night Live, 2/2009

Code review is the last line of defense between a mistake that the IDAES team will see and a mistake the whole world
will see. In the case of that mistake being a leak of proprietary information, the entire project is jeopardized, so we
need to take this process seriously.

Summary

Warning: This section is an incomplete set of notes

Every piece of code must be reviewed by at least two people.

In every case, one of those people will be a designated “gatekeeper” and the one or more others will be “technical
reviewers”.

The technical reviewers are expected to consider various aspects of the proposed changes (details below), and engage
the author in a discussion on any aspects that are deemed lacking or missing.

The gatekeeper is expected to make sure all criteria have been met, and actually merge the PR.

Assigning Roles

The gatekeeper is a designated person, who will always be added to review a Pull Request (PR)

Gatekeeper is a role that will be one (?) person for some period like a week or two weeks

The role should rotate around the team, it’s expected to be a fair amount of work and should be aligned with availability
and paper deadlines, etc.

The originator of the PR will add as reviewers the gatekeeper and 1+ technical reviewers.

Originator responsibilities

The originator of the PR should include in the PR itself information about where to find:

4.14. Developer Documentation 335

https://coveralls.io

IDAES Documentation, Release 1.5.1.rc0

Changes to code/data

Tests of the changes

Documentation of the changes

The originator should be responsive to the reviewers

Technical reviewer responsibilities

The technical reviewer(s) should look at the proposed changes for

Technical correctness (runs properly, good style, internal code documentation, etc.)

Tests

Documentation

No proprietary / sensitive information

Until they approve, the conversation in the PR is between the technical reviewers and the originator (the gatekeeper is
not required to participate, assuming they have many PRs to worry about)

Gatekeeper responsibilities

The gatekeeper does not need to engage until there is at least one approving technical review.

Once there is, they should verify that:

Changes do not contain proprietary data

Tests are adequate and do not fail

Documentation is adequate

Once everything is verified, the gatekeeper merges the PR

Automated Checks

The first level of code review is a set of automated checks that must pass before the code is ready for people to review
it. These checks will run on the initiation of a pull request and on every new commit to that pull request that is pushed
to Github (thus the name “continuous integration”).

The “continuous integration” of the code is hosted by an online service – we use CircleCI – that can automatically
rerun the tests after every change (in this case, every new Pull Request or update to the code in an existing Pull
Request) and report the results back to Github for display in the web pages. This status information can then be used
as an automatic gatekeeper on whether the code can be merged into the master branch – if tests fail, then no merge is
allowed. Following this procedure, it is not possible for the master branch to ever be failing its own tests.

Docker container

This page documents information needed by developers for working with the IDAES docker container.

As is expected by Docker, the main file for creating the Docker image is the “Dockerfile” in the top-level directory.

docker-idaes script

You can build new Docker images using the create option to the docker-idaes script. For example:

./docker-idaes create

336 Chapter 4. Contents

https://circleci.com

IDAES Documentation, Release 1.5.1.rc0

You need to have the IDAES installation activated. The script will automatically find the current version and attempt
to build a Docker image with the same version. If it detects an existing image, it will skip the image build. Next,
the script will try to use docker save to save the image as a compressed archive. This will also be skipped if an
existing image file, with the same version as the “idaes” Python package, is detected.

Pushing an image to S3

The Docker images are stored on Amazon S3. Before you can upload a new image, you need to be part of the “IDAES-
admin” group that is part of Amazon’s IAM (Identity Access Management) system. Please contact one of the core
developers to learn how to join this IAM group.

Once you have the IAM keys, you need to create a file ~/.aws/credentials that has the access key id and key
from the IAM account. It will look like this:

[default]
aws_access_key_id = IDGOESHERE
aws_secret_access_key = accesskeygoeshere

The values for the ID and Access key are available from the AWS “IAM” service console.

Next you need to use the AWS command-line tools to copy the local image up to Amazon S3. For example, if the
image was version “1.0.1”, you would use the following command:

aws s3 cp idaes-pse-docker-1.0.1.tgz \
s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz

If the new image should be the latest, you also need to do an S3 -> S3 copy to create a new latest image:

aws s3 cp s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz \
s3://idaes/idaes-pse/idaes-pse-docker-latest.tgz

IDAES contributor guide

About

This page tries to give all the essential information needed to contribute software to the IDAES project. It is designed
to be useful to both internal and external collaborators.

Code and other file locations

Source code The main Python package is under the idaes/ directory. Sub-directories, aka subpackages, should be
documented elsewhere. If you add a new directory in this tree, be sure to add a __init__.py in that directory so
Python knows it is a subpackage with Python modules. Code that is not part of the core package is under apps/.
This code can have any layout that the creator wants.

Documentation The documentation for the core package is under docs.

Examples Examples are under the examples/ directory. Tutorials from workshops are under the examples/workshops/
subdirectory.

4.14. Developer Documentation 337

IDAES Documentation, Release 1.5.1.rc0

Developer environment

Development of IDAES will require an extra set of required package not needed by regular users. To install those extra
developer tools use the command pip install -r requirements-dev.txt rather than pip install
-r requirements.txt

Code style

The code style is not entirely consistent. But some general guidelines are:

• follow the PEP8 style (or variants such as Black)

• use Google-style docstrings on classes, methods, and functions

• format your docstrings as reStructuredText so they can be nicely rendered as HTML by Sphinx

• add logging to your code by creating and using a global log object named for the module, which can be created
like: _log = logging.getLogger(__name__)

• take credit by adding a global author variable: __author__ = 'yourname'

Tests

For general information about writing tests in Python, see Testing.

There are three types of tests:

Python source code The Python tests are integrated into the Python source code directories. Every package (directory
with .py modules and an __init__.py file) should also have a tests/ sub-package, in which are test files. These,
by convention are named test_<something>.py.

Doctests With some special reStructuredText “directives” (see “Writing tests”), the documentation can contain tests.
This is particularly useful for making sure examples in the documentation still run without errors.

Jupyter notebook tests (coming soon)

Writing tests

We use pytest to run our tests. The main advantage of this framework over the built-in unittest that comes with Python
is that almost no boilerplate code is required. You write a function named test_<something>() and, inside it, use the
(pytest-modified) assert keyword to check that things are correct.

Writing the Python unit tests in the tests/ directory is, hopefully, quite straightforward. Here is an example (out of
context) that tests a couple of things related to configuration in the core unit model library:

def test_config_block():
m = ConcreteModel()

m.u = Unit()

assert len(m.u. config) == 2
assert m.u.config.dynamic == useDefault

See the existing tests for many more examples.

For tests in the documentation, you need to wrap the test itself in a directive called testcode. Here is an example:

338 Chapter 4. Contents

https://www.python.org/dev/peps/pep-0008/
https://github.com/python/black
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
http://docutils.sourceforge.net/rst.html
https://docs.pytest.org/en/latest/

IDAES Documentation, Release 1.5.1.rc0

.. testcode::

from pyomo.environ import *
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class("MyBlock")
class MyBlockData(ProcessBlockData):

CONFIG = ProcessBlockData.CONFIG()
CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
def build(self):

super(MyBlockData, self).build()
self.x = Var(initialize=self.config.xinit)
self.y = Var(initialize=self.config.yinit)

First, note that reStructuredText directive and indented Python code. The indentation of the Python code is important.
You have to write an entire program here, so all the imports are necessary (unless you use the testsetup and testcleanup
directives, but honestly this isn’t worth it unless you are doing a lot of tests in one file). Then you write your Python
code as usual.

Running tests

Running all tests is done by, at the top directory, running the command: pytest.

The documentation test code will actually be run by a special hook in the pytest configuration that treats the Makefile
like a special kind of test. As a result, when you run pytest in any way that includes the “docs/” directory (including
the all tests mode), then all the documentation tests will run, and errors/etc. will be reported through pytest. A useful
corollary is that, to run documentation tests, do: pytest docs/Makefile

You can run specific tests using the pytest syntax, see its documentation or pytest -h for details.

Documentation

The documentation is built from its sources with a tool called Sphinx. The sources for the documentation are:

• hand-written text files, under docs/, with the extension “.rst” for reStructuredText.

• the Python source code

• selected Jupyter Notebooks

Building documentation

Note: To build the documentation locally, you will need to have the Sphinx tools installed. This will be done for
you by running pip install requirements-dev.txt (“developer” setup) as opposed to the regular pip
install requirements.txt (“user” setup).

To build the documentation locally, use our custom build.py script.

cd docs python build.py

4.14. Developer Documentation 339

http://docutils.sourceforge.net/rst.html

IDAES Documentation, Release 1.5.1.rc0

The above commands will do a completely clean build to create HTML output.

If the command succeeds, the final line will look like:

=== SUCCESS

If it fails, it will instead print something like:

*** ERROR in 'html'

*** message about the command that failed

*** and any additional info

If you want to see the commands actually being run, add -v to the command line.

By default the build command removes all existing built files before running the Sphinx commands. To turn this off,
and rebuild only “new” things, add –dirty to the command line.

Previewing documentation

The generated documentation can be previewed locally by opening the generated HTML files in a web browser. The
files are under the docs/build/ directory, so you can open the file docs/build/index.html to get started.

4.15 Glossary

API Acronym for “Application Programming Interface”, this is the set of functions used by an external program
to invoke the functionality of a library or application. For IDAES, it usually refers to Python functions and
classes/methods in a Python module. By analogy, the APIs are to the IDAES library what a steering wheel,
gearshift and pedals are to a car.

CRADA Cooperative Research and Development Agreement. A legal agreement between two or more parties that
involves a statement of work and terms for sharing non-public data.

NDA Non-Disclosure Agreement. A legal agreement between two or more parties that involves terms for sharing
non-public data.

4.16 License

Institute for the Design of Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE Frame-
work) Copyright (c) 2019, by the software owners: The Regents of the University of California, through Lawrence
Berkeley National Laboratory, National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon Uni-
versity, West Virginia University Research Corporation, et al. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute for the Design of Advanced Energy Systems (IDAES), University of Califor-
nia, Lawrence Berkeley National Laboratory, National Technology & Engineering Solutions of Sandia, LLC, Sandia

340 Chapter 4. Contents

IDAES Documentation, Release 1.5.1.rc0

National Laboratories, Carnegie Mellon University, West Virginia University Research Corporation, U.S. Dept. of En-
ergy, nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written li-
cense agreement for such Enhancements, then you hereby grant Lawrence Berkeley National Laboratory the following
license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate
into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and
source code form.

4.17 Copyright

Institute for the Design of Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE Frame-
work) was produced under the DOE Institute for the Design of Advanced Energy Systems (IDAES), and is copyright
(c) 2018-2019 by the software owners: The Regents of the University of California, through Lawrence Berkeley Na-
tional Laboratory, National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon University, West
Virginia University Research Corporation, et al. All rights reserved.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government
consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the
public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so. Copyright
(C) 2018-2019 IDAES - All Rights Reserved

4.17. Copyright 341

IDAES Documentation, Release 1.5.1.rc0

342 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

343

IDAES Documentation, Release 1.5.1.rc0

344 Chapter 5. Indices and tables

Python Module Index

a
apps.matopt.materials.canvas, 315
apps.matopt.materials.design, 315
apps.matopt.materials.lattices.lattice,

315
apps.matopt.opt.mat_modeling, 317

i
idaes.core.control_volume0d, 47
idaes.core.control_volume1d, 56
idaes.core.control_volume_base, 46
idaes.core.flowsheet_model, 34
idaes.core.plugins.variable_replace, 103
idaes.core.process_base, 29
idaes.core.process_block, 28
idaes.core.property_base, 37
idaes.core.reaction_base, 41
idaes.core.unit_model, 44
idaes.core.util.dyn_utils, 73
idaes.core.util.homotopy, 77
idaes.core.util.initialization, 78
idaes.core.util.model_serializer, 79
idaes.core.util.model_statistics, 89
idaes.core.util.scaling, 98
idaes.core.util.tables, 101
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack,

115
idaes.generic_models.properties.cubic_eos.cubic_prop_pack,

109
idaes.generic_models.properties.iapws95,

117
idaes.generic_models.unit_models.cstr,

159
idaes.generic_models.unit_models.equilibrium_reactor,

162
idaes.generic_models.unit_models.feed,

164
idaes.generic_models.unit_models.feed_flash,

166

idaes.generic_models.unit_models.flash,
169

idaes.generic_models.unit_models.gibbs_reactor,
171

idaes.generic_models.unit_models.heat_exchanger_1D,
183

idaes.generic_models.unit_models.heater,
173

idaes.generic_models.unit_models.mixer,
188

idaes.generic_models.unit_models.plug_flow_reactor,
192

idaes.generic_models.unit_models.pressure_changer,
196

idaes.generic_models.unit_models.product,
199

idaes.generic_models.unit_models.separator,
203

idaes.generic_models.unit_models.statejunction,
207

idaes.generic_models.unit_models.stoichiometric_reactor,
209

idaes.generic_models.unit_models.translator,
211

idaes.power_generation.unit_models.feedwater_heater_0D,
218

idaes.power_generation.unit_models.turbine_inlet,
222

idaes.power_generation.unit_models.turbine_multistage,
232

idaes.power_generation.unit_models.turbine_outlet,
226

idaes.power_generation.unit_models.turbine_stage,
229

idaes.power_generation.unit_models.valve_steam,
237

idaes.surrogate.pysmo.kriging, 311
idaes.surrogate.pysmo.polynomial_regression,

298
idaes.surrogate.pysmo.radial_basis_function,

345

IDAES Documentation, Release 1.5.1.rc0

304

346 Python Module Index

Index

Symbols
-by value

dmf-find command line option, 254
-color

dmf-ls command line option, 259
dmf-related command line option, 266
dmf-status command line option, 269

-contained resource
dmf-register command line option,

261
-create

dmf-init command line option, 258
idaes-bin-directory command line

option, 23
idaes-data-directory command line

option, 24
idaes-lib-directory command line

option, 26
-created value

dmf-find command line option, 255
-derived resource

dmf-register command line option,
262

-desc
dmf-init command line option, 258

-exists
idaes-bin-directory command line

option, 23
idaes-data-directory command line

option, 24
idaes-lib-directory command line

option, 26
-file value

dmf-find command line option, 255
-help

idaes-bin-directory command line
option, 23

idaes-copyright command line
option, 23

idaes-data-directory command line
option, 24

idaes-get-examples command line
option, 24

idaes-get-extensions command line
option, 26

idaes-lib-directory command line
option, 26

-is-subject
dmf-register command line option,

262
-list,-no-list

dmf-rm command line option, 267
-modified value

dmf-find command line option, 255
-multiple

dmf-info command line option, 256
dmf-rm command line option, 267

-name
dmf-init command line option, 258

-name value
dmf-find command line option, 255

-no-color
dmf-ls command line option, 259
dmf-related command line option, 266
dmf-status command line option, 269

-no-copy
dmf-register command line option,

261
-no-prefix

dmf-ls command line option, 260
-no-unicode

dmf-related command line option, 266
-no-unique

dmf-register command line option,
261

-output value
dmf-find command line option, 254

-prev resource

347

IDAES Documentation, Release 1.5.1.rc0

dmf-register command line option,
262

-quiet
command line option, 27
dmf command line option, 252

-strict
dmf-register command line option,

261
-type value

dmf-find command line option, 255
-unicode

dmf-related command line option, 266
-url

idaes-get-extensions command line
option, 26

-used resource
dmf-register command line option,

262
-verbose

command line option, 27
dmf command line option, 252

-version
dmf-register command line option,

262
-I, -no-install

idaes-get-examples command line
option, 24

-N, -no-download
idaes-get-examples command line

option, 25
-S,-sort

dmf-ls command line option, 260
-U, -unstable

idaes-get-examples command line
option, 25

-V, -version TEXT
idaes-get-examples command line

option, 25
-a,-all

dmf-status command line option, 269
-d,-dir TEXT

idaes-get-examples command line
option, 24

-d,-direction
dmf-related command line option, 266

-f,-format value
dmf-info command line option, 256

-l, -list-releases
idaes-get-examples command line

option, 24
-q

command line option, 27
dmf command line option, 252

-r,-reverse

dmf-ls command line option, 260
-s,-show

dmf-ls command line option, 259
-s,-show info

dmf-status command line option, 269
-t,-type

dmf-register command line option,
261

-v
command line option, 27
dmf command line option, 252

-y,-yes
dmf-rm command line option, 267

__init__() (idaes.surrogate.pysmo.kriging.KrigingModel
method), 311

__init__() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 300

__init__() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions
method), 306

__init__() (idaes.surrogate.pysmo.sampling.CVTSampling
method), 293

__init__() (idaes.surrogate.pysmo.sampling.HaltonSampling
method), 290

__init__() (idaes.surrogate.pysmo.sampling.HammersleySampling
method), 292

__init__() (idaes.surrogate.pysmo.sampling.LatinHypercubeSampling
method), 287

__init__() (idaes.surrogate.pysmo.sampling.UniformSampling
method), 288

A
activated_block_component_generator()

(in module idaes.core.util.model_statistics), 89
activated_blocks_set() (in module

idaes.core.util.model_statistics), 89
activated_constraints_generator() (in

module idaes.core.util.model_statistics), 89
activated_constraints_set() (in module

idaes.core.util.model_statistics), 89
activated_equalities_generator() (in mod-

ule idaes.core.util.model_statistics), 89
activated_equalities_set() (in module

idaes.core.util.model_statistics), 89
activated_inequalities_generator() (in

module idaes.core.util.model_statistics), 89
activated_inequalities_set() (in module

idaes.core.util.model_statistics), 89
activated_objectives_generator() (in mod-

ule idaes.core.util.model_statistics), 90
activated_objectives_set() (in module

idaes.core.util.model_statistics), 90
active_variables_in_deactivated_blocks_set()

(in module idaes.core.util.model_statistics), 90

348 Index

IDAES Documentation, Release 1.5.1.rc0

ActivityCoeffParameterBlock (class in
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
115

ActivityCoeffStateBlock (class in
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
116

ActivityCoeffStateBlockData (class in
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack),
117

add_adiabatic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

add_energy_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 69

add_energy_mixing_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_energy_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_geometry() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 48

add_geometry() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 58

add_geometry() (idaes.core.control_volume_base.ControlVolumeBlockData
method), 70

add_inlet_port() (idaes.core.unit_model.UnitModelBlockData
method), 44

add_inlet_port_objects()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_inlet_state_blocks()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

add_isothermal() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

add_material_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 70

add_material_mixing_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_material_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_mixed_state_block()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_mixed_state_block()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_momentum_balances()

(idaes.core.control_volume_base.ControlVolumeBlockData
method), 70

add_momentum_splitting_constraints()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_outlet_port()
(idaes.core.unit_model.UnitModelBlockData
method), 44

add_outlet_port_objects()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_outlet_state_blocks()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_phase_component_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 48

add_phase_component_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 58

add_phase_component_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_phase_energy_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 48

add_phase_energy_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 58

add_phase_energy_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_phase_enthalpy_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 48

add_phase_enthalpy_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 58

add_phase_enthalpy_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_phase_momentum_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 48

add_phase_momentum_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 59

add_phase_momentum_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_phase_pressure_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 49

add_phase_pressure_balances()

Index 349

IDAES Documentation, Release 1.5.1.rc0

(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 59

add_phase_pressure_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_port() (idaes.core.unit_model.UnitModelBlockData
method), 45

add_port_objects()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_pressure_equality_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_pressure_minimization_equations()
(idaes.generic_models.unit_models.mixer.MixerData
method), 190

add_pump() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

add_reaction_blocks()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 49

add_reaction_blocks()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 59

add_reaction_blocks()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_split_fractions()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 205

add_state_blocks()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 49

add_state_blocks()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 59

add_state_blocks()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_state_material_balances()
(idaes.core.unit_model.UnitModelBlockData
method), 45

add_total_component_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 49

add_total_component_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 59

add_total_component_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_total_element_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_element_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 60

add_total_element_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_total_energy_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_energy_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 60

add_total_energy_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_total_enthalpy_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_enthalpy_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 60

add_total_enthalpy_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_total_material_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_material_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 60

add_total_material_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 71

add_total_momentum_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_momentum_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

add_total_momentum_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 72

add_total_pressure_balances()
(idaes.core.control_volume0d.ControlVolume0DBlockData
method), 50

add_total_pressure_balances()
(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

add_total_pressure_balances()
(idaes.core.control_volume_base.ControlVolumeBlockData
method), 72

alamo
alamopy, 273, 284

alamopy

350 Index

IDAES Documentation, Release 1.5.1.rc0

alamo, 273, 284
API, 340
apply_transformation()

(idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

apps.matopt.materials.canvas (module), 315
apps.matopt.materials.design (module), 315
apps.matopt.materials.lattices.lattice

(module), 315
apps.matopt.opt.mat_modeling (module), 317
arcs_to_stream_dict() (in module

idaes.core.util.tables), 101
atoms (apps.matopt.opt.mat_modeling.MaterialDescriptor

attribute), 317
atoms (apps.matopt.opt.mat_modeling.MatOptModel

attribute), 317

B
badly_scaled_var_generator() (in module

idaes.core.util.scaling), 100
base_class_module()

(idaes.core.process_block.ProcessBlock class
method), 29

base_class_name()
(idaes.core.process_block.ProcessBlock class
method), 29

binary (apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 317

BoilerHeatExchanger
idaes.power_generation.unit_models.boiler_heat_exchanger,

241
BoilerHeatExchanger (class in

idaes.power_generation.unit_models.boiler_heat_exchanger),
246

BoilerHeatExchangerData (class in
idaes.power_generation.unit_models.boiler_heat_exchanger),
248

bound() (idaes.core.util.model_serializer.StoreSpec
class method), 83

bounds (apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 317

build() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 51

build() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

build() (idaes.core.control_volume_base.ControlVolumeBlockData
method), 72

build() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 34

build() (idaes.core.process_base.ProcessBlockData
method), 29

build() (idaes.core.property_base.PhysicalParameterBlock
method), 37

build() (idaes.core.property_base.StateBlockData
method), 38

build() (idaes.core.reaction_base.ReactionBlockDataBase
method), 42

build() (idaes.core.reaction_base.ReactionParameterBlock
method), 41

build() (idaes.core.unit_model.UnitModelBlockData
method), 45

build() (idaes.generic_models.control.pid_controller.PIDBlockData
method), 215

build() (idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

build() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData
method), 109

build() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

build() (idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData
method), 125

build() (idaes.generic_models.properties.iapws95.Iapws95StateBlockData
method), 124

build() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 155

build() (idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

build() (idaes.generic_models.unit_models.cstr.CSTRData
method), 161

build() (idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData
method), 163

build() (idaes.generic_models.unit_models.feed.FeedData
method), 165

build() (idaes.generic_models.unit_models.feed_flash.FeedFlashData
method), 167

build() (idaes.generic_models.unit_models.flash.FlashData
method), 170

build() (idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData
method), 172

build() (idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData
method), 179

build() (idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData
method), 186

build() (idaes.generic_models.unit_models.heater.HeaterData
method), 175

build() (idaes.generic_models.unit_models.mixer.MixerData
method), 190

build() (idaes.generic_models.unit_models.plug_flow_reactor.PFRData
method), 194

build() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

build() (idaes.generic_models.unit_models.product.ProductData
method), 200

build() (idaes.generic_models.unit_models.separator.SeparatorData
method), 205

build() (idaes.generic_models.unit_models.statejunction.StateJunctionData
method), 208

Index 351

IDAES Documentation, Release 1.5.1.rc0

build() (idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData
method), 210

build() (idaes.generic_models.unit_models.translator.TranslatorData
method), 212

build() (idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData
method), 248

build() (idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData
method), 221

build() (idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData
method), 225

build() (idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData
method), 237

build() (idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData
method), 229

build() (idaes.power_generation.unit_models.turbine_stage.TurbineStageData
method), 232

build() (idaes.power_generation.unit_models.valve_steam.SteamValveData
method), 240

C
calculate_bubble_point_pressure()

(idaes.core.property_base.StateBlockData
method), 38

calculate_bubble_point_temperature()
(idaes.core.property_base.StateBlockData
method), 38

calculate_dew_point_pressure()
(idaes.core.property_base.StateBlockData
method), 38

calculate_dew_point_temperature()
(idaes.core.property_base.StateBlockData
method), 38

calculate_scaling_factors() (in module
idaes.core.util.scaling), 100

canv (apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 317

canv (apps.matopt.opt.mat_modeling.MatOptModel at-
tribute), 317

Canvas (class in apps.matopt.materials.canvas), 315
command line option

-quiet, 27
-verbose, 27
-q, 27
-v, 27

confDs (apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 317

confDs (apps.matopt.opt.mat_modeling.MatOptModel
attribute), 317

constraint_fd_autoscale() (in module
idaes.core.util.scaling), 101

ControlVolume (class in
idaes.core.control_volume_base), 68

ControlVolume0DBlock (class in
idaes.core.control_volume0d), 47

ControlVolume0DBlockData (class in
idaes.core.control_volume0d), 48

ControlVolume1DBlock (class in
idaes.core.control_volume1d), 56

ControlVolume1DBlockData (class in
idaes.core.control_volume1d), 57

ControlVolumeBlockData (class in
idaes.core.control_volume_base), 69

copy_non_time_indexed_values() (in module
idaes.core.util.dyn_utils), 73

copy_values_at_time() (in module
idaes.core.util.dyn_utils), 73

CRADA, 340
create_inlet_list()

(idaes.generic_models.unit_models.mixer.MixerData
method), 191

create_outlet_list()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 206

create_stream_table_dataframe() (in mod-
ule idaes.core.util.tables), 102

CSTR (class in idaes.generic_models.unit_models.cstr),
159

CSTRData (class in idaes.generic_models.unit_models.cstr),
161

CubicParameterData (class in
idaes.generic_models.properties.cubic_eos.cubic_prop_pack),
109

CubicStateBlock (class in
idaes.generic_models.properties.cubic_eos.cubic_prop_pack),
110

CubicStateBlockData (class in
idaes.generic_models.properties.cubic_eos.cubic_prop_pack),
110

CVTSampling (class in
idaes.surrogate.pysmo.sampling), 293

D
data_scaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling

static method), 298
data_scaling_minmax()

(idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
static method), 304

data_unscaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling
static method), 298

data_unscaling_minmax()
(idaes.surrogate.pysmo.radial_basis_function.FeatureScaling
static method), 305

deactivate_constraints_unindexed_by()
(in module idaes.core.util.dyn_utils), 74

deactivate_model_at() (in module
idaes.core.util.dyn_utils), 74

deactivated_blocks_set() (in module
idaes.core.util.model_statistics), 90

352 Index

IDAES Documentation, Release 1.5.1.rc0

deactivated_constraints_generator() (in
module idaes.core.util.model_statistics), 90

deactivated_constraints_set() (in module
idaes.core.util.model_statistics), 90

deactivated_equalities_generator() (in
module idaes.core.util.model_statistics), 90

deactivated_equalities_set() (in module
idaes.core.util.model_statistics), 90

deactivated_inequalities_generator() (in
module idaes.core.util.model_statistics), 90

deactivated_inequalities_set() (in module
idaes.core.util.model_statistics), 91

deactivated_objectives_generator() (in
module idaes.core.util.model_statistics), 91

deactivated_objectives_set() (in module
idaes.core.util.model_statistics), 91

declare_process_block_class() (in module
idaes.core.process_block), 28

define_display_vars()
(idaes.core.property_base.StateBlockData
method), 39

define_display_vars()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

define_metadata()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData
class method), 110

define_metadata()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
class method), 155

define_metadata()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
class method), 157

define_port_members()
(idaes.core.property_base.StateBlockData
method), 39

define_state_vars()
(idaes.core.property_base.StateBlockData
method), 39

define_state_vars()
(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

define_state_vars()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

degrees_of_freedom() (in module
idaes.core.util.model_statistics), 87

delta_temperature_amtd_callback() (in
module idaes.generic_models.unit_models.heat_exchanger),
180

delta_temperature_lmtd_callback() (in
module idaes.generic_models.unit_models.heat_exchanger),
180

delta_temperature_underwood_callback()

(in module idaes.generic_models.unit_models.heat_exchanger),
180

derivative_variables_set() (in module
idaes.core.util.model_statistics), 91

Design (class in apps.matopt.materials.design), 315
DMF

dmf, 250
dmf

DMF, 250
Help, 272

dmf command line option
-quiet, 252
-verbose, 252
-q, 252
-v, 252

dmf-find command line option
-by value, 254
-created value, 255
-file value, 255
-modified value, 255
-name value, 255
-output value, 254
-type value, 255

dmf-info command line option
-multiple, 256
-f,-format value, 256
identifier, 256

dmf-init command line option
-create, 258
-desc, 258
-name, 258
path, 258

dmf-ls command line option
-color, 259
-no-color, 259
-no-prefix, 260
-S,-sort, 260
-r,-reverse, 260
-s,-show, 259

dmf-register command line option
-contained resource, 261
-derived resource, 262
-is-subject, 262
-no-copy, 261
-no-unique, 261
-prev resource, 262
-strict, 261
-used resource, 262
-version, 262
-t,-type, 261

dmf-related command line option
-color, 266
-no-color, 266
-no-unicode, 266

Index 353

IDAES Documentation, Release 1.5.1.rc0

-unicode, 266
-d,-direction, 266

dmf-rm command line option
-list,-no-list, 267
-multiple, 267
-y,-yes, 267
identifier, 267

dmf-status command line option
-color, 269
-no-color, 269
-a,-all, 269
-s,-show info, 269

E
EquilibriumReactor (class in

idaes.generic_models.unit_models.equilibrium_reactor),
162

EquilibriumReactorData (class in
idaes.generic_models.unit_models.equilibrium_reactor),
163

expressions_set() (in module
idaes.core.util.model_statistics), 91

F
FeatureScaling (class in

idaes.surrogate.pysmo.polynomial_regression),
298

FeatureScaling (class in
idaes.surrogate.pysmo.radial_basis_function),
304

Feed (class in idaes.generic_models.unit_models.feed),
164

FeedData (class in idaes.generic_models.unit_models.feed),
165

FeedFlash (class in
idaes.generic_models.unit_models.feed_flash),
166

FeedFlashData (class in
idaes.generic_models.unit_models.feed_flash),
167

fix_initial_conditions()
(idaes.core.process_base.ProcessBlockData
method), 29

fix_state_vars() (in module
idaes.core.util.initialization), 78

fix_vars_unindexed_by() (in module
idaes.core.util.dyn_utils), 74

fixed_unused_variables_set() (in module
idaes.core.util.model_statistics), 91

fixed_variables_generator() (in module
idaes.core.util.model_statistics), 91

fixed_variables_in_activated_equalities_set()
(in module idaes.core.util.model_statistics), 91

fixed_variables_only_in_inequalities()
(in module idaes.core.util.model_statistics), 92

fixed_variables_set() (in module
idaes.core.util.model_statistics), 92

Flash (class in idaes.generic_models.unit_models.flash),
169

FlashData (class in
idaes.generic_models.unit_models.flash),
170

flowsheet() (idaes.core.process_base.ProcessBlockData
method), 29

FlowsheetBlock
idaes.core.flowsheet_model, 33

FlowsheetBlock (class in
idaes.core.flowsheet_model), 35

FlowsheetBlockData
idaes.core.flowsheet_model, 33

FlowsheetBlockData (class in
idaes.core.flowsheet_model), 34

FlueGasParameterBlock
idaes.power_generation.properties.IdealProp_FlueGas,

249
FlueGasParameterData

idaes.power_generation.properties.IdealProp_FlueGas,
249

FlueGasStateBlock
idaes.power_generation.properties.IdealProp_FlueGas,

249
FlueGasStateBlockData

idaes.power_generation.properties.IdealProp_FlueGas,
249

from_json() (in module
idaes.core.util.model_serializer), 81

FWH0D
idaes.power_generation.unit_models.feedwater_heater_0D,

217
FWHCondensing0D

idaes.power_generation.unit_models.feedwater_heater_0D,
218

FWHCondensing0D (class in
idaes.power_generation.unit_models.feedwater_heater_0D),
219

FWHCondensing0DData (class in
idaes.power_generation.unit_models.feedwater_heater_0D),
221

G
generate_expression()

(idaes.surrogate.pysmo.polynomial_regression.ResultReport
method), 302

generate_table() (in module
idaes.core.util.tables), 102

get_activity_dict() (in module
idaes.core.util.dyn_utils), 74

354 Index

IDAES Documentation, Release 1.5.1.rc0

get_class_attr_list()
(idaes.core.util.model_serializer.StoreSpec
method), 83

get_data_class_attr_list()
(idaes.core.util.model_serializer.StoreSpec
method), 83

get_derivatives_at() (in module
idaes.core.util.dyn_utils), 74

get_energy_density_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_energy_density_terms()
(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

get_energy_density_terms()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

get_energy_diffusion_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_enthalpy_flow_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_enthalpy_flow_terms()
(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

get_enthalpy_flow_terms()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

get_feature_vector()
(idaes.surrogate.pysmo.kriging.KrigingModel
method), 312

get_feature_vector()
(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 301

get_feature_vector()
(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions
method), 307

get_index_set_except() (in module
idaes.core.util.dyn_utils), 74

get_material_density_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_material_density_terms()
(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

get_material_density_terms()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

get_material_diffusion_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_material_flow_basis()
(idaes.core.property_base.StateBlockData

method), 39
get_material_flow_basis()

(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

get_material_flow_basis()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 110

get_material_flow_terms()
(idaes.core.property_base.StateBlockData
method), 39

get_material_flow_terms()
(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

get_material_flow_terms()
(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 111

get_mixed_state_block()
(idaes.generic_models.unit_models.mixer.MixerData
method), 191

get_mixed_state_block()
(idaes.generic_models.unit_models.separator.SeparatorData
method), 206

get_phase_component_set()
(idaes.core.property_base.PhysicalParameterBlock
method), 37

get_reaction_rate_basis()
(idaes.core.reaction_base.ReactionBlockDataBase
method), 42

GibbsReactor (class in
idaes.generic_models.unit_models.gibbs_reactor),
171

GibbsReactorData (class in
idaes.generic_models.unit_models.gibbs_reactor),
172

grad_fd() (in module idaes.core.util.scaling), 100

H
HaltonSampling (class in

idaes.surrogate.pysmo.sampling), 290
HammersleySampling (class in

idaes.surrogate.pysmo.sampling), 291
Heater

idaes.generic_models.unit_models.heater,
173

Heater (class in idaes.generic_models.unit_models.heater),
174

HeaterData (class in
idaes.generic_models.unit_models.heater),
175

HeatExchanger
idaes.generic_models.unit_models.heat_exchanger,

175
HeatExchanger (class in

idaes.generic_models.unit_models.heat_exchanger),

Index 355

IDAES Documentation, Release 1.5.1.rc0

177
HeatExchanger1D (class in

idaes.generic_models.unit_models.heat_exchanger_1D),
183

HeatExchanger1DData (class in
idaes.generic_models.unit_models.heat_exchanger_1D),
186

HeatExchangerData (class in
idaes.generic_models.unit_models.heat_exchanger),
179

Help
dmf, 272

Home
idaes, 1

homotopy() (in module idaes.core.util.homotopy), 77
htpx() (in module idaes.generic_models.properties.iapws95),

123

I
Iapws95ParameterBlock (class in

idaes.generic_models.properties.iapws95),
124

Iapws95ParameterBlockData (class in
idaes.generic_models.properties.iapws95),
125

Iapws95StateBlock
idaes.generic_models.properties.iapws95,

117
Iapws95StateBlock (class in

idaes.generic_models.properties.iapws95),
123

Iapws95StateBlockData (class in
idaes.generic_models.properties.iapws95),
124

idaes
Home, 1

idaes-bin-directory command line
option

-create, 23
-exists, 23
-help, 23

idaes-copyright command line option
-help, 23

idaes-data-directory command line
option

-create, 24
-exists, 24
-help, 24

idaes-get-examples command line option
-help, 24
-I, -no-install, 24
-N, -no-download, 25
-U, -unstable, 25
-V, -version TEXT, 25

-d,-dir TEXT, 24
-l, -list-releases, 24

idaes-get-extensions command line
option

-help, 26
-url, 26

idaes-lib-directory command line
option

-create, 26
-exists, 26
-help, 26

idaes.core.control_volume0d (module), 47
idaes.core.control_volume1d (module), 56
idaes.core.control_volume_base (module),

46
idaes.core.flowsheet_model

FlowsheetBlock, 33
FlowsheetBlockData, 33

idaes.core.flowsheet_model (module), 34
idaes.core.plugins.variable_replace

(module), 103
idaes.core.process_base (module), 29
idaes.core.process_block (module), 28
idaes.core.property_base (module), 37
idaes.core.reaction_base (module), 41
idaes.core.unit_model (module), 44
idaes.core.util.dyn_utils (module), 73
idaes.core.util.homotopy (module), 77
idaes.core.util.initialization (module),

78
idaes.core.util.model_serializer (mod-

ule), 79
idaes.core.util.model_statistics (mod-

ule), 89
idaes.core.util.scaling (module), 98
idaes.core.util.tables (module), 101
idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack

(module), 115
idaes.generic_models.properties.cubic_eos.cubic_prop_pack

(module), 109
idaes.generic_models.properties.iapws95

Iapws95StateBlock, 117
idaes.generic_models.properties.iapws95

(module), 117
idaes.generic_models.unit_models.cstr

(module), 159
idaes.generic_models.unit_models.equilibrium_reactor

(module), 162
idaes.generic_models.unit_models.feed

(module), 164
idaes.generic_models.unit_models.feed_flash

(module), 166
idaes.generic_models.unit_models.flash

(module), 169

356 Index

IDAES Documentation, Release 1.5.1.rc0

idaes.generic_models.unit_models.gibbs_reactor
(module), 171

idaes.generic_models.unit_models.heat_exchanger
HeatExchanger, 175

idaes.generic_models.unit_models.heat_exchanger_1D
(module), 183

idaes.generic_models.unit_models.heater
Heater, 173

idaes.generic_models.unit_models.heater
(module), 173

idaes.generic_models.unit_models.mixer
(module), 188

idaes.generic_models.unit_models.plug_flow_reactor
(module), 192

idaes.generic_models.unit_models.pressure_changer
(module), 196

idaes.generic_models.unit_models.product
(module), 199

idaes.generic_models.unit_models.separator
(module), 203

idaes.generic_models.unit_models.statejunction
(module), 207

idaes.generic_models.unit_models.stoichiometric_reactor
(module), 209

idaes.generic_models.unit_models.translator
(module), 211

idaes.power_generation.properties.IdealProp_FlueGas
FlueGasParameterBlock, 249
FlueGasParameterData, 249
FlueGasStateBlock, 249
FlueGasStateBlockData, 249

idaes.power_generation.unit_models.boiler_heat_exchanger
BoilerHeatExchanger, 241

idaes.power_generation.unit_models.feedwater_heater_0D
FWH0D, 217
FWHCondensing0D, 218

idaes.power_generation.unit_models.feedwater_heater_0D
(module), 218

idaes.power_generation.unit_models.turbine_inlet
TurbineInletStage, 222

idaes.power_generation.unit_models.turbine_inlet
(module), 222

idaes.power_generation.unit_models.turbine_multistage
TurbineMultistage, 232

idaes.power_generation.unit_models.turbine_multistage
(module), 232

idaes.power_generation.unit_models.turbine_outlet
TurbineOutletStage, 226

idaes.power_generation.unit_models.turbine_outlet
(module), 226

idaes.power_generation.unit_models.turbine_stage
TurbineStage, 229

idaes.power_generation.unit_models.turbine_stage
(module), 229

idaes.power_generation.unit_models.valve_steam
SteamValve, 237

idaes.power_generation.unit_models.valve_steam
(module), 237

idaes.surrogate.pysmo.kriging (module),
311

idaes.surrogate.pysmo.polynomial_regression
(module), 298

idaes.surrogate.pysmo.radial_basis_function
(module), 304

idaes.unit_models.heat_exchanger
Proportional-Integral-Derivative

(PID) Controller, 213
identifier

dmf-info command line option, 256
dmf-rm command line option, 267

init_isentropic()
(idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

initialize() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 51

initialize() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

initialize() (idaes.core.property_base.StateBlock
method), 39

initialize() (idaes.core.reaction_base.ReactionBlockBase
method), 42

initialize() (idaes.core.unit_model.UnitModelBlockData
method), 45

initialize() (idaes.generic_models.unit_models.feed.FeedData
method), 165

initialize() (idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData
method), 179

initialize() (idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData
method), 186

initialize() (idaes.generic_models.unit_models.mixer.MixerData
method), 191

initialize() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 198

initialize() (idaes.generic_models.unit_models.product.ProductData
method), 200

initialize() (idaes.generic_models.unit_models.separator.SeparatorData
method), 206

initialize() (idaes.generic_models.unit_models.statejunction.StateJunctionData
method), 208

initialize() (idaes.generic_models.unit_models.translator.TranslatorData
method), 212

initialize() (idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData
method), 248

initialize() (idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData
method), 222

initialize() (idaes.power_generation.unit_models.turbine_inlet.TurbineInletStageData
method), 225

initialize() (idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData

Index 357

IDAES Documentation, Release 1.5.1.rc0

method), 237
initialize() (idaes.power_generation.unit_models.turbine_outlet.TurbineOutletStageData

method), 229
initialize() (idaes.power_generation.unit_models.turbine_stage.TurbineStageData

method), 232
initialize() (idaes.power_generation.unit_models.valve_steam.SteamValveData

method), 240
initialize_by_time_element() (in module

idaes.core.util.initialization), 78
integer (apps.matopt.opt.mat_modeling.MaterialDescriptor

attribute), 317
is_explicitly_indexed_by() (in module

idaes.core.util.dyn_utils), 75
is_flowsheet() (idaes.core.flowsheet_model.FlowsheetBlockData

method), 35
is_implicitly_indexed_by() (in module

idaes.core.util.dyn_utils), 75
isfixed() (idaes.core.util.model_serializer.StoreSpec

class method), 83

K
kriging_generate_expression()

(idaes.surrogate.pysmo.kriging.ResultReport
method), 313

kriging_predict_output()
(idaes.surrogate.pysmo.kriging.KrigingModel
method), 312

kriging_training()
(idaes.surrogate.pysmo.kriging.KrigingModel
method), 312

KrigingModel (class in
idaes.surrogate.pysmo.kriging), 311

L
large_residuals_set() (in module

idaes.core.util.model_statistics), 92
LatinHypercubeSampling (class in

idaes.surrogate.pysmo.sampling), 287
Lattice (class in apps.matopt.materials.lattices.lattice),

315
list_models_requiring_property()

(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 156

list_models_requiring_property()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

list_properties_required_by_model()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 156

list_properties_required_by_model()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

list_required_properties()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData

method), 156
list_required_properties()

(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

M
MaterialDescriptor (class in

apps.matopt.opt.mat_modeling), 316
MatOptModel (class in

apps.matopt.opt.mat_modeling), 317
maximize() (apps.matopt.opt.mat_modeling.MatOptModel

method), 318
minimize() (apps.matopt.opt.mat_modeling.MatOptModel

method), 318
Mixer (class in idaes.generic_models.unit_models.mixer),

188
MixerData (class in

idaes.generic_models.unit_models.mixer),
190

model_check() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 51

model_check() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

model_check() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 35

model_check() (idaes.core.unit_model.UnitModelBlockData
method), 46

model_check() (idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData
method), 117

model_check() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData
method), 111

model_check() (idaes.generic_models.unit_models.mixer.MixerData
method), 191

model_check() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData
method), 199

model_check() (idaes.generic_models.unit_models.separator.SeparatorData
method), 206

model_check() (idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData
method), 248

N
name (apps.matopt.opt.mat_modeling.MaterialDescriptor

attribute), 316
NDA, 340
number_activated_blocks() (in module

idaes.core.util.model_statistics), 92
number_activated_constraints() (in module

idaes.core.util.model_statistics), 92
number_activated_equalities() (in module

idaes.core.util.model_statistics), 92
number_activated_inequalities() (in mod-

ule idaes.core.util.model_statistics), 92
number_activated_objectives() (in module

idaes.core.util.model_statistics), 92

358 Index

IDAES Documentation, Release 1.5.1.rc0

number_active_variables_in_deactivated_blocks()
(in module idaes.core.util.model_statistics), 92

number_deactivated_blocks() (in module
idaes.core.util.model_statistics), 93

number_deactivated_constraints() (in mod-
ule idaes.core.util.model_statistics), 93

number_deactivated_equalities() (in mod-
ule idaes.core.util.model_statistics), 93

number_deactivated_inequalities() (in
module idaes.core.util.model_statistics), 93

number_deactivated_objectives() (in mod-
ule idaes.core.util.model_statistics), 93

number_derivative_variables() (in module
idaes.core.util.model_statistics), 93

number_expressions() (in module
idaes.core.util.model_statistics), 93

number_fixed_unused_variables() (in mod-
ule idaes.core.util.model_statistics), 93

number_fixed_variables() (in module
idaes.core.util.model_statistics), 94

number_fixed_variables_in_activated_equalities()
(in module idaes.core.util.model_statistics), 94

number_fixed_variables_only_in_inequalities()
(in module idaes.core.util.model_statistics), 94

number_large_residuals() (in module
idaes.core.util.model_statistics), 94

number_total_blocks() (in module
idaes.core.util.model_statistics), 94

number_total_constraints() (in module
idaes.core.util.model_statistics), 94

number_total_equalities() (in module
idaes.core.util.model_statistics), 94

number_total_inequalities() (in module
idaes.core.util.model_statistics), 94

number_total_objectives() (in module
idaes.core.util.model_statistics), 94

number_unfixed_variables() (in module
idaes.core.util.model_statistics), 95

number_unfixed_variables_in_activated_equalities()
(in module idaes.core.util.model_statistics), 95

number_unused_variables() (in module
idaes.core.util.model_statistics), 95

number_variables() (in module
idaes.core.util.model_statistics), 95

number_variables_in_activated_constraints()
(in module idaes.core.util.model_statistics), 95

number_variables_in_activated_equalities()
(in module idaes.core.util.model_statistics), 95

number_variables_in_activated_inequalities()
(in module idaes.core.util.model_statistics), 95

number_variables_near_bounds() (in module
idaes.core.util.model_statistics), 95

number_variables_only_in_inequalities()
(in module idaes.core.util.model_statistics), 96

O
optimize() (apps.matopt.opt.mat_modeling.MatOptModel

method), 318

P
partition_outlet_flows()

(idaes.generic_models.unit_models.separator.SeparatorData
method), 206

path
dmf-init command line option, 258

path_from_block() (in module
idaes.core.util.dyn_utils), 75

PFR (class in idaes.generic_models.unit_models.plug_flow_reactor),
192

PFRData (class in idaes.generic_models.unit_models.plug_flow_reactor),
194

PhysicalParameterBlock (class in
idaes.core.property_base), 37

PIDBlock (class in idaes.generic_models.control.pid_controller),
214

PIDBlockData (class in
idaes.generic_models.control.pid_controller),
215

poly_predict_output()
(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 301

poly_training() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 301

PolynomialRegression (class in
idaes.surrogate.pysmo.polynomial_regression),
299

populate() (apps.matopt.opt.mat_modeling.MatOptModel
method), 319

PressureChanger (class in
idaes.generic_models.unit_models.pressure_changer),
196

PressureChangerData (class in
idaes.generic_models.unit_models.pressure_changer),
198

print_models_requiring_property()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 156

print_models_requiring_property()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

print_properties_required_by_model()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 156

print_properties_required_by_model()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 157

print_required_properties()
(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData
method), 156

Index 359

IDAES Documentation, Release 1.5.1.rc0

print_required_properties()
(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData
method), 158

ProcessBlock (class in idaes.core.process_block), 28
ProcessBlockData (class in

idaes.core.process_base), 29
Product (class in idaes.generic_models.unit_models.product),

200
ProductData (class in

idaes.generic_models.unit_models.product),
200

propagate_state() (in module
idaes.core.util.initialization), 78

PropertyInterrogatorBlock (class in
idaes.generic_models.properties.interrogator.properties_interrogator),
155

PropertyInterrogatorData (class in
idaes.generic_models.properties.interrogator.properties_interrogator),
155

Proportional-Integral-Derivative (PID)
Controller

idaes.unit_models.heat_exchanger,
213

R
r2_calculation() (idaes.surrogate.pysmo.kriging.KrigingModel

static method), 313
r2_calculation() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions

static method), 307
RadialBasisFunctions (class in

idaes.surrogate.pysmo.radial_basis_function),
305

rbf_generate_expression()
(idaes.surrogate.pysmo.radial_basis_function.ResultReport
method), 308

rbf_predict_output()
(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions
method), 307

rbf_training() (idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions
method), 308

ReactionBlockBase (class in
idaes.core.reaction_base), 42

ReactionBlockDataBase (class in
idaes.core.reaction_base), 42

ReactionInterrogatorBlock (class in
idaes.generic_models.properties.interrogator.reactions_interrogator),
156

ReactionInterrogatorData (class in
idaes.generic_models.properties.interrogator.reactions_interrogator),
157

ReactionParameterBlock (class in
idaes.core.reaction_base), 41

release_state() (idaes.core.control_volume0d.ControlVolume0DBlockData
method), 51

release_state() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 61

release_state() (idaes.generic_models.unit_models.mixer.MixerData
method), 191

release_state() (idaes.generic_models.unit_models.separator.SeparatorData
method), 206

ReplaceVariables (class in
idaes.core.plugins.variable_replace), 104

report() (idaes.core.control_volume1d.ControlVolume1DBlockData
method), 62

report() (idaes.core.property_base.StateBlock
method), 39

report_statistics() (in module
idaes.core.util.model_statistics), 88

ResultReport (class in
idaes.surrogate.pysmo.kriging), 313

ResultReport (class in
idaes.surrogate.pysmo.polynomial_regression),
302

ResultReport (class in
idaes.surrogate.pysmo.radial_basis_function),
308

revert_state_vars() (in module
idaes.core.util.initialization), 78

rules (apps.matopt.opt.mat_modeling.MaterialDescriptor
attribute), 317

S
sample_points() (idaes.surrogate.pysmo.sampling.CVTSampling

method), 294
sample_points() (idaes.surrogate.pysmo.sampling.HaltonSampling

method), 290
sample_points() (idaes.surrogate.pysmo.sampling.HammersleySampling

method), 292
sample_points() (idaes.surrogate.pysmo.sampling.LatinHypercubeSampling

method), 287
sample_points() (idaes.surrogate.pysmo.sampling.UniformSampling

method), 289
scale_constraint() (in module

idaes.core.util.scaling), 101
Separator (class in

idaes.generic_models.unit_models.separator),
203

SeparatorData (class in
idaes.generic_models.unit_models.separator),
205

serialize() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 35

set_additional_terms()
(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression
method), 302

set_read_callback()
(idaes.core.util.model_serializer.StoreSpec
method), 83

360 Index

IDAES Documentation, Release 1.5.1.rc0

set_scaling_factor() (in module
idaes.core.util.scaling), 101

set_scaling_factor_energy()
(idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData
method), 180

set_write_callback()
(idaes.core.util.model_serializer.StoreSpec
method), 83

solve_indexed_blocks() (in module
idaes.core.util.initialization), 78

StateBlock (class in idaes.core.property_base), 39
StateBlockData (class in idaes.core.property_base),

38
StateJunction (class in

idaes.generic_models.unit_models.statejunction),
207

StateJunctionData (class in
idaes.generic_models.unit_models.statejunction),
208

SteamValve
idaes.power_generation.unit_models.valve_steam,

237
SteamValve (class in

idaes.power_generation.unit_models.valve_steam),
239

SteamValveData (class in
idaes.power_generation.unit_models.valve_steam),
240

StoichiometricReactor (class in
idaes.generic_models.unit_models.stoichiometric_reactor),
209

StoichiometricReactorData (class in
idaes.generic_models.unit_models.stoichiometric_reactor),
210

StoreSpec (class in idaes.core.util.model_serializer),
82

stream_states_dict() (in module
idaes.core.util.tables), 102

stream_table() (idaes.core.flowsheet_model.FlowsheetBlockData
method), 35

stream_table_dataframe_to_string() (in
module idaes.core.util.tables), 102

T
throttle_cv_fix()

(idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData
method), 237

to_json() (in module
idaes.core.util.model_serializer), 80

total_blocks_set() (in module
idaes.core.util.model_statistics), 96

total_constraints_set() (in module
idaes.core.util.model_statistics), 96

total_equalities_generator() (in module
idaes.core.util.model_statistics), 96

total_equalities_set() (in module
idaes.core.util.model_statistics), 96

total_inequalities_generator() (in module
idaes.core.util.model_statistics), 96

total_inequalities_set() (in module
idaes.core.util.model_statistics), 96

total_objectives_generator() (in module
idaes.core.util.model_statistics), 96

total_objectives_set() (in module
idaes.core.util.model_statistics), 96

Translator (class in
idaes.generic_models.unit_models.translator),
211

TranslatorData (class in
idaes.generic_models.unit_models.translator),
212

turbine_inlet_cf_fix()
(idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData
method), 237

turbine_outlet_cf_fix()
(idaes.power_generation.unit_models.turbine_multistage.TurbineMultistageData
method), 237

TurbineInletStage
idaes.power_generation.unit_models.turbine_inlet,

222
TurbineInletStage (class in

idaes.power_generation.unit_models.turbine_inlet),
224

TurbineInletStageData (class in
idaes.power_generation.unit_models.turbine_inlet),
225

TurbineMultistage
idaes.power_generation.unit_models.turbine_multistage,

232
TurbineMultistage (class in

idaes.power_generation.unit_models.turbine_multistage),
235

TurbineMultistageData (class in
idaes.power_generation.unit_models.turbine_multistage),
237

TurbineOutletStage
idaes.power_generation.unit_models.turbine_outlet,

226
TurbineOutletStage (class in

idaes.power_generation.unit_models.turbine_outlet),
228

TurbineOutletStageData (class in
idaes.power_generation.unit_models.turbine_outlet),
229

TurbineStage
idaes.power_generation.unit_models.turbine_stage,

229

Index 361

IDAES Documentation, Release 1.5.1.rc0

TurbineStage (class in
idaes.power_generation.unit_models.turbine_stage),
231

TurbineStageData (class in
idaes.power_generation.unit_models.turbine_stage),
232

U
unfix_initial_conditions()

(idaes.core.process_base.ProcessBlockData
method), 30

unfixed_variables_generator() (in module
idaes.core.util.model_statistics), 96

unfixed_variables_in_activated_equalities_set()
(in module idaes.core.util.model_statistics), 97

unfixed_variables_set() (in module
idaes.core.util.model_statistics), 97

UniformSampling (class in
idaes.surrogate.pysmo.sampling), 288

UnitModelBlock (class in idaes.core.unit_model), 46
UnitModelBlockData (class in

idaes.core.unit_model), 44
unused_variables_set() (in module

idaes.core.util.model_statistics), 97
use_equal_pressure_constraint()

(idaes.generic_models.unit_models.mixer.MixerData
method), 191

use_minimum_inlet_pressure_constraint()
(idaes.generic_models.unit_models.mixer.MixerData
method), 191

V
value() (idaes.core.util.model_serializer.StoreSpec

class method), 83
value_isfixed() (idaes.core.util.model_serializer.StoreSpec

class method), 83
value_isfixed_isactive()

(idaes.core.util.model_serializer.StoreSpec
class method), 83

variables_in_activated_constraints_set()
(in module idaes.core.util.model_statistics), 97

variables_in_activated_equalities_set()
(in module idaes.core.util.model_statistics), 97

variables_in_activated_inequalities_set()
(in module idaes.core.util.model_statistics), 97

variables_near_bounds_generator() (in
module idaes.core.util.model_statistics), 97

variables_near_bounds_set() (in module
idaes.core.util.model_statistics), 98

variables_only_in_inequalities() (in mod-
ule idaes.core.util.model_statistics), 98

variables_set() (in module
idaes.core.util.model_statistics), 98

362 Index

	Project Goals
	Collaborating institutions
	Contact, contributions and more information
	Contents
	Installation
	Examples
	IDAES Modeling Standards
	Configuration
	Logging
	Command-line interface
	Core Library
	Transformations
	IDAES Model Libraries
	Data Management Framework
	Surrogate modeling
	Applications
	IDAES Versioning
	Developer Documentation
	Glossary
	License
	Copyright

	Indices and tables
	Python Module Index
	Index

