

Institute for the Design of Advanced Energy Systems (IDAES)

Project Goals

The Institute for the Design of Advanced Energy Systems (IDAES) will be the
world’s premier resource for the development and analysis of innovative
advanced energy systems through the use of process systems engineering tools
and approaches. IDAES and its capabilities will be applicable to the development
of the full range of advanced fossil energy systems, including chemical looping
and other transformational CO2 capture technologies, as well as integration with
other new technologies such as supercritical CO2.

Collaborating institutions

The IDAES team is comprised of collaborators from the following institutions:

	National Energy Technology Laboratory (Lead)

	Sandia National Laboratory

	Lawrence Berkeley National Laboratory

	Carnegie-Mellon University (subcontract to LBNL)

	West Virginia University (subcontract to LBNL)

	University of Notre Dame (subcontract to LBNL)

Contact, contributions and more information

General, background and overview information is available at the IDAES main
website [https://www.idaes.org]. Framework development happens at our GitHub
repo [https://github.com/IDAES/idaes-pse] where you can report issues/bugs [https://github.com/IDAES/idaes-pse/issues] or make contributions [https://github.com/IDAES/idaes-pse/pulls]. For further enquiries, send an
email to: <idaes-support@idaes.org>

Contents

	Getting Started
	Installation

	Windows

	Linux

	Mac/OSX

	Generic Install

	Optional Dependencies

	Updating an existing installation

	User Guide
	Why IDAES

	Concepts

	Components

	Conventions

	Workflow

	Command-line interface

	Visualization

	IDAES Model Libraries

	Logging

	Modeling Extensions

	Advanced User Guide
	Advanced User Installation

	Developer Documentation

	Developing Custom Models

	Tutorials and Examples

	Technical Specifications
	Core

	Model Libaries

	License

	Copyright

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Installation

To install the IDAES PSE framework, follow the set of instructions below that are
appropriate for your needs and operating system. If you get stuck, please contact
idaes-support@idaes.org.

After installing and testing IDAES, it is strongly recommended to do the IDAES tutorials
located on the examples online documentation page [https://idaes.github.io/examples-pse/latest/index.html].

If you expect to develop custom models, we recommend following the
advanced user installation.

The OS specific instructions provide information about optionally installing
Miniconda. If you already have a Python installation you prefer, you can skip
the Miniconda install section.

Note

IDAES supports Python 3.6 and above.

	System

	Section

	Linux

	Linux

	Windows

	Windows

	Mac OSX

	Mac/OSX

	Generic

	Generic Install

Warning

If you are using Python for other complex projects, you may want to
consider using environments of some sort to avoid conflicting
dependencies. There are several good options including conda
environments if you use Anaconda.

Windows

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Windows-x86_64.exe

	Install anaconda from the downloaded file in (1).

	Open the Anaconda Prompt (Start -> “Anaconda Prompt”).

	In the Anaconda Prompt, follow the Generic Install instructions.

Linux

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

	Open a terminal window

	Run the script you downloaded in (1).

Install Dependencies

	The IPOPT solver depends on the GNU FORTRAN, GOMP, Blas, and Lapack libraries,
If these libraries are not already installed on your Linux system, you or your
system administrator can use the sample commands below to install them. If you
have a Linux distribution that is not listed, IPOPT should still work, but
the commands to install the required libraries may differ. If these libraries
are already installed, you can skip this and proceed with the next step.

Note

Depending on your distribution, you may need to prepend sudo to
these commands or switch to the “root” user.

apt-get (Current Ubuntu based distributions):

sudo apt-get install libgfortran4 libgomp1 liblapack3 libblas3

yum (Current RedHat based distributions, including CentOS):

yum install lapack blas libgfortran libgomp

Complete Generic Install

Follow the Generic Install instructions.

Mac/OSX

Install Miniconda (optional)

	Download: https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

	For the next steps, open a terminal window

	Run the script you downloaded in (1).

Complete Generic Install

Follow the Generic Install instructions.

Generic Install

The remaining steps performed in either the Linux or OSX Terminal or Powershell.
If you installed Miniconda on Windows use the Anaconda Prompt or Anaconda
Powershell Prompt. Regardless of OS and shell, the following steps are the same.

Install IDAES

	Install IDAES with pip by one of the following methods

	To get the latest release:

pip install idaes-pse

	To get a specific release, for example 1.7:

pip install idaes-pse==1.7

	To get the latest development main branch:

pip install git+https://github.com/idaes/idaes-pse

	To get a specific fork or branch, for example myfork (of idaes-pse) and mybranch:

pip install git+https://github.com/myfork/idaes-pse@mybranch

	Run the idaes get-extensions command
to install the compiled binaries:

idaes get-extensions

Warning

The IDAES binary extensions are not yet supported on Mac/OSX.

As a fallback (assuming you are using a conda env) you can install
the generic ipopt solver with the command conda install -c
conda-forge ipopt though this will not have all the features
of our extensions package.

	Run the idaes get-examples command to download
and install the example files:

idaes get-examples

By default this will install in a folder “examples” in the current directory.
The command has many options, but an important
one is –dir, which specifies the folder in which to install.

for Mac and Linux users this would look like:

idaes get-examples --dir ~/idaes/examples

or, for Windows users, it would look like:

idaes get-examples --dir C:\Users\MyName\IDAES\Examples

Refer to the full idaes get-examples command documentation
for more information.

	Run tests:

pytest --pyargs idaes -W ignore

	You should see the tests run and all should pass to ensure the installation worked. You
may see some “Error” level log messages, but they are okay, and produced by tests for
error handling. The number of tests that failed and succeeded is reported at the end of the pytest
output. You can report problems on the Github issues page [https://github.com/IDAES/idaes-pse/issues]
(Please try to be specific about the command and the offending output.)

Optional Dependencies

Some tools in IDAES may require additional dependencies. Instructions for installing these dependencies
are located here.

Updating an existing installation

When a new version is released, an IDAES installation can be updated without having to remove and reinstall it from scratch.

The following steps describe how to upgrade an existing installation in-place,
assuming that the installation was done using one of the methods described earlier in this section.

Warning

If IDAES was installed in a dedicated environment (e.g. a Conda environment, or Python virtual environment), activate the environment before running any of these commands.

	Open a terminal and verify the currently installed version of IDAES:

idaes --version

	Install the upgraded version of the idaes-pse package using pip install:

pip install --upgrade idaes-pse

If a newer version of the idaes-pse package is available, the currently installed version will be removed and replaced by the newest available version.
Check again the IDAES version to verify that the upgrade was successful:

idaes --version

	Run the idaes get-extension command to install compiled binaries compatible with the newly upgraded IDAES version:

idaes get-extensions

	Finally, use the idaes get-examples command to install the most recent version of the IDAES examples compatible with the upgraded IDAES version.

Warning

If the examples target installation directory is not empty, its contents, including examples installed with a previous IDAES version and other files, will be overwritten without warning.
To avoid losing data, it is strongly recommended that you make a backup copy of any existing examples directory before proceeding.

After creating a backup copy of the existing examples directory, run:

idaes get-examples

Optional Dependencies

(content will be added soon)

User Guide

	Why IDAES

	Concepts

	Components

	Conventions

	Workflow

	Command-line interface

	Visualization

	IDAES Model Libraries

	Logging

	Modeling Extensions

Why IDAES

The National Energy Technology Laboratory’s Institute for the Design of Advanced Energy Systems
(IDAES) is a powerful and versatile computational platform offering next-generation engineering
capabilities for optimizing the design and operation of innovative chemical process
and energy systems beyond current constraints on complexity, uncertainty, and scales ranging
from materials to process to market.

The IDAES Integrated Platform was conceived in 2016 to specifically
address the gaps between state-of-the-art simulation packages and algebraic modeling languages.

Major strengths of commercial simulation packages are their libraries of unit models and
thermophysical properties. However, such simulation packages often have difficulty optimizing
flowsheets and have limited support for incorporating models of non-standard, dynamic units,
such as solids handling, and uncertainty quantification. On the other hand, AMLs are eminently
flexible and readily support large-scale optimization, but considerable work is required to
construct process models, which are often only useful for a one-time application.

The IDAES Integrated Platform represents an innovative approach for the design and
optimization of chemical and energy processes by integrating an extensible, equation-oriented
process model library with Pyomo (a Python-based AML). Built specifically to enable rigorous
large-scale mathematical optimization, the platform includes capabilities for conceptual
design, steady-state and dynamic optimization, multi-scale modeling, uncertainty quantification,
and the automated development of thermodynamic, physical property, and kinetic sub-models from
experimental data.

Key Features

Open Source

All IDAES Code is completely free and redistributable, the license is avaliable
here. Users are free to modify and redistribute code, and community
development is encouraged.

Equation Oriented

By using an equation-oriented platform, users gain access to a wide range of highly efficient,
derivative-based numerical solvers for a wide range of problem types, including support for
both linear and non-linear problems, ordinary and partial differential equations, and problems
involving binary and integer variables.

Fully-Featured Programming Environment

By building off of Python, a fully-featured programming environment, users gain access to a
wide range of libraries for tools such as data visualization and management.

Extensible

The source code for all models and tools is fully-open and visible to the user. This allows
users to both see and understand what is happening in each model, but also modify and extend
models to suit their needs.

Flexible Form

No single model form is best suited to all applications, thus the IDAES Integrated Platform
is built to provide users with access to a range of different model forms. This allows
users to easily pick-and-choose from the available model forms to find the one best suited to
their particular application.

Access to Advanced Capabilities

IDAES aims to provide an integrated platform for development of not just process models but also
tools for solving and analyzing these problems. The platform supports conceptual
design, parameter estimation, model predictive control, uncertainty quantification, and
surrogate modeling.

Concepts

The IDAES Integrated Platform combines an extensible, equation-oriented process modeling
framework with advanced solver and computer architectures to enable advanced process systems
engineering capabilities. The platform is based on the Python-based algebraic modeling language
Pyomo, and while not necessary, users may benefit from a basic familiarity with Pyomo
(link to documentation [https://pyomo.readthedocs.io/en/stable/index.html]).

The IDAES Integrated Platform was designed to be modular, and is based on the
block-hierarchical structure shown below:

[image: ../_images/IDAES_structure.png]
An IDAES process model begins with a process flowsheet, which is the canvas on which the
representation of the user’s process will be constructed. Each process consists of a network of
unit operations which represent different pieces of equipment within the process (such as
reactors, heater and pumps) and are connected together to form the overall process. Each unit
operation in turn is made up of modular components – a unit model which describes the behavior
and performance of the piece of equipment, a thermophysical property package which represents
the material being processed by the unit operation, and a reaction package (if applicable) which
represents any chemical reactions that may occur within the unit. Each of these components can
be further broken down into sub-modules:

	Unit models consist of a set of material, energy and momentum balance equations which describe how
material flows through the system, coupled with a set of performance equation which describe
phenomena such as heat and mass transfer.

	Thermophysical property packages (generally) consist of a set of ideal, pure component properties
for each component, a set of mixing rules and departure functions which describe how the mixture
properties depend on the ideal properties, and a set of equations describing phase-equilibrium
phenomena.

At the other end of the spectrum, IDAES process models are designed to be general purpose and
to be applicable to a wide range of modeling activities. By providing access to a wide range of
different numerical solvers and modeling tools, IDAES process models can be applied to a wide
range of different problems, such as:

	process optimization and simulation of both steady-state and dynamic applications,

	data reconciliation,

	parameter estimation and uncertainty quantification,

	optimization under uncertainty, and

	conceptual design (superstructure problems).

Modeling Components

The IDAES Integrated Platform represents each level within the hierarchy above using
“modeling components”. Each of these components represents a part of the overall model structure
and form the basic building blocks of any IDAES process model. An introduction to each of the
IDAES modeling components can be found
here.

Model Libraries

To provide a starting point for modelers in using the process modeling tools, the IDAES Integrated
Platform contains a library of models for common unit operations and thermophysical
properties. Modelers can use these out-of-the-box models to represent their process applications or
as building blocks for developing their own models. All models within IDAES are
designed to be fully open and extensible, allowing users to inspect and modify them to suit
their needs. Documentation of the available model libraries can be found
here.

Modeling Extensions

The IDAES Integrated Platform also provides users with access to a number of cutting edge tools not
directly related to process modeling. These tools are collected under the heading of Modeling
Extensions, and information on them can be found
here.

Components

The purpose of this section of the documentation is to provide a general introduction to the top
level components of the IDAES Integrated Platform. Each component is described in greater
detail with a link in their description.

Note

IDAES is based on python-based algebraic modeling language, Pyomo. The documentation for
its components (i.e. sets, parameters, variables, objectives, constraints, expressions, and
suffixes) are provided in the
Pyomo documentation [https://pyomo.readthedocs.io/en/stable/pyomo_modeling_components/index.html].

	Flowsheet

	Property Package

	Unit Model

	Data Management Framework

Flowsheet

Flowsheet models
are the top level of the modeling heirachy. Flowsheet models represent
traditional process flowsheets, containing a number of unit models connected together into a
flow network and the property packages.

Property Package

Property packages are a
collection of related models that represent the physical, thermodynamic, and reactive
properties of the process streams.

Unit Model

Unit models
represent individual pieces of equipment and their processes.

Data Management Framework

The Data Management Framework
is used to manage all the data needed by the platform, including flowsheets, models,
and results. It stores metadata and data in persistent storage.

Flowsheet

Flowsheet models are the top level of the IDAES modeling hierarchy. The
flowsheet is implemented with a
FlowsheetBlock,
which provides a container for other components. Flowsheet models generally contain
three types of components:

	Unit models, representing unit operations

	Property packages, representing the parameters and relationships for property calculations

	Arcs, representing connections between unit models

The FlowsheetBlock is also where the
time domain
is implemented. While the time domain is essential for dynamic modeling,
the time domain exists even for steady state models (single point in time).

Flowsheet models may also contain additional constraints relating to how different unit models
behave and interact, such as control and operational constraints. Generally speaking, if a
constraint is purely internal to a single unit, and does not depend on information from other
units in the flowsheet, then the constraint should be placed inside the relevant unit model.
Otherwise, the constraint should be placed at the flowsheet level.

Time Domain

Time domain is an essential component of the IDAES framework. When a user first declares a
Flowsheet model a time domain is created, the form of which depends on whether the Flowsheet
is declared to be dynamic or steady-state
(see FlowsheetBlock).
In situations where the user makes use of nested flowsheets, each sub-flowsheet refers to its
parent flowsheet for the time domain.

Different models may handle the time domain differently, but in general all IDAES models refer
to the time domain of their parent flowsheet. The only exception to this are blocks associated
with Property calculations. PropertyBlocks (i.e. StateBlocks and ReactionBlocks) represent the state of the material at a single point
in space and time, and thus do not contain the time domain. Instead, PropertyBlocks are indexed
by time (and space where applicable) - i.e. there is a separate StateBlock for each point in
time. The user should keep this in mind when working with IDAES models, as it is important for
understanding where the time index appears within a model.

In order to facilitate referencing of the time domain, all Flowsheet objects have a time
configuration argument which is a reference to the time domain for that flowsheet. All IDAES
models contain a flowsheet method which returns the parent flowsheet object, thus a reference
to the time domain can always be found using the following code: flowsheet().config.time.

Another important thing to note is that steady-state models do contain a time domain. While the
time domain for steady-stage models is a single point at time = 0.0, they still contain a
reference to the time domain and the components (e.g. StateBlocks) are indexed by time.

Property Package

	Overview

	Units of Measurement

	Physical properties

	Reaction properties

	Component and Phase Objects

	As Needed Properties

	Generic Property Package Framework

	Generic Reaction Package Framework

Overview

Property packages provide the relationships and parameters necessary to determine the
properties of process streams. They may be general in purpose, such as ideal gas
equations, or specific to a certain application. Property packages are separated into two categories:

	physical and transport properties

	chemical reaction properties

While several standard property packages are provided in the IDAES model libraries, many process
modeling applications will require specific property packages. Information on developing custom
property packages is provided in the
advanced user guide.

Since the effort to develop a custom property package is substantial, the IDAES modeling
framework provides a
Generic Property Package Framework
and Generic Reaction Package Framework
to make it easier to create a package for common property and reaction models.

Units of Measurement

One of the most important roles property packages play within the modeling framework is to define the units of measurement that will be used for those models which use the property packages. Any variable which is created in a unit model will derive its units of measurement from those defined in the associated property package in order to ensure consistency of units.

Defining units of measurement in property packages is discussed here.

Physical properties

Almost all process models depend on physical properties to some extent, such as
calculation of specific enthalpy or internal energy for energy balances. These properties
only depend on the material being considered and are independent of the unit operations in
which they are used. As such, physical property calculations can be separated from the
unit model calculations and treated as a separate submodel which is called by the unit model.
Each unit model can then create instances of these submodels as required to calculate those
properties required by each unit.

Within IDAES, this is handled by StateBlock objects – these are self-contained submodels
containing the calculations for all necessary thermophysical properties for a given material
at a given point in space and time. IDAES UnitModels create instances of these StateBlocks
wherever they need to calculate physical properties and link to variables within the
StateBlock within the unit model constraints.

However, physical property calculations depend on a set of parameters which are specific
to a given material or mixture. Thus, each instance of a StateBlock for a material use the same
set of parameters. To avoid duplicating these parameters in every instance of a StateBlock for
a given material, these parameters are instead grouped in a PhysicalParameterBlock for that
material which the StateBlocks link to. In this way, there is a single common location for all
parameters.

In summary, physical property packages consist of two parts:

	PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being modeled

	StateBlocks, which contain the actual calculations of the state variables and functions

Reaction properties

Reaction property packages represent a collection of calculations necessary to determine the
reaction behavior of a mixture at a given state. Reaction properties depend upon the state and
physical properties of the material, and thus must be linked to a StateBlock which provides the
necessary state and physical property information.

Reaction property packages consist of two parts:

	ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being modeled, and

	ReactionBlocks, which contain the actual calculations of the reaction behavior.

Component and Phase Objects

Property packages also rely on component and phase objects.

Component Objects
are used to identify the chemical species of interest
in a property package and to contain information describing the behavior of that component
(such as properties of that component).

Phase Objects
are used to identify the thermodynamic phases of
interest in a property package and to contain information describing the behavior of that phase
(for example the equation of state which describes that phase).

As Needed Properties

Process flow sheets often require a large number of properties to be calculate, but not all of
these are required in every unit operation. Calculating additional properties that are not
required is undesirable, as it leads to larger problem sizes and unnecessary complexity of the
resulting model.

To address this, IDAES supports “as needed” construction of properties,
where the variables and constraints required to calculate a given quantity are not added to a
model unless the model calls for this quantity. To designate a property as an “as needed”
quantity, a method can be declared in the associated property BlockData class (StateBlockData or
ReactionBlockData) which contains the instructions for constructing the variables and
constraints associated with the quantity (rather than declaring these within the BlockData’s
build method). The name of this method can then be associated with the property via the
add_properties metadata in the property packages ParameterBlock, which indicates that when
this property is called for, the associated method should be run.

The add_properties metadata can also indicate that a property should always be present
(i.e. constructed in the BlockData’s build method) by setting the method to None, or that it is
not supported by setting the method to False.

Generic Property Package Framework

Property packages represent the core of any process model, and having a suitable property
package is key to successfully modeling any process system. However, developing property
packages is a significant challenge even for experienced modelers as they involve large numbers
of tightly coupled constraints and parameters. The
Generic Property Package Framework
was designed to help users build property packages with the least effort possible by levarging libraries
of modular sub-models that include common types of property calculations.

Generic Reaction Package Framework

Similar to the Generic Property Package Framework, the
Generic Reaction Package Framework
helps users create reaction property packages for common systems.

Component Object

Component objects are used to identify the chemical
species of interest in a property package and to contain information describing the behavior
of that component (such as properties of that component). Additional information on the
Component Class is provided in the technical
specifications.

The following types of components are currently supported.

	Component - general purpose object for representing chemical species.

	Solute - component object for representing species which should be treated as a solute in a LiquidPhase.

	Solvent - component object for representing species which should be treated as a solvent in a LiquidPhase.

	Ion - general purpose component object for representing ion species (LiquidPhase only). Users should generally use the Anion or Cation components instead.

	Anion - component object for representing ion species with a negative charge (LiquidPhase only).

	Cation - component object for representing ion species with a positive charger(LiquidPhase only).

Component objects are intended to store all the necessary information regarding a given
chemical species for use within a process model. Examples of such information include the
methods and parameters required for calculating thermophysical properties. Additionally,
certain unit operations handle components in different ways depending on certain criteria.
An example of this is Reverse Osmosis, where the driving force across the membrane is calculated
differently for solvent species and solute species.

Component objects implement the following methods for determining species behavior:

	is_solute() - returns True if species is a solute (Solute, Ion, Anion or Cation component objects), otherwise False.

	is_solvent() - returns True if species is a solvent (Solvent component object), otherwise False.

Note

The general purpose Component object does not distinguish solutes and solvents, and these methods will will raise a TypeError instead.

Phase Object

Phase objects are used to identify the thermodynamic
phases of interest in a property package and to contain information describing the behavior of
that phase (for example the equation of state which describes that phase). Additional
information on the Phase Class is
provided in the technical specifications.

TThe following types of phases, along with a generic Phase object, are supported:

	LiquidPhase

	SolidPhase

	VaporPhase

In a number of unit operations, different phases behave in different ways. For example, in a
Flash operation, the vapor phase exits through the top outlet whilst liquid phase(s)
(and any solids) exit through the bottom outlet. In order to determine how a given phase should
behave in these situations, each Phase object implements the following three methods:

	is_liquid_phase()

	is_solid_phase()

	is_vapor_phase()

These methods return a boolean (True or False) indicating whether the unit operation should
treat the phase as being of the specified type in order to decide on how it should behave. Each
type of phase returns True for its type and False for all other types (e.g. LiquidPhase
returns True for is_liquid_phase() and False for is_solid_phase() and is_vapor_phase().

The generic Phase object determines what to return for each method based on the user-provided
name for the instance of the Phase object as shown below:

	is_liquid_phase() returns True if the Phase name contains the string Liq, otherwise it returns False.

	is_solid_phase() returns True if the Phase name contains the string Sol, otherwise it returns False.

	is_vapor_phase() returns True if the Phase name contains the string Vap, otherwise it returns False.

Users should avoid using the generic Phase object, as this is primarily intended as a base
class for the specific phase classes and for backwards compatibility.

Physical Parameter Block

PhysicalParameterBlocks serve as a central location for linking to a property package, and
contain all the parameters and indexing sets used by a given property package.

The role of the PhysicalParameterBlock Class
is to set up the references required by the rest of the IDAES Core Modeling Framework for constructing
instances of StateBlocks
and attaching these to the PhysicalParameterBlock for ease of use. This allows other models to
be pointed to the PhysicalParameterBlock in order to collect the necessary information and to
construct the necessary StateBlocks without the need for the user to do this manually.

Several attributes in the PhysicalParameterBlock are used to
inform the construction of other components. These attributes include:

	state_block_class - a pointer to the associated class that should be called when constructing StateBlocks. This should only be set by the property package developer.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species within the mixture. This is used when doing elemental material balances.

	element_comp - (optional) a dictionary-like object which defines the elemental composition of each species in component_list. Form: component: {element_1: value, element_2: value, …}.

	supported properties metadata - a dictionary of supported physical properties that the property package supports, along with instruction to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

Reaction Block

ReactionBlocks are used within IDAES UnitModels (generally within ControlVolumeBlocks) in
order to calculate reaction properties given the state of the material (provided by an
associated StateBlock). ReactionBlocks are notably different to other types of Blocks within
IDAES as they are always indexed by time (and possibly space as well), and are also not fully
self contained (in that they depend upon the associated state block for certain variables).
ReactionBlocks are composed of two parts:

	ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions on how to construct each instance of a Reaction Block.

	ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

ReactionBlocks can be constructed directly from the associated ReactionParameterBlock by
calling the build_reaction_block() method on the ReactionParameterBlock. The parameters
construction argument will be automatically set, and any other arguments (including indexing
sets) may be provided to the build_reaction_block method as usual.

Additional details on ReactionBlocks
are located in the technical specifications.

Reaction Parameter Block

ReactionParameterBlocks serve as a central location for linking to a property package, and
contain all the parameters and indexing sets used by a given property package.

The role of the ReactionParameterBlock Class
is to set up the references required by the rest of the IDAES framework for constructing
instances of ReactionBlocks
and attaching these to the ReactionParameterBlock for ease of use. This allows other models to
be pointed to the ReactionParameterBlock in order to collect the necessary information and to
construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of
what needs to be constructed when dealing with chemical reactions. In order to do this, the
IDAES modeling framework looks for a number of attributes in the ReactionParameterBlock which
are used to inform the construction of other components. These attributes include:

	reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks. This should only be set by the property package developer.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

	rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions. Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of interest.

	equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	supported properties metadata - a list of supported reaction properties that the property package supports, along with instruction to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

	required properties metadata - a list of physical properties that the reaction property calculations depend upon, and must be supported by the associated StateBlock. This information is set using the add_required_properties attribute of the define_metadata class method.

State Block

StateBlocks are used within all IDAES UnitModels (generally within ControlVolumeBlocks) in
order to calculate physical properties given the state of the material. StateBlocks are
notably different to other types of Blocks within IDAES as they are always indexed by time
(and possibly space as well). StateBlocks consist of two parts:

	StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to construct each instance of a State Block.

	StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

StateBlocks can be constructed directly from the associated PhysicalParameterBlock by calling
the build_state_block() method on the PhysicalParameterBlock. The parameters construction
argument will be automatically set, and any other arguments (including indexing sets) may be
provided to the build_state_block method as usual.

Additional details on State Blocks
are located in the technical specifications.

Defining Units of Measurement

All property packages within IDAES are expected to define a metadata class as part of the package’s ParameterBlock, which amongst other things contains a definition of the base units of measurement used by that property package. An example of defining the default units for a property package is shown below.

from pyomo.environ import units

@classmethod
def define_metadata(cls, obj):
 obj.add_default_units({'time': units.s,
 'length': units.m,
 'mass': units.kg,
 'amount': units.mol,
 'temperature': units.K})

Each property package should define a default units for 7 base quantities listed below:

	time

	length

	mass

	amount of substance

	temperature

	current (optional)

	luminous intensity (optional)

Units must be defined using Pyomo’s Units container (from pyomo.environ import units), and all quantities within the property package must be based on the chosen set of base units. Parameters and correlations may be based on different sets of unit as necessary (e.g. from literature sources using different base units), however the final quantity must be converted to the set of base units defined in the metadata.

Generic Property Package Framework

Contents

	Defining Property Packages

	Defining Components

	Defining Phases

	State Definition

	Defining Phase Equilibria

	Developing New Property Libraries

Introduction

Note

The generic property package framework is still under development. Whilst the current framework is functional, features are still being developed and added.

The generic property package framework builds upon the existing framework for implementing property packages within IDAES, and will not prevent the use of custom written property packages in the future. Due to the complex nature of thermophysical property calculations, the generic property framework cannot support all possible materials and applications. Whilst it is hoped that the generic framework will be able to handle most common applications, users with more unusual systems or those solving computationally intensive problems may need to write custom property packages for their cases.

Property packages represent the core of any process model, and having a suitable property package is key to successfully modeling any process system. However, developing property packages is a significant challenge even for experienced modelers as they involve large numbers of tightly coupled constraints and parameters. The goal of the IDAES Generic Property Package Framework is to provide a flexible platform on which users can build property packages for common types of systems by calling upon libraries of modular sub-models to build up complex property calculations with the least effort possible.

The Generic Property Package Framework breaks down property packages into a number of components which can be assembled in a modular fashion. Users need only provide those components which they require for their system of interest, and components can be drawn from libraries of existing components or provided by the user as custom code. Details on how to set up the definition of a property package using the generic framework are given here.

The components which make up a generic property package are as follows:

	Choose a base set of units of measurement for the property package.

	Define the components which make up the material of interest, including methods for calculating the pure component properties of interest in the system.

	Define the phases of interest for the application, including equations of state and other phase specific decisions.

	Choose the set of state variables you wish to use and a reference state for the system.

	(Optional) Define any phase equilibria which occurs in the system and methods associated with calculating this.

The following sections will describe how to define a property package using the Generic Property Package Framework along with the libraries of sub-models currently available. Finally, the developers section describes how to go about defining your own custom components to use when creating custom property packages.

Note

Within most IDAES models “parameters” are in fact defined as Pyomo ‘Vars’ (i.e. variables) which are fixed at their defined values. Whilst Params would seem to be the logical choice for these, parameter estimation problems require the parameters being estimated to be defined as Vars so that the solver is free to vary them.

Defining Property Packages

Contents

	Defining Property Packages

	Introduction

	Units of Measurement

	Property Parameters

	Config Dictionary

	Class Definition

	Examples

Introduction

In order to create and use a property package using the IDAES Generic Property Package Framework, users must provide a definition for the material they wish to model. The framework supports two approaches for defining the property package, which are described below, both of which are equivalent in practice.

Units of Measurement

When defining a property package using the generic framework, users must define the base units for the property package (see link). The approach for setting the base units depends on the approach used to define the property package, and is discussed in more detail in each section.

The Generic Property Package Framework includes the necessary code to convert between different units of measurement as required, allowing users to combine property methods with different sets of units into a single property package. In these cases, each property method is written in its natural units (including parameters), and the final result is automatically converted to the base units.

For example, the Antoine equation is generally written with pressure in bars and temperature in either Kelvin or Celsius (depending on source). Using the generic property framework, the users provide the Antoine coefficients in their original units (i.e. bar and Kelvin/Celsius) and the property calculation is written in these units. However, the final result (saturation pressure) is then converted to the base units specified in the property package definition.

Property Parameters

Thermophysical property models all depend upon a set of parameters to describe the fundamental behavior of the system. For the purposes of the Generic Property Framework, these parameters are grouped into three types:

	Component-specific parameters - these are parameters that are specific to a given chemical species, and are defined in the parameter_data argument for each component and stored in the associated Component block. Examples of these parameters include those used to calculate the ideal, pure component properties.

	Phase-specific parameters - these are parameters that are specific to a given phase, and are defined in the parameter_data argument for each phase and stored in the associated Phase block. These types of parameters are relatively uncommon.

	Package-wide parameters - these are parameters that are not necessarily confined to a single phase or species, and are defined in the parameter_data argument of the overall property package and stored in the main Physical Parameter block. Examples of these types of parameters include binary interaction parameters, which involve multiple species and can be used in multiple phases.

Config Dictionary

The most common way to use the Generic Property Package Framework is to create an instance of the GenericParameterBlock component and provide it with a dictionary of configuration arguments, as shown below:

m = ConcreteModel()

m.fs = FlowsheetBlock()

m.fs.properties = GenericParameterBlock(default=config_dict)

Users need to populate config_dict with the desired options for their system as described in the other parts of this documentation. An example of a configuration dictionary for a benzene-toluene VLE system is shown below.

Using this approach, units of measurement are defined using the base_units option in the configuration dictionary. Users must provide units for the 5 core quantities, and may also provide units for the other 2 SI base quantities (if required). For details on other configuration options, please see the relevant documentation.

from pyomo.environ import units as pyunits

config_dict = {
 "base_units": {"time": pyunits.s,
 "length": pyunits.m,
 "mass": pyunits.kg,
 "amount": pyunits.mol,
 "temperature": pyunits.K},
 "components": {
 'benzene': {"type": Component,
 "elemental_composition": {"C": 6, "H": 6},
 "dens_mol_liq_comp": Perrys,
 "enth_mol_liq_comp": Perrys,
 "enth_mol_ig_comp": RPP,
 "pressure_sat_comp": RPP,
 "phase_equilibrium_form": {("Vap", "Liq"): fugacity},
 "parameter_data": {
 "mw": (78.1136E-3, pyunits.kg/pyunits.mol), # [1]
 "pressure_crit": (48.9e5, pyunits.Pa), # [1]
 "temperature_crit": (562.2, pyunits.K), # [1]
 "dens_mol_liq_comp_coeff": {
 '1': (1.0162, pyunits.kmol*pyunits.m**-3), # [2] pg. 2-98
 '2': (0.2655, None),
 '3': (562.16, pyunits.K),
 '4': (0.28212, None)},
 "cp_mol_ig_comp_coeff": {
 'A': (-3.392E1, pyunits.J/pyunits.mol/pyunits.K), # [1]
 'B': (4.739E-1, pyunits.J/pyunits.mol/pyunits.K**2),
 'C': (-3.017E-4, pyunits.J/pyunits.mol/pyunits.K**3),
 'D': (7.130E-8, pyunits.J/pyunits.mol/pyunits.K**4)},
 "cp_mol_liq_comp_coeff": {
 '1': (1.29E2, pyunits.J/pyunits.kmol/pyunits.K), # [2]
 '2': (-1.7E-1, pyunits.J/pyunits.kmol/pyunits.K**2),
 '3': (6.48E-4, pyunits.J/pyunits.kmol/pyunits.K**3),
 '4': (0, pyunits.J/pyunits.kmol/pyunits.K**4),
 '5': (0, pyunits.J/pyunits.kmol/pyunits.K**5)},
 "enth_mol_form_liq_comp_ref": (
 49.0e3, pyunits.J/pyunits.mol), # [3]
 "enth_mol_form_vap_comp_ref": (
 82.9e3, pyunits.J/pyunits.mol), # [3]
 "pressure_sat_comp_coeff": {'A': (-6.98273, None), # [1]
 'B': (1.33213, None),
 'C': (-2.62863, None),
 'D': (-3.33399, None)}}},
 'toluene': {"type": Component,
 "elemental_composition": {"C": 7, "H": 8},
 "dens_mol_liq_comp": Perrys,
 "enth_mol_liq_comp": Perrys,
 "enth_mol_ig_comp": RPP,
 "pressure_sat_comp": RPP,
 "phase_equilibrium_form": {("Vap", "Liq"): fugacity},
 "parameter_data": {
 "mw": (92.1405E-3, pyunits.kg/pyunits.mol), # [1]
 "pressure_crit": (41e5, pyunits.Pa), # [1]
 "temperature_crit": (591.8, pyunits.K), # [1]
 "dens_mol_liq_comp_coeff": {
 '1': (0.8488, pyunits.kmol*pyunits.m**-3), # [2] pg. 2-98
 '2': (0.26655, None),
 '3': (591.8, pyunits.K),
 '4': (0.2878, None)},
 "cp_mol_ig_comp_coeff": {
 'A': (-2.435E1, pyunits.J/pyunits.mol/pyunits.K), # [1]
 'B': (5.125E-1, pyunits.J/pyunits.mol/pyunits.K**2),
 'C': (-2.765E-4, pyunits.J/pyunits.mol/pyunits.K**3),
 'D': (4.911E-8, pyunits.J/pyunits.mol/pyunits.K**4)},
 "cp_mol_liq_comp_coeff": {
 '1': (1.40E2, pyunits.J/pyunits.kmol/pyunits.K), # [2]
 '2': (-1.52E-1, pyunits.J/pyunits.kmol/pyunits.K**2),
 '3': (6.95E-4, pyunits.J/pyunits.kmol/pyunits.K**3),
 '4': (0, pyunits.J/pyunits.kmol/pyunits.K**4),
 '5': (0, pyunits.J/pyunits.kmol/pyunits.K**5)},
 "enth_mol_form_liq_comp_ref": (
 12.0e3, pyunits.J/pyunits.mol), # [3]
 "enth_mol_form_vap_comp_ref": (
 50.1e3, pyunits.J/pyunits.mol), # [3]
 "pressure_sat_comp_coeff": {'A': (-7.28607, None), # [1]
 'B': (1.38091, None),
 'C': (-2.83433, None),
 'D': (-2.79168, None)}}}},
 "phases": {'Liq': {"type": LiquidPhase,
 "equation_of_state": ideal},
 'Vap': {"type": VaporPhase,
 "equation_of_state": ideal}},
 "state_definition": FcPh,
 "state_bounds": {
 # Note format is (lower, nominal, upper, units)
 "flow_mol": (0, 100, 1000, pyunits.mol/pyunits.s),
 "temperature": (273.15, 300, 450, pyunits.K),
 "pressure": (5e4, 1e5, 1e6, pyunits.Pa)},
 "pressure_ref": (1e5, pyunits.Pa),
 "temperature_ref": (300, pyunits.K),
 "phases_in_equilibrium": [("Vap", "Liq")],
 "phase_equilibrium_state": {("Vap", "Liq"): smooth_VLE},
 "bubble_dew_method": IdealBubbleDew}

Data Sources:

	The Properties of Gases and Liquids (1987), 4th edition, Chemical Engineering Series - Robert C. Reid

	Perry’s Chemical Engineers’ Handbook 7th Ed.

	Engineering Toolbox, https://www.engineeringtoolbox.com, Retrieved 1st December, 2019

Class Definition

Alternatively, the IDAES Generic Property Package Framework supports defining classes derived from the IDAES GenericParameterData with methods for defining configuration options and parameters.

Users can define two methods which are called automatically when an instance of the property package is created:

	configure, which defines the users selection of sub-models, and

	parameters, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Property Parameter Block is shown below.

@declare_process_block_class("UserParameterBlock")
class UserParameterData(GenericParameterData):
 def configure(self):
 # Set configuration options
 self.config.option_1 = value

 def parameters(self):
 # Define parameters
 self.param_1 = Var(index_set, initialize=value)

Users should populate the configure and parameters methods as discussed below.

Configure

The ‘configure` method is used to assign values to the configuration arguments, using the format self.config.option_name = value. Users will also need to set the units of measurement in the property package metadata.

Parameters

The parameters method is used to construct all the parameters associated with the property calculations and to specify values for these. The list of necessary parameters is based on the configuration options and the selected methods. Each method lists their necessary parameters in their documentation. Users need only define those parameters required by the options they have chosen.

Examples

Examples of using the IDAES Generic Property Package Framework can be found in the idaes/property_models/core/examples folder.

Defining Components

The first step in defining a generic property package is to describe each of the chemical species of interest within the system, including methods for calculating the necessary thermophysical properties of the pure component. Components are defined using IDAES Component objects, and are automatically constructed using the components configuration argument from the GenericParameterBlock.

The components Argument

Each GenericParameterBlock has a configuration argument named components which is used to construct the Component objects and populate them with instructions on how to calculate thermophysical properties for that component. The components configuration argument is expected to be a dict-of-dicts, where the keys are the names for the chemical species of interest, and the values are a dict of configuration arguments for the named component (which are passed to the Component object as it is instantiated).

"components": {
 "species_1": {options},
 "species_2": {options}}

Configuration Arguments

The configuration arguments for each chemical species are used to define methods for calculating pure component properties and defining the parameters associated with these. A full list of the supported configuration arguments for Component objects can be found here.

Type Argument

Each component in the component argument must be assigned a valid component type from those supported by the IDAES Framework (e.g. Component, Solvent, Solute, etc.). This should be provided using the type argument.

Valid Phases

In many cases, a given chemical species can only exist in certain phases; the most common example being ionic solids which dissociate upon dissolution (thus forming new ionic species in an aqueous phase). For each component, the user can set a list of the valid phase types for the component (liquid, vapor and/or solid) using the valid_phase_types configuration argument. This configuration argument should be a list containing PhaseType Enums (imported from idaes.core.phases) indicating the types of phases in which this component can exist.

This information is used by the Generic Property Framework to automatically determine the valid phase-component pairs for the user defined system. Users can override this automatic definition by providing a component list for a given phase in the definition of each Phase as discussed later (note however that user-defined phase-component lists are validated against the valid phases, and an exception will be raised if a component is assigned in a phase for which it is not valid).

Elemental Composition

If a user wishes to use elemental balances as part of their flowsheet (e.g. a Gibbs equilibrium reactor), it is necessary to specify the elemental composition of each Component. This can be done using the elemental_composition configuration argument, which takes a dictionary where the keys are the constituent elements and the values re the number of atoms of that element which compose the Components.

"components": {
 "water": {"elemental_composition": {"H": 2, "O": 1}}}

If users specify an elemental composition for one Component, they must specify elemental compositions for all Components. The Generic Property Package framework will then compile the list of elements composing all species and the overall composition matrix automatically.

Pure Component Property Methods

Most methods for calculating the thermophysical properties of materials start from estimating the properties of each component in its pure form, before applying mixing rules to determine the properties of the mixture. Pure component properties generally take the form of empirical correlations as a function of material state (generally temperature) derived from experimental data. Data and correlations for many components are readily available in literature. However due to the empirical nature of these correlations and the wide range of data available, different sources use different forms for their correlations.

Within the IDAES Generic Property Package Framework, pure component property correlations can be provided as either Python functions or classes;

	functions are used for self-contained correlations with hard-coded parameters,

	classes are used for more generic correlations which require associated parameters.

When providing a method via the components configuration argument, users can either provide a pointer to the desired class/method directly, or to a Python module containing a class or method with the same name as the property to be calculated. More details on the uses of these and how to construct your own can be found in the developer documentation.

Pure Component Libraries

As a starting point for users, the IDAES Generic Property Package Framework contains a library of some common methods for calculating properties of interest. These libraries are organized by source, and are listed below.

Note

Users should be careful about mixing-and-matching methods from different libraries, especially for the same component. Thermodynamic properties are intrinsically coupled, thus many correlations are also linked and often share parameters. Mixing-and-matching correlations may result in two correlations using parameters with the same name but with different expectations.

Additionally, sources often use different approaches for defining the thermodynamic reference state of the material, thus users need to ensure that a consistent reference state is being used when combining methods from different sources.

	NIST Webbook (NIST)

	Perry’s Chemical Engineers’ Handbook (Perrys)

	Properties of Gases and Liquids (RPP)

	Properties of Gases and Liquids 3rd edition (RPP3)

Phase Equilibrium Formulation

For those applications involving phase equilibria, there are number of different approaches that can be taken to specify the equilibrium condition. For example, equilibrium may be described in terms of an empirical partitioning coefficient or in terms of fugacities in each phase. To allow users to specify the approach they wish to use, each Component object contains a phase_equilibrium_form configuration argument.

As a given system may incorporate multiple phase equilibria, the phase_equilibrium_form argument should be a dict with keys beings a tuple of interacting phases and values being a Python method describing how the equilibrium condition should be defined. A simple example for a VLE system is shown below:

"phase_equilibrium_form": {("Vap", "Liq"): fugacity}

The IDAES Generic Property Package Framework contains a library of common forms for the equilibrium condition, which is described here.

Parameter Data

Most pure component property correlations depend upon empirical parameters which need to be specified by the user. All the in-built property libraries built these parameters automatically expect the user to provide values these parameters via the parameter_data configuration argument. The parameter_data configuration argument should be a dict with keys being the name of the required parameters and the values being a value or dict of values to use when initializing the parameter (i.e. the dict must have keys which match the indexing set of the parameter).

Users can specify the units of measurement for each parameter value, which will be automatically converted to match the set of units required by the property method. Users are encouraged to explicitly state the units of each parameter value for clarity, which is done using a tuple with the form (value, units), as shown in the example below. Users may choose to omit the units, providing only a value for the parameter (not as a tuple) in which case the units are assumed to match those defined for the associated parameter.

"parameter_data": {
 "property": (value, units),
 "indexed_property": {
 "index_1": (value, units),
 "index_2: (value, units)}}

Note

A dict is used for specifying parameter values to allow users greater flexibility in defining their own methods with custom parameters.

Additionally, the following quantities are properties of the component (i.e. not a function of state) and are included in the component parameters.

	Molecular weight: “mw”

	Critical Pressure: “pressure_crit”

	Critical Temperature: “temperature_crit”

Defining Phases

The second step in defining a property package using the Generic Property Package Framework is to define the phases of interest in the system. Due to the equation-oriented nature of the IDAES modeling framework, it is necessary to define any phases the user believes may be important a priori as it is not possible to determine what phases should be included on-the-fly. Phases are defined using IDAES Phase objects<user_guide/components/property_package/phase:Phase Object>, and are automatically constructed using the phases configuration argument from the GenericParameterBlock.

The phases Argument

Each GenericParameterBlock has a configuration argument named phases which is used to construct the Phase objects and populate them with instructions on how to calculate thermophysical properties for that phase. The phases configuration argument is expected to be a dict where the keys are the names for the phases of interest and the values are a configuration arguments for the named phase (which are passed to the Phase object as it is instantiated).

"phases": {
 "phase_1": {
 "type": Phase,
 "equation_of_state": EoS,
 "equation_of_state_options": {},
 "parameter_data": {}},
 "phase_2": {
 "type": Phase,
 "equation_of_state": EoS,
 "equation_of_state_options": {},
 "parameter_data": {}}}

Type Argument

Each phase in the phases argument must be assigned a valid phase type from those supported by the IDAES Framework (e.g. LiquidPhase, SolidPhase, VaporPhase). This should be provided using the type argument.

Equations of State

Equations of state (or equivalent methods) describe the relationship between different thermophysical properties within a mixture and ensure that the behavior of these are thermodynamically consistent. Each phase must be assigned an Equation of State (or equivalent method) in the form of a Python module which will assemble the necessary variables, constraints and expressions associated with the desired approach.

A wide range of equations of states are available in literature for different applications and levels of rigor, and the IDAES Generic Property Package Framework provides a number of prebuilt modules for users, which are listed below.

Equation of state packages may allow for user options (e.g. choosing a specific type of cubic equation of state). The options are set using the equation_of_state_options argument, and the options available are described in the documentation of each equation of state module.

Equation of State Libraries

	Ideal Gases and Liquids (Ideal)

	Cubic Equations of State (Cubic)

Phase-Specific Parameter

In some cases, a property package may include parameters which are specific to a given phase. In these cases, these parameters are stored as part of the associated Phase object and the values of these set using the parameter_data argument when declaring the phase. This is done in the same fashion as for component specific parameters.

Phases with Partial Component Lists

In many applications a mixture will contain species that only appear in a single phase (either by nature or assumption). Common examples include crystalline solids and non-condensable gases. The IDAES Generic Property Package Framework provides support for these behaviors and allows users to specify phase-specific component lists (i.e. a list of components which appear in a given phase).

This is done by providing a phase with a component_list argument, which provides a list of component names which appear in the phase. The framework automatically validates the component_list argument to ensure that it is a sub-set of the master component list for the property package, and will inform the user if an unrecognized component is included. If a phase is not provided with a component_list argument it is assumed that all components defined in the master component list may be present in the phase.

State Definition

Defining State Variables

An important part of defining a set of property calculations is choosing the set of variables which will describe the state of the material. The set of state variables needs to include information on the extensive flow, composition and thermodynamic state of the material. However, there are many ways in which this information can be described, and the best choice of state variables depends on many factors.

Within the IDAES Generic Property Package Framework, the definition of state variables is done using sub-modules which create the necessary variables supporting information for the property package. A state definition sub-module may define any set of state variables the user feel appropriate, but must define the following components as either state variables or functions of the state variables:

	temperature (must be a Pyomo Var)

	pressure

	mole_frac_phase_comp

	phase_frac

The IDAES Generic Property Package Framework has a library of prebuilt state definition sub-modules for users to use which are listed below.

State Definition Libraries

	FTPx

	FcTP

	FPhx

	FcPh

	FpcTP

Setting Bounds on State Variables

For optimization applications, it is important to specify a good initial guess and bounds on the state variables in order to improve the robustness of the problem. Further, due to the empirical nature of most thermophysical correlations these correlations are only valid in specific range of states. Users should set the state_bounds configuration argument to define the bounds on the state variables of their property package.

The state_bounds configuration argument should be a dict where the keys are the names of the state variables (using the standard naming convention) and the values should be a tuple with the form (lower, nominal, upper, units). The lower and upper values are used to set the lower and upper bounds respectively, whilst the nominal value is used to set the initial value for the state variable. The units value is optional, and is used to specify the units of measurement for the values provided, which will be used to automatically convert these values to the base set of units defined for the property package if required. If the units value is omitted, it is assumed that the values provided are in the base unit set for the property package.

Note

Some state definitions allow for setting on additional variables beyond the chosen state variables (temperature is a common example). See the documentation for your state definition for more information on what bounds can be set using the state_bounds argument.

Reference State

Many thermophysical properties are relative quantities, and require the definition of a thermodynamic reference state. Whilst some simpler models and correlations forego this or define the reference state implicitly, the IDAES Generic Property Package requires the user to specify the thermodynamic reference state (even if it is not used explicitly).

As such, users must provide the following two configuration arguments:

	pressure_ref - pressure at reference state

	temperature_ref - temperature at reference state

Defining Phase Equilibria

Phase equilibrium and separation is a key part of almost all chemical processes, and also represent some of the most complex and non-linear constraints in a model, especially when dealing with systems which may cross phase boundaries. Systems may also include multiple interacting phases with equilibrium, which further complicates the problem. As such, good formulations of these constraints is key to a robust and tractable model.

The IDAES Generic Property Package framework supports a range of phase equilibrium behaviors, including multiple phases in equilibrium and different formulations for describing the equilibria. These are all optional, and users do not need to define phase equilibria if it is not required for their system.

Setting up phase equilibrium within the framework is done using three configuration arguments as discussed below. However, users should be aware that some of these options require definition of further properties, such as bubble and dew point calculations.

Define Phases in Equilibrium

The first step in setting up phase equilibrium in the framework is to describe which phases are in equilibrium with each other. In general, for phases to be in equilibrium with each other, the following conditions need to be met:

	Phases must be in direct contact with each other, and

	At least one component must appear in both phases (equilibria involving chemical reactions are handled by ReactionBlocks).

In order to describe which phases are in equilibrium, the user needs to set the phase_in_equilibrium construction argument, which should be a list of 2-tuples where each tuple describes a pair of phases which are in equilibrium. Any component which appears in both phases in a pair is assumed to be in equilibrium.

A simple example for a VLE system is shown below.

"phases_in_equilibrium" = [("Vap", "Liq")]

Note

Users should take care not to over define their system. For example, in a VLSE system a user could potentially write three sets of equilibrium constraints (VL, LS and VS). However, this would result in an over defined system, as only two of these three are independent. For most situations, a user would consider only the VL and LS equilibria, with the VS being implicitly defined.

Define Equilibrium State Formulation

Next, for each pair of phases in equilibrium, the user must define a formulation for the equilibrium state. To handle the complexities of disappearing phases, the IDAES Generic Property Package Framework allows for phase equilibrium to be solved at a separate equilibrium state rather than the actual state of the material. This allows for formulations which avoid disappearing phases by limiting the equilibrium state to exist within the valid two-phase region, whilst returning a negligible amount of any phase which is not valid at the actual material state.

The equilibrium state formulation is set using the phase_equilibrium_state configuration argument. This should be a dict where the keys are 2-tuples of phases in equilibrium (matching those defined in the phases_in_equilibrium argument) and values are a phase equilibrium state formulation method. The IDAES Generic Property Package Framework contains a library of methods for the formulation of the phase equilibrium state, which is shown below.

Phase Equilibrium State Libraries

	Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

Necessary Properties

Next, any component which is involved in a phase equilibrium interaction (i,e, appears in both phases of an interacting pair) must define a form for the required equilibrium constraint. There are a number of ways these constraints can be written depending on the equation of state and scaling of the problem. This is set using the phase_equilibrium_form configuration argument in the Component objects, and takes the form of a dict where the keys are 2-tuples of interacting phases and the value is the formulation to use for the current component across the given phase pair. For example:

parameters.component_1.config.phase_equilibrium_form = {(phase_1, phase_2): formulation}

A library of common forms for equilibrium constraints is available, and is shown below.

	Library of Common Equilibrium Forms
	Fugacity (fugacity)

Bubble and Dew Point Calculations

Bubble and dew points are often of interest to process engineers for designing process equipment, and appear in some calculations of other thermodynamic properties. They are also useful in getting initial guesses for states in phase equilibrium problems, and some equilibrium state formulations rely on these properties.

Whilst calculation of the saturation pressure for single components is relatively simple, calculating the bubble and dew points of mixtures is more challenging due to the non-linear nature of the equations. Calculation of these properties is generally done through calculations based on the equations of state for the liquid and vapor phases, however these calculations can be greatly simplified if ideal behavior is assumed for both phases (i.e. ideal gas and Raoult’s law). To allow for both cases, the IDAES Generic Property Package Framework provides a library of different formulations for the bubble and dew point calculations, which can be set using the following arguments:

	bubble_dew_method

A list of available methods is given below:

	Bubble and Dew Point Methods
	Ideal Assumptions (IdealBubbleDew)
	Ideal Bubble Pressure

	Ideal Bubble Temperature

	Ideal Dew Pressure

	Ideal Dew Temperature

	Equal Fugacity (log form) (LogBubbleDew)
	Bubble Pressure (log form)

	Bubble Temperature (log form)

	Dew Pressure (log form)

	Dew Temperature (log form)

Developing New Property Libraries

Information on how to develop new components for the IDAES Generic Property Package Framework are given in the following sections.

Contents

	Developing Pure Component Methods

	Developing Equation of State Modules

	Developing State Definitions

	Developing Phase Equilibrium Methods

Generic Reaction Package Framework

Contents

	Defining Reaction Packages

	Defining Rate-Based Reactions

	Defining Equilibrium Reactions

	Reaction Module Libraries

Introduction

Note

The generic reaction package framework is still under development. Whilst the current framework is functional, features are still being developed and added.

The generic reaction package framework builds upon the existing framework for implementing reaction packages within IDAES, and will not prevent the use of custom written reaction packages in the future. Whilst it is hoped that the generic framework will be able to handle most common applications, users with more unusual systems or those solving computationally intensive problems may need to write custom reaction packages for their cases.

The Generic Reaction Package Framework breaks down reaction packages into a number of components which can be assembled in a modular fashion. Users need only provide those components which they require for their system of interest, and components can be drawn from libraries of existing components or provided by the user as custom code. Details on how to set up the definition of a reaction package using the generic framework are given here.

The components which make up a generic reaction package are as follows:

	Choose a base set of units of measurement for the property package.

	Associate the reaction package with an appropriate thermodynamic property package. The thermodynamic property package must use the same set of base units of measurement,

	Define the basis of the reaction terms for the reaction package.

	Define the rate-based reactions of interest in the system.

	Define the equilibrium-based reactions of interest in the system. Nore that phase equilibrium is generally handled in the thermodynamic property package.

The following sections will describe how to define a reaction package using the Generic Reaction Package Framework along with the libraries of sub-models currently available. Finally, the developers section describes how to go about defining your own custom components to use when creating custom property packages.

Note

Within most IDAES models “parameters” are in fact defined as Pyomo ‘Vars’ (i.e. variables) which are fixed at their defined values. Whilst Params would seem to be the logical choice for these, parameter estimation problems require the parameters being estimated to be defined as Vars so that the solver is free to vary them.

Defining Reaction Packages

Contents

	Defining Reaction Packages

	Introduction

	Units of Measurement

	Config Dictionary

	Class Definition

Introduction

In order to create and use a property package using the IDAES Generic Reaction Package Framework, users must provide a definition for the system they wish to model. The framework supports two approaches for defining the property package, which are described below, both of which are equivalent in practice.

Units of Measurement

As with generic thermophysical property packages, when defining a reaction package using the generic framework users must define the base units for the reaction package (see link). The approach for setting the base units and units for all parameters is the same as for thermophysical property packages and depends on the approach used to define the reaction package.

Config Dictionary

The most common way to use the Generic Reaction Package Framework is to create an instance of the GenericReactionParameterBlock component and provide it with a dictionary of configuration arguments, as shown below:

m = ConcreteModel()

m.fs = FlowsheetBlock()

m.fs.thermo_properties = PhysicalParameterBlock()

m.fs.reaction_properties = GenericReactionParameterBlock(default={"property_package": m.fs.thermo_properties, config_dict})

In the above example, the PhysicalParameterBlock object can be from any thermophysical property package suitable for the user’s application.

Users need to populate config_dict with the desired options for their system as described in the other parts of this documentation. An example of a configuration dictionary can be found later on this page. For details on each configuration option, please see the relevant documentation.

Using this approach, units of measurement are defined using the base_units option in the configuration dictionary. Users must provide units for the 5 core quantities, and may also provide units for the other 2 SI base quantities (if required). For details on other configuration options, please see the relevant documentation.

Linking to a Thermophysical Property Package

As state information is defined by thermophysical property packages in IDAES, each reaction package must be linked to an appropriate thermophysical property package. This linkage is used by the reaction package to find the state information required to calculate the reaction properties, and thus the thermophysical property package must support all the properties required by the reaction package.

Setting Reaction Basis

Many reaction properties (e.g. reaction rates) can be defined on different bases, such as a mass or molar basis. All properties within a package must use the same basis, which can be set using the “reaction_basis” configuration argument (see below). This must be done using the MaterialFlowBasis Enum, which can be imported from idaes.core.

Configuration Example

from pyomo.environ import units as pyunits

from idaes.core import MaterialFlowBasis

config_dict = {
 "base_units": {"time": pyunits.s,
 "length": pyunits.m,
 "mass": pyunits.kg,
 "amount": pyunits.mol,
 "temperature": pyunits.K},
 "rate_reactions": {
 "R1": {"stoichiometry": {("Liq", "A"): -1,
 ("Liq", "B"): -1,
 ("Liq", "C"): 2},
 "heat_of_reaction": constant_dh_rxn,
 "rate_constant": arrhenius,
 "rate_form": power_law_rate,
 "concentration_form": ConcentrationForm.moleFraction,
 "parameter_data": {
 "dh_rxn_ref": (-10000, pyunits.J/pyunits.mol),
 "arrhenius_const": (1, pyunits.mol/pyunits.m**3/pyunits.s),
 "energy_activation": (1000, pyunits.J/pyunits.mol)}}},
 "equilibrium_reactions": {
 "R2": {"stoichiometry": {("Liq", "B"): -1,
 ("Liq", "C"): -1,
 ("Liq", "D"): 1},
 "heat_of_reaction": constant_dh_rxn,
 "equilibrium_constant": van_t_hoff,
 "equilibrium_form": power_law_equil,
 "concentration_form": ConcentrationForm.moleFraction,
 "parameter_data": {
 "dh_rxn_ref": (-20000, pyunits.J/pyunits.mol),
 "k_eq_ref": (100, None),
 "T_eq_ref": (350, pyunits.K)}}}}

Class Definition

Alternatively, the IDAES Generic Reaction Package Framework supports defining classes derived from the IDAES GenericReactionParameterData class with methods for defining configuration options and parameters.

Users can define two methods which are called automatically when an instance of the property package is created:

	configure, which defines the users selection of sub-models, and

	parameters, which defines the parameters necessary for the selected property methods.

A basic outline of a user defined Reaction Parameter Block is shown below.

@declare_process_block_class("UserReactionParameterBlock")
class UserReactionParameterData(GenericReactionParameterData):
 def configure(self):
 # Set configuration options
 self.config.option_1 = value

 def parameters(self):
 # Define parameters
 self.param_1 = Var(index_set, initialize=value)

Users should populate the configure and parameters methods as discussed below.

Configure

The ‘configure` method is used to assign values to the configuration arguments, using the format self.config.option_name = value. Users will also need to set the units of measurement in the property package metadata.

Parameters

The parameters method is used to construct all the parameters associated with the property calculations and to specify values for these. The list of necessary parameters is based on the configuration options and the selected methods. Each method lists their necessary parameters in their documentation. Users need only define those parameters required by the options they have chosen.

Defining Rate-Based Reactions

The rate_reactions Argument

Each GenericReactionParameterBlock has a configuration argument named rate_reactions which is used to define rate-based reactions and specify how to calculate properties associated with these. The rate_reactions configuration argument is expected to be a dict-of-dicts, where the keys are the names for the rate-based reactions, and the values are a dict of configuration arguments for that reaction. Note that reaction names must be unique across both rate-based and equilibrium reactions, as all reactions are indexed by name.

"rate_reactions": {
 "reaction_1": {options},
 "reaction_2": {options}}

Configuration Arguments

The configuration arguments for each rate-based reaction are used to define methods for calculating reaction properties and defining the parameters associated with these. A full list of the supported configuration arguments is given below:

	stoichiometry (required)

	rate_form (required)

	concentration_form

	heat_of_reaction

	rate_constant

Stoichiometry

The stoichiometry configuration argument is used to define which components take part in a reaction, and is a required argument. The stoichiometry argument should be a dict where the keys are phase-component pairs and the values are the stoichiometric coefficient for that pair. Users need only provide values for those components that take part in the reaction - all undeclared phase-component pairs will be assumed to have a value of 0. An example of defining the reaction stoichiometry is given below, where in phase_1 component_1 is converted to component_2 in a 1:1 ratio:

"stoichiometry": {
 ("phase_1", "component_1"): -1,
 ("phase_1", "component_2"): 1}

Concentration Form

Many common rate forms can be written using a number of different bases, such as molarity, molality or partial pressure. The concentration_form configuration argument is used in these cases to determine what basis to use for the concentration terms in the rate form and automatically write the correct expression (and determine units for the associated parameters. The concentration_form configuration argument must be an instance of a ConcentrationForm Enum (imported from idaes.generic_models.properties.core.generic.utility), and the following forms are currently available:

	molarity: ConcentrationForm.molarity

	activity: ConcentrationForm.activity

	molality: ConcentrationForm.molality

	mole fractions: ConcentrationForm.moleFraction

	mass fractions: ConcentrationForm.massFraction

	partial pressure: ConcentrationForm.partialPressure

Other Reaction Properties

The remaining configuration arguments are used to define how different properties should be calculated for each reaction. The rate_form argument is required, however all other properties need only be defined if needed for the user’s application. These arguments should be provided as either Python functions or classes;

	functions are used for self-contained correlations with hard-coded parameters,

	classes are used for more generic correlations which require associated parameters.

A list of the libraries of methods available in the IDAES Framework can be found here.

Defining Equilibrium Reactions

The equilibrium_reactions Argument

Each GenericReactionParameterBlock has a configuration argument named equilibrium_reactions which is used to define equilibrium reactions and specify how to calculate properties associated with these. The equilibrium_reactions configuration argument is expected to be a dict-of-dicts, where the keys are the names for the equilibrium reactions, and the values are a dict of configuration arguments for that reaction. Note that reaction names must be unique across both rate-based and equilibrium reactions, as all reactions are indexed by name.

"equilibrium_reactions": {
 "reaction_1": {options},
 "reaction_2": {options}}

Configuration Arguments

The configuration arguments for each equilibrium reaction are used to define methods for calculating reaction properties and defining the parameters associated with these. A full list of the supported configuration arguments is given below:

	stoichiometry (required)

	equilibrium_form (required)

	concentration_form

	heat_of_reaction

	equilibrium_constant

Stoichiometry

The stoichiometry configuration argument is used to define which components take part in a reaction, and is a required argument. The stoichiometry argument should be a dict where the keys are phase-component pairs and the values are the stoichiometric coefficient for that pair. Users need only provide values for those components that take part in the reaction - all undeclared phase-component pairs will be assumed to have a value of 0. An example of defining the reaction stoichiometry is given below, where in phase_1 component_1 is converted to component_2 in a 1:1 ratio:

"stoichiometry": {
 ("phase_1", "component_1"): -1,
 ("phase_1", "component_2"): 1}

Concentration Form

See rate reaction documentation.

Other Reaction Properties

The remaining configuration arguments are used to define how different properties should be calculated for each reaction. The equilibrium_form argument is required, however all other properties need only be defined if needed for the user’s application. These arguments should be provided as either Python functions or classes;

	functions are used for self-contained correlations with hard-coded parameters,

	classes are used for more generic correlations which require associated parameters.

A list of the libraries of methods available in the IDAES Framework can be found here.

Reaction Module Libraries

The following libaries are available for defining reaction parameters as part of the Generic Reaction Package Framework.

	Rate Constant Forms

	Rate-Based Reaction Forms

	Equilibrium Constant Forms

	Equilibrium Reaction Forms

	Heat of Reaction Forms

Rate Constant Forms

Contents

	Rate Constant Forms

	Arrhenius Equation (arrhenius)

Arrhenius Equation (arrhenius)

The method uses the Arrhenius equation to calculate the rate constant.

\[k_{rxn} = A e^{\frac{-E_A}{RT}}\]

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	arrhenius_const

	Varies, based on reaction form

	Pre-exponential factor

	\(E_A\)

	energy_activation

	Base units

	Activation energy

Rate-Based Reaction Forms

Contents

	Rate-Based Reaction Forms

	Power Law (power_law_rate)

Power Law (power_law_rate)

The method uses a power law form using the concentration form provided to calculate the reaction rate.

\[r_{rxn} = k_{rxn} \prod_{(p, j)}{C_{(p,j)}^{O_{(p,j)}}}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(O\)

	reaction_order

	phase, component

	Reaction order

Providing a reaction_order dict is optional. If one is not provided, it will be assumed that this is an elementary reaction and that the reaction order is equal to the stoichiometric coefficient for the products (i.e. for all phase-component pairs with a negative stoichiometric coefficient, the reaction order is equal to the absolute value of the stoichiometric coefficient).

Equilibrium Constant Forms

Contents

	Equilibrium Constant Forms

	van ‘t Hoff Equation (van_t_hoff)

van ‘t Hoff Equation (van_t_hoff)

The method uses the van ‘t Hoff equation to calculate the equilibrium constant.

\[k_{eq} = k_{eq, ref} e^{-(\frac{\Delta H_{rxn}}{R})(\frac{1}{T} - \frac{1}{T_{ref, eq}})}\]

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(k_{eq, ref}\)

	k_eq_ref

	Varies, depends on equilibrium form

	Equlibrium constant at reference temperature

	\(T_{ref, eq}\)

	temperature_eq_ref

	Base units

	Reference temperature for calculating equilibrium constant

Equilibrium Reaction Forms

Contents

	Equilibrium Reaction Forms

	Power Law (power_law_equil)

Power Law (power_law_equil)

The method uses a power law form using the concentration form provided to calculate the reaction rate.

\[k_{eq} = \prod_{(p, j)}{x_{(p,j)}^{O_{(p,j)}}}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(O\)

	reaction_order

	phase, component

	Reaction order

Providing a reaction_order dict is optional. If one is not provided, it will be assumed that this is an elementary reaction and that the reaction order is equal to the stoichiometric coefficient for all component in non-solid phases (the contribution of solid phases is assumed to be constant and included in the equilibrium constant, thus an order of zero is assumed).

Heat of Reaction Forms

Contents

	Heat of Reaction Forms

	Constant Heat of Reaction (constant_dh_rxn)

Constant Heat of Reaction (constant_dh_rxn)

The simplest form for calculating the heat of reaction, this method assumes a constant value provided by the user.

\[\Delta h_{rxn} = \Delta h_{rxn, ref}\]

Parameters

	Symbol

	Parameter Name

	Indices

	Description

	\(\Delta h_{rxn, ref}\)

	dh_rxn_ref

	
	Heat of reaction

Unit Model

Unit models represent pieces of equipment and their processes.
These models contain the unit performance constraints and associated variables for the equipment, such as:

	constraints relating balance terms to physical phenomena or properties (e.g. relating extent of reaction to reaction rate and volume)

	constraints describing flow of material into or out of unit (e.g. pressure driven flow constraints)

	unit level efficiency constraints (e.g. relating mechanical work to fluid work)

IDAES includes libraries of UnitModel classes. These models are composed of the following components:

	ControlVolumeBlocks, which represent volume of material over which we wish to perform material, energy and/or momentum balances

	StateBlocks and ReactionBlocks, which represent the thermophysical, transport and reaction properties of the material at a specific point in space and time

	Inlets and Outlets, which allow UnitModels to connect to other UnitModels

Control Volume

	Overview

	Common Control Volume Tasks

	Setting up the time domain

	Getting Property Package Information

	Collecting Indexing Sets for Property Package

	ControlVolume and ControlVolumeBlockData Classes

Overview

Control volumes serve as the
fundamental building block of all unit operations. Control Volumes represent a single,
well-defined volume of material over which material, energy and/or momentum balances will
be performed.

The IDAES ControlVolume classes are designed to facilitate the construction of these balance
equations by providing the model developer with a set of pre-built methods to perform the most
common tasks in developing models of unit operations. The ControlVolume classes contain methods
for creating and linking the necessary property calculations and writing common forms of the
balance equations so that the model developer can focus their time on the aspects that make each
unit model unique.

The IDAES process modeling framework currently supports two types of ControlVolumes:

	ControlVolume0DBlock represents a single well-mixed volume of material with a single inlet and a single outlet. This type of control volume is sufficient to model most inlet-outlet type unit operations which do not require spatial discretization.

	ControlVolume1DBlock represents a volume with spatial variation in one dimension parallel to the material flow. This type of control volume is useful for representing flow in pipes and simple 1D flow reactors.

Common Control Volume Tasks

All of the IDAES ControlVolume classes are built on a common core ControlVolumeBlockData which
defines a set of common tasks required for all Control Volumes. The more specific ControlVolume classes
then build upon these common tasks to provide tools appropriate for their specific application.

All ControlVolume classes begin with the following tasks:

	Determine if the ControlVolume should be steady-state or dynamic.

	Get the time domain.

	Determine whether material and energy holdups should be calculated.

	Collect information necessary for creating StateBlocks and ReactionBlocks.

	Create references to phase_list and component_list Sets in the PhysicalParameterBlock

Setting up the time domain

The first common task the ControlVolumeBlock performs is to determine if it should be dynamic
or steady-state and to collect the time domain from the UnitModel. ControlVolumeBlocks have
an argument dynamic which can be provided during construction which specifies if the
Control Volume should be dynamic (dynamic=True) or steady-state (dynamic=False). If the
argument is not provided, the ControlVolumeBlock will inherit this argument from its parent
Unit model.

Finally, the ControlVolume checks that the has_holdup argument is consistent with the
dynamic argument, and raises a ConfigurationError if it is not.

Getting Property Package Information

If a reference to a property package was not provided by the UnitModel as an argument,
the Control Volume first checks to see if the unit model has a property_package argument
set, and uses this if present. Otherwise, the ControlVolumeBlock begins searching up the model
tree looking for an argument named default_property_package and uses the first of these
that it finds. If no default_property_package is found, a ConfigurationError is returned.

Collecting Indexing Sets for Property Package

The final common step for all ControlVolumes is to collect any required indexing sets from the physical property package (for example component and phase lists). These are used by the Control Volume for determining what balance equations need to be written, and what terms to create.

The indexing sets the ControlVolume looks for are:

	component_list - used to determine what components are present, and thus what material balances are required

	phase_list - used to determine what phases are present, and thus what balance equations are required

ControlVolume and ControlVolumeBlockData Classes

A key purpose of ControlVolumes is to automate as much of the task of writing a unit model as
possible. For this purpose, ControlVolumes support a number of methods for common tasks model
developers may want to perform. The specifics of these methods will be different between
different types of ControlVolumes, and certain methods may not be applicable to some types of
Control Volumes (in which case a NotImplementedError will be returned). A full list of
potential methods is provided here, however users should check the documentation for the
specific Control Volume they are using for more details on what methods are supported in that
specific Control Volume.

A key feature of the IDAES Core Modeling Framework is the use of ControlVolumeBlocks. ControlVolumes
represent a volume of material over which material, energy and/or momentum balances
can be performed. ControlVolumeBlocks contain methods to automate the task of writing common
forms of these balance equations. ControlVolumeBlocks can also automate the creation of
StateBlocks and ReactionBlocks associated with the control volume.

Data Management Framework

	DMF Overview

	DMF Command-line Interface

	DMF Application Programming Interface (API)

DMF Overview

The Data Management Framework (DMF) is used to manage all the data needed by the
IDAES framework, including flowsheets, models, and results. It stores
metadata and data in persistent storage. It does not require that the user
run a server or connect to a remote service. The DMF can be accessed through its
API or command-line interfaces.

	Concepts

	Configuration

	Jupyter notebook usage

	Sharing

	Reference

Concepts

The DMF is designed to allow multiple separate threads of work. These are
organized in workspaces. Inside a given workspace, all the information is
represented by containers called resources. A resource describes some
data in the system in a standard way, so it can be searched and manipulated
by the rest of the IDAES framework.
Resources can be connected to each other with relations such as
“derived”, “contains”, “uses”, and “version”.

Below is an illustration of these components.

[image: ../../../_images/dmf-workspace-resource.png]

Configuration

The DMF is configured with an optional global configuration file and a
required per-workspace configuration file. By default the global file is
looked for as .dmf in the user’s home directory. Its main function at the
moment is to set the default workspace directory with the workspace
keyword. For example:

global DMF configuration
workspace: ~/data/workspaces/workspace1

The per-workspace configuration has more options. See the documentation
in the Workspace class for details.
The configuration file is in YAML (or JSON) format. Here is an example file, with some
description in comments:

settings: # Global settings
 workspace: /home/myuser/ws # Path to current workspace
workspace: # Per-workspace settings
 location: /home/myuser/ws # Path to this workspace
 name: myws # Name of this workspace
 description: my workspace # Description (if any) of this workspace
 created: 2019-04-09 12:55:05 # Date workspace was created
 modified: 2019-04-09 12:55:05 # Date workspace was modified
 files: # Basic information about data files
 count: 3 # How many files
 total_size: 1.3 MB # Total size of the files
 html_documentation_paths: # List of paths for HTML documentation
 -: /home/myuser/idaes/docs/build
 logging: # Logging configuration
 idaes.dmf: # Name of the logger
 level: DEBUG # Log level (Python logging constant)
 output: /tmp/debug.log # File path or "_stdout_" or "_stderr_"

This configuration file is used whether you use the DMF from the command-line,
Jupyter notebook, or in a Python program. For details see the
DMF package documentation.

Jupyter notebook usage

In the Jupyter Notebook, there are some “magics” defined that make
initializing the DMF pretty easy. For example:

from idaes.dmf import magics
%dmf init path/to/workspace

The code above loads the “%dmf” line magic in the first line, then uses it
to initialize the DMF with the workspace at “path/to/workspace”.

From there, other “line magics” will operate in the context of that DMF
workspace.

	%dmf help - Provide help on IDAES objects and classes. See dmf-help.

	%dmf info - Provide information about DMF current state for whatever ‘topics’ are provided

	%dmf list - List resources in the current workspace

	%dmf workspaces - List DMF workspaces; you can do this before %dmf init

DMF help

The IDAES Python interfaces are documented with Sphinx [https://www.sphinx-doc.org]. This includes
automatic translation of the comments and structure of the code into
formatted and hyperlinked HTML pages. The %dmf help command lets you easily
pull up this documentation for an IDAES module, class, or
object. Below are a couple of examples:

Initialize the DMF first
from idaes.dmf import magics
%dmf init path/to/workspace create

Get help on a module (imported)
from idaes.core import control_volume1d
%dmf help control_volume1d

Get help on a module (by name, no import)
%dmf help idaes.core.control_volume0d

Get help on a class
from idaes.core.control_volume1d import ControlVolume1DBlock
%dmf help ControlVolume1DBlock

Get help on a class (by name, no import)
%dmf help idaes.core.control_volume1d.ControlVolume1DBlock

Get help on an object (will show help for the object's class)
This will end up showing the same help as the previous two examples
obj = control_volume1d.ControlVolume1DBlock()
%dmf help obj

The help pages will open in a new window. The location of the built
documentation that they use is configured in the per-workspace DMF
configuration under the htmldocs keyword (a default value is filled in
when the DMF is first initialized).

Sharing

The contents of a DMF workspace can be shared quite simply because
the data is all contained within a directory in the local file system.
So, some ways to share (with one or many people) include:

	Put the workspace directory in a cloud/shared drive like Dropbox [https://www.dropbox.com/] ,
Box [https://www.box.com/] , Google Drive [https://google.com/drive/] , or OneDrive [https://onedrive.live.com/about/en-us/] .

	Put the workspace directory under version control like Git [https://git-scm.com/] and
share that versioned data using Git commands and a service like Github [https://github.com/] ,
BitBucket [https://bitbucket.org/] or Gitlab [https://gitlab.com/].

	Package up the directory with a standard archiving utility like “zip”
or “tar” and share it like any other file (e.g. attach it to an email).

Note

These modes of sharing allow users to see the same data, but are not
designed for real-time collaboration (reading and writing) of the same
data. That mode of operation requires a proper database server to mediate
operations on the same data. This is in the roadmap for the DMF, but
not currently implemented.

Reference

See the idaes.dmf package documentation that is generated
automatically from the source code.

DMF Command-line Interface

This page lists the commands and options for the DMF command-line interface,
which is a Python program called dmf. There are several usage examples for each
sub-command. These examples assume the UNIX bash shell.

	dmf

	dmf options

	dmf usage

	dmf subcommands

	usage overview

	dmf find

	dmf find options

	dmf find usage

	dmf info

	dmf info options

	dmf info usage

	dmf init

	dmf init options

	dmf init usage

	dmf ls

	dmf ls options

	dmf ls usage

	dmf register

	dmf register options

	dmf register usage

	dmf related

	dmf related options

	dmf related usage

	dmf rm

	dmf rm options

	dmf rm usage

	dmf status

	dmf status options

	dmf status usage

dmf

Data management framework command wrapper. This base command has
some options for verbosity that can be applied to any sub-command.

dmf options

	
-v

	

	
--verbose

	

Increase verbosity. Show warnings if given once, then info, and then
debugging messages.

	
-q

	

	
--quiet

	

Increase quietness. If given once, only show critical messages.
If given twice, show no messages.

dmf usage

Run sub-command with logging at level “error”:

$ dmf <sub-command>

Run sub-command and log warnings:

$ dmf <sub-command>

Run sub-command and log informational / warning messages:

$ dmf -vv <sub-command>

Run sub-command only logging fatal errors:

$ dmf -q <sub-command>

Run sub-command with no logging at all:

$ dmf -qq <sub-command>

dmf subcommands

The subcommands are listed alphabetically below. For each, keep in mind that any unique
prefix of that command will be accepted. For example, for dmf init, the
user may also type dmf ini. However, dmf in will not work because that
would also be a valid prefix for dmf info.

In addition, there are some aliases for some of the sub-commands:

	dmf info => dmf resource or dmf show

	dmf ls => dmf list

	dmf register => dmf add

	dmf related => dmf graph

	dmf rm => dmf delete

	dmf status => dmf describe

usage overview

To give a feel for the context in which you might actually run these
commands, below is a simple example that uses each command:

create a new workspace
$ dmf init ws --name workspace --desc "my workspace" --create
Configuration in '/home/dang/src/idaes/dangunter/idaes-dev/docs/ws/config.yaml

view status of the workspace
$ dmf status
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: workspace
 description: my workspace
 created: 2019-04-20 08:32:59
 modified: 2019-04-20 08:32:59

add some resources from files
$ echo "one" > oldfile ; echo "two" > newfile
$ dmf register oldfile --version 0.0.1
2792c0ceb0734ed4b302c44884f2d404
$ dmf register newfile --version 0.0.2 --prev 2792c0ceb0734ed4b302c44884f2d404
6ddee9bb2bb3420ab10aaf4c74d186f6

list the current workspace contents
$ dmf ls
id type desc modified
2792 data oldfile 2019-04-20 15:33:11
6dde data newfile 2019-04-20 15:33:23

look at one one resource (newfile)
$ dmf info 6dde
 Resource 6ddee9bb2bb3420ab10aaf4c74d186f6
 created
 '2019-04-20 15:33:23'
 creator
 name: dang
 datafiles
 - desc: newfile
 is_copy: true
 path: newfile
 sha1: 7bbef45b3bc70855010e02460717643125c3beca
 datafiles_dir
 /home/myuser/ws/files/8027bf92628f41a0b146a5167d147e9d
 desc
 newfile
 doc_id
 2
 id_
 6ddee9bb2bb3420ab10aaf4c74d186f6
 modified
 '2019-04-20 15:33:23'
 relations
 - 2792c0ceb0734ed4b302c44884f2d404 --[version]--> ME
 type
 data
 version
 0.0.2 @ 2019-04-20 15:33:23

see relations
$ dmf related 2792
2792 data
 │
 └──┤version├─▶ 6dde data -

remove the "old" file
$ dmf rm 2792
id type desc modified
2792c0ceb0734ed4b302c44884f2d404 data oldfile 2019-04-20 15:33:11
Remove this resource [y/N]? y
resource removed

$ dmf ls
id type desc modified
6dde data newfile 2019-04-20 15:33:23

[image: ../../../_images/blue-white-band.png]

dmf find

Search for resources by a combination of their fields.
Several convenient fields are provided. At this time, a comprehensive
capability to search on any field is not available.

dmf find options

In addition to the options below, this command also accepts all the
dmf ls options, although the --color/--no-color option is
ignored for JSON output.

	
--output value

	

Output style/format. Possible values:

	list
	(Default) Show results as a listing, as from the ls subcommand.

	info
	Show results as individual records, as from the info subcommand.

	json
	Show results are JSON objects

	
--by value

	

Look for “value” in the value of the creator.name field.

	
--created value

	

Use “value” as a date or date range and filter on records that
have a created date in that range. Dates should be in the form:

YYYY-MM-DD[*HH[:MM[:SS[.fff[fff]]]][+HH:MM[:SS[.ffffff]]]]

To indicate a date range, separate two dates with a “..”.

	2012-03-19: On March 19, 2012

	2012-03-19..2012-03-22: From March 19 to March 22, 2012

	2012-03-19..: After March 19, 2012

	..2012-03-19: Before March 19, 2012

Note that times may also be part of the date strings.

	
--file value

	

Look for “value” in the value of the desc field in one of the datafiles.

	
--modified value

	

Use “value” as a date or date range and filter on records that
have a modified date in that range. See --created for
details on the date format.

	
--name value

	

Look for “value” as one of the values of the alias field.

	
--type value

	

Look for “value” as the value of the type field.

dmf find usage

By default, find will essentially provide a filtered listing of
resources. If used without options, it is basically an alias for
ls.

$ dmf ls
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59
$ dmf find
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01
5d98 data A 2019-04-29 17:28:41
602a data B 2019-04-29 17:28:56
8c55 data C 2019-04-29 17:28:58
9cbe data D 2019-04-29 17:28:59

The find-specific options add filters. In the example below, the find
filters for files that were modified after the given date and time.

$ dmf find --modified 2019-04-29T17:29:00..
id type desc modified
2517 data file1.txt 2019-04-29 17:29:00
344c data file2.txt 2019-04-29 17:29:01

[image: ../../../_images/blue-white-band.png]

dmf info

Show detailed information about a resource.
This command may also be referred to as dmf show.

dmf info options

	
identifier

	

Identifier, or unique prefix thereof, of the resource.
Any unique prefix of the identifier will work, but if that prefix
matches multiple identifiers, you need to add --multiple
to allow multiple records in the output.

	
--multiple

	

Allow multiple records in the output (see identifier)

	
-f,--format value

	

Output format. Accepts the following values:

	term
	Terminal output (colored, if the terminal supports it), with values
that are empty left out and some values simplified for easy reading.

	json
	Raw JSON value for the resource, with newlines and indents for readability.

	jsonc
	Raw JSON value for the resource, “compact” version with no extra whitespace
added.

dmf info usage

The default is to show, with some terminal colors, a summary of the resource:

$ dmf info 0b62

Resource 0b62d999f0c44b678980d6a5e4f5d37d
created
 '2019-03-23 17:49:35'
creator
 name: dang
datafiles
 - desc: foo13
 is_copy: true
 path: foo13
 sha1: feee44ad365b6b1ec75c5621a0ad067371102854
datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52
desc
 foo13
doc_id
 4
id_
 0b62d999f0c44b678980d6a5e4f5d37d
modified
 '2019-03-23 17:49:35'
relations
 - 1e41e6ae882b4622ba9043f4135f2143 --[derived]--> ME
type
 data
version
 0.0.0 @ 2019-03-23 17:49:35

The same resource in JSON format:

$ dmf info --format json 0b62
{
 "id_": "0b62d999f0c44b678980d6a5e4f5d37d",
 "type": "data",
 "aliases": [],
 "codes": [],
 "collaborators": [],
 "created": 1553363375.817961,
 "modified": 1553363375.817961,
 "creator": {
 "name": "dang"
 },
 "data": {},
 "datafiles": [
 {
 "desc": "foo13",
 "path": "foo13",
 "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854",
 "is_copy": true
 }
],
 "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52",
 "desc": "foo13",
 "relations": [
 {
 "predicate": "derived",
 "identifier": "1e41e6ae882b4622ba9043f4135f2143",
 "role": "object"
 }
],
 "sources": [],
 "tags": [],
 "version_info": {
 "created": 1553363375.817961,
 "version": [
 0,
 0,
 0,
 ""
],
 "name": ""
 },
 "doc_id": 4
}

And one more time, in “compact” JSON:

$ dmf info --format jsonc 0b62
{"id_": "0b62d999f0c44b678980d6a5e4f5d37d", "type": "data", "aliases": [], "codes": [], "collaborators": [], "created": 1553363375.817961, "modified": 1553363375.817961, "creator": {"name": "dang"}, "data": {}, "datafiles": [{"desc": "foo13", "path": "foo13", "sha1": "feee44ad365b6b1ec75c5621a0ad067371102854", "is_copy": true}], "datafiles_dir": "/home/dang/src/idaes/dangunter/idaes-dev/ws2/files/71d101327d224302aa8875802ed2af52", "desc": "foo13", "relations": [{"predicate": "derived", "identifier": "1e41e6ae882b4622ba9043f4135f2143", "role": "object"}], "sources": [], "tags": [], "version_info": {"created": 1553363375.817961, "version": [0, 0, 0, ""], "name": ""}, "doc_id": 4}

[image: ../../../_images/blue-white-band.png]

dmf init

Initialize the current workspace. Optionally, create a new workspace.

dmf init options

	
path

	

Use the provided path as the workspace path. This is required.

	
--create

	

Create a new workspace at location provided by path. Use the
--name and --desc options to set the workspace name and
description, respectively. If these are not given, they will be prompted for
interactively.

	
--name

	

Workspace name, used by --create

	
--desc

	

Workspace description, used by --create

dmf init usage

Note

In the following examples, the current working directory is
set to /home/myuser.

This command sets a value in the user-global configuration file
in .dmf, in the user’s home directory, so that all other dmf
commands know which workspace to use. With the --create option,
a new empty workspace can be created.

Create new workspace in sub-directory ws, with given name and description:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml

Create new workspace in sub-directory ws, providing the name and
description interactively:

$ dmf init ws --create
New workspace name: foo
New workspace description: foo workspace description
Configuration in '/home/myuser/ws/config.yaml

Switch to workspace ws2:

$ dmf init ws2

If you try to switch to a non-existent workspace, you will get an error message:

$ dmf init doesnotexist
Existing workspace not found at path='doesnotexist'
Add --create flag to create a workspace.
$ mkdir some_random_directory
$ dmf init some_random_directory
Workspace configuration not found at path='some_random_directory/'

If the workspace exists, you cannot create it:

$ dmf init ws --create --name "foo" --desc "foo workspace description"
Configuration in '/home/myuser/ws/config.yaml
$ dmf init ws --create
Cannot create workspace: path 'ws' already exists

And, of course, you can’t create workspaces anywhere you don’t
have permissions to create directories:

$ mkdir forbidden
$ chmod 000 forbidden
$ dmf init forbidden/ws --create
Cannot create workspace: path 'forbidden/ws' not accessible

[image: ../../../_images/blue-white-band.png]

dmf ls

This command lists resources in the current workspace.

dmf ls options

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.

	
-s,--show

	

Pick field to show in output table. This option can be repeated to show
any known subset of fields. Also the option value can have commas
in it to hold multiple fields. Default fields, if this option is not
specified at all, are “type”, “desc”, and “modified”. The resource identifier
field is always shown first.

	codes
	List name of code(s) in resource. May be shortened with ellipses.

	created
	Date created.

	desc
	Description of resource.

	files
	List names of file(s) in resource. May be shortened with ellipses.

	modified
	Date modified.

	type
	Name of the type of resource.

	version
	Resource version.

You can specify other fields from the schema, as long as they are not
arrays of objects, i.e. you can say --show tags or --show version_info.version,
but --show sources is too complicated for a tabular listing. To
see detailed values in a record use the dmf info command.

	
-S,--sort

	

Sort by given field; if repeated, combine to make a compound sort key. These
fields are a subset of those in -s,--show, with the addition of
id for sorting by the identifier: “id”, “type”, “desc”, “created”, “modified”,
and/or “version”.

	
--no-prefix

	

By default, shown identifier is the shortest unique prefix, but if you don’t
want the identifier shortened, this option will force showing it in full.

	
-r,--reverse

	

Reverse the order of the sorting given by (or implied by absence of) the
-S,--sort option.

dmf ls usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Without arguments, show the resources in an arbitrary (though consistent)
order:

$ dmf ls
id type desc modified
0b62 data foo13 2019-03-23 17:49:35
1e41 data foo10 2019-03-23 17:47:53
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08

Add a sort key to sort by, e.g. modified date

$ dmf ls -S modified
id type desc modified
1e41 data foo10 2019-03-23 17:47:53
e780 data foo11 2019-03-23 17:48:11
eb60 data foo12 2019-03-23 17:49:08
0b62 data foo13 2019-03-23 17:49:35
6c9a data foo14 2019-03-23 17:51:59
d3d5 data bar1 2019-03-26 13:07:02

Especially for resources of type “data”, showing the first (possibly only) file
that is referred to by the resource is useful:

$ dmf ls -S modified -s type -s modified -s files
id type modified files
1e41 data 2019-03-23 17:47:53 foo10
e780 data 2019-03-23 17:48:11 foo11
eb60 data 2019-03-23 17:49:08 foo12
0b62 data 2019-03-23 17:49:35 foo13
6c9a data 2019-03-23 17:51:59 foo14
d3d5 data 2019-03-26 13:07:02 bar1

Note that you don’t actually have to show a field to sort by it (compare sort
order with results from command above):

$ dmf ls -S modified -s type -s files
id type files
1e41 data foo10
e780 data foo11
eb60 data foo12
0b62 data foo13
6c9a data foo14
d3d5 data bar1

Add --no-prefix to show the full identifier:

$ dmf ls -S modified -s type -s files --no-prefix
id type files
1e41e6ae882b4622ba9043f4135f2143 data foo10
e7809d25b390453487998e1f1ef0e937 data foo11
eb606172dde74aa79eea027e7eb6a1b6 data foo12
0b62d999f0c44b678980d6a5e4f5d37d data foo13
6c9a85629cb24e9796a2d123e9b03601 data foo14
d3d5981106ce4d9d8cccd4e86c2cd184 data bar1

[image: ../../../_images/blue-white-band.png]

dmf register

Register a new resource with the DMF, using a file as an input.
An alias for this command is dmf add.

dmf register options

	
--no-copy

	

Do not copy the file, instead remember path to current location.
Default is to copy the file under the workspace directory.

	
-t,--type

	

Explicitly specify the type of resource. If this is not given, then
try to infer the resource type from the file. The default will be ‘data’.
The full list of resource types is in idaes.dmf.resource.RESOURCE_TYPES

	
--strict

	

If inferring the type fails, report an error. With --no-strict, or no option,
if inferring the type fails, fall back to importing as a generic file.

	
--no-unique

	

Allow duplicate files. The default is --unique, which will
stop and print an error if another resource has a file matching this
file’s name and contents.

	
--contained resource

	

Add a ‘contained in’ relation to the given resource.

	
--derived resource

	

Add a ‘derived from’ relation to the given resource.

	
--used resource

	

Add a ‘used by’ relation to the given resource.

	
--prev resource

	

Add a ‘version of previous’ relation to the given resource.

	
--is-subject

	

If given, reverse the sense of any relation(s) added to the resource so that the
newly created resource is the subject and the existing resource is the object.
Otherwise, the new resource is the object of the relation.

	
--version

	

Set the semantic version of the resource.
From 1 to 4 part semantic versions are allowed, e.g.

	1

	1.0

	1.0.1

	1.0.1-alpha

See http://semver.org and the function idaes.dmf.resource.version_list() for more details.

dmf register usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Register a new file, which is a CSV data file, and use the --info
option to show the created resource.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > file.csv
$ dmf reg file.csv --info
 Resource 117a42287aec4c5ca333e0ff3ac89639
created
 '2019-04-11 03:58:52'
creator
 name: dang
datafiles
 - desc: file.csv
 is_copy: true
 path: file.csv
 sha1: f1171a6442bd6ce22a718a0e6127866740c9b52c
datafiles_dir
 /home/myuser/ws/files/4db42d92baf3431ab31d4f91ab1a673b
desc
 file.csv
doc_id
 1
id_
 117a42287aec4c5ca333e0ff3ac89639
modified
 '2019-04-11 03:58:52'
type
 data
version
 0.0.0 @ 2019-04-11 03:58:52

If you try to register (add) the same file twice, it will be an error by default.
You need to add the --no-unique option to allow it.

$ printf "index,time,value\n1,0.1,1.0\n2,0.2,1.3\n" > timeseries.csv
$ dmf add timeseries.csv
2315bea239c147e4bc6d2e1838e4101f
$ dmf add timeseries.csv
This file is already in 1 resource(s): 2315bea239c147e4bc6d2e1838e4101f
$ dmf add --no-unique timeseries.csv
3f95851e4931491b995726f410998491

If you register a file ending in “.json”, it will be parsed (unless it is
over 1MB) and, if it passes, registered as type JSON. If the parse fails, it
will be registerd as a generic file unless the --strict option is
given (with this option, failure to parse will be an error):

$ echo "totally bogus" > notreally.json
$ dmf reg notreally.json
2019-04-12 06:06:47,003 [WARNING] idaes.dmf.resource: File ending in '.json' is not valid JSON: treating as generic file
d22727c678a1499ab2c5224e2d83d9df
$ dmf reg --strict notreally.json
Failed to infer resource: File ending in '.json' is not valid JSON

You can explicitly specify the type of the resource with the
-t,--type option. In that case, any failure
to validate will be an error. For example, if you say the resource is a Jupyter
Notebook file, and it is not, it will fail. But the same file with type “data”
will be fine:

$ echo "Ceci n'est pas une notebook" > my.ipynb
$ dmf reg -t notebook my.ipynb
Failed to load resource: resource type 'notebook': not valid JSON
$ dmf reg -t data my.ipynb
0197a82abab44ecf980d6e42e299b258

You can add links to existing resources with the options --contained,
--derived, --used, and --prev. For all of these,
the new resource being registered is the target of the relation and the
option argument is the identifier of an existing resource that is the subject of the
relation.

For example, here we add a “shoebox” resource and then some “shoes” that are contained
in it:

$ touch shoebox.txt shoes.txt closet.txt
$ dmf add shoebox.txt
755374b6503a47a09870dfbdc572e561
$ dmf add shoes.txt --contained 755374b6503a47a09870dfbdc572e561
dba0a5dc7d194040ac646bf18ab5eb50
$ dmf info 7553 # the "shoebox" contains the "shoes"
 Resource 755374b6503a47a09870dfbdc572e561
 created
 '2019-04-11 20:16:50'
 creator
 name: dang
 datafiles
 - desc: shoebox.txt
 is_copy: true
 path: shoebox.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/7f3ff820676b41689bb32bc325fd2d1b
 desc
 shoebox.txt
 doc_id
 9
 id_
 755374b6503a47a09870dfbdc572e561
 modified
 '2019-04-11 20:16:50'
 relations
 - dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:16:50

$ dmf info dba0 # the "shoes" are in the "shoebox"
 Resource dba0a5dc7d194040ac646bf18ab5eb50
 created
 '2019-04-11 20:17:28'
 creator
 name: dang
 datafiles
 - desc: shoes.txt
 is_copy: true
 path: shoes.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/a27f98c24d1848eaba1b26e5ef87be88
 desc
 shoes.txt
 doc_id
 10
 id_
 dba0a5dc7d194040ac646bf18ab5eb50
 modified
 '2019-04-11 20:17:28'
 relations
 - 755374b6503a47a09870dfbdc572e561 --[contains]--> ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:17:28

To reverse the sense of the relation, add the --is-subject flag.
For example, we now add a “closet” resource that contains the existing “shoebox”.
This means the shoebox now has two different “contains” type of relations.

$ dmf add closet.txt --is-subject --contained 755374b6503a47a09870dfbdc572e561
22ace0f8ed914fa3ac3e7582748924e4
$ dmf info 7553
 Resource 755374b6503a47a09870dfbdc572e561
 created
 '2019-04-11 20:16:50'
 creator
 name: dang
 datafiles
 - desc: shoebox.txt
 is_copy: true
 path: shoebox.txt
 sha1: da39a3ee5e6b4b0d3255bfef95601890afd80709
 datafiles_dir
 /home/dang/src/idaes/dangunter/idaes-dev/docs/ws/files/7f3ff820676b41689bb32bc325fd2d1b
 desc
 shoebox.txt
 doc_id
 9
 id_
 755374b6503a47a09870dfbdc572e561
 modified
 '2019-04-11 20:16:50'
 relations
 - dba0a5dc7d194040ac646bf18ab5eb50 <--[contains]-- ME
 - 22ace0f8ed914fa3ac3e7582748924e4 --[contains]--> ME
 type
 data
 version
 0.0.0 @ 2019-04-11 20:16:50

You can give your new resource a version with the --version option.
You can use this together with the --prev option to link
between multiple versions of the same underlying data:

note: following command stores the output of "dmf reg", which is the
id of the new resource, in the shell variable "oldid"
$ oldid=$(dmf reg oldfile.py --type code --version 0.0.1)
$ dmf reg newfile.py --type code --version 0.0.2 --prev $oldid
ef2d801ca29a4a0a8c6f79ee71d3fe07
$ dmf ls --show type --show version --show codes --sort version
id type version codes
44e7 code 0.0.1 oldfile.py
ef2d code 0.0.2 newfile.py
$ dmf related $oldid
44e7 code
 │
 └──┤version├─▶ ef2d code -

[image: ../../../_images/blue-white-band.png]

dmf related

This command shows resources related to a given resource.

dmf related options

	
-d,--direction

	

Direction of relationships to show / follow. The possible values are:

	in
	Show incoming connection/relationship edges. Since all relations have a
bi-directional counterpart, this effectively only shows the immediate neighbors
of the root resource. For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the incoming edge
from “B” to “A” but not the edge from “C” to “B”.

	out
	(Default) Show the outgoing connection/relationship edges. This will continue
until there are no more connections to show, avoiding cycles.
For example, if the root resource is “A”, and “A”
contains “B” and “B” contains “C”, then this option shows the outgoing edge
from “A” to “B” and also from “B” to “C”.

The default value is out.

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.

	
--unicode

	

Allow unicode drawing characters in the output. This is the default.

	
--no-unicode

	

Use only ASCII characters in the output.

dmf related usage

In the following examples, we work with 4 resources arranged as a fully
connected square (A, B, C, D). This is not currently possible just with the
command-line, but the following Python code does the job:

from idaes.dmf import DMF, resource
dmf = DMF()
rlist = [resource.Resource(value={"desc": ltr, "aliases": [ltr],
 "tags": ["graph"]})
 for ltr in "ABCD"]
relation = resource.PR_USES
for r in rlist:
 for r2 in rlist:
 if r is r2:
 continue
 resource.create_relation_args(r, relation, r2)
for r in rlist:
 dmf.add(r)

If you save that script as r4.py, then the following command-line
actions will run it and verify that everything is created.

$ python r4.py
$ dmf ls
id type desc modified
1e7f other B 2019-04-20 15:43:49
3bc5 other D 2019-04-20 15:43:49
ba67 other A 2019-04-20 15:43:49
f7e9 other C 2019-04-20 15:43:49

You can then see the connections by looking at any one of the
four resource (e.g., A):

$ dmf rel ba67
ba67 other A
 │
 ├──┤uses├─▶ 3bc5 other D
 ┆ │
 ┆ ├──┤uses├─▶ f7e9 other C
 ┆ │
 ┆ ├──┤uses├─▶ 1e7f other B
 ┆ │
 ┆ └──┤uses├─▶ ba67 other A
 │
 ├──┤uses├─▶ f7e9 other C
 ┆ │
 ┆ ├──┤uses├─▶ 3bc5 other D
 ┆ │
 ┆ ├──┤uses├─▶ 1e7f other B
 ┆ │
 ┆ └──┤uses├─▶ ba67 other A
 │
 └──┤uses├─▶ 1e7f other B
 │
 ├──┤uses├─▶ 3bc5 other D
 │
 ├──┤uses├─▶ f7e9 other C
 │
 └──┤uses├─▶ ba67 other A

If you change the direction of relations, you will get much the same
result, but with the arrows reversed.

[image: ../../../_images/blue-white-band.png]

dmf rm

Remove one or more resources. This also removes relations (links) to other resources.

dmf rm options

	
identifier

	

The identifier, or identifier prefix, of the resource(s) to remove

	
--list,--no-list

	

With the –list option, which is the default, the resources to remove,
or removed, will be listed as if by the dmf ls command. With
–no-list, then do not produce this output.

	
-y,--yes

	

If given, do not confirm removal of the resource(s) with a prompt.
This is useful for scripts that do not want to bother with input,
or people with lots of confidence.

	
--multiple

	

If given, allow multiple resources to be selected by an identifier prefix. Otherwise,
if the given identifier matches more than one resource, the program will print a message and stop.

dmf rm usage

Note

In the following examples, there are 5 text files named “file1.txt”, “file2.txt”, .., “file5.txt”, in the workspace.
The identifiers for these files may be different in each example.

Remove one resource, by its full identifier:

$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26
$ dmf rm c20f3a6e338a40ee8a3a4972544adb74
id type desc modified
c20f3a6e338a40ee8a3a4972544adb74 data file1.txt 2019-04-16 02:51:25
Remove this resource [y/N]? y
resource removed
[dmfcli-167 !?]idaes-dev$ dmf ls --no-prefix
id type desc modified
096aa2491e234c4b941f32b537dd3017 data file5.txt 2019-04-16 02:51:30
821fc8f8e54e4c65b481f483be7f5a2d data file4.txt 2019-04-16 02:51:29
c8f2b5cb80824e649008c414db5287f7 data file3.txt 2019-04-16 02:51:28
cd62e3bcb9a4459c9f2f5405ca442961 data file2.txt 2019-04-16 02:51:26

Remove a single resource by its prefix:

$ dmf ls
id type desc modified
6dd5 data file2.txt 2019-04-16 18:51:10
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm 6d
id type desc modified
6dd57ecc50a24efb824a66109dda0956 data file2.txt 2019-04-16 18:51:10
Remove this resource [y/N]? y
resource removed
$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

Remove multiple resources that share a common prefix. In this case, use the
-y,--yes option to remove without prompting.

$ dmf ls
id type desc modified
7953 data file3.txt 2019-04-16 18:51:12
7a06 data file4.txt 2019-04-16 18:51:13
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15
$ dmf rm --multiple --yes 7
id type desc modified
7953e67db4a543419b9988c52c820b68 data file3.txt 2019-04-16 18:51:12
7a06435c39b54890a3d01a9eab114314 data file4.txt 2019-04-16 18:51:13
2 resources removed
$ dmf ls
id type desc modified
e5d7 data file1.txt 2019-04-16 18:51:08
fe0c data file5.txt 2019-04-16 18:51:15

[image: ../../../_images/blue-white-band.png]

dmf status

This command shows basic information about the current active workspace
and, optionally, some additional details. It does not (yet) give any way
to modify the workspace configuration. To do that, you need to edit the
config.yaml file in the workspace root directory.
See Configuration.

dmf status options

	
--color

	

Allow (if terminal supports it) colored terminal output. This is the default.

	
--no-color

	

Disallow, even if terminal supports it, colored terminal output.
UNIX output streams to pipes should be detected and have color disabled,
but this option can force that behavior if detection is failing.

	
-s,--show info

	

Show one of the following types of information:

	files
	Count and total size of files in workspace

	htmldocs
	Configured paths to the HTML documentation (for “%dmf help” magic in the
Jupyter Notebook)

	logging
	Configuration for logging

	all
	Show all items above

	
-a,--all

	

This option is just an alias for “–show all”.

dmf status usage

Note

In the following examples, the current working directory is
set to /home/myuser and the workspace is named ws.

Also note that the output shown below is plain (black) text. This is due to our
limited understanding of how to do colored text in our documentation tool
(Sphinx). In a color-capable terminal, the output will be more colorful.

Show basic workspace status:

$ dmf status
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:46:40
 modified: 2019-04-09 12:46:40

Add the file information:

$ dmf status --show files
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:52:49
 modified: 2019-04-09 12:52:49
 files:
 count: 3
 total_size: 1.3 MB

You can repeat the -s,--show option to add more things:

$ dmf status --show files --show htmldocs
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:54:10
 modified: 2019-04-09 12:54:10
 files:
 count: 3
 total_size: 1.3 MB
 html_documentation_paths:
 -: /home/myuser/idaes/docs/build

However, showing everything is less typing, and not overwhelming:

$ dmf status -a
settings:
 workspace: /home/myuser/ws
workspace:
 location: /home/myuser/ws
 name: myws
 description: my workspace
 created: 2019-04-09 12:55:05
 modified: 2019-04-09 12:55:05
 files:
 count: 3
 total_size: 1.3 MB
 html_documentation_paths:
 -: /home/myuser/idaes/docs/build
 logging:
 not configured

DMF Application Programming Interface (API)

This page describes how to use the DMF when you create and save your models.
For information on performing some DMF functions from the command-line,
see DMF Command-line Interface. All the modules referenced here are in the idaes.dmf subpackage.

	Initialization

	Adding data

	Adding relations

Initialization

You can create a new dmfbase.DMF instance quite simply:

from idaes.dmf import DMF
dmf = DMF() # new DMF instance

When initialized this way, the DMF will use the configuration it finds
in a file called .dmf in the user’s home directory. You can specify another
configuration to use. The configuration of the DMF specifies where the workspace is located, which can be
retrieved through the attribute workspace_path.

Adding data

The data in the DMF is broken down into “resources”. When adding data to the DMF with
the Python API, you create resources and add them to the DMF instance. A resource
describes one dataset, and contains:

	metadata about the creator, creation and modification time, version, names, and description

	provenance about the sources of the information

	data, as a references to files, embedded structured (JSON) data, or both

	codes, as references to code file locations or module paths, and optionally specific sections of that file or module

	relations, i.e. labeled connections to and from other resources. The following

To add a dataset, you first create a “resource”,
which is an instance of resource.Resource (in module resource). This class
provides some convenience methods for manipulating the underlying structure of the resource,
which is contained in a Python dictionary (in an attribute called v, for “values”)
and described, using JSON Schema syntax. The schema is contained in the module variable
resource.RESOURCE_SCHEMA. An example of creating a new Resource object:

from idaes.dmf.resource import Resource

r = Resource()
r.v["version_info"]["version"] = test_version
r.v["collaborators"] = [
 {"name": "Clark Kent", "email": "ckent@dailyplanet.com"},
 {"name": "Superman", "email": "sman@fortress.solitude.org"},
]
r.v["sources"].append(
 {
 "isbn": "978-0201616224",
 "source": 'Hunt, A. and Thomas, D., "The Pragmatic Programmer", '
 "Addison-Wesley, 1999",
 "date": "1999-01-01",
 }
)
r.v["codes"].append(
 {
 "type": "function",
 "name": "test_resource_full",
 "desc": "The test function",
 "location": "test_files.py",
 "version": test_version,
 }
)
r.v["datafiles"].append({"path": "/etc/passwd"})
r.v["aliases"] = ["test_resource_full"]
r.v["tags"] = ["test", "resource"]
r.data = {"arbitrary": {"values": [1, 2, 3]}}
return r

You can also create a resource that describes a file by using the
resource.Resource.from_file() method. This will fill in the datafiles section of the
resource object.

Once you have the resource object populated, you can add it
to the DMF instance (and, thus, its workspace) with the dmfbase.DMF.add() method:

from idaes.dmf import DMF
from idaes.dmf.resource import Resource

r = Resource()
... create resource ...
dmf = DMF()
dmf.add(r)

You can create a resource and add it to the DMF in a single step with the dmfbase.DMF.new()
method:

from idaes.dmf import DMF

dmf = DMF()
r = dmf.new(file="/path/to/breaking_news.doc",
 author={"name": "Clark Kent", "email": "ckent@dailyplanet.com"})

Once a resource is added to a DMF instance, you can still modify its content,
but you need to call dmfbase.DMF.update() to synchronize those changes with the stored
values. This is necessary for adding relations between two resources,
which you simply cannot do until both of them are created. But it can also be used
to do things like add a description:

from idaes.dmf import DMF

dmf = DMF()
create and add resource
r = dmf.new(file="/path/to/breaking_news.doc")
add a description to the resource
r.v["description"] = get_description()
sync the description to the stored value
dmf.update()

Adding relations

One of the main functions of the DMF is to track the relationships, or relations, between
its resources. In the lingo of graphs of objects, and in particular the Resource Description Framework (RDF)
that is used as the foundation for many provenance systems, these relations are directed edges between
objects, labeled by “predicates”. In this terminology, the resource from which the directed edge starts
is called the “subject” of the relation, and the resource from which the directed edge ends is the “object”.
The DMF defines the following predicates (associated module string constants are shown in parentheses):

	(resource.PR_DERIVED) derived: object is derived from subject

	(resource.PR_CONTAINS) contains: object contains the subject

	(resource.PR_USES) uses: object uses the subject

	(resource.PR_VERSION) version: object is a (new) version of the subject

Adding a relation between two resources is pretty straightforward. You create both resources and add them to the DMF, then
create a “triple” to describe the connection between them (with the “predicate” that labels that connection),
with the resource.create_relation() function.
Then you call the dmfbase.DMF.update() function on the DMF instance to save the relation:

from idaes.dmf import DMF
from idaes.dmf.resource import Triple, PR_DERIVED
from idaes.dmf.resource import create_relation_args

dmf = DMF()
create and add resources
r1 = dmf.new(file="/path/to/breaking_news.doc")
r2 = dmf.new(file="/path/to/interview_notes.txt")
create relation (news --was derived from--> notes)
create_relation(r1, PR_DERIVED, r2)
sync the relation to the DMF
dmf.update()

Conventions

	Units of Measurement and Reference States

	Standard Variable Names

	Standard Naming Format

	Constants

	Thermophysical and Transport Properties

	Reaction Properties

	Solid Properties

	Naming Examples

Units of Measurement and Reference States

Due to the flexibility provided by the IDAES Integrated Platform, there is no standard set of units of measurement or standard reference state that should be used in models. Units of measurement are defined by the modeler for the 7 base quantities (time, length, mass, amount, temperature, current and luminous intensity) in each property package, and the platform makes use of this and Pyomo’s Units container to automatically determine the units of all variables and expressions within a model. Thus, all components within a model using a given property package must use units based on the units chosen for the base quantities (to ensure consistency of units). However, flowsheets may contain property packages which use different sets of base units, however users should be careful to ensure units are converted correctly where property packages interact. For more detail on defining units of measurement see Defining Units of Measurement.

Pyomo also provides convenient tools for converting between different units of measurement and checking for unit consistency, of which a few are highlighted below:

	units.convert(var, to_units=units) - returns a Pyomo expression including the variable var and the necessary conversion factors to convert it to the desired set of units (units). This method will return an Exception if the units of var are not consistent with those requested by the user.

	units.assert_units_consistent(object) - checks for consistency of units in object and raises an AssertionError if they are not. object may be a Block, Constraint or Expression.

The IDAES developers have generally used SI units without prefixes (i.e. Pa, not kPa) within models developed by the institute, with a default thermodynamic reference state of 298.15 K and 101325 Pa. Supercritical fluids have been consider to be part of the liquid phase, as they will be handled via pumps rather than compressors.

Standard Variable Names

In order for different models to communicate information effectively, it is necessary to have
a standard naming convention for any variable that may need to be shared between different
models. Within IDAES, this occurs most frequently when information
regarding the state and properties of the material, which is calculated
in specialized PropertyBlocks, is used in others parts of the model.

Standard Naming Format

There are a wide range of different variables which may be of interest to modelers, and a
number of different ways in which these quantities can be expressed. In order to facilitate
communication between different parts of models, a naming convention has been established to
standardize the naming of variables across models. Variable names within IDAES follow to the
format below:

{property_name}_{basis}_{state}_{condition}

Here, property_name is the name of the quantity in question, and should be drawn from the list
of standard variable names given later in this document. If a particular quantity is not
included in the list of standard names, users are encouraged to contact the IDAES developers
so that it can be included in a future release. This is followed by a number of qualifiers
which further indicate the specific conditions under which the quantity is being calculated.
These qualifiers are described below, and some examples are given at the end of this document.

Basis Qualifier

Many properties of interest to modelers are most conveniently represented on an intensive basis,
that is quantity per unit amount of material. There are a number of different bases that can be
used when expressing intensive quantities, and a list of standard basis qualifiers are given
below.

	Basis

	Standard Name

	Mass Basis

	mass

	Molar Basis

	mol

	Volume Basis

	vol

State Qualifier

Many quantities can be calculated either for the whole or a part of a mixture. In these cases, a qualifier is added to the quantity to indicate which part of the mixture the quantity applies to. In these cases, quantities may also be indexed by a Pyomo Set.

	Basis

	Standard Name

	Comments

	Component

	comp

	Indexed by component list

	Phase

	phase

	Indexed by phase list

	Phase & Component

	phase_comp

	Indexed by phase and component list

	Total Mixture

	
	No state qualifier

	Phase

	Standard Name

	Supercritical Fluid

	liq

	Ionic Species

	ion

	Liquid Phase

	liq

	Solid Phase

	sol

	Vapor Phase

	vap

	Multiple Phases

	e.g. liq1

Condition Qualifier

There are also cases where a modeler may want to calculate a quantity at some state other than the actual state of the system (e.g. at the critical point, or at equilibrium).

	Basis

	Standard Name

	Critical Point

	crit

	Equilibrium State

	equil

	Ideal Gas

	ideal

	Reduced Properties

	red

	Reference State

	ref

Constants

IDAES contains a library of common physical constants of use in process systems engineering
models, which can be imported from idaes.core.util.constants. Below is a list of these
constants with their standard names and values (SI units).

Note

It is important to note that these constants are represented as Pyomo expressions in order to include units of measurement. As such, they can be directly included in other expressions within a model. However, if the user desires to use their value directly (e.g. to initialize a variable), the value() method must be used to extract the value of the constant from the expression.

	Constant

	Standard Name

	Value

	Units

	Acceleration due to Gravity

	acceleration_gravity

	9.80665

	\(m⋅s^{-2}\)

	Avogadro’s Number

	avogadro_number

	6.02214076e23

	\(mol^{-1}\)

	Boltzmann Constant

	boltzmann_constant

	1.38064900e-23

	\(J⋅K^{-1}\)

	Elementary Charge

	elementary_charge

	1.602176634e-19

	\(C\)

	Faraday’s Constant

	faraday_constant

	96485.33212

	\(C⋅mol^{-1}\)

	Gas Constant

	gas_constant

	8.314462618

	\(J⋅mol^{-1}⋅K^{-1}\)

	Newtonian Constant of Gravitation

	gravitational_constant

	6.67430e-11

	\(m^3⋅kg^{-1}⋅s^{-2}\)

	Mass of an Electron

	mass_electron

	9.1093837015e-31

	\(kg\)

	Pi (Archimedes’ Constant)

	pi

	3.141592 [1]

	

	Planck Constant

	planck_constant

	6.62607015e-34

	\(J⋅s\)

	Stefan-Boltzmann Constant

	stefan_constant

	5.67037442e-8

	\(W⋅m^{-2}⋅K^{-4}\)

	Speed of Light in a Vacuum

	speed_light

	299792458

	\(m⋅s^{-1}\)

[1] pi imported from the Python math library and is available to machine precision.

Values for fundamental constants and derived constants are drawn from the definitions of SI
units (https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9.pdf) and are generally
defined to 9 significant figures.

Acceleration due to gravity, gravitational constant and electron mass are sourced from NIST
(https://physics.nist.gov) and used the significant figures reported there.

Thermophysical and Transport Properties

Below is a list of all the thermophysical properties which have standardized names.

	Variable

	Standard Name

	Activity

	act

	Activity Coefficient

	act_coeff

	Bubble Pressure

	pressure_bubble

	Bubble Temperature

	temperature_bubble

	Compressibility Factor

	compress_fact

	Concentration

	conc

	Density

	dens

	Dew Pressure

	pressure_dew

	Dew Temperature

	temperature_dew

	Diffusivity

	diffus

	Diffusion Coefficient (binary)

	diffus_binary

	Enthalpy

	enth

	Entropy

	entr

	Fugacity

	fug

	Fugacity Coefficient

	fug_coeff

	Gibbs Energy

	energy_gibbs

	Heat Capacity (const. P)

	cp

	Heat Capacity (const. V)

	cv

	Heat Capacity Ratio

	heat_capacity_ratio

	Helmholtz Energy

	energy_helmholtz

	Henry’s Constant

	henry

	Internal Energy

	energy_internal

	Mass Fraction

	mass_frac

	Material Flow

	flow

	Molality

	molality

	Molecular Weight

	mw

	Mole Fraction

	mole_frac

	pH

	pH

	Pressure

	pressure

	Speed of Sound

	speed_sound

	Surface Tension

	surf_tens

	Temperature

	temperature

	Thermal Conductivity

	therm_cond

	Vapor Pressure

	pressure_sat

	Viscosity (dynamic)

	visc_d

	Viscosity (kinematic)

	visc_k

	Vapor Fraction

	vap_frac

	Volume Fraction

	vol_frac

Reaction Properties

Below is a list of all the reaction properties which have standardized names.

	Variable

	Standard Name

	Activation Energy

	energy_activation

	Arrhenius Coefficient

	arrhenius

	Heat of Reaction

	dh_rxn

	Entropy of Reaction

	ds_rxn

	Equilibrium Constant

	k_eq

	Reaction Rate

	reaction_rate

	Rate constant

	k_rxn

	Solubility Constant

	k_sol

Solid Properties

Below is a list of all the properties of solid materials which have standardized names.

	Variable

	Standard Name

	Min. Fluidization Velocity

	velocity_mf

	Min. Fluidization Voidage

	voidage_mf

	Particle Size

	particle_dia

	Pore Size

	pore_dia

	Porosity

	particle_porosity

	Specific Surface Area

	area_{basis}

	Sphericity

	sphericity

	Tortuosity

	tort

	Voidage

	bulk_voidage

Naming Examples

Below are some examples of the IDAES naming convention in use.

	Variable Name

	Meaning

	enth

	Specific enthalpy of the entire mixture (across all phases)

	flow_comp[“H2O”]

	Total flow of H2O (across all phases)

	entr_phase[“liq”]

	Specific entropy of the liquid phase mixture

	conc_phase_comp[“liq”, “H2O”]

	Concentration of H2O in the liquid phase

	temperature_red

	Reduced temperature

	pressure_crit

	Critical pressure

Workflow

The section describes the recommended workflows for constructing and working with models on the
IDAES Integrated Platform. Below is the list of the documented workflows.

	General Workflow

	Data Reconciliation and Parameter Estimation

General Workflow

While IDAES offers significant freedom in how users write their models, they
are encouraged to follow this general workflow in order to make it easier for others to follow
their code.

This workflow is used throughout the tutorials and examples on the examples online documentation page [https://idaes.github.io/examples-pse/latest/index.html].

Note

It is important to note that IDAES models are constructed upon execution of each line of
code, and that most user defined options are only processed on model construction. This
means that if the user wishes to make changes to any model construction option, it is
necessary to rebuild the model from the beginning. Users should not be put off by this
however, as model construction is generally very quick.

The general workflow for working with a model in IDAES is shown below:

	1. Importing Modules

	2. Building a Model

	2.1 Create a Model Object

	2.2 Add a Flowsheet to the Model

	2.3 Add Property Packages to Flowsheet

	2.4 Add Unit Models to Flowsheet

	2.5 Define Unit Model Connectivity

	2.6 Expand Arcs

	2.7 Add Variables, Constraints and Objectives

	3. Scaling the Model

	4. Specifying the Model

	5. Initializing the Model

	6. Solving the Model

	7. Optimizing the Model

	8. Analyzing and Visualizing the Results

1. Importing Modules

IDAES is built upon a modular, object-oriented platform using Python, which requires users to
import the components from the appropriate model libraries. The necessary components and
libraries will vary from application to application, and were discussed earlier in this User
Guide, however some common components users will need include:

	Pyomo environment components (e.g. ConcreteModel, SolverFactory, TransformationFactory, Var, Constraint, objective) imported from pyomo.environ

	Pyomo network components (e.g. Arc, expand_arcs) from pyomo.network

	IDAES FlowsheetBlock, from idaes.core

	Property packages for materials of interest

	Unit models for process equipment, drawn from either the IDAES model libraries and/or user-defined models

	Data visualization and analysis tools. Common tools include degrees of freedom and scaling, a full list is provided here.

	External packages of interest to the user. Being built upon Python, users have access to the full range of Python libraries for working with and analyzing their models.

2. Building a Model

The next step in the workflow is to create a model object which represents the problem to be
solved. The steps involved in this may vary depending on the problem being solved, but the
general procedure is as follows:

2.1 Create a Model Object

The foundation of any model in IDAES is a Pyomo ConcreteModel object, which is created as
follows:

m = ConcreteModel()

Note

IDAES does not support the use of Pyomo AbstractModels

2.2 Add a Flowsheet to the Model

The foundation of a process model within IDAES is the FlowsheetBlock, which forms the canvas
upon which the process will be constructed. A key aspect of the FlowsheetBlock is to define
whether the model will be steady-state or dynamic, and to define the time domain as appropriate.

m.fs = FlowsheetBlock(default={"dynamic": False}

Note

IDAES supports nested flowsheets to allow complex processes
to be broken down into smaller sub-processes.

2.3 Add Property Packages to Flowsheet

All process models depend on calculations of thermophysical and chemical reaction properties,
which are represented in IDAES using property packages. Users need to add the property packages
they intend to use to the flowsheet.

m.fs.properties_1 = MyPropertyPackage.PhysicalParameterBlock()

Note

Users can add as many property packages as they need to a flowsheet, and can determine which
property package will be used for each unit operation as it is created.

2.4 Add Unit Models to Flowsheet

Next, the user can add Unit Models to their flowsheet to represent each unit operation in the
process.

m.fs.unit01 = UnitModel(default={"property_package": m.fs.properties_1})

2.5 Define Unit Model Connectivity

In order to describe the flow of material between unit operations, users must declare Arcs
(or streams) which connect the outlet of each unit operation to the inlet of the next.

m.fs.arc_1 = Arc(source=m.fs.unit01.outlet, destination=m.fs.unit02.inlet)

2.6 Expand Arcs

It is important to note that Arcs only define the connectivity between unit operations, but
do not create the actual model constraints needed to describe this. Once all Arcs in a
flowsheet have been defined, it is necessary to expand these Arcs using the Pyomo
TransformationFactory.

TransformationFactory("network.expand_arcs").apply_to(m)

Note

Pyomo provides a number of other Transformations and tools that may be useful to the user
depending on the application. Examples include the gdp and dae transformations.

2.7 Add Variables, Constraints and Objectives

Finally, users can add any additional variables, constraints and objectives to their model.
These could include the objective function for which they wish to optimize, additional
constraints that provide limits on process performance, or simply additional quantities that
the user wishes to use in analyzing or visualizing the results.

3. Scaling the Model

Note

The IDAES scaling tools are currently under development.

Ensuring that a model is well scaled is important for increasing the efficiency and reliability
of solvers, and users should consider model scaling as an integral part of the modeling process.
IDAES provides a number of tool for assisting users with scaling their models, and details on
these can be found here.

4. Specifying the Model

Note

IDAES is in the process of developing a set of tools to assist users with working with units
of measurement when fixing and displaying values.

The next step is to specify the model by fixing variables. which can be done using the form
variable_name.fix(value). The variables that need to be fixed are application dependent,
but commonly include the feed state variables.

In order to prepare the model for initialization, it is necessary to fully specify the model,
such that there are no degrees of freedom. IDAES provides a tools for counting and reporting
the degrees of freedom in any model (or sub-model/block):

from idaes.core.util.model_statistics import degrees_of_freedom

print(degrees_of_freedom(m))

Note

Whilst it is not always necessary to fully define a model before initialization, it is much
safer to do so as it ensures the model is well-defined. Most IDAES initialization tools
check that the model is well-defined before proceeding, and will raise an Exception if it is
not.

Note

Depending on the solver to be used during initialization, it can be better to avoid putting
bounds on variables and adding inequality constraints at this stage. For solving square
problems (i.e. zero degrees of freedom), some solvers (e.g. IPOPT) perform better without
bounds on the problem. These bounds and constraints can be added later when it comes time to
optimize the problem.

5. Initializing the Model

The next step is to initialize the model. All IDAES models have established initialization
methods that can be called using model.initialize() which can be expected to take a model
from its initial state to a feasible solution for a set of initial guesses (within the models
expected operating range).

IDEAS workflows generally use a sequential-modular approach to
initialize flowsheets, where unit models are initialized sequentially, passing the outlet
state from one unit as the initial state for the next. An automated sequential-modular tool is
available through Pyomo and demonstrated in the tutorials.

6. Solving the Model

Important

The sequential-modular approach initializes each unit model individually, thus it is
important to do a final solve of the overall flowsheet/model in order to complete the
initialization process. In most cases, this final solve should only take a few iterations,
as the state of each unit model should be at or near the final solution already.

In order to solve the model, it is necessary to create a solve object and set any desired solver
options (such as tolerances, iteration limits etc.).

solver = SolverFactory('solver_name')
solver.options = {'tol': 1d-6}

results = solver.solve(m)

Users should check the output from the solver to ensure a feasible solution was found using
the following:

print(results.solver.termination_condition)

Different problems will require different solvers, and users will need to experiment to find
those that work best for their problems. The default solver for most IDAES applications is
IPOPT, which can be downloaded using the idaes get-extensions command line.

7. Optimizing the Model

Once an initial solution has been found, users can proceed to solving the optimization problem
of interest. This procedure will vary by application but generally involves the following steps:

7.1) Unfix some degrees of freedom to provide the problem with decision variables, variable_name.unfix().

7.2) Add bounds to variables and inequality constraints to constrain solution space, variable_name.setlb(value) and var_name.setub(value)

7.3) Call a solver and check the termination conditions, see step 6 Solving the Model.

Note

Users may wish/need to use different solvers for initialization and optimization. IDAES and
Pyomo support the use of multiple solvers as part of the same workflow for solving different
types of problems.

8. Analyzing and Visualizing the Results

One of the benefits of the IDAES Integrated Platform is that it operates in a fully featured
programming language, which provides users a high degree of flexibility in analyzing their
models. For example, users can automate the simulation of the model across multiple objectives
or a range of parameters, store and save results from one or multiple solutions. Users also have
access to a wide range of tools for manipulating, plotting and visualizing the results.

Data Reconciliation and Parameter Estimation

This workflow generally describes features of the IDAES framework that are useful
for data reconciliation and parameter estimation. Many of these features can
be used for any task where plant data is to be used in conjunction with
a process model. It is assumed that the user is familiar with the IDAES modeling
platform and Pyomo. See the General Workflow
for more information on how to set up a model.

This provides general information about IDAES functionality laid out in
terms of typical use cases. See
﻿Tutorials and Examples, for
specific complete examples of data reconciliation and parameter estimation examples.
Relevant tutorials can be found in tutorials/advanced/data_recon_and_parameter_estimation.

Data Management

IDAES has functions to read and mange process data process data. Data management
functions are contained in the idaes.dmf.model_data module.

Reading Data

A set of process data can be stored in two files, a data file and a metadata file.
The data file is a CSV file where the first column contains a data point index,
usually a timestamp. The first row contains a header with the measurement tag names.
The rest of the files contains measurement data. The data file format is shown in
the table below.

	index tag (optional)

	tag 1

	tag 2

	…

	index 1

	data(1,1)

	data(1,2)

	…

	index 2

	data(2,1)

	data(2,2)

	…

	…

	…

	…

	…

Metadata is provided for each tag in a separate CSV file. The metadata file has no
header row, and aside from the tag name, any column my be blank. In the metadata csv
file, the first column is the measurement tag name, the second column is a string
that maps the tag to a specific model quantity, the third column is a description of
the tag, and the fourth column is a for units of measure. Any columns past the fourth
column are ignored and can be used to store any additional information.

	tag 1

	model reference string 1

	description 1

	units of measure 1

	tag 2

	model reference string 2

	description 2

	units of measure 1

	…

	…

	…

	…

The unit strings should be interpretable by pint [https://pint.readthedocs.io/en/stable/],
with the additional unit strings given in Unit String Information.
The model reference string is the a string to reverence a model quantity. In the
reference string the top-level model is always represented by m. For example,
the reference string for a heater block outlet temperature could be
m.flowsheet.heater.control_volume.properties_out[:].temperature. This
reference will be indexed by time.

Reading data can be done with the idaes.dmf.model_data.read_data() function.

	
idaes.dmf.model_data.read_data(csv_file, csv_file_metadata, model=None, rename_mapper=None, unit_system=None, ambient_pressure=1.0, ambient_pressure_unit='atm')[source]

	Read CSV data into a Pandas DataFrame.

The data should be in a form where the first row contains column headings
where each column is labeled with a data tag, and the first column contains
data point labels or time stamps. The metadata should be in a csv file where
the first column is the tag name, the second column is the model reference (
which can be empty), the third column is the tag description, and the fourth
column is the unit of measure string. Any additional information can be
added to columns after the fourth column and will be ignored. The units of
measure should be something that is recognized by pint, or in the aliases
defined in this file. Any tags not listed in the metadata will be dropped.

The function returns two items a pandas.DataFrame containing process data,
and a dictionary with tag metadata. The metadata dictionary keys are tag name,
and the values are dictionaries with the keys: “reference_string”, “description”,
“units”, and “reference”.

	Parameters

	
	csv_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of file to read

	csv_file_metadata (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of csv file to read column metadata from

	model (pyomo.environ.ConcreteModel) – Optional model to map tags to

	rename_mapper (Callable) – Optional function to rename tags

	unit_system (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional system of units to atempt convert to

	ambient_pressure (float [https://docs.python.org/3/library/functions.html#float], numpy.array, pandas.series, str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional
pressure to use to convert gauge pressure to absolute. If a string is
supplied, the corresponding data tag is assumed to be ambient pressure.

	ambient_pressure_unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional ambient pressure unit, should be a
unit recognized by pint.

	Returns

	(pandas.DataFrame, dict)

Binning Data

Process data can be divided into bins based on some criteria. This allows for
estimating measurement uncertainty when no better information is available, and
provides a way to look at how different process measurements vary for operating
conditions that should be similar in some way. As an example, power plant data
could be binned by power output, and assuming that operating procedures are
standard, it could be assumed that measurements in each bin should be about the
same. The variance of a measurement in a bin could be used a an approximation of
uncertainty. Binning the data by load and time could show how process measurements
change over time and be useful for things like fault detection and equipment
degradation.

Adding bin information to a data frame is done with the
idaes.dmf.model_data.bin_data() function.

	
idaes.dmf.model_data.bin_data(df, bin_by, bin_no, bin_nom, bin_size, min_value=None, max_value=None)[source]

	Sort data into bins by a column value. If the min or max are given and
the value in bin_by for a row is out of the range [min, max], the row is
dropped from the data frame.

	Parameters

	
	df (pandas.DataFrame) – Data frame to add bin information to

	bin_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – A column for values to bin by

	bin_no (str [https://docs.python.org/3/library/stdtypes.html#str]) – A new column for bin number

	bin_nom (str [https://docs.python.org/3/library/stdtypes.html#str]) – A new column for the mid-point value of bin_by

	bin_size (float [https://docs.python.org/3/library/functions.html#float]) – size of a bin

	min_value (in {float, None}) – Smallest value to keep or None for no lower

	max_value (in (float [https://docs.python.org/3/library/functions.html#float], None}) – Largest value to keep or None for no upper

	Returns

	
	returns the data frame, and a dictionary with the number of rows
	in each bin.

	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])

The idaes.dmf.model_data.bin_stdev() function can be used to calculate the
standard deviation for each measurement in each bin.

	
idaes.dmf.model_data.bin_stdev(df, bin_no, min_data=4)[source]

	Calculate the standard deviation for each column in each bin.

	Parameters

	
	df (pandas.DataFrame) – pandas data frame that is a bin number column

	bin_no (str [https://docs.python.org/3/library/stdtypes.html#str]) – Column to group by, usually contains bin number

	min_data (int [https://docs.python.org/3/library/functions.html#int]) – Minimum number of data points requitred to calculate
standard deviation for a bin (default=4)

	Returns

	
	key is the bin number and the value is a pandas.Serries with column
	standard deviations

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The function idaes.dmf.model_data.data_plot_book() creates a multipage PDF
containing box plots for all the measurements based on the bins.

	
idaes.dmf.model_data.data_plot_book(df, bin_nom, file='data_plot_book.pdf', tmp_dir='tmp_plots', xlabel=None, metadata=None, cols=None, skip_cols=[])[source]

	Make box and whisker plots from process data based on bins from the
bin_data() function.

	Parameters

	
	df – data frame

	bin_nom – bin mid-point value column

	file – path for generated pdf

	tmp_dir – a directory to store temporary plots in

	xlabel – Label for x axis

	metadata – tag meta data dictionary

	Returns

	None

To compare reconciled data to original measurements the
idaes.dmf.data_rec_plot_book() is used. For each bin there are two box
plots one for the original data and one for reconciled data.

	
idaes.dmf.model_data.data_rec_plot_book(df_data, df_rec, bin_nom, file='data_rec_plot_book.pdf', tmp_dir='tmp_plots', xlabel=None, metadata=None, cols=None, skip_cols=[])[source]

	Make box and whisker plots from process data compared to data rec results
based on bins from the bin_data() function. The df_data and df_rec data
frames should have the same index set and the df_data data frame contains
the bin data. This will plot the intersection of columns containg numerical
data.

	Parameters

	
	df_data – data frame with original data

	df_rec – data frame with reconciled data

	bin_nom – bin mid-point value column

	file – path for generated pdf

	tmp_dir – a directory to store temporary plots in

	xlabel – Label for x axis

	metadata – tag meta data dictionary

	cols – List of columns to plot, if None plot all

	skip_cols – List of columns not to plot, this overrides cols

	Returns

	None

Tagging the Model

Mapping process data to a model is typically done by creating model tag dictionaries.
Where the dictionary key is a measurement tag and the value is a reference to a model
variable, expression, or parameter. The tags may be process measurement tags, or any
other convenient string. IDAES has some utilities to help facilitate tagging of models.

If model reference strings where provided in the tag metadata file, the tag metadata
from the idaes.dmf.model_data.read_data() will contain model references. These
references can be accessed in the metadata dictionary as metadata[tag]["reference"].

The reference strings are optional in the tag metadata file and can be added after reading
the data. To add a reference string to the metadata, you can update the metadata dictionary
like metadata[tag]["reference_string"] = reference_string. If you update the reference
string, the idaes.dmf.model_data.upadate_metadata_model_references()`` function can be used
to update the references in the tag metadata.

	
idaes.dmf.model_data.upadate_metadata_model_references(model, metadata)

	Create model references from refernce strings in the metadata. This updates
the ‘reference’ field in the metadata.

	Parameters

	
	model (pyomo.environ.Block) – Pyomo model

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Tag metadata dictionary

	Returns

	None

An easy way to create a new tag dictionary from tag metadata is to use dictionary
comprehension like so: data_tags = {k:v["reference"][0] for k, v in metadata.items() if v["reference"] is not None}

Often data reconciliation is performed using process data as the first step of
parameter estimation or model validation. Data reconciliation can often fill in
information for many unmeasured quantities. Most of this data can be associated
with process streams. To make managing proliferation of data tags easier,
it is often desirable to create a new set of tags based on stream (Arc) names that
can be automatically obtained from the model.

The first step to creating a new set of tags based on streams is to get a dictionary
of streams and their associated state blocks, with can be done with the
idaes.core.util.tables.arcs_to_stream_dict() function.

	
idaes.core.util.tables.arcs_to_stream_dict(blk, additional=None, descend_into=True, sort=False, prepend=None, s={})[source]

	Creates a stream dictionary from the Arcs in a model, using the Arc names as
keys. This can be used to automate the creation of the streams dictionary
needed for the create_stream_table_dataframe() and stream_states_dict()
functions.

	Parameters

	
	blk (pyomo.environ._BlockData) – Pyomo model to search for Arcs

	additional (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional states to add to the stream dictionary,
which aren’t represented by arcs in blk, for example feed or
product streams without Arcs attached or states internal to a unit
model.

	descend_into (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, search subblocks for Arcs as well. The
default is True.

	sort (bool [https://docs.python.org/3/library/functions.html#bool]) – If True sort keys and return an OrderedDict

	prepend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prepend a string to the arc name joined with a ‘.’.
This can be useful to prevent conflicting names when sub blocks
contain Arcs that have the same names when used in combination
with descend_into=False.

	s (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Add streams to an existing stream dict.

	Returns

	Dictionary with Arc names as keys and the Arcs as values.

The stream dictionary can be converted to a corresponding dictionary of state at a
specific time with the idaes.core.util.tables.stream_states_dict() function.

	
idaes.core.util.tables.stream_states_dict(streams, time_point=0)[source]

	Method to create a dictionary of state block representing stream states.
This takes a dict with stream name keys and stream values.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	time_point – point in the time domain at which to generate stream table
(default = 0)

	Returns

	A pandas DataFrame containing the stream table data.

With the dictionary of states, a tag dictionary can be created automatically with
the idaes.core.util.tables.stream_states_dict() function.

	
idaes.core.util.tables.stream_states_dict(streams, time_point=0)[source]

	Method to create a dictionary of state block representing stream states.
This takes a dict with stream name keys and stream values.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	time_point – point in the time domain at which to generate stream table
(default = 0)

	Returns

	A pandas DataFrame containing the stream table data.

Objective Function

For either parameter estimation or data reconciliation the objective function is
often written in the form:

\[\min \sum_i \frac{(x_{\text{data},i} - x_{\text{model},i})^2}{\sigma_i^2}\]

To add the data to be used in the objective standard practice has been to add a
mutable parameter for data and standard deviation indexed by measurement tags. The
parameter values can be set from the measurement data frame to a specific index.

The following code snippet exemplifies the use of data parameters in a model.

df is from reading process data into a pandas.DataFrame. bin_stdev comes
from binning the data and calculating the standard deviations, as described
in the Data Management section.

Add data parameters
m.data = pyo.Param(data_tags, mutable=True)
m.data_stdev = pyo.Param(data_tags, mutable=True)

A function to set the data parameters from measurement data
def set_data(m, df, data_tags, index=None):
 m.bin_no = df.iloc[index]["bin_no"]
 for t in data_tags:
 m.data[t] = df.iloc[index][t]
 m.data_stdev[t] = bin_stdev[m.bin_no][t]

Expressions for error in the objective function
@m.Expression(data_tags)
def err(m, i):
 return (m.data[i] - data_tags[i])/m.data_stdev[i]

Parameter Estimation

For parameter estimation and data reconciliation, it is recommended to use
Paramest [https://pyomo.readthedocs.io/en/stable/contributed_packages/parmest/].
If more control is needed a user can also set up their own parameter estimation
problem, by combining multiple process models into a larger parameter estimation
model.

APPENDIX: Unit String Information

This section provides additional detail about units strings that can be used to read
data with the read_data() function.

Temperature Differences

The unit conversion for temperatures with offsets (C and F) are deferent depending
on whether a measurement is temperature or temperature difference. It is important
to ensure the temperature units are correctly specified before reading data. The units
“delta_degC and delta_degF” are defined to handle temperature differences.

Units Not Converted

The following units are not affected by unit conversion.

	percent

	ppm

	ppb

	pH

	VAR

	MVAR

	H2O

	percent open

	percent closed

Gauge Pressure

The table below shows a list of unit string that are taken to be gauge pressure
when data is read. Gauge pressures are converted to absolute pressure in the unit
conversion process.

	Gauge Pressure Unit

	Absolute Pressure Unit

	psig

	psi

	in water gauge

	in water

	in hg gauge

	in hg

Additional Unit Definitions

Some units are common enough in process data that the read_data() function will
recognize them and convert them to standard Pint unit strings. Unit strings are case
sensitive to handle things like milli (m) and mega (M) prefixes.

The table below shows the additional units.

	Unit String

	Pint Unit String

	Pressure

	PSI

	psi

	PSIA

	psi

	psia

	psi

	PSIG

	psig

	INWC

	in water

	IN WC

	in water

	IN/WC

	in water

	” H2O

	in water

	INHG

	in hg

	IN HG

	in hg

	IN/HG

	in hg

	HGA

	in hg

	IN HGA

	in hg

	Fraction

	PCT

	percent

	pct

	percent

	PERCT

	percent

	PERCT.

	percent

	PCNT

	percent

	PPM

	ppm

	PPB

	ppb

	% OPEN

	percent open

	% CLSD

	percent closed

	% CLOSED

	percent closed

	Length

	IN

	in

	INS

	in

	INCHES

	in

	Inches

	in

	FT

	ft

	FEET

	ft

	FOOT

	ft

	Feet

	ft

	MILS

	minch

	Speed

	MPH

	mile/hr

	IPS

	in/s

	Volume

	KGAL

	kgal

	Vol Flow

	GPM

	gal/min

	gpm

	gal/min

	CFM

	ft^3/min

	KCFM

	ft^3/mmin

	SCFM

	ft^3/min

	KSCFM

	ft^3/mmin

	Angle

	DEG

	deg

	Angular Speed

	RPM

	rpm

	Frequency

	HZ

	hz

	Temperature

	DEG F

	degF

	Deg F

	degF

	deg F

	degF

	DEG C

	degC

	Deg C

	degC

	deg C

	degC

	DEGF

	degF

	DegF

	degF

	DEGC

	degC

	DegC

	degC

	Temperature Difference

	DELTA DEG F

	delta_degF

	DETLA Deg F

	delta_degF

	DETLA deg F

	delta_degF

	DETLA DEG C

	delta_degC

	DETLA Deg C

	delta_degC

	DELTA deg C

	delta_degC

	DELTA DEGF

	delta_degF

	DELTA DegF

	delta_degF

	DELTA degF

	delta_degF

	DELTA DEGC

	delta_degC

	DELTA DegC

	delta_degC

	DELTA degC

	delta_degC

	Delta DEG F

	delta_degF

	Delta Deg F

	delta_degF

	Delta deg F

	delta_degF

	Delta DEG C

	delta_degC

	Delta Deg C

	delta_degC

	Delta deg C

	delta_degC

	Delta DEGF

	delta_degF

	Delta DegF

	delta_degF

	Delta degF

	delta_degF

	Delta DEGC

	delta_degC

	Delta DegC

	delta_degC

	Delta degC

	delta_degC

	delta DEG F

	delta_degF

	delta Deg F

	delta_degF

	delta deg F

	delta_degF

	delta DEG C

	delta_degC

	delta Deg C

	delta_degC

	delta deg C

	delta_degC

	delta DEGF

	delta_degF

	delta DegF

	delta_degF

	delta degF

	delta_degF

	delta DEGC

	delta_degC

	delta DegC

	delta_degC

	delta degC

	delta_degC

	Energy

	MBTU

	kbtu

	Mass

	MLB

	klb

	K LB

	klb

	K LBS

	klb

	lb.

	lb

	Mass flow

	

	TPH

	ton/hr

	tph

	ton/hr

	KLB/HR

	klb/hr

	KPPH

	klb/hr

	Current

	AMP

	amp

	AMPS

	amp

	Amps

	amp

	Amp

	amp

	AMP AC

	amp

	pH

	PH

	pH

	VARS (volt-amp reactive)

	VARS

	VAR

	MVARS

	MVAR

Command-line interface

The IDAES PSE Toolkit includes a command-line tool that can be invoked
by typing idaes in a UNIX or Mac OSX shell, or Windows Powershell,
that is in an installed IDAES environment. For the most part, this means
that wherever you installed IDAES will have this command available.

This section of the documentation describes the capabilities of this
command-line program.

idaes command

The base idaes command does not do anything by itself, besides set some
shared configuration values. All the real work is done by one of the subcommands,
each of which is described on a separate page below.

	idaes bin-directory: Show IDAES executable file directory

	idaes copyright: Show IDAES copyright information

	idaes data-directory: Show IDAES data directory

	idaes get-examples: Fetch example scripts and Jupyter Notebooks

	idaes get-extensions: Get solvers and libraries

	idaes lib-directory: Show IDAES library file directory

	IDAES Versioning

shared configuration

	
--help

	

See a list of subcommands and options, or get help for a specific subcommand.

	
-v

	

	
--verbose

	

Increase verbosity. Show warnings if given once, then info, and then
debugging messages.

	
-q

	

	
--quiet

	

Increase quietness. If given once, only show critical messages.
If given twice, show no messages.

idaes bin-directory: Show IDAES executable file directory

This page lists the options for the idaes “bin-directory” bin-directory.
This is invoked like:

idaes [general options] bin-directory [bin-directory options]

general options

The following general options from the idaes base command
affect the bin-directory bin-directory. They should be placed before the
“bin-directory” bin-directory, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes bin-directory

This subcommand shows the IDAES executable file directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

idaes copyright: Show IDAES copyright information

This page lists the options for the idaes “copyright” subcommand.
This is invoked like:

idaes [general options] copyright [subcommand options]

general options

The following general options from the idaes base command
affect the copyright subcommand. They should be placed before the
“copyright” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes copyright

This subcommand prints the IDAES copyright notice to
standard output.

options

	
--help

	Show the help message and exit.

idaes data-directory: Show IDAES data directory

This page lists the options for the idaes “data-directory” subcommand.
This is invoked like:

idaes [general options] data-directory [subcommand options]

general options

The following general options from the idaes base command
affect the data-directory subcommand. They should be placed before the
“data-directory” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes data-directory

This subcommand shows the IDAES data directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

idaes get-examples: Fetch example scripts and Jupyter Notebooks

This page lists the options for the idaes “get-examples” subcommand.
This is invoked like:

idaes [general options] get-examples [subcommand options]

general options

The following general options from the idaes base command
affect the get-examples subcommand. They should be placed before the
“get-examples” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes get-examples

This subcommand fetches example scripts and Jupyter Notebooks from
a given release in Github [https://github.com/IDAES/examples-pse/releases].
and puts them in a directory of the users’ choosing. If the user does not
specify a directory, the default is examples.

options

	
--help

	Show the help message and exit.

	
-d,--dir TEXT

	

Select the installation target directory. See example usage for
several examples of this option.

	
-I, --no-install

	

Do not install examples into ‘idaes_examples’ package.
Examples are installed by default so they can be imported directly
from Python. Not installing them might cause some tests, which import
the examples, to fail.

	
-l, --list-releases

	

List all available released versions, and stop.
This lets people browse the releases and select one. By default,
the release that matches the version of the currently installed “idaes”
package is used. See also the –unstable option.

	
-N, --no-download

	

Do not download anything. If the –no-install option
is also given, this means the command will essentially do nothing. Or, looked
at another way, this option means that only action will be the installation
of the “idaes_examples” package from the selected directory.

	
-U, --unstable

	

Allow and list unstable/pre-release versions. This applies to both download
and the –list-releases option.
Unstable releases are marked with “rcN” or similar suffixes.

	
-V, --version TEXT

	

Version of examples to download. The default version, which is shown for the
–help option, is the same as the version of the IDAES PSE toolkit for which
the idaes command is installed. If the version to install is unstable
(ends with “rcN”) then you will need to add the –unstable
option to avoid errors.

example usage

	idaes get-examples
	Download examples from release matching release for the idaes command,
install them in the examples subdirectory of this directory, and
install the modules found under examples/src as a package named idaes_examples.
The examples directory must not exist, i.e. the program will refuse to
overwrite the contents of an existing directory.

	idaes get-examples -d /tmp/examples
	Same as above, but put downloaded code in /tmp/examples instead.

	idaes get-examples -d /tmp/examples -I
	Download to /tmp/examples, but do not install.

	idaes get-examples -d /tmp/examples -N
	Install the examples found under /tmp/examples.

	idaes get-examples –version 1.4.2-pre
	Download examples from release 1.4.2-pre,
install them in the examples subdirectory of this directory, and
install the modules found under examples/src as a package named idaes_examples.

	idaes get-examples –list-releases
	List available releases of the examples in Github repository, idaes/examples-pse.
Do not attempt to download or install anything.

	idaes get-examples –list-releases –unstable
	Same as above, but include non-stable releases.

idaes get-extensions: Get solvers and libraries

This page lists the options for the idaes “get-extensions” subcommand.
This is invoked like:

idaes [general options] get-extensions [subcommand options]

general options

The following general options from the idaes base command
affect the get-extensions subcommand. They should be placed before the
“get-extensions” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See idaes command for details.

idaes get-extensions

This subcommand gets the compiled solvers and libraries
from a remote repository, and installs them locally.

options

	
--help

	Show the help message and exit.

	
--url

	URL from which to download the solvers/libraries.

idaes lib-directory: Show IDAES library file directory

This page lists the options for the idaes “lib-directory” subcommand.
This is invoked like:

idaes [general options] lib-directory [subcommand options]

general options

The following general options from the idaes base command
affect the lib-directory subcommand. They should be placed before the
“lib-directory” subcommand, on the command-line.

	-v/–verbose

	-q/–quiet

See the idaes command for details.

idaes lib-directory

This subcommand shows the IDAES library file directory.

options

	
--help

	Show the help message and exit.

	
--exists

	Show if the directory exists.

	
--create

	Create the directory.

IDAES Versioning

The IDAES Python package is versioned according to the general guidelines
of semantic versioning [https://semver.org/], following the recommendations of
PEP 440 [https://www.python.org/dev/peps/pep-0440/] with respect to
extended versioning descriptors (alpha, beta, release candidate, etc.).

Basic usage

You can see the version of the package at any time interactively by
printing out the __version__ variable in the top-level package:

import idaes
print(idaes.__version__)
prints a version like "1.2.3"

Advanced usage

This section describes the module’s variables and classes.

Overview

The API in this module is mostly for internal use, e.g. from ‘setup.py’ to get the version of
the package. But Version has been written to be usable as a general
versioning interface.

Example of using the class directly:

>>> from idaes.ver import Version
>>> my_version = Version(1, 2, 3)
>>> print(my_version)
1.2.3
>>> tuple(my_version)
(1, 2, 3)
>>> my_version = Version(1, 2, 3, 'alpha')
>>> print(my_version)
1.2.3.a
>>> tuple(my_version)
(1, 2, 3, 'alpha')
>>> my_version = Version(1, 2, 3, 'candidate', 1)
>>> print(my_version)
1.2.3.rc1
>>> tuple(my_version)
(1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then
simply inherit from HasVersion and initialize it with the
same arguments you would give the Version constructor:

>>> from idaes.ver import HasVersion
>>> class MyClass(HasVersion):
... def __init__(self):
... super(MyClass, self).__init__(1, 2, 3, 'alpha')
...
>>> obj = MyClass()
>>> print(obj.version)
1.2.3.a

	
idaes.ver.package_version = <idaes.ver.Version object>

	Package’s version as an object

	
idaes.ver.__version__ = '1.8.0'

	Package’s version as a simple string

Version class

The versioning semantics are encapsulated in a class called Version.

	
class idaes.ver.Version(major, minor, micro, releaselevel='final', serial=None, label=None)[source]

	This class attempts to be compliant with a subset of
PEP 440 [https://www.python.org/dev/peps/pep-0440/].

Note: If you actually happen to read the PEP, you will notice
that pre- and post- releases, as well as “release epochs”, are not
supported.

	
__init__(major, minor, micro, releaselevel='final', serial=None, label=None)[source]

	Create new version object.

Provided arguments are stored in public class
attributes by the same name.

	Parameters

	
	major (int [https://docs.python.org/3/library/functions.html#int]) – Major version

	minor (int [https://docs.python.org/3/library/functions.html#int]) – Minor version

	micro (int [https://docs.python.org/3/library/functions.html#int]) – Micro (aka patchlevel) version

	releaselevel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional PEP 440 specifier

	serial (int [https://docs.python.org/3/library/functions.html#int]) – Optional number associated with releaselevel

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional local version label

	
__iter__()[source]

	Return version information as a sequence.

	
__str__()[source]

	Return version information as a string.

HasVersion class

For adding versions to other classes in a simple and standard way,
you can use the HasVersion mixin class.

	
class idaes.ver.HasVersion(*args)[source]

	Interface for a versioned class.

	
__init__(*args)[source]

	Constructor creates a version attribute that is
an instance of Version initialized with the provided args.

	Parameters

	*args – Arguments to be passed to Version constructor.

Visualization

Warning

The visualization tool is still in active development and we
hope to improve on it in future releases. Please use its
functionality at your own discretion.

Overview

The Flowsheet Visualizer is a service that starts a flask server to
display an interactive webpage with the current flowsheet’s unit models and
arcs. Users may manipulate the display by clicking and dragging the unit
models, streams, and stream labels.

Installation instructions

	Ensure that the latest IDAES is installed.

Usage

	Create a flowsheet in a Jupyter Notebook. For the purpose of these
instructions the model will be m and the flowsheet will be m.fs

	Call the method visualize() from the flowsheet with a model name
as a string:
m.fs.visualize(‘model_name’)

[image: ../../_images/fs_visualize_jupyter_notebook.png]

	A webpage should display:

[image: ../../_images/initial_layout.png]
If a webpage does not display then copy and
paste the URL that outputs from the visualize command:

[image: ../../_images/circled_url.png]

	Manipulate the layout of the model display as desired:

[image: ../../_images/modified_layout.png]

	If the flowsheet is later modified, click the Refresh Graph button to
see the changes.

The displayed layout is preserved as much as possible, with new components
appearing along a diagonal line.

Note

This feature is still under development.
Several types of changes to the flowsheet currently cause the entire user-
modified layout to be lost. Consider saving the layout often (see below).

[image: ../../_images/new_unit_model_layout.png]

	Save the displayed layout using the save button on the visualization page.
This writes the visualization to a file in the user’s home directory under
.idaes/viz using the model name provided to visualize().
In this example the filename would be model_name.viz.

Stream Labels

The initial layout loads with the stream labels hidden. Show or hide all of
the stream labels by clicking the button with the speech bubbles,
on the toolbar.

Show or hide an individual label by right clicking on the stream or its label.

Misc. Features

	Right click on an icon to rotate it by 90 degrees.

	Create anchor points on a stream by left clicking on the stream. The stream
will be forced to connect through each anchor point, typically adding right angles.

IDAES Model Libraries

The documentation for the models are found in the technical specifications linked below.

	Generic IDAES Model Library

	Power Generation Model Library

	Gas Solid Contactors Model Library

Logging

IDAES provides some logging extensions to provide finer control over information
logging and to allow solver output to be logged. Logging can be a useful tool for debugging.

Getting Loggers

There are four main roots of IDAES loggers (idaes, idaes.model,
idaes.init, idaes.solve). All of these loggers are standard Python
loggers, and can be used as such. The main differences between using the IDAES
logging functions to get the loggers and plain Python methods are that
the IDAES functions make it a little easier to get loggers that fit into IDAES’s
standard logging hierarchy, and the IDAES loggers have a few additional named
logging levels, which allow for finer control over the information displayed.
Logging levels are described in detail later.

A tag can also be specified and used to filter logging records. By default the
tag is None and log records won’t be filtered. Valid tags are in the set {None,
"framework", "model", "flowsheet", "unit", "control_volume", "properties",
"reactions"}. Users may add to the set of valid names. To see how
to control which logging tags are logged, see section “Tags” below. To avoid
filtering out import warning and error messages, records logged at the WARNING
level and above are not filtered out regardless of tag.

idaes Logger

Loggers descending from idaes (other than idaes.init, idaes.model, or
idaes.solve) are used for general IDAES framework logging. Typically the
module name __name__ is used for the logger name. Modules in the idaes
package already start with idaes, but if an IDAES logger is requested for a
module outside of the idaes package idaes. is prepended to the name.

	
idaes.logger.getLogger(name, level=None, tag=None)

	Return an idaes logger.

	Parameters

	
	name – usually __name__

	level – standard IDAES logging level (default use IDAES config)

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__, tag="framework")

idaes.init Loggers

The init logger will always descend from “idaes.init”. This logger is used in
IDAES model initialization methods, and can be used in user models as well.
Initialization methods are usually attached to a Pyomo Block. Blocks have a
name attribute. So the logger name is usually given as the block name, and
the getInitLogger() function prepends idaes.init.. The advantage of using
the block name over the module name is that users can see exactly which model
instance the initialization log messages are coming from.

	
idaes.logger.getInitLogger(name, level=None, tag=None)[source]

	Get a model initialization logger

	Parameters

	
	name – Object name (usually Pyomo Component name)

	level – Log level

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

class DummyBlock(object):
 """A dummy block for demonstration purposes"""
 def __init__(name):
 self.name = name

 def initialize(outlvl=idaeslog.INFO):
 init_log = idaeslog.getInitLogger(self.name, level=outlvl, tag="unit")

idaes.model Loggers

The model logger is used to provide a standard way to produce log messages from
user models that are not part of the idaes package. The logger name has
idaes.model prepended to the name provided by the user. This is convenient
because it provides a way to use a standard configuration system for user model
loggers. The user can choose any name they like for these loggers.

	
idaes.logger.getModelLogger(name, level=None, tag=None)[source]

	Get a logger for an IDAES model. This function helps users keep their
loggers in a standard location and use the IDAES logging config.

	Parameters

	
	name – Name (usually __name__). Any starting ‘idaes.’ is stripped off, so
if a model is part of the idaes package, ‘idaes’ won’t be repeated.

	level – Standard Python logging level (default use IDAES config)

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Example

import idaes.logger as idaeslog

_log = idaeslog.getModelLogger("my_model", level=idaeslog.DEBUG, tag="model")

idaes.solve Loggers

The solve logger will always descend from “idaes.solve”. This logger is
used to log solver output. Since solvers may produce a lot of output,
it can be useful to specify different handlers for the solve logger to
direct it to a separate file.

	
idaes.logger.getSolveLogger(name, level=None, tag=None)[source]

	Get a solver logger

	Parameters

	
	name – logger name is “idaes.solve.” + name (if name starts with “idaes.”
it is removed before creating the logger name)

	level – Log level

	tag – logger tag for filtering, see valid_log_tags()

	Returns

	logger

Tags

Logger tags are provided to allow control over what types of log records
to display. The logger tag is just a string that gets attached to a
logger, which specifies that a logger generates records of a certain
type. You can then specify what tags you want to see information from.
A filter removes any tags that are not in the list of tags to display at
levels below WARNING.

The set of tags to display information from is a global setting in the
idaes.logger module. When getting a logger, you can set its tag by
providing the tag argument, see “Getting Loggers” above.

The following functions can be used to specify which logging tags to
display:

	
idaes.logger.log_tags()[source]

	Returns a set of logging tags to be logged.

	Returns

	(set) tags to be logged

	
idaes.logger.set_log_tags(tags)[source]

	Specify a set of tags to be logged

	Parameters

	tags (iterable of str) – Tags to log

	Returns

	None

	
idaes.logger.add_log_tag(tag)[source]

	Add a tag to the list of tags to log.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Tag to log

	Returns

	None

	
idaes.logger.remove_log_tag(tag)[source]

	Remove a tag from the list of tags to log.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Tag to no longer log

	Returns

	None

The tags are validated against a list of valid tags to provide error checking
for typos and to enforce some standard tag names. To provide more flexibility,
users can add to the list of valid tag names, but cannot remove names.

	
idaes.logger.valid_log_tags()[source]

	Returns a set of valid logging tag names.

	Returns

	(set) valid tag names

	
idaes.logger.add_valid_log_tag(tag)[source]

	Add a tag name to the list of valid names.

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – A tag name

	Returns

	None

Levels

Several logging level constants are defined in the idaes.logger module. These
include the standard Python Levels. The following levels are provided for IDAES
loggers. The additional levels of info provide finer control over the amount of
logging information produced by IDAES loggers.

	Constant Name

	Value

	Name

	Log Method

	CRITICAL

	50

	CRITICAL

	critial()

	ERROR

	40

	ERROR

	error(), exception()

	WARNING

	30

	WARNING

	warning()

	INFO_LOW

	21

	INFO

	info_low()

	INFO

	20

	INFO

	info()

	INFO_HIGH

	19

	INFO

	info_high()

	DEBUG

	10

	DEBUG

	debug()

	NOTSET

	0

	NOTSET

	–

Utility Functions

There are some additional utility functions to perform logging tasks that are
common in the IDAES framework.

	
idaes.logger.condition(res)[source]

	Get the solver termination condition to log. This isn’t a specifc value
that you can really depend on, just a message to pass on from the solver for
the user’s benefit. Sometimes the solve is in a try-except, so we’ll handle
None and str for those cases, where you don’t have a real result.

Logging Solver Output

The solver output can be captured and directed to a logger using the
idaes.logger.solver_log(logger, level) context manager, which uses
pyutilib.misc.capture_output() to temporarily redirect
sys.stdout and sys.stderr to a string buffer. The logger
argument is the logger to log to, and the level argument is the
level at which records are sent to the logger. The output is logged by a
separate logging thread, so output can be logged as it is produced
instead of after the solve completes. If the solver_log() context
manager is used, it can be turned on and off by using the
idaes.logger.solver_capture_on() and
idaes.logger.solver_capture_off() functions. If the capture is off
solver output won’t be logged and it will go to standard output as
usual.

The solver_log context yields an object with tee and thread
attributes. thread is the logging thread, which is not needed for
most uses. The tee attribute should be passed to the tee
argument of the solve method. Tee tells the Pyomo solver to
display solver output. The solver log context can provide this argument
by determining if the solver output would be logged at the given level.

Example

import idaes.logger as idaeslog
import pyomo.environ as pyo

solver = pyo.SolverFactory("ipopt")

model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var()
model.x.fix(3)
model.c = pyo.Constraint(expr=model.y==model.x**2)

log = idaeslog.getSolveLogger("solver.demo")
log.setLevel(idaeslog.DEBUG)

with idaeslog.solver_log(log, idaeslog.DEBUG) as slc:
 res = solver.solve(model, tee=slc.tee)

Modeling Extensions

The IDAES platform includes several modeling extensions that provide additional capabilities
including surrogate modeling, material design, and control. A brief description of each is
provided below.

	Surrogate modeling
	ALAMOPY: ALAMO Python

	RIPE: Reaction Identification and Parameter Estimation

	HELMET: HELMholtz Energy Thermodynamics

	PySMO: Python-based Surrogate Modelling Objects

	MatOpt: Nanomaterials Optimization

	Caprese

ALAMOPY: ALAMO Python

ALAMOPY
provides a wrapper for the software ALAMO which generates algebraic surrogate models of
black-box systems for which a simulator or experimental setup is available.

RIPE: Reaction Identification and Parameter Estimation

RIPE
provides tools for reaction network identification. RIPE uses reactor data consisting of
concentration, or conversion, values for multiple species that are obtained dynamically, or at
multiple process conditions (temperatures, flow rates, working volumes) to identify probable
reaction kinetics. The RIPE module also contains tools to facilitate adaptive experimental
design.

HELMET: HELMholtz Energy Thermodynamics

HELMET
provides a framework for regressing multiparameter equations of state that identify an equation
for Helmholtz energy and multiple thermodynamic properties simultaneously.

PySMO: Python-based Surrogate Modelling Objects

PySMO
provides tools for generating different types of reduced order models. It provides IDAES users
with a set of surrogate modeling tools which supports flowsheeting and direct integration into
an equation-oriented modeling framework. It allows users to directly integrate reduced order
models with algebraic high-fidelity process models within an single IDAES flowsheet.

[image: ../../_images/pysmo-logo.png]
MatOpt: Nanomaterials Optimization

MatOpt
provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used to
design crystalline nanostructured materials, including but not limited to particles, wires,
surfaces, and periodic bulk structures.

[image: ../../_images/matopt_logo_full.png]
Caprese

Caprese
is a module for the simulation of IDAES flowsheets with nonlinear program (NLP)-based control
and estimation strategies, namely Nonlinear Model Predictive Control (NMPC) and Moving Horizon
Estimation (MHE).

[image: ../../_images/logocappresse-011.png]

Surrogate modeling

	ALAMOPY: ALAMO Python

	RIPE: Reaction Identification and Parameter Estimation

	HELMET: HELMholtz Energy Thermodynamics

	PySMO: Python-based Surrogate Modelling Objects

[image: ../../../_images/ddm-software.png]
ALAMOpy, RIPE, and HELMET are
data driven machine learning (ddm-learning) tools.
They are regression tools for the development of property models for kinetics and
thermodynamics of a system. The provided tools include both ALAMOpy and RIPE that can
access ALAMO and other solvers through the Python API.

[image: ../../../_images/pysmo-logo1.png]
Python-based Surrogate Modeling Objects (PySMO) is a framework for general-purpose
surrogate modeling techniques, integrated with the Pyomo mathematical optimization
framework (on which IDAES is also based).

ALAMOPY: ALAMO Python

	ALAMOPY.ALAMO Options

The purpose of ALAMOPY (Automatic Learning of Algebraic MOdels PYthon wrapper) is to provide a wrapper for the software ALAMO which generates algebraic surrogate models of black-box systems for which a simulator or experimental setup is available. Consider a system for which the outputs z are an unknown function f of the system inputs x. The software identifies a function f, i.e., a relationship between the inputs and outputs of the system, that best matches data (pairs of x and corresponding z values) that are collected via simulation or experimentation.

Basic Usage

ALAMOPY’s main function is alamopy.alamo. Data can be read in or simulated using available python packages. The main arguments of the alamopy.alamo python function are inputs and outputs, which are 2D arrays of data. For example

regression_results =alamopy.alamo(x_inputs, z_outputs, **kargs)

where **kargs is a set of named keyword arguments than can be passed to the alamo python function to customize the basis function set, names of output files, and other options available in ALAMO.

Warning

The alamopy.doalamo function is deprecated. It is being replaced with alamopy.alamo

Options for alamopy.alamo

Possible arguments to be passed to ALAMO through do alamo and additional arguments that govern the behavior of doalamo.

	xlabels - list of strings to label the input variables

	zlabels - list of strings to label the output variables

	functions - logfcns, expfcns, cosfcns, sinfcns, linfcns, intercept. These are ‘0-1’ options to activate these functions

	monomialpower, multi2power, multi3power, ratiopower. List of terms to be used in the respective basis functions

	modeler - integer 1-7 determines the choice of fitness metrice

	solvemip - ‘0-1’ option that will force the solving of the .gms file

These options are specific to alamopy and will not change the behavior of the underlying .alm file.

	expandoutput - ‘0-1’ option that can be used to collect more information from the ALAMO .lst and .trc file

	showalm - ‘0-1’ option that controlif the ALAMO output is printed to screen

	almname - A string that will assign the name of the .alm file

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	outkeys - ‘0-1’ option for dictionary indexing according to the output labels

	savetrace - ‘0-1’ option that controls the status of the trace file

	savescratch - ‘0-1’ option to save the .alm and .lst files

	almopt - A string option that will append a text file of the same name to the end of each .alm fille to faciliate advanced user access in an automated fashion

ALAMOPY Output

There are mutliple outputs from the running alamopy.alamo. Outputs include:

	f(model): A callable function

	pymodel: name of the python model written

	model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Additional Results

After the regression of a model, ALAMOPY provides confidence interval analysis and plotting capabilities using the results output.

Plotting

The plotting capabilities of ALAMOPY are available in the almplot function. Almplot will plot the function based on one of the inputs.

result = alamopy.alamo(x_in, z_out, kargs)
alamopy.almplot(result)

Confidence intervals

Confidence intervals can similarly be calculated for the weighting of selected basis functions using the almconfidence function.

This adds conf_inv (confidence intervals) and covariance (covariance matrix) to the results dictionary. This also gets incorporated into the plotting function if it is available.

result = alamopy.alamo(x_in, z_out, kargs)
result = alamopy.almconfidence(result)
alamopy.almplot(result)

[image: ../../../../_images/almconf.png]

Advanced Regression Capabilities

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints on groups of selected basis functions. To define groups in ALAMOPY, you can use the following methods. Each Basis group has an index number that will be used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL (at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id number of excluded or required basis functions.

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

ALAMOPY Examples

Three examples are included with ALMAOPY. These examples demonstrate different use cases, and provide a template for utilizing user-defined mechanisms.

	ackley.py

	branin.py

	camel6.py with a Jupyter notebok

ALAMOPY.ALAMO Options

This page lists in more detail the ALAMOPY options and the relation of ALAMO and ALAMOPY.

Contents

	ALAMOPY.ALAMO Options

	Basic ALAMOPY.ALAMO options

	Data Arguments

	Available Basis Functions

	ALAMO Regression Options

	Validation Capabilities

	File Options

	ALAMOPY results dictionary

	Output models

	Fitness metrics

	Regression description

	Performance specs

	Advanced user options in depth

	Custom Basis Functions

	Custom Constraints

	Basis Function Groups and Constraints

Basic ALAMOPY.ALAMO options

Data Arguments

	xmin, xmax: minimum/maximum values of inputs, if not given they are calculated

	zmin, zmax: minimum/maximum values of outputs, if not given they are calculated

	xlabels: user-specified labels given to the inputs

	zlabels: user-specified labels given to the outputs

alamo(x_inputs, z_outputs, xlabels=['x1','x2'], zlabels=['z1','z2'])
alamo(x_inputs, z_outputs, xmin=(-5,0),xmax=(10,15))

Available Basis Functions

	linfcns, expfcns, logfcns, sinfcns, cosfcns: 0-1 option to include linear, exponential, logarithmic, sine, and cosine transformations. For example

linfcns = 1, expfcns = 1, logfcns = 1, sinfcns = 1, cosfcns = 1

This results in basis functions = x1, exp(x1), log(x1), sin(x1), cos(x1)
* monomialpower, multi2power, multi3power: list of monomial, binomial, and trinomial powers. For example

monomialpower = (2,3,4), multi2power = (1,2,3), multi3power = (1,2,3)

This results in the following basis functions:

	Monomial functions = x^2, x^3, x^4

	Binomial functions = x1*x2, (x1*x2)^2, (x1*x2)^3

	Trinomial functions = (x1*x2*x3), (x1*x2*x3)^2, (x1*x2*x3)^3

	ratiopower: list of ratio powers. For example

ratiopower = (1,2,3)

This results in basis functions = (x1/x2), (x1/x2)^2, (x1/x2)^3

alamo(x_inputs, z_outputs, linfcns=1, logfcns=1, expfcns=1)
alamo(x_inputs, z_outputs, linfcns=1, multi2power=(2,3))

Note: Custom basis functions are discussed in the Advanced User Section.

ALAMO Regression Options

	showalm: print ALAMO output to the screen

	expandoutput: add a key to the output dictionary for multiple outputs

	solvemip, builder, linearerror: A 01 indicator to solve with an optimizer (GAMSSOLVER), use a greedy heuristic, or use a linear objective instead of squared error.

	modeler: Fitness metric to beused for model building (1-8)

	
	BIC: Bayesian infromation criterion

	
	Cp: Mallow’s Cp

	
	AICc: the corrected Akaike’s information criterion

	
	HQC: the Hannan-Quinn information criterion

	
	MSE: mean square error

	
	SSEp: sum of square error plus a penalty proportional to the model size (Note: convpen is the weight of the penalty)

	
	RIC: the risk information criterion

	
	MADp: the maximum absolute eviation plus a penalty proportional to model size (Note: convpen is the weight of the penalty)

	regularizer: Regularization method used to reduce the number of potential basis functions before optimization of the selected fitness metric. Possible values are 0 and 1, corresponding to no regularization and regularization with the lasso, respectively.

	maxterms: Maximum number of terms to be fit in the model

	convpen: When MODELER is set to 6 or 8 the size of the model is weighted by CONVPEN.

	almopt: name of the alamo option file

	simulator: a python function to be used as a simulator for ALAMO, a variable that is a python function (not a string)

	maxiter: max iteration of runs

Validation Capabilities

	xval, zval: validation input/output variables

	loo: leave-one-out evaluation

	lmo: leave-many-out evaluation

	cvfun: cross-validation function (True/False)

File Options

	almname: specify a name for the .alm file

	savescratch: saves .alm and .lst

	savetrace: saves tracefile

	saveopt: save .opt options file

	savegams: save the .gms gams file

ALAMOPY results dictionary

The results from alamopy.alamo are returned as a python dictionary. The data can be accessed by using the dictionary keys listed below. For example

regression_results = doalamo(x_input, z_output, **kargs)
model = regression_results['model']

Output models

	f(model): A callable function

	pymodel: name of the python model written

	model: string of the regressed model

Note: A python script named after the output variables is written to the current directory. The model can be imported and used for further evaluation, for example to evaluate residuals:

import z1
residuals = [y-z1.f(inputs[0],inputs[1]) for y,inputs in zip(z,x)]

Fitness metrics

	size: number of terms chosen in the regression

	R2: R2 value of the regression

	Objective value metrics: ssr, rmse, madp

Regression description

	version: Version of ALAMO

	xlabels, zlabels: The labels used for the inputs/outputs

	xdata, zdata: array of xdata/zdata

	ninputs, nbas: number of inputs/basis functions

Performance specs

There are three types of regression problems that are used: ordinary linear regression (olr), classic linear regression (clr), and a mixed integer program (mip). Performance metrics include the number of each problems and the time spent on each type of problem. Additionally, the time spent on other operations and the total time are included.

	numolr, olrtime, numclr, clrtime, nummip, miptime: number of type of regression problems solved and time

	othertime: Time spent on other operations

	totaltime: Total time spent on the regression

Advanced user options in depth

Similar to ALAMO, there are advanced capabilities for customization and constrained regression facilitated by methods in ALAMOPY including custom basis functions, custom constraints on the response surface, and basis function groups. These methods interact with the regression using the alamo option file.

Custom Basis Functions

Custom basis functions can be added to the built-in functions to expand the functional forms available. In ALAMO, this can be done with the following syntax

NCUSTOMBAS #
BEGIN_CUSTOMBAS
x1^2 * x2^2
END_CUSTOMBAS

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomFunctions(fcn_list)
addCustomFunctions(["x1^2 * x2^2", "...", "..." ...])

Custom Constraints

Custom constraints can be placed on response surface or regressed function of the output variable. In ALAMO, this is controlled using custom constraints, CUSTOMCON. The constraints, a function g(x_inputs, z_outputs) are applied to a specific output variable, which is the index of the output variable, and are less than or equal to 0 (g <= 0).

CRNCUSTOM #
BEGIN_CUSTOMCON
1 z1 - x1 + x2 + 1
END_CUSTOMCON

To use this advanced capability in ALAMOPY, the following function is called. Note it is necessary to use the xlabels assigned to the input parameters.

addCustomConstraints(custom_constraint_list, **kargs)
addCustomConstraints(["1 z1 - x1 + x2 +1", "...", "..." ...])

Basis Function Groups and Constraints

In addition to imposing constraints on the response surface it produces, ALAMO has the ability to enforce constraints on groups of selected basis functions. This can be accomplished using NGROUPS and identifying groups of basis functions. For ALAMO, this is achieved by first defining the groups with

NGROUPS 3
BEGIN_GROUPS
Group-id Member-type Member-indices <Powers>
1 LIN 1 2
2 MONO 1 2
3 GRP 1 2
END_GROUPS

To add groups to ALAMOPY, you can use the following methods. Each Basis group has an index number that will be used as reference in the group constraints. The groups are defined by three or four parameters. Options for Member-type are LIN, LOG, EXP, SIN, COS, MONO, MULTI2, MULTI3, RATIO, GRP, RBF, and CUST.

addBasisGroup(type_of_function, input_indices, powers)
addBasisGroups(groups)

addBasisGroup("MONO", "1", "2")
addBasisGroups([["LIN","1 2"],["MONO","1","2"],["GRP","1 2"]])

With the groups defined, constraints can be placed on the groups using the constraint-types NMT (no-more-than), ATL (at-least), REQ (requires), and XCL (exclude). For NMT and ATL the integer-parameter is the number of members in the group that should be selected based on the constraint. For REQ and XCL the integer-parameter is the group-id number of excluded or required basis functions.

BEGIN_GROUPCON
Group-id Output-id Constraint-type Integer-parameter
3 1 NMT 1
END_GROUPCON

To add the basis constraints to alamopy, you can use the following methods.

addBasisConstraint(group_id, output_id, constraint_type, intParam)
addBasisConstraints(groups_constraint_list)

addBasisConstraint(3,1,"NMT",1)
addBasisConstraints([[3,1,"NMT",1]])

RIPE: Reaction Identification and Parameter Estimation

The RIPE module provides tools for reaction network identification. RIPE uses reactor data consisting of concentration, or conversion, values for multiple species that are obtained dynamically, or at multiple process conditions (temperatures, flow rates, working volumes) to identify probable reaction kinetics. The RIPE module also contains tools to facilitate adaptive experimental design. The experimental design tools in RIPE require the use of the python package RBFopt. More information for RBFopt is availible at www.github.com/coin-or/rbfopt

Basic Usage

RIPE can be used to build models for static datasets through the function ripe.ripemodel

ripe_results = ripe.ripemodel(data, kwargs)

	data is provided to RIPE as one, two, or three dimensional python data structures, where the first axis corresponds to observations at different process conditions, the second axis corresponds to observations of different chemical species, and the third axis corresponds to dynamic observation of a chemical species at a specified process condition.

RIPE adaptive experimental design can be accessed using ripe.ems

[proposed_x, errors] = ripe.ems(ripe_results, simulator, l_bounds, u_bounds, n_species, kwargs)

	ripe_results - The results from ripe.ripemodel, additional information provided in the results section

	simulator - a black-box simulator for the unknown process.

	l_bounds/u_bounds - lower and upper bounds for the input variables in the adaptive design

	nspecies - the number of chemical species present in the black-box system

Reaction stoichiometries and mechanisms are provided explicitly to ripemodel through the keyword arguments mechanisms and stoichiometry. Detailed explanations of the forms of these arguments are provided in the stoiciometry and mechanism specification section. Additional keyword arguments can be found in the additional options section.

RIPE Output

By default, one file will be generated

	riperesults.txt - a file containing the selected reactions and parameter estimates

Reaction Stiochiometry and Mechanism Specification

Considered reaction stiochiometries are provided through keyword arguments.

Stoichiometry

Considered reaction stoichiometries are defiend as a list of list, where reactants and products are defined as negative and positive integers , respectively, according to their stoichiometric coefficeints. A set of considered reaction stoichiometries must be provided. If process data consists of species conversion, a positive coefficient should be specified.

Mechanisms

Considered reaction mechanisms are provided explicitly to RIPE through q keyword argument. If no kinetic mechanisms are specified, mass action kinetics are ascribed to every considered stoichiometry. RIPE contains kinetic mechanisms defined internally, and called through ripe.mechs.<mechanism>. The availible mechanisms include:

	massact - mass action kinetics, order informed by reaction stoichiometry

19 empirical rate forms included relate specifically to catalyst conversion in chemical looping combustion reactors include:

	Random nucleation

	Power law models

	Avrami-Erofeev models

These internal kinetics can be specified by calling ripe.mechs.massact or ripe.mechs.clcforms respectively. User-defined kinetic mechanisms can also be supplied to RIPE as python functions. An example is provided in the file crac.py.

Additional Results and Options

In addition to the arguments stoichiometry and mechanism, a number of other optional arguments are availible, including:

Arguments relating to process conditions

	x0 - initial concentration at each process condition for every species

	time - time associated with dynamic samples for every process condition

	temp - temperature associated with every process condition

	flow - flow rate at every process condition for every species

	vol - reactor volume at every process condition

Arguments related to RIPE algorithmic function

	tref - reference termpeature for reformulated Arrhenius models

	ccon - specified cardinality constraint instead of BIC objective

	sigma - expected variance of noise, estimated if not provided

	onemechper - one mechanism per stoichiometry in selected model, true by default

Additional arguments

	minlp_path - path to baron or other minlp solver, can also be set in shared.py

	alamo_path - path to alamo, can also be set in shared.py

	expand_output - provide estimates for noise variance in model resutls

	zscale - linear scaling of observed responses between -1 and 1

	ascale - linear scaling of activities between -1 and 1

	hide_output - surpress output to terminal

	keepfiles - keep scratch files for debugging

	showpyomo - show pyomo output to terminal, false by default

RIPE Examples

Three examples are included with RIPE. These examples demonstrate different use cases, and provide a template for utilizing user-defined mechanisms.

	clc.py - a chemical looping combustion example in which catalyst conversion is observed over time

	isoT.py - an example that utilizes both ripe.ripemodel and ripe.ems

	crac.py - an example that utilizes user-defined reaction mechanisms

All of these examples are built for Linux machines. They can be called from the command line by calling python directly, or can be called from inside a python environment using execfile().

HELMET: HELMholtz Energy Thermodynamics

The purpose of HELMET (HELMholtz Energy Thermodynamics) is to provide a framework for regressing multiparameter equations of state that identify an equation for Helmholtz energy and multiple thermodynamic properties simultaneously. HELMET uses best subset selection to simultaneously model various thermodynamic properties based on the properties thermodynamic relation to Helmholtz energy. The generated model is a function of reduced density and inverse reduced temperature and uses partial derivatives to calculate the different properties. Constraints are placed on the regression to maintain thermodynamically feasible values and improve extrapolation and behavior of the model based on physical restrictions.

Warning

This is the first public release of HELMET. Future work will include mixtures, regression using Pyomo models, and increased plotting and preprocessing capabilities.

Basic Usage

Warning

To use this software, ALAMOPY and the solver BARON are required.

For the basic use of HELMET, the main regression steps can be imported from helmet.HELMET. These functions provide general capabilities of HELMET for new users.

import helmet.Helmet as Helmet

The methods available in helmet.Helmet peform the necessary steps of the regression properties.

	initialize(**kargs)

Initializes key thermodynamic constants, the location of data and sampling, properties to be fit, and optimization settings

	molecule - name of the chemical of interest, directs naming of files and where the data should exist

	fluid_data - a tuple containing key thermodynamic constants (critical temperature, critical pressure, critical density, molecular weight, triple point, accentric factor)

	filename - used for location of data

	gamsname - used for naming of files

	max_time - max time used for the solver

	props - list of thermodynamic properties to be fit

Supported thermodynamic properties are

	Pressure: ‘PVT’

	Isochoric heat capacity: ‘CV’

	Isobaric heat capacity: ‘CP’

	Speed of Sound: ‘SND’

	sample - sample ratio, ex. sample = 3 then a third of datapoints will be used

	prepareAncillaryEquations(plot=True)

Fits equations to saturated vapor and liquid density and vapor pressure. The keyword argument plot defaults to False

	viewPropertyData()

Plots the different thermodynamic properties available and a way to check that the importing of data is successful

	setupRegression(numTerms = 12, gams=True)

Writes the optimization program for modelling the thermodynamic properties. Currently this is through GAMS but in the future it can also be solved using Pyomo.

	runRegression()

Begins the modelling of the multiparameter equation

	viewResults(filename)

Based on the optimization settings, the solution of the regression is parsed and fitness metrics are calculated. The results can be visualized with different plots.

HELMET Output

The output for HELMET is a single equation representing Helmholtz energy. Partial derivatives of this equation will give you the fit thermodynamic properties as well as other properties related to Helmholtz energy.

HELMET Examples

The provided HELMET example uses data modified for this application and made available by the IAPWS orgnization at http://www.iapws.org/95data.html for IAPWS Formulation 1995 for Thermodynamic Properties of Odrinary Water Substance for General and Scientific Use.

PySMO: Python-based Surrogate Modelling Objects

The PySMO toolbox provides tools for generating different types of reduced order models. It provides IDAES users with
a set of surrogate modeling tools which supports flowsheeting and direct integration into an equation-oriented
modeling framework. It allows users to directly integrate reduced order models with algebraic high-fidelity process
models within an single IDAES flowsheet.

PySMO provides two sets of tools necessary for sampling and surrogate model generation.

Surrogate Generation

PySMO offers tools for generating three types of surrogates:

	Generating Polynomial Models with PySMO

	Generating Radial Basis Function (RBF) models with PySMO

	Generating Kriging Models with PySMO

Sampling

The PySMO package offers five common sampling methods for one-shot design:

	Latin Hypercube Sampling (LHS)

	Full-Factorial Sampling

	Halton Sampling

	Hammersley Sampling

	Centroidal voronoi tessellation (CVT) sampling

	More Information about PySMO’s Sampling Methods

Further information about the sampling tools and their input options may be found by accessing the individual
sampling methods. Examples and details of the characteristics of the sampling methods may be found at
More Information about PySMO’s Sampling Methods.

Generating Polynomial Models with PySMO

The pysmo.polynomial_regression method learns polynomial models from data. Presented with a small
number of samples generated from experiments or computer simulations, the approach determines the most
accurate polynomial approximation by comparing the accuracy and performance of polynomials of different
orders and basis function forms.

pysmo.polynomial_regression considers three types of basis functions

	univariate polynomials,

	second-degree bivariate pilynomials, and

	user-specified basis functions.

Thus, for a problem with \(m\) sample points and \(n\) input variables, the resulting polynomial is of the form

\[\begin{equation}
y_{k}={\displaystyle \sum_{i=1}^{n}\beta_{i}x_{ik}^{\alpha}}+\sum_{i,j>i}^{n}\beta_{ij}x_{ik}x_{jk}+\beta_{\Phi}\Phi\left(x_{ik}\right)\qquad i,j=1,\ldots,n;i\neq j;k=1,\ldots,m;\alpha \leq 10\qquad\quad\label{eq:poly_eq}
\end{equation}\]

Basic Usage

To generate a polynomial model with PySMO, the pysmo.polynomial_regression class is first initialized,
and then the method training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the PolynomialRegression class, extract the list of features and train the model
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=3, *kwargs)
>>> features = pr_init.get_feature_vector()
>>> pr_init.training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

	maximum_polynomial_order refers to the maximum polynomial order to be considered when training the surrogate.

Optional Arguments

	multinomials - boolean option which determines whether bivariate terms are considered in polynomial generation.

	training_split - option which determines fraction of training data to be used for training (the rest will be for testing). Default is 0.8.

	number_of_crossvalidations - Number of cross-validations during training. Default number is 3.

pysmo.polynomial_regression Output

The result of the pysmo.polynomial_regression method is a python object containing information
about the problem set-up, the final optimal polynomial order, the polynomial coefficients and different error and quality-of-fit metrics such as
the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit. A Pyomo expression can be generated from the
object simply passing a list of variables into the function generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])
Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(pr_init.generate_expression(list_vars))

Prediction with pysmo.polynomial_regression models

Once a polynomial model has been trained, predictions for values at previously unsampled points :math:x_unsampled can be evaluated by calling the
predict_output() method on the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = pr_init.predict_output(x_unsampled)

The confidence intervals for the regression paramaters may be viewed using the method confint_regression.

Flowsheet Integration

The result of the polynomial training process can be passed directly into a process flowsheet as an objective or a constraint.
The following code snippet demonstrates how an output polynomial model may be integrated directly into a Pyomo flowsheet as
an objective:

Required imports
>>> import pyomo.environ as pyo
>>> from idaes.surrogates.pysmo import polynomial_regression
>>> import pandas as pd

Create a Pyomo model
>>> m = pyo.ConcreteModel()
>>> i = pyo.Set(initialize=[1, 2])

Create a Pyomo variable with indexed by the 2D-set i with initial values {0, 0}
>>> init_x = {1: 0, 2: 0}
>>> def x_init(m, i):
>>> return (init_x[i])
>>> m.x = pyo.Var(i, initialize=x_init)

Train a simple polynomial model on data available in csv format, resulting in the Python object polyfit
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)
>>> pr_init = polynomial_regression.PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=3)
>>> features = pr_init.get_feature_vector()
>>> polyfit = pr_init.training()

Use the resulting polynomial as an objective, passing in the Pyomo variable x
>>> m.obj = pyo.Objective(expr=polyfit.generate_expression([m.x[1], m.x[2]]))

Solve the model
>>> instance = m
>>> opt = pyo.SolverFactory("ipopt")
>>> result = opt.solve(instance, tee=True)

Further details about pysmo.polynomial_regression may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.polynomial_regression.FeatureScaling[source]

	A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling and data_unscaling

	
static data_scaling(data)[source]

	data_scaling performs column-wise minimax scaling on the input dataset.

	Parameters

	data – The input data set to be scaled. Must be a numpy array or dataframe.

	Returns

	
	tuple containing:
	
	scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].

	data_minimum : A 2-D row vector containing the column-wise minimums of the input data.

	data_maximum : A 2-D row vector containing the column-wise maximums of the input data.

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised when the input data is not a numpy array or dataframe

	
static data_unscaling(x_scaled, x_min, x_max)[source]

	data_unscaling performs column-wise un-scaling on the a minmax-scaled input dataset.

	Parameters

	
	x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and 1.

	x_min (NumPy vector) – \(n \times 1\) vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	x_max (NumPy vector) – \(n \times 1\) vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	Returns

	A 2-D numpy array containing the scaled data, \(x_{min} + x_{scaled} * (x_{max} - x_{min})\)

	Return type

	NumPy Array

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Raised when the dimensions of the arrays are inconsistent.

	
class idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression(original_data_input, regression_data_input, maximum_polynomial_order, number_of_crossvalidations=None, no_adaptive_samples=None, training_split=None, max_fraction_training_samples=None, max_iter=None, solution_method=None, multinomials=None, fname=None, overwrite=False)[source]

	The PolynomialRegression class performs polynomial regression on a training data set.

The class must first be initialized by calling PolynomialRegression. Regression is then carried out by calling training.

	For a given dataset with \(n\) features \(x_{1},x_{2},\ldots,x_{n}\), Polyregression is able to consider three types of basis functions:
	
	Mononomial terms (\(x_{i}^{p},p \leq 10\)) for all individual features. The maximum degree to be considered can be set by the user (maximum_polynomial_order)

	All first order interaction terms \(x_{1}x_{2}\), \(x_{1}x_{3}\) etc. This can be turned on or off by the user (set multinomials)

	User defined input features, e.g. \(\sin(x_{1})\). These must be Pyomo functions and should be provided as a list by the user calling set_additional_terms method before the polynomial training is done.

Example:

Initialize the class and set additional terms
>>> d = PolynomialRegression(full_data, training_data, maximum_polynomial_order=2, max_iter=20, multinomials=1, solution_method='pyomo')
>>> p = d.get_feature_vector()
>>> d.set_additional_terms([...extra terms...])

Train polynomial model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

	Parameters

	
	regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for regression training. It is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.

	original_data_input (NumPy Array of Pandas Dataframe) – If regression_data_input was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.
When additional data is not available, the same data supplied for training_data can be supplied - this tells the algorithm not to carry out adaptive sampling.

	maximum_polynomial_order (int [https://docs.python.org/3/library/functions.html#int]) – The maximum polynomial order to be considered.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(original_data_input, regression_data_input, maximum_polynomial_order, number_of_crossvalidations=None, no_adaptive_samples=None, training_split=None, max_fraction_training_samples=None, max_iter=None, solution_method=None, multinomials=None, fname=None, overwrite=False)[source]

	Initialization of PolynomialRegression class.

	Parameters

	
	regression_data_input (NumPy Array of Pandas Dataframe) – The dataset for regression training. It is expected to contain features and output data, with the output values (Y) in the last column.

	original_data_input (NumPy Array of Pandas Dataframe) – If regression_data_input was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.

	maximum_polynomial_order (int [https://docs.python.org/3/library/functions.html#int]) – The maximum polynomial order to be considered.

	Keyword Arguments

	
	number_of_crossvalidations (int [https://docs.python.org/3/library/functions.html#int]) – The number of polynomial fittings and cross-validations to be carried out for each polynomial function/expression. Must be a positive, non-zero integer. Default=3.

	training_split (float [https://docs.python.org/3/library/functions.html#float]) – The training/test split to be used for regression_data_input. Must be between 0 and 1. Default = 0.75

	solution_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to be used for solving the least squares optimization problem for polynomial regression. Three options are available:

	”MLE” : The mle (maximum likelihood estimate) method solves the least squares problem using linear algebra. Details of the method may be found in Forrester et al.

	”BFGS” : This approach solves the least squares problem using scipy’s BFGS algorithm.

	”pyomo”: This option solves the optimization problem in pyomo with IPOPT as solver. This is the default option.

	multinomials (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not multinomial terms are considered during polynomial fitting. Takes 0 for No and 1 for Yes. Default = 1.

	Returns

	self object containing all the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –
	The input datasets (original_data_input or regression_data_input) are of the wrong type (not Numpy arrays or Pandas Dataframes)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	maximum_polynomial_order is not a positive, non-zero integer or maximum_polynomial_order is higher than the number of training samples available

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	solution_method is not ‘mle’, ‘pyomo’ or ‘bfgs

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	multinomials is not binary (0 or 1)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	training_split is not between 0 and 1

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	number_of_crossvalidations is not a positive, non-zero integer

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	max_fraction_training_samples is not between 0 and 1

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	no_adaptive_samples is not a positive, non-zero integer

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	max_iter is not a positive, non-zero integer

	warnings.warn –
	When the number of cross-validations is too high, i.e. number_of_crossvalidations > 10

	
confint_regression(confidence=0.95)[source]

	The confint_regression method prints the confidence intervals for the regression patamaters.

	Parameters

	confidence – Required confidence interval level, default = 0.95 (95%)

	
generate_expression(variable_list)[source]

	The generate_expression method returns the Pyomo expression for the polynomial model trained.

The expression is constructed based on a supplied list of variables variable_list and the output of training.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the results of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the polynomial model based on the variables provided in variable_list.

	Return type

	Pyomo Expression

	
get_feature_vector()[source]

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

Initialize the **PolynomialRegression** class and print the column headers for the variables
>>> f = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=1, multinomials=True, training_split=0.8)
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

	
predict_output(x_data)[source]

	The predict_output method generates output predictions for input data x_data based a previously generated polynomial fitting.

	Parameters

	x_data – Numpy array of designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the polynomial fit.

	Return type

	Numpy Array

	
set_additional_terms(term_list)[source]

	set_additional_terms accepts additional user-defined features for consideration during regression.

	Parameters

	term_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of additional terms to be considered as regression features. Each term in the list must be a Pyomo-supported intrinsic function.

Example:

To add the sine and cosine of a variable with header 'X1' in the dataset as additional regression features:
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['X1', 'X2', 'Y'])
>>> A = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=5)
>>> p = A.get_feature_vector()
>>> A.set_additional_terms([pyo.sin(p['X1']) , pyo.cos(p['X1'])])

	
training()[source]

	The training method trains a polynomial model to an input dataset.
It calls the core method which is called in the PolynomialRegression class (polynomial_regression_fitting).
It accepts no user input, inheriting the information passed in class initialization.

	Returns

	
	Python Object (results) containing the results of the polynomial regression process including:
	
	the polynomial order (self.final_polynomial_order)

	polynomial coefficients (self.optimal_weights_array), and

	MAE and MSE errors as well as the \(R^{2}\) (results.errors).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

Generating Radial Basis Function (RBF) models with PySMO

The pysmo.radial_basis_function package has the capability to generate different types of RBF surrogates from data
based on the basis function selected. RBFs models are usually of the form
where

\[\begin{equation}
y_{k}=\sum_{j=1}^{\Omega}w_{j}\psi\left(\Vert x_{k}-z_{j}\Vert\right)\qquad k=1,\ldots,m\quad\label{eq:RBF-expression}
\end{equation}\]

where \(z_{j}\) are basis function centers (in this case, the training data points), \(w_{j}\) are the radial
weights associated with each center \(z_{j}\), and \(\psi\) is a basis function transformation of the
Euclidean distances.

PySMO offers a range of basis function transformations \(\psi\), as shown in the table below.

List of available RBF basis transformations, \(d = \parallel x_{k}-z_{j}\parallel\)

	Transformation type

	PySMO option name

	\(\psi(d)\)

	Linear

	‘linear’

	\(d\)

	Cubic

	‘cubic’

	\(d^{3}\)

	Thin-plate spline

	‘spline’

	\(d^{2}\ln(d)\)

	Gaussian

	‘gaussian’

	\(e^{\left(-d^{2}\sigma^{2}\right)}\)

	Multiquadric

	‘mq’

	\(\sqrt{1+\left(\sigma d\right)^{2}}\)

	Inverse mMultiquadric

	‘imq’

	\(1/{\sqrt{1+\left(\sigma d\right)^{2}}}\)

Selection of parametric basis functions increase the flexibility of the radial basis function but adds an extra
parameter (\(\sigma\))to be estimated.

Basic Usage

To generate an RBF model with PySMO, the pysmo.radial_basis_function class is first initialized,
and then the function training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import radial_basis_function
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the RadialBasisFunctions class, extract the list of features and train the model
>>> rbf_init = radial_basis_function.RadialBasisFunctions(xy_data, *kwargs)
>>> features = rbf_init.get_feature_vector()
>>> rbf_fit = rbf_init.training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

Optional Arguments

	basis_function - option to specify the type of basis function to be used in the RBF model. Default is ‘gaussian’.

	regularization - boolean which determines whether regularization of the RBF model is considered. Default is True.

	When regularization is turned on, the resulting model is a regressing RBF model.

	When regularization is turned off, the resulting model is an interpolating RBF model.

pysmo.radial_basis_function Output

The result of pysmo.radial_basis_function (rbf_fit in above example) is a python object containing information
about the problem set-up, the optimal radial basis function weights \(w_{j}\) and different error and quality-of-fit metrics such as
the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit. A Pyomo expression can be generated from the
object simply passing a list of variables into the function generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(rbf_init.generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the generate_expression function can be passed
into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.radial_basis_function models

Once an RBF model has been trained, predictions for values at previously unsampled points x_unsampled can be evaluated by calling the
predict_output() function on the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = rbf_init.predict_output(x_unsampled)

Further details about pysmo.radial_basis_function module may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.radial_basis_function.FeatureScaling[source]

	A class for scaling and unscaling input and output data. The class contains two main methods: data_scaling_minmax and data_unscaling_minmax

	
static data_scaling_minmax(data)[source]

	data_scaling_minmax performs column-wise min-max scaling on the input dataset.

	Parameters

	data – The input data set to be scaled. Must be a numpy array or dataframe.

	Returns

	
	tuple containing:
	
	scaled_data : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].

	data_minimum : A 2-D row vector containing the column-wise minimums of the input data.

	data_maximum : A 2-D row vector containing the column-wise maximums of the input data.

	Return type

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple])

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised when the input data is not a numpy array or dataframe

	
static data_unscaling_minmax(x_scaled, x_min, x_max)[source]

	data_unscaling_minmax performs column-wise un-scaling on the a minmax-scaled input dataset.

	Parameters

	
	x_scaled (NumPy Array) – Data to be un-scaled. Data values should be between 0 and 1.

	x_min (NumPy vector) – \(n \times 1\) vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	x_max (NumPy vector) – \(n \times 1\) vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

	Returns

	A 2-D numpy array containing the scaled data, \(x_{min} + x_{scaled} * (x_{max} - x_{min})\)

	Return type

	NumPy Array

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Raised when the dimensions of the arrays are inconsistent.

	
class idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions(XY_data, basis_function=None, solution_method=None, regularization=None, fname=None, overwrite=False)[source]

	The RadialBasisFunctions class generates a radial basis function fitting for a training data set.

The class must first be initialized by calling RadialBasisFunctions. Regression is then carried out by calling the method training.

	For a given dataset with n features \(x_{1},\ldots,x_{n}\), RadialBasisFunctions is able to consider six types of basis transformations:
	
	Linear (‘linear’)

	Cubic (‘cubic’)

	Gaussian (‘gaussian’)

	Multiquadric (‘mq’)

	Inverse multiquadric (‘imq’)

	Thin-plate spline (‘spline’)

training selects the best hyperparameters (regularization parameter \(\lambda\) and shape parameter \(\sigma\), where necessary) by evaluating the leave-one-out cross-validation error for each (\(\lambda,\sigma\)) pair.

It should be noted that the all the training points are treated as centres for the RBF, resulting in a square system.

Example:

 # Initialize the class
>>> d = RadialBasisFunctions(training_data, basis_function='gaussian', solution_method='pyomo', regularization=True))
>>> p = d.get_feature_vector()

Train RBF model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

	Parameters

	XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training. XY_data is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(XY_data, basis_function=None, solution_method=None, regularization=None, fname=None, overwrite=False)[source]

	Initialization of RadialBasisFunctions class.

	Parameters

	XY_data (Numpy Array or Pandas Dataframe) – The dataset for RBF training. XY_data is expected to contain feature and output information, with the output values (y) in the last column.

	Keyword Arguments

	
	basis_function (str [https://docs.python.org/3/library/stdtypes.html#str]) – The basis function transformation to be applied to the training data. Two classes of basis transformations are available for selection:

	Fixed basis transformations, which require no shape parameter \(\sigma\) :

	’cubic’ : Cubic basis transformation

	’linear’ : Linear basis transformation

	’spline’ : Thin-plate spline basis transformation

	Parametric basis transformations which require a shape parameter:

	’gaussian’ : Gaussian basis transformation (Default)

	’mq’ : Multiquadric basis transformation

	’imq’ : Inverse multiquadric basis transformation

	solution_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The method to be used for solving the RBF least squares optimization problem. Three options are available:

	’algebraic’ : The explicit algebraic method solves the least squares problem using linear algebra.

	’BFGS’ : This approach solves the least squares problem using SciPy’s BFGS algorithm.

	’pyomo’ : This option solves the optimization problem in Pyomo with IPOPT as solver. This is the default.

	regularization (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not the regularization parameter \(\lambda\) is considered during RBF fitting. Default setting is True.

	Returns

	self object with the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	basis_function entry is not valid.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	solution_method is not ‘algebraic’, ‘pyomo’ or ‘bfgs’.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	\(\lambda\) is not boolean.

Example:

Specify the gaussian basis transformation
>>> d = RadialBasisFunctions(XY_data, basis_function='gaussian')

	
generate_expression(variable_list)[source]

	The generate_expression method returns the Pyomo expression for the RBF model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the previous RBF training process.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the output of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the RBF model based on the variables provided in variable_list

	Return type

	Pyomo Expression

	
get_feature_vector()[source]

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

Example:

Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
>>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

Initialize the **RadialBasisFunctions** class with a linear kernel and print the column headers for the variables
>>> f = RadialBasisFunctions(xy_data, basis_function='linear')
>>> p = f.get_feature_vector()
>>> for i in p.keys():
>>> print(i)
one
two

	
predict_output(x_data)[source]

	The predict_output method generates output predictions for input data x_data based a previously generated RBF fitting.

	Parameters

	x_data (NumPy Array) – Designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the rbf fit.

	Return type

	Numpy Array

	
static r2_calculation(y_true, y_predicted)[source]

	r2_calculation returns the \(R^{2}\) as a measure-of-fit between the true and predicted values of the output variable.

	Parameters

	
	y_true (NumPy Array) – Vector of actual values of the output variable

	y_predicted (NumPy Array) – Vector of predictions for the output variable based on the surrogate

	Returns

	\(R^{2}\) measure-of-fit between actual and predicted data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
training()[source]

	Main function for RBF training.

	To train the RBF:
	
	The best values of the hyperparameters (\(\sigma, \lambda\)) are selected via LOOCV.

	The necessary basis transformation at the optimal hyperparameters is generated.

	The condition number for the transformed matrix is calculated.

	The optimal radial weights are evaluated using the selected optimization method.

	The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the methods error_calculation and r2_calculation

	A results object is generated by calling the ResultsReport class.

The LOOCV error for each (\(\sigma, \lambda\)) pair is evaluated by calling the function loo_error_estimation_with_rippa_method.

The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000, while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

	Returns

	
	self object (results) containing the all information about the best RBF fitting obtained, including:
	
	the optimal radial weights (results.radial_weights),

	when relevant, the optimal shape parameter found \(\sigma\) (results.sigma),

	when relevant, the optimal regularization parameter found \(\lambda\) (results.regularization),

	the RBF predictions for the training data (results.output_predictions), and

	the \(R^{2}\) value on the training data (results.R2)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

[2] Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions, https://www.tandfonline.com/doi/full/10.1080/03052150500422294

[3] Rippa, S. (1999): An algorithm for selecting a good value for the parameter c in radial basis function interpolation, https://doi.org/10.1023/A:1018975909870

[4] Mongillo M.A. (2011) Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods, https://doi.org/10.1137/11S010840

Generating Kriging Models with PySMO

The pysmo.kriging trains Ordinary Kriging models. Interpolating kriging models assume that the outputs \(\hat{y}\in\mathbb{R}^{m\times1}\)
are correlated and may be treated as a normally distributed stochastic process. For a set of input measurements
\(X=\left\{ x_{1},x_{2},\ldots,x_{m}\right\} ;x_{i}\in\mathbb{R}^{n}\), the output \(\hat{y}\) is modeled
as the sum of a mean \(\left(\mu\right)\) and a Gaussian process error,

\[\begin{equation}
\hat{y_{k}}=\mu+\epsilon\left(x_{k}\right)\qquad k=1,\ldots,m \qquad\quad
\end{equation}\]

Kriging models assume that the errors in the outputs \(\epsilon\) are correlated proportionally to the distance
between corresponding points,

\[\begin{equation}
\text{cor}\left[\epsilon\left(x_{j}\right),\epsilon\left(x_{k}\right)\right]=\exp\left(-\sum_{i=1}^{n}\theta_{i}\mid x_{ij}-x_{ik}\mid^{\tau_{i}}\right)\qquad j,k=1,\ldots,m;\:\tau_{i}\in\left[1,2\right];\:\theta_{i}\geq0\qquad\quad\label{eq:corr-function}
\end{equation}\]

The hyperparameters of the Kriging model \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n},\tau_{1},\ldots,\tau_{n}\right)\)
are selected such that the concentrated log likelihood function is maximized.

Basic Usage

To generate a Kriging model with PySMO, the pysmo.kriging class is first initialized,
and then the function training is called on the initialized object:

Required imports
>>> from idaes.surrogates.pysmo import kriging
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the KrigingModel class, extract the list of features and train the model
>>> krg_init = kriging.KrigingModel(xy_data, *kwargs)
>>> features = krg_init.get_feature_vector()
>>> krg_init.training()

	xy_data is a two-dimensional python data structure containing the input and output training data. The output values MUST be in the last column.

Optional Arguments

	numerical_gradients: Whether or not numerical gradients should be used in training. This choice determines the algorithm used to solve the problem.

	True: The problem is solved with BFGS using central differencing with \(\Delta=10^{-6}\) to evaluate numerical gradients.

	False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

	regularization - Boolean option which determines whether or not regularization is considered during Kriging training. Default is True.

	When regularization is turned on, the resulting model is a regressing kriging model.

	When regularization is turned off, the resulting model is an interpolating kriging model.

pysmo.kriging Output

The result of pysmo.kriging is a python object containing information
about the optimal Kriging hyperparameters \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n}\right)\)
and different error and quality-of-fit metrics such as the mean-squared-error (MSE) and the \(R^{2}\) coefficient-of-fit.
A Pyomo expression can be generated from the object simply passing a list of variables into the function
generate_expression:

Create a python list from the headers of the dataset supplied for training
>>> list_vars = []
>>> for i in features.keys():
>>> list_vars.append(features[i])

Pass list to generate_expression function to obtain a Pyomo expression as output
>>> print(krg_init.generate_expression(list_vars))

Similar to the pysmo.polynomial_regression module, the output of the generate_expression function can be passed
into an IDAES or Pyomo module as a constraint, objective or expression.

Prediction with pysmo.kriging models

Once a Kriging model has been trained, predictions for values at previously unsampled points x_unsampled can be evaluated by calling the
predict_output() function on the unsampled points:

Create a python list from the headers of the dataset supplied for training
>>> y_unsampled = kriging_init.predict_output(x_unsampled)

Further details about pysmo.kriging module may be found by consulting the examples or reading the paper […]

Available Methods

	
class idaes.surrogate.pysmo.kriging.KrigingModel(XY_data, numerical_gradients=True, regularization=True, fname=None, overwrite=False)[source]

	The KrigingModel class trains a Kriging model for a training data set.

The class must first be initialized by calling KrigingModel. Model training is then carried out by calling the training method.

KrigingModel is able to generate either an interpolating or a regressing Kriging model depending on the settings used during initialization..

Example:

Initialize the class
>>> d = KrigingModel(training_data, numerical_gradients=True, regularization=True))
>>> p = d.get_feature_vector()

Train Kriging model and predict output for an test data x_test
>>> d.training()
>>> predictions = d.predict_output(x_test)

	Parameters

	XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging training. XY_data is expected to contain both the features (X) and output (Y) information, with the output values (Y) in the last column.

Further details about the optional inputs may be found under the __init__ method.

	
__init__(XY_data, numerical_gradients=True, regularization=True, fname=None, overwrite=False)[source]

	Initialization of KrigingModel class.

	Parameters

	XY_data (NumPy Array or Pandas Dataframe) – The dataset for Kriging training. XY_data is expected to contain feature and output data, with the output values (y) in the last column.

	Keyword Arguments

	
	numerical_gradients (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not numerical gradients should be used in training. This choice determines the algorithm used to solve the problem.

	numerical_gradients = True: The problem is solved with BFGS using central differencing with a step size of \(10^{-6}\) to evaluate numerical gradients.

	numerical_gradients = False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

	regularization (bool [https://docs.python.org/3/library/functions.html#bool]) – This option determines whether or not regularization is considered during Kriging training. Default is True.

	When regularization is turned off, the model generates an interpolating kriging model.

	Returns

	self object with the input information and settings.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] –
	The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	numerical_gradients is not boolean

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] –
	regularization is not boolean

Example:

Initialize Kriging class with no numerical gradients - solution algorithm will be Basinhopping
>>> d = KrigingModel(XY_data, numerical_gradients=False)

	
generate_expression(variable_list)[source]

	The generate_expression method returns the Pyomo expression for the Kriging model trained.

The expression is constructed based on the supplied list of variables variable_list and the results of the previous Kriging training process.

	Parameters

	variable_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of input variables to be used in generating expression. This can be the a list generated from the output of get_feature_vector. The user can also choose to supply a new list of the appropriate length.

	Returns

	Pyomo expression of the Kriging model based on the variables provided in variable_list

	Return type

	Pyomo Expression

	
get_feature_vector()[source]

	The get_feature_vector method generates the list of regression features from the column headers of the input dataset.

	Returns

	An indexed parameter list of the variables supplied in the original data

	Return type

	Pyomo IndexedParam

	
predict_output(x_pred)[source]

	The predict_output method generates output predictions for input data x_pred based a previously trained Kriging model.

	Parameters

	x_pred (NumPy Array) – Array of designs for which the output is to be evaluated/predicted.

	Returns

	Output variable predictions based on the Kriging model.

	Return type

	NumPy Array

	
static r2_calculation(y_true, y_predicted)[source]

	r2_calculation returns the \(R^{2}\) as a measure-of-fit between the true and predicted values of the output variable.

	Parameters

	
	y_true (NumPy Array) – Vector of actual values of the output variable

	y_predicted (NumPy Array) – Vector of predictions for the output variable based on the surrogate

	Returns

	\(R^{2}\) measure-of-fit between actual and predicted data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
training()[source]

	Main function for Kriging training.

	To train the Kriging model:
	
	The Kriging exponent \(\tau_{i}\) is fixed at 2.

	The optimal Kriging hyperparameters \(\left(\mu,\sigma^{2},\theta_{1},\ldots,\theta_{n}\right)\) are evaluated by calling the optimal_parameter_evaluation method using either BFGS or Basinhopping.

	The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the functions error_calculation and self.r2_calculation

	A results object is generated by calling the ResultsReport class.

	Returns

	
	self object (results) containing the all information about the best Kriging model obtained, including:
	
	the Kriging model hyperparameters (results.optimal_weights),

	when relevant, the optimal regularization parameter found \(\lambda\) (results.regularization_parameter),

	the Kriging mean (results.optimal_mean),

	the Kriging variance (results.optimal_variance),

	the Kriging model regularized co-variance matrix (results.optimal_covariance_matrix),

	the inverse of the co-variance matrix (results.covariance_matrix_inverse),

	the RBF predictions for the training data (results.output_predictions),

	the RMSE of the training output predictions (results.training_rmse), and

	the \(R^{2}\) value on the training data (results.R2)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

References:

[1] Forrester et al.’s book “Engineering Design via Surrogate Modelling: A Practical Guide”, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

[2] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, https://link.springer.com/article/10.1023%2FA%3A1012771025575

Latin Hypercube Sampling (LHS)

LHS is a stratified random sampling method originally developed for efficient uncertainty assessment. LHS partitions the parameter space
into bins of equal probability with the goal of attaining a more even distribution of sample points in the parameter space that would be possible with pure random sampling.

The pysmo.sampling.LatinHypercubeSampling method carries out Latin Hypercube sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

Available Methods

	
class idaes.surrogate.pysmo.sampling.LatinHypercubeSampling(data_input, number_of_samples=None, sampling_type=None)[source]

	A class that performs Latin Hypercube Sampling. The function returns LHS samples which have been selected randomly after sample space stratification.

It should be noted that no minimax criterion has been used in this implementation, so the LHS samples selected will not have space-filling properties.

To use: call class with inputs, and then run sample_points method.

Example:

To select 10 LHS samples from "data"
>>> b = rbf.LatinHypercubeSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)[source]

	Initialization of LatinHypercubeSampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns

	self function containing the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The input data (data_input) is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When number_of_samples is invalid (not an integer, too large, zero, or negative)

	
sample_points()[source]

	sample_points generates or selects Latin Hypercube samples from an input dataset or data range. When called, it:

	generates samples points from stratified regions by calling the lhs_points_generation,

	generates potential sample points by random shuffling, and

	when a dataset is provided, selects the closest available samples to the theoretical sample points from within the input data.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples points selected or generated by LHS.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

[3] Swiler, Laura and Slepoy, Raisa and Giunta, Anthony: “Evaluation of sampling methods in constructing response surface approximations”
https://arc.aiaa.org/doi/abs/10.2514/6.2006-1827

Full-Factorial Sampling

The pysmo.sampling.UniformSampling method carries out Uniform (full-factorial) sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

Available Methods

	
class idaes.surrogate.pysmo.sampling.UniformSampling(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)[source]

	A class that performs Uniform Sampling. Depending on the settings, the algorithm either returns samples from an input dataset which have been selected using Euclidean distance minimization after the uniform samples have been generated,
or returns samples from a supplied data range.

Full-factorial samples are based on dividing the space of each variable randomly and then generating all possible variable combinations.

	The number of points to be sampled per variable needs to be specified in a list.

To use: call class with inputs, and then sample_points function

Example:

To select 50 samples on a (10 x 5) grid in a 2D space:
>>> b = rbf.UniformSampling(data, [10, 5], sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, list_of_samples_per_variable, sampling_type=None, edges=None)[source]

	Initialization of UniformSampling class. Three inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	list_of_samples_per_variable (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list containing the number of subdivisions for each variable. Each dimension (variable) must be represented by a positive integer variable greater than 1.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Keyword Arguments

	edges (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean variable representing bow the points should be selected. A value of True (default) indicates the points should be equally spaced edge to edge, otherwise they will be in the centres of the bins filling the unit cube

	Returns

	self function containing the input information

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The data_input is the wrong type

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When list_of_samples_per_variable is of the wrong length, is not a list or contains elements other than integers

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When edges entry is not Boolean

	
sample_points()[source]

	sample_points generates or selects full-factorial designs from an input dataset or data range.

	Returns

	A numpy array or Pandas dataframe containing the sample points generated or selected by full-factorial sampling.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

Halton Sampling

Halton sampling is a low-discrepancy sampling method. It is a deterministic sampling method based on the Halton sequence, a sequence constructed by a set of co-prime bases. The Halton
sequence is an n-dimensional extension of the Van der Corput sequence; each individual Halton sequence is based on a radix inverse function defined on a prime number.

The pysmo.sampling.HaltonSampling method carries out Halton sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The Halton sampling method is only available for low-dimensional problems \(n \leq 10\). At higher dimensions, the performance of the sampling method has been shown to degrade.

Available Methods

	
class idaes.surrogate.pysmo.sampling.HaltonSampling(data_input, number_of_samples=None, sampling_type=None)[source]

	A class that performs Halton Sampling.

Halton samples are based on the reversing/flipping the base conversion of numbers using primes.

To generate n samples in a \(p\)-dimensional space, the first \(p\) prime numbers are used to generate the samples.

Note

Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensions, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Halton samples in a 2-D space:
>>> b = rbf.HaltonSampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)[source]

	Initialization of HaltonSampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns

	self function containing the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The data_input is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the number_of_samples is invalid (not an integer, too large, zero or negative.)

	
sample_points()[source]

	The sample_points method generates the Halton samples. The steps followed here are:

	Determine the number of features in the input data.

	Generate the list of primes to be considered by calling prime_number_generator from the sampling superclass.

	Create the first number_of_samples elements of the Halton sequence for each prime.

	Create the Halton samples by combining the corresponding elements of the Halton sequences for each prime.

	When in “selection” mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the nearest_neighbours method in the sampling superclass.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples Halton sample points.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

Hammersley Sampling

Hammersley sampling is a low-discrepancy sampling method based on the Hammersley sequence. The Hammersley sequence is the same as the Halton sequence
except in the first dimension where points are located equidistant from each other.

The pysmo.sampling.HammersleySampling method carries out Hammersley sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The Hammersley sampling method is only available for low-dimensional problems \(n \leq 10\). At higher dimensions, the performance of the sampling method has been shown to degrade.

Available Methods

	
class idaes.surrogate.pysmo.sampling.HammersleySampling(data_input, number_of_samples=None, sampling_type=None)[source]

	A class that performs Hammersley Sampling.

Hammersley samples are generated in a similar way to Halton samples - based on the reversing/flipping the base conversion of numbers using primes.

To generate \(n\) samples in a \(p\)-dimensional space, the first \(\left(p-1\right)\) prime numbers are used to generate the samples. The first dimension is obtained by uniformly dividing the region into no_samples points.

Note

Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensionalities, the performance of the sampling method has been shown to degrade.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 Hammersley samples in a 2-D space:
>>> b = rbf.HammersleySampling(data, 10, sampling_type="selection")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, sampling_type=None)[source]

	Initialization of HammersleySampling class. Two inputs are required.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Returns – self function containing the input information.

	Raises – ValueError: When data_input is the wrong type.

Exception: When the number_of_samples is invalid (not an integer, too large, zero, negative)

	
sample_points()[source]

	The sampling_type method generates the Hammersley sample points. The steps followed here are:

	Determine the number of features \(n_{f}\) in the input data.

	Generate the list of \(\left(n_{f}-1\right)\) primes to be considered by calling prime_number_generator.

	Divide the space [0,**number_of_samples**-1] into number_of_samples places to obtain the first dimension for the Hammersley sequence.

	For the other \(\left(n_{f}-1\right)\) dimensions, create first number_of_samples elements of the Hammersley sequence for each of the \(\left(n_{f}-1\right)\) primes.

	Create the Hammersley samples by combining the corresponding elements of the Hammersley sequences created in steps 3 and 4

	When in “selection” mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the nearest_neighbours method in the sampling superclass.

	Returns

	A numpy array or Pandas dataframe containing number_of_samples Hammersley sample points.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Webpage on low discrepancy sampling methods:
http://planning.cs.uiuc.edu/node210.html

[3] Holger Dammertz’s webpage titled “Hammersley Points on the Hemisphere” which discusses Hammersley point set generation in two dimensional spaces,
http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html

Centroidal voronoi tessellation (CVT) sampling

In CVT, the generating point of each Voronoi cell coincides with its center of mass; CVT sampling locates the design samples at the centroids of each Voronoi cell in
the input space. CVT sampling is a geometric, space-filling sampling method which is similar to k-means clustering in its simplest form.

The pysmo.sampling.CVTSampling method carries out CVT sampling. This can be done in two modes:

	The samples can be selected from a user-provided dataset, or

	The samples can be generated from a set of provided bounds.

The CVT sampling algorithm implemented here is based on McQueen’s method which involves a series of random sampling and averaging steps,
see http://kmh-lanl.hansonhub.com/uncertainty/meetings/gunz03vgr.pdf.

Available Methods

	
class idaes.surrogate.pysmo.sampling.CVTSampling(data_input, number_of_samples=None, tolerance=None, sampling_type=None)[source]

	A class that constructs Centroidal Voronoi Tessellation (CVT) samples.

CVT sampling is based on the generation of samples in which the generators of the Voronoi tessellations and the mass centroids coincide.

To use: call class with inputs, and then sample_points function.

Example:

For the first 10 CVT samples in a 2-D space:
>>> b = rbf.CVTSampling(data_bounds, 10, tolerance = 1e-5, sampling_type="creation")
>>> samples = b.sample_points()

	
__init__(data_input, number_of_samples=None, tolerance=None, sampling_type=None)[source]

	Initialization of CVTSampling class. Two inputs are required, while an optional option to control the solution accuracy may be specified.

	Parameters

	
	data_input (NumPy Array, Pandas Dataframe or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input data set or range to be sampled.

	When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and sampling_type option must be set to “selection”. The output variable (Y) is assumed to be supplied in the last column.

	When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and sampling_type option must be set to “creation”. It is assumed that no range contains no output variable information in this case.

	number_of_samples (int [https://docs.python.org/3/library/functions.html#int]) – The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in data_input.

	sampling_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Option which determines whether the algorithm selects samples from an existing dataset (“selection”) or attempts to generate sample from a supplied range (“creation”). Default is “creation”.

	Keyword Arguments

	tolerance (float [https://docs.python.org/3/library/functions.html#float]) – Maximum allowable Euclidean distance between centres from consectutive iterations of the algorithm. Termination condition for algorithm.

	The smaller the value of tolerance, the better the solution but the longer the algorithm requires to converge. Default value is \(10^{-7}\).

	Returns

	self function containing the input information.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When data_input is the wrong type.

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the number_of_samples is invalid (not an integer, too large, zero, negative)

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – When the tolerance specified is too loose (tolerance > 0.1) or invalid

	warnings.warn – when the tolerance specified by the user is too tight (tolerance < \(10^{-9}\))

	
sample_points()[source]

	The sample_points method determines the best/optimal centre points (centroids) for a data set based on the minimization of the total distance between points and centres.

Procedure based on McQueen’s algorithm: iteratively minimize distance, and re-position centroids.
Centre re-calculation done as the mean of each data cluster around each centre.

	Returns

	A numpy array or Pandas dataframe containing the final number_of_samples centroids obtained by the CVT algorithm.

	Return type

	NumPy Array or Pandas Dataframe

References

[1] Loeven et al paper titled “A Probabilistic Radial Basis Function Approach for Uncertainty Quantification”
https://pdfs.semanticscholar.org/48a0/d3797e482e37f73e077893594e01e1c667a2.pdf

[2] Centroidal Voronoi Tessellations: Applications and Algorithms by Qiang Du, Vance Faber, and Max Gunzburger
https://doi.org/10.1137/S0036144599352836

[3] D. G. Loyola, M. Pedergnana, S. G. García, “Smart sampling and incremental function learning for very large high dimensional data”
https://www.sciencedirect.com/science/article/pii/S0893608015001768?via%3Dihub

More Information about PySMO’s Sampling Methods

The sampling methods are able to generate samples based from variable bounds or select samples from
a user-provided dataset. To use any of the method, the class is first initialized with the required parameters,
and then the sample_points method is called.

Examples

The following code snippet shows basic usage of the package for generating samples from a set of bounds:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp

Declaration of lower and upper bounds of 3D space to be sampled
>>> bounds = [[0, 0, 0], [1.2, 0.1, 1]]

Initialize the Halton sampling method and generate 10 samples
>>> space_init = sp.HaltonSampling(bounds_list, sampling_type='creation', number_of_samples=10)
>>> samples = space_init.sample_points()

The following code snippet shows basic usage of the package for selecting sample points from an existing dataset:

Required imports
>>> from idaes.surrogates.pysmo import sampling as sp
>>> import pandas as pd

Load dataset from a csv file
>>> xy_data = pd.read_csv('data.csv', header=None, index_col=0)

Initialize the CVT sampling method and generate 25 samples
>>> space_init = sp.CVTSampling(xy_data, sampling_type='selection', number_of_samples=25)
>>> samples = space_init.sample_points()

Note

The results of the sampling process will be a Numpy array or Pandas dataframe, depending on the
format of the input data.

Characteristics of sampling methods available in PySMO

Characteristics of the different sampling methods

	
	Deterministic

	Stochastic

	Low-discrepancy

	Space-filling

	Geometric

	LHS

	
	\(\checkmark\)

	
	
	\(\checkmark\)

	Full-factorial

	\(\checkmark\)

	
	
	
	\(\checkmark\)

	Halton

	\(\checkmark\)

	
	\(\checkmark\)

	
	

	Hammersley

	\(\checkmark\)

	
	\(\checkmark\)

	
	

	CVT

	\(\checkmark\)

	
	
	\(\checkmark\)

	\(\checkmark\)

MatOpt: Nanomaterials Optimization

The MatOpt module provides tools for nanomaterials design using Mathematical Optimization. MatOpt can be used to design crystalline nanostructured materials, including but not limited to particles, wires, surfaces, and periodic bulk structures.

The main goals of this package are as follows:

	To automate many of the steps that are necessary for utilizing mathematical optimization to design materials, speeding up the development of new mathematical models and accelerating new materials discovery.

	To simplify the representation of nanostructured materials and their structure-function relationships as Pyomo objects, streamlining the creation of materials optimization problems in the Pyomo modeling language.

	To provide a simple interface so that users need not handle the details of casting efficient mathematical optimization models, invoking mathematical optimization solvers, or utilizing specialized Pyomo syntax to do this.

Thank you for your interest in MatOpt. We would love to hear your feedback! Please report any thoughts, questions or bugs to: gounaris@cmu.edu

If you are using MatOpt, please consider citing:

	Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials design using discrete optimization. In preparation.

Basic Usage

There are two main sub-modules contained in the package serving two distinct purposes:

	The matopt.materials module contains objects and methods for efficiently representing and manipulating a nanomaterial and its design space.

	The matopt.opt module contains objects and methods for speeding up the casting of a Mixed-integer Linear Programming (MILP) model with simplified modeling syntax and automatic model formulation.

Dependencies

User access to the MILP solver CPLEX through Pyomo is assumed. For users who do not have access to CPLEX, the use of NEOS-CPLEX [https://neos-guide.org/neos-interfaces#pyomo] is suggested as an alternative.

Define design canvas

Several pieces of information about the material and design space need to be specified in order to formulate a materials optimization problem. To fulfill this need, the matopt.materials module defines generic and simple objects for describing the type of material to be designed and its design space, also referred to as a “canvas”.

Some key objects are listed as follows:

	
class idaes.apps.matopt.materials.lattices.lattice.Lattice[source]

	A class used to represent crystal lattice locations.

The class encodes methods for determining which Cartesian coordinates to
consider as sites on an infinite crystal lattice. A Lattice can be constructed from
a point on the lattice (i.e., a shift from the origin), an alignment (i.e., rotation from a
nominal orientation), and appropriate scaling factors. With these attributes, we generally
support the translation, rotation, and rescaling of lattices. Additionally, Lattice objects
include a method for determining which sites should be considered neighbors.

	
class idaes.apps.matopt.materials.canvas.Canvas(Points=None, NeighborhoodIndexes=None, DefaultNN=0)[source]

	A class for combining geometric points and neighbors.

This class contains a list of Cartesian points coupled with a graph of nodes for sites and arcs
for bonds. A Canvas object establishes a mapping from the abstract, mathematical modeling of
materials as graphs to the geometry of the material lattice. The list of points and neighbor
connections necessary to create a Canvas object can be obtained from the combination of
Lattice, Shape, and Tiling objects.

	
class idaes.apps.matopt.materials.design.Design(Canvas_=None, Contents=None)[source]

	A class used to represent material designs.

This class combines a Canvas objects and a list of contents.
It assigns an element (possibly None) to each point in the Canvas.
This generally works for any type of content, but it is intended
to work with Atom objects and can be used to generate CFG, PDB, POSCAR, and XYZ files.

Build model via descriptors

The material type and design space specified provide indices, sets, and parameters for the optimization model. Using simple syntax, inspired by materials-related terminology, MatOpt users define a MatOptModel object, which will be translated into a Pyomo ConcreteModel object automatically.

MatOpt uses MaterialDescriptor objects to represent variables, constraints, and objectives. A MatOptModel object holds lists of MaterialDescriptor objects. By default, several universal site descriptors are pre-defined in the model.

	Descriptor

	Explanation

	Yik

	Presence of a building block of type k at site i

	Yi

	Presence of any type of building block at site i

	Xijkl

	Presence of a building block of type k at site i and a building block of type l at site j

	Xij

	Presence of any building block at site i and any building block at site j

	Cikl

	Count of neighbors of type l next to a building block of type k at site i

	Ci

	Count of any type of neighbors next to a building block at site i

User-specified descriptors are defined by DescriptorRule objects in conjunction with Expr expression objects. Available expressions include:

	Expression

	Explanation

	LinearExpr

	Multiplication and addition of coefficients to distinct descriptors

	SiteCombination

	Summation of site contributions from two sites

	SumNeighborSites

	Summation of site contributions from all neighboring sites

	SumNeighborBonds

	Summation of bond contributions to all neighboring sites

	SumSites

	Summation across sites

	SumBonds

	Summation across bonds

	SumSiteTypes

	Summation across site types

	SumBondTypes

	Summation across bond types

	SumSitesAndTypes

	Summation across sites and site types

	SumBondsAndTypes

	Summation across bonds and bond types

	SumConfs

	Summation across conformation types

	SumSitesAndConfs

	Summation across sites and conformation types

Several types of DescriptorRules are available.

	Rule

	Explanation

	LessThan

	Descriptor less than or equal to an expression

	EqualTo

	Descriptor equal to an expression

	GreaterThan

	Descriptor greater than or equal to an expression

	FixedTo

	Descriptor fixed to a scalar value

	PiecewiseLinear

	Descriptor equal to the evaluation of a piecewise linear function

	Implies

	Indicator descriptor that imposes other constraints if equal to 1

	NegImplies

	Indicator descriptor that imposes other constraints if equal to 0

	ImpliesSiteCombination

	Indicator bond-indexed descriptor that imposes constraints on the two sites

	ImpliesNeighbors

	Indicator site-indexed descriptor that imposes constraints on neighboring sites

From the combination of the above pre-defined descriptors, expressions, and rules, a user can specify a wide variety of other descriptors, as necessary.

	
class idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor(name, canv=None, atoms=None, confDs=None, bounds=(None, None), integer=False, binary=False, rules=[], **kwargs)[source]

	A class to represent material geometric and energetic descriptors.

This class holds the information to define mathematical optimization
variables for the properties of materials. Additionally, each descriptor
has a ‘rules’ list to which the user can append rules defining the
descriptor and constraining the design space.

	
name

	A unique (otherwise Pyomo will complain) name

	Type

	string

	
canv

	The canvas that the descriptor will be indexed over

	Type

	Canvas

	
atoms

	The building blocks to index the descriptor over.

	Type

	list<BBlock>

	
confDs

	The designs for conformations to index over.

	Type

	list<Design>

	
integer

	Flag to indicate if the descriptor takes integer values.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
binary

	Flag to indicate if the descriptor takes boolean values.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rules

	List of rules to define and constrain the material descriptor design space.

	Type

	list<DescriptorRules>

	
bounds

	If tuple, the lower and upper bounds on the descriptor values across all indices. If dict, the bounds can be individually set for each index.

	Type

	tuple/dict/func

See IndexedElem for more information on indexing.
See DescriptorRule for information on defining descriptors.

Solve optimization model

Once the model is fully specified, the user can optimize it in light of a chosen descriptor to serve as the objective to be maximized or minimized, as appropriate. Several functions are provided for users to choose from.

	
class idaes.apps.matopt.opt.mat_modeling.MatOptModel(canv, atoms=None, confDs=None)[source]

	A class for the specification of a materials optimization problem.

Once all the material information is specified, we use this class to
specify the material design problem of interest. This class is intended
to be interpretable without mathematical optimization background while
the conversion to Pyomo optimization models happens automatically.

	
canv

	The canvas of the material design space

	Type

	Canvas

	
atoms

	The list of building blocks to consider.
Note: This list does not need to include a void-atom type. We use ‘None’ to represent the absence of any building block at a given site.

	Type

	list<BBlock>

	
confDs

	The list of conformations to consider.

	Type

	list<Design>

	
maximize(func, **kwargs)[source]

	Method to maximize a target functionality of the material model.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	**kwargs – Arguments to MatOptModel.optimize

	Returns

	(Design/list<Design>) Optimal designs.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX) –

See MatOptModel.optimize method for details.

	
minimize(func, **kwargs)[source]

	Method to minimize a target functionality of the material model.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	**kwargs – Arguments to MatOptModel.optimize

	Returns

	(Design/list<Design>) Optimal designs.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX) –

See MatOptModel.optimize method for details.

	
optimize(func, sense, nSolns=1, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None, solver='cplex')[source]

	Method to create and optimize the materials design problem.

This method automatically creates a new optimization model every
time it is called. Then, it solves the model via Pyomo with the
CPLEX solver.

If multiple solutions (called a ‘solution pool’) are desired, then
the nSolns argument can be provided and the populate method will
be called instead.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	sense (int [https://docs.python.org/3/library/functions.html#int]) – flag to indicate the choice to minimize or maximize the functionality of interest.
Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

	nSolns (int [https://docs.python.org/3/library/functions.html#int]) – Optional, number of Design objects to return.
Default: 1 (See MatOptModel.populate for more information)

	tee (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to turn on solver output.
Default: True

	disp (int [https://docs.python.org/3/library/functions.html#int]) – Optional, flag to control level of MatOpt output.
Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
Default: 1

	keepfiles (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to save temporary pyomo files.
Default: True

	tilim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver time limit (in seconds).
Default: 3600

	trelim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver tree memeory limit (in MB).
Default: None (i.e., Pyomo/CPLEX default)

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver choice. Currently only cplex or neos-cplex are supported
Default: cplex

	Returns

	(Design/list<Design>) Optimal design or designs, depending on the number of solutions requested by argument nSolns.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX) –

	
populate(func, sense, nSolns, tee=True, disp=1, keepfiles=False, tilim=3600, trelim=None, solver='cplex')[source]

	Method to a pool of solutions that optimize the material model.

This method automatically creates a new optimization model every
time it is called. Then, it solves the model via Pyomo with the
CPLEX solver.

The populate method iteratively solves the model, interprets the
solution as a Design object, creates a constraint to disallow that
design, and resolves to find the next best design. We build a pool
of Designs that are gauranteed to be the nSolns-best solutions in the
material design space.

	Parameters

	
	func (MaterialDescriptor/Expr) – Material functionality to optimize.

	sense (int [https://docs.python.org/3/library/functions.html#int]) – flag to indicate the choice to minimize or maximize the functionality of interest.
Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

	nSolns (int [https://docs.python.org/3/library/functions.html#int]) – Optional, number of Design objects to return.
Default: 1 (See MatOptModel.populate for more information)

	tee (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to turn on solver output.
Default: True

	disp (int [https://docs.python.org/3/library/functions.html#int]) – Optional, flag to control level of MatOpt output.
Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
Default: 1

	keepfiles (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional, flag to save temporary pyomo files.
Default: True

	tilim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver time limit (in seconds).
Default: 3600

	trelim (float [https://docs.python.org/3/library/functions.html#float]) – Optional, solver tree memeory limit (in MB).
Default: None (i.e., Pyomo/CPLEX default)

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver choice. Currently only cplex or neos-cplex are supported
Default: cplex

	Returns

	(list<Design>) A list of optimal Designs in order of decreasing optimality.

	Raises

	pyutilib.ApplicationError if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX) –

MatOpt Output

The results of the optimization process will be loaded into Design objects automatically. Users can then save material design(s) into files for further analysis and visualization using suitable functions provided. MatOpt provides interfaces to several standard crystal structure file formats, including CFG, PDB, POSCAR, and XYZ.

MatOpt Examples

Five case studies [https://github.com/IDAES/examples-pse/tree/main/src/matopt] are provided to illustrate the detailed usage of MatOpt. In each case, a Jupyter notebook with explanations as well as an equivalent Python script is provided.

References

	Hanselman, C.L. and Gounaris, C.E., 2016. A mathematical optimization framework for the design of nanopatterned surfaces. [https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.15359] AIChE Journal, 62(9), pp.3250-3263.

	Hanselman, C.L., Alfonso, D.R., Lekse, J.W., Matranga, C., Miller, D.C. and Gounaris, C.E., 2019. A framework for optimizing oxygen vacancy formation in doped perovskites. [https://www.sciencedirect.com/science/article/pii/S0098135418310998] Computers & Chemical Engineering, 126, pp.168-177.

	Hanselman, C.L., Zhong, W., Tran, K., Ulissi, Z.W. and Gounaris, C.E., 2019. Optimization-based design of active and stable nanostructured surfaces. [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b08431] The Journal of Physical Chemistry C, 123(48), pp.29209-29218.

	Isenberg, N.M., Taylor, M.G., Yan, Z., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. Identification of optimally stable nanocluster geometries via mathematical optimization and density-functional theory. [https://pubs.rsc.org/en/content/articlelanding/2019/me/c9me00108e#!divAbstract] Molecular Systems Design & Engineering.

	Yin, X., Isenberg, N.M., Hanselman, C.L., Mpourmpakis, G. and Gounaris, C.E., 2020. A mathematical optimization-based design framework for identifying stable bimetallic nanoclusters. In preparation.

	Hanselman, C.L., Yin, X., Miller, D.C. and Gounaris, C.E., 2020. MatOpt: A Python package for nanomaterials design using discrete optimization. In preparation.

Caprese

	Nonlinear Model Predictive Control

	Moving Horizon Estimation

[image: ../../../_images/logocappresse-01.png]
Caprese is a module for simulation of IDAES flowsheets with nonlinear program
(NLP)-based control and estimation strategies, namely Nonlinear Model
Predictive Control (NMPC) and Moving Horizon Estimation (MHE).

Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is control strategy in which control
inputs are determined by the solution of an optimization problem every time
the plant is sampled.

Optimization Problem

An explanation of the optimization problem solved in this implementation
of NMPC is forthcoming.

Available Methods

Class for performing NMPC simulations of IDAES flowsheets

	
class idaes.apps.caprese.nmpc.NMPCSim(plant_model=None, plant_time_set=None, controller_model=None, controller_time_set=None, inputs_at_t0=None, sample_time=None, **kwargs)[source]

	Main class for NMPC simulations of Pyomo models.

	
classmethod add_namespace_to(model, time)[source]

	Adds the _NMPC_NAMESPACE block a model with a given time set.
All necessary model-specific attributes, including constraints
and objectives, will be added to this block.

	Parameters

	
	model – Model to which to add the namespace

	time – Set to treat as time in the given model

	
add_objective_function(model, name='objective', state_weight=1, control_weight=1, **kwargs)[source]

	Adds an objective function based on already calculated weights
and setpoint values to the _NMPC_NAMESPACE of a model.

	Parameters

	
	model – Model to which to add objective function

	name – Name of objective function to add

	state_weight – Additional weight factor to apply to each state
term in the objective function. Intended for a user
that wants to weigh states and controls differently

	control_weight – Addtional weight factor to apply to each control
term in the objective function. Intended for a user
that wants to weigh states and controls differently

	
add_setpoint_to_controller(objective_name='tracking_objective', **kwargs)[source]

	User-facing function for the addition of a setpoint to the
controller. Assumes the controller model’s setpoint attributes have
been populated with desired values. This function first calculates
weights, then adds an objective function based on those weights
and existing setpoint values.

	Parameters

	objective_name – Name to use for the objective function added

	
calculate_error_between_states(mod1, mod2, t1, t2, Q_matrix=[], categories=[<VariableCategory.DIFFERENTIAL: 51>], **kwargs)[source]

	Calculates the normalized (by the weighting matrix already calculated)
error between the differential variables in different models and at
different points in time.

	Parameters

	
	mod1 – First flowsheet model

	mod2 – Second flowsheet model (may be same as the first)

	t1 – Time point of interest in first model

	t2 – Time point of interest in second model

	Q_matrix – List of weights by which to weigh the error for
each state. Default is to use the same weights calculated
for the controller objective function.

	
calculate_full_state_setpoint(setpoint, require_steady=True, allow_inconsistent=True, **kwargs)[source]

	Given a user-defined setpoint, i.e. a list of VarData, value tuples,
calculates a full-state setpoint to be used in the objective function
of the dynamic optimization problem. This is done by solving a single-
time point optimization problem with the user’s setpoint in the
objective function.

The solve is performed in the first time point blocks/constraints of the
controller model. The procedure is:

	Check for inconsistent initial conditions. Warn user if found.

	Populate controller setpoint attributes with user-defined
values.

	Populate reference attributes with (now consistent) initial
conditions.

	Calculate weights for variables specified.

	
	Add objective function based on these weights and setpoint
	values.

	Solve for setpoint.

	Deactivate just-added objective function.

	Parameters

	
	setpoint – List of VarData, value tuples to be used in the objective
function of the single-time point optimization problem

	require_steady – Bool telling whether or not to fix derivatives to
zero when performing optimization

	
constrain_control_inputs_piecewise_constant(**kwargs)[source]

	Function to add piecewise constant (PWC) constraints to controller
model. Requires model’s _NMPC_NAMESPACE to know about input vars
and to have as an attribute a sample points list.

	
construct_objective_weights(model, categories=[<VariableCategory.DIFFERENTIAL: 51>, <VariableCategory.ALGEBRAIC: 52>, <VariableCategory.DERIVATIVE: 53>, <VariableCategory.INPUT: 54>], **kwargs)[source]

	Constructs the objective weight values for the specified variable
categories of a specified model. Weights are calculated for each
variable in each group by taking the difference between the initial
value and the setpoint value, making sure it is above a tolerance,
and taking its reciprocal. Weights can be overridden by a list
of VarData, value tuples passed in as the “objective_weight_override”
config argument.

	Parameters

	
	model – Model whose variables will be accessed to calculate weights,
and whose weight attributes will be set.

	categories – List of VariableCategory enum items for which to
calculate weights. Default is DIFFERENTIAL, ALGEBRAIC,
DERIVATIVE, and INPUT

	
has_consistent_initial_conditions(model, **kwargs)[source]

	Finds constraints at time.first() that are violated by more than
tolerance. Returns True if any are found.

	
initialize_by_solving_elements(model, time, input_type=<ElementInitializationInputOption.SET_POINT: 21>, objective_name='tracking_objective', **kwargs)[source]

	Initializes the controller model by solving (a square simulation
for) each time element.

	Parameters

	
	model – Model to initialize

	time – Set to treat as time

	input_type – ElementInitializationInputOption enum item
telling how to fix the inputs for the simulation

	
initialize_control_problem(**kwargs)[source]

	Function to initialize the controller model before solving the
optimal control problem. Possible strategies are to use the initial
conditions, to perform a simulation, or to use the results of the
previous solve. Initialization from a previous (optimization)
solve can only be done if an optimization solve has been performed
since the last initialization. The strategy may be passed in as
the control_init_option keyword (config) argument, otherwise the
default will be used.

	
initialize_from_initial_conditions(model, categories=[<VariableCategory.DERIVATIVE: 53>, <VariableCategory.DIFFERENTIAL: 51>, <VariableCategory.ALGEBRAIC: 52>], **kwargs)[source]

	Set values of differential, algebraic, and derivative variables to
their values at the initial conditions.
An implicit assumption here is that the initial conditions are
consistent.

	Parameters

	
	model – Flowsheet model whose variables are initialized

	categories – List of VariableCategory enum items to
initialize. Default contains DERIVATIVE, DIFFERENTIAL,
and ALGEBRAIC.

	
initialize_from_previous_sample(model, categories=[<VariableCategory.DIFFERENTIAL: 51>, <VariableCategory.ALGEBRAIC: 52>, <VariableCategory.DERIVATIVE: 53>, <VariableCategory.INPUT: 54>], **kwargs)[source]

	Re-initializes values of variables in model to the values one
sampling time in the future. Values for the last sampling time are
currently set to values in the steady state model, assumed to be the
set point.

	Parameters

	
	model – Flowsheet model to initialize

	categories – List of VariableCategory enum items to initialize.
Default contains DIFFERENTIAL, ALGEBRAIC, DERIVATIVE,
and INPUT

	
inject_control_inputs_into_plant(t_plant, **kwargs)[source]

	Injects input variables from the first sampling time in the
controller model to the sampling period in the plant model that
starts at the specified time, adding noise if desired.

	Parameters

	t_plant – First time point in plant model where inputs will be
applied.

	
set_bounds_from_initial(vargroup)[source]

	Builds lists of lower bound, upper bound tuples as attributes of the
input model, based on the current bounds (and domains) of
differential, algebraic, and input variables.

	Parameters

	model – Model whose variables will be checked for bounds.

	
set_reference_values_from_initial(vargroup, t0=None)[source]

	Sets the values in the reference list of an NMPCVarGroup from the
values of the group’s variables at t0

	Parameters

	
	vargroup – NMPCVarGroup instance whose reference values to set

	t0 – Point in time at which variable values will be used to set
reference values

	
simulate_plant(t_start, **kwargs)[source]

	Function for simulating plant model for one sampling period after
inputs have been assigned from solve of controller model.

	Parameters

	t_start – Beginning of timespan over which to simulate

	
solve_consistent_initial_conditions(model, **kwargs)[source]

	Uses pyomo.dae.initialization solve_consistent_initial_conditions
function to solve for consistent initial conditions. Inputs are
fixed at time.first() in attempt to eliminate degrees of freedom.

	
solve_control_problem(**kwargs)[source]

	Function for solving optimal control problem, which calculates
control inputs for the plant.

	
transfer_current_plant_state_to_controller(t_plant, **kwargs)[source]

	Transfers values of the initial condition variables at a specified
time in the plant model to the initial time point of the controller
model, adding noise if desired.

	Parameters

	t_plant – Time point in plant model whose values will be transferred

	
validate_fixedness(*models)[source]

	Makes sure that assumptions regarding fixedness for different points
in time are valid. Differential, algebraic, and derivative variables
may be fixed only at t0, only if they are initial conditions.
Fixed variables must be fixed at all points in time, except possibly
initial conditions.

Expects to find “alg,” “diff,” “deriv,” and “fixed” vars on each
model’s _NMPC_NAMESPACE, as well as a var_locator ComponentMap.

	Parameters

	models – Models for which to validate fixedness

	
validate_sample_time(sample_time, *models, **kwargs)[source]

	Makes sure sample points, or integer multiple of sample time-offsets
from time.first(), lie on finite element boundaries, and that the
horizon of each model is an integer multiple of sample time. Assembles
a list of sample points and a dictionary mapping sample points to the
number of finite elements in the preceding sampling period, and adds
them as attributes to _NMPC_NAMESPACE.

	Parameters

	
	sample_time – Sample time to check

	models – List of flowsheet models to check

	
validate_slices(tgt_model, src_model, src_time, src_slices)[source]

	Given list of time-only slices in a source model, attempts to find
each of them in the target model and returns a list of the found
slices in the same order.
Expects to find a var_locator ComponentMap attribute in the
_NMPC_NAMESPACE of the target model.

	Parameters

	
	tgt_model – Model to search for time-slices

	src_model – Model containing the slices to search for

	src_slices – List of time-only slices of variables in the source
model

	Returns

	List of time-only slices to same-named variables in the target
model

Moving Horizon Estimation

Caprese is actively under development. A module for MHE is forthcoming.

Advanced User Guide

	Advanced User Installation

	Developer Documentation

	Developing Custom Models

Advanced User Installation

Advanced users who plan to develop their own models or tools are encouraged to install IDAES using Git and GitHub as described in this section, rather than using the instructions in the getting started section. These advanced users will greatly benefit from improved version control and code integration capabilities.

	Git and GitHub Basics

	Installation with GitHub

	Github Setup

	Fork the Repository

	Clone Your Fork

	Add Upstream Remote

	Create the Python Environment

	Finish the Installation

	Update IDAES

Git and GitHub Basics

Git is a distributed version control system that keeps track of changes in a set of files, while GitHub is a hosting service for Git repositories that adds many other features that are useful for collaborative software development.

Both Git and GitHub are widely used and there are excellent tutorials and resources for each. See Atlassian Github tutorials [https://www.atlassian.com/git/tutorials] , GitHub help [https://help.github.com/], and Git documentation [https://git-scm.com/doc].

A limited reference for Git and GitHub terminology and commands is provided here, users that are new to Git and GitHub are strongly encouraged to use the more detailed resources above.

Installation with GitHub

The main IDAES GitHub repository is idaes-pse. This repository includes the core framework, model libraries, and integrated tools. It contains all of the release versions of IDAES and is frequently updated with new features.

The following instructions describe how to install and update the idaes-pse repository.

Github Setup

In order to use GitHub, you need to create a login on GitHub [https://github.com].

Fork the Repository

You use a “fork” of a repository (or “repo” for short) to create a space where you have complete control and can make changes without directly affecting the main repository.

[image: ../../_images/github-fork-repo_pse.png]
Figure 1. Screenshot showing where to click to fork the Github repo

You should first visit the idaes-pse repo on Github at https://github.com/IDAES/idaes-pse/. Then you should click on the fork icon in the top right and click on your username. These steps will have created your own fork of the repo with the same name under your username.

Clone Your Fork

A “clone” is a copy of a Github repository on your local machine. This is what you need to do in order to actually edit and change the files. To make a clone of the fork you created in the previous step, change to a directory where you want to put the source code and run the command:

git clone https://github.com/MYNAME/idaes-pse.git
cd idaes-pse

Of course, replace MYNAME with your username. This will download all the files in the latest version of the repository onto your local disk.

Note

After the git clone, subsequent Git commands should be performed from the “idaes-pse” directory.

Add Upstream Remote

In order to guarantee that your fork can be synchronized with the “main” idaes-pse repo in the GitHub IDAES organization, you need to add a pointer to that repository as a remote. This repository will be called upstream and linked with the following command:

git remote add upstream https://github.com/IDAES/idaes-pse.git

To check to see if you added the remote correctly use the following command:

git remote -v

You should see that there are two remotes, origin and upstream. Both have two lines showing the remote name, the url, and the access (fetch or push). Origin is the pointer to your fork and was automatically added with the clone command, while upstream is the pointer to the main idaes-pse repo that you just added.

Create the Python Environment

Once you have the repo cloned, you can change into that directory (by default, it will be called “idaes-pse” like the repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and running. We use a Python packaging system called Conda [https://conda.io/] and we specifically use its minimal version Miniconda [https://conda.io/en/latest/miniconda.html]. If you do not already have Conda, please follow the installation instructions for your operating system in getting started.

After Miniconda is installed, we recommend creating a separate conda environment for IDAES. If you are unfamiliar with environments, a good starting guide is here [https://towardsdatascience.com/getting-started-with-python-environments-using-conda-32e9f2779307]. Create and activate a conda environment for the new IDAES installation with the following commands (we officially support python 3.7, but you may choose a version you prefer):

conda create -n idaes python=3.7
conda activate idaes

Note

When setting up a conda environment like this, you must conda activate idaes whenever you open a fresh terminal window and wish to use IDAES.

Finish the Installation

Now that conda and pip are installed, and you are in the “idaes” conda environment, you can run the following commands to install the requirements for IDAES and get the extensions (e.g. binaries for the solver IPOPT and other external function calls):

pip install .
idaes get-extensions

Warning

The IDAES binary extensions are not yet supported on Mac/OSX

Note

There are a few options for installing the requirements.

	pip install . - basic install using what is in setup.py

	pip install .[dev] - basic install as above and also installs the Sphinx doc tools for building the documentation locally

	pip install -r requirements.txt - same as # 1 but installs our “development” Pyomo and PyUtilib

	pip install -r requirements-dev.txt - same as # 3 with the Sphinx doc tools

Also note that these pip installs would override any package within the conda environment,
so if you would like a specific package (e.g. git clone Pyomo), you should look at the
requirements files and only install the packages you need.

You can test that everything is installed properly by running the tests with
Pytest [https://pytest.org/]:

pytest -m "not integration"

The not integration tag skips some tests that are slow. If you like, you can run all of the tests with just pytest.

Update IDAES

The main branch of idaes-pse is frequently updated and a new IDAES release occurs quarterly. It is recommended that you update your fork and local repositories and conda environment periodically.

pip install -U idaes-pse
pip install -U .

Terminology and Commands

This section gives a high-level introduction to Git and GitHub terminology and commands.

More details resources include Atlassian Github tutorials [https://www.atlassian.com/git/tutorials] ,
GitHub help [https://help.github.com/], and Git documentation [https://git-scm.com/doc].

	Terminology

	Summary

	Branches

	Forks

	Pull Requests

	Git Commands

Terminology

Summary

	branch
	A name for a series of commits. See Branches.

	fork
	Copy of a repository in GitHub. See Forks.

	pull request (PR)
	A request to compare and merge code in a GitHub repository. See Pull Requests.

Branches

A branch is a series of commits that allows you to separate the code development
from the main code. There is a good description of what Git branches are
and how they work here [https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is].
Understanding this takes a little study, but this pays off by making
Git’s behavior much less mysterious. The short, practical version is
that a branch is a name for a series of commits that you want to group
together, and keep separable from other series of commits. From Git’s perspective,
the branch is just a name for the first commit in that series.

It is recommended that you create new branches on which to develop your work,
and reserve the “main” branch for merging in work that has been completed
and approved on GitHub. One way to do this is to create branches that correspond
directly to issues on GitHub, and include the issue number in the branch name.

Forks

A fork is a copy of a repository, in the GitHub shared space (a copy of
a repository from GitHub down to your local disk is called a “clone”).
In this context, that means a copy of the “idaes-dev” repository from
the IDAES organization (https://github.com/IDAES/idaes-dev) to your
own user space, e.g., https://github.com/myname/idaes-dev). The
mechanics of creating and using forks on GitHub are given
here [https://help.github.com/articles/fork-a-repo/].

Pull Requests

A fundamental procedure in the development lifecycle is what is called a
“pull request”. Understanding what these are, and do, is important for
participating fully in the software development process. First,
understand that pull requests are for collaborative development (GitHub)
and not part of the core revision control functionality that is offered
by Git. The official GitHub description of pull requests is
here [https://help.github.com/articles/about-pull-requests]. However,
it gets technical rather quickly, so a higher-level explanation may be
helpful:

Pull requests are a mechanism that GitHub provides to look at what the
code on some branch from your fork of the repository would be like if it
were merged with the main branch in the main (e.g., idaes-pse/idaes-dev)
repository. You can think of it as a staging area where the code is merged
and all the tests are run, without changing the target repository.
Everyone on the team can see a pull request, comment on it, and review
it.

Git Commands

The Git tool has many different commands, but there are several really
important ones that tend to get used as verbs in software development
conversations, and therefore are good to know:

	add
	Put a file onto the list of “things I want to commit” (see “commit”),
called “staging” the file.

	commit
	Save the changes in “staged” files into Git (since the last time you did
this), along with a user-provided description of what the changes mean
(called the “commit message”).

	push
	Move local committed changes to the GitHub-hosted “remote”
repository by “pushing” them across the network.

	pull
	Update your local files with changes from the GitHub-hosted
“remote” repository by “pulling” them across the network.

Note that the push and pull commands require GitHub (or some other service
that can host a remote copy of the repository).

Developer Documentation

This section of the documentation is intended for developers, and much of it is
targeted at the IDAES internal team. Hopefully many of the principles and ideas are
also applicable to external contributors.

Developer Contents

	IDAES Contributor Guide

	Github Repository Overview

	Collaborative Software Development

	Developer Standards

	Testing

	Code Review

	Docker Container

	Glossary

IDAES Contributor Guide

About

This page tries to give all the essential information needed
to contribute software to the IDAES project. It is designed
to be useful to both internal and external collaborators.

Code and other file locations

	Source code
	The main Python package is under the idaes/ directory.
Sub-directories, aka subpackages, should be documented elsewhere.
If you add a new directory in this tree, be sure to add a __init__.py in that directory
so Python knows it is a subpackage with Python modules.
Code that is not part of the core package is under apps/. This code can have any
layout that the creator wants.

	Documentation
	The documentation for the core package is under docs.

	Examples
	Examples are under the examples/ directory.
Tutorials from workshops are under the examples/workshops/ subdirectory.

Developer environment

Development of IDAES will require an extra set of required package not needed by regular users.
To install those extra developer tools use the command pip install -r requirements-dev.txt
rather than pip install -r requirements.txt

Code style

The code style is not entirely consistent. But some general guidelines are:

	follow the PEP8 [https://www.python.org/dev/peps/pep-0008/] style (or variants such as Black [https://github.com/python/black])

	use Google-style [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html] docstrings on classes, methods, and functions

	format your docstrings as reStructuredText [http://docutils.sourceforge.net/rst.html] so they can be nicely rendered as HTML by Sphinx

	add logging to your code by creating and using a global log object named
for the module, which can be created like: _log = logging.getLogger(__name__)

	take credit by adding a global author variable: __author__ = 'yourname'

Tests

For general information about writing tests in Python, see Testing.

There are three types of tests:

	Python source code
	The Python tests are integrated into the Python source code directories.
Every package (directory with .py modules and an __init__.py file)
should also have a tests/ sub-package, in which are test files. These,
by convention are named test_<something>.py.

	Doctests
	With some special reStructuredText “directives” (see “Writing tests”), the documentation
can contain tests. This is particularly useful for making sure examples in the
documentation still run without errors.

	Jupyter notebook tests
	(coming soon)

Writing tests

We use pytest [https://docs.pytest.org/en/latest/] to run our tests. The main advantage of this framework over
the built-in unittest that comes with Python is that almost no boilerplate
code is required. You write a function named test_<something>() and,
inside it, use the (pytest-modified) assert keyword to check that things
are correct.

Writing the Python unit tests in the tests/ directory is,
hopefully, quite straightforward.
Here is an example (out of context) that tests a couple of
things related to configuration in the core unit model library:

def test_config_block():
 m = ConcreteModel()

 m.u = Unit()

 assert len(m.u. config) == 2
 assert m.u.config.dynamic == useDefault

See the existing tests for many more examples.

For tests in the documentation, you need to wrap the test itself
in a directive called testcode. Here is an example:

.. testcode::

 from pyomo.environ import *
 from pyomo.common.config import ConfigValue
 from idaes.core import ProcessBlockData, declare_process_block_class

 @declare_process_block_class("MyBlock")
 class MyBlockData(ProcessBlockData):
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
 CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
 def build(self):
 super(MyBlockData, self).build()
 self.x = Var(initialize=self.config.xinit)
 self.y = Var(initialize=self.config.yinit)

First, note that reStructuredText directive and indented Python code. The indentation of the
Python code is important. You have to write an entire program here, so all the
imports are necessary (unless you use the testsetup and testcleanup directives,
but honestly this isn’t worth it unless you are doing a lot of tests in one file).
Then you write your Python code as usual.

Running tests

Running all tests is done by, at the top directory, running the command: pytest.

The documentation test code will actually be run by a special hook in the pytest configuration that
treats the Makefile like a special kind of test.
As a result, when you run pytest in any way
that includes the “docs/” directory (including the all tests mode), then all the documentation tests will run,
and errors/etc. will be reported through pytest. A useful corollary is that, to run
documentation tests, do: pytest docs/Makefile

You can run specific tests using the pytest syntax, see its documentation or pytest -h for details.

Documentation

The documentation is built from its sources with a tool called Sphinx.
The sources for the documentation are:

	hand-written text files, under docs/, with the extension “.rst” for reStructuredText [http://docutils.sourceforge.net/rst.html].

	the Python source code

	selected Jupyter Notebooks

Building documentation

Note

To build the documentation locally, you will need to have the Sphinx tools installed.
This will be done for you by running pip install requirements-dev.txt (“developer” setup)
as opposed to the regular pip install requirements.txt (“user” setup).

To build the documentation locally, use our custom build.py script.

cd docs
python build.py

The above commands will do a completely clean build to create HTML output.

If the command succeeds, the final line will look like:

=== SUCCESS

If it fails, it will instead print something like:

*** ERROR in 'html'

*** message about the command that failed
*** and any additional info

If you want to see the commands actually being run, add -v to the command line.

By default the build command removes all existing built files before running the
Sphinx commands. To turn this off, and rebuild only “new” things, add –dirty
to the command line.

Previewing documentation

The generated documentation can be previewed locally by opening
the generated HTML files in a web browser. The files are under the docs/build/
directory, so you can open the file docs/build/index.html to get started.

Github Repository Overview

This section describes the layout of the
Github repositories [https://help.github.com/articles/about-repositories/].
Later sections will give guidelines for contributing code to these
repositories.

Repositories

	Repository name

	Public?

	Description

	idaes-pse

	Yes

	Main public
repository, including
core framework and
integrated tools

	idaes-dev

	No

	Main private
repository, where
code is contributed
before being
“mirrored” to the
public ideas-pse
repository

	workspace

	No

	Repository for code
that does not belong
to any particular
CRADA or NDA, but
also is never
intended to be
released open-source

The URL for an IDAES repository, e.g. “some-repo”, will be
https://github.com/IDAES/some-repo.

Public vs. Private

All these repositories except for “idaes-pse” will only be visible on
Github, on the web, for people who have been added to the IDAES
developer team in the IDAES “organization” (See About Github
organizations [https://help.github.com/articles/about-organizations/]).
If you are a member of the IDAES team and not in the IDAES Github organization,
please contact one of the core developers.
The idaes-pse repository will be visible to anyone, even
people without a Github account.

Collaborative Software Development

This page gives guidance for all developers on the project.

Note

Many details here are targeted at members of the IDAES project team.
However, we strongly believe in the importance of transparency in the
project’s software practices and approaches. Also, understanding how we
develop the software internally should be generally useful to understand
the review process to expect for external contributors.

Although the main focus of this project is developing open source software (OSS),
it is also true that some of the software may be developed internally or in
coordination with industry under a CRADA or NDA.

It is the developer’s responsibility, for a given development effort,
to keep in mind what role you must assume and thus which set of procedures
must be followed.

	CRADA/NDA
	If you are developing software covered by a CRADA, NDA, or other legal
agreement that does not explicitly allow the data and/or code to be
released as open-source under the IDAES license, then you must follow
procedures under Developing Software with Proprietary Content.

	Internal
	If you are developing non-CRADA/NDA software, which is not intended to be
part of the core framework or (ever) released as open-source then follow procedures
under Developing Software for Internal Use.

	Core/open-source
	If you are developing software with no proprietary data or code, which
is intended to be released as open-source with the core framework, then follow
procedures under Developing software for Open-source Release.

Developing Software with Proprietary Content

Proprietary content is not currently being kept on Github, or any other collaborative
version control platform. When this changes, this section will be updated.

Developing Software for Internal Use

Software for internal use should be developed in the workspace repository of the
IDAES github organization. The requirements for reviews and testing of this code are
not as strict as for the idaes-dev repository, but otherwise the procedures are
the same as outlined for open-source development.

Developing software for Open-source Release

We can break the software development process into five distinct phases, illustrated in Figure 1
and summarized below:

	1. Setup: Prepare your local system for collaborative development

	2. Initiate: Notify collaborators of intent to make some changes

	3. Develop: Make local changes

	4. Collaborate: Push the changes to Github, get feedback and merge

[image: ../../_images/sw-overview-workflow.png]
Figure 1. Overview of software development workflow

The rest of this page describes the what and how of each of these phases.

1. Setup

Before you can start developing software collaboratively,
you need to make sure you are set up in Github and set up your local development environment.

Github setup

To work within the project, you need to create a login on Github [https://github.com/]. You also
need to make sure that this login has been added to the IDAES organization by
contacting one of the core developers.

If these steps are successful, you should be able to login to Github, visit the
IDAES Github organization [https://github.com/IDAES/], and see “Private” repositories
such as idaes-dev and workspace.

Fork the repo

You use a “fork” of a repository (or “repo” for short) to create a space where you
can save changes without directly affecting the main repository. Then, as we will see,
you request that these changes be incorporated (after review).

This section assumes that the repository in question is idaes-dev,
but the idea is the same for any other repo.

You should first visit the repo on Github
by pointing your browser to https://github.com/IDAES/idaes-dev/. Then you should
fork the repo into a repo of the same name under your name.

[image: ../../_images/github-fork-repo.png]
Figure 2. Screenshot showing where to click to fork the Github repo

Clone your fork

A “clone” is a copy of a Github repository on your local machine. This is what
you need to do in order to actually edit and change the files.
To make a clone of the fork you created in the previous step,
change to a directory where you want to put the source code and run the command:

git clone git@github.com:MYNAME/idaes-dev.git
cd idaes-dev

Of course, replace MYNAME with your login name. This will download all the files in
the latest version of the repository onto your local disk.

Note

After the git clone, subsequent git commands should be performed from
the “idaes-dev” directory.

Add upstream remote

In order to guarantee that your fork can be synchronized with the “main” idaes-dev
repo in the Github IDAES organization, you need to add a pointer to that repository
as a remote. This repository is called upstream (changes made there
by the whole team flow down to your fork), so we will use that name for it in our
command:

git remote add upstream git@github.com:IDAES/idaes-dev.git

Create the Python environment

Once you have the repo cloned, you can change into that directory (by default, it
will be called “idaes-dev” like the repo) and install the Python packages.

But before you do that, you need to get the Python package manager fully up and
running. We use a Python packaging system called Conda [https://conda.io/].
Below are instructions for installing a minimal version of Conda, called Miniconda [https://conda.io/en/latest/miniconda.html].
The full version installs a large number of scientific analysis and visualization libraries
that are not required by the IDAES framework.

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Create and activate a conda environment (along with its own copy of pip)
for the new IDAES installation (you will need to conda activate idaes
when you open a fresh terminal window and wish to use IDAES):

conda create -n idaes pip
conda activate idaes

Now that conda and pip are installed, and you are in the “idaes” conda environment,
you can run the standard steps for installing a Python package in development mode:

pip install -r requirements.txt
python setup.py develop

You can test that everything is installed properly by running the tests with
Pytest [https://pytest.org/]:

pytest

2. Initiate

We will call a set of changes that belong together, e.g. because they depend on
each other to work, a “topic”. This section describes how to start work on a new
topic. The workflow for initiating a topic is shown in Figure 3 below.

[image: ../../_images/sw-init-workflow.png]
Figure 3. Initiate topic workflow

Create an issue on Github

To create an issue on Github, simply navigate to the repository page and click on
the “Issues” tab. Then click on the “Issues” button and fill in a title and brief
description of the issue. You do not need to list details about sub-steps required
for the issue, as this sort of information is better put in the (related) pull
request that you will create later. Assign the issue to the appropriate people,
which is often yourself.

There is one more important step to take, that will allow the rest of the project
to easily notice your issue: add the issue to the “Priorities” project. The screenshot
below shows where you need to click to do this.

[image: ../../_images/github-issue-priority.png]
Figure 4. Screenshot for creating an issue on Github

Create a branch on your fork

It is certainly possible to do your work on your fork in the “main”
branch. The problem that can arise here is if you need to do two unrelated
things at the same time, for example working on a new feature and fixing
a bug in the current code. This can be quite tricky to manage as a single set
of changes, but very easy to handle by putting each new set of changes in
its own branch, which we call a topic branch.
When all the changes in the branch are done and merged, you can delete it
both locally and in your fork so you don’t end up with a bunch of old branches
cluttering up your git history.

The command for doing this is simple:

git checkout -b <BRANCH-NAME>

The branch name should be one word, with dashes or underscores as needed.
One convention for the name that can be helpful is to include the Issue number
at the end, e.g. git co -b mytopic-issue42. This is especially useful later
when you are cleaning up old branches, and you can quickly see which branches
are related to issues that are completed.

Make local edits and push changes

A new branch, while it feels like a change, is not really a change in the
eyes of Git or Github, and by itself will not allow you to start a new pull
request (which is the goal of this whole phase). The easiest thing to do is
a special “empty” commit:

git commit --allow-empty -m 'Empty commit so I can open a PR'

Since this is your first “push” to this branch, you are going to need to set an upstream
branch on the remote that should receive the changes. If this sounds complicated,
it’s OK because git actually gives you cut-and-paste instructions. Just run
the git push command with no other arguments:

$ git push
fatal: The current branch mybranch-issue3000 has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin mybranch-issue3000

Cut and paste the suggested command, and you’re ready to go. Subsequent
calls to “push” will not require any additional arguments to work.

Start a new Pull Request on Github

Finally, you are ready to initiate the pull request. Right after you perform the
push command above, head to the repository
URL in Github (https://github.com/IDAES/idaes-dev) and you should see a highlighted
bar below the tabs, as in Figure 5 below, asking if you want to start a pull-request.

[image: ../../_images/github-start-pullrequest.png]
Figure 5. Screenshot for starting a Pull Request on Github

Click on this and fill in the requested information. Remember to link to the issue
you created earlier.

Depending on the Github plan, there may be a pull-down menu for creating the pull
request that lets you create a “draft” pull request. If that is not present, you
can signal this the old-fashioned way by adding “[WIP]” (for Work-in-Progress) at
the beginning of the pull request title.

Either way, create the pull request. Do not assign reviewers until you are done
making your changes (which is probably not now). This way the assigning of reviewers
becomes an unambiguous signal that the PR is actually ready for review.

Note

Avoid having pull requests that take months to complete. It is
better to divide up the work, even artificially, into a piece that
can be reviewed and merged into the main repository within a week or two.

3. Develop

The development process is a loop of adding code, testing and
debugging, and committing and pushing to Github. You may go through many (many!)
iterations of this loop before the code is ready for review. This workflow is
illustrated in Figure 6.

[image: ../../_images/sw-dev-workflow.png]
Figure 6. Software development workflow

Running tests

After significant edits, you should make sure you have tests
for the new/changed functionality. This involves writing Unit tests as
well as running the test suite and examining the results of the Code coverage.

This project uses Pytest [https://pytest.org/] to help with running the unit tests. From the
top-level directory of the working tree, type:

pytest

Alternatively users of an IDE like PyCharm can run the tests from within the IDE.

Commit changes

The commands: git add, git status, and git commit are all used in combination to
save a snapshot of a Git project’s current state. 1.

The commit command is the equivalent of “saving” your changes. But unlike editing
a document, the set of changes may cover multiple files, including newly created
files. To allow the user flexibility in specifying exactly which changes to save
with each commit, the add command is used first to indicate files to “stage” for
the next commit command. The status command is used to show the current status
of the working tree.

A typical workflow goes like this:

$ ls
file1 file2
$ echo 'a' > file1 # edit existing file
$ echo '1' > file3 # create new file
$ git status --short # shows changed/unstaged and unknown file
 M file1
?? file3
$ git add file1 file3 # stage file1, file3 for commit
$ git status --short # M=modified, A=added
M file1
A file3
$ git commit -m "made some changes"
[main 067c16e] made some changes
2 files changed, 2 insertions(+)
create mode 100644 file3

Of course, in most IDEs you could use built-in commands for committing and adding
files. The basic flow would be the same.

Synchronize with upstream changes

Hopefully you are not the only one on the team doing work, and therefore you should
expect that the main repository may have new and changed content while you are in
the process of working. To synchronize with the latest content from the “upstream”
(IDAES organization) repository, you should periodically run one of the two following
commands:

git pull
OR -- explicit
git fetch --all
git merge upstream/main

You’ll notice that this merge command is using the name of the “upstream” remote
that you created earlier.

Push changes to Github

Once changes are tested and committed, they need to be
synchronized up to Github. This is done with the git push command, which typically
takes no options (assuming you have set up your fork, etc., as described so far):

git push

The output of this command on the console should be an informative, if slightly
cryptic, statement of how many changes were pushed and, at the bottom,
the name of your remote fork and the local/remote branches (which should be the
same). For example:

Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 528 bytes | 528.00 KiB/s, done.
Total 5 (delta 4), reused 0 (delta 0)
remote: Resolving deltas: 100% (4/4), completed with 4 local objects.
To github.com:dangunter/idaes-dev.git
 d535552..fe61fcc devdocs-issue65 -> devdocs-issue65

4. Collaborate

The collaboration phase of our journey, shown in Figure 7, is mostly about communicating what you
did to the other developers. Through the Github “review” mechanism, people will
be able to suggest changes and improvements. You can make changes to the code (other
people can also make changes, see Shared forks), and then push those
changes up into the same Pull Request. When you get enough approving reviews,
the code is merged into the main repository. At this point, you can delete the
“topic branch” used for the pull request, and go back to initiate your
next set of changes.

[image: ../../_images/sw-collaborate-workflow.png]
Figure 7. Collaborate phase workflow

Request review

To request review of a pull request, navigate to the pull request in the main
(e.g., “idaes-dev”) repository and select some names in the “Reviewers”
pull-down on the right-hand side. You need to have two
approving reviews. The reviewers should get an email, but you can also “@” people
in a comment in the pull request to give them a little extra nudge.

See the full code review procedure for more details.

Make changes

You need to keep track of the comments and reviews, and make changes accordingly.
Think of a pull request as a discussion. Normally, the person who made the pull
request will make any requested edits. Occasionally, it may make sense for one
or more other developers to jump in and make edits too, so how to do this is
covered in the sub-section below.

Changes made while the code is being reviewed use the normal Develop
workflow.

Shared forks

Other developers can also make changes in your fork. All they need to do
is git clone your fork (not the main repository), switch to the correct
topic branch, and then git push work directly to that branch. Note since this
does not use the whole pull-request mechanism, all developers working on the
same branch this way need to make sure the git pull to synchronize with updates
from the other developers.

For example, if Jack wants to make some edits on Rose’s fork, on a topic
branch called “changes-issue51” he could do the following:

$ git clone https://github.com/rose/idaes-dev # clone Rose's fork
$ git checkout changes-issue51 # checkout the topic branch
$ echo "Hello" >> README.txt # make some important changes
$ pytest # always run tests!!
$ git add README.txt ; git commit -m "important changes"
$ git push # push changes to the fork

Hopefully it also is obvious that developers working this way have less safeguards
for overwriting each other’s work, and thus should make an effort to communicate
clearly and in a timely manner.

Merge

Once all the tests pass and you have enough approving reviews, it’s time to merge
the code! This is the easy part: go to the bottom of the Pull Request and hit the
big green “merge” button.

Before you close the laptop and go down to the pub, you should tidy up. First,
delete your local branch (you can also delete that branch on Github):

git checkout main # switch back to main branch
git branch -d mychanges-issue3000

Next, you should make sure your main reflects the current state of the upstream
main branch, i.e. go back and synchronize with the upstream remote,
i.e. run git pull.

Now you can go and enjoy a tasty beverage. Cheers!

[image: ../../_images/beer-coffee-cheers-small.png]
Footnotes

	1

	Git has an additional saving mechanism called ‘the stash’.
The stash is an ephemeral storage area for changes that are not ready
to be committed. The stash operates on the working directory
and has extensive usage options.* See the documentation for
git stash [https://git-scm.com/docs/git-stash] for more information.

Developer Standards

Contents

	Developer Standards

	Model Formatting and General Standards

	Headers and Meta-data

	Coding Standard

	Model Organization

	Commenting

	Units of Measurement and Reference States

	Standard Variable Names

	Testing

Model Formatting and General Standards

The section describes the recommended formatting used within the IDAES framework. Users are
strongly encouraged to follow these standards in developing their models in order to improve
readability of their code.

Headers and Meta-data

Model developers are encouraged to include some documentation in the header of their model
files which provides a brief description of the purpose of the model and how it was developed.
Some suggested information to include is:

	Model name,

	Model publication date,

	Model author

	Any necessary licensing and disclaimer information (see below).

	Any additional information the modeler feels should be included.

Coding Standard

All code developed as part of IDAES should conform to the PEP-8 standard.

Model Organization

Whilst the overall IDAES modeling framework enforces a hierarchical structure on models, model
developers are still encouraged to arrange their models in a logical fashion to aid other users
in understanding the model. Model constraints should be grouped with similar constraints, and
each grouping of constraints should be clearly commented.

For property packages, it is recommended that all the equations necessary for calculating a
given property be grouped together, clearly separated and identified by using comments.

Additionally, model developers are encouraged to consider breaking their model up into a number
of smaller methods where this makes sense. This can facilitate modification of the code by
allowing future users to inherit from the base model and selectively overload sub-methods where
desired.

Commenting

To help other modelers and users understand the how a model works, model builders are strongly
encouraged to comment their code. It is suggested that every constraint should be commented
with a description of the purpose of the constraint, and if possible/necessary a reference to a
source or more detailed explanation. Any deviations from standard units or formatting should be
clearly identified here. Any initialization procedures, or other procedures required to get the
model to converge should be clearly commented and explained where they appear in the code.
Additionally, modelers are strongly encouraged to add additional comments explaining how their
model works to aid others in understanding the model.

Units of Measurement and Reference States

Due to the flexibility provided by the IDAES modeling framework, there is no standard set of
units of measurement or standard reference state that should be used in models. This places the
onus on the user to understand the units of measurement being used within their models and to
ensure that they are consistent.

The standard units and reference states are described in the
user guide.

Standard Variable Names

The standard variable names are described in the
user guide.

Testing

The testing standards are included here.

Testing

Testing is essential to the process of creating software.
“If it isn’t tested, it doesn’t work” is a good rule of thumb.

For some specific advice for adding new tests in the IDAES code,
see IDAES Contributor Guide.

There are different kinds of tests: functional, acceptance, performance, usability.
We will primarily concern ourselves with functional testing here, i.e. whether the
thing being tested produces correct outputs for expected inputs, and gracefully handles
everything else. Within functional testing, we can classify
the testing according to the axes of time,
i.e. how long the test takes to run, and scope, i.e. the amount of the total
functionality being tested. Along these two axes we will pick out just two
points, as depicted in Figure 1. The main tests you will write are “unit tests”,
which run very quickly and test a focused amount of functionality. But sometimes
you need something more involved (e.g. running solvers, using data on disk), and here
we will label that kind of test “integration tests”.

[image: ../../_images/testing-conceptual.png]
Figure 1. Conceptual space of functional testing

Unit tests

Testing individual pieces of functionality, including the
ability to report the correct kind of errors from bad inputs. Unit tests
must always run quickly. If it takes more than 10 seconds, it is not a unit
test, and it is expected that most unit tests take well under 1 second.
The reason for this is that the entire unit test suite is run on every
change in a Pull Request, and should also be run relatively frequently
on local developer machines. If this suite of hundreds of tests takes
more than a couple of minutes to run, it will introduce a significant
bottleneck in the development workflow.

For Python code, we use the pytest testing framework. This is
compatible with the built-in Python unittest [https://docs.python.org/3.7/library/unittest.html]
framework, but has many nice features that make it easier and more powerful.

The best way to learn how to use pytest is to look at existing unit tests, e.g.
the file “idaes/core/tests/test_process_block.py”. Test files are
found in a directory named “test/” in every Python package (directory with an “__init__.py”).
The tests are named “test_{something}.py”; this naming convention is important so
pytest can automatically find all the tests.

When writing your own tests, make sure to remember to keep each test
focused on a single piece of functionality. If a unit test
fails, it should be obvious which code is causing the problem.

Tagging tests

Since we use pytest for our testing, we have access to the very nice
pytest “tag” feature, which uses Python decorators [https://www.python.org/dev/peps/pep-0318/]
to add labels to tests.

An example of a test with a tag is (assume import pytest at the top of every test module):

@pytest.mark.unit
def test_something():
 assert 2. + 2. == 4.

Every test should be decorated with @pytest.mark.<level> where <level> has one of three values:

	
	unit
	Test runs quickly (under 2 seconds) and has no network/system dependencies. Uses only libraries installed by default with the software

	
	component
	Test may run more slowly (under 10 seconds, or so), e.g. it may run a solver or create a bunch of files.
Like unit tests, it still shouldn’t depend on special libraries or dependencies.

	
	integration
	Test may take a long time to run, and may have complex dependencies.

The expectation is that unit tests should be run by developers rather frequently, component tests should be run
by the continuous integration system before running code, and integration tests are run across the codebase
regularly, but infrequently (e.g. daily).

Sometimes you may also want to run tests on only a particular platform. We currently support Windows,
Linux, and (to a lesser extent) MacOS. To restrict a test to one or more of these platforms, typically
Linux-only, use @pytest.mark.<platform>, or @pytest.mark.no<platform>
where <platform> has one of three values:

	
	linux / nolinux
	Linux systems, regardless of distribution, e.g. CentOS, Ubuntu, Debian, et al.

	
	win32 / nowin32
	Windows 10

	
	darwin / nodarwin
	Mac OSX

As you may have guessed, the “no<platform>” version means that any operating system except “<platform>”
will run the test. You can combine these tags as you wish, though until we have more than three options
it is not necessary.

Here are a few examples:

@pytest.mark.unit
def test_something():
 print("unit test, all platforms")

@pytest.mark.unit
@pytest.mark.nowin32
def test_something():
 print("unit test, all platforms except Windows")

@pytest.mark.component
@pytest.mark.linux
def test_something():
 print("component test, linux-only")

@pytest.mark.integration
@pytest.mark.nodarwin
def test_something():
 print("integration test, all platforms except MacOS")

Mocking

Mocking is a common, but important, technique for avoiding dependencies that make your tests
slow, fragile, and harder to understand. The basic idea is to
replace dependencies with fake, or “mock”, versions of them that will provide just
enough realism for the test. Python provides a library, unittest.mock [https://docs.python.org/dev/library/unittest.mock.html],
to help with this process by providing objects that can report how they were used,
and easily pretend to have certain functionality (returning, for example, fixed values).
To make this all more concrete, consider a simple problem where you want to test
a function that makes a system call (in this case, os.remove):

file: mymodule.py
import os
def rm(filename):
 os.remove(filename)

Normally, to test this you would create a temporary file, and then see if it got
removed. However, with mocking you can take a different approach entirely:

file: test_mymodule.py
from mymodule import rm
from unittest import mock

@mock.patch('mymodule.os')
def test_rm(mock_os):
 rm("any path")
 # test that rm called os.remove with the right parameters
 mock_os.remove.assert_called_with("any path")

Here, we have “patched” the os module that got imported into “mymodule” (note: had
to do mymodule.os instead of simply os, or the one mymodule uses would not get patched)
so that when rm calls os.remove, it is really calling a fake method in mock_os
that does nothing but record how it was called. The patched module is passed in to
the test as an argument so you can examine it. So, now, you are not doing any OS
operations at all! You can imagine how this is very useful with large files or
external services.

Integration tests

Integration tests exercise an end-to-end slice of the overall functionality. At this
time, the integration tests are all housed in Jupyter Notebooks, which serve
double-duty as examples and tutorials for end users. We execute these notebooks
and verify that they run correctly to completion at least once before each new
release of the software.

Code coverage

The “coverage” of the code refers to what percentage of
the code (“lines covered” divided by total lines) is executed by the
automated tests. This is important because passing automated tests is
only meaningful if the automated tests cover the majority of the code’s
behavior. This is not a perfect measure, of course, since simply
executing a line of code under one condition does not mean it would
execute correctly under all conditions. The code coverage is evaluated
locally and then integrated with Github through a tool called Coveralls [https://coveralls.io].

Code Review

“It’s a simple 3-step process. Step one: Fix! Step two: It! Step three:
Fix it!” – Oscar Rogers (Kenan Thompson), Saturday Night Live, 2/2009

Code review is the last line of defense between a mistake that the IDAES
team will see and a mistake the whole world will see. In the case of
that mistake being a leak of proprietary information, the entire project
is jeopardized, so we need to take this process seriously.

Summary

Warning

This section is an incomplete set of notes

Every piece of code must be reviewed by at least two people.

In every case, one of those people will be a designated “gatekeeper” and
the one or more others will be “technical reviewers”.

The technical reviewers are expected to consider various aspects of the
proposed changes (details below), and engage the author in a discussion
on any aspects that are deemed lacking or missing.

The gatekeeper is expected to make sure all criteria have been met, and
actually merge the PR.

Assigning Roles

The gatekeeper is a designated person, who will always be added to
review a Pull Request (PR)

Gatekeeper is a role that will be one (?) person for some period like a
week or two weeks

The role should rotate around the team, it’s expected to be a fair
amount of work and should be aligned with availability and paper
deadlines, etc.

The originator of the PR will add as reviewers the gatekeeper and 1+
technical reviewers.

Originator responsibilities

The originator of the PR should include in the PR itself information
about where to find:

Changes to code/data

Tests of the changes

Documentation of the changes

The originator should be responsive to the reviewers

Technical reviewer responsibilities

The technical reviewer(s) should look at the proposed changes for

Technical correctness (runs properly, good style, internal code
documentation, etc.)

Tests

Documentation

No proprietary / sensitive information

Until they approve, the conversation in the PR is between the technical
reviewers and the originator (the gatekeeper is not required to
participate, assuming they have many PRs to worry about)

Gatekeeper responsibilities

The gatekeeper does not need to engage until there is at least one
approving technical review.

Once there is, they should verify that:

Changes do not contain proprietary data

Tests are adequate and do not fail

Documentation is adequate

Once everything is verified, the gatekeeper merges the PR

Automated Checks

The first level of code review is a set of automated checks that must pass
before the code is ready for people to review it. These checks will run
on the initiation of a pull request and on every new commit to that pull
request that is pushed to Github (thus the name “continuous
integration”).

The “continuous integration” of the code is hosted by an online service
– we use CircleCI [https://circleci.com] – that can automatically
rerun the tests after every change (in this case, every new Pull Request
or update to the code in an existing Pull Request) and report the
results back to Github for display in the web pages. This status
information can then be used as an automatic gatekeeper on whether the
code can be merged into the main branch – if tests fail, then no merge
is allowed. Following this procedure, it is not possible for the main
branch to ever be failing its own tests.

Docker Container

This page documents information needed by developers for working with the IDAES
docker container.

As is expected by Docker, the main file for creating the Docker
image is the “Dockerfile” in the top-level directory.

docker-idaes script

You can build new Docker images using the create option to the
docker-idaes script. For example:

./docker-idaes create

You need to have the IDAES installation activated. The script will automatically
find the current version and attempt to build a Docker image with the same version.
If it detects an existing image, it will skip the image build. Next, the script will
try to use docker save to save the image as a compressed archive. This will
also be skipped if an existing image file, with the same version as the “idaes”
Python package, is detected.

Pushing an image to S3

The Docker images are stored on Amazon S3. Before you can upload a new image,
you need to be part of the “IDAES-admin” group that is part of Amazon’s
IAM (Identity Access Management) system. Please contact one of the core
developers to learn how to join this IAM group.

Once you have the IAM keys, you need to create a file ~/.aws/credentials
that has the access key id and key from the IAM account. It will look like this:

[default]
aws_access_key_id = IDGOESHERE
aws_secret_access_key = accesskeygoeshere

The values for the ID and Access key are available from the AWS “IAM”
service console.

Next you need to use the AWS command-line tools to copy the local image
up to Amazon S3. For example, if the image was version “1.0.1”, you would
use the following command:

aws s3 cp idaes-pse-docker-1.0.1.tgz \
 s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz

If the new image should be the latest, you also need to do an S3 -> S3 copy to
create a new latest image:

aws s3 cp s3://idaes/idaes-pse/idaes-pse-docker-1.0.1.tgz \
 s3://idaes/idaes-pse/idaes-pse-docker-latest.tgz

Glossary

	API
	Acronym for “Application Programming Interface”, this is the
set of functions used by an external program to invoke the
functionality of a library or application. For IDAES, it usually
refers to Python functions and classes/methods in a Python module.
By analogy, the APIs are to the IDAES library what a steering wheel,
gearshift and pedals are to a car.

	CRADA
	Cooperative Research and Development Agreement. A legal agreement between
two or more parties that involves a statement of work and terms for sharing
non-public data.

	NDA
	Non-Disclosure Agreement. A legal agreement between two or more parties
that involves terms for sharing non-public data.

Developing Custom Models

It is difficult to build a single model library that will suit all modeling needs, and thus users will inevitably encounter situations where they need to create new models to represent their processes. The IDAES Process Modeling Framework has been developed with this in mind, and all components of the framework have been designed to be fully accessible and modifiable. This section of the documentation will explain how users can develop new models, or modify existing models, for use within the IDAES modeling environment.

	Creating New Modeling Components

	Defining New Model Classes

	Inheriting from Existing Models

	Config Blocks

	The build Method

	Types of Models

Creating New Modeling Components

All models within the IDAES Process Modeling Framework, be they models of unit operations of thermodynamic properties, are constructed in the same way and user defined models follow the same structure. Each model component is a set of instructions on how to assemble a Pyomo ‘Block’ containing the necessary variables, expressions and constraints to describe the desired process. These instructions are contained within Python classes which can be written and modified by the user.

Details on what is required when constructing custom models of different types will be provided in subsequent sections of this documentation, however there are some steps common to all types of models which will be discussed here.

Defining New Model Classes

There is a significant amount of work that has to be done behind the scenes in order to create a new model component and integrate it into the IDAES modeling framework. Rather than force the user to understand and implement this themselves, IDAES provides a number of standard tools which users can use to automate this when creating new models. These tools are used when declaring new components, and should be used in most cases when a user is creating a new model (exceptions are mentioned in the detailed documentation for each type of model).

An example of declaring new model (named NewModel) is shown below:

@declare_process_block_class("NewModel")
class NewModelData(BaseClass):

The first part of the declaration is the declare_process_block_class decorator, which automates all the code required to create a new type of Pyomo Block. This decorator needs to be provided with a name for the new model (NewModel). Understanding the details of class decoration within Python and the function of the declare_process_block_class decorator are not necessary for developing new models, however users who wish to read more can see the technical specifications.

The second part of the declaration creates a NewModelData class which inherits from an existing BaseClass. The NewModelData class needs to contain the instructions necessary for building the desired model and must be populated by the user. In practice, each type of model (unit operation, thermophysical properties, etc.) has a set of common tasks which appear in most models of that type. To assist users with developing new model and reduce the need for them to rewrite these common tasks, IDAES provides a set of base classes which contain many of these common instructions. Model developers can use these base classes as a foundation for their new models using what is referred to as “inheritance”, as shown in the example above. In doing so, the new model class automatically gains access to all of the common instructions in the base class which can be used in constructing the new model.

Inheriting from Existing Models

In addition to inheriting from the IDAES base classes, it is also possible to inherit from existing models, which provides an easy way to build off an existing model instead of starting afresh. When inheriting from an existing model, you gain access to all the instructions written for constructing that model and can then add to or modify those instructions as needed. All of the models in the core IDAES model library were written with this in mind, and were designed to provide a core model representing the simplest representation of each piece of process equipment possible to allow users to easily build upon these as a foundation.

A useful concept when modifying existing models through inheritance is “overloading” of methods. Any method defined by the inherited class can be overloaded and replaced by a new method of the same name defined in the new class. Thus, it is possible to selectively modify and replace parts of the existing model if they were defined using methods. For example, suppose there is an existing model that meets most of a user’s needs, but the user would like to use a different equation for efficiency. If the existing model defined a method specifically for writing the efficiency constraint, then this can be replaced by inheriting the existing model and writing a new method for efficiency with the desired equation. This will overload the method in the original model, creating a new model which uses the desired equation. This requires little effort on the part of the user, but does require the original model to use modular methods for each performance equation however.

Config Blocks

Whilst the model class contains the instructions necessary to build a model object, it is often necessary to provide additional information when creating an instance of a model. One example of this is informing a unit model of which property package to use for a given instance. When creating a new model class, it is necessary to define the information that a user may pass to the class when creating an instance of the new model, which is done using configuration blocks (config blocks for short) – this is where the information in the “default” keyword is sent when an instance of a model is created.

Configuration blocks are defined by declaring a CONFIG object for each new model data class, as shown in the example below. The CONFIG object should be an instance of a Pyomo ConfigBlock.

@declare_process_block_class("NewModel")
class NewModelData(BaseClass):

CONFIG = BaseClass.CONFIG()

Each type of model has a set of expected inputs (or arguments) which are determined by the type of model and can be inherited from the appropriate base class (as shown above). Users may also add custom configuration arguments to their models as needed by declaring new entries to the CONFIG block as shown below:

from pyomo.common.config import ConfigValue

@declare_process_block_class("NewModel")
class NewModelData(BaseClass):
 CONFIG = BaseClass.CONFIG()
 CONFIG.declare("new_argument", ConfigValue(
 default = # default value for argument,
 domain = # condition input must satisfy,
 description = "short description of argument",
 doc = "longer description of argument"))

Note

Configuration arguments are set when an instance of a model is created and are generally only used at build-time. That is, once a model has been constructed changing a configuration argument has no effect on the model structure.

The build Method

Finally, the core of any IDAES model class is the build method, which contains the set of instructions to be executed when a model is created. The build method acts as the rule for constructing the resulting Pyomo Block, and needs to contain the instructions necessary for constructing the variable, expressions and constraints which describe the model. The build method is written in Python code and should construct the necessary Pyomo components, and may make use of sub-methods to modularize the model construction.

In almost all cases, the first instruction in a build method should be to call the build method of the inherited (base) class. This is necessary to execute the instructions in the base class, and can be done with the following line of code:

super().build()

Types of Models

	Custom Unit Models

	Custom Property Packages

	Custom Reaction Packages

Custom Unit Models

	UnitModelBlockData

	Unit Model Configuration

	Unit Model build Method

	Control Volumes

	Unit Model Initialization

	Unit Model Report

	Tutorials

UnitModelBlockData

The starting point for all unit models within the IDAES Process Modeling Framework is the UnitModelBlockData base class. This class contains a number of methods to assist users with creating new unit models including:

	checking and validating the “dynamic” and “has_holdup” configuration arguments to ensure consistency,

	adding Port objects to the model,

	creating simple material balances between states (equal flow of each component in each phase), and,

	a method for initializing simple unit models.

More details on the UnitModelBlockData class can be found in the technical specifications.

Unit Model Configuration

Configuration arguments in unit models allow model developers to provide the end-user with the ability to configure the model to suit the needs of the flowsheet they are simulating. The most common aspects that need to be configured are:

	whether the model should be dynamic or steady-state, and

	what property package to use when calculating thermophysical properties.

The UnitModelBlockData class contains a simple configuration block which includes two configuration arguments; “dynamic” and “has_holdup”. These arguments are required for any model which is expected to be used in both steady-state and dynamic flowsheets and are used to determine whether accumulation and holdup terms should be constructed and included in the material balance equations. There are some situations whoever where a model is inherently steady-state (even if it is included in a dynamic flowsheet), notably those where outlet conditions are a function solely of the inlet conditions. Examples of these include:

	unit operations involving equilibrium where the outlet condition can be calculated directly from the inlet condition.

	unit operations with negligible holdup where (total) flow out of the unit is always equal to the (total) flow in.

In general, a unit model is not written with a specific flowsheet or set of thermophysical property calculations in mind, thus it is necessary to provide a configuration argument (or arguments in cases where multiple streams interact) to allow the end-user to specify a property package to use with the model. The example below shows how to declare a configuration argument for a single property package, along with a second argument that allows users to pass configuration arguments to the instances of the property packages when they are created.

@declare_process_block_class("NewUnit")
class NewUnitDataData(UnitModelBlockData):

 CONFIG = UnitModelBlockData.CONFIG()

 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations."""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s) and used when constructing these."""))

For unit models involving multiple property packages, or those that include reaction packages, additional pairs of configuration arguments are required for each of these. Model developers must provide unique names for each configuration argument, and are encourage to use meaningful names to assist end-users in understanding what package should be linked to each argument.

Model developers may also declare additional configuration arguments to give end-users the ability to change the behavior of different parts of the model. For example, the core IDAES Unit Model Library makes use of these to provide flexibility in the form of the balance equations. Use of additional configuration arguments is entirely optional.

Unit Model build Method

The build method for a unit model must include all the instructions necessary for constructing the representation of the unit operation. This generally involves the following steps:

	Calling super().build() to trigger the behind-the-scenes code.

	Adding any variables and constraints required to describe the system geometry.

	Adding State Blocks to the model to represent each of the material states in the system.

	Adding the necessary material balances and associated variable to describe the flow of material between each state.

	Adding the necessary energy balances and associated variable to describe the flow of energy between each state.

	Adding the necessary momentum balances and associated variable to describe the flow of momentum between each state.

	Adding any additional performance equations and associated variable that govern the behavior of the unit operation.

	Adding the required inlet and outlet Ports to allow the unit model to be included in a flowsheet.

For some applications, not all of these steps will be required (e.g. a process in which pressure drop is negligible may be able to skip adding momentum balances).

The above steps represent a significant amount of work, and in many cases require a detailed understanding of how the IDAES framework is structured. To reduce the effort and knowledge required to create new models, the framework provides a number of tools to automate these steps for common cases. Users are encouraged to familiarize themselves with the methods available in UnitModelBlockData and the use of control volumes.

Control Volumes

The IDAES Process Modeling Framework includes tools to assist users with creating new models in the form of the Control Volume libraries. These libraries contain methods for performing the common task associated with building unit models, such as creating material, energy and momentum balances. Users are free to choose whether or not to use these libraries, but are encouraged to understand what is available in these as they can greatly reduce the amount of effort required by the user.

The IDAES Process Modeling Framework currently includes two types of Control Volumes:

	ControlVolume0D for inlet-outlet type models where spatial variation are not significant.

	ControlVolume1D for models where spatial variation in one-dimension are required.

Unit Model Initialization

Whilst the UnitModelBlockData class contains a pre-built initialize method, this method is relatively simple and is unlikely to work for more complex models. For these situations, model developers will need to write their own initialize methods as part of their new unit model.

To create a custom initialization routine, model developers must create an initialize method as part of their model, and provide a sequence of steps intended to build up a feasible solution. Developing initialization routines is one of the hardest aspects of model development, and generally involves starting with a simplified form of the model and progressively adding complexity. Initialization routines generally make use of Pyomo’s tools for activating and deactivating constraints and often involve solving multiple sub-problems whilst building up an initial state.

The example below shows the general form used when declaring a new initialization method:

def initialize(blk, state_args=None, outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):

	blk – local name for the block to be initialized.

	state_args – initial guesses for the state variables. The form of this may vary depending on the number and type of inlets to the unit model.

	outlvl – optional argument to allow users to control the amount of diagnostic output from the initialization procedure. His requires the use of the IDAES logger tools to function.

	solver – allows the user to set a solver to use for initialization.

	optarg – dict of options to pass to the solver; used to adjust solver behavior.

Unit Model Report

Users are likely already aware of the report method which is available in all IDAES models and prints a summary of the current state of a given model. This functionality is also part of UnitModelBlockData and is thus included in all custom unit models, however model developers need to define what information should be included in the output.

The report method will automatically search for and identify all Ports in the model to be included in the summary stream table, however model developers must identify any performance variables they wish to include in the summary. This is done by declaring a _get_performance_contents method as shown in the example below:

def _get_performance_contents(self, time_point=0):
 var_dict = {"display name": self.var[time_point]}
 expr_dict = {"display name": self.expr[time_point]}
 param_dict = {"display name": self.param[time_point]}

 return {"vars": var_dict, "exprs": expr_dict, "params": param_dict}

The _get_performance_contents method should take two arguments, the first being the model object and the second being a time point at which to report the model state. The method should return a dictionary-of-dictionaries with one to three keys; “vars”, “exprs” and “params”. The entries from these will be included in the model summary under the headings of Variables, Expressions and Parameters respectively.

Tutorials

Tutorials demonstrating how to create custom unit models are found
here.

Custom Property Packages

	Property Package Classes

	Build-on-Demand Properties

	The Physical Parameter Block

	Physical Parameter Block Configuration

	The Physical Parameter Block build Method

	Defining Property Metadata

	Setting Default Units

	Setting Properties Metadata

	The State Block

	The State Block Data class

	State Block Data Configuration Arguments

	The State Block build Method

	State Variables and Properties

	Required Methods

	The State Block Methods class

	Declaration and Base Class

	The initialize and release_state Methods

	Tutorials

Warning

This section is currently being developed

Physical property packages form the core of all IDAES process models, and the ability for users to develop their own property formulations is a key aspect of the IDAES modeling paradigm. In order to support the flexibility of the IDAES Process Modeling Framework, property packages define a number of key aspects that inform the eventual structure of the final process model. This however places the burden of making these decisions on the developer of each property package, which are implemented as part of the property package classes.

Property Package Classes

As users of the IDAES Process Modeling Framework, you are likely already aware that property packages (of both types) consist of two related model components; in this case the Physical Parameter Block and the State Block. However, when creating a new thermophysical property package, developers need to define three (rather than two) new classes.

The first of these classes is a PhysicalParameterBlock class, which is responsible for constructing the Physical Parameter Block. However, two classes are required for defining the State Block; a StateBlockMethods class and a StateBlockData class. The reason for this is because State Blocks are always indexed (by time and occasionally by space) . The StateBlockData class represents an individual state at a point in space and time (i.e. one element of the indexed StateBlock), and as such contains a set of state variables and the constraints necessary for calculating the desired thermophysical properties at that state. However, we often want to perform actions on the entire set of states (i.e. StateBlockDatas) in one go, such as during initialization. Whilst we could initialize each state individually, as the process for each state is generally identical except for values, it is much more efficient to perform the same set of instructions on all state simultaneously. The StateBlockMethods serves this purpose by defining the methods that should be applied to multiple StateBlockDatas simultaneously. When a model requires a State Block, these two classes are combined to produce the final model. The distinction and use of the StateBlockMethods and StateBlockData classes will be discussed further later in this documentation.

Build-on-Demand Properties

Before moving onto a discussion of the contents of each of the three classes, it is important to introduce the concept of build-on-demand properties. Property packages generally tend to include methods for a number of properties, but not all of these will be required by every unit model. In order to reduce model complexity and avoid calculating properties which are not required for a given unit operation, the IDAES framework supports the concept of build-on-demand properties, where the variables and constraints related to a given property are only constructed if called for in a given state.

It must be noted that this is an advanced feature and is entirely optional. Whilst it can reduce the complexity of individual models, it also increases the complexity of the model instructions and can increase the chance of errors during model constructions. Property package developers should decide up front if they wish to implement build-on-demand properties for their property packages, and which properties this will be implemented for (i.e. it is possible to use the build-on-demand infrastructure) for a subset of the properties within a package.

The Physical Parameter Block

The first part of the physical property package is the PhysicalParameterBlock, which defines the global parameters and components of the property package. This includes:

	a reference to the StateBlock class associated with the PhysicalParameterBlock,

	the chemical species or components in the material,

	the thermodynamic phases of interest,

	the base units of measurement for the property packages,

	the thermophysical properties supported by the property package, and

	the parameters required to calculate the thermophysical properties.

The starting point for creating a new PhysicalParameterBlock is shown in the example below. The model developer needs to declare a new class which inherits from the PhysicalParameterBlock base class, decorated using the declare_process_block_class decorator.

@declare_process_block_class("NewPhysicalParameterBlock")
class NewPhysicalParameterData(PhysicalParameterBlock):

 def build(self):
 super().build()

 @classmethod
 def define_metadata(cls, obj):
 obj.add_properties({# properties}})
 obj.add_default_units({# units})

The NewPhysicalParameterData class needs to contain a build method, and may also include a configuration block and a define_metadata classmethod as shown above. These methods and their contents will be explained below.

Physical Parameter Block Configuration

Like all IDAES models, Physical Parameter Blocks can have configuration arguments which can be used to adjust the form of the resulting model. The default configuration block which comes from the PhysicalParameterBlock base class contains a single configuration argument:

	“default_arguments” - this configuration argument allows users to specify a set of default configuration arguments that will be passed to all StateBlocks created from an instance of a parameter block.

The Physical Parameter Block build Method

The build method in the NewPhysicalParameterBlock class is responsible for constructing the various modeling components that will be required by the associated StateBlocks, such as the sets components and phases that make up the material, and the various parameters required by the property calculations. The build method is also responsible for setting up the underlying infrastructure of the property package and making a link to the associated StateBlock class so that the modeling framework can automate the construction and linking of these.

The first step in the build method is to call super().build() to trigger the construction of the underlying infrastructure using the base class’ build method.

Next, the user must declare an attribute named “_state_block_class” which is a pointer to the associated StateBlock class (creation of this will be discussed later). An example of this is shown below, where the associated State Block is named NewStateBlock.

def build(self):

 super().build()
 self._state_block_class = NewStateBlock

The next step in the build method is to define the chemical species and phases necessary to describe the material of interest. This is done by adding Component and Phase objects, as shown below.

def build(self):
 self.benzene = Component()
 self.toluene = Component()

 self.liquid = LiquidPhase()
 self.vapor = VaporPhase()

Note

The IDAES Process Modeling Framework supports a number of different types of Component and Phases objects, as discussed in the associated documentation. Users should use the type most appropriate for their applications. Also note that whilst Component and Phase objects contain configuration arguments, these are primarily for use by the Generic Property Package framework, and are not required for custom property packages.

Finally, the build method needs to declare all the global parameters that will be used by the property calculations. By declaring these in a single central location rather than in each State Block, this reduces the number of parameters present in the model (thus reducing memory requirements) and also facilitates parameter estimation studies using these parameters.

Note

Whilst we generally use the term “parameters” to describe these global coefficients used in property correlations, it is often better to declare these as Pyomo Var objects with fixed values (rather than as Param objects). The reason for this is because, despite the name, it is not possible to estimate the value of Params using parameter estimation tools (as their value is concrete and cannot be changed).

Defining Property Metadata

The last part of creating a new Physical Parameter block is to define the metadata associated with it. The properties metadata serves three purposes:

	The default units metadata is used by the framework to automatically determine the units of measurement of the resulting property model, and automatically convert between different unit sets where appropriate.

	The properties metadata is used to set up any build-on-demand properties,

	The metadata is also used by the Data Management Framework to index the available property packages to create a searchable index for users.

Setting Default Units

The most important part of defining the metadata for a property package is to set the default units of measurement for each of the 7 base quantities (time, length, mass, amount, temperature, current (optional) and luminous intensity (optional)). These units are used by the modeling framework to determine the units of measurement for all other quantities in the process that are related to this property package. Units must be defined using Pyomo Units components, as shown in the example below:

from pyomo.environ import units

@classmethod
def define_metadata(cls, obj):
 obj.add_default_units({'time': units.s,
 'length': units.m,
 'mass': units.kg,
 'amount': units.mol,
 'temperature': units.K})

Setting Properties Metadata

The primary purpose of the properties metadata is to set up the build-on-demand system used to selectively construct only those properties required by a given unit operation. In order to do this, the user needs to add each property they wish to build-on-demand along with the name of a method that will be called whenever the property is required (this method will be created later as part of the StateBlockData class). Users are also encouraged to list all properties supported by their property packages here, setting None as the method associated with the property for those which are always constructed. An example for both uses is shown below:

@classmethod
def define_metadata(cls, obj):
 obj.add_properties({
 'property_1': {'method': method_name}, # a build-on-demand property
 'property_2': {'method': None}}) # a property that will always be constructed

Note

The name of a property in the metadata dictionary must match the name of the property component (normally a variable) that will be called for. These names should be drawn form the standard naming conventions.

The State Block

The second part of a thermophysical property package is the StateBlock class, which as mentioned earlier is defined using two user-written classes; the StateBlockData class and the StateBlockMethods class. Declaration of the StateBlock class is similar to that of other modeling classes, but makes use of a special aspect of the declare_process_block_class decorator as shown in the example below.

@declare_process_block_class("NewStateBlock",
 block_class=NewStateBlockMethods)
class NewStateBlockData(StateBlockData):

 def build(self):
 super().build()

As can be seen, the declaration of the new StateBlock class (NewStateBlock) looks similar to that of other modeling class declarations, where the declare_process_block_class is applied to a user defined NewStateBlockData class. However, in this case we also provide an additional argument to the decorator; the “block_class” argument allows us to attach a set of methods declared in a user-defined class (in this case NewStateBlockMethods) to the NewStateBlock class, which can be applied across all members of an indexed NewStateBlock (methods in the NewStateBlockData class can only be applied to a single indexed element).

The State Block Data class

As part of the core of the IDAES Process Modeling Framework, the StateBlockData class is responsible not only for defining the variables, expressions and constraints which describe the thermophysical properties of the material in question, but also providing information to the rest of the Process Modeling Framework on how the higher levels models should be formulated. As such, StateBlockData classes need to define more methods than any other component class. The base class for developing new StateBlockData classes is StateBlockData, which includes a configuration block with a number of critical configuration arguments as well as the code necessary for supporting “build-on-demand properties”.

State Block Data Configuration Arguments

The StateBlockData base class configuration contains three configuration arguments that are expected by the modeling framework and must be included in and user defined StateBlockData. These configuration arguments are:

	“parameters” – this argument is used to provide a link back to the associated PhysicalParameterBlock, and is generally automatically passed to the StateBlock when it is constructed.

	“defined_state” – this argument is used to indicate whether this state represents a point in the process where all state variables are defined. The most common case for this is for inlets to unit models, where all inlets states are known from the outlet of the previous unit model. In these cases, it is not possible to write certain constraints, such as the sum of mole fractions, without over specifying the system of equations; this argument identifies these cases so that generation of these constraints can be automatically skipped.

	“has_phase_equilibrium” – this argument indicates whether phase equilibrium will be considered for this state. Phase equilibrium constraints decrease the degrees of freedom in the system thus it is important to determine when and where these constraints should be written. Note that equilibrium constraints can never be written for cases where the state is fully defined (as above), thus both this and the defined_state arguments must be considered when determining whether to include equilibrium constraints.

The State Block build Method

As with all IDAES components, the build method forms the core of a StateBlockData class, and contains the instructions on how to construct the variables, expressions and constraints required by the thermophysical model. As usual, the first step in the build method should be to call super().build() to trigger the construction of the underlying components required for State Blocks to function.

State Variables and Properties

The most important part of the construction of a State Block is defining the necessary set of variables, expression and constraints that make up the property model. There are many different ways in which these can be defined and formulated, and there is no single “best” way to do this; different approaches may work better for different applications. However, there are some general rules that should be followed when defining the variables which make up a State Block.

	All state variables and properties should use the IDAES naming conventions. Standard names allow linking between different types of models to be automated, as no cross-referencing of names is required.

	All properties within a property package should use a consistent set of base units. This is most easily accomplished by selecting a set of units for the 7 base SI quantities (time, length, mass, amount, temperature, current and luminous intensity) and deriving units for all quantities from these. Modelers should also select units based solely on convenience or ease of use – scaling of variables and equations is better handled separately using the IDAES scaling tools.

Beyond these requirements, modelers are free to choose the form of their model to best suit theirs needs and make the most tractable problem possible. Modelers are also free to combine variable and constraints with expression for some quantities as needed. The IDAES Process Modeling Framework is concerned only that the expected quantities are present (i.e. the expected variable/expression names), not their exact form or how they are calculated.

As described throughout this page, IDAES supports “build-on-demand” for property correlations. Details on how to define methods for building properties on demand is demonstrated in the tutorials (see link at bottom of page).

Required Methods

As the foundation of the entire Process Modeling Framework, the definition of a new StateBlockData class needs to include a number of methods that the framework relies on for determining the formulation of the higher level models.

Below is a list of the required methods, along with a short description.

	get_material_flow_basis(block) – this method is used to define the basis on which material balance terms will be expressed. This is used by the framework to automatically convert between mass and mole basis if required, and the method needs to return a MaterialFlowBasis Enum.

	get_material_flow_terms(block, phase, component) – this method is used to determine the form of the material flow terms that are constructed as part of the material balance equations in each unit model. This method needs to take three arguments; a reference to the current state block, a phase name and a component name, and must return an expression for the material flow term for the given phase and component.

	get_material_density_terms(block, phase, component) – similar to the get_material_flow_terms method, this method is used to determine the form of the density term which should be used when constructing material holdup terms in the material balances. This method also needs to take three arguments; a reference to the current state block, a phase name and a component name, and must return an expression for the material density term for the given phase and component.

	get_material_diffusion_terms(block, phase, component) – Support for this is not currently implemented.

	get_enthalpy_flow_terms(block, phase) – this method is used to determine the form of the enthalpy flow terms that are constructed as part of the energy balance equations in each unit model. This method needs to take two arguments; a reference to the current state block and a phase name, and must return an expression for the enthalpy flow term for the given phase and component.

	get_energy_density_terms(block, phase) – this method is used to determine the form of the energy density terms that are required for the holdup terms in the energy balance equations. This method needs to take two arguments; a reference to the current state block and a phase name, and must return an expression for the energy density term for the given phase and component. Note that the holdup/density term needs to be in terms of internal energy, not enthalpy.

	get_energy_diffusion_terms(block, phase) – Support for this is not currently implemented.

	default_material_balance_type(block) – this method is used to set a default for the type of material balance to be written by a Control Volume if the user does not specify which type to use. This method needs to return a MaterialBalanceType Enum.

	default_energy_balance_type(block) – this method is used to set a default for the type of energy balance to be written by a Control Volume if the user does not specify which type to use. This method needs to return a EnergyBalanceType Enum.

	define_state_vars(block) – this method is used to define the set of state variables which should be considered the state variables for the property package, and is used in a number of methods associated with model initialization to determine which variables should be fixed. This method must return a Python dict, where the keys are the variable name as a string, and the values are the variables.

	define_port_members(block) – similar to the define_state_vars method, this method is used to define what variables should be part of the inlet/outlet ports of a unit model. In many cases, these variables are equivalent to the state variables of the property package and if so this method can be skipped (if undefined define_state_vars is called instead). This method is similar to the one in the above method, however in this case the key names can be defined by the user for improved readability (instead of having to be the variable name).

	define_display_vars(block) – similar again to the define_state_vars method, this method is used to define a set of variables which should be used when generating the output of the report method for this property package. Again, this is often the same as the state variables, but allows modelers to include additional variables beyond just the state variables (or port members). Similarly to the define_port_members method, this method can be skipped (in which case it defaults to define_state_vars) and the key names in the dict can be defined by the user.

The State Block Methods class

The purpose of the StateBlockMethods class is to define methods which can be applied to to an entire set of indexed StateBlocks simultaneously. Whilst the StateBlockData class contain the instructions for how to build the variables and constraints that describe the state of a material at a single point in space and time, the StateBlockMethods class defined methods for interacting with multiple states across space and time simultaneously. The most common application for this is during initialization of StateBlocks, where the same set of instructions needs to to be performed on each indexed state; whilst this could be done by iterating over each state and performing the set of instructions, it is generally more efficient to apply the instructions simultaneously across all states.

Declaration and Base Class

Due to the way the StateBlockMethods class is provided to the declare_process_block_class decorator on the NewStateBlockData class, this is one of the few cases where the decorator is not required when declaring a class within IDAES. An example of declaring a new StateBlockMethods class is shown below, using the StateBlock base class:

class NewStateBlockMethods(StateBlock):

As the StateBlockMethods class is designed to contain methods that can be applied to multiple existing StateBlockData object, rather than construct a model itself, the StateBlockMethods class does not need a build method either, nor is it necessary to call super().build() as is normal for other modeling components.

Instead, the StateBlockMethods class should contain a set of methods which can be called and applied to an indexed StateBlock as required. The two methods that must be declared are:

	initialize

	release_state

The initialize and release_state Methods

When initializing a unit model, most IDAES models use a hierarchical approach where each state in the model (i.e. each StateBlockData) is first initialized at some initial state, after which the unit model attempts to build up and solve the material, energy and momentum balances, etc. The purpose of the initialize method is to provide a set of instructions which can take a state from its initial state to a solvable final state at the set of initial conditions (provided as arguments to the initialize method). This is generally done by:

	fixing the state variables at the initial conditions,

	performing a series of steps to build up the final solution,

	solving the full state model, and

	unfixing the state variables (unless they were already fixed when the process began).

However, in order to fully initialize the unit operation (which contains these material state) it is necessary for the unit model to be fully defined (with zero degrees of freedom, i.e. a square model). In order for this to be true however, it is necessary for the inlet states to remain fixed until the unit model has finished initializing. This requires step 4 above to be postponed for inlet states until the unit model has finished initializing, thus the above process is broken into two methods.

	The initialize method covers steps 1-3 above, and is called at the beginning of the unit model initialization process.

	The release_state method covers step 4; for inlet states this is called when the unit model has finished initialization, whilst for all other states it is called immediately by the initialize methods when it finishes.

More details on writing initialization methods will be provided elsewhere in the documentation of tutorials.

Tutorials

Tutorials demonstrating how to create custom property packages are being developed. Once they are created, they will be found here.

Custom Reaction Packages

	What Belongs in a Reaction Package?

	Reaction Package Classes

	Build-on-Demand Properties

	The Reaction Parameter Block

	Reaction Parameter Block Configuration

	The Reaction Parameter Block build Method

	Defining Reaction Metadata

	Setting Default Units

	Setting Reaction Metadata

	The Reaction Block

	The Reaction Block Data Class

	Reaction Block Data Configuration Arguments

	The Reaction Block build Method

	Variables and Properties

	Required Methods

	The Reaction Block Methods Class

	The initialize Method

	Tutorials

Warning

This section is currently being developed

Chemical reactions are a fundamental part of most processes, and models for these come in a wide range of different forms. Much like thermophysical property packages, the ability for users to define custom reaction formulations is a key aspect of the IDAES modeling paradigm.

Reaction packages within IDAES share many similarities with thermophysical property packages, both in form and content. Rather than repeat much of that documentation here, users should start by reading the thermophysical property package documentation, as this document will focus on the content of the reaction package.

What Belongs in a Reaction Package?

Chemical reactions are fundamentally governed by the same laws of thermodynamics as thermophysical properties, thus the separation of these into thermophysical and reaction packages is somewhat arbitrary. In IDAES, this separation between thermophysical and reaction packages was based on their expected frequency of use. All unit operations require some set of property calculations (e.g. enthalpy) and these types of calculations were grouped in the thermophysical package, whereas only a small subset of unit operations have chemical reactions and these types of calculations were grouped in the reaction package. This separation benefits the user in that they only need to be concerned about reactions in the unit operations that require them.

Important

For the context of IDAES, chemical reactions are defined as phenomena where one chemical species is converted into another. This includes both rate limited and equilibrium reactions.

On the other hand, phase equilibrium phenomena (where a chemical species changes phase) are handled via the thermophysical property package.

However, users should note that reaction properties are fundamentally linked to the thermophysical properties, and that a reaction package should only be used with the thermophysical property package they were developed with (in theory at least). Due to this, when a reactions package is added to a model it must be coupled to a thermophysical property package. The modeling framework performs some limited checks to ensure the two packages are compatible (e.g. same set of base units) and that each reaction packages is only used in conjunction with its coupled thermophysical property package in unit models.

Reaction Package Classes

Like thermophysical property packages, reaction property packages consist of two related model components; the Reaction Parameter Block and the Reaction Block, which are analogous to the Physical Parameter Block and State Block components. Similarly, when creating a custom reaction package users need to declare three new classes; the Reaction Parameter Block Data class, the Reaction Block Data class and the Reaction Block Methods class.

Build-on-Demand Properties

IDAES reaction packages also support build-on-demand properties using the same approach as for thermophysical properties.

The Reaction Parameter Block

The first part of the reaction package is the ReactionParameterBlock, which defines the global parameters and components of the property package. This includes:

	a reference to the ReactionBlock class associated with the ReactionParameterBlock,

	a Pyomo Set listing names for all rate-based reactions,

	a dict defining stoichiometric coefficients for all rate-based reactions,

	a Pyomo Set listing names for all equilibrium reactions,

	a dict defining stoichiometric coefficients for all equilibrium reactions,

	the base units of measurement for the property packages,

	the reaction properties supported by the property package, and

	the parameters required to calculate the reaction properties.

The starting point for creating a new ReactionParameterBlock is shown in the example below. The model developer needs to declare a new class which inherits from the ReactionParameterBlock base class, decorated using the declare_process_block_class decorator.

@declare_process_block_class("NewReactionParameterBlock")
class NewReactionParameterData(ReactionParameterBlock):

 def build(self):
 super().build()

 @classmethod
 def define_metadata(cls, obj):
 obj.add_properties({# properties}})
 obj.add_default_units({# units})

The NewReactionParameterData class needs to contain a build method, and may also include a configuration block and a define_metadata classmethod as shown above. These methods and their contents will be explained below.

Reaction Parameter Block Configuration

The ReactionParameterBlock configuration block must contain the following two arguments:

	“property_package” - this configuration argument contains a pointer to the associated thermophysical property package (via an instance of a PhysicalParameterBlock), and is used for validating the link between thermophysical and reaction properties (e.g. confirming that both packages use the same set of base units).

	“default_arguments” - this configuration argument allows users to specify a set of default configuration arguments that will be passed to all ReactionBlocks created from an instance of a parameter block.

The Reaction Parameter Block build Method

The build method in the NewReactionParameterBlock class is responsible for constructing the various modeling components that will be required by the associated ReactionBlocks. This includes the indexing sets which will be used to identify individual reactions and the stoichiometry of each of these. The build method is also responsible for setting up the underlying infrastructure of the property package and making a link to the associated ReactionBlock class so that the modeling framework can automate the construction and linking of these.

The first step in the build method is to call super().build() to trigger the construction of the underlying infrastructure using the base class’ build method.

Next, the user must declare an attribute named “_reaction_block_class” which is a pointer to the associated ReactionBlock class (creation of this will be discussed later). An example of this is shown below, where the associated Reaction Block class is named NewReactionBlock.

def build(self):

 super().build()
 self._reaction_block_class = NewReactionBlock

Next, the build method must create two indexing sets which provide names for the rate- and equilibrium-based reaction respectively. These indexing sets must be named rate_reaction_idx and equilibrium_reaction_idx. These indexing sets will be used by the unit models and control volumes when creating reaction terms in material balance equations.

self.rate_reaction_idx = Set(initialize=["rate_rxn_1", "rate_rxn_2"])
self.equilibrium_reaction_idx = Set(initialize=["equil_rxn_1", "equil_rxn_2"])

Note

Users only need to define indexing sets and stoichiometry dicts for the types of reaction which they wish to model. E.g. users do not need to declare rate_reaction_idx and rate_reaction_stoichiometry if there are no rate-based reactions in their system.

The build method also needs to create stoichiometry dicts for the rate- and equilibrium-based reactions present in the system. These dicts should be named “rate_reaction_stoichiometry” and “equilibrium_reaction_stoichiometry” and have keys with the form (reaction_index, phase, component) and values equal to the stoichiometric coefficient for the given reaction, phase and component. A positive stoichiometric coefficient indicates a product of the reaction (i.e. generation) whilst a negative coefficient indicates a reactant (i.e. consumption). An example for defining the stoichiometry for rate-based reactions is shown below.

self.rate_reaction_stoichiometry = {
 ("rate_rxn_1", "phase_1", "component_1"): -1, # Component 1 in phase 1 is a reactant
 ("rate_rxn_1", "phase_2", "component_1"): 0, # Reaction 1 does no occur is phase 2
 ("rate_rxn_1", "phase_1", "component_2"): 2, # Component 2 in phase 1 is a product
 ("rate_rxn_1", "phase_2", "component_2"): 0,
 ("rate_rxn_2", "phase_1", "component_1"): 0,
 ("rate_rxn_2", "phase_2", "component_1"): -1,
 ("rate_rxn_2", "phase_1", "component_2"): 0,
 ("rate_rxn_2", "phase_2", "component_2"): -1} # etc.

Important

Stoichiometry dicts must contain a key for every reaction-phase-component combination, even if the stoichiometric coefficient is zero.

Finally, the build method needs to declare all the global parameters that will be used by the reaction calculations. Similar to thermophysical property parameters, users are encouraged to declare these as Pyomo Vars rather than Params to facilitate parameter estimation studies.

Defining Reaction Metadata

The last part of creating a new Reaction Parameter block is to define the metadata associated with it. The reactions metadata serves four purposes:

	The default units metadata is used by the framework to automatically determine the units of measurement of the resulting property model, and automatically convert between different unit sets where appropriate.

	The properties metadata is used to set up any build-on-demand properties,

	The metadata is also used by the Data Management Framework to index the available property packages to create a searchable index for users.

	The units metadata is compared to that of the associated thermophysical property package (when an instance of the Reaction Parameter Block is declared), and an exception is raised if they do not match.

Setting Default Units

As with thermophysical property packages, the most important part of defining the metadata for a property package is to set the default units of measurement for each of the 7 base quantities (time, length, mass, amount, temperature, current (optional) and luminous intensity (optional)). These units are used by the modeling framework to determine the units of measurement for all other quantities in the process that are related to this property package. More importantly, the units metadata is used to determine if a reaction package is comparable with a given thermophysical property package when they are declared – if the units metadata does not match, an exception will be raised and the two packages cannot be used together.

Units must be defined using Pyomo Units components, as shown in the example below:

from pyomo.environ import units

@classmethod
def define_metadata(cls, obj):
 obj.add_default_units({'time': units.s,
 'length': units.m,
 'mass': units.kg,
 'amount': units.mol,
 'temperature': units.K})

Setting Reaction Metadata

Similar to thermophysical property packages, reaction packages allow users to specify the set of reaction properties supported by a given reaction package. This is also used to set up the build-on-demand properties system in the same way as thermophysical properties. For more information, see the documentation for thermophysical properties metadata.

The Reaction Block

The second part of a reaction property package is the ReactionBlock class. Similarly to StateBlock classes this is defined using two user-written classes; the ReactionBlockData class and the ReactionBlockMethods class.

@declare_process_block_class("NewReactionBlock",
 block_class=NewReactionBlockMethods)
class NewReactionBlockData(ReactionBlockData):

 def build(self):
 super().build()

The Reaction Block Data Class

One important difference between Reaction Blocks and State Blocks is that while State Blocks are fully self-contained and can be solved in isolation, Reaction Blocks depend upon the State Block for the definition of the state variables. This means that Reaction Blocks do not need to redefine the state variables (which are needed for the reaction properties), but at the cost of not being independent, self-contained models. This is one of the reasons why reaction packages are so closely tied to thermophysical property packages within IDAES.

The purpose of the Reaction Block Data class is to define the reaction properties that will be required by the unit models using this package. The three main properties required for material and energy balances are:

	rate terms for rate-based reactions,

	equilibrium constraints for equilibrium-based reactions, and

	heats of reaction (if required, see note below).

These properties may in turn depend on other reaction properties such as equilibrium and rate constants. All of these properties may be constructed using the build-on-demand framework.

All reaction properties depend upon the state of the material, which is defined in the State Block; thus it is necessary to reference the associated State Block whenever these are needed. In order to facilitate this, the ReactionBlockData base class establishes a reference to the associated State Block which users can use to obtain state variables and properties from the State Block. For example, temperature can be referenced from the state block as shown below:

temperature = self.state_ref.temperature

Note

There are multiple ways in which heat of reaction may be included in a model, and users should consider which is most suitable for their application. The two most common approaches are to include an explicit heat of reaction term in the energy balance equations, or to incorporate heat of reaction into the specific enthalpy terms (generally via heats of formation). The IDAES Process Modeling Framework supports both of these approaches.

Reaction Block Data Configuration Arguments

The ReactionBlockData base class defines three configuration arguments that are required for all Reaction Block Data classes.

	“parameters” – this argument is used to provide a link back to the associated ReactionParameterBlock, and is generally automatically passed to the ReactionBlock when it is constructed.

	“state_block” – this argument is used to provide a link to the State Block associated with this Reaction Block, as is generally passed to the ReactionBlock by the unit model when it is constructed. This argument is used to the state_ref attribute shown above for referencing properties from the State Block.

	“has_equilibrium” – this argument indicates whether equilibrium reaction will be considered for this state. In most cases, this argument will always be True, however this allows users the ability to turn off equilibrium reactions if they desire.

The Reaction Block build Method

As with all IDAES components, the build method forms the core of a ReactionBlockData class, and contains the instructions on how to construct the variables, expressions and constraints required by the reaction model. As usual, the first step in the build method should be to call super().build() to trigger the construction of the underlying components required for Reaction Blocks to function.

Variables and Properties

The same set of guidelines for defining thermophysical properties apply to reaction properties, which can be found here.

Required Methods

In addition to the build method, Reaction Blocks require one additional method which is used to define the basis for the reaction terms.

	get_reaction_rate_basis - must return a MaterialFlowBasis Enum, and is used to automatically convert reaction terms between mass and mole basis in control volumes.

The Reaction Block Methods Class

The Reaction Block Methods class is very similar to the State Block Methods class. The Reaction Block Methods class needs to contain an initialize method (however a release_state method is not required as Reaction Blocks do not contain state variables).

The initialize Method

Initialization of Reaction Blocks is complicated by the fact that they depend upon the State Block for the state variables, and thus cannot be solved as a stand-alone model. Within the wider IDAES modeling framework, this is handled by initializing the Reaction Block after the State Block initialization method has been called (and thus all state variables and properties are initialized) but before the release_State method is called (thus all state variables are fixed). Thus, the Reaction Block can assume that the state is fully defined and initialized (although it may not be possible to use a solver as part of the Reaction Block’s initialization procedure).

However, Reaction Blocks also tend to be much simpler than State Blocks, involving fewer properties which are generally much less tightly coupled (most reaction properties are functions solely of the state variables), which simplifies the requirements of initializing the sub-model.

Tutorials

Tutorials demonstrating how to create custom reaction packages are being developed. Once they are created, they will be found here.

Tutorials and Examples

Tutorials and examples for IDAES are located on the examples online documentation page [https://idaes.github.io/examples-pse/latest/index.html].

These tutorials and examples are maintained on the
IDAES examples repository [https://github.com/IDAES/examples-pse]. You can install the associated
files within an IDAES installation by running idaes get-examples in a command-line shell,
additional details are provided here.

If you are new to IDAES, it is strongly recommended to start with the
tutorials [https://examples-pse.readthedocs.io/en/stable/tutorials/index.html].

If you want to develop custom unit and property models refer to the
advanced user guide.

Technical Specifications

	Core

	Model Libaries

Core

	Process Block

	Flowsheet Block

	0D Control Volume Class

	1D Control Volume Class

	Physical Property Package Classes

	Reaction Property Package Classes

	Unit Model Class

	Component Class

	Phase Class

	Utility Methods

Process Block

Example

ProcessBlock is used to simplify inheritance of Pyomo’s Block. The code below
provides an example of how a new ProcessBlock class can be implemented. The
new ProcessBlock class has a ConfigBlock that allows each element of the block to
be passed configuration options that affect how a block is built. ProcessBlocks
have a rule set by default that calls the build method of the contained
ProcessBlockData class.

from pyomo.environ import *
from pyomo.common.config import ConfigValue
from idaes.core import ProcessBlockData, declare_process_block_class

@declare_process_block_class("MyBlock")
class MyBlockData(ProcessBlockData):
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("xinit", ConfigValue(default=1001, domain=float))
 CONFIG.declare("yinit", ConfigValue(default=1002, domain=float))
 def build(self):
 super(MyBlockData, self).build()
 self.x = Var(initialize=self.config.xinit)
 self.y = Var(initialize=self.config.yinit)

The following example demonstrates creating a scalar instance of the new class.
The default key word argument is used to pass information on the the
MyBlockData ConfigBlock.

m = ConcreteModel()
m.b = MyBlock(default={"xinit":1, "yinit":2})

The next example creates an indexed MyBlock instance. In this case, each block is
configured the same, using the default argument.

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2})

The next example uses the initialize argument to override the configuration of
the first block. Initialize is a dictionary of dictionaries where the key of the
top level dictionary is the block index and the second level dictionary is
arguments for the config block.

m = ConcreteModel()
m.b = MyBlock([0,1,2,3,4], default={"xinit":1, "yinit":2},
 initialize={0:{"xinit":1, "yinit":2}})

The next example shows a more complicated configuration where there are three
configurations, one for the first block, one for the last block, and one for the
interior blocks. This is accomplished by providing the idx_map argument to
MyBlock, which is a function that maps a block index to a index in the initialize
dictionary. In this case 0 is mapped to 0, 4 is mapped to 4, and all elements
between 0 and 4 are mapped to 1. A lambda function is used to convert the block
index to the correct index in initialize.

m = ConcreteModel()
m.b = MyBlock(
 [0,1,2,3,4],
 idx_map = lambda i: 1 if i > 0 and i < 4 else i,
 initialize={0:{"xinit":2001, "yinit":2002},
 1:{"xinit":5001, "yinit":5002},
 4:{"xinit":7001, "yinit":7002}})

The build method

The core part of any IDAES Block is the build method, which contains the instructions on how to construct the variables, constraints and other components that make up the model. The build method serves as the default rule for constructing an instance of an IDAES Block, and is triggered automatically whenever an instance of an IDAES Block is created unless a custom rule is provided by the user.

ProcessBlock Class

	
idaes.core.process_block.declare_process_block_class(name, block_class=<class 'idaes.core.process_block.ProcessBlock'>, doc='')[source]

	Declare a new ProcessBlock subclass.

This is a decorator function for a class definition, where the class is
derived from Pyomo’s _BlockData. It creates a ProcessBlock subclass to
contain the decorated class. The only requirment is that the subclass of
_BlockData contain a build() method. The purpose of this decorator is to
simplify subclassing Pyomo’s block class.

	Parameters

	
	name – name of class to create

	block_class – ProcessBlock or a subclass of ProcessBlock, this allows
you to use a subclass of ProcessBlock if needed. The typical use
case for Subclassing ProcessBlock is to impliment methods that
operate on elements of an indexed block.

	doc – Documentation for the class. This should play nice with sphinx.

	Returns

	Decorator function

	
class idaes.core.process_block.ProcessBlock(*args, **kwargs)[source]

	ProcessBlock is a Pyomo Block that is part of a system to make Pyomo
Block easier to subclass. The main difference between a Pyomo Block and
ProcessBlock from the user perspective is that a ProcessBlock has a rule
assigned by default that calls the build() method for the contained
ProcessBlockData objects. The default rule can be overridden, but the new
rule should always call build() for the ProcessBlockData object.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ProcessBlock) New instance

	
classmethod base_class_module()[source]

	Return module of the associated ProcessBase class.

	Returns

	(str) Module of the class.

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError], if no base class module was set, e.g. this class – was not wrapped by the declare_process_block_class decorator.

	
classmethod base_class_name()[source]

	Name given by the user to the ProcessBase class.

	Returns

	(str) Name of the class.

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError], if no base class name was set, e.g. this class – was not wrapped by the declare_process_block_class
 decorator.

	
class idaes.core.process_base.ProcessBlockData(component)[source]

	Base class for most IDAES process models and classes.

The primary purpose of this class is to create the local config block to
handle arguments provided by the user when constructing an object and to
ensure that these arguments are stored in the config block.

Additionally, this class contains a number of methods common to all IDAES
classes.

	
build()[source]

	The build method is called by the default ProcessBlock rule. If a rule
is sepecified other than the default it is important to call
ProcessBlockData’s build method to put information from the “default”
and “initialize” arguments to a ProcessBlock derived class into the
BlockData object’s ConfigBlock.

The the build method should usually be overloaded in a subclass derived
from ProcessBlockData. This method would generally add Pyomo components
such as variables, expressions, and constraints to the object. It is
important for build() methods implimented in derived classes to call
build() from the super class.

	Parameters

	None –

	Returns

	None

	
fix_initial_conditions(state='steady-state')[source]

	This method fixes the initial conditions for dynamic models.

	Parameters

	state – initial state to use for simulation (default =
‘steady-state’)

	Returns :
	None

	
flowsheet()[source]

	This method returns the components parent flowsheet object, i.e. the
flowsheet component to which the model is attached. If the component
has no parent flowsheet, the method returns None.

	Parameters

	None –

	Returns

	Flowsheet object or None

	
unfix_initial_conditions()[source]

	This method unfixed the initial conditions for dynamic models.

	Parameters

	None –

	Returns :
	None

Flowsheet Block

Default Property Packages

Flowsheet Blocks may assign a property package to use as a default for all UnitModels within the Flowsheet. If a specific property package is not provided as an argument when constructing a UnitModel, the UnitModel will search up the model tree until it finds a default property package declared. The UnitModel will use the first default property package it finds during the search, and will return an error if no default is found.

Flowsheet Configuration Arguments

Flowsheet blocks have three configuration arguments which are stored within a Config block (flowsheet.config). These arguments can be set by passing arguments when instantiating the class, and are described below:

	dynamic - indicates whether the flowsheet should be dynamic or steady-state. If dynamic = True, the flowsheet is declared to be a dynamic flowsheet, and the time domain will be a Pyomo ContinuousSet. If dynamic = False, the flowsheet is declared to be steady-state, and the time domain will be an ordered Pyomo Set. For top level Flowsheets, dynamic defaults to False if not provided. For lower level Flowsheets, the dynamic will take the same value as that of the parent model if not provided. It is possible to declare steady-state sub-Flowsheets as part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Flowsheets within steady-state Flowsheets).

	time - a reference to the time domain for the flowsheet. During flowsheet creation, users may provide a Set or ContinuousSet that the flowsheet should use as the time domain. If not provided, then the flowsheet will look for a parent flowsheet and set this equal to the parent’s time domain, otherwise a new time domain will be created and assigned here.

	time_units - used to specify the units of the time domain, and must be a Pyomo Unit object (cannot be a compound unit). This is necessary for dynamic flowsheets, but can be neglected in steady-state cases. In cases where the time domain is inherited from a parent flowsheet, the time units will also be inherited.

	time_set - used to initialize the time domain in top-level Flowsheets. When constructing the time domain in top-level Flowsheets, time_set is used to initialize the ContinuousSet or Set created. This can be used to set start and end times, and to establish points of interest in time (e.g. times when disturbances will occur). If dynamic = True, time_set defaults to [0.0, 1.0] if not provided, if dynamic = False time_set defaults to [0.0]. time_set is not used in sub-Flowsheets and will be ignored.

	default_property_package - can be used to assign the default property package for a Flowsheet. Defaults to None if not provided.

Flowsheet Classes

	
class idaes.core.flowsheet_model.FlowsheetBlockData(component)[source]

	The FlowsheetBlockData Class forms the base class for all IDAES process
flowsheet models. The main purpose of this class is to automate the tasks
common to all flowsheet models and ensure that the necessary attributes of
a flowsheet model are present.

The most signfiicant role of the FlowsheetBlockData class is to
automatically create the time domain for the flowsheet.

	
build()[source]

	General build method for FlowsheetBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of flowsheets.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
get_costing(module=<module 'idaes.core.util.unit_costing' from '/home/docs/checkouts/readthedocs.org/user_builds/idaes-pse/checkouts/1.8.0/idaes/core/util/unit_costing.py'>, year=None, integer_n_units=False)[source]

	Creates a new block called ‘costing’ at the flowsheet level. This block
builds global parameters used in costing methods (power plant costing
and generic costing).

	Parameters

	
	- idaes flowsheet (self) –

	year – used to build parameter CE_index (Chemical Engineering),

	parameter is the same for all costing blocks in the flowsheet (this) –

	integer_n_units – flag to define variable domain (True: domain is

	Integer numbers, False (within) – domain is NonNegativeReals).

	Returns

	None

	
is_flowsheet()[source]

	Method which returns True to indicate that this component is a
flowsheet.

	Parameters

	None –

	Returns

	True

	
model_check()[source]

	This method runs model checks on all unit models in a flowsheet.

This method searches for objects which inherit from UnitModelBlockData
and executes the model_check method if it exists.

	Parameters

	None –

	Returns

	None

	
stream_table(true_state=False, time_point=0, orient='columns')[source]

	Method to generate a stream table by iterating over all Arcs in the
flowsheet.

	Parameters

	
	true_state – whether the state variables (True) or display
variables (False, default) from the StateBlocks should
be used in the stream table.

	time_point – point in the time domain at which to create stream
table (default = 0)

	orient – whether stream should be shown by columns (“columns”) or
rows (“index”)

	Returns

	A pandas dataframe containing stream table information

	
visualize(model_name, **kwargs)[source]

	Starts up a flask server that serializes the model and pops up a
webpage with the visualization

	Parameters

	model_name – The name of the model that flask will use as an argument
for the webpage

	Keyword Arguments

	**kwargs – Additional keywords for idaes.ui.fsvis.visualize()

	Returns

	None

	
class idaes.core.flowsheet_model.FlowsheetBlock(*args, **kwargs)

	FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and
contains instances of FlowsheetBlockData.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent or False, True - set as a dynamic
model, False - set as a steady-state model.}

	time
	Pointer to the time domain for the flowsheet. Users may
provide an existing time domain from another flowsheet,
otherwise the flowsheet will search for a parent with a
time domain or create a new time domain and reference it
here.

	time_set
	Set of points for initializing time domain. This should be
a list of floating point numbers, default - [0].

	time_units
	Pyomo Units object describing the units of the time
domain. This must be defined for dynamic simulations,
default = None.

	default_property_package
	Indicates the default property package to be used by
models within this flowsheet if not otherwise specified,
default - None. Valid values: { None - no
default property package, a ParameterBlock object.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(FlowsheetBlock) New instance

0D Control Volume Class

Contents

	0D Control Volume Class

	ControlVolume0DBlock Equations

The ControlVolume0DBlock block is the most commonly used Control Volume class, and is used for
systems where there is a well-mixed volume of fluid, or where variations in spatial domains are
considered to be negligible. ControlVolume0DBlock blocks generally contain two
StateBlocks - one for the incoming material and one for
the material within and leaving the volume - and one
StateBlocks.

	
class idaes.core.control_volume0d.ControlVolume0DBlock(*args, **kwargs)

	ControlVolume0DBlock is a specialized Pyomo block for IDAES non-discretized
control volume blocks, and contains instances of ControlVolume0DBlockData.

ControlVolume0DBlock should be used for any control volume with a defined
volume and distinct inlets and outlets which does not require spatial
discretization. This encompases most basic unit models used in process
modeling.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent, True - set as a dynamic model,
False - set as a steady-state model}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	auto_construct
	If set to True, this argument will trigger the
auto_construct method which will attempt to construct a
set of material, energy and momentum balance equations
based on the parent unit’s config block. The parent unit
must have a config block which derives from CONFIG_Base,
default - False. Valid values: { True - use
automatic construction, False - do not use automatic
construciton.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ControlVolume0DBlock) New instance

	
class idaes.core.control_volume0d.ControlVolume0DBlockData(component)[source]

	0-Dimensional (Non-Discretised) ControlVolume Class

This class forms the core of all non-discretized IDAES models. It provides
methods to build property and reaction blocks, and add mass, energy and
momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

	
add_geometry()[source]

	Method to create volume Var in ControlVolume.

	Parameters

	None –

	Returns

	None

	
add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)[source]

	This method constructs a set of 0D material balances indexed by time,
phase and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, phase list and
component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, phase list and
component list

	Returns

	Constraint object representing material balances

	
add_phase_energy_balances(*args, **kwargs)[source]

	Method for adding energy balances (including kinetic energy) indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_phase_enthalpy_balances(*args, **kwargs)[source]

	Method for adding enthalpy balances indexed by phase to
the control volume.

See specific control volume documentation for details.

	
add_phase_momentum_balances(*args, **kwargs)[source]

	Method for adding momentum balances indexed by phase to the control
volume.

See specific control volume documentation for details.

	
add_phase_pressure_balances(*args, **kwargs)[source]

	Method for adding pressure balances indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_reaction_blocks(has_equilibrium=None)[source]

	This method constructs the reaction block for the control volume.

	Parameters

	
	has_equilibrium – indicates whether equilibrium calculations
will be required in reaction block

	package_arguments – dict-like object of arguments to be passed to
reaction block as construction arguments

	Returns

	None

	
add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)[source]

	This method constructs the inlet and outlet state blocks for the
control volume.

	Parameters

	
	information_flow – a FlowDirection Enum indicating whether
information flows from inlet-to-outlet or
outlet-to-inlet

	has_phase_equilibrium – indicates whether equilibrium calculations
will be required in state blocks

	package_arguments – dict-like object of arguments to be passed to
state blocks as construction arguments

	Returns

	None

	
add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)[source]

	This method constructs a set of 0D material balances indexed by time
and component.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom terms to (custom_mass_term) – be included in material balances on a molar basis.
Expression must be indexed by time, phase list and
component list

	- a Pyomo Expression representing custom terms to – be included in material balances on a mass basis.
Expression must be indexed by time, phase list and
component list

	Returns

	Constraint object representing material balances

	
add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_elemental_term=None)[source]

	This method constructs a set of 0D element balances indexed by time.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom (custom_elemental_term) – terms to be included in material balances on a molar
elemental basis. Expression must be indexed by time and
element list

	Returns

	Constraint object representing material balances

	
add_total_energy_balances(*args, **kwargs)[source]

	Method for adding a total energy balance (including kinetic energy)
to the control volume.

See specific control volume documentation for details.

	
add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=False, has_enthalpy_transfer=False, custom_term=None)[source]

	This method constructs a set of 0D enthalpy balances indexed by time
and phase.

	Parameters

	
	- whether terms for heat of reaction should (has_heat_of_reaction) – be included in enthalpy balance

	- whether terms for heat transfer should be (has_heat_transfer) – included in enthalpy balances

	- whether terms for work transfer should be (has_work_transfer) – included in enthalpy balances

	- whether terms for enthalpy transfer due to (has_enthalpy_transfer) – mass transfer should be included in enthalpy balance. This
should generally be the same as the has_mas_trasnfer
argument in the material balance methods

	- a Pyomo Expression representing custom terms to (custom_term) – be included in enthalpy balances.
Expression must be indexed by time and phase list

	Returns

	Constraint object representing enthalpy balances

	
add_total_material_balances(*args, **kwargs)[source]

	Method for adding a total material balance to
the control volume.

See specific control volume documentation for details.

	
add_total_momentum_balances(*args, **kwargs)[source]

	Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

	
add_total_pressure_balances(has_pressure_change=False, custom_term=None)[source]

	This method constructs a set of 0D pressure balances indexed by time.

	Parameters

	
	- whether terms for pressure change should be (has_pressure_change) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in pressure balances.
Expression must be indexed by time

	Returns

	Constraint object representing pressure balances

	
build()[source]

	Build method for ControlVolume0DBlock blocks.

	Returns

	None

	
initialize(state_args=None, outlvl=0, optarg=None, solver='ipopt', hold_state=True)[source]

	Initialization routine for 0D control volume (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output log level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - True. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()[source]

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)[source]

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

ControlVolume0DBlock Equations

This section documents the variables and constraints created by each of the methods provided by
the ControlVolume0DBlock class.

	\(t\) indicates time index

	\(p\) indicates phase index

	\(j\) indicates component index

	\(e\) indicates element index

	\(r\) indicates reaction name index

add_geometry

The add_geometry method creates a single variable within the control volume named volume indexed
by time (allowing for varying volume over time). A number of other methods depend on this variable
being present, thus this method should generally be called first.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	volume

	\(V_t\)

	t

	None

Constraints

No additional constraints

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid
water and steam). Physical property packages may include information to indicate that certain species
do not appear in all phases, and material balances will not be written in these cases (if
has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,p,j}\)

	t, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,p,j}}{\partial t}\)

	t, p, j

	dynamic = True

	rate_reaction_generation

	\(N_{kinetic,t,p,j}\)

	t, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,r}\)

	t, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,p,j}\)

	t, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,r}\)

	t, r

	has_equilibrium_reactions = True

	phase_equilibrium_generation

	\(N_{pe,t,p,j}\)

	t, p ,j

	has_phase_equilibrium = True

	mass_transfer_term

	\(N_{transfer,t,p,j}\)

	t, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, p, j):

\[\frac{\partial M_{t, p, j}}{\partial t} = F_{in, t, p, j} - F_{out, t, p, j} + N_{kinetic, t, p, j} + N_{equilibrium, t, p, j} + N_{pe, t, p, j} + N_{transfer, t, p, j} + N_{custom, t, p, j}\]

The \(N_{custom, t, p, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

\[M_{t, p, j} = \rho_{t, p, j} \times V_{t} \times \phi_{t, p}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, p, j):

\[N_{kinetic, t, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

\[N_{equilibrium, t, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam). Most terms in the balance equations are still indexed by both phase and component however. Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,p,j}\)

	t, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,p,j}}{\partial t}\)

	t, p, j

	dynamic = True

	rate_reaction_generation

	\(N_{kinetic,t,p,j}\)

	t, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,r}\)

	t, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,p,j}\)

	t, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,r}\)

	t, r

	has_equilibrium_reactions = True

	mass_transfer_term

	\(N_{transfer,t,p,j}\)

	t, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, j):

\[\sum_p{\frac{\partial M_{t, p, j}}{\partial t}} = \sum_p{F_{in, t, p, j}} - \sum_p{F_{out, t, p, j}} + \sum_p{N_{kinetic, t, p, j}} + \sum_p{N_{equilibrium, t, p, j}} + \sum_p{N_{pe, t, p, j}} + \sum_p{N_{transfer, t, p, j}} + N_{custom, t, j}\]

The \(N_{custom, t, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

If has_holdup is True, material_holdup_calculation(t, p, j):

\[M_{t, p, j} = \rho_{t, p, j} \times V_{t} \times \phi_{t, p}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True,, rate_reaction_stoichiometry_constraint(t, p, j):

\[N_{kinetic, t, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, p, j):

\[N_{equilibrium, t, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	element_holdup

	\(M_{t,e}\)

	t, e

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	element_accumulation

	\(\frac{\partial M_{t,e}}{\partial t}\)

	t, e

	dynamic = True

	elemental_mass_transfer_term

	\(N_{transfer,t,e}\)

	t, e

	has_mass_transfer = True

Expressions

elemental_flow_in(t, p, e):

\[F_{in,t,p,e} = \sum_j{F_{in, t, p, j}} \times n_{j, e}\]

elemental_flow_out(t, p, e):

\[F_{out,t,p,e} = \sum_j{F_{out, t, p, j}} \times n_{j, e}\]

where \(n_{j, e}\) is the number of moles of element \(e\) in component \(j\).

Constraints

element_balances(t, e):

\[\frac{\partial M_{t, e}}{\partial t} = \sum_p{F_{in, t, p, e}} - \sum_p{F_{out, t, p, e}} + \sum_p{N_{transfer, t, e}} + N_{custom, t, e}\]

The \(N_{custom, t, e}\) term allows the user to provide custom terms (variables or expressions) which will be added into the material balances.

If has_holdup is True, elemental_holdup_calculation(t, e):

\[M_{t, e} = V_{t} \times \sum_{p, j}{\phi_{t, p} \times \rho_{t, p, j} \times n_{j, e}}\]

where \(\rho_{t, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,e}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	energy_holdup

	\(E_{t,p}\)

	t, p

	has_holdup = True

	phase_fraction

	\(\phi_{t,p}\)

	t, p

	has_holdup = True

	energy_accumulation

	\(\frac{\partial E_{t,p}}{\partial t}\)

	t, p

	dynamic = True

	heat

	\(Q_{t}\)

	t

	has_heat_transfer = True

	work

	\(W_{t}\)

	t

	has_work_transfer = True

	enthalpy_transfer

	\(H_{transfer,t}\)

	t

	has_enthalpy_transfer = True

Expressions

heat_of_reaction(t):

\[Q_{rxn, t} = sum_r{X_{kinetic, t, r} \times \Delta H_{rxn, r}} + sum_r{X_{equilibrium, t, r} \times \Delta H_{rxn, r}}\]

where \(Q_{rxn, t}\) is the total enthalpy released by both kinetic and equilibrium reactions, and \(\Delta H_{rxn, r}\) is the specific heat of reaction for reaction \(r\).

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_energy

	\(s_{energy}\)

	1E-6

Constraints

enthalpy_balance(t):

\[s_{energy} \times \sum_p{\frac{\partial E_{t, p}}{\partial t}} = s_{energy} \times \sum_p{H_{in, t, p}} - s_{energy} \times \sum_p{H_{out, t, p}} + s_{energy} \times Q_t + s_{energy} \times W_t + + s_{energy} \times H_{transfer,t} +s_{energy} \times Q_{rxn, t} + s_{energy} \times E_{custom, t}\]

The \(E_{custom, t}\) term allows the user to provide custom terms which will be added into the energy balance.

If has_holdup is True, enthalpy_holdup_calculation(t, p):

\[E_{t, p} = u_{t, p} \times V_{t} \times \phi_{t, p}\]

where \(u_{t, p}\) is the internal energy density (specific internal energy) of phase \(p\) at time \(t\)

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial E_{t,p}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	deltaP

	\(\Delta P_{t}\)

	t

	has_pressure_change = True

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_pressure

	\(s_{pressure}\)

	1E-4

Constraints

pressure_balance(t):

\[0 = s_{pressure} \times P_{in, t} - s_{pressure} \times P_{out, t} + s_{pressure} \times \Delta P_t + s_{pressure} \times \Delta P_{custom, t}\]

The \(\Delta P_{custom, t}\) term allows the user to provide custom terms which will be added into the pressure balance.

1D Control Volume Class

Contents

	1D Control Volume Class

	ControlVolume1DBlock Equations

The ControlVolume1DBlock block is used for systems with one spatial dimension where material flows parallel to the spatial domain. Examples of these types of unit operations include plug flow reactors and pipes. ControlVolume1DBlock blocks are discretized along the length domain and contain one StateBlock and one ReactionBlock (if applicable) at each point in the domain (including the inlet and outlet).

	
class idaes.core.control_volume1d.ControlVolume1DBlock(*args, **kwargs)

	ControlVolume1DBlock is a specialized Pyomo block for IDAES control volume
blocks discretized in one spatial direction, and contains instances of
ControlVolume1DBlockData.

ControlVolume1DBlock should be used for any control volume with a defined
volume and distinct inlets and outlets where there is a single spatial
domain parallel to the material flow direction. This encompases unit
operations such as plug flow reactors and pipes.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic, default
- useDefault. Valid values: { useDefault - get
flag from parent, True - set as a dynamic model,
False - set as a steady-state model}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	auto_construct
	If set to True, this argument will trigger the
auto_construct method which will attempt to construct a
set of material, energy and momentum balance equations
based on the parent unit’s config block. The parent unit
must have a config block which derives from CONFIG_Base,
default - False. Valid values: { True - use
automatic construction, False - do not use automatic
construciton.}

	area_definition
	Argument defining whether area variable should be
spatially variant or not. default -
DistributedVars.uniform. Valid values: {
DistributedVars.uniform - area does not vary across
spatial domian, DistributedVars.variant - area can vary
over the domain and is indexed by time and space.}

	transformation_method
	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory.

	transformation_scheme
	Scheme to use when transformating domain. See Pyomo
documentation for supported schemes.

	finite_elements
	Number of finite elements to use in transformation
(equivalent to Pyomo nfe argument).

	collocation_points
	Number of collocation points to use (equivalent to Pyomo
ncp argument).

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ControlVolume1DBlock) New instance

	
class idaes.core.control_volume1d.ControlVolume1DBlockData(component)[source]

	1-Dimensional ControlVolume Class

This class forms the core of all 1-D IDAES models. It provides
methods to build property and reaction blocks, and add mass, energy and
momentum balances. The form of the terms used in these constraints is
specified in the chosen property package.

	
add_geometry(length_domain=None, length_domain_set=[0.0, 1.0], flow_direction=<FlowDirection.forward: 1>)[source]

	Method to create spatial domain and volume Var in ControlVolume.

	Parameters

	
	- (length_domain_set) – domain for the ControlVolume. If not provided, a
new ContinuousSet will be created (default=None).
ContinuousSet should be normalized to run between
0 and 1.

	- – a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0]).

	- argument indicating direction of material flow (flow_direction) –
	relative to length domain. Valid values:
	
	FlowDirection.forward (default), flow goes
from 0 to 1.

	FlowDirection.backward, flow goes from 1 to 0

	Returns

	None

	
add_phase_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)[source]

	This method constructs a set of 1D material balances indexed by time,
length, phase and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, length domain, phase
list and component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, length domain, phase
list and component list

	Returns

	Constraint object representing material balances

	
add_phase_energy_balances(*args, **kwargs)[source]

	Method for adding energy balances (including kinetic energy) indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_phase_enthalpy_balances(*args, **kwargs)[source]

	Method for adding enthalpy balances indexed by phase to
the control volume.

See specific control volume documentation for details.

	
add_phase_momentum_balances(*args, **kwargs)[source]

	Method for adding momentum balances indexed by phase to the control
volume.

See specific control volume documentation for details.

	
add_phase_pressure_balances(*args, **kwargs)[source]

	Method for adding pressure balances indexed by
phase to the control volume.

See specific control volume documentation for details.

	
add_reaction_blocks(has_equilibrium=None)[source]

	This method constructs the reaction block for the control volume.

	Parameters

	
	has_equilibrium – indicates whether equilibrium calculations
will be required in reaction block

	package_arguments – dict-like object of arguments to be passed to
reaction block as construction arguments

	Returns

	None

	
add_state_blocks(information_flow=<FlowDirection.forward: 1>, has_phase_equilibrium=None)[source]

	This method constructs the state blocks for the
control volume.

	Parameters

	
	information_flow – a FlowDirection Enum indicating whether
information flows from inlet-to-outlet or
outlet-to-inlet

	has_phase_equilibrium – indicates whether equilibrium calculations
will be required in state blocks

	package_arguments – dict-like object of arguments to be passed to
state blocks as construction arguments

	Returns

	None

	
add_total_component_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None)[source]

	This method constructs a set of 1D material balances indexed by time
length and component.

	Parameters

	
	has_rate_reactions – whether default generation terms for rate
reactions should be included in material balances

	has_equilibrium_reactions – whether generation terms should for
chemical equilibrium reactions should be included in
material balances

	has_phase_equilibrium – whether generation terms should for phase
equilibrium behaviour should be included in material
balances

	has_mass_transfer – whether generic mass transfer terms should be
included in material balances

	custom_molar_term – a Pyomo Expression representing custom terms to
be included in material balances on a molar basis.
Expression must be indexed by time, length domain and
component list

	custom_mass_term – a Pyomo Expression representing custom terms to
be included in material balances on a mass basis.
Expression must be indexed by time, length domain and
component list

	Returns

	Constraint object representing material balances

	
add_total_element_balances(has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_elemental_term=None)[source]

	This method constructs a set of 1D element balances indexed by time and
length.

	Parameters

	
	- whether default generation terms for rate (has_rate_reactions) – reactions should be included in material balances

	- whether generation terms should for (has_equilibrium_reactions) – chemical equilibrium reactions should be included in
material balances

	- whether generation terms should for phase (has_phase_equilibrium) – equilibrium behaviour should be included in material
balances

	- whether generic mass transfer terms should be (has_mass_transfer) – included in material balances

	- a Pyomo Expression representing custom (custom_elemental_term) – terms to be included in material balances on a molar
elemental basis. Expression must be indexed by time, length
and element list

	Returns

	Constraint object representing material balances

	
add_total_energy_balances(*args, **kwargs)[source]

	Method for adding a total energy balance (including kinetic energy)
to the control volume.

See specific control volume documentation for details.

	
add_total_enthalpy_balances(has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=False, has_enthalpy_transfer=False, custom_term=None)[source]

	This method constructs a set of 1D enthalpy balances indexed by time
and phase.

	Parameters

	
	- whether terms for heat of reaction should (has_heat_of_reaction) – be included in enthalpy balance

	- whether terms for heat transfer should be (has_heat_transfer) – included in enthalpy balances

	- whether terms for work transfer should be (has_work_transfer) – included in enthalpy balances

	- whether terms for enthalpy transfer due to (has_enthalpy_transfer) – mass transfer should be included in enthalpy balance. This
should generally be the same as the has_mas_trasnfer
argument in the material balance methods

	- a Pyomo Expression representing custom terms to (custom_term) – be included in enthalpy balances.
Expression must be indexed by time, length and phase list

	Returns

	Constraint object representing enthalpy balances

	
add_total_material_balances(*args, **kwargs)[source]

	Method for adding a total material balance to
the control volume.

See specific control volume documentation for details.

	
add_total_momentum_balances(*args, **kwargs)[source]

	Method for adding a total momentum balance to the control volume.

See specific control volume documentation for details.

	
add_total_pressure_balances(has_pressure_change=False, custom_term=None)[source]

	This method constructs a set of 1D pressure balances indexed by time.

	Parameters

	
	- whether terms for pressure change should be (has_pressure_change) – included in enthalpy balances

	- a Pyomo Expression representing custom terms to (custom_term) – be included in pressure balances.
Expression must be indexed by time and length domain

	Returns

	Constraint object representing pressure balances

	
apply_transformation()[source]

	Method to apply DAE transformation to the Control Volume length domain.
Transformation applied will be based on the Control Volume
configuration arguments.

	
build()[source]

	Build method for ControlVolume1DBlock blocks.

	Returns

	None

	
initialize(state_args=None, outlvl=0, optarg=None, solver='ipopt', hold_state=True)[source]

	Initialization routine for 1D control volume (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - True. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization else the release state is
triggered.

	
model_check()[source]

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)[source]

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

	
report(time_point=0, dof=False, ostream=None, prefix='')[source]

	No report method defined for ControlVolume1D class. This is due to the
difficulty of presenting spatially discretized data in a readable form
without plotting.

ControlVolume1DBlock Equations

This section documents the variables and constraints created by each of the methods provided by the ControlVolume0DBlock class.

	\(t\) indicates time index

	\(x\) indicates spatial (length) index

	\(p\) indicates phase index

	\(j\) indicates component index

	\(e\) indicates element index

	\(r\) indicates reaction name index

Most terms within the balance equations written by ControlVolume1DBlock are on a basis of per unit length (e.g. \(mol/m \cdot s\)).

add_geometry

The add_geometry method creates the normalized length domain for the control volume (or a reference to an external domain). All constraints in ControlVolume1DBlock assume a normalized length domain, with values between 0 and 1.

This method also adds variables and constraints to describe the geometry of the control volume. ControlVolume1DBlock does not support varying dimensions of the control volume with time at this stage.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	length_domain

	\(x\)

	None

	None

	volume

	\(V\)

	None

	None

	area

	\(A\)

	None

	None

	length

	\(L\)

	None

	None

Constraints

geometry_constraint:

\[V = A \times L\]

add_phase_component_balances

Material balances are written for each component in each phase (e.g. separate balances for liquid water and steam). Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,x,p,j}\)

	t, x, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,x,p,j}}{\partial t}\)

	t, x, p, j

	dynamic = True

	_flow_terms

	\(F_{t, x, p, j}\)

	t, x, p, j

	None

	material_flow_dx

	\(\frac{\partial F_{t,x,p,j}}{\partial x}\)

	t, x, p, j

	None

	rate_reaction_generation

	\(N_{kinetic,t,x,p,j}\)

	t, x, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,x,r}\)

	t, x, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,x,p,j}\)

	t, x, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,x,r}\)

	t, x, r

	has_equilibrium_reactions = True

	phase_equilibrium_generation

	\(N_{pe,t,x,p,j}\)

	t, x, p ,j

	has_phase_equilibrium = True

	mass_transfer_term

	\(N_{transfer,t,x,p,j}\)

	t, x, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

\[L \times \frac{\partial M_{t, x, p, j}}{\partial t} = fd \times \frac{\partial F_{t, x, p, j}}{\partial x} + L \times N_{kinetic, t, x, p, j} + L \times N_{equilibrium, t, x, p, j} + L \times N_{pe, t, x, p, j} + L \times N_{transfer, t, x, p, j} + L \times N_{custom, t, x, p, j}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, p, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

\[M_{t, x, p, j} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{kinetic, t, x, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{equilibrium, t, x, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_component_balances

Material balances are written for each component across all phases (e.g. one balance for both liquid water and steam). Physical property packages may include information to indicate that certain species do not appear in all phases, and material balances will not be written in these cases (if has_holdup is True holdup terms will still appear for these species, however these will be set to 0).

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	material_holdup

	\(M_{t,x,p,j}\)

	t, x, p, j

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	material_accumulation

	\(\frac{\partial M_{t,x,p,j}}{\partial t}\)

	t, x, p, j

	dynamic = True

	_flow_terms

	\(F_{t, x, p, j}\)

	t, x, p, j

	None

	material_flow_dx

	\(\frac{\partial F_{t,x,p,j}}{\partial x}\)

	t, x, p, j

	None

	rate_reaction_generation

	\(N_{kinetic,t,x,p,j}\)

	t, x, p ,j

	has_rate_reactions = True

	rate_reaction_extent

	\(X_{kinetic,t,x,r}\)

	t, x, r

	has_rate_reactions = True

	equilibrium_reaction_generation

	\(N_{equilibrium,t,x,p,j}\)

	t, x, p ,j

	has_equilibrium_reactions = True

	equilibrium_reaction_extent

	\(X_{equilibrium,t,x,r}\)

	t, x, r

	has_equilibrium_reactions = True

	mass_transfer_term

	\(N_{transfer,t,x,p,j}\)

	t, x, p ,j

	has_mass_transfer = True

Constraints

material_balances(t, x, p, j):

\[L \times \sum_p{\frac{\partial M_{t, x, p, j}}{\partial t}} = fd \times \sum{\frac{\partial F_{t, x, p, j}}{\partial x}} + L \times \sum_p{N_{kinetic, t, x, p, j}} + L \times \sum_p{N_{equilibrium, t, x, p, j}} + L \times \sum_p{N_{transfer, t, x, p, j}} + L \times N_{custom, t, x, j}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, j}\) term allows the user to provide custom terms (variables or expressions) in both mass and molar basis which will be added into the material balances, which will be converted as necessary to the same basis as the material balance (by multiplying or dividing by the component molecular weight). The basis of the material balance is determined by the physical property package, and if undefined (or not mass or mole basis), an Exception will be returned.

material_flow_linking_constraints(t, x, p, j):

This constraint is an internal constraint used to link the extensive material flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, material_holdup_calculation(t, x, p, j):

\[M_{t, x, p, j} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

If has_rate_reactions is True, rate_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{kinetic, t, x, p, j} = \alpha_{r, p, j} \times X_{kinetic, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

If has_equilibrium_reactions argument is True, equilibrium_reaction_stoichiometry_constraint(t, x, p, j):

\[N_{equilibrium, t, x, p, j} = \alpha_{r, p, j} \times X_{equilibrium, t, x, r}\]

where \(\alpha_{r, p. j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) for reaction \(r\) (as defined in the PhysicalParameterBlock).

add_total_element_balances

Material balances are written for each element in the mixture.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	element_holdup

	\(M_{t,x,e}\)

	t, x, e

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	element_accumulation

	\(\frac{\partial M_{t,x,e}}{\partial t}\)

	t, x, e

	dynamic = True

	elemental_mass_transfer_term

	\(N_{transfer,t,x,e}\)

	t, x, e

	has_mass_transfer = True

	elemental_flow_term

	\(F_{t,x,e}\)

	t, x, e

	None

Constraints

elemental_flow_constraint(t, x, e):

\[F_{t,x,e} = \sum_p{\sum_j{F_{t,x,p,j} \times n_{j, e}}}\]

where \(n_{j, e}\) is the number of moles of element \(e\) in component \(j\).

element_balances(t, x, e):

\[L \times \frac{\partial M_{t, x, e}}{\partial t} = fd \times \frac{\partial F_{t, x, e}}{\partial x} + L \times N_{transfer, t, p, j} + L \times N_{custom, t, e}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(N_{custom, t, x, e}\) term allows the user to provide custom terms (variables or expressions) which will be added into the material balances.

If has_holdup is True, elemental_holdup_calculation(t, x, e):

\[M_{t, x, e} = \rho_{t, x, p, j} \times A \times \phi_{t, x, p}\]

where \(\rho_{t, x, p ,j}\) is the density of component \(j\) in phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial M_{t,x,p,j}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_enthalpy_balances

A single enthalpy balance is written for the entire mixture at each point in the spatial domain.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	energy_holdup

	\(E_{t,x,p}\)

	t, x, p

	has_holdup = True

	phase_fraction

	\(\phi_{t,x,p}\)

	t, x, p

	has_holdup = True

	energy_accumulation

	\(\frac{\partial E_{t,x,p}}{\partial t}\)

	t, x, p

	dynamic = True

	_enthalpy_flow

	\(H_{t,x,p}\)

	t, x, p

	None

	enthalpy_flow_dx

	\(\frac{\partial H_{t,x,p}}{\partial x}\)

	t, x, p

	None

	heat

	\(Q_{t,x}\)

	t, x

	has_heat_transfer = True

	work

	\(W_{t,x}\)

	t, x

	has_work_transfer = True

	enthalpy_transfer

	\(H_{transfer,t,x}\)

	t, x

	has_enthalpy_transfer = True

Expressions

heat_of_reaction(t, x):

\[Q_{rxn, t, x} = sum_r{X_{kinetic, t, x, r} \times \Delta H_{rxn, r}} + sum_r{X_{equilibrium, t, x, r} \times \Delta H_{rxn, r}}\]

where \(Q_{rxn, t, x}\) is the total enthalpy released by both kinetic and equilibrium reactions, and \(\Delta H_{rxn, r}\) is the specific heat of reaction for reaction \(r\).

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_energy

	\(s_{energy}\)

	1E-6

Constraints

enthalpy_balance(t):

\[s_{energy} \times L \times \sum_p{\frac{\partial E_{t, x, p}}{\partial t}} = s_{energy} \times fd \ times \sum_p{\frac{\partial H_{t, x, p}}{\partial x}} + s_{energy} \times L \times Q_{t,x} + s_{energy} \times L \times W_{t,x} + s_{energy} \times L \times H_{transfer,t,x} + s_{energy} \times L \times Q_{rxn, t, x} + s_{energy} \times L \times E_{custom, t, x}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(E_{custom, t, x}\) term allows the user to provide custom terms which will be added into the energy balance.

enthalpy_flow_linking_constraints(t, x, p):

This constraint is an internal constraint used to link the extensive enthalpy flow terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

If has_holdup is True, enthalpy_holdup_calculation(t, x, p):

\[E_{t, x, p} = u_{t, x, p} \times A \times \phi_{t, x, p}\]

where \(u_{t, x, p}\) is the internal density (specific internal energy) of phase \(p\) at time \(t\) and location \(x\).

If dynamic is True:

Numerical discretization of the derivative terms, \(\frac{\partial E_{t,x,p}}{\partial t}\), will be performed by Pyomo.DAE.

add_total_pressure_balances

A single pressure balance is written for the entire mixture at all points in the spatial domain.

Variables

	Variable Name

	Symbol

	Indices

	Conditions

	pressure

	\(P_{t,x}\)

	t, x

	None

	pressure_dx

	\(\frac{\partial P_{t,x}}{\partial x}\)

	t, x

	None

	deltaP

	\(\Delta P_{t,x}\)

	t, x

	has_pressure_change = True

Parameters

	Parameter Name

	Symbol

	Default Value

	scaling_factor_pressure

	\(s_{pressure}\)

	1E-4

Constraints

pressure_balance(t, x):

\[0 = s_{pressure} \times fd \times \frac{\partial P_{t,x}}{\partial x} + s_{pressure} \times L \times \Delta P_{t,x} + s_{pressure} \times L \times \Delta P_{custom, t, x}\]

\(fd\) is a flow direction term, which allows for material flow to be defined in either direction. If material flow is defined as forward, \(fd = -1\), otherwise \(fd = 1\).

The \(\Delta P_{custom, t, x}\) term allows the user to provide custom terms which will be added into the pressure balance.

pressure_linking_constraint(t, x):

This constraint is an internal constraint used to link the pressure terms in the StateBlocks into a single indexed variable. This is required as Pyomo.DAE requires a single indexed variable to create the associated DerivativeVars and their numerical expansions.

Physical Property Package Classes

Contents

	Physical Property Package Classes

	Physical Parameter Blocks

	State Blocks

Physical property packages represent a collection of calculations necessary to determine the state properties of a given material. Property calculations form a critical part of any process model, and thus property packages form the core of the IDAES modeling framework.

Physical property packages consist of two parts:

	PhysicalParameterBlocks, which contain a set of parameters associated with the specific material(s) being modeled, and

	StateBlocks, which contain the actual calculations of the state variables and functions.

Physical Parameter Blocks

Physical Parameter blocks serve as a central location for linking to a property package, and contain all the parameters and indexing sets used by a given property package.

PhysicalParameterBlock Class

The role of the PhysicalParameterBlock class is to set up the references required by the rest of the IDAES framework for constructing instances of StateBlocks and attaching these to the PhysicalParameter block for ease of use. This allows other models to be pointed to the PhysicalParameter block in order to collect the necessary information and to construct the necessary StateBlocks without the need for the user to do this manually.

Physical property packages form the core of any process model in the IDAES modeling framework, and are used by all of the other modeling components to inform them of what needs to be constructed. In order to do this, the IDAES modeling framework looks for a number of attributes in the PhysicalParameter block which are used to inform the construction of other components.

	state_block_class - a pointer to the associated class that should be called when constructing StateBlocks. This should only be set by the property package developer.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	element_list - (optional) a Pyomo Set defining the names of the chemical elements that make up the species within the mixture. This is used when doing elemental material balances.

	element_comp - (optional) a dict-like object which defines the elemental composition of each species in component_list. Form: component: {element_1: value, element_2: value, …}.

	supported properties metadata - a list of supported physical properties that the property package supports, along with instruction to the framework on how to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

Physical Parameter Configuration Arguments

Physical Parameter blocks have one standard configuration argument:

	default_arguments - this allows the user to provide a set of default values for construction arguments in associated StateBlocks, which will be passed to all StateBlocks when they are constructed.

	
class idaes.core.property_base.PhysicalParameterBlock(component)[source]

	This is the base class for thermophysical parameter blocks. These are
blocks that contain a set of parameters associated with a specific
thermophysical property package, and are linked to by all instances of
that property package.

	
build()[source]

	General build method for PropertyParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

	
build_state_block(*args, **kwargs)[source]

	Methods to construct a StateBlock assoicated with this
PhysicalParameterBlock. This will automatically set the parameters
construction argument for the StateBlock.

	Returns

	StateBlock

	
get_component(comp)[source]

	Method to retrieve a Component object based on a name from the
component_list.

	Parameters

	comp – name of Component object to retrieve

	Returns

	Component object

	
get_default_scaling(attrbute, index=None)[source]

	Returns a default scale factor for a property

	Parameters

	
	attribute – property attribute name

	index – optional index for indexed properties

	Returns

	None

	
get_phase(phase)[source]

	Method to retrieve a Phase object based on a name from the phase_list.

	Parameters

	phase – name of Phase object to retrieve

	Returns

	Phase object

	
get_phase_component_set()[source]

	Method to get phase-component set for property package. If a phase-
component set has not been constructed yet, this method will construct
one.

	Parameters

	None –

	Returns

	Phase-Component Set object

	
set_default_scaling(attrbute, value, index=None)[source]

	Set a default scaling factor for a property.

	Parameters

	
	attribute – property attribute name

	value – default scaling factor

	index – for indexed properties, if this is not provied the scaling
factor default applies to all indexed elements where specific
indexes are no specifcally specified.

	Returns

	None

	
unset_default_scaling(attrbute, index=None)[source]

	Remove a previously set default value

	Parameters

	
	attribute – property attribute name

	index – optional index for indexed properties

	Returns

	None

State Blocks

State Blocks are used within all IDAES Unit models (generally within ControlVolume Blocks) in order to calculate physical properties given the state of the material. State Blocks are notably different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well). There are two base Classes associated with State Blocks:

	StateBlockData forms the base class for all StateBlockData objects, which contain the instructions on how to construct each instance of a State Block.

	StateBlock is used for building classes which contain methods to be applied to sets of Indexed State Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

State Block Construction Arguments

State Blocks have the following construction arguments:

	parameters - a reference to the associated Physical Parameter block which will be used to make references to all necessary parameters.

	defined_state - this argument indicates whether the State Block should expect the material state to be fully defined by another part of the flowsheet (such as by an upstream unit operation). This argument is used to determine whether constraints such as sums of mole fractions should be enforced.

	has_phase_equilibrium - indicates whether the associated Control Volume or Unit model expects phase equilibrium to be enforced (if applicable).

Constructing State Blocks

State Blocks can be constructed directly from the associated Physical Parameter Block by calling the build_state_block() method on the Physical Parameter Block. The parameters construction argument will be automatically set, and any other arguments (including indexing sets) may be provided to the build_state_block method as ususal.

StateBlockData Class

StateBlockData contains the code necessary for implementing the as needed construction of variables and constraints.

	
class idaes.core.property_base.StateBlockData(*args, **kwargs)[source]

	This is the base class for state block data objects. These are
blocks that contain the Pyomo components associated with calculating a
set of thermophysical and transport properties for a given material.

	
build()[source]

	General build method for StateBlockDatas.

	Parameters

	None –

	Returns

	None

	
calculate_bubble_point_pressure(*args, **kwargs)[source]

	Method which computes the bubble point pressure for a multi-
component mixture given a temperature and mole fraction.

	
calculate_bubble_point_temperature(*args, **kwargs)[source]

	Method which computes the bubble point temperature for a multi-
component mixture given a pressure and mole fraction.

	
calculate_dew_point_pressure(*args, **kwargs)[source]

	Method which computes the dew point pressure for a multi-
component mixture given a temperature and mole fraction.

	
calculate_dew_point_temperature(*args, **kwargs)[source]

	Method which computes the dew point temperature for a multi-
component mixture given a pressure and mole fraction.

	
define_display_vars()[source]

	Method used to specify components to use to generate stream tables and
other outputs. Defaults to define_state_vars, and developers should
overload as required.

	
define_port_members()[source]

	Method used to specify components to populate Ports with. Defaults to
define_state_vars, and developers should overload as required.

	
define_state_vars()[source]

	Method that returns a dictionary of state variables used in property
package. Implement a placeholder method which returns an Exception to
force users to overload this.

	
get_energy_density_terms(*args, **kwargs)[source]

	Method which returns a valid expression for enthalpy density to use in
the energy balances.

	
get_energy_diffusion_terms(*args, **kwargs)[source]

	Method which returns a valid expression for energy diffusion to use in
the energy balances.

	
get_enthalpy_flow_terms(*args, **kwargs)[source]

	Method which returns a valid expression for enthalpy flow to use in
the energy balances.

	
get_material_density_terms(*args, **kwargs)[source]

	Method which returns a valid expression for material density to use in
the material balances .

	
get_material_diffusion_terms(*args, **kwargs)[source]

	Method which returns a valid expression for material diffusion to use
in the material balances.

	
get_material_flow_basis(*args, **kwargs)[source]

	Method which returns an Enum indicating the basis of the material flow
term.

	
get_material_flow_terms(*args, **kwargs)[source]

	Method which returns a valid expression for material flow to use in
the material balances.

	
is_property_constructed(attr)[source]

	Returns True if the attribute attr already exists, or false if it
would be added in __getattr__, or does not exist.

	Parameters

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute name to check

	Returns

	True if the attribute is already constructed, False otherwise

	
lock_attribute_creation_context()[source]

	Returns a context manager that does not allow attributes to be created
while in the context and allows attributes to be created normally outside
the context.

StateBlock Class

	
class idaes.core.property_base.StateBlock(*args, **kwargs)[source]

	This is the base class for state block objects. These are used when
constructing the SimpleBlock or IndexedBlock which will contain the
PropertyData objects, and contains methods that can be applied to
multiple StateBlockData objects simultaneously.

	
initialize(*args, **kwargs)[source]

	This is a default initialization routine for StateBlocks to ensure
that a routine is present. All StateBlockData classes should
overload this method with one suited to the particular property package

	Parameters

	None –

	Returns

	None

	
report(index=0, true_state=False, dof=False, ostream=None, prefix='')[source]

	Default report method for StateBlocks. Returns a Block report populated
with either the display or state variables defined in the
StateBlockData class.

	Parameters

	
	index – tuple of Block indices indicating which point in time (and
space if applicable) to report state at.

	true_state – whether to report the display variables (False
default) or the actual state variables (True)

	dof – whether to show local degrees of freedom in the report
(default=False)

	ostream – output stream to write report to

	prefix – string to append to the beginning of all output lines

	Returns

	Printed output to ostream

Reaction Property Package Classes

Contents

	Reaction Property Package Classes

	Consistency with Thermophysical Properties

	Reaction Parameter Blocks

	Reaction Blocks

Reaction property packages represent a collection of calculations necessary to determine the reaction behavior of a mixture at a given state. Reaction properties depend upon the state and physical properties of the material, and thus must be linked to a StateBlock which provides the necessary state and physical property information.

Reaction property packages consist of two parts:

	ReactionParameterBlocks, which contain a set of parameters associated with the specific reaction(s) being modeled, and

	ReactionBlocks, which contain the actual calculations of the reaction behavior.

Consistency with Thermophysical Properties

Within the IDAES modeling framework, all reaction packages are coupled with a thermophysical property package. The thermophysical property package contains the state variables required for calculating reaction properties, and in some cases may also provide thermophysical properties required by reaction calculations. Due to this, reaction packages must be consistent with the thermophysical property package they are linked to and the modeling framework performs some checks to ensure this. Notably, the default units of measurement defined for the reaction package and the thermophysical property package must match.

Reaction Parameter Blocks

Reaction Parameter blocks serve as a central location for linking to a reaction property package, and contain all the parameters and indexing sets used by a given reaction package.

ReactionParameterBlock Class

The role of the ReactionParameterBlock class is to set up the references required by the rest of the IDAES framework for constructing instances of ReactionBlocks and attaching these to the ReactionParameter block for ease of use. This allows other models to be pointed to the ReactionParameter block in order to collect the necessary information and to construct the necessary ReactionBlocks without the need for the user to do this manually.

Reaction property packages are used by all of the other modeling components to inform them of what needs to be constructed when dealing with chemical reactions. In order to do this, the IDAES modeling framework looks for a number of attributes in the ReactionParameter block which are used to inform the construction of other components.

	reaction_block_class - a pointer to the associated class that should be called when constructing ReactionBlocks. This should only be set by the property package developer.

	phase_list - a Pyomo Set object defining the valid phases of the mixture of interest.

	component_list - a Pyomo Set defining the names of the chemical species present in the mixture.

	rate_reaction_idx - a Pyomo Set defining a list of names for the kinetically controlled reactions of interest.

	rate_reaction_stoichiometry - a dict-like object defining the stoichiometry of the kinetically controlled reactions. Keys should be tuples of (rate_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	equilibrium_reaction_idx - a Pyomo Set defining a list of names for the equilibrium controlled reactions of interest.

	equilibrium_reaction_stoichiometry - a dict-like object defining the stoichiometry of the equilibrium controlled reactions. Keys should be tuples of (equilibrium_reaction_idx, phase_list, component_list) and values equal to the stoichiometric coefficient for that index.

	supported properties metadata - a list of supported reaction properties that the property package supports, along with instruction to the framework on how to construct the associated variables and constraints, and the units of measurement used for the property. This information is set using the add_properties attribute of the define_metadata class method.

	required properties metadata - a list of physical properties that the reaction property calculations depend upon, and must be supported by the associated StateBlock. This information is set using the add_required_properties attribute of the define_metadata class method.

Reaction Parameter Configuration Arguments

Reaction Parameter blocks have two standard configuration arguments:

	property_package - a pointer to a PhysicalParameterBlock which will be used to construct the StateBlocks to which associated ReactionBlocks will be linked. Reaction property packages must be tied to a single Physical property package, and this is used to validate the connections made later when constructing ReactionBlocks.

	default_arguments - this allows the user to provide a set of default values for construction arguments in associated ReactionBlocks, which will be passed to all ReactionBlocks when they are constructed.

	
class idaes.core.reaction_base.ReactionParameterBlock(*args, **kwargs)[source]

	This is the base class for reaction parameter blocks. These are blocks
that contain a set of parameters associated with a specific reaction
package, and are linked to by all instances of that reaction package.

	
build()[source]

	General build method for ReactionParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

	
build_reaction_block(*args, **kwargs)[source]

	Methods to construct a ReactionBlock assoicated with this
ReactionParameterBlock. This will automatically set the parameters
construction argument for the ReactionBlock.

	Returns

	ReactionBlock

Reaction Blocks

Reaction Blocks are used within IDAES Unit models (generally within ControlVolume Blocks) in order to calculate reaction properties given the state of the material (provided by an associated StateBlock). Reaction Blocks are notably different to other types of Blocks within IDAES as they are always indexed by time (and possibly space as well), and are also not fully self contained (in that they depend upon the associated state block for certain variables). There are two bases Classes associated with Reaction Blocks:

	ReactionBlockDataBase forms the base class for all ReactionBlockData objects, which contain the instructions on how to construct each instance of a Reaction Block.

	ReactionBlockBase is used for building classes which contain methods to be applied to sets of Indexed Reaction Blocks (or to a subset of these). See the documentation on declare_process_block_class and the IDAES tutorials and examples for more information.

Reaction Block Construction Arguments

Reaction Blocks have the following construction arguments:

	parameters - a reference to the associated Reaction Parameter block which will be used to make references to all necessary parameters.

	state_block - a reference to the associated StateBlock which will provide the necessary state and physical property information.

	has_equilibrium - indicates whether the associated Control Volume or Unit model expects chemical equilibrium to be enforced (if applicable).

Constructing Reaction Blocks

Reaction Blocks can be constructed directly from the associated Reaction Parameter Block by calling the build_reaction_block() method on the Reaction Parameter Block. The parameters construction argument will be automatically set, and any other arguments (including indexing sets) may be provided to the build_reaction_block method as ususal.

ReactionBlockDataBase Class

ReactionBlockDataBase contains the code necessary for implementing the as needed construction of variables and constraints.

	
class idaes.core.reaction_base.ReactionBlockDataBase(*args, **kwargs)[source]

	This is the base class for reaction block data objects. These are
blocks that contain the Pyomo components associated with calculating a
set of reacion properties for a given material.

	
build()[source]

	General build method for PropertyBlockDatas. Inheriting models should
call super().build.

	Parameters

	None –

	Returns

	None

	
get_reaction_rate_basis()[source]

	Method which returns an Enum indicating the basis of the reaction rate
term.

	
is_property_constructed(attr)[source]

	Returns True if the attribute attr already exists, or false if it
would be added in __getattr__, or does not exist.

	Parameters

	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attribute name to check

	Returns

	True if the attribute is already constructed, False otherwise

	
lock_attribute_creation_context()[source]

	Returns a context manager that does not allow attributes to be created
while in the context and allows attributes to be created normally outside
the context.

ReactionBlockBase Class

	
class idaes.core.reaction_base.ReactionBlockBase(*args, **kwargs)[source]

	This is the base class for reaction block objects. These are used when
constructing the SimpleBlock or IndexedBlock which will contain the
PropertyData objects, and contains methods that can be applied to
multiple ReactionBlockData objects simultaneously.

	
initialize(*args)[source]

	This is a default initialization routine for ReactionBlocks to ensure
that a routine is present. All ReactionBlockData classes should
overload this method with one suited to the particular reaction package

	Parameters

	None –

	Returns

	None

Unit Model Class

The UnitModelBlock is class is designed to form the basis of all IDAES Unit Models, and contains a number of methods which are common to all Unit Models.

UnitModelBlock Construction Arguments

The UnitModelBlock class by default has only one construction argument, which is listed below. However, most models inheriting from UnitModelBlock should declare their own set of configuration arguments which contain more information on how the model should be constructed.

	dynamic - indicates whether the Unit model should be dynamic or steady-state, and if dynamic = True, the unit is declared to be a dynamic model. dynamic defaults to useDefault if not provided when instantiating the Unit model (see below for more details). It is possible to declare steady-state Unit models as part of dynamic Flowsheets if desired, however the reverse is not true (cannot have dynamic Unit models within steady-state Flowsheets).

Collecting Time Domain

The next task of the UnitModelBlock class is to establish the time domain for the unit by collecting the necessary information from the parent Flowsheet model. If the dynamic construction argument is set to useDefault then the Unit model looks to its parent model for the dynamic argument, otherwise the value provided at construction is used.

Finally, if the Unit model has a construction argument named “has_holdup” (not part of the base class), then this is checked to ensure that if dynamic = True then has_holdup is also True. If this check fails then a ConfigurationError exception will be thrown.

Modeling Support Methods

The UnitModelBlock class also contains a number of methods designed to facilitate the construction of common components of a model, and these are described below.

Build Inlets Method

All (or almost all) Unit Models will have inlets and outlets which allow material to flow in and out of the unit being modeled. In order to save the model developer from having to write the code for each inlet themselves, UnitModelBlock contains a method named build_inlet_port which can automatically create an inlet to a specified ControlVolume block (or linked to a specified StateBlock). The build_inlet_port method is described in more detail in the documentation below.

Build Outlets Method

Similar to build_inlet_port, UnitModelBlock also has a method named build_outlet_port for constructing outlets from Unit models. The build_outlet_port method is described in more detail in the documentation below.

Model Check Method

In order to support the IDAES Model Check tools, UnitModelBlock contains a simple model_check method which assumes a single Holdup block and calls the model_check method on this block. Model developers are encouraged to create their own model_check methods for their particular applications.

Initialization Routine

All Unit Models need to have an initialization routine, which should be customized for each Unit model, In order to ensure that all Unit models have at least a basic initialization routine, UnitModelBlock contains a generic initialization procedure which may be sufficient for simple models with only one Holdup Block. Model developers are strongly encouraged to write their own initialization routines rather than relying on the default method.

UnitModelBlock Classes

	
class idaes.core.unit_model.UnitModelBlockData(component)[source]

	This is the class for process unit operations models. These are models that
would generally appear in a process flowsheet or superstructure.

	
add_inlet_port(name=None, block=None, doc=None)[source]

	This is a method to build inlet Port objects in a unit model and
connect these to a specified control volume or state block.

The name and block arguments are optional, but must be used together.
i.e. either both arguments are provided or neither.

	Keyword Arguments

	
	name – name to use for Port object (default = “inlet”).

	block – an instance of a ControlVolume or StateBlock to use as the
source to populate the Port object. If a ControlVolume is
provided, the method will use the inlet state block as
defined by the ControlVolume. If not provided, method will
attempt to default to an object named control_volume.

	doc – doc string for Port object (default = “Inlet Port”)

	Returns

	A Pyomo Port object and associated components.

	
add_outlet_port(name=None, block=None, doc=None)[source]

	This is a method to build outlet Port objects in a unit model and
connect these to a specified control volume or state block.

The name and block arguments are optional, but must be used together.
i.e. either both arguments are provided or neither.

	Keyword Arguments

	
	name – name to use for Port object (default = “outlet”).

	block – an instance of a ControlVolume or StateBlock to use as the
source to populate the Port object. If a ControlVolume is
provided, the method will use the outlet state block as
defined by the ControlVolume. If not provided, method will
attempt to default to an object named control_volume.

	doc – doc string for Port object (default = “Outlet Port”)

	Returns

	A Pyomo Port object and associated components.

	
add_port(name=None, block=None, doc=None)[source]

	This is a method to build Port objects in a unit model and
connect these to a specified StateBlock.

	Keyword Arguments

	
	name – name to use for Port object.

	block – an instance of a StateBlock to use as the source to
populate the Port object

	doc – doc string for Port object

	Returns

	A Pyomo Port object and associated components.

	
add_state_material_balances(balance_type, state_1, state_2)[source]

	Method to add material balances linking two State Blocks in a Unit
Model. This method is not intended to replace Control Volumes, but
to automate writing material balances linking isolated State Blocks
in those models where this is required.

	Parameters

	
	- a MaterialBalanceType Enum indicating the type (balance_type) – of material balances to write

	- first State Block to be linked by balances (state_1) –

	- second State Block to be linked by balances (state_2) –

	Returns

	None

	
build()[source]

	General build method for UnitModelBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
initialize(state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	This is a general purpose initialization routine for simple unit
models. This method assumes a single ControlVolume block called
controlVolume, and first initializes this and then attempts to solve
the entire unit.

More complex models should overload this method with their own
initialization routines,

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()[source]

	This is a general purpose initialization routine for simple unit
models. This method assumes a single ControlVolume block called
controlVolume and tries to call the model_check method of the
controlVolume block. If an AttributeError is raised, the check is
passed.

More complex models should overload this method with a model_check
suited to the particular application, especially if there are multiple
ControlVolume blocks present.

	Parameters

	None –

	Returns

	None

	
class idaes.core.unit_model.UnitModelBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(UnitModelBlock) New instance

Component Class

This is a general purpose Component object, and is suitable for general cases where the user is
not concerned about distinguishing solutes from solvents (is_solute() and is_solvent() will
both raise TypeErrors). This also forms the base class for all other Component types.

	
class idaes.core.components.Component(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	valid_phase_types
	List of valid PhaseTypes (Enums) for this Component.

	elemental_composition
	Dict containing elemental composition in the form element
: stoichiometry

	henry_component
	Dict indicating phases in which component follows Herny’s
Law (keys) with values indicating form of law.

	dens_mol_liq_comp
	Method to use to calculate liquid phase molar density

	cp_mol_liq_comp
	Method to calculate liquid component specific heats

	cp_mol_ig_comp
	Method to calculate ideal gas component specific heats

	enth_mol_liq_comp
	Method to calculate liquid component molar enthalpies

	enth_mol_ig_comp
	Method to calculate ideal gas component molar enthalpies

	entr_mol_liq_comp
	Method to calculate liquid component molar entropies

	entr_mol_ig_comp
	Method to calculate ideal gas component molar entropies

	pressure_sat_comp
	Method to use to calculate saturation pressure

	phase_equilibrium_form
	Form of phase equilibrium constraints for component

	parameter_data
	Dict containing initialization data for parameters

	_component_list_exists
	Internal config argument indicating whether component_list
needs to be populated.

	_electrolyte
	Internal config argument indicating whether electrolyte
component_lists needs to be populated.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Component) New instance

Solute Class

The component object is suitable for species which should be treated as solutes in a
LiquidPhase. The only difference between this and a general Component is that is_solute()
returns True and is_solvent() returns False.

Solvent Class

The component object is suitable for species which should be treated as solvents in a
LiquidPhase. The only difference between this and a general Component is that is_solute()
returns False and is_solvent() returns True.

Ion Class

The Ion class is suitable for ionic species which appear in LiquidPhases. This is similar to
the Solute class, in that is_solute() returns True and is_solvent() returns False.
Additionally, Ion objects have a charge configuration argument for recording the charge on
the ion (must be an integer) and do not have a valid_phase_types argument (as it is assumed
they can only exist in LiquidPhases).

Note

Users are encouraged to use the Anion and Cation classes instead of the generic Ion class, as these validate that sign of the charge configuration argument.

Anion Class

The Anion class is suitable for anionic species (i.e. negatively charged) which appear in
LiquidPhases. This is a subclass of Ion, which enforces that the sign on the charge
configuration argument be negative.

Cation Class

The Cation class is suitable for cationic species (i.e. positively charged) which appear in
LiquidPhases. This is a subclass of Ion, which enforces that the sign on the charge
configuration argument be positive.

Phase Class

	
class idaes.core.phases.Phase(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	component_list
	List of components which are present in phase. This is
used to construct the phase-component Set for the property
package.

	equation_of_state
	A valid Python class with the necessary methods for
constructing the desired equation of state (or similar
model).

	equation_of_state_options
	A dict or ConfigBlock of options to be used when setting
up equation of state for phase.

	parameter_data
	Dict containing initialization data for parameters

	_phase_list_exists
	Internal config argument indicating whether phase_list
needs to be populated.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Phase) New instance

Phase Type Enum

In some cases, it is useful to be able to indicate a given type of phase, rather than an instance specific Phase class; an example would be indicating the set of valid phases for a given chemical species. In these cases, the PhaseType Enum can be used, which enumerates the different types of phases recognized by the IDAES framework.

The PhaseType Enum has the following possible values:

	liquidPhase (1)

	vaporPhase (2)

	solidPhase (3)

Utility Methods

	Utilities for Dynamic Flowsheets

	Homotopy Meta-Solver

	Initialization Methods

	Model State Serialization

	Model Statistics Methods

	Scaling Methods

	Table Methods

	Unit Model Costing

	Variable-Like Expressions

Utilities for Dynamic Flowsheets

These are utility functions for working with dynamic IDAES flowsheets.

Methods

This module contains utility functions for dynamic IDAES models.

	
idaes.core.util.dyn_utils.copy_non_time_indexed_values(fs_tgt, fs_src, copy_fixed=True, outlvl=0)[source]

	Function to set the values of all variables that are not (implicitly
or explicitly) indexed by time to their values in a different flowsheet.

	Parameters

	
	fs_tgt – Flowsheet into which values will be copied.

	fs_src – Flowsheet from which values will be copied.

	copy_fixed – Bool marking whether or not to copy over fixed variables
in the target flowsheet.

	outlvl – Outlevel for the IDAES logger.

	Returns

	None

	
idaes.core.util.dyn_utils.copy_values_at_time(fs_tgt, fs_src, t_target, t_source, copy_fixed=True, outlvl=0)[source]

	Function to set the values of all (explicitly or implicitly) time-indexed
variables in a flowsheet to similar values (with the same name) but at
different points in time and (potentially) in different flowsheets.

	Parameters

	
	fs_tgt – Target flowsheet, whose variables’ values will get set

	fs_src – Source flowsheet, whose variables’ values will be used to
set those of the target flowsheet. Could be the target
flowsheet

	t_target – Target time point

	t_source – Source time point

	copy_fixed – Bool of whether or not to copy over fixed variables in
target model

	outlvl – IDAES logger output level

	Returns

	None

	
idaes.core.util.dyn_utils.deactivate_constraints_unindexed_by(b, time)[source]

	Searches block b for and constraints not indexed by time
and deactivates them.

	Parameters

	
	b – Block to search

	time – Set with respect to which to find unindexed constraints

	Returns

	List of constraints deactivated

	
idaes.core.util.dyn_utils.deactivate_model_at(b, cset, pts, outlvl=0)[source]

	Finds any block or constraint in block b, indexed explicitly (and not
implicitly) by cset, and deactivates it at points specified.
Implicitly indexed components are excluded because one of their parent
blocks will be deactivated, so deactivating them too would be redundant.

	Parameters

	
	b – Block to search

	cset – ContinuousSet of interest

	pts – Value or list of values, in ContinuousSet, to deactivate at

	Returns

	A dictionary mapping points in pts to lists of
component data that have been deactivated there

	
idaes.core.util.dyn_utils.find_comp_in_block(tgt_block, src_block, src_comp, allow_miss=False)[source]

	This function finds a component in a source block, then uses the same
local names and indices to try to find a corresponding component in a target
block. This is used when we would like to verify that a component of the
same name exists in the target block, as in model predictive control where
certain variables must be correllated between plant and controller model.

	Parameters

	
	tgt_block – Target block that will be searched for component

	src_block – Source block in which the original component is located

	src_comp – Component whose name will be searched for in target block

	allow_miss – If True, will ignore attribute and key errors due to
searching for non-existant components in the target model

	Returns

	Component with the same name in the target block

	
idaes.core.util.dyn_utils.find_comp_in_block_at_time(tgt_block, src_block, src_comp, time, t0, allow_miss=False)[source]

	This function finds a component in a source block, then uses the same
local names and indices to try to find a corresponding component in a target
block, with the exception of time index in the target component, which is
replaced by a specified time point. This is used for validation of a
component by its name in the case where blocks may differ by at most time
indices, for example validating a steady-state model or a model with a
different time discretization.

	Parameters

	
	tgt_block – Target block that will be searched for component

	src_block – Source block in which the original component is located

	src_comp – Component whose name will be searched for in target block

	time – Set whose index will be replaced in the target component

	t0 – Index of the time set that will be used in the target
component

	allow_miss – If True, will ignore attribute and key errors due to
searching for non-existant components in the target model

	
idaes.core.util.dyn_utils.fix_vars_unindexed_by(b, time)[source]

	Searches block b for variables not indexed by time
and fixes them.

	Parameters

	
	b – Block to search

	time – Set with respect to which to find unindexed variables

	Returns

	List of variables fixed

	
idaes.core.util.dyn_utils.get_activity_dict(b)[source]

	Function that builds a dictionary telling whether or not each
ConstraintData and BlockData object in a model is active.
Uses the objects’ ids as the hash.

	Parameters

	b – A Pyomo Block to be searched for active components

	Returns

	A dictionary mapping id of constraint and block data objects
to a bool indicating if they are active

	
idaes.core.util.dyn_utils.get_derivatives_at(b, time, pts)[source]

	Finds derivatives with respect to time at points specified.
No distinction made for multiple derivatives or mixed partials.

	Parameters

	
	b – Block to search for derivatives

	time – ContinuousSet to look for derivatives with respect to

	pts – Value or list of values in time set at which to return
derivatives

	Returns
	Dictionary mapping time points to lists of derivatives
at those points

	
idaes.core.util.dyn_utils.get_fixed_dict(b)[source]

	Function that builds a dictionary telling whether or not each VarData
object in a model is fixed. Uses the objects’ ids as the hash.

	Parameters

	b – A Pyomo block to be searched for fixed variables

	Returns

	A dictionary mapping id of VarData objects to a bool indicating if
they are fixed

	
idaes.core.util.dyn_utils.get_implicit_index_of_set(comp, wrt)[source]

	For some data object contained (at some level of the hierarchy) in a
block indexed by wrt, returns the index corresponding to wrt in that
block.

	Parameters

	
	comp – Component data object whose (parent blocks’) indices will be
searched

	wrt – Set whose index will be searched for

	Returns

	Value of the specified set

	
idaes.core.util.dyn_utils.get_index_of_set(comp, wrt)[source]

	For some data object of an indexed component, gets the value of the
index corresponding to some 1-dimensional pyomo set.

	Parameters

	
	comp – Component data object whose index will be searched

	wrt – Set whose index will be searched for

	Returns

	Value of the specified set in the component data object

	
idaes.core.util.dyn_utils.get_location_of_coordinate_set(setprod, subset)[source]

	For a SetProduct and some 1-dimensional coordinate set of that
SetProduct, returns the location of an index of the coordinate
set within the index of the setproduct.

	Parameters

	
	setprod – SetProduct containing the subset of interest

	subset – 1-dimensional set whose location will be found in the
SetProduct

	Returns

	Integer location of the subset within the SetProduct

	
idaes.core.util.dyn_utils.path_from_block(comp, blk, include_comp=False)[source]

	Returns a list of tuples with (local_name, index) pairs required
to locate comp from blk

	Parameters

	
	comp – Component(Data) object to locate

	blk – Block(Data) to locate comp from

	include_comp – Bool of whether or not to include the
local_name, index of the component itself

	Returns

	A list of string, index tuples that can be used to locate
comp from blk

Homotopy Meta-Solver

The IDAES homotopy meta-solver is useful for cases where a user has a feasible solution to a well-defined (i.e. square) problem at one set of conditions (i.e. value of fixed variables), and wishes to find a feasible solution to the same problem at a different set of conditions. In many situations this can be achieved by directly changing the values of the fixed variables to their new values and solving the problem, but cases exist where this is challenging. Homotopy solvers try to find a feasible path to the new solution by taking smaller steps in the value of the fixed variables to progressively find a solution at the new point.

Note

A homotopy solver should not be considered a fix to a poorly posed or
ill-conditioned problem, and users should first consider whether their
problem can be reformulated for better performance.

Homotopy Routine

The IDAES homotopy routine starts from a feasible solution to the problem at the initial values for the fixed variables (\(v_0\)) and a set of target values for these (\(t\)). The routine then calculates a set of new values for the fixed variables during the first homotopy evaluation based on an initial step size \(s_0\) such that:

\[v_1 = t \times s_0 + v_0 \times (1-s_0)\]

The problem is then passed to Ipopt to try to find a solution at the current values for the fixed variables. Based on the success or failure of the solver step, the following occurs:

	If the solver returns an optimal solution, the step is accepted and the solution to the current state of the model is saved (to provide a feasible point to revert to in case a future step fails). If the current meta-solver progress is 1 (i.e. it has converged to the target values), the meta-solver terminates otherwise the meta-solver progress (\(p_i\)) is then updated, \(p_i = p_{i-1} + s_i\), and the size of the next homotopy step is then calculated based on an adaptive step size method such that:

\[s_{i+1} = s_i \times \left(1 + a \times \left[\frac{I_t}{I_a}-1\right]\right)\]

where \(I_a\) is the number of solver iterations required in the current homotopy step, \(I_t\) is the desired number of solver iterations per homotopy step (an input parameter to the homotopy routine) and \(a\) is a step size acceleration factor (another input parameter). As such, the size of the homotopy step is adjusted to try to achieve a desired number of solver iterations per step as a proxy for difficulty in solving each step. If new step would overshoot the target values, then the step size is cut back to match the target values. The user can also specify a maximum and/or minimum size for the homotopy which can be used to limit the homotopy step.

A new set of values for the fixed variables is calculated using \(v_{i+1} = t \times (p_i+s_{i+1}) + v_0 \times (1-(p_i+s_{i+1}))\) and the process repeated.

	If the solver fails to find an optimal solution (for any reason), the current step is rejected and solution to the previous successful step is reloaded. If the last homotopy step was equal to the minimum homotopy step size, the meta-solver terminates, otherwise, a reduced homotopy step is calculated using:

\[s_{i+1} = s_i \times c\]

where \(c\) is a step cut factor (an input parameter between 0.1 and 0.9). If the new step homotopy step is less than the minimum homotopy step size, the minimum step is used instead.

A new set of fixed variable values are then calculated and another attempt to solve the problem is made.

Possible Termination Conditions

The homotopy meta-solver has the following possible termination conditions (using the Pyomo TerminationCondition Enum):

	TerminationCondition.optimal - meta-solver successfully converged at the target values for the fixed variables.

	TerminationCondition.other - the meta-solver successfully converged at the target values for the fixed variables, but with regularization of during final step. Users are recommended to discard this solution.

	TerminationCondition.minStepLength - the meta-solver was unable to find a feasible path to the target values, as the solver failed to find a solution using the minimum homotopy step size.

	TerminationCondition.maxEvaluations - the meta-solver terminated due to reaching the maximum allowed number of attempted homotopy steps

	TerminationCondition.infeasible - could not find feasible solution to the problem at the initial values for the fixed variables.

Available Methods

IDAES Homotopy meta-solver routine.

	
idaes.core.util.homotopy.homotopy(model, variables, targets, max_solver_iterations=50, max_solver_time=10, step_init=0.1, step_cut=0.5, iter_target=4, step_accel=0.5, max_step=1, min_step=0.05, max_eval=200)[source]

	Homotopy meta-solver routine using Ipopt as the non-linear solver. This
routine takes a model along with a list of fixed variables in that model
and a list of target values for those variables. The routine then tries to
iteratively move the values of the fixed variables to their target values
using an adaptive step size.

	Parameters

	
	model – model to be solved

	variables – list of Pyomo Var objects to be varied using homotopy.
Variables must be fixed.

	targets – list of target values for each variable

	max_solver_iterations – maximum number of solver iterations per
homotopy step (default=50)

	max_solver_time – maximum cpu time for the solver per homotopy step
(default=10)

	step_init – initial homotopy step size (default=0.1)

	step_cut – factor by which to reduce step size on failed step
(default=0.5)

	step_accel – acceleration factor for adjusting step size on successful
step (default=0.5)

	iter_target – target number of solver iterations per homotopy step
(default=4)

	max_step – maximum homotopy step size (default=1)

	min_step – minimum homotopy step size (default=0.05)

	max_eval – maximum number of homotopy evaluations (both successful and
unsuccessful) (default=200)

	Returns

	
	A Pyomo TerminationCondition Enum indicating
	how the meta-solver terminated (see documentation)

	Solver Progressa fraction indication how far the solver progressed
	from the initial values to the target values

	Number of Iterationsnumber of homotopy evaluations before solver
	terminated

	Return type

	Termination Condition

Initialization Methods

The IDAES toolset contains a number of utility functions to assist users with initializing models.

Available Methods

This module contains utility functions for initialization of IDAES models.

	
idaes.core.util.initialization.fix_state_vars(blk, state_args={})[source]

	Method for fixing state variables within StateBlocks. Method takes an
optional argument of values to use when fixing variables.

	Parameters

	
	blk – An IDAES StateBlock object in which to fix the state variables

	state_args – a dict containing values to use when fixing state
variables. Keys must match with names used in the
define_state_vars method, and indices of any variables must
agree.

	Returns

	A dict keyed by block index, state variable name (as defined by
define_state_variables) and variable index indicating the fixed status
of each variable before the fix_state_vars method was applied.

	
idaes.core.util.initialization.initialize_by_time_element(fs, time, **kwargs)[source]

	Function to initialize Flowsheet fs element-by-element along
ContinuousSet time. Assumes sufficient initialization/correct degrees
of freedom such that the first finite element can be solved immediately
and each subsequent finite element can be solved by fixing differential
and derivative variables at the initial time point of that finite element.

	Parameters

	
	fs – Flowsheet to initialize

	time – Set whose elements will be solved for individually

	solver – Pyomo solver object initialized with user’s desired options

	outlvl – IDAES logger outlvl

	ignore_dof – Bool. If True, checks for square problems will be skipped.

	Returns

	None

	
idaes.core.util.initialization.propagate_state(stream, direction='forward')[source]

	This method propagates values between Ports along Arcs. Values can be
propagated in either direction using the direction argument.

	Parameters

	
	stream – Arc object along which to propagate values

	direction – direction in which to propagate values. Default = ‘forward’
Valid value: ‘forward’, ‘backward’.

	Returns

	None

	
idaes.core.util.initialization.revert_state_vars(blk, flags)[source]

	Method to revert the fixed state of the state variables within an IDAES
StateBlock based on a set of flags of the previous state.

	Parameters

	
	blk – an IDAES StateBlock

	flags – a dict of bools indicating previous state with keys in the form
(StateBlock index, state variable name (as defined by
define_state_vars), var indices).

	Returns

	None

	
idaes.core.util.initialization.solve_indexed_blocks(solver, blocks, **kwds)[source]

	This method allows for solving of Indexed Block components as if they were
a single Block. A temporary Block object is created which is populated with
the contents of the objects in the blocks argument and then solved.

	Parameters

	
	solver – a Pyomo solver object to use when solving the Indexed Block

	blocks – an object which inherits from Block, or a list of Blocks

	kwds – a dict of argumnets to be passed to the solver

	Returns

	A Pyomo solver results object

Model State Serialization

The IDAES framework has some utility functions for serializing the state of a
Pyomo model. These functions can save and load attributes of Pyomo components,
but cannot reconstruct the Pyomo objects (it is not a replacement for pickle).
It does have some advantages over pickle though. Not all Pyomo models are
picklable. Serialization and deserialization of the model state to/from json is
more secure in that it only deals with data and not executable code. It should
be safe to use the from_json() function with data from untrusted sources,
while, unpickling an object from an untrusted source is not secure. Storing a
model state using these functions is also probably more robust against Python
and Python package version changes, and possibly more suitable for long-term storage
of results.

Below are a few example use cases for this module.

	Some models are very complex and may take minutes to initialize. Once a model is initialized it’s state can be saved. For future runs, the initialized state can be reloaded instead of rerunning the initialization procedure.

	Results can be stored for later evaluation without needing to rerun the model. These results can be archived in a data management system if needed later.

	These functions may be useful in writing initialization procedures. For example, a model may be constructed and ready to run but first it may need to be initialized. Which components are active and which variables are fixed can be stored. The initialization can change which variables are fixed and which components are active. The original state can be read back after initialization, but where only values of variables that were originally fixed are read back in. This is an easy way to ensure that whatever the initialization procedure may do, the result is exactly the same problem (with only better initial values for unfixed variables).

	These functions can be used to send and receive model data to/from JavaScript user interface components.

Examples

This section provides a few very simple examples of how to use these functions.

Example Models

This section provides some boilerplate and functions to create a couple simple
test models. The second model is a little more complicated and includes suffixes.

from pyomo.environ import *
from idaes.core.util import to_json, from_json, StoreSpec

def setup_model01():
 model = ConcreteModel()
 model.b = Block([1,2,3])
 a = model.b[1].a = Var(bounds=(-100, 100), initialize=2)
 b = model.b[1].b = Var(bounds=(-100, 100), initialize=20)
 model.b[1].c = Constraint(expr=b==10*a)
 a.fix(2)
 return model

def setup_model02():
 model = ConcreteModel()
 a = model.a = Param(default=1, mutable=True)
 b = model.b = Param(default=2, mutable=True)
 c = model.c = Param(initialize=4)
 x = model.x = Var([1,2], initialize={1:1.5, 2:2.5}, bounds=(-10,10))
 model.f = Objective(expr=(x[1] - a)**2 + (x[2] - b)**2)
 model.g = Constraint(expr=x[1] + x[2] - c >= 0)
 model.dual = Suffix(direction=Suffix.IMPORT)
 model.ipopt_zL_out = Suffix(direction=Suffix.IMPORT)
 model.ipopt_zU_out = Suffix(direction=Suffix.IMPORT)
 return model

Serialization

These examples can be appended to the boilerplate code above.

The first example creates a model, saves the state, changes a value, then reads
back the initial state.

model = setup_model01()
to_json(model, fname="ex.json.gz", gz=True, human_read=True)
model.b[1].a = 3000.4
from_json(model, fname="ex.json.gz", gz=True)
print(value(model.b[1].a))

2

This next example show how to save only suffixes.

model = setup_model02()
Suffixes here are read back from solver, so to have suffix data,
need to solve first
solver = SolverFactory("ipopt")
solver.solve(model)
store_spec = StoreSpec.suffix()
to_json(model, fname="ex.json", wts=store_spec)
Do something and now I want my suffixes back
from_json(model, fname="ex.json", wts=store_spec)

to_json

Despite the name of the to_json function it is capable of creating Python
dictionaries, json files, gzipped json files, and json strings. The function
documentation is below. A StoreSpec
object provides the function with details on what to store and how to handle
special cases of Pyomo component attributes.

	
idaes.core.util.model_serializer.to_json(o, fname=None, human_read=False, wts=None, metadata={}, gz=None, return_dict=False, return_json_string=False)[source]

	Save the state of a model to a Python dictionary, and optionally dump it
to a json file. To load a model state, a model with the same structure must
exist. The model itself cannot be recreated from this.

	Parameters

	
	o – The Pyomo component object to save. Usually a Pyomo model, but could
also be a subcomponent of a model (usually a sub-block).

	fname – json file name to save model state, if None only create
python dict

	gz – If fname is given and gv is True gzip the json file. The default is
True if the file name ends with ‘.gz’ otherwise False.

	human_read – if True, add indents and spacing to make the json file more
readable, if false cut out whitespace and make as compact as
possilbe

	metadata – A dictionary of addtional metadata to add.

	wts – is What To Save, this is a StoreSpec object that specifies what
object types and attributes to save. If None, the default is used
which saves the state of the compelte model state.

	metadata – addtional metadata to save beyond the standard format_version,
date, and time.

	return_dict – default is False if true returns a dictionary representation

	return_json_string – default is False returns a json string

	Returns

	If return_dict is True returns a dictionary serialization of the Pyomo
component. If return_dict is False and return_json_string is True
returns a json string dump of the dict. If fname is given the dictionary
is also written to a json file. If gz is True and fname is given, writes
a gzipped json file.

from_json

The from_json function puts data from Python dictionaries, json files,
gzipped json files, and json strings back into a Pyomo model. The function
documentation is below. A StoreSpec
object provides the function with details on what to read and how to handle
special cases of Pyomo component attributes.

	
idaes.core.util.model_serializer.from_json(o, sd=None, fname=None, s=None, wts=None, gz=None, root_name=None)[source]

	Load the state of a Pyomo component state from a dictionary, json file, or
json string. Must only specify one of sd, fname, or s as a non-None value.
This works by going through the model and loading the state of each
sub-compoent of o. If the saved state contains extra information, it is
ignored. If the save state doesn’t contain an enetry for a model component
that is to be loaded an error will be raised, unless ignore_missing = True.

	Parameters

	
	o – Pyomo component to for which to load state

	sd – State dictionary to load, if None, check fname and s

	fname – JSON file to load, only used if sd is None

	s – JSON string to load only used if both sd and fname are None

	wts – StoreSpec object specifying what to load

	gz – If True assume the file specified by fname is gzipped. The default is
True if fname ends with ‘.gz’ otherwise False.

	Returns

	Dictionary with some perfomance information. The keys are
“etime_load_file”, how long in seconds it took to load the json file
“etime_read_dict”, how long in seconds it took to read models state
“etime_read_suffixes”, how long in seconds it took to read suffixes

StoreSpec

StoreSpec is a class for objects that tell the to_json() and from_json()
functions how to read and write Pyomo component attributes. The default
initialization provides an object that would load and save attributes usually
needed to save a model state. There are several other class methods that
provide canned objects for specific uses. Through initialization arguments, the
behavior is highly customizable. Attributes can be read or written using callback
functions to handle attributes that can not be directly read or written (e.g.
a variable lower bound is set by calling setlb()). See the class documentation below.

	
class idaes.core.util.model_serializer.StoreSpec(classes=((<class 'pyomo.core.base.param.Param'>, ('_mutable',)), (<class 'pyomo.core.base.var.Var'>, ()), (<class 'pyomo.core.base.expression.Expression'>, ()), (<class 'pyomo.core.base.component.Component'>, ('active',))), data_classes=((<class 'pyomo.core.base.var._VarData'>, ('fixed', 'stale', 'value', 'lb', 'ub')), (<class 'pyomo.core.base.param._ParamData'>, ('value',)), (<class 'int'>, ('value',)), (<class 'float'>, ('value',)), (<class 'pyomo.core.base.expression._ExpressionData'>, ()), (<class 'pyomo.core.base.component.ComponentData'>, ('active',))), skip_classes=(<class 'pyomo.core.base.external.ExternalFunction'>, <class 'pyomo.core.base.set.Set'>, <class 'pyomo.network.port.Port'>, <class 'pyomo.core.base.expression.Expression'>, <class 'pyomo.core.base.set.RangeSet'>), ignore_missing=True, suffix=True, suffix_filter=None)[source]

	A StoreSpec object tells the serializer functions what to read or write.
The default settings will produce a StoreSpec configured to load/save the
typical attributes required to load/save a model state.

	Parameters

	
	classes – A list of classes to save. Each class is represented by a
list (or tupple) containing the following elements: (1) class
(compared using isinstance) (2) attribute list or None, an emptry
list store the object, but none of its attributes, None will not
store objects of this class type (3) optional load filter function.
The load filter function returns a list of attributes to read based
on the state of an object and its saved state. The allows, for
example, loading values for unfixed variables, or only loading
values whoes current value is less than one. The filter function
only applies to load not save. Filter functions take two arguments
(a) the object (current state) and (b) the dictionary containing the
saved state of an object. More specific classes should come before
more general classes. For example if an obejct is a HeatExchanger
and a UnitModel, and HeatExchanger is listed first, it will follow
the HeatExchanger settings. If UnitModel is listed first in the
classes list, it will follow the UnitModel settings.

	data_classes – This takes the same form as the classes argument.
This is for component data classes.

	skip_classes – This is a list of classes to skip. If a class appears
in the skip list, but also appears in the classes argument, the
classes argument will override skip_classes. The use for this is to
specifically exclude certain classes that would get caught by more
general classes (e.g. UnitModel is in the class list, but you want
to exclude HeatExchanger which is derived from UnitModel).

	ignore_missing – If True will ignore a component or attribute that exists
in the model, but not in the stored state. If false an excpetion
will be raised for things in the model that should be loaded but
aren’t in the stored state. Extra items in the stored state will not
raise an exception regaurdless of this argument.

	suffix – If True store suffixes and component ids. If false, don’t store
suffixes.

	suffix_filter – None to store all siffixes if suffix=True, or a list of
suffixes to store if suffix=True

	
classmethod bound()[source]

	Returns a StoreSpec object to store variable bounds only.

	
get_class_attr_list(o)[source]

	Look up what attributes to save/load for an Component object.
:param o: Object to look up attribute list for.

	Returns

	A list of attributes and a filter function for object type

	
get_data_class_attr_list(o)[source]

	Look up what attributes to save/load for an ComponentData object.
:param o: Object to look up attribute list for.

	Returns

	A list of attributes and a filter function for object type

	
classmethod isfixed()[source]

	Returns a StoreSpec object to store if variables are fixed.

	
set_read_callback(attr, cb=None)[source]

	Set a callback to set an attribute, when reading from json or dict.

	
set_write_callback(attr, cb=None)[source]

	Set a callback to get an attribute, when writing to json or dict.

	
classmethod value()[source]

	Returns a StoreSpec object to store variable values only.

	
classmethod value_isfixed(only_fixed)[source]

	Return a StoreSpec object to store variable values and if fixed.

	Parameters

	only_fixed – Only load fixed variable values

	
classmethod value_isfixed_isactive(only_fixed)[source]

	Retur a StoreSpec object to store variable values, if variables are
fixed and if components are active.

	Parameters

	only_fixed – Only load fixed variable values

Structure

Python dictionaries, json strings, or json files are generated, in any case the
structure of the data is the same. The current data structure version is 3.

The example json below shows the top-level structure. The
"top_level_component" would be the name of the Pyomo component that is being
serialized. The top level component is the only place were the component name does
not matter when reading the serialized data.

{
 "__metadata__": {
 "format_version": 3,
 "date": "2018-12-21",
 "time": "11:34:39.714323",
 "other": {
 },
 "__performance__": {
 "n_components": 219,
 "etime_make_dict": 0.003}
 },
 "top_level_component":{
 "...": "..."
 },
}

The data structure of a Pyomo component is shown below. Here "attribute_1"
and "attribute_2" are just examples the actual attributes saved depend on
the “wts” argument to to_json(). Scalar and indexed components have the
same structure. Scalar components have one entry in "data" with an index of
"None". Only components derived from Pyomo’s _BlockData
have a "__pyomo_components__" field, and components appearing there are keyed
by thier name. The data structure duplicates the hierarchical structure of the
Pyomo model.

Suffixes store extra attributes for Pyomo components that are not stored on the
components themselves. Suffixes are a Pyomo structure that comes from the AMPL
solver interface. If a component is a suffix, keys in the data section are the
serial integer component IDs generated by to_json(), and the value is the
value of the suffix for the corresponding component.

{
 "__type__": "<class 'some.class'>",
 "__id__": 0,
 "data":{
 "index_1":{
 "__type__":"<usually a component class but for params could be float, int, ...>",
 "__id__": 1,
 "__pyomo_components__":{
 "child_component_1": {
 "...": "..."
 }
 },
 "attribute_1": "... could be any number of attributes like 'value': 1.0,",
 "attribute_2": "..."
 }
 },
 "attribute_1": "... could be any number of attributes like 'active': true,",
 "attribute_2": "..."
}

As a more concrete example, here is the json generated for example model 2 in
Examples.
This code can be appended to the
example boilerplate above.
To generate the example json shown.

model = setup_model02()
solver = SolverFactory("ipopt")
solver.solve(model)
to_json(model, fname="ex.json")

The resulting json is shown below. The top-level component
in this case is given as “unknown,” because the model was not given a name. The
top level object name is not needed when reading back data, since the top level
object is specified in the call to from_json(). Types are not used when
reading back data, they may have some future application, but at this point they
just provide a little extra information.

{
 "__metadata__":{
 "format_version":3,
 "date":"2019-01-02",
 "time":"10:22:25.833501",
 "other":{
 },
 "__performance__":{
 "n_components":18,
 "etime_make_dict":0.000955581665039062
 }
 },
 "unknown":{
 "__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
 "__id__":0,
 "active":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.PyomoModel.ConcreteModel'>",
 "__id__":1,
 "active":true,
 "__pyomo_components__":{
 "a":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":2,
 "_mutable":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":3,
 "value":1
 }
 }
 },
 "b":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":4,
 "_mutable":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":5,
 "value":2
 }
 }
 },
 "c":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":6,
 "_mutable":false,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.param.SimpleParam'>",
 "__id__":7,
 "value":4
 }
 }
 },
 "x":{
 "__type__":"<class 'pyomo.core.base.var.IndexedVar'>",
 "__id__":8,
 "data":{
 "1":{
 "__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
 "__id__":9,
 "fixed":false,
 "stale":false,
 "value":1.5,
 "lb":-10,
 "ub":10
 },
 "2":{
 "__type__":"<class 'pyomo.core.base.var._GeneralVarData'>",
 "__id__":10,
 "fixed":false,
 "stale":false,
 "value":2.5,
 "lb":-10,
 "ub":10
 }
 }
 },
 "f":{
 "__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>",
 "__id__":11,
 "active":true,
 "data":{
 "None":{"__type__":"<class 'pyomo.core.base.objective.SimpleObjective'>",
 "__id__":12,
 "active":true
 }
 }
 },
 "g":{
 "__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
 "__id__":13,
 "active":true,
 "data":{
 "None":{
 "__type__":"<class 'pyomo.core.base.constraint.SimpleConstraint'>",
 "__id__":14,
 "active":true
 }
 }
 },
 "dual":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":15,
 "active":true,
 "data":{
 "14":0.9999999626149493
 }
 },
 "ipopt_zL_out":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":16,
 "active":true,
 "data":{
 "9":2.1791814146763388e-10,
 "10":2.004834508495852e-10
 }
 },
 "ipopt_zU_out":{
 "__type__":"<class 'pyomo.core.base.suffix.Suffix'>",
 "__id__":17,
 "active":true,
 "data":{
 "9":-2.947875485096964e-10,
 "10":-3.3408951850535573e-10
 }
 }
 }
 }
 }
 }
}

Model Statistics Methods

The IDAES toolset contains a number of utility functions which are useful for quantifying model statistics such as the number of variable and constraints, and calculating the available degrees of freedom in a model. These methods can be found in idaes.core.util.model_statistics.

The most commonly used methods are degrees_of_freedom and report_statistics, which are described below.

Degrees of Freedom Method

The degrees_of_freedom method calculates the number of degrees of freedom available in a given model. The calcuation is based on the number of unfixed variables which appear in active constraints, minus the number of active equality constraints in the model. Users should note that this method does not consider inequality or deactived constraints, or variables which do not appear in active equality constraints.

	
idaes.core.util.model_statistics.degrees_of_freedom(block)[source]

	Method to return the degrees of freedom of a model.

	Parameters

	block – model to be studied

	Returns

	Number of degrees of freedom in block.

Report Statistics Method

The report_statistics method provides the user with a summary of the contents of their model, including the degrees of freedom and a break down of the different Variables, Constraints, Objectives, Blocks and Expressions. This method also includes numbers of deactivated components for the user to use in debugging complex models.

Note

This method only considers Pyomo components in activated Blocks. The number of deactivated Blocks is reported, but any components within these Blocks are not included.

Example Output

Model Statistics

Degrees of Freedom: 0

Total No. Variables: 52

No. Fixed Variables: 12

No. Unused Variables: 0 (Fixed: 0)

No. Variables only in Inequalities: 0 (Fixed: 0)

Total No. Constraints: 40

No. Equality Constraints: 40 (Deactivated: 0)

No. Inequality Constraints: 0 (Deactivated: 0)

No. Objectives: 0 (Deactivated: 0)

No. Blocks: 14 (Deactivated: 0)

No. Expressions: 2

	
idaes.core.util.model_statistics.report_statistics(block, ostream=None)[source]

	Method to print a report of the model statistics for a Pyomo Block

	Parameters

	
	block – the Block object to report statistics from

	ostream – output stream for printing (defaults to sys.stdout)

	Returns

	Printed output of the model statistics

Other Statistics Methods

In addition to the methods discussed above, the model_statistics module also contains a number of methods for quantifying model statistics which may be of use to the user in debugging models. These methods come in three types:

	Number methods (start with number_) return the number of components which meet a given criteria, and are useful for quickly quantifying differnt types of components within a model for determining where problems may exist.

	Set methods (end with _set) return a Pyomo ComponentSet containing all components which meet a given criteria. These methods are useful for determining where a problem may exist, as the ComponentSet indicates which components may be causing a problem.

	Generator methods (end with _generator) contain Python generators which return all components which meet a given criteria.

Available Methods

This module contains utility functions for reporting structural statistics of
IDAES models.

	
idaes.core.util.model_statistics.activated_block_component_generator(block, ctype)[source]

	Generator which returns all the components of a given ctype which exist in
activated Blocks within a model.

	Parameters

	
	block – model to be studied

	ctype – type of Pyomo component to be returned by generator.

	Returns

	A generator which returns all components of ctype which appear in
activated Blocks in block

	
idaes.core.util.model_statistics.activated_blocks_set(block)[source]

	Method to return a ComponentSet of all activated Block components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Block components in block
(including block itself)

	
idaes.core.util.model_statistics.activated_constraints_generator(block)[source]

	Generator which returns all activated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated Constraint components block

	
idaes.core.util.model_statistics.activated_constraints_set(block)[source]

	Method to return a ComponentSet of all activated Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Constraint components in block

	
idaes.core.util.model_statistics.activated_equalities_generator(block)[source]

	Generator which returns all activated equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated equality Constraint components
block

	
idaes.core.util.model_statistics.activated_equalities_set(block)[source]

	Method to return a ComponentSet of all activated equality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated equality Constraint components
in block

	
idaes.core.util.model_statistics.activated_inequalities_generator(block)[source]

	Generator which returns all activated inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated inequality Constraint
components block

	
idaes.core.util.model_statistics.activated_inequalities_set(block)[source]

	Method to return a ComponentSet of all activated inequality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated inequality Constraint components
in block

	
idaes.core.util.model_statistics.activated_objectives_generator(block)[source]

	Generator which returns all activated Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all activated Objective components block

	
idaes.core.util.model_statistics.activated_objectives_set(block)[source]

	Method to return a ComponentSet of all activated Objective components which
appear in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all activated Objective components which
appear in block

	
idaes.core.util.model_statistics.active_variables_in_deactivated_blocks_set(block)[source]

	Method to return a ComponentSet of any Var components which appear within
an active Constraint but belong to a deacitvated Block in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including any Var components which belong to a
deacitvated Block but appear in an activate Constraint in block

	
idaes.core.util.model_statistics.deactivated_blocks_set(block)[source]

	Method to return a ComponentSet of all deactivated Block components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Block components in block
(including block itself)

	
idaes.core.util.model_statistics.deactivated_constraints_generator(block)[source]

	Generator which returns all deactivated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated Constraint components block

	
idaes.core.util.model_statistics.deactivated_constraints_set(block)[source]

	Method to return a ComponentSet of all deactivated Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Constraint components in block

	
idaes.core.util.model_statistics.deactivated_equalities_generator(block)[source]

	Generator which returns all deactivated equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated equality Constraint
components block

	
idaes.core.util.model_statistics.deactivated_equalities_set(block)[source]

	Method to return a ComponentSet of all deactivated equality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated equality Constraint components
in block

	
idaes.core.util.model_statistics.deactivated_inequalities_generator(block)[source]

	Generator which returns all deactivated inequality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all indeactivated equality Constraint
components block

	
idaes.core.util.model_statistics.deactivated_inequalities_set(block)[source]

	Method to return a ComponentSet of all deactivated inequality Constraint
components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated inequality Constraint
components in block

	
idaes.core.util.model_statistics.deactivated_objectives_generator(block)[source]

	Generator which returns all deactivated Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all deactivated Objective components block

	
idaes.core.util.model_statistics.deactivated_objectives_set(block)[source]

	Method to return a ComponentSet of all deactivated Objective components
which appear in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all deactivated Objective components which
appear in block

	
idaes.core.util.model_statistics.derivative_variables_set(block)[source]

	Method to return a ComponentSet of all DerivativeVar components which
appear in a model. Users should note that DerivativeVars are converted to
ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all DerivativeVar components which appear in
block

	
idaes.core.util.model_statistics.expressions_set(block)[source]

	Method to return a ComponentSet of all Expression components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Expression components which appear in
block

	
idaes.core.util.model_statistics.fixed_unused_variables_set(block)[source]

	Method to return a ComponentSet of all fixed Var components which do not
appear within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which do not appear
within any Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_generator(block)[source]

	Generator which returns all fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all fixed Var components block

	
idaes.core.util.model_statistics.fixed_variables_in_activated_equalities_set(block)[source]

	Method to return a ComponentSet of all fixed Var components which appear
within an equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_only_in_inequalities(block)[source]

	Method to return a ComponentSet of all fixed Var components which appear
only within activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components which appear only
within activated inequality Constraints in block

	
idaes.core.util.model_statistics.fixed_variables_set(block)[source]

	Method to return a ComponentSet of all fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all fixed Var components in block

	
idaes.core.util.model_statistics.large_residuals_set(block, tol=1e-05)[source]

	Method to return a ComponentSet of all Constraint components with a
residual greater than a given threshold which appear in a model.

	Parameters

	
	block – model to be studied

	tol – residual threshold for inclusion in ComponentSet

	Returns

	A ComponentSet including all Constraint components with a residual
greater than tol which appear in block

	
idaes.core.util.model_statistics.number_activated_blocks(block)[source]

	Method to return the number of activated Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Block components in block (including block itself)

	
idaes.core.util.model_statistics.number_activated_constraints(block)[source]

	Method to return the number of activated Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Constraint components in block

	
idaes.core.util.model_statistics.number_activated_equalities(block)[source]

	Method to return the number of activated equality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated equality Constraint components in block

	
idaes.core.util.model_statistics.number_activated_inequalities(block)[source]

	Method to return the number of activated inequality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated inequality Constraint components in block

	
idaes.core.util.model_statistics.number_activated_objectives(block)[source]

	Method to return the number of activated Objective components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of activated Objective components which appear in block

	
idaes.core.util.model_statistics.number_active_variables_in_deactivated_blocks(block)[source]

	Method to return the number of Var components which appear within an active
Constraint but belong to a deacitvated Block in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which belong to a deacitvated Block but appear
in an activate Constraint in block

	
idaes.core.util.model_statistics.number_deactivated_blocks(block)[source]

	Method to return the number of deactivated Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Block components in block (including block
itself)

	
idaes.core.util.model_statistics.number_deactivated_constraints(block)[source]

	Method to return the number of deactivated Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_equalities(block)[source]

	Method to return the number of deactivated equality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated equality Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_inequalities(block)[source]

	Method to return the number of deactivated inequality Constraint components
in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated inequality Constraint components in block

	
idaes.core.util.model_statistics.number_deactivated_objectives(block)[source]

	Method to return the number of deactivated Objective components which
appear in a model.

	Parameters

	block – model to be studied

	Returns

	Number of deactivated Objective components which appear in block

	
idaes.core.util.model_statistics.number_derivative_variables(block)[source]

	Method to return the number of DerivativeVar components which
appear in a model. Users should note that DerivativeVars are converted to
ordinary Vars when a DAE transformation is applied. Thus, this method is
useful for detecting any DerivativeVars which were do transformed.

	Parameters

	block – model to be studied

	Returns

	Number of DerivativeVar components which appear in block

	
idaes.core.util.model_statistics.number_expressions(block)[source]

	Method to return the number of Expression components which appear in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of Expression components which appear in block

	
idaes.core.util.model_statistics.number_fixed_unused_variables(block)[source]

	Method to return the number of fixed Var components which do not appear
within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which do not appear within any activated
Constraints in block

	
idaes.core.util.model_statistics.number_fixed_variables(block)[source]

	Method to return the number of fixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components in block

	
idaes.core.util.model_statistics.number_fixed_variables_in_activated_equalities(block)[source]

	Method to return the number of fixed Var components which appear within
activated equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_fixed_variables_only_in_inequalities(block)[source]

	Method to return the number of fixed Var components which only appear
within activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of fixed Var components which only appear within activated
inequality Constraints in block

	
idaes.core.util.model_statistics.number_large_residuals(block, tol=1e-05)[source]

	Method to return the number Constraint components with a residual greater
than a given threshold which appear in a model.

	Parameters

	
	block – model to be studied

	tol – residual threshold for inclusion in ComponentSet

	Returns

	Number of Constraint components with a residual greater than tol which
appear in block

	
idaes.core.util.model_statistics.number_total_blocks(block)[source]

	Method to return the number of Block components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Block components in block (including block itself)

	
idaes.core.util.model_statistics.number_total_constraints(block)[source]

	Method to return the total number of Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Constraint components in block

	
idaes.core.util.model_statistics.number_total_equalities(block)[source]

	Method to return the total number of equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of equality Constraint components in block

	
idaes.core.util.model_statistics.number_total_inequalities(block)[source]

	Method to return the total number of inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	Number of inequality Constraint components in block

	
idaes.core.util.model_statistics.number_total_objectives(block)[source]

	Method to return the number of Objective components which appear in a model

	Parameters

	block – model to be studied

	Returns

	Number of Objective components which appear in block

	
idaes.core.util.model_statistics.number_unfixed_variables(block)[source]

	Method to return the number of unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of unfixed Var components in block

	
idaes.core.util.model_statistics.number_unfixed_variables_in_activated_equalities(block)[source]

	Method to return the number of unfixed Var components which appear within
activated equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of unfixed Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_unused_variables(block)[source]

	Method to return the number of Var components which do not appear within
any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which do not appear within any activagted
Constraints in block

	
idaes.core.util.model_statistics.number_variables(block)[source]

	Method to return the number of Var components in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components in block

	
idaes.core.util.model_statistics.number_variables_in_activated_constraints(block)[source]

	Method to return the number of Var components that appear within active
Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within active Constraints in
block

	
idaes.core.util.model_statistics.number_variables_in_activated_equalities(block)[source]

	Method to return the number of Var components which appear within activated
equality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within activated equality
Constraints in block

	
idaes.core.util.model_statistics.number_variables_in_activated_inequalities(block)[source]

	Method to return the number of Var components which appear within activated
inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear within activated inequality
Constraints in block

	
idaes.core.util.model_statistics.number_variables_near_bounds(block, tol=0.0001)[source]

	Method to return the number of all Var components in a model which have
a value within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	Number of components block that are close to a bound

	
idaes.core.util.model_statistics.number_variables_only_in_inequalities(block)[source]

	Method to return the number of Var components which appear only within
activated inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	Number of Var components which appear only within activated inequality
Constraints in block

	
idaes.core.util.model_statistics.total_blocks_set(block)[source]

	Method to return a ComponentSet of all Block components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Block components in block (including block
itself)

	
idaes.core.util.model_statistics.total_constraints_set(block)[source]

	Method to return a ComponentSet of all Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Constraint components in block

	
idaes.core.util.model_statistics.total_equalities_generator(block)[source]

	Generator which returns all equality Constraint components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all equality Constraint components block

	
idaes.core.util.model_statistics.total_equalities_set(block)[source]

	Method to return a ComponentSet of all equality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all equality Constraint components in block

	
idaes.core.util.model_statistics.total_inequalities_generator(block)[source]

	Generator which returns all inequality Constraint components in a
model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all inequality Constraint components block

	
idaes.core.util.model_statistics.total_inequalities_set(block)[source]

	Method to return a ComponentSet of all inequality Constraint components in
a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all inequality Constraint components in block

	
idaes.core.util.model_statistics.total_objectives_generator(block)[source]

	Generator which returns all Objective components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all Objective components block

	
idaes.core.util.model_statistics.total_objectives_set(block)[source]

	Method to return a ComponentSet of all Objective components which appear
in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Objective components which appear in block

	
idaes.core.util.model_statistics.unfixed_variables_generator(block)[source]

	Generator which returns all unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A generator which returns all unfixed Var components block

	
idaes.core.util.model_statistics.unfixed_variables_in_activated_equalities_set(block)[source]

	Method to return a ComponentSet of all unfixed Var components which appear
within an activated equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all unfixed Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.unfixed_variables_set(block)[source]

	Method to return a ComponentSet of all unfixed Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all unfixed Var components in block

	
idaes.core.util.model_statistics.unused_variables_set(block)[source]

	Method to return a ComponentSet of all Var components which do not appear
within any activated Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which do not appear within
any Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_constraints_set(block)[source]

	Method to return a ComponentSet of all Var components which appear within a
Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_equalities_set(block)[source]

	Method to return a ComponentSet of all Var components which appear within
an equality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated equality Constraints in block

	
idaes.core.util.model_statistics.variables_in_activated_inequalities_set(block)[source]

	Method to return a ComponentSet of all Var components which appear within
an inequality Constraint in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear within
activated inequality Constraints in block

	
idaes.core.util.model_statistics.variables_near_bounds_generator(block, tol=0.0001)[source]

	Generator which returns all Var components in a model which have a value
within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	A generator which returns all Var components block that are close to a
bound

	
idaes.core.util.model_statistics.variables_near_bounds_set(block, tol=0.0001)[source]

	Method to return a ComponentSet of all Var components in a model which have
a value within tol (relative) of a bound.

	Parameters

	
	block – model to be studied

	tol – relative tolerance for inclusion in generator (default = 1e-4)

	Returns

	A ComponentSet including all Var components block that are close to a
bound

	
idaes.core.util.model_statistics.variables_only_in_inequalities(block)[source]

	Method to return a ComponentSet of all Var components which appear only
within inequality Constraints in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components which appear only within
inequality Constraints in block

	
idaes.core.util.model_statistics.variables_set(block)[source]

	Method to return a ComponentSet of all Var components in a model.

	Parameters

	block – model to be studied

	Returns

	A ComponentSet including all Var components in block

Scaling Methods

This section describes scaling utility functions and methods.

Context

Creating well scaled models is important for increasing the efficiency and
reliability of solvers. Depending on property package units of measure and
process scale, variables and constraints are often badly scaled.

Scaling factors can be specified for any variable or constraint. Pyomo and many
solvers support the scaling_factor suffix. To eliminate the possibility of
defining conflicting scaling factors in various places in the model, the IDAES
standard is to define the scaling_factor suffixes in the same block as the
variable or constraint that they are scaling. This ensures that each scale
factor is defined in only one place, and is organized based on the model block
structure.

Scaling factors in IDAES (and Pyomo) are multiplied by the variable or constraint
they scale. For example, a Pressure variable in Pa units may be expected to have
a magnitude of around \(10^6\) for a specific process. To scale the
variable to a more reasonable magnitude, the scale factor for the variable could
be defined to be \(1 \times 10^{-5}\).

While many scaling factors should be give good default values in the property
packages, some (e.g. flow rates or material holdups) must be given scale factors
by the user for a specific process model. Still other scale factors can be
calculated from supplied scale factors, for example, mass balance scale factors
could be determined from flow rate scale factors. To calculate scale factors,
models may have a standard calculate_scaling_factors() method. For more
specific scaling information, see the model documentation.

For much of the core IDAES framework, model constraints are automatically scaled
via a simple transformation where both sides of the constraint are multiplied by
a scale factor determined based on supplied variable and expression scaling
factors. The goal of this is to ensure that solver tolerances are meaningful for
each constraint. A constraint violation of \(1 \times 10^{-8}\) should be
acceptable, but not too tight to achieve given machine precision limits. IDAES
model constraints should conform approximately to this guideline after the
calculate_scaling_factors() method is executed. Users should follow this
guideline for constraints they write. The scaling of constraints for reasonable
residual tolerances is done as a constraint transformation independent of the
scaling factor suffix. Scaling factors for constraints can still be set based
on other methods such as reducing very large Jacobian matrix entries.

Specifying Scaling

Suffixes are used to specify scaling factors for IDAES models. These suffixes
are created when needed by calling the set_scaling_factor() function. Using
the set_scaling_factor(), get_scaling_factor(), and
unset_scaling_factor() eliminates the need to deal directly with scaling
suffixes, and ensures that scaling factors are stored in the IDAES standard
location.

	
idaes.core.util.scaling.set_scaling_factor(c, v, data_objects=True)[source]

	Set a scaling factor for a model component. This function creates the
scaling_factor suffix if needed.

	Parameters

	
	c – component to supply scaling factor for

	v – scaling factor

	Returns

	None

	
idaes.core.util.scaling.get_scaling_factor(c, default=None, warning=False, exception=False)[source]

	Get a component scale factor.

	Parameters

	
	c – component

	default – value to return if no scale factor exists (default=None)

	
idaes.core.util.scaling.unset_scaling_factor(c, data_objects=True)[source]

	Delete a component scaling factor.

	Parameters

	c – component

	Returns

	None

Constraint Transformation

As mentioned previously, constraints in the IDAES framework are transformed such
that \(1 \times 10^{-8}\) is a reasonable criteria for convergence before any
other scaling factors are applied. There are a few utility functions for scaling
transformation of constraints. When transforming constraints with these functions,
the scaling applies to the original constraint, not combined with any previous
transformation.

	
idaes.core.util.scaling.constraint_scaling_transform(c, s)[source]

	This transforms a constraint by the argument s. The scaling factor
applies to original constraint (e.g. if one where to call this twice in a row
for a constraint with a scaling factor of 2, the original constraint would
still, only be scaled by a factor of 2.)

	Parameters

	
	c – Pyomo constraint

	s – scale factor applied to the constraint as originally written

	Returns

	None

	
idaes.core.util.scaling.constraint_scaling_transform_undo(c)[source]

	The undoes the scaling transforms previously applied to a constraint.

	Parameters

	c – Pyomo constraint

	Returns

	None

	
idaes.core.util.scaling.get_constraint_transform_applied_scaling_factor(c, default=None)[source]

	Get a the scale factor that was used to transform a
constraint.

	Parameters

	
	c – constraint data object

	default – value to return if no scaling factor exisits (default=None)

	Returns

	The scaling factor that has been used to transform the constraint or the
default.

Calculation in Model

Some scaling factors may also be calculated by a call to a model’s
calculate_scaling_factors() method. For more information see specific model
documentation.

Sometimes a scaling factor may be set on an indexed component and prorogated to
it’s data objects later can be useful for example in models that use the DAE
transformation, not all data objects exist until after the transformation.

	
idaes.core.util.scaling.propagate_indexed_component_scaling_factors(blk, typ=(<class 'pyomo.core.base.var.Var'>, <class 'pyomo.core.base.constraint.Constraint'>, <class 'pyomo.core.base.expression.Expression'>), overwrite=False, descend_into=True)[source]

	Use the parent component scaling factor to set all component data object
scaling factors.

	Parameters

	
	blk – The block on which to search for components

	typ – Component type(s) (default=(Var, Constraint, Expression, Param))

	overwrite – if a data object already has a scaling factor should it be
overwrittten (default=False)

	descend_into – descend into child blocks (default=True)

Constraint Auto-Scaling

Constraints can be scaled to automatically reduce very large entries in the Jacobian
matrix with the constraint_autoscale_large_jac() function.

	
idaes.core.util.scaling.constraint_autoscale_large_jac(m, ignore_constraint_scaling=False, ignore_variable_scaling=False, max_grad=100, min_scale=1e-06, no_scale=False)[source]

	Automatically scale constraints based on the Jacobian. This function
immitates Ipopt’s default constraint scaling. This scales constraints down
to avoid extremely large values in the Jacobian

	Parameters

	
	m – model to scale

	ignore_constraint_scaling – ignore existing constraint scaling

	ignore_variable_scaling – ignore existing variable scaling

	max_grad – maximum value in Jacobian after scaling, subject to minimum
scaling factor restriction.

	min_scale – minimum scaling factor allowed, keeps constraints from being
scaled too much.

	no_scale – just calculate the Jacobian and scaled Jacobian, don’t scale
anything

Inspect Scaling

Models can be large, so it is often difficult to identify where scaling is needed
and where the problem may be poorly scaled. The functions below may be helpful
in inspecting a models scaling. Additionally constraint_autoscale_large_jac()
described above can provide Jacobian information at the current variable values.

	
idaes.core.util.scaling.badly_scaled_var_generator(blk, large=10000.0, small=0.001, zero=1e-10, descend_into=True, include_fixed=False)[source]

	This provides a rough check for variables with poor scaling based on
their current scale factors and values. For each potentially poorly scaled
variable it returns the var and its current scaled value.

	Parameters

	
	blk – pyomo block

	large – Magnitude that is considered to be too large

	small – Magnitude that is considered to be too small

	zero – Magnitude that is considered to be zero, variables with a value of
zero are okay, and not reported.

	Yields

	variable data object, current absolute value of scaled value

	
idaes.core.util.scaling.unscaled_variables_generator(blk, descend_into=True, include_fixed=False)[source]

	Generator for unscaled variables

	Parameters

	block –

	Yields

	variables with no scale factor

	
idaes.core.util.scaling.unscaled_constraints_generator(blk, descend_into=True)[source]

	Generator for unscaled constraints

	Parameters

	block –

	Yields

	constraints with no scale factor

	
idaes.core.util.scaling.map_scaling_factor(iter, default=1, warning=False, func=<built-in function min>)[source]

	Map get_scaling_factor to an iterable of Pyomo components, and call func
on the result. This could be use, for example, to get the minimum or
maximum scaling factor of a set of components.

	Parameters

	
	iter – Iterable yeilding Pyomo componentes

	default – The default value used when a scaling factor is missing. The
default is default=1.

	warning – Log a warning for missing scaling factors

	func – The function to call on the resulting iterable of scaling factors.
The default is min().

	Returns

	The result of func on the set of scaling factors

	
idaes.core.util.scaling.min_scaling_factor(iter, default=1, warning=True)[source]

	Map get_scaling_factor to an iterable of Pyomo components, and get the
minimum caling factor.

	Parameters

	
	iter – Iterable yeilding Pyomo componentes

	default – The default value used when a scaling factor is missing. If
None, this will raise an exception when scaling factors are missing.
The default is default=1.

	warning – Log a warning for missing scaling factors

	Returns

	Minimum scaling factor of the components in iter

Applying Scaling

Scale factor suffixes can be passed directly to a solver. How the scale factors
are used may vary by solver. Pyomo also contains tools to transform a problem to
a scaled version.

Ipopt is the standard solver in IDAES. To use scale factors with Ipopt, the
nlp_scaling_method option should be set to user-scaling. Be aware that
this deactivates any NLP automatic scaling.

Table Methods

The IDAES toolset contians a number of methods for generating and dislpaying summary tables of data in the form of pandas DataFrames.

Available Methods

	
idaes.core.util.tables.arcs_to_stream_dict(blk, additional=None, descend_into=True, sort=False, prepend=None, s={})[source]

	Creates a stream dictionary from the Arcs in a model, using the Arc names as
keys. This can be used to automate the creation of the streams dictionary
needed for the create_stream_table_dataframe() and stream_states_dict()
functions.

	Parameters

	
	blk (pyomo.environ._BlockData) – Pyomo model to search for Arcs

	additional (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional states to add to the stream dictionary,
which aren’t represented by arcs in blk, for example feed or
product streams without Arcs attached or states internal to a unit
model.

	descend_into (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, search subblocks for Arcs as well. The
default is True.

	sort (bool [https://docs.python.org/3/library/functions.html#bool]) – If True sort keys and return an OrderedDict

	prepend (str [https://docs.python.org/3/library/stdtypes.html#str]) – Prepend a string to the arc name joined with a ‘.’.
This can be useful to prevent conflicting names when sub blocks
contain Arcs that have the same names when used in combination
with descend_into=False.

	s (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Add streams to an existing stream dict.

	Returns

	Dictionary with Arc names as keys and the Arcs as values.

	
idaes.core.util.tables.create_stream_table_dataframe(streams, true_state=False, time_point=0, orient='columns')[source]

	Method to create a stream table in the form of a pandas dataframe. Method
takes a dict with name keys and stream values. Use an OrderedDict to list
the streams in a specific order, otherwise the dataframe can be sorted
later.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	true_state – indicated whether the stream table should contain the
display variables define in the StateBlock (False, default) or the
state variables (True).

	time_point – point in the time domain at which to generate stream table
(default = 0)

	orient – orientation of stream table. Accepted values are ‘columns’
(default) where streams are displayed as columns, or ‘index’ where
stream are displayed as rows.

	Returns

	A pandas DataFrame containing the stream table data.

	
idaes.core.util.tables.generate_table(blocks, attributes, heading=None, exception=True)[source]

	Create a Pandas DataFrame that contains a list of user-defined attributes
from a set of Blocks.

	Parameters

	
	blocks (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary with name keys and BlockData objects for
values. Any name can be associated with a block. Use an OrderedDict
to show the blocks in a specific order, otherwise the dataframe can
be sorted later.

	attributes (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of strings) – Attributes to report from a
Block, can be a Var, Param, or Expression. If an attribute doesn’t
exist or doesn’t have a valid value, it will be treated as missing
data.

	heading (list [https://docs.python.org/3/library/stdtypes.html#list] or tuple of srings) – A list of strings that will be used
as column headings. If None the attribute names will be used.

	exception (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, raise exceptions releated to invalid or
missing indexes. If false missing or bad indexes are ignored and
None is used for the table value. Setting this to False allows
tables where some state blocks have the same attributes with differnt
indexing. (default is True)

	Returns

	A Pandas dataframe containing a data table

	Return type

	(DataFrame)

	
idaes.core.util.tables.stream_states_dict(streams, time_point=0)[source]

	Method to create a dictionary of state block representing stream states.
This takes a dict with stream name keys and stream values.

	Parameters

	
	streams – dict with name keys and stream values. Names will be used as
display names for stream table, and streams may be Arcs, Ports or
StateBlocks.

	time_point – point in the time domain at which to generate stream table
(default = 0)

	Returns

	A pandas DataFrame containing the stream table data.

	
idaes.core.util.tables.stream_table_dataframe_to_string(stream_table, **kwargs)[source]

	Method to print a stream table from a dataframe. Method takes any argument
understood by DataFrame.to_string

	
idaes.core.util.tables.tag_state_quantities(blocks, attributes, labels, exception=False)[source]

	Take a stream states dictionary, and return a tag dictionary for stream
quantities. This takes a dictionary (blk) that has state block labels as
keys and state blocks as values. The attributes are a list of attributes to
tag. If an element of the attribute list is list-like, the fist element is
the attribute and the remaining elements are indexes. Lables provides a list
of attribute lables to be used to create the tag. Tags are blk_key + label
for the attribute.

	Parameters

	
	blocks (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of state blocks. The key is the block label to
be used in the tag, and the value is a state block.

	attributes (list-like) – A list of attriutes to tag. It is okay if a
particular attribute does not exist in a state bock. This allows
you to mix state blocks with differnt sets of attributes. If an
attribute is indexed, the attribute can be specified as a list or
tuple where the first element is the attribute and the remaining
elements are indexes.

	labels (list-like) – These are attribute lables. The order corresponds to the
attribute list. They are used to create the tags. Tags are in the
form blk.key + label.

	exception (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, raise exceptions releated to invalid or
missing indexes. If false missing or bad indexes are ignored and
None is used for the table value. Setting this to False allows
tables where some state blocks have the same attributes with differnt
indexing. (default is True)

	Returns

	
	Dictionary where the keys are tags and the values are model
	attributes, usually Pyomo component data objects.

	Return type

	(dict [https://docs.python.org/3/library/stdtypes.html#dict])

Unit Model Costing

The IDAES Process Modeling Framework includes support for incorporating costing of unit
operations into a flowsheet to allow for calculation and optimization of process costs.
Cost Correlations are implemented using unit costing sub-modules to allow users to easily develop
and incorporate their own costing models.

Contents

	Unit Model Costing

	Introduction

	Example

	Units

	IDAES Costing Module

	Heat Exchanger Cost

	Pressure Changer Cost

	Turbine Cost Model

	Pump Cost Model

	Mover (Compressor, Fan, Blower)

	Fired Heater

	Cost of Pressure Vessels and Towers for Distillation

	Vessel Cost

	Base Cost of Platforms and ladders

	Purchase Cost of Plates

Introduction

All unit models within the core IDAES model library include a get_costing method which can be called to include
cost correlations for an instance of that unit. The get_costing method for each unit takes a number of arguments used
to specify the basis for costing each piece of equipment. Details are given for each unit model later in this documentation,
however, all get_costing methods take the following two arguments:

	module - this argument specifies the costing module to use when constructing the constraints and associated variables. if not provided, this defaults to the standard IDAES costing module.

	year - this argument sets the year to which all costs should be normalized (CE index 2010 to 2019)

When get_costing is called on an instance of a unit model, a new sub-block is created
on that unit named costing (i.e. flowsheet.unit.costing). All variables and constraints related to costing will be
constructed within this new block (see detailed documentation for each unit for details on these variables and constraints).

In addition, the first time get_costing is called for a unit operation within a flowsheet, an additional costing block is created
on the flowsheet object (i.e. flowsheet.unit.costing) in order to hold any global parameters relating to costing. The most
common of these paramters is the cost normalization parameter based on the year selected by the user.

The unit costing module also contains an initialize method which can be used to estimate initial values for costing variables based on the current state of the associated unit model. This method can be called directly from the unit_costing module to initialize a specific costing block, or can be incorporated into a unit model initialization procedure. This method has been incorporated into the initialize method of all the models in the core unit model library.
Therefore, if get_costing() is called before unit.initialize(), the initialize method will deactivate the costing block, initialize the unit model as normal, and then activate the costing block and initialize costing block.

Note

The global paramters are created when the first instance of get_costing is called and use the values provided there for initialization. Subsequent get_costing calls use the existing paramters, and do not change the initialized values. i.e. any “year” argument provided to a get_costing call after the first will be ignored.

Table 1. Main Variables added to the unit block (“self.costing”).

	Variable

	Symbol

	Units

	Notes

	Purchase cost

	\(purchase_cost\)

	dollars

	Purchase cost

	Base cost per unit

	\(base_cost_per_unit\)

	unitless

	Base cost per unit

	Base cost

	\(base_cost\)

	unitless

	Base cost (base cost per unit * number of units)

	Number of units

	\(number_of_units\)

	unitless

	Number of units to be costed (to take advantage of the economics of scale)

Note

number of units by default is fixed to 1 and the user must unfix this variable to optimize the number of units. Also, number of units can be built as a continuous variable or an integer variable. If latest, the user must provide an mip solver. Use the global costing argument for this purpose (integer_n_units=True or False).

Example

Below is a simple example of how to add cost correlations to a flowsheet including a heat exchanger using the default IDAES costing module.

from pyomo.environ import (ConcreteModel, SolverFactory)
from pyomo.util.calc_var_value import calculate_variable_from_constraint
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models.heat_exchanger import \
 (HeatExchanger, HeatExchangerFlowPattern)
from idaes.generic_models.properties import iapws95
from idaes.core.util.model_statistics import degrees_of_freedom

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})

m.fs.properties = iapws95.Iapws95ParameterBlock()

m.fs.unit = HeatExchanger(default={
 "shell": {"property_package": m.fs.properties},
 "tube": {"property_package": m.fs.properties},
 "flow_pattern": HeatExchangerFlowPattern.countercurrent})
set inputs
m.fs.unit.shell_inlet.flow_mol[0].fix(100) # mol/s
m.fs.unit.shell_inlet.enth_mol[0].fix(3500) # j/s
m.fs.unit.shell_inlet.pressure[0].fix(101325) # Pa

m.fs.unit.tube_inlet.flow_mol[0].fix(100)
m.fs.unit.tube_inlet.enth_mol[0].fix(4000)
m.fs.unit.tube_inlet.pressure[0].fix(101325.0)

m.fs.unit.area.fix(1000) # m2
m.fs.unit.overall_heat_transfer_coefficient.fix(100) # W/m2K

m.fs.unit.get_costing(module=costing, length_factor='12ft')

m.fs.unit.initialize()

opt = SolverFactory('ipopt')
opt.options = {'tol': 1e-6, 'max_iter': 50}
results = opt.solve(m, tee=True)

Units

It is important to highlight that the costing method interrogates the property
package to determine the units of this model, if the user provided the correct
units in the metadata dictionary (see property models for additional information),
the model units will be converted to the right units.
For example: in this example area is in m^2, while the cost correlations for heat
exchangers require units to be in ft^2. Therefore, the costing method will convert
the units to ft^2. The use of Pyomo-unit conversion tools is under development.

IDAES Costing Module

A default costing module has been developed primarily based on base cost and purchase cost correlations
from the following reference with some exceptions (noted in the documentation as appropiate).

Process and Product Design Principles: Synthesis, Analysis, and Evaluation. Seider, Seader, Lewin, Windagdo, 3rd Ed. John Wiley and Sons. Chapter 22. Cost Accounting and Capital Cost Estimation

Users should refer to the reference above for details of the costing correlations, however, a summary of this methods is provided below.

Table 2. Cost basis for each unit model.

	Unit Model

	Basis

	Units

	heat exchanger

	\(area\)

	ft^2

	pump

	\(fluid_{work}\)

	ft^3/s

	compressor

	\(mechanical_{work}\)

	hp

	turbine

	\(mechanical_{work}\)

	hp

	vessels

	\(D and L\)

	ft

	fired heaters

	\(heat_duty\)

	BTU/hr

Heat Exchanger Cost

The purchse cost is computed based on the base unit cost and three correction factors (Eq. 22.43 in Seider et al.). The base cost is computed depending on the heat exchanger type selected by the user:

\[self.costing.purchase_cost = pressure_factor*material_factor*L_factor*self.costing.base_cost*(CE_{index}/500)\]

\[self.costing.base_cost_per\unit = \exp{(\alpha_{1} - \alpha_{2}*\log{area*hx_os} + \alpha_{3}*(\log{area*hx_os})^{2})}\]

\[self.costing.base_cost = self.costing.base_cost_per\unit * self.costing.number_of_units\]

\[area = self.area / self.costing.number_of_units\]

where:

	pressure_factor - is the pressure design correction factor

	material_factor - is the construction material correction factor

	length_factor - is the tube length correction factor

	CE_index - is a global parameter for Chemical Enginering cost index for years 2010-2019

	hx_os - heat exchanger oversize factor (default = 1)

	area is a reference object and (self.area is the model variable)

The heat exchanger costing method has three arguments, hx_type = heat exchanger type, FM_Mat = construction material factor, and FL = tube length factor.

	hx_type : ‘floating_head’, ‘fixed_head’, ‘U-tube’*, ‘Kettle_vap’

	material factor (Mat_factor): ‘stain_steel’*, ‘carb_steel’

	tube length (length_factor): ‘8ft’, ‘12ft’*, ‘16ft’, ‘20ft’

where ‘*’ corresponds to the default options, FL and FM_MAT are pyomo-mutable parameters fixed based on user selection.

Table 3. Base cost factors for heat exchanger type.

	Tube Length (ft)

	\(\alpha_{1}\)

	\(\alpha_{2}\)

	\(\alpha_{3}\)

	floating_head

	11.9052

	0.8709

	0.09005

	fixed_head

	11.2927

	0.8228

	0.09861

	U-tube

	11.3852

	0.9186

	0.09790

	Kettle_vap

	12.2052

	0.8709

	0.09005

Table 4. Tube-Length correction factor.

	Tube Length (ft)

	FL

	8

	1.25

	12

	1.12

	16

	1.05

	20

	1.00

Construction material correction factor (FM_Mat) can be computed with Eq. 22.44 (Seider et al.)

\[material_factor = a + (\frac{area}{100})^{b}\]

Table 5. Materials of construction factors.

	Materials of Construction

	
	

	Shell / Tube

	a

	b

	carbon steel/carbon steel

	0.00

	0.00

	carbon steel/brass

	1.08

	0.05

	carbon steel/stainless steel

	1.75

	0.13

	carbon steel/monel

	2.1

	0.13

	carbon steel/titanium

	5.2

	0.16

	carbon steel/Cr-Mo steel

	1.55

	0.05

	Cr-Mo steel/Cr-Mo steel

	1.7

	0.07

	stainless steel/stainless steel

	2.7

	0.07

	monel/monel

	3.3

	0.08

	titanium/titanium

	9.6

	0.06

Note that Mat_factor argument should be provided a string, for example: Mat_factor:’carbon steel/carbon steel’.

Pressure Changer Cost

The costing of a pressure changer unit model is more complicated, because the pressure changer
model can be imported into the flowsheet object representing a pump, turbine, compressor, or a
simply pressure changer (fan, blower, etc.). The get_costing method currently supports costing of pumps, turbines, and compressors. The method authomatically interrogates the flowsheet object to determine if the unit is being used as a pump, turbine, or compressor.

The get_costing method authomatically determines if the unit model is being used as a pump,
turbine, or compressor based on the compressor and thermodynamic_assumption configuration
arguments provided by the user where creating the unit model. A summary of the decision logic is shown below.

	Unit Type

	compressor

	thermodynamic_assumption

	Turbine

	False

	Any

	Pump

	True

	pump

	Mover

	True

	not pump

Additionally, some unit types have different sub-types which can be costed appropiately. In these cases,
an additional argument is provided to get_costing to identify the sub-type to use which is detailed below.

Turbine Cost Model

The turbine cost is based on the mechanical work of unit (work_mechanical), this correlation has been obtained using the NETL Report (DOE/NETL 2015).

\[self.costing.purchase_cost = 580*(mechanical_{work})^{0.81}\]

DOE/NETL, 2015, report. Cost and performance Baseline for Fossil Energy Plants. Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity. Revision 3

Pump Cost Model

Three subtypes are supported for costing of pumps, which can be set using the “pump_type” argument.

	Centrifugal pumps (pump_type=’centrifugal’)

	External gear pumps (pump_type=’external’)

	Reciprocating Plunger pumps (pump_type=’reciprocating’)

Centrifugal Pump

The centrifugal pump cost has two main components, the cost of the pump and the cost of the motor. The pump cost is based on the fluid work (work_fluid), pump head, and size factor.
Additional arguments are required:

	pump_type_factor = ‘1.4’ (see Table 6)

	pump_motor_type_factor = ‘open’, ‘enclosed’, ‘explosion_proof’

Based on user’s inputs the get_costing method builds base_cost and purchase_cost for both the pump and the motor.
The unit purchase cost is obtained by adding the motor and pump costs.

\[self.costing.purchase_cost = self.costing.pump_purchase_cost + self.costing.motor_purchase_cost\]

To compute the purchase cost of the centrifugal pump, first we obtain the pump size factor (S) with Eq. 22.13, then we obtain the base cost with Eq. 22.14.
Finally, the purchase cost of the pump is obtained in Eq. 22.15. (Seider et al.)

\[S = QH^{0.5}\]

\[self.costing.pump_base_cost_per\unit = \exp{(9.7171 - 0.6019*\log{S} + 0.0519*(\log{S})^{2})}\]

\[self.costing.pump_purchase_cost = F_{T}*material_factor*self.costing.pump_base_cost*(CE_{index}/500)\]

\[self.costing.base_cost = self.costing.pump_base_cost_per\unit * self.costing.number_of_units\]

\[Q = self.Q / self.costing.number_of_units\]

Note

the same number of units have been considered for pumps and the pump motor

where:

	S is the pump size factor (self.costing.size_factor)

	Q is the volumetric flowrate in gpm (depending on the model this variable can be found as self.unit.properties_in.flow_vol)

	H is the head of the pump in ft (self.pump_head; which is defined as \(H = \Delta P/\rho_{liq}\))

	FT is a parameter fixed based on the pump_type_factor argument (users must wisely select this factor based on the pump size factor, pump head range, and maximum motor hp)

	material_factor is the material factor for the pump

Table 6. Pump Type factor (Table 22.20 in Seider et al.).

	Case

	FT factor

	# stages

	Shaft rpm

	Case-split

	Pump Head range (ft)

	Maximum Motor Hp

	‘1.1’

	1.00

	1

	3600

	VSC

	50 - 900

	75

	‘1.2’

	1.50

	1

	1800

	VSC

	50 - 3500

	200

	‘1.3’

	1.70

	1

	3600

	HSC

	100 - 1500

	150

	‘1.4’

	2.00

	1

	1800

	HSC

	250 - 5000

	250

	‘2.1’

	2.70

	2

	3600

	HSC

	50 - 1100

	250

	‘2.2’

	8.90

	2+

	3600

	HSC

	100 - 1500

	1450

For more details on how to select the FT factor, please see Seider et al.

Table 7. Materials of construction factors for centrifugal pumps and external gear pumps.

	Material Factor

	FM_MAT

	cast iron

	1.00

	ductile iron

	1.15

	cast steel

	1.35

	bronze

	1.90

	stainless steel

	2.00

	hastelloy C

	2.95

	monel

	3.30

	nickel

	3.50

	titanium

	9.70

Electric Motor:

A centrifugal pump is usually driven by an electric motor, the self.costing.motor_purchase_cost is calculated based on the power consumption.

\[self.motor_purchase_cost = FT * self.costing.motor_base_cost * (CE_{index}/500) (Eq. 22.20)\]

\[self.costing.motor_base_cost = self.costing.motor_base_cost_per\unit * self.costing.number_of_units\]

\[Q = self.Q / self.costing.number_of_units\]

\[self.costing.self.costing.motor_base_cost_per\unit = \exp{(5.8259 + 0.13141\log{PC} + 0.053255(\log{PC})^{2} + 0.028628(\log{PC})^{3} - 0.0035549(\log{PC})^{4})} (Eq. 22.19)\]

\[PC = \frac{P_{T}}{\eta_{P}\eta_{M}} = \frac{P_{B}}{\eta_{M}} = \frac{Q H \rho}{33000\eta_{P}\eta_{M}} (Eq. 22.16)\]

\[\eta_{P} = -0.316 + 0.24015*\log{Q} - 0.01199(\log{Q})^{2} (Eq. 22.17)\]

\[\eta_{M} = 0.80 + 0.0319\log{PB} - 0.00182(\log{PB})^{2} (Eq. 22.18)\]

Efficiencies are valid for PB in the range of 1 to 1500Hp and Q in the range of 50 to 5000 gpm

where:

	motor_FT is the motor type correction factor

	PC is the power consumption in hp (self.power_consumption_hp; coded as a pyomo expression)

	Q is the volumetric flowrate in gpm (self.Q_gpm)

	H is the pump head in ft (self.pump_head)

	PB is the pump brake hp (self.work)

	nP is the fractional efficiency of the pump

	nM is the fractional efficiency of the motor

	\(\rho\) is the liquid density in lb/gal

Table 8. FT Factors in Eq.(22.20) and Ranges for electric motors.

	Type Motor Enclosure

	3600rpm

	1800rpm

	Open, drip-proof enclosure, 1 to 700Hp

	1.0

	0.90

	Totally enclosed, fan-cooled, 1 to 250Hp

	1.4

	1.3

	Explosion-proof enclosure, 1 to 25Hp

	1.8

	1.7

External Gear Pumps

External gear pumps are not as common as the contrifugal pump, and various methods can be used to correlate base cost. Eq. 22.21 in Seider et al.
Here the purchase cost is computed as a function of the volumetric flowrate (Q) in gpm Eq. 22.22 in Seider et al.

\[self.costing.pump_purchase_cost = material_factor * self.costing.pump_base_cost * (CE_{index}/500)\]

\[self.costing.pump_base_cost = self.costing.pump_base_cost_per\unit * self.costing.number_of_units\]

. math:: self.costing.self.costing.pump_base_cost_perunit = exp{(7.6964 + 0.1986log{Q} + 0.0291(log{Q})^{2})}

\[Q = self.Q / self.costing.number_of_units\]

Reciprocating Plunger Pumps

The cost correlation method used here is based on the brake horsepower (PB).

\[self.costing.pump_purchase_cost = material_factor * self.costing.pump_base_cost * (CE_{index}/500) (Eq. 22.22)\]

\[self.costing.pump_base_cost = self.costing.pump_base_cost_per\unit * self.costing.number_of_units\]

\[self.costing.pump_base_cost_per\unit = \exp{(7.8103 + 0.26986\log{PB} + 0.06718(\log{PB})^{2})} (Eq. 22.23)\]

\[PB = f(Q)\]

\[Q = self.Q / self.costing.number_of_units\]

Table 9. Materials of construction factors for reciprocating plunger pumps.

	Material

	Mat_factor

	ductile iron

	1.00

	Ni-Al-Bronze

	1.15

	carbon steel

	1.50

	stainless steel

	2.20

Mover (Compressor, Fan, Blower)

If the unit represents a “Mover”, the user can select to cost it as a compressor, fan, or blower.
Therefore, the user must set the “mover_type” argument.

	mover_type= ‘compressor’ or ‘fan’ or ‘blower’ (uper/lower case sensitive)

Compressor Cost

The compressor cost is based on the mechanical work of the unit.
Additional arguments are required to estimate the cost such as compressor type,
driver mover type, and material factor (Mat_factor).

	compressor_type = ‘centrifugal’, ‘reciprocating’, ‘screw’

	driver_mover_type = ‘electrical_motor’, ‘steam_turbine’, ‘gas_turbine’

	Mat_factor = ‘carbon_steel’, ‘stain_steel’, ‘nickel_alloy’

\[self.costing.purchase_cost = (CE_{index}/500)* F_{D} * material_factor * self.costing.base_cost\]

\[self.costing.base_cost = self.costing.base_cost_per_unit * self.costing.number_of_units\]

\[self.costing.base_cost_per_unit = \exp{(\alpha_{1} + \alpha_{2}*\log{mechanical_{work}})}\]

\[mechanical_{work} = self.mechanical_{work} / self.costing.number_of_units\]

where:

	FD is the driver mover type factor and FM is the construction material factor.

Table 10. Compressor type factors.

	Compressor type

	\(\alpha_{1}\)

	\(\alpha_{2}\)

	Centrifugal

	7.5800

	0.80

	Reciprocating

	7.9661

	0.80

	Screw Compressor

	8.1238

	0.7243

Table 11. Driver mover type (for compressors only).

	Mover type

	FD (mover_type)

	Electric Mover

	1.00

	Steam Turbine

	1.15

	Gas Turbine

	1.25

Table 12. Material of construction factor (for compressors only).

	Material

	Mat_factor

	Cast iron

	1.00

	Stainless steel

	1.15

	Nickel alloy

	1.25

Fan Cost

The fan cost is a function of the actual cubic feet per minute (Q) entering the fan.
Additional arguments are required to estimate the fan cost such as mover_type=’fan’, fan_head_factor,
fan_type, and material factor (Mat_factor).

	fan_type = ‘centrifugal_backward’, ‘centrifugal_straight’, ‘vane_axial’, ‘tube_axial’

	fan_head_factor = see table 14

	Mat_factor = ‘carbon_steel’, ‘fiberglass’, ‘stain_steel’, ‘nickel_alloy’

To select the correct fan type users must calculate the total head in inH2O and select the proper fan type from table 13.
Additionally, the user must select the head factor (head_factor) from table 14.

Table 13. Typical Operating Ranges of Fans

	Fan type

	Flow rate (ACFM)

	Total head inH2O

	ACFM^a inH2O

	
	

	Centrifugal backward curved

	1000-100000

	1-40

	Centrifugal straight radial

	1000-20000

	1-30

	Vane axial

	1000-800000

	0.02-16

	Tube axial

	2000-800000

	0.00-10

Finally, the purchase cost of the fan is given by base cost, material factor, and fan head factor. While, the base cost is given as a function of the ACFM (Q).

\[self.costing.purchase_cost = (CE_{index}/500) * head_factor * material_factor * self.costing.base_cost\]

\[self.costing.base_cost = self.costing.base_cost_per_unit * self.costing.number_of_units\]

\[self.costing.base_cost_per_unit = \exp{(\alpha_{1} - \alpha_{2}*\log{Q} + \alpha_{3}*(\log{Q})^{2})}\]

\[Q = self.Q / self.costing.number_of_units\]

Table 14. Head Factor, FH, for fans

	Head (in H2O)

	Centrifugal backward curved

	Centrifugal straight radial

	Vane axial

	Tube Axial

	5-8

	1.15

	1.15

	1.15

	1.15

	9-15

	1.30

	1.30

	1.30

	

	16-30

	1.45

	1.45

	
	

	31-40

	1.55

	
	
	

Table 15. Materials of construction factor

	Material Factor

	FM

	carbon_steel

	1

	fiberglass

	1.8

	stain_steel

	2.5

	nickel_alloy

	5.0

Blower Cost

The blower cost is based on the brake horsepower, which can be calculated with the inlet volumetric flow rate and pressure (cfm and lbf/in^2, respectivelly).
Additional arguments are required to estimate the blower cost such as mover_type=’blower’, blower_type, and material of construction factor (Mat_factor).

	blower_type = ‘centrifugal’, ‘rotary’

	Mat_factor = ‘carbon_steel’, ‘aluminum’, ‘fiberglass’, ‘stain_steel’, ‘nickel_alloy’

where the material factors given in table 15 for the fans can be used. In addition, centrifugal blowers are available with cast aluminum blades with Mat_factor = 0.60.

The purchase cost is given by the material factor and base cost. While, the base cost is given by the power consumption in horsepower (Pc).

\[self.costing.purchase_cost = material_factor * self.costing.base_cost\]

\[self.costing.base_cost = self.costing.base_cost_per_unit * self.costing.number_of_units\]

Centrigugal turbo blower (valid from PC = 5 to 1000 Hp):

\[self.costing.base_cost_per_unit = \exp{(6.8929 + 0.7900*\log{Pc})}\]

Rotary straight-lobe blower (valid from PC = 1 to 1000 Hp):

\[self.costing.base_cost_per_unit = \exp{(7.59176 + 0.79320*\log{Pc} - 0.012900*(\log{Pc})^{2})}\]

\[Pc = f(Q)\]

\[Q = self.Q / self.costing.number_of_units\]

Fired Heater

Indirect fired heaters, also called fired heaters, process heaters, and furnaces, are used to heat or vaporize process streams at elevated temperatures (beyond where steam is usually employed).
This method computes the purchase cost of the fired heater based on the heat duty, fuel used (fired_type), pressure design, and materials of construction (Mat_factor).

	fuel_type = ‘fuel’, ‘reformer’, ‘pyrolysis’, ‘hot_water’, ‘salts’, ‘dowtherm_a’, ‘steam_boiler’

	Mat_factor = see table 16

Table 16. Materials of construction factor

	Material Factor

	(FM)

	carbon_steel

	1

	Cr-Mo_alloy

	1.4

	stain_steel

	1.7

The pressure design factor is given by (where P is pressure in psig and it is valid between 500 to 3000 psig):

\[self.pressure_factor == 0.986 - 0.0035*(P/500.00) + 0.0175*(P/500.00)^{2}\]

The base cost changes depending on the fuel type:
fuel:

\[self.costing.base_cost_per_unit = \exp{(0.32325 + 0.766*\log{heat_duty})}\]

reformer:

\[self.costing.base_cost_per_unit = 0.859*heat_duty^{0.81}\]

pyrolysis:

\[self.costing.base_cost_per_unit = 0.650*heat_duty^{0.81}\]

hot_water:

\[self.costing.base_cost_per_unit = \exp{(9.593- 0.3769*\log{heat_duty} + 0.03434*(\log{heat_duty})^{2})}\]

salts:

\[self.costing.base_cost_per_unit = 12.32*heat_duty^{0.64}\]

dowtherm_a:

\[self.costing.base_cost_per_unit = 12.74*heat_duty^{0.65}\]

steam_boiler:

\[self.costing.base_cost_per_unit = 0.367*heat_duty^{0.77}\]

\[self.costing.base_cost = self.costing.base_cost_per_unit * self.costing.number_of_units\]

Finally, the purchase cost is given by:

\[self.purchase_cost = (CE_{index}/500) * pressure_design * material_factor * base_cost\]

Cost of Pressure Vessels and Towers for Distillation

Pressure vessels cost is based on the weight of the vessel, the cost of platforms and ladders can be included, and the cost of internal packing or trays can be calculated as well.
This method constructs by defaul the cost of pressure vessels with platforms and ladders, and trays cost can be calculated if trays=True. This method requires a few arguments to build the cost of vessel.
We recommend using this method to cost reactors (CSTR or PFR), flash tanks, vessels, and distillation columns.

	alignment = ‘horizontal’, ‘vertical’

	Mat_factor = ‘carbon_steel’

	weight_limit = ‘option1’, ‘option2’ (option 1: 1000 to 920,000 lb, option 2: 9000 to 2.5M lb only for vertical vessels)

	L_D_range = ‘option1’, ‘option2’ (option 1: 3 < D < 21, 12 < L < 40; option 2: 3 < D < 24, 27 < L < 170; all in ft D: diameter, L: length) only for vertical vessels

	PL=’True’, ‘False’: to build platforms and ladders cost

	plates = ‘True’, ‘False’: to build tray cost for distillation columns

	tray_mat_factor = ‘carbon_steel’ see table 18

	tray_type = ‘sieve’

	number_tray = 10

	ref_parameter_diameter=None

	ref_parameter_length=None

By adding reference parameter, the method can be constructed in any pyomo costing block.
Since the generic models do not include the variables required to cost these type of units, the user must create the blocks and variables.
For example: m.fs.unit = Block(), m.fs.unit.diameter = Var(), m.fs.unit.length = Var(). Then m.fs.unit.costing = pyo.Block() and call vessel_costing method = vessel_costing(m.fs.unit.costing, args).

Table 17. Materials of construction factor and material density

	Material Factor

	(FM)

	methal density (lb/in^3)

	carbon_steel

	1

	0.284

	low_alloy_steel

	1.2

	0.271

	stain_steel_304

	1.7

	0.270

	stain_steel_316

	2.1

	0.276

	carpenter_20CB-3

	3.2

	0.292

	nickel_200

	5.4

	0.3216

	monel_400

	3.6

	0.319

	inconel_600

	3.9

	0.3071

	incoloy_825

	3.7

	0.2903

	titanium

	7.7

	0.1628

Vessel Cost

The weight of the unit is calculated based on the methal density, length, Diameter, and shell thickness. shel_thickness is a parameter initialized to 1.25,
however, the user must calculate the shell wall minimum thickness computd from the ASME pressure vessel code (tp) add the average vessel thickness, the necessary wall thickness (tE), and select the appropriate shell_thickness.

\[self.weight == \pi * ((D*12) + self.shell_thickness) * ((L*12)+(0.8*D*12))*self.shell_thickness*self.material_density\]

The base cost of the vessel is given by:
Horizontal vessels (option1: 1000 < W < 920,000 lb):

\[self.costing.base_cost_per_unit = \exp{(8.9552 - 0.2330*\log{weight} + 0.04333*(\log{weight})^{2})}\]

Vertical vessels (option1: 4200 < W < 1M lb):

\[self.costing.base_cost_per_unit = \exp{(8.9552 - 0.2330*\log{weight} + 0.04333*(\log{weight})^{2})}\]

Vertical vessels (option2: 9,000 < W < 2.5M lb):

\[self.costing.base_cost_per_unit = \exp{(7.2756 - 0.18255*\log{weight} + 0.02297*(\log{weight})^{2})}\]

\[self.costing.base_cost = self.costing.base_cost_per_unit * self.costing.number_of_units\]

\[weight = self.weight / self.costing.number_of_units\]

The vessel purchase cost is given by:

\[self.vessel_purchase_cost = (CE_{index}/500) * material_factor * self.base_cost + (self.base_cost_platf_ladders * self.costing.number_of_units)\]

note that if PL = ‘False’, the cost of platforms and ladders is not included.

The final purchase cost is given by:

\[self.purchase_cost = self.vessel_purchase_cost + (self.purchase_cost_trays * self.costing.number_of_units)\]

note that if plates=’False’, the cost of trays is not included.

Base Cost of Platforms and ladders

The cost of platforms and ladders is based on the diamter and length in ft.
Horizontal vessels (option1: 3 < D < 12 ft):

\[self.base_cost_platf_ladders = 20059*D^{0.20294}\]

Vertical vessels (option1: 3 < D < 12 ft and 12 < L < 40 ft):

\[self.base_cost_platf_ladders = 361.8*D^{0.73960} * L^{0.70684}\]

Vertical vessels (option2: 3 < D < 24 ft and 27 < L < 170 ft):

\[self.base_cost_platf_ladders = 300.9*D^{0.63316} * L^{0.80161}\]

Purchase Cost of Plates

The cost of plates is based on the number or trays, the type of trays used, and materials of construction.
Tray type factor (tray_factor) is 1.0 for sieve trays, 1.18 for valve trays (valve), and 1.87 for bubble cap trays (bubble_cap). The number of trays factor (number_tray_factor) is equal to 1 if the number of trays is greater than 20.
However, if the number of trays is less than 20, the number_tray_factor is given by:

\[self.number_tray_factor = \frac{2.25}{1.0414^{NT}}\]

The materials of construction factor is calculated using the following equation:

\[\alpha_1 + \alpha_2 * D\]

where alphas for different materials of construction are given in table 18.

Table 18. Materials of construction factor

	Material

	alpha1

	alpha2

	carbon_steel

	1

	0

	stain_steel_303

	1.189

	0.0577

	stain_steel_316

	1.401

	0.0724

	carpenter_20CB-3

	1.525

	0.0788

	monel_400

	2.306

	0.1120

The tray base cost is then calculated as:

\[self.base_cost_trays = 468.00*\exp{(0.1739*D)}\]

The purchase cost of the trays is given by:

\[self.purchase_cost_trays = (CE_{index}/500)* self.number_trays * self.number_tray_factor * self.type_tray_factor * self.tray_material_factor * self.base_cost_trays\]

Variable-Like Expressions

There are a number of cases within IDAES where a modeler may wish to use an Expression in place of a Var to reduce the complexity of their model. A common example of this is in the ideal Separator unit where the outlet Ports use Expressions for the state variable in order to reduce the number of variables (and thus constraints) in the model.

In these cases, it is possible that a user might mistake the Expression for a Var and attempt to use methods such as fix() on it. In order to provide the user with a useful error message informing them that this will not work, IDAES has created a derived VarLikeExpression component for these situations. This component derives directly from Pyomo’s Expression component and implements common methods associated with Vars which will return an error message informing the user that the component is an Expression, and a suggestion on how to proceed.

	
class idaes.core.util.misc.VarLikeExpression(*args, **kwds)[source]

	A shared var-like expression container, which may be defined over a index.

	Constructor Arguments:
	initialize: A Pyomo expression or dictionary of expressions used
to initialize this object.

expr: A synonym for initialize.

rule: A rule function used to initialize this object.

	
class idaes.core.util.misc.SimpleVarLikeExpression(*args, **kwds)[source]

	
	
add(index, expr)[source]

	Add an expression with a given index.

	
class idaes.core.util.misc.IndexedVarLikeExpression(*args, **kwds)[source]

	
	
add(index, expr)[source]

	Add an expression with a given index.

	
class idaes.core.util.misc._GeneralVarLikeExpressionData(expr=None, component=None)[source]

	An object derived from _GeneralExpressionData which implements methods for
common APIs on Vars.

	Constructor Arguments:
	expr: The Pyomo expression stored in this expression.

component: The Expression object that owns this data.

	Public Class Attributes:
	expr: The expression owned by this data.

	Private class attributes:
	_component: The expression component.

Model Libaries

	Generic IDAES Model Library
	Property Models

	Unit Models

	Control Models

	Power Generation Model Library
	Unit Models

	Property Models

	Flowsheet Models

	Power Plant Costing Library

	Gas Solid Contactors Model Library
	Gas Solid Contactors Flowsheets

	Gas Solid Contactors Unit Models

	Gas Solid Contactors Property Models

Generic IDAES Model Library

This library contains a suite of generic models that are applicable across most process applications.
This library also forms the foundation for many of the specialized application libraries which build
off these models.

	Property Models

	Unit Models

	Control Models

Property Models

	Cubic Equations of State

	Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

	Water/Steam - IAPWS95

	Property Interrogator Tool

Cubic Equations of State

This property package implements a general form of a cubic equation of state which can be used for most cubic-type equations of state. This package supports phase equilibrium calculations with a smooth phase transition formulation that makes it amenable for equation oriented optimization. The following equations of state are currently supported:

	Peng-Robinson

	Soave-Redlich-Kwong

Flow basis: Molar

Units: SI units

State Variables:

The state block uses the following state variables:

	Total molar flow rate (mol/s) - flow_mol
	Temperature (K) - temperature
	Pressure (Pa) - pressure
	Mole fraction of the mixture - mole_frac_comp

 Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

Vapor-Liquid Equilibrium Property Models (Ideal Gas - Non-ideal Liquids)

This property package supports phase equilibrium calucations with a smooth phase transition formulation that makes it amenable for equation oriented optimization. The gas phase is assumed to be ideal and for the liquid phase,
the package supports an ideal liquid or a non-ideal liquid using an activity
coefficient model. To compute the activity coefficient, the package currently supports the Non Random Two Liquid Model (NRTL) or the
Wilson model. Therefore, this property package supports the following combinations for gas-liquid mixtures for VLE calculations:

	Ideal (vapor) - Ideal (liquid)

	Ideal (vapor) - NRTL (liquid)

	Ideal (vapor) - Wilson (liquid)

Flow basis: Molar

Units: SI units

State Variables:

The state block supports the following two sets of state variables:

Option 1 - “FTPz”:

	Total molar flow rate (mol/s) - flow_mol
	Temperature (K) - temperature
	Presure (Pa) - pressure
	Mole fraction of the mixture - mole_frac_comp

 Water/Steam - IAPWS95

Water/Steam - IAPWS95

Accurate and thermodynamically consistent steam properties are provided for the
IDAES framework by implementing the International Association for the Properties
of Water and Steam’s “Revised Release on the IAPWS Formulation 1995 for
the Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” Non-analytic terms designed to improve accuracy
very near the critical point were omitted, because they cause a singularity at
the critical point, a feature which is undesirable in optimization problems. The
IDAES implementation provides features which make the water and steam property
calculations amenable to rigorous mathematical optimization.

Example

Theses modules can be imported as:

from idaes.generic_models.properties import iapws95

The Heater unit model example, provides a simple
example for using water properties.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, MaterialBalanceType
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock(default={
 "phase_presentation":iapws95.PhaseType.LG,
 "state_vars":iapws95.StateVars.PH})

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={
 "property_package": model.fs.properties,
 "material_balance_type": MaterialBalanceType.componentTotal})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Since all properties except the state variables are Pyomo Expressions in the
water properties module, after solving the problem any property can be
calculated in any state block. Continuing from the heater example, to get the
viscosity of both phases, the lines below could be added.

mu_l = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Liq"])
mu_v = pe.value(model.fs.heater.control_volume.properties_out[0].visc_d_phase["Vap"])

For more information about how StateBlocks and PropertyParameterBlocks work see
the StateBlock documentation.

Units

The iapws95 property module uses SI units (m, kg, s, J, mol) for all public
variables and expressions. Temperature is in K. Note that this means molecular
weight is in the unusual unit of kg/mol.

A few expressions intended to be used internally and all external function calls
use units of kg, kJ, kPa, and K. These generally are not needed by the end user.

Methods

These methods use the IAPWS-95 formulation for scientific use for thermodynamic
properties (Wagner and Pruss, 2002; IAPWS, 2016). To solve the phase equilibrium, the method of Akasaka
(2008) was used. For solving these equations, some relations from
the IAPWS-97 formulation for industrial use are used as initial values
(Wagner et al., 2002). The industrial formulation is
slightly discontinuous between different regions, so it may not be suitable for
optimization. In addition to thermodynamic quantities, viscosity and thermal
conductivity are calculated (IAPWS, 2008;
IAPWS, 2011).

External Functions

The IAPWS-95 formulation uses density and temperature as state variables. For
most applications those state variables are not the most convenient choices.
Using other state variables requires solving equations to get density and
temperature from the chosen state variables. These equations can have numerous
solutions only one of which is physically meaningful. Rather than solve these
equations as part of the full process simulation, external functions were
developed that can solve the equations required to change state variables and
guarantee the correct roots.

The external property functions are written in C++ and complied such that they
can be called by AMPL solvers. The external functions provide
both first and second derivatives for all property function calls, however at
phase transitions some of these functions may be non-smooth.

IDAES Framework Wrapper

A wrapper for the external functions is provided for compatibility with the IDAES
framework. Most properties are available as Pyomo Expressions from the wrapper.
Only the state variables are model variables. Benefits of using mostly
expressions in the property package are: no initialization is required
specifically for the property package, the model has fewer equations, and
all properties can be easily calculated after the model is solved from the
state variable values even if they were not used in the model. Calls to the
external functions are used within expressions so users do not need to directly
call any functions. The potential downside of the extensive use of expressions
here is that combining the expressions to form constraints could yield equations
that are more difficult to solve than, they would have been if an equivalent
system of equations was written with more variables and simpler equations.
Quantifying the effect of writing larger equations with fewer variables is
difficult. Experience suggests in this particular case more expressions and fewer
variables is better.

Although not generally used, the wrapper provides direct access to the
ExternalFunctions, including intermediate functions. For more information see
section ExternalFunctions.
These are mostly available for testing purposes.

Phase Presentation

The property package wrapper can present fluid phase information to the
IDAES framework in different ways. See the
class reference for details
on how to set these options. The phase_presentation=PhaseType.MIX option
looks like one phase called “Mix” to the IDAES framework. The property
package will calculate a phase fraction. This will bypass any two phase
handling equations written for unit models, and should work with any unit model
options as long as you do not want to separate the phases. The benefit of this
option is that it can potentially lead to a simpler set of equations.

The phase_presentation=PhaseType.LG option appears to the IDAES framework to
be two phases “Vap” and “Liq”. This option requires one of two unit model
options to be set. You can use the total material balance option for unit
models, to specify that only one material balance equation should be written
not one per phase. The other possible option is to specify
has_phase_equlibrium=True. This will still write a material balance
per phase, but will add a phase generation term to the model. For the IAPWS-95
package, it is generally recommended that specifying total material balances is
best because it results in a problem with fewer variables.

There are also two single phase options phase_presentation=PhaseType.L and
phase_presentation=PhaseType.G, these present a single phase “Liq” or “Vap”
to the framework. The vapor fraction will also always return 0 or 1 as
appropriate. These options can be used when the phase of a fluid is know for
certain to only be liquid or only be vapor. For the temperature-pressure-vapor
fraction formulation, this eliminates the complementarity constraint, but for the
enthalpy-pressure formulation, where the vapor fraction is always calculated,
the single phase options probably do not provide any real benefit.

Pressure-Enthalpy Formulation

The advantage of this choice of state variables is that it is very robust when
phase changes occur, and is especially useful when it is not known if a phase
change will occur. The disadvantage of this choice of state variables is that
for equations like heat transfer equations that are highly dependent on
temperature, a model could be harder to solve near regions with phase change.
Temperature is a non-smooth function with non-smoothness when transitioning
from the single-phase to the two-phase region. Temperature also has a zero
derivative with respect to enthalpy in the two-phase region, so near the
two-phase region solving a constraint that specifies a specific temperature
may not be possible.

The variables for this form are flow_mol (mol/s), pressure (Pa), and
enth_mol (J/mol).

Since temperature and vapor fraction are not state variables in this formulation,
they are provided by expressions, and cannot be fixed. For example, to set a
temperature to a specific value, a constraint could be added which says the
temperature expression equals a fixed value.

These expressions are specific to the P-H formulation:

	temperature
	Expression that calculates temperature by calling an ExternalFunction of
enthalpy and pressure. This expression is non-smooth in the transition from
single-phase to two-phase and has a zero derivative with respect to enthalpy
in the two-phase region.

	vapor_frac
	Expression that calculates vapor fraction by calling an ExternalFunction of
enthalpy and pressure. This expression is non-smooth in the transition from
single-phase to two-phase and has a zero derivative with respect to enthalpy
in the single-phase region, where the value is 0 (liquid) or 1 (vapor).

Temperature-Pressure-Vapor Fraction

This formulation uses temperature (K), pressure (Pa), and vapor fraction as
state variables. When a single phase option is given, the vapor fraction is
fixed to the appropriate value and not included in the state variable set. For
single phase, the complementarity constraint is also deactivated.

A complementarity constraint is required for the T-P-x formulation. First, two
expressions are defined below where \(P^-\) is pressure under saturation
pressure and \(P^+\) is pressure over saturation pressure. The max function
is provided by an IDAES utility function which provides a smooth max expression.

\[P^- = \max(0, P_{\text{sat}} - P)\]

\[P^+ = \max(0, P - P_{\text{sat}})\]

With the pressure over and pressure under saturated pressure expressions a
complementarity constraint can be written. If the pressure under saturation is
more than zero, only vapor exists. If the pressure over saturation is greater
than zero only a liquid exists. If both are about zero two phases can exist.
The saturation pressure function maxes out at the critical pressure and any
temperature above the critical temperature will yield a saturation pressure that
is the critical pressure, so supercritical fluids will be classified as liquids
as the convention for this property package.

\[0 = xP^+ - (1 - x)P^-\]

Assuming the vapor fraction (\(x\)) is positive and noting that only one of
\(P^+\) and \(P^-\) can be nonzero (approximately), the complementarity
equation above requires \(x\) to be 0 when \(P^+\) is not zero (liquid)
or \(x\) to be 1 when \(P^-\) is not zero (vapor). When both
\(P^+\) and \(P^-\) are about 0, the complementarity constraint says
nothing about x, but it does provide another constraint, that
\(P=P_{\text{sat}}\). When two phases are present \(x\) can be found
by the unit model energy balance and the temperature will be
\(T_{\text{sat}}\).

An alternative approach is sometimes useful. If you know for certain that you
have two phases, the complementarity constraint can be deactivated and a
\(P=P_{\text{sat}}\) or \(T=T_{\text{sat}}\) constraint can be added.

Using the T-P-x formulation requires better initial guesses than the P-H form.
It is not strictly necessary but it is best to try to get an initial guess that
is in the correct phase region for the expected result model.

Expressions

Unless otherwise noted, the property expressions are common to both the
T-P-x and P-H formulations. For phase specific properties, valid phase indexes
are "Liq" and "Vap"

	Expression

	Description

	mw

	Molecular weight (kg/mol)

	tau

	Critical temperature divided by temperature (unitless)

	temperature

	Temperature (K) if PH form

	temperature_red

	Reduced temperature, temperature divided by critical temperature (unitless)

	temperature_sat

	Saturation temperature (K)

	tau_sat

	Critical temperature divided by saturation temperature (unitless)

	pressure_sat

	Saturation pressure (Pa)

	dens_mass_phase[phase]

	Density phase (kg/m3)

	dens_phase_red[phase]

	Phase reduced density (\(\delta\)), mass density divided by critical density (unitless)

	dens_mass

	Total mixed phase mass density (kg/m3)

	dens_mol

	Total mixed phase mole density (kg/m3)

	flow_vol

	Total volumetric flow rate (m3/s)

	enth_mass

	Mass enthalpy (J/kg)

	enth_mol_sat_phase[phase]

	Saturation enthalpy of phase, enthalpy at P and Tsat (J/mol)

	enth_mol

	Molar enthalpy (J/mol) if TPx form

	enth_mol_phase[phase]

	Molar enthalpy of phase (J/mol)

	energy_internal_mol

	molar internal energy (J/mol)

	energy_internal_mol_phase[phase]

	Molar internal energy of phase (J/mol)

	entr_mol_phase

	Molar entropy of phase (J/mol/K)

	entr_mol

	Total mixed phase entropy (J/mol/K)

	cp_mol_phase[phase]

	Constant pressure molar heat capacity of phase (J/mol/K)

	cv_mol_phase[phase]

	Constant pressure volume heat capacity of phase (J/mol/K)

	cp_mol

	Total mixed phase constant pressure heat capacity (J/mol/K)

	cv_mol

	Total mixed phase constant volume heat capacity (J/mol/K)

	heat_capacity_ratio

	cp_mol/cv_mol

	speed_sound_phase[phase]

	Speed of sound in phase (m/s)

	dens_mol_phase[phase]

	Mole density of phase (mol/m3)

	therm_cond_phase[phase]

	Thermal conductivity of phase (W/K/m)

	vapor_frac

	Vapor fraction, if PH form

	visc_d_phase[phase]

	Viscosity of phase (Pa/s)

	visc_k_phase[phase]

	Kinimatic viscosity of phase (m2/s)

	phase_frac[phase]

	Phase fraction

	flow_mol_comp["H2O"]

	Same as total flow since only water (mol/s)

	P_under_sat

	Pressure under saturation pressure (kPA)

	P_over_sat

	Pressure over saturation pressure (kPA)

ExternalFunctions

This provides a list of ExternalFuctions available in the wrapper. These
functions do not use SI units and are not usually called directly. If these
functions are needed, they should be used with caution. Some of these are used
in the property expressions, some are just provided to allow easier testing with
a Python framework.

All of these functions provide first and second derivative and are generally
suited to optimization (including the ones that return derivatives of Helmholtz
free energy). Some functions may have non-smoothness at phase transitions. The
delta_vap and delta_liq functions return the same values in the critical
region. They will also return real values when a phase doesn’t exist, but those
values do not necessarily have physical meaning.

There are a few variables that are common to a lot of these functions, so they
are summarized here \(\tau\) is the critical temperature divided by the
temperature \(\frac{T_c}{T}\), \(\delta\) is density divided by the
critical density \(\frac{\rho}{\rho_c}\), and \(\phi\) is Helmholtz free
energy divided by the ideal gas constant and temperature \(\frac{f}{RT}\).

	Pyomo Function

	C Function

	Returns

	Arguments

	func_p

	p

	pressure (kPa)

	\(\delta, \tau\)

	func_u

	u

	internal energy (kJ/kg)

	\(\delta, \tau\)

	func_s

	s

	entropy (kJ/K/kg)

	\(\delta, \tau\)

	func_h

	h

	enthalpy (kJ/kg)

	\(\delta, \tau\)

	func_hvpt

	hvpt

	vapor enthalpy (kJ/kg)

	P (kPa), \(\tau\)

	func_hlpt

	hlpt

	liquid enthalpy (kJ/kg)

	P (kPa), \(\tau\)

	func_tau

	tau

	\(\tau\) (unitless)

	h (kJ/kg), P (kPa)

	func_vf

	vf

	vapor fraction (unitless)

	h (kJ/kg), P (kPa)

	func_g

	g

	Gibbs free energy (kJ/kg)

	\(\delta, \tau\)

	func_f

	f

	Helmholtz free energy (kJ/kg)

	\(\delta, \tau\)

	func_cv

	cv

	const. volume heat capacity (kJ/K/kg)

	\(\delta, \tau\)

	func_cp

	cp

	const. pressure heat capacity (kJ/K/kg)

	\(\delta, \tau\)

	func_w

	w

	speed of sound (m/s)

	\(\delta, \tau\)

	func_delta_liq

	delta_liq

	liquid \(\delta\) (unitless)

	P (kPa), \(\tau\)

	func_delta_vap

	delta_vap

	vapor \(\delta\) (unitless)

	P (kPa), \(\tau\)

	func_delta_sat_l

	delta_sat_l

	sat. liquid \(\delta\) (unitless)

	\(\tau\)

	func_delta_sat_v

	delta_sat_v

	sat. vapor \(\delta\) (unitless)

	\(\tau\)

	func_p_sat

	p_sat

	sat. pressure (kPa)

	\(\tau\)

	func_tau_sat

	tau_sat

	sat. \(\tau\) (unitless)

	P (kPa)

	func_phi0

	phi0

	\(\phi\) idaes gas part (unitless)

	\(\delta, \tau\)

	func_phi0_delta

	phi0_delta

	\(\frac{\partial \phi_0}{\partial \delta}\)

	\(\delta\)

	func_phi0_delta2

	phi0_delta2

	\(\frac{\partial^2 \phi_0}{\partial \delta^2}\)

	\(\delta\)

	func_phi0_tau

	phi0_tau

	\(\frac{\partial \phi_0}{\partial \tau}\)

	\(\tau\)

	func_phi0_tau2

	phi0_tau2

	\(\frac{\partial^2 \phi_0}{\partial \tau^2}\)

	\(\tau\)

	func_phir

	phir

	\(\phi\) real gas part (unitless)

	\(\delta, \tau\)

	func_phir_delta

	phir_delta

	\(\frac{\partial \phi_r}{\partial \delta}\)

	\(\delta, \tau\)

	func_phir_delta2

	phir_delta2

	\(\frac{\partial^2 \phi_r}{\partial \delta^2}\)

	\(\delta, \tau\)

	func_phir_tau

	phir_tau

	\(\frac{\partial \phi_r}{\partial \tau}\)

	\(\delta, \tau\)

	func_phir_tau2

	phir_tau2

	\(\frac{\partial^2 \phi_r}{\partial \tau^2}\)

	\(\delta, \tau\)

	func_phir_delta_tau

	phir_delta_tau

	\(\frac{\partial^2 \phi_r}{\partial \delta \partial \tau}\)

	\(\delta, \tau\)

Initialization

The IAPWS-95 property functions do provide initialization functions for general
compatibility with the IDAES framework, but as long as the state variables are
specified to some reasonable value, initialization is not required. All required
solves are handled by external functions.

References

International Association for the Properties of Water and Steam (2016).
IAPWS R6-95 (2016), “Revised Release on the IAPWS Formulation 1995 for
the Properties of Ordinary Water Substance for General Scientific Use,”
URL: http://iapws.org/relguide/IAPWS95-2016.pdf

Wagner, W., A. Pruss (2002). “The IAPWS Formulation 1995 for the
Thermodynamic Properties of Ordinary Water Substance for General and
Scientific Use.” J. Phys. Chem. Ref. Data, 31, 387-535.

Wagner, W. et al. (2000). “The IAPWS Industrial Formulation 1997 for the
Thermodynamic Properties of Water and Steam,” ASME J. Eng. Gas Turbines
and Power, 122, 150-182.

Akasaka, R. (2008). “A Reliable and Useful Method to Determine the Saturation
State from Helmholtz Energy Equations of State.” Journal of Thermal
Science and Technology, 3(3), 442-451.

International Association for the Properties of Water and Steam (2011).
IAPWS R15-11, “Release on the IAPWS Formulation 2011 for the
Thermal Conductivity of Ordinary Water Substance,”
URL: http://iapws.org/relguide/ThCond.pdf.

International Association for the Properties of Water and Steam (2008).
IAPWS R12-08, “Release on the IAPWS Formulation 2008 for the Viscosity of
Ordinary Water Substance,”
URL: http://iapws.org/relguide/visc.pdf.

Convenience Functions

	
idaes.generic_models.properties.iapws95.htpx(T, P=None, x=None)[source]

	Convenience function to calculate steam enthalpy from temperature and
either pressure or vapor fraction. This function can be used for inlet
streams and initialization where temperature is known instead of enthalpy.

User must provided values for one (and only one) of arguments P and x.

	Parameters

	
	T – Temperature [K] (between 200 and 3000)

	P – Pressure [Pa] (between 1 and 1e9), None if saturated steam

	x – Vapor fraction [mol vapor/mol total] (between 0 and 1), None if

	or subcooled (superheated) –

	Returns

	Total molar enthalpy [J/mol].

Iapws95StateBlock Class

	
class idaes.generic_models.properties.iapws95.Iapws95StateBlock(*args, **kwargs)

	This is some placeholder doc.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	parameters
	A reference to an instance of the Property Parameter Block
associated with this property package.

	defined_state
	Flag indicating whether the state should be considered
fully defined, and thus whether constraints such as sum of
mass/mole fractions should be included, default -
False. Valid values: { True - state variables will
be fully defined, False - state variables will not be
fully defined.}

	has_phase_equilibrium
	Flag indicating whether phase equilibrium constraints
should be constructed in this state block, default -
True. Valid values: { True - StateBlock should
calculate phase equilibrium, False - StateBlock should
not calculate phase equilibrium.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Iapws95StateBlock) New instance

Iapws95StateBlockData Class

	
class idaes.generic_models.properties.iapws95.Iapws95StateBlockData(*args, **kwargs)[source]

	This is a property package for calculating thermophysical properties of
water.

	
build(*args)[source]

	Callable method for Block construction

Iapws95ParameterBlock Class

	
class idaes.generic_models.properties.iapws95.Iapws95ParameterBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	default_arguments
	Default arguments to use with Property Package

	phase_presentation
	Set the way phases are presented to models. The MIX option
appears to the framework to be a mixed phase containing
liquid and/or vapor. The mixed option can simplify
calculations at the unit model level since it can be
treated as a single phase, but unit models such as flash
vessels will not be able to treat the phases
independently. The LG option presents as two separate
phases to the framework. The L or G options can be used if
it is known for sure that only one phase is present.
default - PhaseType.MIX Valid values: {
PhaseType.MIX - Present a mixed phase with liquid
and/or vapor, PhaseType.LG - Present a liquid and
vapor phase, PhaseType.L - Assume only liquid can be
present, PhaseType.G - Assume only vapor can be
present}

	state_vars
	The set of state variables to use. Depending on the use,
one state variable set or another may be better
computationally. Usually pressure and enthalpy are the
best choice because they are well behaved during a phase
change. default - StateVars.PH Valid values: {
StateVars.PH - Pressure-Enthalpy, StateVars.TPX -
Temperature-Pressure-Quality}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Iapws95ParameterBlock) New instance

Iapws95ParameterBlockData Class

	
class idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData(component)[source]

	
	
build()[source]

	General build method for PropertyParameterBlocks. Inheriting models
should call super().build.

	Parameters

	None –

	Returns

	None

 Property Interrogator Tool

Property Interrogator Tool

When preparing to model a process flowsheet, it is necessary to specify models for all the thermophysical and kinetic properties that will be required by the different unit operations to simulate the process. However, it is often difficult to know what properties will be required a priori. The IDAES Property Interrogator tool allows a user to define a general flowsheet structure and interrogate it for the full list of properties that will be required, thus informing them of what methods they will need to define in their property package(s).

Tool Usage

The IDAES Properties Interrogator tool consists of two classes; a PropertiesInterrogatorBlock and a ReactionInterrogatorBlock. These blocks are used in place of the normal PhysicalParameterBlock and ReactionParameterBlock whilst declaring a flowsheet, however rather than constructing a solvable flowsheet they record all calls for properties made whilst constructing the flowsheet. These Blocks then contain a number of methods for reporting the logged property calls for the user.

An example of how Property Interrogator tool is used is shown below:

import pyomo.environ as pyo # Pyomo environment
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import CSTR
from idaes.generic_models.properties.interrogator import PropertyInterrogatorBlock, ReactionInterrogatorBlock

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": True})

m.fs.params = PropertyInterrogatorBlock()
m.fs.rxn_params = ReactionInterrogatorBlock(
 default={"property_package": m.fs.params})

m.fs.R01 = CSTR(default={"property_package": m.fs.params,
 "reaction_package": m.fs.rxn_params,
 "has_heat_of_reaction": True})

Note

Flowsheets constructed using the Property Interrogator tools are not solvable flowsheets, and will result in errors if sent to a solver.

Output and Display Methods

Both the PropertiesInterrogatorBlock and ReactionInterrogatorBlock support the following methods for reporting the results of the flowsheet interrogation. The PropertiesInterrogatorBlock will contain a summary of all thermophysical properties expected of a StateBlock in the flowsheet, whilst the ReactionInterrogatorBlock will contain a summary of all reaction related properties required of a ReactionBlock.

	list_required_properties() - returns a list containing all properties called for by the flowsheet.

	print_required_properties() - prints a summary of the required properties

	list_models_requiring_property(property) - returns a list of unit models within the flowsheet that require the given property

	print_models_requiring_property(property) - prints the name of all unit models within the flowsheet that require the given property

	list_properties_required_by_model(model) - returns a list of all properties required by a given unit model in the flowsheet

	print_properties_required_by_model(model) - prints a summary of all properties required by a given unit model in the flowsheet

For more details on these methods, see the detailed class documentation below.

Additionally, the PropertiesInterrogatorBlock and ReactionInterrogatorBlock contain a dict named required_properties which stores the data regarding the properties required by the model. The keys of this dict are the names of all the properties required (as strings) and the values are a list of names for the unit models requiring the given property.

Class Documentation

	
class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	default_arguments
	Default arguments to use with Property Package

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PropertyInterrogatorBlock) New instance

	
class idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData(component)[source]

	Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying
the properties requried by the flowsheet.

	
build()[source]

	Callable method for Block construction.

	
classmethod define_metadata(obj)[source]

	Set all the metadata for properties and units.

This method should be implemented by subclasses.
In the implementation, they should set information into the
object provided as an argument.

	Parameters

	pcm (PropertyClassMetadata) – Add metadata to this object.

	Returns

	None

	
list_models_requiring_property(prop)[source]

	Method to list all models in the flowsheet requiring the given
property.

	Parameters

	prop – the property of interest

	Returns

	A list of unit model names which require prop

	
list_properties_required_by_model(model)[source]

	Method to list all thermophysical properties required by a given unit
model.

	Parameters

	model – the unit model of interest. Can be given as either a model
component or the unit name as a string

	Returns

	A list of thermophysical properties required by model

	
list_required_properties()[source]

	Method to list all thermophysical properties required by the flowsheet.

	Parameters

	None –

	Returns

	A list of properties required

	
print_models_requiring_property(prop, ostream=None)[source]

	Method to print a summary of the models in the flowsheet requiring a
given property.

	Parameters

	
	prop – the property of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_properties_required_by_model(model, ostream=None)[source]

	Method to print a summary of the thermophysical properties required by
a given unit model.

	Parameters

	
	model – the unit model of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_required_properties(ostream=None)[source]

	Method to print a summary of the thermophysical properties required by
the flowsheet.

	Parameters

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorBlock(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	property_package
	Reference to associated PropertyPackageParameter object

	default_arguments
	Default arguments to use with Property Package

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(ReactionInterrogatorBlock) New instance

	
class idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData(*args, **kwargs)[source]

	Interrogator Parameter Block Class

This class contains the methods and attributes for recording and displaying
the reaction properties requried by the flowsheet.

	
build()[source]

	Callable method for Block construction.

	
classmethod define_metadata(obj)[source]

	Set all the metadata for properties and units.

This method should be implemented by subclasses.
In the implementation, they should set information into the
object provided as an argument.

	Parameters

	pcm (PropertyClassMetadata) – Add metadata to this object.

	Returns

	None

	
list_models_requiring_property(prop)[source]

	Method to list all models in the flowsheet requiring the given
property.

	Parameters

	prop – the property of interest

	Returns

	A list of unit model names which require prop

	
list_properties_required_by_model(model)[source]

	Method to list all reaction properties required by a given unit model.

	Parameters

	model – the unit model of interest. Can be given as either a model
component or the unit name as a string

	Returns

	A list of reaction properties required by model

	
list_required_properties()[source]

	Method to list all reaction properties required by the flowsheet.

	Parameters

	None –

	Returns

	A list of properties required

	
print_models_requiring_property(prop, ostream=None)[source]

	Method to print a summary of the models in the flowsheet requiring a
given property.

	Parameters

	
	prop – the property of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_properties_required_by_model(model, ostream=None)[source]

	Method to print a summary of the reaction properties required by
a given unit model.

	Parameters

	
	model – the unit model of interest.

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

	
print_required_properties(ostream=None)[source]

	Method to print a summary of the reaction properties required by the
flowsheet.

	Parameters

	ostream – output stream to print to. If not provided will print to
sys.stdout

	Returns

	None

 Unit Models

Unit Models

	Compressor

	Continuous Stirred Tank Reactor

	Equilibrium Reactor

	Feed Block

	Feed Block with Flash

	Flash Unit

	Gibbs Reactor

	Heater

	HeatExchanger (0D)

	Heat Exchangers (1D)

	Mixer

	Plug Flow Reactor

	Pressure Changer

	Product Block

	Pump

	Separator

	StateJunction Block

	Stoichiometric (Yield) Reactor

	Translator Block

	Turbine

 Compressor

Compressor

The Compressor model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be True,
and the default “thermodynamic_assumption” is “isentropic.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Compressor model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Compressor
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Compressor(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(4000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(50000)
m.fs.unit.efficiency_isentropic.fix(0.9)

 Continuous Stirred Tank Reactor

Continuous Stirred Tank Reactor

The IDAES CSTR model represents a unit operation where a material stream undergoes some chemical reaction(s) in a well-mixed vessel.

Degrees of Freedom

CSTRs generally have one degree of freedom. Typically, the fixed variable is reactor volume.

Model Structure

The core CSTR unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

CSTR units write the following additional Constraints beyond those written by the ControlVolume Block.

\[X_{t,r} = V_t \times r_{t,r}\]

where \(X_{t,r}\) is the extent of reaction of reaction \(r\) at time \(t\), \(V_t\) is the volume of the reacting material at time \(t\) (allows for varying reactor volume with time) and \(r_{t,r}\) is the volumetric rate of reaction of reaction \(r\) at time \(t\) (from the outlet property package).

Variables

CSTR units add the following additional Variables beyond those created by the ControlVolume Block.

	Variable

	Name

	Notes

	\(V_t\)

	volume

	If has_holdup = True this is a reference to control_volume.volume, otherwise a Var attached to the Unit Model

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

CSTR Class

	
class idaes.generic_models.unit_models.cstr.CSTR(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_heat_of_reaction
	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(CSTR) New instance

CSTRData Class

	
class idaes.generic_models.unit_models.cstr.CSTRData(component)[source]

	Standard CSTR Unit Model Class

	
build()[source]

	Begin building model (pre-DAE transformation).
:param None:

	Returns

	None

 Equilibrium Reactor

Equilibrium Reactor

The IDAES Equilibrium reactor model represents a unit operation where a material stream undergoes some chemical reaction(s) to reach an equilibrium state. This model is for systems with reaction with equilibrium coefficients - for Gibbs energy minimization see Gibbs reactor documentation.

Degrees of Freedom

Equilibrium reactors generally have 1 degree of freedom.

Typical fixed variables are:

	reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Equilibrium reactor unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Additional Constraints

Equilibrium reactors units write the following additional Constraints beyond those written by the Control Volume if rate controlled reactions are present.

\[r_{t,r} = 0\]

where \(r_{t,r}\) is the rate of reaction for reaction \(r\) at time \(t\). This enforces equilibrium in any reversible rate controlled reactions which are present. Any non-reversible reaction that may be present will proceed to completion.

Variables

Equilibrium reactor units add the following additional Variables beyond those created by the Control Volume.

	Variable

	Name

	Notes

	\(V_t\)

	volume

	If has_holdup = True this is a reference to control_volume.volume, otherwise a Var attached to the Unit Model

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

EquilibriumReactor Class

	
class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Equilibrium Reactors do not support
dynamic behavior.

	has_holdup
	Indicates whether holdup terms should be constructed or
not. default - False. Equilibrium reactors do not have
defined volume, thus this must be False.

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_rate_reactions
	Indicates whether terms for rate controlled reactions
should be constructed, along with constraints equating
these to zero, default - True. Valid values: {
True - include rate reaction terms, False -
exclude rate reaction terms.}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default - True. Valid values: {
True - include phase equilibrium term, False -
exclude phase equlibirum terms.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_heat_of_reaction
	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(EquilibriumReactor) New instance

EquilibriumReactorData Class

	
class idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData(component)[source]

	Standard Equilibrium Reactor Unit Model Class

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

 Feed Block

Feed Block

Feed Blocks are used to represent sources of material in Flowsheets. Feed blocks do not calculate phase equilibrium of the feed stream, and the composition of the material in the outlet stream will be exactly as specified in the input. For applications where the users wishes the outlet stream to be in phase equilibrium, see the Feed_Flash unit model.

Degrees of Freedom

The degrees of freedom of Feed blocks depends on the property package being used and the number of state variables necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

Feed Blocks consists of a single StateBlock (named properties), each with one Outlet Port (named outlet). Feed Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Feed Blocks write no additional constraints to the model.

Variables

Feed blocks add no additional Variables.

Feed Class

	
class idaes.generic_models.unit_models.feed.Feed(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Feed blocks are always steady-state.

	has_holdup
	Feed blocks do not contain holdup, thus this must be
False.

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Feed) New instance

FeedData Class

	
class idaes.generic_models.unit_models.feed.FeedData(component)[source]

	Standard Feed Block Class

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	This method calls the initialization method of the state block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = None).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Feed Block with Flash

Feed Block with Flash

Feed Blocks are used to represent sources of material in Flowsheets. In some cases, users may have a situation where a feed stream may be in a multi-phase state, but may not know the full details of the equilibrium state. The IDAES Feed Block with Flash (FeedFlash) allows users to define a feed block where the outlet is in phase equilibrium based on calculations from the chosen property package and a sufficient set of state variables prior to being passed to the first unit operation. The phase equilibrium is performed assuming an isobaric and isothermal flash operation.

A Feed Block with Flash is only required in cases where the feed may be in phase equilibrium AND the chosen property package uses a state definition that includes phase separations. Some property packages support phase equilibrium, but use a state definition that involves only total flows - in these cases a flash calculation is performed at the inlet of every unit and thus it is not necessary to perform a flash calculation at the feed block.

Degrees of Freedom

The degrees of freedom of FeedFlash blocks depends on the property package being used and the number of state variables necessary to fully define the system. Users should refer to documentation on the property package they are using.

Model Structure

FeedFlash Blocks contain a single ControlVolume0D (named control_volume) with one Outlet Port (named outlet). FeedFlash Blocks also contain References to the state variables defined within the inlet StateBlock of the ControlVolume (representing the unflashed state of the feed).

FeedFlash Blocks do not write a set of energy balances within the Control Volume - instead a constraint is written which enforces an isothermal flash.

Additional Constraints

The FeedFlash Block writes one additional constraint to enforce isothermal behavior.

\[T_{in, t} = T_{out, t}\]

where \(T_{in, t}\) and \(T_{out, t}\) are the temperatures of the material before and after the flash operation.

Variables

FeedFlash blocks add no additional Variables.

FeedFlash Class

	
class idaes.generic_models.unit_models.feed_flash.FeedFlash(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Feed units do not support dynamic behavior.

	has_holdup
	Feed units do not have defined volume, thus this must be
False.

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	flash_type
	Indicates what type of flash operation should be used.
default - FlashType.isothermal. Valid values: {
FlashType.isothermal - specify temperature,
FlashType.isenthalpic - specify enthalpy.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(FeedFlash) New instance

FeedFlashData Class

	
class idaes.generic_models.unit_models.feed_flash.FeedFlashData(component)[source]

	Standard Feed block with phase equilibrium

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

 Flash Unit

Flash Unit

The IDAES Flash model represents a unit operation where a single stream undergoes a flash separation into two phases. The Flash model supports mutile types of flash operations, including pressure changes and addition or removal of heat.

Degrees of Freedom

Flash units generally have 2 degrees of freedom.

Typical fixed variables are:

	heat duty or outlet temperature (see note),

	pressure change or outlet pressure.

Note: When setting the outlet temeprature of a Flash unit, it is best to set control_volume.properties_out[t].temperature. Setting the temperature in one of the outlet streams directly results in a much harder problme to solve, and may be degenerate or unbounded in some cases.

Model Structure

The core Flash unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) connected to a Separator unit model with two outlet Ports named ‘vap_outlet’ and ‘liq_outlet’. The Flash model utilizes the separator unit model in IDAES to split the outlets by phase flows to the liquid and vapor outlets respectively.

The Separator unit model supports both direct splitting of state variables and writting of full splitting constraints via the ideal_separation construction argument. Full details on the Separator unit model can be found in the documentation for that unit. To support direct splitting, the property package must use one of a specified set of state variables and support a certain set of property calacuations, as outlined in the table below.

	State Variables

	Required Properties

	Material flow and composition

	flow_mol & mole_frac

	flow_mol_phase & mole_frac_phase

	flow_mol_phase & mole_frac_phase

	flow_mol_phase & mole_frac_phase

	flow_mol_comp

	flow_mol_phase_comp

	flow_mol_phase_comp

	flow_mol_phase_comp

	flow_mass & mass_frac

	flow_mass_phase & mass_frac_phase

	flow_mass_phase & mass_frac_phase

	flow_mass_phase & mass_frac_phase

	flow_mass_comp

	flow_mass_phase_comp

	flow_mass_phase_comp

	flow_mass_phase_comp

	Energy state

	temperature

	temperature

	enth_mol

	enth_mol_phase

	enth_mol_phase

	enth_mol_phase

	enth_mass

	enth_mass_phase

	enth_mass_phase

	enth_mass_phase

	Pressure state

	pressure

	pressure

Construction Arguments

Flash units have the following construction arguments:

	property_package - property package to use when constructing Property Blocks (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not provided, the Holdup Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the Property Blocks when they are created.

Additionally, Flash units have the following construction arguments which are passed to the Holdup Block for determining which terms to construct in the balance equations.

	Argument

	Default Value

	dynamic

	False

	include_holdup

	False

	material_balance_type

	MaterialBalanceType.componentPhase

	energy_balance_type

	EnergyBalanceType.enthalpyTotal

	momentum_balance_type

	MomentumBalanceType.pressureTotal

	has_phase_equilibrium

	True

	has_heat_transfer

	True

	has_pressure_change

	True

Finally, Flash units also have the following arguments which are passed to the Separator block for determining how to split to two-phase mixture.

	Argument

	Default Value

	ideal_separation

	True

	energy_split_basis

	EnergySplittingType.equal_temperature

Additional Constraints

Flash units write no additional Constraints beyond those written by the ControlVolume0DBlock and the Separator block.

Variables

	Name

	Notes

	heat_duty

	Reference to control_volume.heat

	deltaP

	Reference to control_volume.deltaP

Flash Class

	
class idaes.generic_models.unit_models.flash.Flash(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Flash units do not support dynamic
behavior.

	has_holdup
	Indicates whether holdup terms should be constructed or
not. default - False. Flash units do not have defined
volume, thus this must be False.

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	energy_split_basis
	Argument indicating basis to use for splitting energy this
is not used for when ideal_separation == True. default
- EnergySplittingType.equal_temperature. Valid values:
{ EnergySplittingType.equal_temperature - outlet
temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar
enthalpies equal inlet,
EnergySplittingType.enthalpy_split - apply split
fractions to enthalpy flows.}

	ideal_separation
	Argument indicating whether ideal splitting should be
used. Ideal splitting assumes perfect separation of
material, and attempts to avoid duplication of StateBlocks
by directly partitioning outlet flows to ports,
default - True. Valid values: { True - use
ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True, False - use explicit
splitting equations with split fractions.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - True. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Flash) New instance

FlashData Class

	
class idaes.generic_models.unit_models.flash.FlashData(component)[source]

	Standard Flash Unit Model Class

	
build()[source]

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Gibbs Reactor

Gibbs Reactor

The IDAES Gibbs reactor model represents a unit operation where a material stream undergoes some set of reactions such that the Gibbs energy of the resulting mixture is minimized. Gibbs reactors rely on conservation of individual elements within the system, and thus require element balances, and make use of Lagrange multipliers to find the minimum Gibbs energy state of the system.

Configuration Arguments

The Gibbs Reactor unit model allows users to specify a list of components which should be considered to be inerts within the reactor. This is done using the “inert_species” configuration argument, which should be a list of valid component names. These components will be considered inert, such that flows in and out of the unit for those components in each phase are equal.

Degrees of Freedom

Gibbs reactors generally have between 0 and 2 degrees of freedom, depending on construction arguments.

Typical fixed variables are:

	reactor heat duty (has_heat_transfer = True only).

	reactor pressure change (has_pressure_change = True only).

Model Structure

The core Gibbs reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

Gibbs reactor units add the following additional Variables beyond those created by the Control Volume Block.

	Variable Name

	Symbol

	Notes

	lagrange_mult

	\(L_{t,e}\)

	Lagrange multipliers

	heat_duty

	\(Q_t\)

	Only if has_heat_transfer = True, reference

	deltaP

	\(\Delta P_t\)

	Only if has_pressure_change = True, reference

Parameters

The Gibbs reactor unit model includes a scaling parameter for the Gibbs energy minimization constraint, which is named “gibbs_scaling”. The default value is 1 and users may adjust the value of this parameter is required.

Constraints

Gibbs reactor models write the following additional constraints to calculate the state that corresponds to the minimum Gibbs energy of the system.

gibbs_minimization(time, phase, component):

\[0 = \eps \times g_{partial,t,j} + \eps \times \sum_e{(L_{t,e} \times \alpha_{j,e})}\]

where \(g_{partial,t,j}\) is the partial molar Gibbs energy of component \(j\) at time \(t\), \(L_{t,e}\) is the Lagrange multiplier for element \(e\) at time \(t\) and \(\alpha_{j,e}\) is the number of moles of element \(e\) in one mole of component \(j\). \(g_{partial,t,j}\) and \(\alpha_{j,e}\) come from the outlet StateBlock. \(t\), \(eps\) is the gibbs_scaling parameter. In cases where inert species are present, these are excluded from the \(sum_e\) term.

In cases where inerts are present, the following additional constraint is written for each inert component and phase:

\[0 = F_{in, p, j} - F_{out, p, j}\]

GibbsReactor Class

	
class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Gibbs reactors do not support dynamic models, thus this
must be False.

	has_holdup
	Gibbs reactors do not have defined volume, thus this must
be False.

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	inert_species
	List of species which do not take part in reactions.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(GibbsReactor) New instance

GibbsReactorData Class

	
class idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData(component)[source]

	Standard Gibbs Reactor Unit Model Class

This model assume all possible reactions reach equilibrium such that the
system partial molar Gibbs free energy is minimized.
Since some species mole flow rate might be very small,
the natural log of the species molar flow rate is used.
Instead of specifying the system Gibbs free energy as an objective
function, the equations for zero partial derivatives of the grand function
with Lagrangian multiple terms with repect to product species mole flow
rates and the multiples are specified as constraints.

	
build()[source]

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Heater

Heater

The Heater model is a simple 0D model that adds or removes heat from a
material stream.

Example

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import Heater
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heater = Heater(default={"property_package": model.fs.properties})

Setup the heater model by fixing the inputs and heat duty
model.fs.heater.inlet[:].enth_mol.fix(4000)
model.fs.heater.inlet[:].flow_mol.fix(100)
model.fs.heater.inlet[:].pressure.fix(101325)
model.fs.heater.heat_duty[:].fix(100*20000)

Initialize the model.
model.fs.heater.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heater model usually has one degree of
freedom, which is the heat duty.

Model Structure

A heater model contains one ControlVolume0DBlock block.

Variables

The heat_duty variable is a reference to control_volume.heat.

Constraints

A heater model contains no additional constraints beyond what are contained in
a ControlVolume0DBlock model.

Heater Class

	
class idaes.generic_models.unit_models.heater.Heater(*args, **kwargs)

	Simple 0D heater/cooler model.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Heater) New instance

HeaterData Class

	
class idaes.generic_models.unit_models.heater.HeaterData(component)[source]

	Simple 0D heater unit.
Unit model to add or remove heat from a material.

	
build()[source]

	Building model

	Parameters

	None –

	Returns

	None

 HeatExchanger (0D)

HeatExchanger (0D)

The HeatExchanger model can be imported from idaes.generic_models.unit_models,
while additional rules and utility functions can be imported from
idaes.generic_models.unit_models.heat_exchanger.

Example

The example below demonstrates how to initialize the HeatExchanger model, and
override the default temperature difference calculation.

import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.generic_models.unit_models import HeatExchanger
from idaes.generic_models.unit_models.heat_exchanger import delta_temperature_amtd_callback
from idaes.generic_models.properties import iapws95

Create an empty flowsheet and steam property parameter block.
model = pe.ConcreteModel()
model.fs = FlowsheetBlock(default={"dynamic": False})
model.fs.properties = iapws95.Iapws95ParameterBlock()

Add a Heater model to the flowsheet.
model.fs.heat_exchanger = HeatExchanger(default={
 "delta_temperature_callback":delta_temperature_amtd_callback,
 "shell":{"property_package": model.fs.properties},
 "tube":{"property_package": model.fs.properties}})

model.fs.heat_exchanger.area.fix(1000)
model.fs.heat_exchanger.overall_heat_transfer_coefficient[0].fix(100)
model.fs.heat_exchanger.shell_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.shell_inlet.pressure.fix(101325)
model.fs.heat_exchanger.shell_inlet.enth_mol.fix(4000)
model.fs.heat_exchanger.tube_inlet.flow_mol.fix(100)
model.fs.heat_exchanger.tube_inlet.pressure.fix(101325)
model.fs.heat_exchanger.tube_inlet.enth_mol.fix(3000)

Initialize the model
model.fs.heat_exchanger.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees
of freedom, which can be fixed for it to be fully specified. Things that are
frequently fixed are two of:

	heat transfer area,

	heat transfer coefficient, or

	temperature approach.

The user may also provide constants to calculate the heat transfer coefficient.

Model Structure

The HeatExchanger model contains two ControlVolume0DBlock blocks. By default the
hot side is named shell and the cold side is named tube. These names are configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side. Aside from the sign convention there is no requirement that the hot side be hotter
than the cold side.

The control volumes are configured the same as the ControlVolume0DBlock in the
Heater model. The HeatExchanger model contains additional
constraints that calculate the amount of heat transferred from the hot side to the cold side.

The HeatExchanger has two inlet ports and two outlet ports. By default these are
shell_inlet, tube_inlet, shell_outlet, and tube_outlet. If the user
supplies different hot and cold side names the inlet and outlets are named accordingly.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	t

	Heat transferred from hot side to the cold side

	area

	\(A\)

	None

	Heat transfer area

	heat_transfer_coefficient

	\(U\)

	t

	Heat transfer coefficient

	delta_temperature

	\(\Delta T\)

	t

	Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified cold side is hotter
than the specified hot side this value will be negative.

Constraints

The default constants can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, and heat transfer coefficient. The section
describes the default constraints.

Heat transfer from shell to tube:

\[Q = UA\Delta T\]

Temperature difference is an expression:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

The heat transfer coefficient is a variable with no associated constraints by default.

Class Documentation

Note

The hot_side_config and cold_side_config can also be supplied using the name of
the hot and cold sides (shell and tube by default) as in the example.

	
class idaes.generic_models.unit_models.heat_exchanger.HeatExchanger(*args, **kwargs)

	Simple 0D heat exchanger model.

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	hot_side_name
	Hot side name, sets control volume and inlet and outlet
names

	cold_side_name
	Cold side name, sets control volume and inlet and outlet
names

	hot_side_config
	A config block used to construct the hot side control
volume. This config can be given by the hot side name
instead of hot_side_config.

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	cold_side_config
	A config block used to construct the cold side control
volume. This config can be given by the cold side name
instead of cold_side_config.

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	delta_temperature_callback
	Callback for for temperature difference calculations

	flow_pattern
	Heat exchanger flow pattern, default -
HeatExchangerFlowPattern.countercurrent. Valid values:
{ HeatExchangerFlowPattern.countercurrent -
countercurrent flow,
HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow,
factor times countercurrent temperature difference.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchanger) New instance

	
class idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData(component)[source]

	Simple 0D heat exchange unit.
Unit model to transfer heat from one material to another.

	
build()[source]

	Building model

	Parameters

	None –

	Returns

	None

	
initialize(state_args_1=None, state_args_2=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06}, duty=None)[source]

	Heat exchanger initialization method.

	Parameters

	
	state_args_1 – a dict of arguments to be passed to the property
initialization for the hot side (see documentation of the specific
property package) (default = {}).

	state_args_2 – a dict of arguments to be passed to the property
initialization for the cold side (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	duty – an initial guess for the amount of heat transfered. This
should be a tuple in the form (value, units), (default
= (1000 J/s))

	Returns

	None

Callbacks

A selection of functions for constructing the delta_temperature variable or
expression are provided in the idaes.generic_models.unit_models.heat_exchanger module.
The user may also provide their own function. These callbacks should all take
one argument (the HeatExchanger block). With the block argument, the function
can add any additional variables, constraints, and expressions needed. The only
requirement is that either a variable or expression called delta_temperature
must be added to the block.

Defined Callbacks for the delta_temperature_callback Option

These callbacks provide expressions for the temperature difference used in the
heat transfer equations.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_lmtd_callback(b)[source]

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using log-mean temperature
difference (LMTD). It can be supplied to “delta_temperature_callback”
HeatExchanger configuration option.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_amtd_callback(b)[source]

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using arithmetic-mean
temperature difference (AMTD). It can be supplied to
“delta_temperature_callback” HeatExchanger configuration option.

	
idaes.generic_models.unit_models.heat_exchanger.delta_temperature_underwood_callback(b)[source]

	This is a callback for a temperature difference expression to calculate
\(\Delta T\) in the heat exchanger model using log-mean temperature
difference (LMTD) approximation given by Underwood (1970). It can be
supplied to “delta_temperature_callback” HeatExchanger configuration option.
This uses a cube root function that works with negative numbers returning
the real negative root. This should always evaluate successfully.

 Heat Exchangers (1D)

Heat Exchangers (1D)

Heat Exchanger models represents a unit operation with two material streams which exchange heat. The IDAES 1-D Heat Exchanger model is used for detailed modeling of heat exchanger units with variations in one spatial dimension. For a simpler representation of a heat exchanger unit see Heat Exchanger (0-D).

Degrees of Freedom

1-D Heat Exchangers generally have 7 degrees of freedom.

Typical fixed variables are:

	shell length and diameter,

	tube length and diameter,

	number of tubes,

	heat transfer coefficients (at all spatial points) for both shell and tube sides.

Model Structure

The core 1-D Heat Exchanger Model unit model consists of two ControlVolume1DBlock Blocks (named shell and tube), each with one Inlet Port (named shell_inlet and tube_inlet) and one Outlet Port (named shell_outlet and tube_outlet).

Construction Arguments

1-D Heat Exchanger units have construction arguments specific to the shell side, tube side and for the unit as a whole.

Arguments that are applicable to the heat exchanger unit are as follows:

	flow_type - indicates the flow arrangement within the unit to be modeled. Options are:

	‘co-current’ - (default) shell and tube both flow in the same direction (from x=0 to x=1)

	‘counter-current’ - shell and tube flow in opposite directions (shell from x=0 to x=1 and tube from x=1 to x=0).

	finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 20). This is used for both shell and tube side domains.

	collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default = 5, collocation methods only). This is used for both shell and tube side domains.

	
	has_wall_conduction - option to enable a model for heat conduction across the tube wall:
	
	‘none’ - 0D wall model

	‘1D’ - 1D heat conduction equation along the thickness of the tube wall

	‘2D’ - 2D heat conduction equation along the length and thickness of the tube wall

Arguments that are applicable to the shell side:

	property_package - property package to use when constructing shell side Property Blocks (default = ‘use_parent_value’). This is provided as a Physical Parameter Block by the Flowsheet when creating the model. If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the shell side Property Blocks when they are created.

	transformation_method - argument to specify the DAE transformation method for the shell side; should be compatible with the Pyomo DAE TransformationFactory

	transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method; should be compatible with the Pyomo DAE TransformationFactory

Arguments that are applicable to the tube side:

	property_package - property package to use when constructing tube side Property Blocks (default = ‘use_parent_value’). This is provided as a Property Parameter Block by the Flowsheet when creating the model. If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the tube side Property Blocks when they are created.

	transformation_method - argument to specify the DAE transformation method for the tube side; should be compatible with the Pyomo DAE TransformationFactory

	transformation_scheme - argument to specify the scheme to use for the selected DAE transformation method; should be compatible with the Pyomo DAE TransformationFactory

Additionally, 1-D Heat Exchanger units have the following construction arguments which are passed to the ControlVolume1DBlock Block for determining which terms to construct in the balance equations for the shell and tube side.

	Argument

	Default Value

	dynamic

	useDefault

	has_holdup

	False

	material_balance_type

	‘componentTotal’

	energy_balance_type

	‘enthalpyTotal’

	momentum_balance_type

	‘pressureTotal’

	has_phase_equilibrium

	False

	has_heat_transfer

	True

	has_pressure_change

	False

Additional Constraints

1-D Heat Exchanger models write the following additional Constraints to describe the heat transfer between the two sides of the heat exchanger. Firstly, the shell- and tube-side heat transfer is calculated as:

\[Q_{shell,t,x} = - N_{tubes} \times (\pi \times U_{shell,t,x} \times D_{tube,outer} \times (T_{shell,t,x}-T_{wall,t,x}))\]

where \(Q_{shell,t,x}\) is the shell-side heat duty at point \(x\) and time \(t\), \(N_{tubes}\) \(D_{tube}\) are the number of and diameter of the tubes in the heat exchanger, \(U_{shell,t,x}\) is the shell-side heat transfer coefficient, and \(T_{shell,t,x}\) and \(T_{wall,t,x}\) are the shell-side and tube wall temperatures respectively.

\[Q_{tube,t,x} = N_{tubes} \times (\pi \times U_{tube,t,x} \times D_{tube,inner} \times (T_{wall,t,x}-T_{tube,t,x}))\]

where \(Q_{tube,t,x}\) is the tube-side heat duty at point \(x\) and time \(t\), \(U_{tube,t,x}\) is the tube-side heat transfer coefficient and \(T_{tube,t,x}\) is the tube-side temperature.

If a OD wall model is used for the tube wall conduction, the following constraint is implemented to connect the heat terms on the shell and tube side:

\[N_{tubes} \times Q_{tube,t,x} = - Q_{shell,t,x}\]

Finally, the following Constraints are written to describe the unit geometry:

\[4 \times A_{tube} = \pi \times D_{tube}^2\]

\[4 \times A_{shell} = \pi \times (D_{shell}^2 - N_{tubes} \times D_{tube}^2)\]

where \(A_{shell}\) and \(A_{tube}\) are the shell and tube areas respectively and \(D_{shell}\) and \(D_{tube}\) are the shell and tube diameters.

Variables

1-D Heat Exchanger units add the following additional Variables beyond those created by the ControlVolume1DBlock Block.

	Variable

	Name

	Notes

	\(L_{shell}\)

	shell_length

	Reference to shell.length

	\(A_{shell}\)

	shell_area

	Reference to shell.area

	\(D_{shell}\)

	d_shell

	

	\(L_{tube}\)

	tube_length

	Reference to tube.length

	\(A_{tube}\)

	tube_area

	Reference to tube.area

	\(D_{tube}\)

	d_tube

	

	\(N_{tubes}\)

	N_tubes

	

	\(T_{wall,t,x}\)

	temperature_wall

	

	\(U_{shell,t,x}\)

	shell_heat_transfer_coefficient

	

	\(U_{tube,t,x}\)

	tube_heat_transfer_coefficient

	

HeatExchanger1dClass

	
class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1D(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	shell_side
	shell side config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_phase_equilibrium
	Argument to enable phase equilibrium on the shell
side. - True - include phase equilibrium term - False
- do not include phase equilibrium term

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	transformation_method
	Discretization method to use for DAE transformation.
See Pyomo documentation for supported transformations.

	transformation_scheme
	Discretization scheme to use when transformating
domain. See Pyomo documentation for supported schemes.

	tube_side
	tube side config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	has_phase_equilibrium
	Argument to enable phase equilibrium on the shell
side. - True - include phase equilibrium term - False
- do not include phase equilibrium term

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	transformation_method
	Discretization method to use for DAE transformation.
See Pyomo documentation for supported transformations.

	transformation_scheme
	Discretization scheme to use when transformating
domain. See Pyomo documentation for supported schemes.

	finite_elements
	Number of finite elements to use when discretizing length
domain (default=20)

	collocation_points
	Number of collocation points to use per finite element
when discretizing length domain (default=3)

	flow_type
	Flow configuration of heat exchanger -
HeatExchangerFlowPattern.cocurrent: shell and tube flows
from 0 to 1 (default) -
HeatExchangerFlowPattern.countercurrent: shell side flows
from 0 to 1 tube side flows from 1 to 0

	has_wall_conduction
	Argument to enable type of wall heat conduction model. -
WallConductionType.zero_dimensional - 0D wall model
(default), - WallConductionType.one_dimensional - 1D wall
model along the thickness of the tube, -
WallConductionType.two_dimensional - 2D wall model along
the lenghth and thickness of the tube

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchanger1D) New instance

HeatExchanger1dDataClass

	
class idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData(component)[source]

	Standard Heat Exchanger 1D Unit Model Class.

	
build()[source]

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

	
initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	Initialization routine for the unit (default solver ipopt).

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Mixer

Mixer

The IDAES Mixer unit model represents operations where multiple streams of material are combined into a single flow. The Mixer class can be used to create either a stand-alone mixer unit, or as part of a unit model where multiple streams need to be mixed.

Degrees of Freedom

Mixer units have zero degrees of freedom.

Model Structure

The IDAES Mixer unit model does not use ControlVolumes, and instead writes a set of material, energy and momentum balances to combine the inlet streams into a single mixed stream. Mixer models have a user-defined number of inlet Ports (by default named inlet_1, inlet_2, etc.) and one outlet Port (named outlet).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation by linking multiple inlet streams to a single existing StateBlock.

Variables

Mixer units have the following variables (\(i\) indicates index by inlet):

	Variable Name

	Symbol

	Notes

	phase_equilibrium_generation

	\(X_{eq, t, r}\)

	Only if has_phase_equilibrium = True, Generation term for phase equilibrium

	minimum_pressure

	\(P_{min, t, i}\)

	Only if momentum_mixing_type = MomemntumMixingType.minimize

Parameters

Mixer units have the following parameters:

	Variable Name

	Symbol

	Notes

	eps_pressure

	\(\epsilon\)

	Only if momentum_mixing_type = MomemntumMixingType.minimize, smooth minimum parameter

Constraints

The constraints written by the Mixer model depend upon the construction arguments chosen.

If material_mixing_type is extensive:

	If material_balance_type is componentPhase:

material_mixing_equations(t, p, j):

\[0 = \sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}}\]

	If material_balance_type is componentTotal:

material_mixing_equations(t, j):

\[0 = \sum_p{(\sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}})}\]

	If material_balance_type is total:

material_mixing_equations(t):

\[0 = \sum_p{\sum_j{(\sum_i{F_{in, i, p, j}} - F_{out, p, j} + \sum_r {n_{r, p, j} \times X_{eq, t, r}})}}\]

where \(n_{r, p, j}\) is the stoichiometric coefficient of component \(j\) in phase \(p\) in reaction \(r\).

If ‘energy_mixing_type` is extensive:

enthalpy_mixing_equations(t):

\[0 = \sum_i{\sum_p{H_{in, i, p}}} - \sum_p{H_{out, p}}\]

If ‘momentum_mixing_type` is minimize, a series of smooth minimum operations are performed:

minimum_pressure_constraint(t, i):

For the first inlet:

\[P_{min, t, i} = P_{t, i}\]

Otherwise:

\[P_{min, t, i} = smin(P_{min, t, i-1}, P_{t, i}, eps)\]

Here, \(P_{t, i}\) is the pressure in inlet \(i\) at time \(t\), \(P_{min, t, i}\) is the minimum pressure in all inlets up to inlet \(i\), and \(smin\) is the smooth minimum operator (see IDAES Utility Function documentation).

The minimum pressure in all inlets is then:

mixture_pressure(t):

\[P_{mix, t} = P_{min, t, i=last}\]

If momentum_mixing_type is equality, the pressure in all inlets and the outlet are equated.

Note

This may result in an over-specified problem if the user is not careful.

pressure_equality_constraints(t, i):

\[P_{mix, t} = P_{t, i}\]

Often the minimum inlet pressure constraint is useful for sequential modular type initialization, but the equal pressure constants are required for pressure-driven flow models. In these cases it may be convenient to use the minimum pressure constraint for some initialization steps, them deactivate it and use the equal pressure constraints. The momentum_mixing_type is minimum_and_equality this will create the constraints for both with the minimum pressure constraint being active.

The mixture_pressure(t) and pressure_equality_constraints(t, i) can be directly activated and deactivated, but only one set of constraints should be active at a time. The use_minimum_inlet_pressure_constraint() and use_equal_pressure_constraint() methods are also provided to switch between constant sets.

Mixer Class

	
class idaes.generic_models.unit_models.mixer.Mixer(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Mixer blocks are always steady-state.

	has_holdup
	Mixer blocks do not contain holdup, thus this must be
False.

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	inlet_list
	A list containing names of inlets, default - None.
Valid values: { None - use num_inlets argument,
list - a list of names to use for inlets.}

	num_inlets
	Argument indicating number (int) of inlets to construct,
not used if inlet_list arg is provided, default -
None. Valid values: { None - use inlet_list arg
instead, or default to 2 if neither argument provided,
int - number of inlets to create (will be named with
sequential integers from 1 to num_inlets).}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	has_phase_equilibrium
	Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream, default -
False. Valid values: { True - calculate phase
equilibrium in mixed stream, False - do not calculate
equilibrium in mixed stream.}

	energy_mixing_type
	Argument indicating what method to use when mixing energy
flows of incoming streams, default -
MixingType.extensive. Valid values: {
MixingType.none - do not include energy mixing
equations, MixingType.extensive - mix total enthalpy
flows of each phase.}

	momentum_mixing_type
	Argument indicating what method to use when mixing
momentum/ pressure of incoming streams, default -
MomentumMixingType.minimize. Valid values: {
MomentumMixingType.none - do not include momentum
mixing equations, MomentumMixingType.minimize - mixed
stream has pressure equal to the minimimum pressure of the
incoming streams (uses smoothMin operator),
MomentumMixingType.equality - enforces equality of
pressure in mixed and all incoming streams.,
MomentumMixingType.minimize_and_equality - add
constraints for pressure equal to the minimum pressure of
the inlets and constraints for equality of pressure in
mixed and all incoming streams. When the model is
initially built, the equality constraints are deactivated.
This option is useful for switching between flow and
pressure driven simulations.}

	mixed_state_block
	An existing state block to use as the outlet stream from
the Mixer block, default - None. Valid values: {
None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the destination for
the mixed stream.}

	construct_ports
	Argument indicating whether model should construct Port
objects linked to all inlet states and the mixed state,
default - True. Valid values: { True -
construct Ports for all states, False - do not
construct Ports.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Mixer) New instance

MixerData Class

	
class idaes.generic_models.unit_models.mixer.MixerData(component)[source]

	This is a general purpose model for a Mixer block with the IDAES modeling
framework. This block can be used either as a stand-alone Mixer unit
operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the incoming
streams, then writes a set of phase-component material balances, an
overall enthalpy balance and a momentum balance (2 options) linked to a
mixed-state StateBlock. The mixed-state StateBlock can either be specified
by the user (allowing use as a sub-model), or created by the Mixer.

When being used as a sub-model, Mixer should only be used when a set
of new StateBlocks are required for the streams to be mixed. It should not
be used to mix streams from mutiple ControlVolumes in a single unit model -
in these cases the unit model developer should write their own mixing
equations.

	
add_energy_mixing_equations(inlet_blocks, mixed_block)[source]

	Add energy mixing equations (total enthalpy balance).

	
add_inlet_state_blocks(inlet_list)[source]

	Construct StateBlocks for all inlet streams.

	Parameters

	of strings to use as StateBlock names (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	Returns

	list of StateBlocks

	
add_material_mixing_equations(inlet_blocks, mixed_block, mb_type)[source]

	Add material mixing equations.

	
add_mixed_state_block()[source]

	Constructs StateBlock to represent mixed stream.

	Returns

	New StateBlock object

	
add_port_objects(inlet_list, inlet_blocks, mixed_block)[source]

	Adds Port objects if required.

	Parameters

	
	list of inlet StateBlock objects (a) –

	mixed state StateBlock object (a) –

	Returns

	None

	
add_pressure_equality_equations(inlet_blocks, mixed_block)[source]

	Add pressure equality equations. Note that this writes a number of
constraints equal to the number of inlets, enforcing equality between
all inlets and the mixed stream.

	
add_pressure_minimization_equations(inlet_blocks, mixed_block)[source]

	Add pressure minimization equations. This is done by sequential
comparisons of each inlet to the minimum pressure so far, using
the IDAES smooth minimum fuction.

	
build()[source]

	General build method for MixerData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
create_inlet_list()[source]

	Create list of inlet stream names based on config arguments.

	Returns

	list of strings

	
get_mixed_state_block()[source]

	Validates StateBlock provided in user arguments for mixed stream.

	Returns

	The user-provided StateBlock or an Exception

	
initialize(outlvl=6, optarg={}, solver='ipopt', hold_state=False)[source]

	Initialization routine for mixer (default solver ipopt)

	Keyword Arguments

	
	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - False. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()[source]

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
release_state(flags, outlvl=0)[source]

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

	
use_equal_pressure_constraint()[source]

	Deactivate the mixer pressure = mimimum inlet pressure constraint
and activate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

	
use_minimum_inlet_pressure_constraint()[source]

	Activate the mixer pressure = mimimum inlet pressure constraint and
deactivate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.

 Plug Flow Reactor

Plug Flow Reactor

The IDAES Plug Flow Reactor (PFR) model represents a unit operation where a material stream passes through a linear reactor vessel whilst undergoing some chemical reaction(s). This model requires modeling the system in one spatial dimension.

Degrees of Freedom

PFRs generally have at least 2 degrees of freedom.

Typical fixed variables are:

	2 of reactor length, area and volume.

Model Structure

The core PFR unit model consists of a single ControlVolume1DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

PFR units add the following additional Variables:

	Variable

	Name

	Notes

	\(L\)

	length

	Reference to control_volume.length

	\(A\)

	area

	Reference to control_volume.area

	\(V\)

	volume

	Reference to control_volume.volume

	\(Q_{t,x}\)

	heat

	Only if has_heat_transfer = True, reference to holdup.heat

	\(\Delta P_{t,x}\)

	deltaP

	Only if has_pressure_change = True, reference to holdup.deltaP

Constraints

PFR units write the following additional Constraints at all points in the spatial domain:

\[X_{t,x,r} = A \times r_{t,x,r}\]

where \(X_{t,x,r}\) is the extent of reaction of reaction \(r\) at point \(x\) and time \(t\), \(A\) is the cross-sectional area of the reactor and \(r_{t,r}\) is the volumetric rate of reaction of reaction \(r\) at point \(x\) and time \(t\) (from the outlet StateBlock).

PFR Class

	
class idaes.generic_models.unit_models.plug_flow_reactor.PFR(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium reaction
terms.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_heat_of_reaction
	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	length_domain_set
	A list of values to be used when constructing the length
domain of the reactor. Point must lie between 0.0 and 1.0,
default - [0.0, 1.0]. Valid values: { a list of
floats}

	transformation_method
	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory, default
- “dae.finite_difference”.

	transformation_scheme
	Scheme to use when transformating domain. See Pyomo
documentation for supported schemes, default -
“BACKWARD”.

	finite_elements
	Number of finite elements to use when transforming length
domain, default - 20.

	collocation_points
	Number of collocation points to use when transforming
length domain, default - 3.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PFR) New instance

PFRData Class

	
class idaes.generic_models.unit_models.plug_flow_reactor.PFRData(component)[source]

	Standard Plug Flow Reactor Unit Model Class

	
build()[source]

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

 Pressure Changer

Pressure Changer

The IDAES Pressure Changer model represents a unit operation with a single stream of material which undergoes a change in pressure due to the application of a work. The Pressure Changer model contains support for a number of different thermodynamic assumptions regarding the working fluid.

Degrees of Freedom

Pressure Changer units generally have one or more degrees of freedom, depending on the thermodynamic assumption used.

Typical fixed variables are:

	outlet pressure, \(P_{ratio}\) or \(\Delta P\),

	unit efficiency (isentropic or pump assumption).

Model Structure

The core Pressure Changer unit model consists of a single ControlVolume0D (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet). Additionally, if an isentropic pressure changer is used, the unit model contains an additional StateBlock named properties_isentropic at the unit model level.

Variables

Pressure Changers contain the following Variables (not including those contained within the control volume Block):

	Variable

	Name

	Notes

	\(P_{ratio}\)

	ratioP

	

	\(V_t\)

	volume

	Only if has_rate_reactions = True, reference to control_volume.rate_reaction_extent

	\(W_{mechanical,t}\)

	work_mechanical

	Reference to control_volume.work

	\(W_{fluid,t}\)

	work_fluid

	Pump assumption only

	\(\eta_{pump,t}\)

	efficiency_pump

	Pump assumption only

	\(W_{isentropic,t}\)

	work_isentropic

	Isentropic assumption only

	\(\eta_{isentropic,t}\)

	efficiency_isentropic

	Isentropic assumption only

Isentropic Pressure Changers also have an additional Property Block named properties_isentropic (attached to the Unit Model).

Constraints

In addition to the Constraints written by the Control Volume block, Pressure Changer writes additional Constraints which depend on the thermodynamic assumption chosen. All Pressure Changers add the following Constraint to calculate the pressure ratio:

\[P_{ratio,t} \times P_{in,t} = P_{out,t}\]

Isothermal Assumption

The isothermal assumption writes one additional Constraint:

\[T_{out} = T_{in}\]

Adiabatic Assumption

The isothermal assumption writes one additional Constraint:

\[H_{out} = H_{in}\]

Isentropic Assumption

The isentropic assumption creates an additional set of Property Blocks (indexed by time) for the isentropic fluid calculations (named properties_isentropic). This requires a set of balance equations relating the inlet state to the isentropic conditions, which are shown below:

\[F_{in,t,p,j} = F_{isentropic,t,p,j}\]

\[s_{in,t} = s_{isentropic,t}\]

\[P_{in,t} \times P_{ratio,t} = P_{isentropic,t}\]

where \(F_{t,p,j}\) is the flow of component \(j\) in phase \(p\) at time \(t\) and \(s\) is the specific entropy of the fluid at time \(t\).

Next, the isentropic work is calculated as follows:

\[W_{isentropic,t} = \sum_p{H_{isentropic,t,p}} - \sum_p{H_{in,t,p}}\]

where \(H_{t,p}\) is the total energy flow of phase \(p\) at time \(t\). Finally, a constraint which relates the fluid work to the actual mechanical work via an efficiency term \(\eta\).

If compressor is True, \(W_{isentropic,t} = W_{mechanical,t} \times \eta_t\)

If compressor is False, \(W_{isentropic,t} \times \eta_t = W_{mechanical,t}\)

Pump (Incompressible Fluid) Assumption

The incompressible fluid assumption writes two additional constraints. Firstly, a Constraint is written which relates fluid work to the pressure change of the fluid.

\[W_{fluid,t} = (P_{out,t}-P_{in,t})\times F_{vol,t}\]

where \(F_{vol,t}\) is the total volumetric flowrate of material at time \(t\) (from the outlet Property Block). Secondly, a constraint which relates the fluid work to the actual mechanical work via an efficiency term \(\eta\).

If compressor is True, \(W_{fluid,t} = W_{mechanical,t} \times \eta_t\)

If compressor is False, \(W_{fluid,t} \times \eta_t = W_{mechanical,t}\)

PressureChanger Class

	
class idaes.generic_models.unit_models.pressure_changer.PressureChanger(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	compressor
	Indicates whether this unit should be considered a
compressor (True (default), pressure increase) or an
expander (False, pressure decrease).

	thermodynamic_assumption
	Flag to set the thermodynamic assumption to use for the
unit. - ThermodynamicAssumption.isothermal (default) -
ThermodynamicAssumption.isentropic -
ThermodynamicAssumption.pump -
ThermodynamicAssumption.adiabatic

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(PressureChanger) New instance

PressureChangerData Class

	
class idaes.generic_models.unit_models.pressure_changer.PressureChangerData(component)[source]

	Standard Compressor/Expander Unit Model Class

	
add_adiabatic()[source]

	Add constraints for adiabatic assumption.

	Parameters

	None –

	Returns

	None

	
add_isentropic()[source]

	Add constraints for isentropic assumption.

	Parameters

	None –

	Returns

	None

	
add_isothermal()[source]

	Add constraints for isothermal assumption.

	Parameters

	None –

	Returns

	None

	
add_pump()[source]

	Add constraints for the incompressible fluid assumption

	Parameters

	None –

	Returns

	None

	
build()[source]

	
	Parameters

	None –

	Returns

	None

	
init_isentropic(state_args, outlvl, solver, optarg)[source]

	Initialization routine for unit (default solver ipopt)

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
initialize(state_args=None, routine=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	General wrapper for pressure changer initialization routines

	Keyword Arguments

	
	routine – str stating which initialization routine to execute
* None - use routine matching thermodynamic_assumption
* ‘isentropic’ - use isentropic initialization routine
* ‘isothermal’ - use isothermal initialization routine

	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()[source]

	Check that pressure change matches with compressor argument (i.e. if
compressor = True, pressure should increase or work should be positive)

	Parameters

	None –

	Returns

	None

 Product Block

Product Block

Product Blocks are used to represent sinks of material in Flowsheets. These can be used as a conventient way to mark the final destination of a material stream and to view the state of that material.

Degrees of Freedom

Product blocks generally have zero degrees of freedom.

Model Structure

Product Blocks consists of a single StateBlock (named properties), each with one Inlet Port (named inlet). Product Blocks also contain References to the state variables defined within the StateBlock

Additional Constraints

Product Blocks write no additional constraints to the model.

Variables

Product blocks add no additional Variables.

Product Class

	
class idaes.generic_models.unit_models.product.Product(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-
state.

	has_holdup
	Product blocks do not contain holdup, thus this must be
False.

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Product) New instance

ProductData Class

	
class idaes.generic_models.unit_models.product.ProductData(component)[source]

	Standard Product Block Class

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	This method calls the initialization method of the state block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Pump

Pump

The Pump model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be True,
and the default “thermodynamic_assumption” is “pump.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Pump model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Pump
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Pump(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(100)
m.fs.unit.inlet.enth_mol[0].fix(2000)
m.fs.unit.inlet.pressure[0].fix(101325)

m.fs.unit.deltaP.fix(100000)
m.fs.unit.efficiency_pump.fix(0.8)

 Separator

Separator

The IDAES Separator unit model represents operations where a single stream is split into multiple flows. The Separator model supports separation using split fractions, or by ideal separation of flows. The Separator class can be used to create either a stand-alone separator unit, or as part of a unit model where a flow needs to be separated.

Degrees of Freedom

Separator units have a number of degrees of freedom based on the separation type chosen.

	If split_basis = ‘phaseFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases\)

	If split_basis = ‘componentFlow’, degrees of freedom are generally \((no. outlets-1) \times no. components\)

	If split_basis = ‘phaseComponentFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases \times no. components\)

	If split_basis = ‘totalFlow’, degrees of freedom are generally \((no. outlets-1) \times no. phases \times no. components\)

Typical fixed variables are:

	split fractions.

Model Structure

The IDAES Separator unit model does not use ControlVolumes, and instead writes a set of material, energy and momentum balances to split the inlet stream into a number of outlet streams. Separator models have a single inlet Port (named inlet) and a user-defined number of outlet Ports (by default named outlet_1, outlet_2, etc.).

Mixed State Block

If a mixed state block is provided in the construction arguments, the Mixer model will use this as the StateBlock for the mixed stream in the resulting balance equations. This allows a Mixer unit to be used as part of a larger unit operation by linking to an existing StateBlock.

Ideal Separation

The IDAES Separator model supports ideal separations, where all of a given subset of the mixed stream is sent to a single outlet (i.e. split fractions are equal to zero or one). In these cases, no Constraints are necessary for performing the separation, as the mixed stream states can be directly partitioned to the outlets.

Ideal separations will not work for all choices of state variables, and thus will not work for all property packages. To use ideal separations, the user must provide a map of what part of the mixed flow should be partitioned to each outlet. The ideal_split_map should be a dict-like object with keys as tuples matching the split_basis argument and values indicating which outlet this subset should be partitioned to.

Variables

Separator units have the following variables (\(o\) indicates index by outlet):

	Variable Name

	Symbol

	Notes

	split_fraction

	\(\phi_{t, o, *}\)

	Indexing sets depend upon split_basis

Constraints

Separator units have the following Constraints, unless ideal_separation is True.

	If material_balance_type is componentPhase:

material_splitting_eqn(t, o, p, j):

\[F_{in, t, p, j} = \phi_{t, p, *} \times F_{t, o, p, j}\]

	If material_balance_type is componentTotal:

material_splitting_eqn(t, o, j):

\[\sum_p{F_{in, t, p, j}} = \sum_p{\phi_{t, p, *} \times F_{t, o, p, j}}\]

	If material_balance_type is total:

material_splitting_eqn(t, o):

\[\sum_p{\sum_j{F_{in, t, p, j}}} = \sum_p{\sum_j{\phi_{t, p, *} \times F_{t, o, p, j}}}\]

If energy_split_basis is equal_temperature:

temperature_equality_eqn(t, o):

\[T_{in, t} = T_{t, o}\]

If energy_split_basis is equal_molar_enthalpy:

molar_enthalpy_equality_eqn(t, o):

\[h_{in, t} = h_{t, o}\]

If energy_split_basis is enthalpy_split:

molar_enthalpy_splitting_eqn(t, o):

\[sum_p{h_{in, t, p}*sf_{t, o, p}} = sum_p{h_{t, o, p}}\]

pressure_equality_eqn(t, o):

\[P_{in, t} = P_{t, o}\]

Separator Class

	
class idaes.generic_models.unit_models.separator.Separator(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-
state.

	has_holdup
	Product blocks do not contain holdup, thus this must be
False.

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	outlet_list
	A list containing names of outlets, default - None.
Valid values: { None - use num_outlets argument,
list - a list of names to use for outlets.}

	num_outlets
	Argument indicating number (int) of outlets to construct,
not used if outlet_list arg is provided, default -
None. Valid values: { None - use outlet_list arg
instead, or default to 2 if neither argument provided,
int - number of outlets to create (will be named with
sequential integers from 1 to num_outlets).}

	split_basis
	Argument indicating basis to use for splitting mixed
stream, default - SplittingType.totalFlow. Valid
values: { SplittingType.totalFlow - split based on
total flow (split fraction indexed only by time and
outlet), SplittingType.phaseFlow - split based on
phase flows (split fraction indexed by time, outlet and
phase), SplittingType.componentFlow - split based on
component flows (split fraction indexed by time, outlet
and components), SplittingType.phaseComponentFlow -
split based on phase-component flows (split fraction
indexed by both time, outlet, phase and components).}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	has_phase_equilibrium
	Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream, default -
False. Valid values: { True - calculate phase
equilibrium in mixed stream, False - do not calculate
equilibrium in mixed stream.}

	energy_split_basis
	Argument indicating basis to use for splitting energy this
is not used for when ideal_separation == True. default
- EnergySplittingType.equal_temperature. Valid values:
{ EnergySplittingType.equal_temperature - outlet
temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar
enthalpies equal inlet,
EnergySplittingType.enthalpy_split - apply split
fractions to enthalpy flows. Does not work with component
or phase-component splitting.}

	ideal_separation
	Argument indicating whether ideal splitting should be
used. Ideal splitting assumes perfect spearation of
material, and attempts to avoid duplication of StateBlocks
by directly partitioning outlet flows to ports,
default - False. Valid values: { True - use
ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True, False - use explicit
splitting equations with split fractions.}

	ideal_split_map
	Dictionary containing information on how extensive
variables should be partitioned when using ideal splitting
(ideal_separation = True). default - None. Valid
values: { dict with keys of indexing set members and
values indicating which outlet this combination of keys
should be partitioned to. E.g. {(“Vap”, “H2”):
“outlet_1”}}

	mixed_state_block
	An existing state block to use as the source stream from
the Separator block, default - None. Valid values:
{ None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the source for the
mixed stream.}

	construct_ports
	Argument indicating whether model should construct Port
objects linked the mixed state and all outlet states,
default - True. Valid values: { True -
construct Ports for all states, False - do not
construct Ports.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Separator) New instance

SeparatorData Class

	
class idaes.generic_models.unit_models.separator.SeparatorData(component)[source]

	This is a general purpose model for a Separator block with the IDAES
modeling framework. This block can be used either as a stand-alone
Separator unit operation, or as a sub-model within another unit operation.

This model creates a number of StateBlocks to represent the outgoing
streams, then writes a set of phase-component material balances, an
overall enthalpy balance (2 options), and a momentum balance (2 options)
linked to a mixed-state StateBlock. The mixed-state StateBlock can either
be specified by the user (allowing use as a sub-model), or created by the
Separator.

When being used as a sub-model, Separator should only be used when a
set of new StateBlocks are required for the streams to be separated. It
should not be used to separate streams to go to mutiple ControlVolumes in a
single unit model - in these cases the unit model developer should write
their own splitting equations.

	
add_energy_splitting_constraints(mixed_block)[source]

	Creates constraints for splitting the energy flows - done by equating
temperatures in outlets.

	
add_inlet_port_objects(mixed_block)[source]

	Adds inlet Port object if required.

	Parameters

	mixed state StateBlock object (a) –

	Returns

	None

	
add_material_splitting_constraints(mixed_block)[source]

	Creates constraints for splitting the material flows

	
add_mixed_state_block()[source]

	Constructs StateBlock to represent mixed stream.

	Returns

	New StateBlock object

	
add_momentum_splitting_constraints(mixed_block)[source]

	Creates constraints for splitting the momentum flows - done by equating
pressures in outlets.

	
add_outlet_port_objects(outlet_list, outlet_blocks)[source]

	Adds outlet Port objects if required.

	Parameters

	list of outlet StateBlock objects (a) –

	Returns

	None

	
add_outlet_state_blocks(outlet_list)[source]

	Construct StateBlocks for all outlet streams.

	Parameters

	of strings to use as StateBlock names (list [https://docs.python.org/3/library/stdtypes.html#list]) –

	Returns

	list of StateBlocks

	
add_split_fractions(outlet_list, mixed_block)[source]

	Creates outlet Port objects and tries to partiton mixed stream flows
between these

	Parameters

	
	representing the mixed flow to be split (StateBlock) –

	list of names for outlets (a) –

	Returns

	None

	
build()[source]

	General build method for SeparatorData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
create_outlet_list()[source]

	Create list of outlet stream names based on config arguments.

	Returns

	list of strings

	
get_mixed_state_block()[source]

	Validates StateBlock provided in user arguments for mixed stream.

	Returns

	The user-provided StateBlock or an Exception

	
initialize(outlvl=0, optarg={}, state_args=None, solver='ipopt', hold_state=False)[source]

	Initialization routine for separator (default solver ipopt)

	Keyword Arguments

	
	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default=None)

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	state_args – unused, but retained for consistency with other
initialization methods

	hold_state – flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, default - False. Valid values:
True - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, False - state variables are
unfixed after initialization by calling the release_state
method.

	Returns

	If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.

	
model_check()[source]

	This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit’s model_check method.

	Parameters

	None –

	Returns

	None

	
partition_outlet_flows(mb, outlet_list)[source]

	Creates outlet Port objects and tries to partiton mixed stream flows
between these

	Parameters

	
	representing the mixed flow to be split (StateBlock) –

	list of names for outlets (a) –

	Returns

	None

	
release_state(flags, outlvl=0)[source]

	Method to release state variables fixed during initialization.

	Keyword Arguments

	
	flags – dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.

	outlvl – sets output level of logging

	Returns

	None

 StateJunction Block

StateJunction Block

The IDAES StateJunction block represents a pass-through unit or simple pipe with no holdup. The primary use for this unit is in conceptual design applications for linking Arcs to/from different process alternatives.

Degrees of Freedom

StateJunctions have no degrees of freedom.

Model Structure

A StateJunction consists of a single StateBlock with two Ports (inlet and outlet), where the state variables in the state block are simultaneously connected to both Ports.

Additional Constraints

StateJunctions write no additional constraints beyond those in the StateBlock.

Variables

StateJunctions have no additional variables.

StateJunction Class

	
class idaes.generic_models.unit_models.statejunction.StateJunction(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this unit will be dynamic or not,
default = False.

	has_holdup
	Indicates whether holdup terms should be constructed or
not. default - False. StateJunctions do not have
defined volume, thus this must be False.

	property_package
	Property parameter object used to define property state
block, default - useDefault. Valid values: {
useDefault - use default package from parent model or
flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(StateJunction) New instance

StateJunctionData Class

	
class idaes.generic_models.unit_models.statejunction.StateJunctionData(component)[source]

	Standard StateJunction Unit Model Class

	
build()[source]

	Begin building model.
:param None:

	Returns

	None

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	This method initializes the StateJunction block by calling the
initialize method on the property block.

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Stoichiometric (Yield) Reactor

Stoichiometric (Yield) Reactor

The IDAES Stoichiometric reactor model represents a unit operation where a single material stream undergoes some chemical reaction(s) subject to a set of extent or yield specifications.

Degrees of Freedom

Stoichiometric reactors generally have degrees of freedom equal to the number of reactions + 1.

Typical fixed variables are:

	reaction extents or yields (1 per reaction),

	reactor heat duty (has_heat_transfer = True only).

Model Structure

The core Stoichiometric reactor unit model consists of a single ControlVolume0DBlock (named control_volume) with one Inlet Port (named inlet) and one Outlet Port (named outlet).

Variables

Stoichiometric reactors units add the following variables:

	Variable

	Name

	Notes

	\(Q_t\)

	heat

	Only if has_heat_transfer = True, reference to control_volume.heat

	\(deltaP_t\)

	pressure change

	Only if has_pressure_change = True, reference to control_volume.deltaP

Constraints

Stoichiometric reactor units write no additional Constraints beyond those written by the control_volume Block.

StoichiometricReactor Class

	
class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactor(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_of_reaction
	Indicates whether terms for heat of reaction terms should
be constructed, default - False. Valid values: {
True - include heat of reaction terms, False -
exclude heat of reaction terms.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package, ReactionParameterBlock
- a ReactionParameterBlock object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a reaction
block(s) and used when constructing these, default -
None. Valid values: { see reaction package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(StoichiometricReactor) New instance

StoichiometricReactorData Class

	
class idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData(component)[source]

	Standard Stoichiometric Reactor Unit Model Class
This model assumes that all given reactions are irreversible, and that each
reaction has a fixed rate_reaction extent which has to be specified by the
user.

	
build()[source]

	Begin building model (pre-DAE transformation).
:param None:

	Returns

	None

 Translator Block

Translator Block

Translator blocks are used in complex flowsheets where the user desires to use different property packages for different parts of the flowsheet. In order to link two streams using different property packages, a translator block is required.

The core translator block provides a general framework for constructing Translator Blocks, however users need to add constraints to map the incoming states to the outgoing states as required by their specific application.

Degrees of Freedom

The degrees of freedom of Translator blocks depends on the property packages being used, and the user should write a sufficient number of constraints mapping inlet states to outlet states to satisfy these degrees of freedom.

Model Structure

The core Translator Block consists of two State Blocks, names properties_in and properties_out, which are linked to two Ports names inlet and outlet respectively.

Additional Constraints

The core Translator Block writes no additional constraints. Users should add constraints to their instances as required.

Variables

Translator blocks add no additional Variables.

Translator Class

	
class idaes.generic_models.unit_models.translator.Translator(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Translator blocks are always steady-state.

	has_holdup
	Translator blocks do not contain holdup.

	outlet_state_defined
	Indicates whether unit model will fully define outlet
state. If False, the outlet property package will enforce
constraints such as sum of mole fractions and phase
equilibrium. default - True. Valid values: {
True - outlet state will be fully defined, False -
outlet property package should enforce sumation and
equilibrium constraints.}

	has_phase_equilibrium
	Indicates whether outlet property package should enforce
phase equilibrium constraints. default - False.
Valid values: { True - outlet property package
should calculate phase equilibrium, False - outlet
property package should notcalculate phase equilibrium.}

	inlet_property_package
	Property parameter object used to define property
calculations for the incoming stream, default - None.
Valid values: { PhysicalParameterObject - a
PhysicalParameterBlock object.}

	inlet_property_package_args
	A ConfigBlock with arguments to be passed to the property
block associated with the incoming stream, default -
None. Valid values: { see property package for
documentation.}

	outlet_property_package
	Property parameter object used to define property
calculations for the outgoing stream, default - None.
Valid values: { PhysicalParameterObject - a
PhysicalParameterBlock object.}

	outlet_property_package_args
	A ConfigBlock with arguments to be passed to the property
block associated with the outgoing stream, default -
None. Valid values: { see property package for
documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(Translator) New instance

TranslatorData Class

	
class idaes.generic_models.unit_models.translator.TranslatorData(component)[source]

	Standard Translator Block Class

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(state_args_in={}, state_args_out={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	This method calls the initialization method of the state blocks.

	Keyword Arguments

	
	state_args_in – a dict of arguments to be passed to the inlet
property package (to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	state_args_out – a dict of arguments to be passed to the outlet
property package (to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialization routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating which solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Turbine

Turbine

The Turbine model is a
PressureChanger,
where the configuration is set so that the “compressor” option can only be False,
and the default “thermodynamic_assumption” is “isentropic.” See the
PressureChanger documentation
for details.

Example

The example below demonstrates the basic Turbine model usage:

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models import Turbine
from idaes.generic_models.properties import iapws95

m = pyo.ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.unit = Turbine(default={"property_package": m.fs.properties})

m.fs.unit.inlet.flow_mol[0].fix(1000)
m.fs.unit.inlet.enth_mol[0].fix(iapws95.htpx(T=800*pyo.units.K, P=1e7*pyo.units.Pa))
m.fs.unit.inlet.pressure[0].fix(1e7)
m.fs.unit.deltaP.fix(-2e6)
m.fs.unit.efficiency_isentropic.fix(0.9)

 Control Models

Control Models

This section contains documentation for core IDAES control models.

Contents

	Proportional-Integral-Derivative (PID) Controller

 Proportional-Integral-Derivative (PID) Controller

Proportional-Integral-Derivative (PID) Controller

The IDAES framework contains a basic PID control implementation, which is described
in this section.

Example

The following code demonstrated the creation of a PIDBlock, but for simplicity, it does
not create a dynamic process model. A full example of a dynamic process with PID control
is being prepared for the IDAES examples repository and will be referenced here once completed.

The valve opening is the controlled output variable and pressure “1” is the measured variable.
The controller output for the valve opening is restricted to be between 0 and 1. The measured
and output variables should be indexed only by time. Fortunately there is no need to create
new variables if the variables are in a property block or not indexed only by time. Pyomo’s
Reference objects can be use to create references to existing variables with the proper
indexing as shown in the example.

The calculate_initial_integral option calculates the integral error in the first time
step to match the initial controller output. This keeps the controller output from
immediately jumping to a new value. Unless the initial integral error is known, this option
should usually be True.

The controller should be added after the DAE expansion is done. There are several variables
in the controller that are usually meant to be fixed; as shown in the example, they are
gain, time_i, time_d, and setpoint. For more information about the
variables, expressions, and parameters in the PIDBlock, model see Variables and Expressions.

from idaes.generic_models.control import PIDBlock, PIDForm
from idaes.core import FlowsheetBlock
import pyomo.environ as pyo

m = pyo.ConcreteModel(name="PID Example")
m.fs = FlowsheetBlock(default={"dynamic":True, "time_set":[0,10]})

m.fs.valve_opening = pyo.Var(m.fs.time, doc="Valve opening")
m.fs.pressure = pyo.Var(m.fs.time, [1,2], doc="Pressure in unit 1 and 2")

pyo.TransformationFactory('dae.finite_difference').apply_to(
 m.fs,
 nfe=10,
 wrt=m.fs.time,
 scheme='BACKWARD',
)

m.fs.measured_variable = pyo.Reference(m.fs.pressure[:,1])

m.fs.ctrl = PIDBlock(
 default={
 "pv":m.fs.measured_variable,
 "output":m.fs.valve_opening,
 "upper":1.0,
 "lower":0.0,
 "calculate_initial_integral":True,
 "pid_form":PIDForm.velocity,
 }
)

m.fs.ctrl.gain.fix(1e-6)
m.fs.ctrl.time_i.fix(0.1)
m.fs.ctrl.time_d.fix(0.1)
m.fs.ctrl.setpoint.fix(3e5)

Controller Windup

The current PID controller model has no integral windup prevention. This will be added
to the model in the near future.

Class Documentation

	
class idaes.generic_models.control.pid_controller.PIDBlock(*args, **kwargs)

	This is a PID controller block. The PID Controller block must be added
after the DAE transformation.

	Args:
	rule (function): A rule function or None. Default rule calls build().
concrete (bool): If True, make this a toplevel model. Default - False.
ctype (str): Pyomo ctype of the block. Default - “Block”
default (dict): Default ProcessBlockData config

	Keys
	
	pv
	A Pyomo Var, Expression, or Reference for the measured
process variable. Should be indexed by time.

	output
	A Pyomo Var, Expression, or Reference for the controlled
process variable. Should be indexed by time.

	upper
	The upper limit for the controller output, default=1

	lower
	The lower limit for the controller output, default=0

	calculate_initial_integral
	Calculate the initial integral term value if true,
otherwise provide a variable err_i0, which can be fixed,
default=True

	pid_form
	Velocity or standard form

	initialize (dict): ProcessBlockData config for individual elements. Keys
	are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function): Function to take the index of a BlockData element and
	return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns:
	(PIDBlock) New instance

	
class idaes.generic_models.control.pid_controller.PIDBlockData(component)[source]

	
	
build()[source]

	Build the PID block

Variables and Expressions

	Symbol

	Name in Model

	Description

	\(v_{sp}(t)\)

	setpoint[t]

	Setpoint variable (usually fixed)

	\(v_{mv}(t)\)

	pv[t]

	Measured process variable reference

	\(u(t)\)

	output[t]

	Controller output variable reference

	\(K_p(t)\)

	gain[t]

	Controller gain (usually fixed)

	\(T_i(t)\)

	time_i[t]

	Integral time (usually fixed)

	\(T_d(t)\)

	time_d[t]

	Derivative time (usually fixed)

	\(e(t)\)

	err[t]

	Error expression (setpoint - pv)

	–

	err_d[t]

	Derivative error expression

	–

	err_i[t]

	Integral error expression (standard form)

	–

	err_d0

	Initial derivative error value (fixed)

	\(e_{integral}(0)\)

	err_i0

	Initial integral error value (fixed)

	–

	err_i_end

	Last initial integral error expression

	–

	limits["h"]

	Upper limit of output parameter

	–

	limits["l"]

	Lower limit of output parameter

	–

	smooth_eps

	Smooth min/max parameter

Formulation

There are two forms of the PID controller equation. The standard formulation
can result in equations with very large summations. In the velocity form of the
equation the controller output can be calculated based only on the previous state.

The two forms of the equations are equivalent, but the choice of form will affect
robustness and solution time. It is not necessarily clear that the velocity form
of the equation is always more numerically favorable, however it would usually be
the default choice. Both forms are provided in case the standard form works better
in some situations.

Standard Formulation

The PID controller equations are given by the following equations

\[e(t) = v_{sp}(t) - v_{mv}(t)\]

\[u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(s) \text{d}s + T_d \frac{\text{d}e(t)}{\text{d}t} \right]\]

The PID equation now must be discretized.

\[u(t_i) = K_p \left[
 e(t_i) +
 \frac{e_{integral}(0)}{T_i} + \frac{1}{T_i} \sum_{j=0}^{i-1} \Delta t_j \frac{e(t_j) + e(t_{j+1})}{2} +
 T_d \frac{e(t_i) - e(t_{i-1})}{\Delta t_{i-1}} \right]\]

Velocity Formulation

The velocity formulation of the PID equation may also be useful. The way the
equations are written in the PID model, the integral term is a summation expression
and as time increases the integral term will build up an increasing number of terms
potentially becoming very large. This potentially has two affects, increasing
round off error and computation time. The velocity formulation allows the controller
output to be calculated based on the previous output.

First the usual PID controller equation can be rearranged to solve for the integral
error.

\[\frac{1}{T_i} \int_0^t e(s) \text{d}s = \frac{u(t)}{K_p} - e(t) - T_d \frac{\text{d}e(t)}{\text{d}t}\]

The PID equation for some time (\(t + \Delta t\)) is

\[u(t + \Delta t) = K_p \left[
 e(t + \Delta t) +
 \frac{1}{T_i} \int_0^{t+\Delta t} e(s) \text{d}s +
 T_d \frac{\text{d}e(t+\Delta t)}{\text{d}t}
\right]\]

\[u(t + \Delta t) = K_p \left[
 e(t + \Delta t) +
 \frac{1}{T_i} \int_t^{t+\Delta t} e(s) \text{d}s +
 \frac{1}{T_i} \int_0^{t} e(s) \text{d}s +
 T_d \frac{\text{d}e(t+\Delta t)}{\text{d}t}
\right]\]

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{1}{T_i} \int_t^{t+\Delta t} e(s) \text{d}s +
 T_d \left(\frac{\text{d}e(t+\Delta t)}{\text{d}t} - \frac{\text{d}e(t)}{\text{d}t}\right)
\right]\]

Now we can discretize the equation using the trapezoid rule for the integral.

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{\Delta t}{T_i} \left(\frac{e(t+\Delta t) + e(t)}{2} \right) +
 T_d \left(\frac{\text{d}e(t+\Delta t)}{\text{d}t} - \frac{\text{d}e(t)}{\text{d}t}\right)
\right]\]

Since the derivative error term will require the error at the previous time step
to calculate, this form will still result in a large summation being formed since
in the model there is no derivative error variable. To avoid this problem, the
derivative error term can equivalently be replaced with the derivative of the
negative measured process variable.

\[u(t + \Delta t) = u(t) + K_p \left[
 e(t + \Delta t) - e(t) +
 \frac{\Delta t}{T_i} \left(\frac{e(t+\Delta t) + e(t)}{2} \right)+
 T_d \left(\frac{\text{d}v_{mv}(t+\Delta t)}{\text{d}t} - \frac{\text{d}v_{mv}(t)}{\text{d}t}\right)
\right]\]

Now the velocity form of the PID controller equation can be calculated at each time
point from just the state at the previous time point.

Substitution

In both the proportional and integral terms, error can be replaced with the negative
measured process variable yielding equivalent results. This substitution is provided
by the PID class and is done by default.

Output Limits

Smooth min and smooth max expressions are used to keep the controller output between
a minimum and maximum value.

 Power Generation Model Library

Power Generation Model Library

The IDAES Process Modeling Framework contains a library of models specifically developed for modeling power generation systems. These models all built off of the core IDAES modeling framework and model libraries.

	Unit Models

	Property Models

	Flowsheet Models

	Power Plant Costing Library

 Unit Models

Unit Models

	Feedwater Heater (0D)

	Feedwater Heater (Condensing Section 0D)

	Turbine (Inlet Stage)

	Turbine (Outlet Stage)

	Turbine (Stage)

	Turbine (Multistage)

	HelmValve

	BoilerHeatExchanger

	WaterWall Model

	HelmPhaseSeparator Model

	Drum Model

	Downcomer Model

	Steam Heater Model

	Boiler Fire Side Model

	Water Tank

	BoilerHeatExchanger2D

	Drum 1D Model

	Water Pipe Model

	Heat Exchanger With Three Streams

 Feedwater Heater (0D)

Feedwater Heater (0D)

The FWH0D model is a 0D feedwater heater model suitable for steady state modeling.
It is intended to be used primarily used with the
IAWPS95 property package.
The feedwater heater is split into three sections the condensing section is required while
the desuperheating and drain cooling sections are optional. There is also an optional mixer
for adding a drain stream from another feedwater heater to the condensing section. The figure
below shows the layout of the feedwater heater. All but the condensing section are optional.

[image: ../../../../_images/feedwater_heater_0D.svg]Feedwater Heater

Example

The example below shows how to setup a feedwater heater with all tree sections. The feedwater flow rate, steam conditions, heat transfer coefficients and areas are not necessarily realistic.

import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models.heat_exchanger import (delta_temperature_underwood_callback,
 delta_temperature_lmtd_callback)
from idaes.generic_models.properties import iapws95
from idaes.power_generation.unit_models import FWH0D

def make_fwh_model():
 model = pyo.ConcreteModel()
 model.fs = FlowsheetBlock(default={
 "dynamic": False,
 "default_property_package": iapws95.Iapws95ParameterBlock()})
 model.fs.properties = model.fs.config.default_property_package
 model.fs.fwh = FWH0D(default={
 "has_desuperheat":True,
 "has_drain_cooling":True,
 "has_drain_mixer":True,
 "property_package":model.fs.properties})

 model.fs.fwh.desuperheat.inlet_1.flow_mol.fix(100)
 model.fs.fwh.desuperheat.inlet_1.flow_mol.unfix()
 model.fs.fwh.desuperheat.inlet_1.pressure.fix(201325)
 model.fs.fwh.desuperheat.inlet_1.enth_mol.fix(60000)
 model.fs.fwh.drain_mix.drain.flow_mol.fix(1)
 model.fs.fwh.drain_mix.drain.pressure.fix(201325)
 model.fs.fwh.drain_mix.drain.enth_mol.fix(20000)
 model.fs.fwh.cooling.inlet_2.flow_mol.fix(400)
 model.fs.fwh.cooling.inlet_2.pressure.fix(101325)
 model.fs.fwh.cooling.inlet_2.enth_mol.fix(3000)
 model.fs.fwh.condense.area.fix(1000)
 model.fs.fwh.condense.overall_heat_transfer_coefficient.fix(100)
 model.fs.fwh.desuperheat.area.fix(1000)
 model.fs.fwh.desuperheat.overall_heat_transfer_coefficient.fix(10)
 model.fs.fwh.cooling.area.fix(1000)
 model.fs.fwh.cooling.overall_heat_transfer_coefficient.fix(10)

 model.fs.fwh.initialize()
 return(model)

create a feedwater heater model with all optional units and initialize
model = make_fwh_model()

Model Structure

The condensing section uses the
FWHCondensing0D
model to calculate a steam flow rate such that all steam is condensed in the condensing
section. This allows turbine steam extraction rates to be calculated. The other sections
are regular
HeatExchanger models.
The table below shows the unit models which make up the feedwater heater, and the option to
include or exclude them.

	Unit

	Option

	Doc

	condense

	–

	Condensing section (FWHCondensing0D)

	desuperheat

	has_desuperheat

	Desuperheating section (HeatExchanger)

	cooling

	has_drain_cooling

	Drain cooling section (HeatExchanger)

	drain_mix

	has_drain_mixer

	Mixer for steam and other FWH drain (Mixer)

Degrees of Freedom

The area and overall_heat_transfer_coefficient should be fixed or constraints should be provided to calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate (inlet_1.flow_mol), the model will have 0 degrees of freedom.

See FWH0D and FWH0DData for full Python class details.

 Feedwater Heater (Condensing Section 0D)

Feedwater Heater (Condensing Section 0D)

The condensing feedwater heater is the same as the
HeatExchanger
model with one additional constraint to calculate the inlet flow rate such that all the
entering steam is condensed. This model is suitable for steady state modeling, and is
intended to be used with the IAWPS95
property package. For dynamic modeling, the 1D feedwater heater models should be used
(not yet publicly available).

Degrees of Freedom

Usually area and overall_heat_transfer_coefficient are fixed or constraints are provided to calculate overall_heat_transfer_coefficient. If the inlets are also fixed except for the inlet steam flow rate (inlet_1.flow_mol), the model will have 0 degrees of freedom.

Variables

The variables are the same as HeatExchanger.

Constraints

In addition to the HeatExchanger constraints, there is one additional constraint to calculate the inlet steam flow such that all steam condenses. The constraint is called extraction_rate_constraint, and is defined below.

\[h_{steam, out} = h_{sat, liquid}(P)\]

Where \(h\) is molar enthalpy, and the saturated liquid enthalpy is a function of pressure.

FWHCondensing0D Class

	
class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0D(*args, **kwargs)

	Feedwater Heater Condensing Section
The feedwater heater condensing section model is a normal 0D heat exchanger
model with an added constraint to calculate the steam flow such that the outlet
of shell is a saturated liquid.

	Args:
	rule (function): A rule function or None. Default rule calls build().
concrete (bool): If True, make this a toplevel model. Default - False.
ctype (str): Pyomo ctype of the block. Default - “Block”
default (dict): Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	hot_side_name
	Hot side name, sets control volume and inlet and outlet
names

	cold_side_name
	Cold side name, sets control volume and inlet and outlet
names

	hot_side_config
	A config block used to construct the hot side control
volume. This config can be given by the hot side name
instead of hot_side_config.

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	cold_side_config
	A config block used to construct the cold side control
volume. This config can be given by the cold side name
instead of cold_side_config.

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.useDefault. Valid values: {
MaterialBalanceType.useDefault - refer to property
package for default balance type
**MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.useDefault. Valid values: {
EnergyBalanceType.useDefault - refer to property
package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy
balances for each phase,
EnergyBalanceType.energyTotal - single energy
balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should
be constructed, default = False. Valid values:
{ True - include phase equilibrium terms False
- exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid
values: { useDefault - use default package from
parent model or flowsheet, PropertyParameterObject
- a PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a
property block(s) and used when constructing these,
default - None. Valid values: { see property
package for documentation.}

	delta_temperature_callback
	Callback for for temperature difference calculations

	flow_pattern
	Heat exchanger flow pattern, default -
HeatExchangerFlowPattern.countercurrent. Valid values:
{ HeatExchangerFlowPattern.countercurrent -
countercurrent flow,
HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow,
factor times countercurrent temperature difference.}

	initialize (dict): ProcessBlockData config for individual elements. Keys
	are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function): Function to take the index of a BlockData element and
	return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns:
	(FWHCondensing0D) New instance

FWHCondensing0DData Class

	
class idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData(component)[source]

	
	
build()[source]

	Building model

	Parameters

	None –

	Returns

	None

	
initialize(*args, **kwargs)[source]

	Use the regular heat exchanger initialization, with the extraction rate
constraint deactivated; then it activates the constraint and calculates
a steam inlet flow rate.

 Turbine (Inlet Stage)

Turbine (Inlet Stage)

This is a steam power generation turbine model for the inlet stage.
The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory, units
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models.helm import TurbineInletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = HelmTurbineInletStage(default={"property_package": m.fs.properties})
hin = iapws95.htpx(T=880*units.K, P=2.4233e7*units.Pa)
set inlet
m.fs.turb.inlet[:].enth_mol.fix(hin)
m.fs.turb.inlet[:].flow_mol.fix(26000/4.0)
m.fs.turb.inlet[:].pressure.fix(2.4233e7)
m.fs.turb.eff_nozzle.fix(0.95)
m.fs.turb.blade_reaction.fix(0.9)
m.fs.turb.flow_coeff.fix(1.053/3600.0)
m.fs.turb.blade_velocity.fix(110.0)
m.fs.turb.efficiency_mech.fix(0.98)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge
pressure are fixed. There are also a few variables which are turbine parameters
and are usually fixed. See the variables section for more information.

Model Structure

The turbine inlet stage model contains one ControlVolume0DBlock block called control_volume and
inherits the PressureChanger model using the isentropic option.

Variables

The variables below are defined in the TurbineInletStage model. Additional variables
are inherited from the PressureChanger model model.

	Variable

	Symbol

	Index Sets

	Doc

	blade_reaction

	\(R\)

	None

	Blade reaction

	eff_nozzle

	\(\eta_{nozzle}\)

	None

	Nozzle efficiency

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

	flow_coeff

	\(C_{flow}\)

	None

	Turbine stage flow coefficient [kg*C^0.5/Pa/s]

	blade_velocity

	\(V_{rbl}\)

	None

	Turbine blade velocity (should be constant while running) [m/s]

	delta_enth_isentropic

	\(\Delta h_{isen}\)

	time

	Isentropic enthalpy change through stage [J/mol]

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

Expressions

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

	steam_entering_velocity

	\(V_0\)

	time

	Steam velocity entering stage [m/s]

The expression defined below provides a calculation for steam velocity entering
the stage, which is used in the efficiency calculation.

\[V_0 = 1.414\sqrt{\frac{-(1 - R)\Delta h_{isen}}{WT_{in}\eta_{nozzel}}}\]

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this
model contains two more constraints, one to estimate efficiency and one pressure-flow
relation. From the isentropic pressure changer model, these constraints eliminate the
need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

\[\eta_{isen} = 2 \frac{V_{rbl}}{V_0}\left[\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right) +
 \sqrt{\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right)^2 + R}\right]\]

The pressure-flow relation is given by:

\[\dot{m} = C_{flow}\frac{P_{in}}{\sqrt{T_{in}-273.15}}\sqrt{\frac{\gamma}{\gamma-1} \left[
 \left(\frac{P_{out}}{P_{in}}\right)^{\frac{2}{\gamma}} -
 \left(\frac{P_{out}}{P_{in}}\right)^{\frac{\gamma+1}{\gamma}} \right]}\]

Initialization

The initialization method for this model will save the current state of the model
before commencing initialization and reloads it afterwards. The state of the model
will be the same after initialization, only the initial guesses for
unfixed variables will be changed. To initialize this model, provide a starting
value for the inlet port variables. Then provide a guess for one of: discharge
pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow
coefficient that is incompatible with the given flow rate resulting in an
infeasible problem.

TurbineInletStage Class

	
class idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStage(*args, **kwargs)

	Inlet stage steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	has_work_transfer
	True if model a has work transfer term.

	has_heat_transfer
	True if model has a heat transfer term.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HelmTurbineInletStage) New instance

TurbineInletStageData Class

	
class idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStageData(component)[source]

	
	
build()[source]

	Add model equations to the unit model. This is called by a default block
construnction rule when the unit model is created.

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06}, calculate_cf=False)[source]

	Initialize the inlet turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves. This initializtion uses a
flow value guess, so some reasonable flow guess should be sepecified prior
to initializtion.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl (int [https://docs.python.org/3/library/functions.html#int]) – Amount of output (0 to 3) 0 is lowest

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

	calculate_cf (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, use the flow and pressure ratio to
calculate the flow coefficient.

 Turbine (Outlet Stage)

Turbine (Outlet Stage)

This is a steam power generation turbine model for the outlet stage. The turbine outlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example

from pyomo.environ import ConcreteModel, SolverFactory
from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models import HelmTurbineOutletStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = HelmTurbineOutletStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(47115)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e4)

m.fs.turb.initialize()

Degrees of Freedom

Usually the inlet stream, or the inlet stream minus flow rate plus discharge
pressure are fixed. There are also a few variables which are turbine parameters
and are usually fixed. See the variables section for more information.

Model Structure

The turbine outlet stage model contains one ControlVolume0DBlock block called control_volume and
inherits the PressureChanger model using the isentropic option.

Variables

The variables below are defined int the TurbineInletStage model. Additional variables
are in inherited from the PressureChanger model model.

	Variable

	Symbol

	Index Sets

	Doc

	eff_dry

	\(\eta_{dry}\)

	None

	Turbine efficiency when no liquid is present.

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

	flow_coeff

	\(C_{flow}\)

	None

	Turbine stage flow coefficient [kg*C^0.5/Pa/s]

	design_exhaust_flow_vol

	\(V_{des,exhaust}\)

	None

	Design volumetric flow out of stage [m^3/s]

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

Expressions

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

	tel

	\(\text{TEL}\)

	time

	Total exhaust loss [J/mol]

The expression defined below provides a total exhaust loss.

\[\text{TEL} = 1\times 10^6*\left(-0.0035f^5 + 0.022f^4 - 0.0542f^3 + 0.0638f^2 - 0.0328f + 0.0064\right)\]

Where \(f\) is the total volumetric flow of the exhaust divided by the design flow.

Constraints

In addition to the constraints inherited from the PressureChanger model with the isentropic options, this
model contains two more constraints, one to estimate efficiency and one pressure-flow
relation. From the isentropic pressure changer model, these constraints eliminate the
need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

\[\eta_{isen} = \eta_{dry}x\left(1 - 0.65(1 - x)\right)*\left(1 + \frac{\text{TEL}}{\Delta h_{isen}}\right)\]

Where \(x\) is the steam quality (vapor fraction).

The pressure-flow relation is given by the Stodola Equation:

\[\dot{m}\sqrt{Tin - 273.15} = C_{flow}P_{in}\sqrt{1 - Pr^2}\]

Initialization

The initialization method for this model will save the current state of the model
before commencing initialization and reloads it afterwards. The state of the model
will be the same after initialization, only the initial guesses for
unfixed variables will be changed. To initialize this model, provide a starting
value for the inlet port variables. Then provide a guess for one of: discharge
pressure, deltaP, or ratioP.

The model should initialize readily, but it is possible to provide a flow
coefficient that is incompatible with the given flow rate resulting in an
infeasible problem.

TurbineOutletStage Class

	
class idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStage(*args, **kwargs)

	Outlet stage steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	has_work_transfer
	True if model a has work transfer term.

	has_heat_transfer
	True if model has a heat transfer term.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HelmTurbineOutletStage) New instance

TurbineOutletStageData Class

	
class idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStageData(component)[source]

	
	
build()[source]

	Add model equations to the unit model. This is called by a default block
construnction rule when the unit model is created.

	
initialize(state_args={}, outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06}, calculate_cf=True)[source]

	Initialize the outlet turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	state_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initial state for property initialization

	outlvl – sets output level of initialization routine

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 Turbine (Stage)

Turbine (Stage)

This is a steam power generation turbine model for the stages between the inlet
and outlet.
This model inherits the PressureChanger model with the isentropic options. The
initialization scheme is the same as the TurbineInletStage model.

Example

from pyomo.environ import ConcreteModel, SolverFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models.helm import HelmTurbineStage
from idaes.generic_models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = HelmTurbineStage(default={"property_package": m.fs.properties})
set inlet
m.fs.turb.inlet[:].enth_mol.fix(70000)
m.fs.turb.inlet[:].flow_mol.fix(15000)
m.fs.turb.inlet[:].pressure.fix(8e6)
m.fs.turb.efficiency_isentropic[:].fix(0.8)
m.fs.turb.ratioP[:].fix(0.7)
m.fs.turb.initialize()

Variables

This model adds a variable to the base PressureChanger model to account
for mechanical efficiency .

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_mech

	\(\eta_{mech}\)

	None

	Mechanical Efficiency (accounts for losses in bearings…)

The table below shows important variables inherited from the pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	efficiency_isentropic

	\(\eta_{isen}\)

	time

	Isentropic efficiency

	deltaP

	\(\Delta P\)

	time

	Pressure change (\(P_{out} - P_{in}\)) [Pa]

	ratioP

	\(P_{ratio}\)

	time

	Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

\(\eta_{isentropic,t}\) efficiency_isentropic Isentropic assumption only

Expressions

This model provides two expressions that are not available in the
pressure changer model.

	Variable

	Symbol

	Index Sets

	Doc

	power_thermo

	\(\dot{w}_{thermo}\)

	time

	Turbine stage power output not including mechanical loss [W]

	power_shaft

	\(\dot{w}_{shaft}\)

	time

	Turbine stage power output including mechanical loss (bearings…) [W]

Constraints

There are no additional constraints.

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in
a function to ensure the state after initialization is the same as before initialization.
The arguments to the initialization method are the same as PressureChanger.

TurbineStage Class

	
class idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStage(*args, **kwargs)

	Basic steam turbine model

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	has_work_transfer
	True if model a has work transfer term.

	has_heat_transfer
	True if model has a heat transfer term.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HelmTurbineStage) New instance

TurbineStageData Class

	
class idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStageData(component)[source]

	
	
build()[source]

	Add model equations to the unit model. This is called by a default block
construnction rule when the unit model is created.

	
initialize(outlvl=0, solver='ipopt', optarg={'max_iter': 30, 'tol': 1e-06})[source]

	Initialize the turbine stage model. This deactivates the
specialized constraints, then does the isentropic turbine initialization,
then reactivates the constraints and solves.

	Parameters

	
	outlvl – sets output level of initialization routine

	solver (str [https://docs.python.org/3/library/stdtypes.html#str]) – Solver to use for initialization

	optarg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Solver arguments dictionary

 Turbine (Multistage)

Turbine (Multistage)

This is a composite model for a power plant turbine with high, intermediate and
low pressure sections. This model contains an inlet stage with throttle valves
for partial arc admission and optional splitters for steam extraction.

The figure below shows the layout of the mutistage turbine model. Optional splitters
provide for steam extraction. The splitters can have two or more outlets (one being
the main steam outlet). The streams that connect one stage to the next can also be
omitted. This allows for connecting additional unit models (usually reheaters) between
stages.

[image: ../../../../_images/turbine_multistage.svg]MultiStage Turbine Model

Example

This example sets up a turbine multistage turbine model similar to what could be
found in a power plant steam cycle. There are 7 high-pressure stages, 14
intermediate-pressure stages, and 11 low-pressure stages. Steam extractions
are provided after stages hp4, hp7, ip5, ip14, lp4, lp7, lp9, lp11. The
extraction at ip14 uses a splitter with three outlets, one for the main steam,
one for the boiler feed pump, and one for a feedwater heater. There is a
disconnection between the HP and IP sections so that steam can be sent to a
reheater. In this example, a heater block is a stand-in for a reheater model.

from pyomo.environ import (ConcreteModel, SolverFactory, TransformationFactory,
 Constraint, value)
from pyomo.network import Arc

from idaes.core import FlowsheetBlock
from idaes.unit_models import Heater
from idaes.power_generation.unit_models.helm import HelmTurbineMultistage
from idaes.generic_models.properties import iapws95

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = HelmTurbineMultistage(default={
 "property_package": m.fs.properties,
 "num_hp": 7,
 "num_ip": 14,
 "num_lp": 11,
 "hp_split_locations": [4,7],
 "ip_split_locations": [5, 14],
 "lp_split_locations": [4,7,9,11],
 "hp_disconnect": [7], # 7 is last stage in hp so disconnect hp from ip
 "ip_split_num_outlets": {14:3}})
Add reheater (for example using a simple heater block)
m.fs.reheat = Heater(default={"property_package": m.fs.properties})
Add Arcs (streams) to connect the HP and IP sections through reheater
m.fs.hp_to_reheat = Arc(source=m.fs.turb.hp_split[7].outlet_1,
 destination=m.fs.reheat.inlet)
m.fs.reheat_to_ip = Arc(source=m.fs.reheat.outlet,
 destination=m.fs.turb.ip_stages[1].inlet)
Set the turbine inlet conditions and an initial flow guess
p = 2.4233e7
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.inlet_split.inlet.enth_mol[0].fix(hin)
m.fs.turb.inlet_split.inlet.flow_mol[0].fix(26000)
m.fs.turb.inlet_split.inlet.pressure[0].fix(p)

Set the inlet of the ip section for initialization, since it is disconnected
p = 7.802e+06
hin = iapws95.htpx(T=880, P=p)
m.fs.turb.ip_stages[1].inlet.enth_mol[0].value = hin
m.fs.turb.ip_stages[1].inlet.flow_mol[0].value = 25220.0
m.fs.turb.ip_stages[1].inlet.pressure[0].value = p
Set the efficency and pressure ratios of stages other than inlet and outlet
for i, s in turb.hp_stages.items():
 s.ratioP[:] = 0.88
 s.efficiency_isentropic[:] = 0.9
for i, s in turb.ip_stages.items():
 s.ratioP[:] = 0.85
 s.efficiency_isentropic[:] = 0.9
for i, s in turb.lp_stages.items():
 s.ratioP[:] = 0.82
 s.efficiency_isentropic[:] = 0.9
Usually these fractions would be determined by the boiler feed water heater
network. Since this example doesn't include them, just fix split fractions
turb.hp_split[4].split_fraction[0,"outlet_2"].fix(0.03)
turb.hp_split[7].split_fraction[0,"outlet_2"].fix(0.03)
turb.ip_split[5].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_2"].fix(0.04)
turb.ip_split[14].split_fraction[0,"outlet_3"].fix(0.15)
turb.lp_split[4].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[7].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[9].split_fraction[0,"outlet_2"].fix(0.04)
turb.lp_split[11].split_fraction[0,"outlet_2"].fix(0.04)
unfix inlet flow for pressure driven simulation
turb.inlet_split.inlet.flow_mol.unfix()
Set the inlet steam mixer to use the constraints that the pressures of all
inlet streams are equal
turb.inlet_mix.use_equal_pressure_constraint()
Initialize turbine
turb.initialize(outlvl=1)
Copy conditions out of turbine to initialize the reheater
for t in m.fs.time:
 m.fs.reheat.inlet.flow_mol[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].flow_mol)
 m.fs.reheat.inlet.enth_mol[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].enth_mol)
 m.fs.reheat.inlet.pressure[t].value = \
 value(turb.hp_split[7].outlet_1_state[t].pressure)
initialize the reheater
m.fs.reheat.initialize(outlvl=4)
Add constraint to the reheater to result in 880K outlet temperature
def reheat_T_rule(b, t):
 return m.fs.reheat.control_volume.properties_out[t].temperature == 880
m.fs.reheat.temperature_out_equation = Constraint(m.fs.reheat.time_ref,
 rule=reheat_T_rule)
Expand the Arcs connecting the turbine to the reheater
TransformationFactory("network.expand_arcs").apply_to(m)
Fix the outlet pressure (usually determined by condenser)
m.fs.turb.outlet_stage.control_volume.properties_out[0].pressure.fix()

Solve the pressure driven flow model with reheat
solver.solve(m, tee=True)

Unit Models

The multistage turbine model contains the models in the table below. The splitters for steam extraction are not present if a turbine section contains no steam extractions.

	Unit

	Index Sets

	Doc

	inlet_split

	None

	Splitter to split the main steam feed into steams for each arc (Separator)

	throttle_valve

	Admission Arcs

	Throttle valves for each admission arc (HelmValve)

	inlet_stage

	Admission Arcs

	Parallel inlet turbine stages that represent admission arcs (TurbineInlet)

	inlet_mix

	None

	Mixer to combine the streams from each arc back to one stream (Mixer)

	hp_stages

	HP stages

	Turbine stages in the high-pressure section (TurbineStage)

	ip_stages

	IP stages

	Turbine stages in the intermediate-pressure section (TurbineStage)

	lp_stages

	LP stages

	Turbine stages in the low-pressure section (TurbineStage)

	hp_splits

	subset of HP stages

	Extraction splitters in the high-pressure section (Separator)

	ip_splits

	subset of IP stages

	Extraction splitters in the high-pressure section (Separator)

	lp_splits

	subset of LP stages

	Extraction splitters in the high-pressure section (Separator)

	outlet_stage

	None

	The final stage in the turbine, which calculates exhaust losses (TurbineOutlet)

Initialization

The initialization approach is to sequentially initialize each sub-unit using the outlet of the previous
model. Before initializing the model, the inlet of the turbine, and any stage that is disconnected should
be given a reasonable guess. The efficiency and pressure ration of the stages in the HP, IP and LP
sections should be specified. For the inlet and outlet stages the flow coefficient should be specified.
Valve coefficients should also be specified. A reasonable guess for split fractions should also be given
for any extraction splitters present. The most likely cause of initialization failure is flow coefficients
in inlet stage, outlet stage, or valves that do not pair well with the specified flow rates.

TurbineMultistage Class

	
class idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistage(*args, **kwargs)

	Multistage steam turbine with optional reheat and extraction

	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Only False, in a dynamic flowsheet this is psuedo-steady-
state.

	has_holdup
	Only False, in a dynamic flowsheet this is psuedo-steady-
state.

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	num_parallel_inlet_stages
	Number of parallel inlet stages to simulate partial arc
admission. Default=4

	throttle_valve_function
	The type of valve function, if custom provide an
expression rule with the valve_function_rule argument.
default - ValveFunctionType.linear Valid values -
{ ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom}

	throttle_valve_function_callback
	A callback to add a custom valve function to the throttle
valves or None. If a callback is provided, it should take
the valve block data as an argument and add a
valve_function expressions to it. Default=None

	num_hp
	Number of high pressure stages not including inlet stage

	num_ip
	Number of intermediate pressure stages

	num_lp
	Number of low pressure stages not including outlet stage

	hp_split_locations
	A list of index locations of splitters in the HP section.
The indexes indicate after which stage to include
splitters. 0 is between the inlet stage and the first
regular HP stage.

	ip_split_locations
	A list of index locations of splitters in the IP section.
The indexes indicate after which stage to include
splitters.

	lp_split_locations
	A list of index locations of splitters in the LP section.
The indexes indicate after which stage to include
splitters.

	hp_disconnect
	HP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	ip_disconnect
	IP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	lp_disconnect
	LP Turbine stages to not connect to next with an arc. This
is usually used to insert addtional units between stages
on a flowsheet, such as a reheater

	hp_split_num_outlets
	Dict, hp split index: number of splitter outlets, if not 2

	ip_split_num_outlets
	Dict, ip split index: number of splitter outlets, if not 2

	lp_split_num_outlets
	Dict, lp split index: number of splitter outlets, if not 2

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HelmTurbineMultistage) New instance

TurbineMultistageData Class

	
class idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData(component)[source]

	
	
build()[source]

	General build method for UnitModelBlockData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.

Inheriting models should call super().build.

	Parameters

	None –

	Returns

	None

	
initialize(outlvl=0, solver='ipopt', flow_iterate=2, optarg={'max_iter': 35, 'tol': 1e-06}, copy_disconneted_flow=True, copy_disconneted_pressure=True, calculate_outlet_cf=False, calculate_inlet_cf=False)[source]

	Initialize

	Parameters

	
	outlvl – logging level default is NOTSET, which inherits from the
parent logger

	solver – the NL solver, default is “ipopt”

	flow_iterate – If not calculating flow coefficients, this is the
number of times to update the flow and repeat initialization
(1 to 5 where 1 does not update the flow guess)

	optarg – solver arguments, default is {“tol”: 1e-6, “max_iter”: 35}

	copy_disconneted_flow – Copy the flow through the disconnected stages
default is True

	copy_disconneted_pressure – Copy the pressure through the disconnected
stages default is True

	calculate_outlet_cf – Use the flow initial flow guess to calculate
the outlet stage flow coefficient, default is False,

	calculate_inlet_cf – Use the inlet stage ratioP to calculate the flow
coefficent for the inlet stage default is False

	Returns

	None

	
throttle_cv_fix(value)[source]

	Fix the thottle valve coefficients. These are generally the same for
each of the parallel stages so this provides a convenient way to set
them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

	
turbine_inlet_cf_fix(value)[source]

	Fix the inlet turbine stage flow coefficient. These are
generally the same for each of the parallel stages so this provides
a convenient way to set them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

	
turbine_outlet_cf_fix(value)[source]

	Fix the inlet turbine stage flow coefficient. These are
generally the same for each of the parallel stages so this provides
a convenient way to set them.

	Parameters

	value – The value to fix the turbine inlet flow coefficients at

 HelmValve

HelmValve

This is a steam power generation turbine model for the stages between the inlet
and outlet.
This model inherits the PressureChanger model
with the adiabatic options. Beyond the base pressure changer model this provides a pressure
flow relation as a function of the valve opening fraction.

Example

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory

from idaes.core import FlowsheetBlock
from idaes.power_generation.unit_models.helm import HelmValve
from idaes.generic_models.properties import iapws95
from idaes.ui.report import degrees_of_freedom, active_equalities

solver = SolverFactory('ipopt')
solver.options = {'tol': 1e-6}

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.valve = HelmValve(default={"property_package": m.fs.properties})

hin = iapws95.htpx(T=880, P=2.4233e7)
set inlet
m.fs.valve.inlet.enth_mol[0].fix(hin)
m.fs.valve.inlet.flow_mol[0].fix(26000/4.0)
m.fs.valve.inlet.pressure[0].fix(2.5e7)
m.fs.valve.Cv.fix(0.01)
m.fs.valve.valve_opening.fix(0.5)
m.fs.valve.initialize(outlvl=1)

Parameters

	Expression

	Symbol

	Index Sets

	Doc

	flow_scale

	\(s_f\)

	None

	Factor for scaling the pressure-flow equation, should be same magnitude as expected flow rate

Variables

This model adds a variable to account for mechanical efficiency to the base PressureChanger
model.

	Variable

	Symbol

	Index Sets

	Doc

	Cv

	\(C_v\)

	None

	Valve coefficient for liquid [mol/s/Pa^0.5] for vapor [mol/s/Pa]

	valve_opening

	\(x\)

	time

	The fraction that the valve is open from 0 to 1

Expressions

Currently this model provides two additional expressions, with are not available
in the pressure changer model.

	Expression

	Symbol

	Index Sets

	Doc

	valve_function

	\(f(x)\)

	time

	This is a valve function that describes how the fraction open affects flow.

Constraints

The pressure flow relation is added to the inherited constraints from the PressureChanger model.

If the phase option is set to "Liq" the following equation describes the pressure-flow relation.

\[\frac{1}{s_f^2}F^2 = \frac{1}{s_f^2}C_v^2\left(P_{in} - P_{out}\right)f(x)^2\]

If the phase option is set to "Vap" the following equation describes the pressure-flow relation.

\[\frac{1}{s_f^2}F^2 = \frac{1}{s_f^2}C_v^2\left(P_{in}^2 - P_{out}^2\right)f(x)^2\]

Initialization

This just calls the initialization routine from PressureChanger, but it is wrapped in
a function to ensure the state after initialization is the same as before initialization.
The arguments to the initialization method are the same as PressureChanger.

HelmValve Class

	
class idaes.power_generation.unit_models.helm.valve_steam.HelmValve(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault. Valid
values: { MaterialBalanceType.useDefault - refer to
property package for default balance type
**MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default - EnergyBalanceType.useDefault.
Valid values: { EnergyBalanceType.useDefault - refer
to property package for default balance type
**EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_phase_equilibrium
	Indicates whether terms for phase equilibrium should be
constructed, default = False. Valid values: {
True - include phase equilibrium terms False -
exclude phase equilibrium terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PropertyParameterObject - a
PropertyParameterBlock object.}

	property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	has_work_transfer
	True if model a has work transfer term.

	has_heat_transfer
	True if model has a heat transfer term.

	valve_function
	The type of valve function, if custom provide an
expression rule with the valve_function_rule argument.
default - ValveFunctionType.linear Valid values -
{ ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom}

	valve_function_callback
	This is a callback that adds a valve function. The
callback function takes the valve bock data argument.

	phase
	Expected phase of fluid in valve in {“Liq”, “Vap”}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HelmValve) New instance

HelmValveData Class

	
class idaes.power_generation.unit_models.helm.valve_steam.HelmValveData(component)[source]

	Basic adiabatic 0D valve model. This inherits the balance block to get
a lot of unit model boilerplate and the mass balance, enegy balance and
pressure equations. This model is intended to be used only with Helmholtz
EOS property pacakges in mixed or single phase mode with P-H state vars.

Since this inherits BalanceBlockData, and only operates in steady-state or
pseudo-steady-state (for dynamic models) the following mass, energy and
pressure equations are implicitly writen.

	
	Mass Balance:
	0 = flow_mol_in[t] - flow_mol_out[t]

	
	Energy Balance:
	0 = (flow_mol[t]*h_mol[t])_in - (flow_mol[t]*h_mol[t])_out

	
	Pressure:
	0 = P_in[t] + deltaP[t] - P_out[t]

	
build()[source]

	Add model equations to the unit model. This is called by a default block
construnction rule when the unit model is created.

	
initialize(outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	For simplicity this initialization requires you to set values for the
efficency, inlet, and one of pressure ratio, pressure change or outlet
pressure.

 BoilerHeatExchanger

BoilerHeatExchanger

The BoilerHeatExchanger model can be used to represent boiler heat exchangers in
sub-critical and super critical power plant flowsheets (i.e. econmizer, primary superheater, secondary superheater, finishing superheater, reheater, etc.).
The model consists of a shell and tube crossflow heat exchanger, in which the shell is used as the gas side and the tube is used as the water or steam side.
Rigorous heat transfer calculations (convective heat transfer for shell side, and convective heat transfer for tube side) and shell and tube pressure drop calculations have been included.

The BoilerHeatExchanger model can be imported from idaes.power_generation.unit_models,
while additional rules and utility functions can be imported from
idaes.power_generation.unit_models.boiler_heat_exchanger.

Example

The example below demonstrates how to initialize the BoilerHeatExchanger model,
and override the default temperature difference calculation.

Import Pyomo libraries
from pyomo.environ import ConcreteModel, SolverFactory, value
Import IDAES core
from idaes.core import FlowsheetBlock
Import Unit Model Modules
from idaes.generic_models.properties import iapws95
import ideal flue gas prop pack
from idaes.power_generation.properties.IdealProp_FlueGas import FlueGasParameterBlock
Import Power Plant HX Unit Model
from idaes.power_generation.unit_models.boiler_heat_exchanger import BoilerHeatExchanger, TubeArrangement, \
 DeltaTMethod
import pyomo.environ as pe # Pyomo environment
from idaes.core import FlowsheetBlock, StateBlock
from idaes.unit_models.heat_exchanger import delta_temperature_amtd_callback
from idaes.generic_models.properties import iapws95

Create a Concrete Model as the top level object
m = ConcreteModel()

Add a flowsheet object to the model
m.fs = FlowsheetBlock(default={"dynamic": False})

Add property packages to flowsheet library
m.fs.prop_water = iapws95.Iapws95ParameterBlock()
m.fs.prop_fluegas = FlueGasParameterBlock()

Create unit models
m.fs.ECON = BoilerHeatExchanger(default=
 {"side_1_property_package": m.fs.prop_water,
 "side_2_property_package": m.fs.prop_fluegas,
 "has_pressure_change": True,
 "has_holdup": False,
 "delta_T_method": DeltaTMethod.counterCurrent,
 "tube_arrangement": TubeArrangement.inLine,
 "side_1_water_phase": "Liq",
 "has_radiation": False})

Set Inputs
BFW Boiler Feed Water inlet temeperature = 555 F = 563.706 K
inputs based on NETL Baseline Report v3 (SCPC 650 MW net, no carbon capture case)
h = iapws95.htpx(563.706, 2.5449e7)
m.fs.ECON.side_1_inlet.flow_mol[0].fix(24678.26) # mol/s
m.fs.ECON.side_1_inlet.enth_mol[0].fix(h)
m.fs.ECON.side_1_inlet.pressure[0].fix(2.5449e7) # Pa

FLUE GAS Inlet from Primary Superheater
FGrate = 28.3876e3 # mol/s equivalent of ~1930.08 klb/hr
Use FG molar composition to set component flow rates (baseline report)
m.fs.ECON.side_2_inlet.flow_component[0,"H2O"].fix(FGrate*8.69/100)
m.fs.ECON.side_2_inlet.flow_component[0,"CO2"].fix(FGrate*14.49/100)
m.fs.ECON.side_2_inlet.flow_component[0,"N2"].fix(FGrate*(8.69
 +14.49+2.47+0.06+0.2)/100)
m.fs.ECON.side_2_inlet.flow_component[0,"O2"].fix(FGrate*2.47/100)
m.fs.ECON.side_2_inlet.flow_component[0,"NO"].fix(FGrate*0.0006)
m.fs.ECON.side_2_inlet.flow_component[0,"SO2"].fix(FGrate*0.002)
m.fs.ECON.side_2_inlet.temperature[0].fix(682.335) # K
m.fs.ECON.side_2_inlet.pressure[0].fix(100145) # Pa
economizer design variables and parameters
ITM = 0.0254 # inch to meter conversion
Based on NETL Baseline Report Rev3
m.fs.ECON.tube_di.fix((2-2*0.188)*ITM) # calc inner diameter
(2 = outer diameter, thickness = 0.188)
m.fs.ECON.tube_thickness.fix(0.188*ITM) # tube thickness
m.fs.ECON.pitch_x.fix(3.5*ITM)
pitch_y = (54.5) gas path transverse width /columns
m.fs.ECON.pitch_y.fix(5.03*ITM)
m.fs.ECON.tube_length.fix(53.41*12*ITM) # use tube length (53.41 ft)
m.fs.ECON.tube_nrow.fix(36*2.5) # use to match baseline performance
m.fs.ECON.tube_ncol.fix(130) # 130 from NETL report
m.fs.ECON.nrow_inlet.fix(2)
m.fs.ECON.delta_elevation.fix(50)
parameters
heat transfer resistance due to tube side fouling (water scales)
m.fs.ECON.tube_rfouling = 0.000176
heat transfer resistance due to tube shell fouling (ash deposition)
m.fs.ECON.shell_rfouling = 0.00088
if m.fs.ECON.config.has_radiation is True:
 m.fs.ECON.emissivity_wall.fix(0.7) # wall emissivity
correction factor for overall heat transfer coefficient
m.fs.ECON.fcorrection_htc.fix(1.5)
correction factor for pressure drop calc tube side
m.fs.ECON.fcorrection_dp_tube.fix(1.0)
correction factor for pressure drop calc shell side
m.fs.ECON.fcorrection_dp_shell.fix(1.0)

Initialize the model
m.fs.ECON.initialize()

Degrees of Freedom

Aside from the inlet conditions, a heat exchanger model usually has two degrees
of freedom, which can be fixed for it to be fully specified. Things that are
frequently fixed are two of:

	heat transfer area,

	heat transfer coefficient, or

	temperature approach.

In order to capture off design conditions and heat transfer coefficients at ramp up/down or load following conditions, the BoilerHeatExanger
model includes rigorous heat transfer calculations. Therefore, additional degrees of freedom are required to calculate Nusselt, Prandtl, Reynolds numbers, such as:

	tube_di (inner diameter)

	tube length

	tube number of rows (tube_nrow), columns (tube_ncol), and inlet flow (nrow_inlet)

	pitch in x and y axis (pitch_x and pitch_y, respectively)

If pressure drop calculation is enabled, additional degrees of freedom are required:

	elevation with respect to ground level (delta_elevation)

	tube fouling resistance (tube_r_fouling)

	shell fouling resistance (shell_r_fouling)

Model Structure

The BoilerHeatExchanger model contains two ControlVolume0DBlock blocks. By default the
gas side is named shell and the water/steam side is named tube. These names are configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side.

The control volumes are configured the same as the ControlVolume0DBlock in the
Heater model.
The BoilerHeatExchanger model contains additional constraints that calculate the amount
of heat transferred from the hot side to the cold side.

The BoilerHeatExchanger has two inlet ports and two outlet ports. By default these are
shell_inlet, tube_inlet, shell_outlet, and tube_outlet. If the user
supplies different hot and cold side names the inlet and outlets are named accordingly.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from hot side to the cold side

	area

	\(A\)

	None

	Heat transfer area

	U

	\(U\)

	time

	Heat transfer coefficient

	delta_temperature

	\(\Delta T\)

	time

	Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified cold side is hotter
than the specified hot side this value will be negative.

Constraints

The default constraints can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, heat transfer coefficient, shell
and tube pressure drop. This section describes the default constraints.

Heat transfer from shell to tube:

\[Q = UA\Delta T\]

Temperature difference is:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

The overall heat transfer coefficient is calculated as a function of convective heat transfer shell and tube, and wall conduction heat transfer resistance.

Convective heat transfer equations:

\[\frac{1}{U}*fcorrection_{htc} = [\frac{1}{hconv_{tube}} + \frac{1}{hconv_{shell}} + r + tube_{r fouling} + shell_{r fouling}]\]

\[hconv_{tube} = \frac{Nu_{tube} k}{tube_{di}}\]

\[Nu_{tube} = 0.023 Re_{tube}^{0.8} Pr_{tube}^{0.4}\]

\[Pr_{tube} = \frac{Cp \mu}{ k Mw}\]

\[Re_{tube} = \frac{tube_{di} V \rho}{\mu}\]

\[hconv_{shell} = \frac{Nu_{shell} k_{flue gas}}{tube_{do}}\]

\[Nu_{shell} = f_{arrangement} 0.33 Re_{tube}^{0.6} Pr_{tube}^{0.3333}\]

\[Pr_{shell} = \frac{Cp \mu}{ k Mw}\]

\[Re_{shell} = \frac{tube_{do} V \rho}{\mu}\]

\[tube_{do} = 2*tube_{thickness} + tube_{di}\]

Wall heat conduction resistance equation:

\[r = 0.5 * tube_{do} * \log{(\frac{tube_{do}}{tube_{di}})}*k\]

where:

	hconv_tube : convective heat transfer resistance tube side (fluid water/steam) (W / m2 / K)

	hconv_shell : convective heat transfer resistance shell side (fluid Flue Gas) (W / m2 / K)

	Nu : Nusselt number

	Pr : Prandtl number

	Re : Reynolds number

	V: velocity (m/s)

	tube_di : inner diameter of the tube (m)

	tube_do : outer diameter of the tube (m) (expression calculated by the model)

	tube_thickness : tube thickness (m)

	r = wall heat conduction resistance (K m^2 / W)

	k : thermal conductivity of the tube wall (W / m / K)

	\(\rho\) : density (kg/m^3)

	\(\mu\) : viscocity (kg/m/s)

	tube_r_fouling : tube side fouling resistance (K m^2 / W)

	shell_r_fouling : shell side fouling resistance (K m^2 / W)

	fcorrection_htc: correction factor for overall heat trasnfer

	f_arrangement: tube arrangement factor

Note:
by default fcorrection_htc is set to 1, however, this variable can be used to match unit performance (i.e. as a parameter estimation problem using real plant data).

Tube arrangement factor is a config argument with two different type of arrangements supported at the moment:
1.- In-line tube arrangement factor (f_arrangement = 0.788), and 2.- Staggered tube arrangement factor (f_arrangement = 1). f_arrangement is a parameter that can be adjusted by the user.

The BoilerHeatExchanger includes an argument to compute heat tranfer due to radiation of the flue gases. If has_radiation = True the model builds additional heat transfer calculations that will be added to the hconv_shell resistances.
Radiation effects are calculated based on the gas gray fraction and gas-surface radiation (between gas and shell).

\[Gas_{gray frac} = f (gas_{emissivity})\]

\[frad_{gas gray frac} = f (wall_{emissivity}, gas_{emissivity})\]

\[hconv_{shell_rad} = f (k_{boltzmann}, frad_{gas gray frac}, T_{gas in}, T_{gas out}, T_{fluid in}, T_{fluid out})\]

Note:
Gas emissivity is calculated with surrogate models (see more details in boiler_heat_exchanger.py).
Radiation = True when flue gas temperatures are higher than 700 K (for example, when the model is used for units like Primary superheater, Reheater, or Finishing Superheater;
while Radiation = False when the model is used to represent the economizer in a power plant flowsheet).

If pressure change is set to True, \(deltaP_{uturn} and friction_{factor}\) are calculated

Tube side:

\[\Delta P_{tube} = \Delta P_{tube friction} + \Delta P_{tube uturn} - elevation * g *\frac{\rho_{in} + \rho_{out}}{2}\]

\[\Delta P_{tube friction} = f(tube_{di} \rho, V_{tube}, number of tubes, tube_{length})\]

\[\Delta P_{tube uturn} = f(\rho, v_{tube}, k_{loss uturn})\]

where:

	\(k_{loss uturn}\) : pressure loss coeficient of a tube u-turn

	g : is the acceleration of gravity 9.807 (m/s^2)

Shell side:

\[\Delta P_{shell} = 1.4 \Delta P_{shell friction} \rho V_{shell}^2\]

\(\Delta P_{shell friction}\) is calculated based on the tube arrangement type:

In-line: \(\Delta P_{shell friction} = \frac{ 0.044 + \frac{0.08 (\frac{P_x}{tube_{do}}) } {(\frac{P_y}{tube_{do}}-1)^{0.43+\frac{1.13}{(\frac{P_x}{tube_{do}})}}}}{Re^{0.15}}\)

Staggered: \(\Delta P_{shell friction} = \frac{ 0.25 + \frac{0.118}{(\frac{P_y}{tube_{do}} -1)^{1.08}} }{Re^{0.16}}\)

Figure. Tube Arrangement

[image: ../../../../_images/tube_arrangement.png]
Tube Arrangement

Class Documentation

Note

The hot_side_config and cold_side_config can also be supplied using the name of
the hot and cold sides (shell and tube by default) as in
the example.

	
class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchanger(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { True - construct holdup terms,
False - do not construct holdup terms}

	side_1_property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_1_property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	side_2_property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_2_property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	material_balance_type
	Indicates what type of material balance should be
constructed, default -
MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy
balance for material, EnergyBalanceType.enthalpyPhase
- ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	delta_T_method
	Flag indicating type of flow arrangement to use for delta
default - DeltaTMethod.counterCurrent Valid
values: { DeltaTMethod.counterCurrent}

	tube_arrangement
	Tube arrangement could be in-line and staggered

	side_1_water_phase
	Define water phase for property calls

	has_radiation
	Define if side 2 gas radiation is to be considered

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(BoilerHeatExchanger) New instance

	
class idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData(component)[source]

	Standard Heat Exchanger Unit Model Class

	
build()[source]

	Build method for Boiler heat exchanger model

	Parameters

	None –

	Returns

	None

	
initialize(state_args_1={}, state_args_2={}, outlvl=0, solver='ipopt', optarg={'max_iter': 100, 'tol': 1e-06})[source]

	General Heat Exchanger initialisation routine.

	Keyword Arguments

	
	state_args_1 – a dict of arguments to be passed to the property
package(s) for side 1 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = {}).

	state_args_2 – a dict of arguments to be passed to the property
package(s) for side 2 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = {}).

	outlvl – sets output level of initialisation routine

	0 = no output (default)

	1 = return solver state for each step in routine

	2 = return solver state for each step in subroutines

	3 = include solver output infomation (tee=True)

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
model_check()[source]

	Model checks for unit - calls model checks for both control volume
Blocks.

	Parameters

	None –

	Returns

	None

 WaterWall Model

WaterWall Model

Introduction

The waterwall section model simulates the water hydraulics and the heat transfer inside typical membrane waterwall tubes. The fluid flowing inside the tubes is
either liquid water or a mixture of liquid water and steam (two-phase flow). A boiler is typically discretized in multiple zones or sections along its height
and a waterwall section model represents one section of the waterwall. It is usually coupled with IDAES’ 1-D fire-side model to solve the wall temperatures and heat transfer rate in each section.
Figure 1 shows a schematic representation of the integrated boiler fire-side and fluid-side models, in which the sum of the net radiation and convective heat fluxes (\(q_{rad}^{fire}\) and \(q_{conv}^{fire}\)) at the slag outer layer
is an output of the fire-side model and an input of the waterwall section model (the fluid-side model) and the temperature of the outer slag layer \(T_{w,slag}\) is an output of the fluid-side model
and an input (boundary condition) of the fire-side model. The heat conduction through the slag and tube layers is a part of the fluid-side model. At a steady state, the amount of the heat transferred at the outer slag surface
(\(q_{rad}^{fire}\) and \(q_{conv}^{fire}\)) is equal to the heat conducted through the slag and tube layers, which is equal to the heat convected to the fluid \(q_{conv}^{fluid}\).

Property package: This model requires the Helmholtz EoS (IAPWS95) property package with the mixed phase option, therefore, the phase equilibrium calculations are handled by the property package.

[image: ../../../../_images/waterwall_1.png]
Figure 1. Coupling of fire-side zones and fluid-side waterwall sections modeled in IDAES

Figure 1 shows the schematic representation of the coupled fire-side and fluid-side waterwall model.
Since, the waterwall section is connected with a fire-side section of the boiler, the user must set the number of waterwall sections equal to the number of zones in the fire-side model.
The first (the lowest) section is generally connected with the water liquid from a downcomer for a subcritical boiler or the water from the outlet of an economizer for a supercritical boiler.
Other sections are generally connected with their neighboring sections below them via Pyomo Arcs.
Finally, the last section is generally connected either to a drum for a subcritical boiler or a superheater for a supercritical boiler.

Model inputs (variable name):

	number of zones (ww_zones)

	number of tubes around the perimeter of the boiler (number_tubes)

	heat duty of individual zone from fire-side model (sum of net radiation and convection) (heat_fireside)

	tube dimensions (length, inside diameter and thickness) (tube_length, tube_diameter, tube_thickness)

	projected membrane wall area (projected_area)

	fin dimension of membrane wall (width and thickness) (fin_length, fin_thickness)

	slag layer thickness (slag_thickness)

	water/steam flow rate and states at inlet (flow_mol, enth_mol, pressure)

	properties of slag and tube metal (thermal conductivity, heat capacity, density) (therm_cond_slag, therm_cond_metal, dens_metal, dens_slag)

	pressure drop correction factor (fcorrection_dp)

Model Outputs:

	temperatures of tube metal at inner wetted surface and at center of the tube thickness (temp_tube_boundary, temp_tube_center)

	temperatures of slag layer at outer surface and at the center of the slag layer (temp_slag_boundary, temp_slag_center)

	pressure drop through each section and heat added to each section (deltaP)

	water/steam flow rate and states at outlet (flow_mol, enth_mol, pressure)

[image: ../../../../_images/waterwall_2.png]
Figure 2. Ilustration of a waterwall section model and its main variables

Figure 2 illustrates the physics and main variables in a single waterwall section model. This model assumes that the net radiation and convective heat fluxes are given from the fire-side model for the corresponding zone.
The membrane wall geometry and slag layer thickness are the given input variables along with the fluid inlet flow rate and state conditions.
In case of 2-phase flow, the volume fraction of the vapor phase is calculated based on an empirical correlation that calculates the slip velocity between the two phases due to their density difference.
The pressure drop of the 2-phase flow is calculated based on the liquid-only velocity, Reynolds number and friction factors corrected for the volume fraction of vapor.
Likewise, the convective heat transfer coefficient h_conv on the fluid side is calculated from empirical correlations for nucleate boiling with forced convection enhancement factor and pool boiling suppression factor.
The overall heat transfer coefficient is the reciprocal of the overall heat transfer resistance (\(r_{ht}\) in Figure 2).
Finally, The heat duty from fire-side model is provided by the user, while the heat conduction model solves the slag outer surface temperature \(T_{w,slag}\), slag layer center point temperature \(T_{c,slag}\),
tube center point temperature \(T_{c,tube}\), and tube inner wall temperature \(T_{w,tube}\).
The center point temperatures are used to calculate the energy stored in the slag and tube layers for dynamic simulations.
The single waterwall section model eventually calculates the heat transfer rate to the fluid, pressure drop of the fluid in the waterwall section, and the slag outer wall temperature, which is required as the boundary condition input for the fire-side model.
The heat duty from fire-side model is generally obtained from a surrogate model, the surrogate model must be trained using a rigorous 2-D model under different operating conditions.
The rigorous 2-D simulates the heat conduction through the complicated geometry of the slag and tube layers and heat convection between the inner tube wall and the fluid. [1]

[1] Ma, J., Eason, J. P., Dowling, A. W., Biegler, L. T., Miller, D. C. (2016). Development of a first-principles hybrid boiler model for oxy-combustion power generation system. Int. J. of Greenhouse Gas Contr., 46, pp. 136-157.

Degrees of Freedom

As mentioned above, the water wall section model has been modeled as an index set block, therefore, the number of zones must be selected during the construction of this model.
Each waterwall section is then considered a single model. Aside from the inlet conditions and tube dimensions, a waterwall section model usually has two degrees
of freedom, which can be fixed for it to be fully specified. Things that are frequently fixed are two of:

	tube dimensions and number of tubes,

	heat loss to the water wall,

	ash or slag thickness

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from flue gas to tube side fluid

	projected_area

	\(A\)

	None

	Heat transfer area (total projected area based on tube shape)

	hconv, hconv_liquid

	\(h_{conv}\)

	time

	Overal convective heat transfer coefficient and hconv_liquid for liquid only

	temp_slag_boundary

	\(T_{w,slag}\)

	time

	Temperature of the slag

Constraints

The main constraints here show the heat flux and convective heat transfer model. This model calculates the slag temperature, slag center temperature, tube boundary temperature, tube center temperatures, and heat flux from fire side to the water/steam side.
Finally, a two phase flow model is considered, including water boiling effects in the convective heat transfer coefficient calculations.

Heat flux equation:

\[heat_{flux} = Q*pitch/(projected_{area}*perimeter_slag)\]

Temperature of slag:

\[T_{w,slag} - T_{c,slag} = heat_{flux} * slag_{resistance}\]

Heat flux interface equation:

\[heat_{flux_int} * (slag_{resistance} + metal_{resistance}) = (T_{c,slag} - T_{c,tube})\]

Convective heat flux eqn at tube boundary:

\[heat_{flux_conv} * fshape_{conv} * tube_{perimeter} = pitch * h_{conv} * (T_{w,tube} - T_{fluid,in})\]

Tube boundary wall temperature:

\[heat_{flux_conv} * metal_{resistance} * tube_{perimeter} = interface_{perimeter} * (T_{c,tube} - T_{w,tube})\]

Heat equation:

\[heat_{duty} = number_{tubes} * heat_{flux_conv} * tube_{length} * tube_{perimeter}\]

Convective heat transfer:

\[h_{conv} = h_{convective_lo} * enhancement_{factor} + h_{pool} * suppression_{factor}\]

Pressure drop:

\[\Delta P = \Delta P_{friction} + \Delta P_{gravity}\]

Convective heat transfer liquid only:

\[h_{conv_lo} = f (tube_{diameter}, N_Re, N_Pr, k)\]

Enhancement factor:

\[enhancement_{factor} = f(boiling_{number})\]

Pool boiling heat tranfeer coefficient:

\[hpool = f(MW, reduced_{pressure}, heat{flux_conv})\]

Prandtl number:

\[Pr_{tube} = \frac{Cp \mu}{ k Mw}\]

Reynolds number:

\[Re_{tube} = \frac{tube_{di} V \rho}{\mu}\]

where:

	hconv : convective heat transfer coefficient tube side (fluid water/steam) (W / m2 / K)

	hconv_liquid : convective heat transfer coefficient for liquid only

	projected_area : total projected wall area of waterwall section (m2)

	Pr : Prandtl number (liquid only)

	Re : Reynolds number (liquid only)

	V: fluid velocity (m/s, liquid only)

	k : thermal conductivity of the fluid (W / m / K)

	MW: molecular weigth of water (kmol/kg)

	\(\mu\) : viscocity (kg/m/s)

Note that at the flowsheet level first waterwall section is connected to the economizer, arcs connecting section 2 to n-1 have to be constructed by the user, and the outlet of section n is connected to the drum model or superheater (subcritical and supercritical plant, respectively)

Dynamic Model

The dynamic model version of the waterwall section model can be constructed by selecting dynamic=True.
If dynamic = True, the energy accumulation of slag and metal, material accumulation holdups are constructed. Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the holdup terms.

 HelmPhaseSeparator Model

HelmPhaseSeparator Model

Introduction

The HelmPhaseSeparator model consists of a simple phase separator to be used only with the Helmholtz equation of state.
The two-phase mixture at the inlet is separated into the vapor and liquid streams at the two corresponding outlets. This simple unit includes one state block (mixed_state) for the inlet, and two state blocks, one for liquid (liq_state) and the other for vapor (vap_state).
Note that this water-specific flash model replaces IDAES’ generic flash unit operation model.

Model inputs:

	mixed_state, variables (flow_mol, enth_mol, and pressure), port name = inlet

Model Outputs:

	liq_state, variables (flow_mol, enth_mol, and pressure), port name = liq_outlet

	vap_state, variables (flow_mol, enth_mol, and pressure), port name = vap_outlet

Degrees of Freedom

The HelmPhaseSeparator model consist of nine variables and six constraints. By fixing the inlet state (self.inlet.flow_mol,self.inlet.flow_mol, and self.inlet.flow_mol) or three degrees
of freedom, the system will be fully specified.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	flow_mol

	\(F\)

	time

	molar flowrate

	enth_mol

	\(h\)

	time

	molar enthalpy

	pressure

	\(P\)

	time

	pressure

Constraints

The phase separator model uses the IAPWS95 property package to calculate the vapor fraction and enthalpies of the vapor and liquid phases at the inlet of the unit.
The flowrates of the vap_outlet and liq_outlet streams are calculate as the products of the inlet flow rate and corresponding phase fractions for vapor and liquid, respectively.
The enthalpies of the vapor and liquid phases in the inlet stream are assigned to the enthalpies of the vap_outlet and the liq_outlet streams, respectively.
The pressure of the two outlet streams are identical to that of the inlet stream.

Material Balances:
Vapor State:

\[flow_mol_{mixed_state}*vapor_frac_{mixed_state} = flow_mol_{vap_outlet}\]

Liquid State:

\[flow_mol_{mixed_state}*(1 - vapor_frac_{mixed_state}) = flow_mol_{liq_outlet}\]

Energy Balances:

\[enth_mol_phase_{mixed_state}_[Vap] = enth_mol_{vap_state}\]

\[enth_mol_phase_{mixed_state}_[Liq] = enth_mol_{liq_state}\]

Momentum Balances:

\[pressure_{mixed_state}_[Liq] = pressure_{liq_state} = pressure_{vap_state}\]

 Drum Model

Drum Model

Introduction

The drum model consists of three main sub-unit operations:

	a flash model to separate the saturated steam from the saturated liquid water in the water/steam mixture,

	a mixer model to mix saturated liquid water with feed water, and

	a water tank model to calculate drum level and pressure drop.

First the water/steam mixture from boiler waterwall tubes (risers) enters the flash model and leaves in two separate streams (liquid water and steam).
Then, the saturated water from the flash model is mixed with the feed water stream (typically from the economizer or a water pipe linking the economizer and the drum)
and leave the mixer model in a single mixed stream. Finally, the mixed stream enters the water tank of the drum and leaves the vessel through the multiple downcomers (see Figure 1).

[image: ../../../../_images/drum_1.png]
Figure 1. Schematic representation of a Drum modeled in IDAES

Inlet Ports:

	water_steam_inlet: water/steam mixture from waterwall

	feedwater_inlet: feedwater from economizer/pipe

Outlet Ports:

	liquid_outlet: liquid to downcomer

	steam_outlet: saturated steam leaving the drum

Variables

Model inputs (variable name):

	water/steam inlet (water_steam_inlet: flow_mol, enth_mol, pressure)

	feedwater inlet (feedwater_inlet: flow_mol, enth_mol, pressure)

	drum diameter (drum_diameter)

	drum length (drum_length)

	number of downcomer tubes (number_downcomers)

	downcomer diameter (downcomer_diameter)

	drum level (drum_level)

	heat duty (heat_duty)

Model Outputs:

	vapor outlet (vap_outlet: flow_mol, enth_mol, pressure)

	liquid outlet (liq_outlet: flow_mol, enth_mol, pressure)

Constraints

As mentioned above, the drum model imports a HelmPhaseSeparator and mixer models, specific documentation for these models can be obtained in:
Once the water enters the tank model the main equations calculate water velocity and pressure drop calculation due to gravity based on water level and contraction to downcomer.
Water level (drum_leve) is either fixed for steady state simulation or calculated for dynamic model (Dynamic = True)

Main assumptions:

	Heat loss is a variable given by the user (zero heat loss can be specified if adiabatic)

	Pressure change due to gravity based on water level and contraction to downcomer is calculated

	Water level is either fixed for steady-state model or calculated for dynamic model

	Assume enthalpy_in == enthalpy_out + heat loss + energy accumulation

	Subcooled water from economizer and saturated water from waterwall are well mixed before entering the drum

Pressure equality constraint:

\[P_{SaturatedWater} = P_{FeedWater}\]

Pressure drop in unit:

\[deltaP = deltaP_{contraction} + deltaP_{gravity}\]

\[deltaP_{gravity} = f(\rho_{liquid}, acceleration gravity, drum_level)\]

\[deltaP_{contraction} = f(\rho_{liquid}, V)\]

where:
* V: fluid velocity (m/s, liquid only)

Note that the model builds an Pyomo Arc to connect the Liquid_outlet from the self.aFlash unit to the SaturatedWater inlet port of the mixer, and the mixed_state (Mixer outlet) is directly constructed as the Drum control_volume.properties_in.
Once the Drum model is constructed, the mixer and flash blocks can be found as self.aDrum.aMixer and self.aDrum.aFlash

Degrees of Freedom

Once the unit dimensions have been fixed, the model generally has 5 degrees of freedom. The water/steam mixture inlet state (flow_mol, enth_mol, and pressure) and feewater inlet state (flow_mol and enth_mol). The feedwater inlet pressure is usually free due to the pressure equality mentioned above.

Dynamic Model

The dynamic model version of the drum model can be constructed by selecting dynamic=True.
If dynamic = True, material accumulation, energy accumulation, and drum level must be calculated. Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the holdup terms.

 Downcomer Model

Downcomer Model

Introduction

The Downcomer model consists of a simple pipe model (or a set of pipes) where the inlet stream is the Drum outlet and the outlet stream connects with the WaterWall (section 1).
The model simply calculates the pressure change due to friction and gravity, which involves the calculation of fluid velocity, Reynolds number, and friction factor (using Darcy’s correlation).

Property package: This model requires the Helmholtz EoS (IAPWS95) property package with the mixed phase option, therefore, the phase equilibrium calculations are handled by the property package.

Model inputs (variable name):

	inlet stream (flow_mol, enth_mol, pressure)

	number of downcomer pipes (number_downcomers) same as Drum model

	height of the tubes (height)

	inner diameter of the tubes (diameter)

	heat duty (heat_duty), heat_duty = 0 if adiabatic

Model Outputs:

	outlet stream (flow_mol, enth_mol, pressure)

	pressure change (deltaP) due to gravity and friction

Degrees of Freedom

By specifying the inlet conditions and downcomer dimensions, the model will be fully specified. Things that are frequently fixed are:

	inlet state vars (generally flow_mol, enth_mol, pressure)

	heat_duty to the downcomer (if applicable)

	number_downcomers, height, diameter

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from flue gas to tube side fluid

	deltaP

	\(deltaP\)

	time

	Pressure change in the unit

Constraints

The main constraints in the model calculate the pressure drop, which is given by deltaP_friction and deltaP_gravity.

Pressure drop:

\[\Delta P = \Delta P_{friction} + \Delta P_{gravity}\]

Friction:

\[\Delta P_{friction} = f (Friction_{factor}, \rho_{liquid}, V, diameter)\]

Friction factor (Darcy’s correlation’):

\[Friction_{factor} = \frac{0.3164}{Re^{0.25}}\]

deltaP gravity:

\[\Delta P_{gravity} = \rho_{liquid} * acceleration_{gravity} * height\]

Reynolds number:

\[Re = \frac{tube_{di} V \rho}{\mu}\]

where:

	Re : Reynolds number (liquid)

	V: fluid velocity (m/s, liquid)

	\(\rho_{liquid}\): mass density of liquid (kg/m3)

	\(\mu\) : viscocity (kg/m/s)

Dynamic Model

The downcomer dynamic model can be constructed by selecting dynamic=True and hold_up=True.
If dynamic and holdup = True, the energy accumulation and material accumulation variables are constructed,
which are the derivatives of the corresponding holdup terms with respect to time and are included in the material and energy conservation equations.
A dynamic model also requires the specification of initial conditions related to the accumulation variables.
The user needs to provide the initial values for the accumulation variables at all time points and fix the initial conditions to solve the dynamic problem.
Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the values of the time-indexed accumulation variables to zero
and fix the variables at the first time point to zero.

 Steam Heater Model

Steam Heater Model

Introduction

The steam heater model consists of a heater model with rigorous heat transfer calculations on the tube side, while the heat duty from fire side is either fixed or provided by the boiler fire side model.
The model is usually coupled with the IDAES 1-D fire-side model to solve the wall temperatures and heat transfer rate.
If coupled with the fire side model, this model is similar to the water_wall section model. The sum of the net radiation and convective heat fluxes (\(q_{rad}^{fire}\) and \(q_{conv}^{fire}\)) at the slag outer layer
is an output of the fire-side model and an input of the steam heater model (the fluid-side model). While, the temperature of the outer slag layer \(T_{w,slag}\) is an output of the fluid-side model
and an input (boundary condition) of the fire-side model. The heat conduction through the slag and tube layers is a part of the fluid-side model. At a steady state, the amount of the heat transferred at the outer slag surface
(\(q_{rad}^{fire}\) and \(q_{conv}^{fire}\)) is equal to the heat conducted through the slag and tube layers, which is equal to the heat convected to the fluid \(q_{conv}^{fluid}\).

Model inputs (variable name):

	number of tubes (number_tubes)

	heat duty from fire-side model (sum of net radiation and convection) (heat_fireside)

	tube dimensions (length, inside diameter and thickness) (tube_length, tube_diameter, tube_thickness)

	fin dimension of membrane wall (width and thickness) (fin_length, fin_thickness)

	slag layer thickness (slag_thickness)

	water/steam flow rate and states at inlet (flow_mol, enth_mol, pressure)

	properties of slag and tube metal (thermal conductivity, heat capacity, density) (therm_cond_slag, therm_cond_metal, dens_metal, dens_slag)

	pressure drop correction factor (fcorrection_dp)

Model Outputs:

	temperatures of tube metal at inner wetted surface and at center of the tube thickness (temp_tube_boundary, temp_tube_center)

	temperatures of slag layer at outer surface and at the center of the slag layer (temp_slag_boundary, temp_slag_center)

	pressure drop through each section and heat added to the tube (deltaP and heat_duty, respectively)

	water/steam flow rate and states at outlet (flow_mol, enth_mol, pressure)

Degrees of Freedom

As mentioned above, the steam heater model includes rigorous heat transfer, therefore, detailed tube and unit dimensions are required. Aside from the inlet conditions and tube dimensions, the steam heater model usually has two degrees
of freedom, heat flux from fire side and slag thickness, which can be fixed for it to be fully specified.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from flue gas to tube side fluid

	hconv

	\(h_{conv}\)

	time

	Overal convective heat transfer coefficient

	temp_slag_boundary

	\(T_{w,slag}\)

	time

	Temperature of the slag

	projected_area

	\(A\)

	None

	Heat transfer area (total projected area based on tube shape)

Constraints

The main constraints here show the heat flux, convective heat transfer model, and pressure drop.
This model calculates the slag temperature, slag center temperature, tube boundary temperature, tube center temperatures, and heat flux from fire side to the water/steam side.

Heat flux equation:

\[heat_{flux} = Q*pitch/(projected_{area}*perimeter_slag)\]

Temperature of slag:

\[T_{w,slag} - T_{c,slag} = heat_{flux} * slag_{resistance}\]

Heat flux interface equation:

\[heat_{flux_int} * (slag_{resistance} + metal_{resistance}) = (T_{c,slag} - T_{c,tube})\]

Convective heat flux eqn at tube boundary:

\[heat_{flux_conv} * fshape_{conv} * tube_{perimeter} = pitch * h_{conv} * (T_{w,tube} - T_{fluid,in})\]

Tube boundary wall temperature:

\[heat_{flux_conv} * metal_{resistance} * tube_{perimeter} = interface_{perimeter} * (T_{c,tube} - T_{w,tube})\]

Heat equation:

\[heat_{duty} = number_{tubes} * heat_{flux_conv} * tube_{length} * tube_{perimeter}\]

Pressure drop:

\[\Delta P = \Delta P_{friction} + \Delta P_{gravity}\]

Convective heat transfer:

\[h_{conv} = f (tube_{diameter}, N_Re, N_Pr, k)\]

Prandtl number:

\[Pr_{tube} = \frac{Cp \mu}{ k Mw}\]

Reynolds number:

\[Re_{tube} = \frac{tube_{di} V \rho}{\mu}\]

where:

	hconv : convective heat transfer coefficient tube side (fluid water/steam) (W / m2 / K)

	projected_area : total projected wall area (m2)

	Pr : Prandtl number

	Re : Reynolds number

	V: fluid velocity (m/s)

	k : thermal conductivity of the fluid (W / m / K)

	MW: molecular weigth of water/steam (kmol/kg)

Note that at the flowsheet level first waterwall section is connected to the economizer, arcs connecting section 2 to n-1 have to be constructed by the user, and the outlet of section n is connected to the drum model or superheater (subcritical and supercritical plant, respectively)

Dynamic Model

The dynamic model version of the steam heater model can be constructed by selecting dynamic=True.
If dynamic = True, the energy accumulation of slag and metal, material accumulation holdups are constructed. Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the holdup terms.

 Boiler Fire Side Model

Boiler Fire Side Model

Introduction

The boiler fire side model consists of a hybrid model, including first principle equations and surrogate models. The surrogate models
determine the heat flux to the individual water wall zones, heat flux to platen superheater, heat flux to roof superheater, NOx formation in PPM, and unburned carbon in fly ash.
Meanwhile, the flue gas outlet conditions (flowrate, temperature, and pressure) are determined by complete mass and energy balances.

The processes inside a coal-fired boiler are very complicated involving combustion of the fuel by an oxidizer, typically air, and the transfer of the heat released from the combustion to waterwall, roof, and platen superheater, if any. The reacting flow inside the boiler is turbulent flow with both gas-phase homogenous reactions and gas-solid heterogenous reactions. At high combustion temperatures, the homogenous gas-phase reactions can be assumed to reach chemical equilibrium while the heterogenous reactions involving devolatilization, oxidation of char by O2, and gasification of the char by H2O and CO2 are usually controlled by finite-rate chemistry and mass transfer of the reactants to the external and internal surfaces of the solid fuel. The main heat transfer mechanism inside the boiler is radiative transfer involving both gas phase and solid phase participating media. Due to its complexity, a high-fidelity model such as NETL’s 1D/3D hybrid fire-side boiler model should be developed first based on a given geometry of the furnace. A surrogate model could then be generated from the results of multiple high-fidelity model simulations sampled in the input space of the high-fidelity model. Those inputs could possibly include the flow rates of coal, primary and secondary air, lower furnace Stoichiometric ratio, fuel composition, secondary air temperature, and the slag layer wall temperatures of waterwall, roof, and platen superheater. The surrogate model provides the algebraic functions mapping the input variables to the output variables such as heat transfer rates to the waterwall, roof, and platen superheater, unburned carbon in the fly ash, and NOx mole fraction in the flue gas.
As mentioned above, the variables calculated from the surrogate functions include the heat transfer rates to individual waterwall zones, platen superheater, and roof, the unburned carbon in fly ash, and mole fraction of NO in flue gas. The mole fractions of individual species in the flue gas including O2, N2, CO2, H2O, and SO2 are calculated based on the mass balance of individual elements including C, H, O, N, and S. Note that Ar in air is ignored here and its mole fraction in air is assigned to N2. It is also assumed that coal contains C, H, O, N, S elements only (no Cl) and ash in coal is inert (no mineral related reaction is considered). The amount of unburned carbon in fly ash determines the coal burnout (percent of dry-ash-free coal burned). Only the amount of burned coal is considered in calculating the flue gas composition. Unburned CO in the flue gas is ignored in the current model. To enforce energy balance, the furnace exit gas temperature (FEGT) is not calculated by a surrogate function. It is calculated by the energy balance instead.

Note that the surrogate models are trained off line and imported as a model argument, these surrogate models usually are a function of the coal flowrate, moisture content, stoichiometric ratio (O2 real/O2 reaction), primary air to coal ratio, and wall/slag temperatures among others.

[image: ../../../../_images/boilerfireside.png]
Figure 1. Schematic representation of a Boiler fire side model

Property package: This model requires the IdealFlueGas property package.

Model Arguments:

	number_of_zones: the number of water wall zones are required to maintain the overall energy balance

	calculate_PA_SA_flows: Depending on the user’s selection, this feature builds different parts of the model (config argument: calculate_PA_SA_flows=True or False).

	Option1 assumes that users know primary air flowrate and secondary air flowrate (if calculate_PA_SA_flows is False).

	Option2 assumes that the users provide stoichiometric ratio and primary air to coal ratio to calculate primary air and secondary air flowrates (if calculate_PA_SA_flows is True).

	has_platen_superheater: True/False if a platen superheater will be included in the flowsheet

	has_roof_backpass: True if a roof and backpass heater will be included in the flowsheet

	surrogate_dictionary: user must provide a dictionary with surrogate models for water wall zones, platen and roof superheaters, NOx, and flyash

Note that the surrogate dictionary can be either surrogate models (algebraic equations), or fixed values, or variables to calculate the heat flux required for certain performance.
For example, this model can be used for data reconciliation to calculate the heat duty to the water wall, platen superheater, and roof.

Model inputs (variable name):

	primary_air_inlet (flow_mol, enth_mol, pressure)

	secondary_air_inlet (flow_mol, enth_mol, pressure)

	number of water wall zones (number_of_zones)

	Coal composition in dry basis (mf_C_coal_dry)

	coal flowrate (coal_flowrate_raw)

	moisture content in the coal (mf_H2O_coal_raw)

	stoichiometric ratio (SR)*

	primary air to coal ratio (ratioPA2coal)*

	heat flux (or heat_duty) to water wall zones, platen superheater, and roof superheater

* not required if calculate_PA_SA_flows is False

Model outputs:

	flue_gas_outlet (flow_mol, enth_mol, pressure)

	heat duty to water wall (ww_heat), platen superheater (platen_heat)*, and roof and backpass (roof_heat)*

Note that platen_heat and roof_heat are only constructed if arguments are equat True

Degrees of Freedom

if calculate_PA_SA_flows is True:
By specifying the inlet conditions (primary air and secondary air temperature and pressure), stoichiometric ratio, primary air to coal ratio, coal composition, coal High Heating Value, coal flowrate (raw), moisture content in coal, and surrogate_dictionary, the model will be fully specified. Things that are frequently fixed are:

if calculate_PA_SA_flows is False:
This means users “know” or have measurements of the primary air and secondary air, therefore, stoichiometric ratio and primary air to coal ratio are not required to estimate the primary and secondary air.
By specifying the primary air inlet (flow_mol_comp, temperature, pressure), secondary air inlet (flow_mol_comp, temperature, pressure), coal composition, coal High Heating Value, coal flowrate (raw), moisture content in coal, and surrogate_dictionary, the model will be fully specified. Things that are frequently fixed are:

Constraints

The main constraints in the model satisfy the energy balance and calculate flue gas outlet conditions (flow_mol_comp, temperature, pressure).

\[Heat_{in} = Heat_{out}\]

\[Heat_{in} = Coal_{mass flow}*H_{coal} + Primary_air{mol flow}*enth_mol_{primary air} + Secondary_air{mol flow}*enth_mol_{secondary air}\]

\[Heat_{out} = flue_gas_{molar flow}*enth_mol_{flue gas} + ww_{heat} + platen_{heat} + roof_{heat} + ash_{mass flow}*Hs_{flyash}\]

\[ww_{heat} = f(coal_flow, secondary air temperature, stoichiometric ratio, ratioPA2coal, wall temperature)\]

\[platen_{heat} = f(coal_flow, secondary air temperature, stoichiometric ratio, ratioPA2coal, wall temperature)\]

\[roof_{heat} = f(coal_flow, secondary air temperature, stoichiometric ratio, ratioPA2coal, wall temperature)\]

\[NOx = f(coal_flow, secondary air temperature, stoichiometric ratio, ratioPA2coal, wall temperature)\]

\[flyash = f(coal_flow, secondary air temperature, stoichiometric ratio, ratioPA2coal, wall temperature)\]

\[T_{coal} = T_{primary air}\]

where:

	Flow_mol_comp in mol/s

	Temperature in K

	Pressure in Pa

	Heat duty in W

	Coal mass flow after removing the moisture content kg/s

 Water Tank

Water Tank

The IDAES water tank model represents a unit operation for storing water. The water tank model
supports several shapes including rectangular, vertical and horizontal cylindrical.

Model Structure

The water tank unit model consists of a single ControlVolume0D (named control_volume) with one
Inlet Port (named inlet) and one Outlet Port (named outlet).

Construction Arguments

Similar to other IDAES unit models, the water tank has the following construction arguments:

	Argument

	Default Value

	dynamic

	False

	include_holdup

	False

	material_balance_type

	MaterialBalanceType.componentPhase

	energy_balance_type

	EnergyBalanceType.enthalpyTotal

	momentum_balance_type

	MomentumBalanceType.pressureTotal

	has_heat_transfer

	True

	has_pressure_change

	True

	property_package

	Parent value

	property_package_args

	–

Additionally, the water tank model has one specific construction argument to declare the tank shape:

	tank_type: configuration argument to define the shape of the tank to be modeled, and accordingly calculate the volume of the filled level. Currently, the supported values are: simple_tank, rectangular_tank, vertical_cylindrical_tank, and horizontal_cylindrical_tank. Being simple_tank the default value.

Variables

The following variables are added to the model independently of the tank type selected:

Model Inputs (variable name) - symbol:

	water inlet (inlet: flow_mol, enth_mol, pressure)

	tank level (tank_level) - \(l\)

	heat duty (heat_duty) - \(Q\)

Model Outputs (variable name):

	water outlet (outlet: flow_mol, enth_mol, pressure)

	pressure drop (deltaP) - \(\Delta P\)

Additionally, some variables are added to the model based on the tank type as indicated below:

	tank_type

	Variable added

	simple_tank

	tank_cross_sect_area - \(A_{c}\)

	rectangular_tank

	tank_width - \(W\), tank_length - \(L\)

	vertical_cylindrical_tank

	tank_diameter - \(d\)

	horizontal_cylindrical_tank

	tank_diameter - \(d\), tank_length - \(L\)

Constraints

The main assumptions used in the water tank unit model are:

	Heat loss is a variable given by the user (zero heat loss can be specified if adiabatic)

	Calculate pressure change due to gravity based on water level

	Water level is either fixed for steady-state model or calculated for dynamic model

	Assume enthalpy_in == enthalpy_out + heat loss

In addition to the constraints written by the control volume, the water tank model adds two constraints
for the pressure drop and the volume of the liquid level in the unit.

Pressure drop constraint:

\[\Delta P = \Delta P_{gravity} = \rho_{liq} * g * l\]

Volume of the liquid constraint:

	for simple_tank, rectangular_tank and vertical_cylindrical_tank:

\[V_{liq} = l * A_{c}\]

	for horizontal_cylindrical_tank:

\[V_{liq} = L * A_{t}\]

where:

	\(\rho_{liq}\): liquid density

	\(l\): level filled by liquid in the unit

	\(g\): acceleration gravity

	\(L\): tank length

	\(A_{c}\): cross sectional area of the tank, which for the simple_tank is an input variable, while for rectangular_tank and vertical_cylindrical_tank is an expression calculated by the model

	\(A_{t}\): area of the circular segment covered by the liquid level at one end of the tank. This is an expression calculated by the model and is only valid for the horizontal_cylindrical_tank

The following expressions were used to calculate the tank cross sectional area, and tank area:

	for rectangular_tank: \(A_{c} = W * L\)

	for vertical_cylindrical_tank: \(A_{c} = \pi * r^{2}\), tank_radius (r) is an expression calculated by the model

	for horizontal_cylindrical_tank: \(A_{t} = cos^{-1}(1-l/r)*r^{2}-(r-l)*(2rl-l^{2})^{0.5}\)

Degrees of Freedom

The degrees of freedom depend on the tank type as the dimension variables are differents for each type,
but once the dimensions for a specific tank type have been fixed, the model generally has 3-5 degrees of freedom:
the inlet state (flow_mol, enth_mol, and pressure), the heat duty whether the config argument has_pressure_change is set to True,
and the tank level whether for steady state simulations

Dynamic Model

The dynamic model version of the tank model can be constructed by selecting dynamic=True.
If dynamic = True, material accumulation, energy accumulation, and tank level must be calculated. Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the holdup terms.

 BoilerHeatExchanger2D

BoilerHeatExchanger2D

The BoilerHeatExchanger2D model can be used to represent boiler heat exchangers in
sub-critical and super critical power plant flowsheets (i.e. econmizer, primary superheater, secondary superheater, finishing superheater, reheater, etc.).
The model consists of a shell and tube crossflow heat exchanger, in which the shell is used as the gas side and the tube is used as the water or steam side.
Due to the fluid temperature changes along the flow paths inside and outside of the tubes, the velocities of the fluids also change from the inlet to the outlet, causing the changes of heat transfer coefficients and friction factors on both sides along the flow paths. If the flows on both sides can be discretized along the flow paths, local temperature difference between the hot and cold streams (the driving force for heat transfer), local heat transfer coefficients and local friction factors can be used and a more accurate model can be constructed. Figure 1 shows a schematic of the shell and tube cross-flow heat exchanger. In this figure, the hot fluid on the shell side flows from left to right while the cold fluid flows through the tubes up and down. Notice that the cold fluid may enter the tube bundle in multiple rows (2 rows shown in the figure) and flow in parallel. The dash lines show the discretization along the flow path of the hot shell-side flow. The dash lines also cut the tube side flow to multiple segments with the direction of the flow inside the tube switching in two neighboring segments. The flow properties such as heat transfer coefficients and friction factors are calculated in individual discretized elements. Meanwhile the overall flow configuration is either a co-current or counter-current. Counter-current configuration are shown in Figure 1. Since the tube-side flow switches direction from one discretized section to another, pressure drop due the U-turn is also modeled based on the loss coefficient of the U-turn. If the elevation changes between the tube inlet and outlet, the pressure change due to gravity for the tube side fluid is also modeled in each element.
Rigorous heat transfer calculations (convective heat transfer for shell side, and convective heat transfer for tube side) and shell and tube pressure drop calculations have been included.

[image: ../../../../_images/boiler2D_1.png]
Cross-flow heat exchanger

In a transient heat transfer process such as in a load ramping operating condition, tube metal wall contains internal energy and its change with time represents the accumulation term (source or sink) in the energy conservation equation. Due to the high density and high heat capacity of the tube metal, its energy holdup should not be ignored. In other words, the transient tube wall temperatures and its distribution along the wall thickness and along the flow path need to be solved. In addition to the discretization along the flow path direction, the discretization along the tube wall thickness at each discretized flow path section is required, which make the heat exchanger model a 2-D model. Besides, the temperature gradient along the tube thickness is also required to calculate the thermal stress and other equipment health related properties.
Figure 2 shows the discretization of tube wall temperature along the tube radius direction.
The transient tube wall temperature T_(w,r) at each discretized radius r is calculated based on transient heat conduction equation(Eqn. 1), and in the cylindrical coordinate system the heat conduction equation is shown in equation 2.

[image: ../../../../_images/boiler2D_2.png]
Cross-flow heat exchanger

where, T_(w,r) is the tube metal temperature, t is time, alfa is termal diffusivity of the tube metal, typically steel, and r is the radius. This partial differential equation can be discretized by Pyomo-DAE in the radius direction. The heat accumulation in the tube metal is represented by the solution of the transient temperatures along the radius direction.

The HeatExchangerCrossFlow2D_Header model can be imported from idaes.power_generation.unit_models,
while additional rules and utility functions can be imported from
idaes.power_generation.unit_models.boiler_heat_exchanger2D.

Degrees of Freedom

The configuration variables for the 2-D heat exchanger model include the inside diameter of the tube and thickness of the tube.
They are used as parameters of the model and have to be declared for discretization in the radius direction.
Once declared as configuration arguments, they are not allowed to change (immutable). Other configuration variables include “finite_elements” (the number of elements) in the flow path direction, “radial_elements” (the number of elements in radius direction, “tube_arrangement” for either staggered or in-line arrangement, “has_radiation” if shell-side radiation heat transfer is considered, and “flow_type” for either co-current or counter-current configuration. Additionally, has_header has been added as a configuration argument, when it is True, the health of the water/steam headers is calculated (see header section).
The main input variables for the 2-D cross-flow heat exchanger model include design variables such as number of tube segments, number of tube columns, number of tube inlet rows, length of the tube in each segment (each pass), pitches in directions parallel and perpendicular to the shell fluid flow, and elevation change from tube inlet to tube outlet. The thermal and transport properties are also required as well as the mechanical properties if the equipment health model is used. Other required operating variables include fouling resistances on both tube and shell sides, tube wall emissivity if radiation model is turned on, and correction factors for heat transfer and pressure drops on both sides.
Given the inlet conditions such as pressures, temperatures and flow rates on both sides, the outlet conditions will be predicted by the model. Meanwhile the temperature and pressure distributions along the flow path direction will be solved on both sides. The 2-D tube wall temperature distribution will also be solved.

In order to capture off design conditions and heat transfer coefficients at ramp up/down or load following conditions, the BoilerHeatExchanger2D
model includes rigorous heat transfer calculations. Therefore, additional degrees of freedom are required to calculate Nusselt, Prandtl, Reynolds numbers, such as:

	tube_di (inner diameter)

	tube length

	tube number of rows (tube_nrow), columns (tube_ncol), and inlet flow (nrow_inlet)

	pitch in x and y axis (pitch_x and pitch_y, respectively)

If pressure drop calculation is enabled, additional degrees of freedom are required:

	elevation with respect to ground level (delta_elevation)

	tube fouling resistance (tube_r_fouling)

	shell fouling resistance (shell_r_fouling)

Model Structure

The HeatExchangerCrossFlow2D_Header model contains two ControlVolume1DBlock blocks. By default the
gas side is named shell and the water/steam side is named tube. These names are configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side.

The control volumes are configured the same as the ControlVolume1DBlock in the
Heater model.
The HeatExchangerCrossFlow2D_Header model contains additional constraints that calculate the amount
of heat transferred from the hot side to the cold side.

The HeatExchangerCrossFlow2D_Header has two inlet ports and two outlet ports. By default these are
shell_inlet, tube_inlet, shell_outlet, and tube_outlet. If the user
supplies different hot and cold side names the inlet and outlets are named accordingly.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from hot side to the cold side

	area

	\(A\)

	None

	Heat transfer area

	U

	\(U\)

	time

	Heat transfer coefficient

	delta_temperature

	\(\Delta T\)

	time

	Temperature difference, defaults to LMTD

Note: delta_temperature may be either a variable or expression depending on the callback used. If the specified cold side is hotter
than the specified hot side this value will be negative.

Constraints

The default constraints can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, heat transfer coefficient, shell
and tube pressure drop. This section describes the default constraints.

Heat transfer from shell to tube:

\[Q = UA\Delta T\]

Temperature difference is:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

The overall heat transfer coefficient is calculated as a function of convective heat transfer shell and tube, and wall conduction heat transfer resistance.

Convective heat transfer equations:

\[\frac{1}{U}*fcorrection_{htc} = [\frac{1}{hconv_{tube}} + \frac{1}{hconv_{shell}} + r + tube_{r fouling} + shell_{r fouling}]\]

Tube convective heat transfer (for all elements in tube discretization approach):

\[hconv_{tube} = \frac{Nu_{tube} k}{2tube_{ri}}\]

\[Nu_{tube} = 0.023 Re_{tube}^{0.8} Pr_{tube}^{0.4}\]

\[Pr_{tube} = \frac{Cp \mu}{ k Mw}\]

\[Re_{tube} = \frac{tube_{ri}2 V \rho}{\mu}\]

Shell convective heat transfer:

\[hconv_{shell} = \frac{Nu_{shell} k_{flue gas}}{tube_{do}}\]

\[Nu_{shell} = f_{arrangement} 0.33 Re_{tube}^{0.6} Pr_{tube}^{0.3333}\]

\[Pr_{shell} = \frac{Cp \mu}{ k Mw}\]

\[Re_{shell} = \frac{tube_{do} V \rho}{\mu}\]

\[tube_{do} = 2*tube_{thickness} + tube_{di}\]

Wall heat conduction resistance equation:

\[r = 0.5 * tube_{do} * \log{(\frac{tube_{do}}{tube_{di}})}*k\]

where:

	hconv_tube : convective heat transfer resistance tube side (fluid water/steam) (W / m2 / K)

	hconv_shell : convective heat transfer resistance shell side (fluid Flue Gas) (W / m2 / K)

	Nu : Nusselt number

	Pr : Prandtl number

	Re : Reynolds number

	V: velocity (m/s)

	tube_di : inner diameter of the tube (m)

	tube_do : outer diameter of the tube (m) (expression calculated by the model)

	tube_thickness : tube thickness (m)

	r = wall heat conduction resistance (K m^2 / W)

	k : thermal conductivity of the tube wall (W / m / K)

	\(\rho\) : density (kg/m^3)

	\(\mu\) : viscocity (kg/m/s)

	tube_r_fouling : tube side fouling resistance (K m^2 / W)

	shell_r_fouling : shell side fouling resistance (K m^2 / W)

	fcorrection_htc: correction factor for overall heat trasnfer

	f_arrangement: tube arrangement factor

Note:
by default fcorrection_htc is set to 1, however, this variable can be used to match unit performance (i.e. as a parameter estimation problem using real plant data).

Tube arrangement factor is a config argument with two different type of arrangements supported at the moment:
1.- In-line tube arrangement factor (f_arrangement = 0.788), and 2.- Staggered tube arrangement factor (f_arrangement = 1). f_arrangement is a parameter that can be adjusted by the user.

The HeatExchangerCrossFlow2D_Header model includes an argument to compute heat tranfer due to radiation of the flue gases. If has_radiation = True the model builds additional heat transfer calculations that will be added to the hconv_shell resistances.
Radiation effects are calculated based on the gas gray fraction and gas-surface radiation (between gas and shell).

\[Gas_{gray frac} = f (gas_{emissivity})\]

\[frad_{gas gray frac} = f (wall_{emissivity}, gas_{emissivity})\]

\[hconv_{shell_rad} = f (k_{boltzmann}, frad_{gas gray frac}, T_{gas in}, T_{gas out}, T_{fluid in}, T_{fluid out})\]

Note:
Gas emissivity is calculated with surrogate models (see more details in boiler_heat_exchanger.py).
Radiation = True when flue gas temperatures are higher than 700 K (for example, when the model is used for units like Primary superheater, Reheater, or Finishing Superheater;
while Radiation = False when the model is used to represent the economizer in a power plant flowsheet).

If pressure change is set to True, \(deltaP_{uturn} and friction_{factor}\) are calculated

Tube side:

\[\Delta P_{tube} = \Delta P_{tube friction} + \Delta P_{tube uturn} - elevation * g *\frac{\rho_{in} + \rho_{out}}{2}\]

\[\Delta P_{tube friction} = f(tube_{di} \rho, V_{tube}, number of tubes, tube_{length})\]

\[\Delta P_{tube uturn} = f(\rho, v_{tube}, k_{loss uturn})\]

where:

	\(k_{loss uturn}\) : pressure loss coeficient of a tube u-turn

	g : is the acceleration of gravity 9.807 (m/s^2)

Shell side:

\[\Delta P_{shell} = 1.4 \Delta P_{shell friction} \rho V_{shell}^2\]

\(\Delta P_{shell friction}\) is calculated based on the tube arrangement type:

In-line: \(\Delta P_{shell friction} = \frac{ 0.044 + \frac{0.08 (\frac{P_x}{tube_{do}}) } {(\frac{P_y}{tube_{do}}-1)^{0.43+\frac{1.13}{(\frac{P_x}{tube_{do}})}}}}{Re^{0.15}}\)

Staggered: \(\Delta P_{shell friction} = \frac{ 0.25 + \frac{0.118}{(\frac{P_y}{tube_{do}} -1)^{1.08}} }{Re^{0.16}}\)

Figure. Tube Arrangement

[image: ../../../../_images/tube_arrangement.png]
Tube Arrangement

Header Health Model

The heat exchanger 2D model allows the user to calculate the thermal and mechanical stresses of the water/steam headers connected to the outlet of the tube side. Additionally, the rupture time and fatigue calculation of allowable cycles are computed by the model.
A simplified 1D PDE problem is developed to represent the heat conduction transient through the radius of the superheater/reheater headers.
Regarding to the flow path configuration (counter-current or co-current) of the 2D heat exchanger, the first or the last discretization point will be used to define the boundary of the headers.
For this example, the last discretization point will be used for the outlet superheater header due to the counter-current flow configuration. Under the assumptions of constant conductivity and no heat generation, the Fourier’s equation is converted to the Eq. (h1) for the cylindrical header. The Pyomo.DAE framework is applied to solve the PDE problem. The thermal and mechanical stresses are calculated based on the pressure and temperature difference between both sides of the header which can be used to evaluate the allowable number of cycles of the main body and the critical point of the edge of the hole.

\[\frac{1}{a} \frac{\partial T}{\partial t} = \frac{{\partial}^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r}\]

where T is wall temperature (K), r is radius (m), and a is the material thermal difussivity (m2/s). The material thermal difussivity is a function of (material thermal conductivity, specific heat, and density)

Detailed description of the mechanical stress calculations and thermal stress calculations can be found in S. Bracco, 2012 and Taler & Duda, 2006, respectively.

Rupture time calculation: The creep phenomenon is an important design consideration in the analysis of structures.
At the high temperature operation, the creep is coupled with fatigue due to cycling, the damage will be much higher than that occurring if the same fatigue or creep is working alone.
For example, a long-time creep rupture strength values can be derived by using the Manson-Haferd model. However, depending on the investigated material, users can find another correlation to calculate the rupture strength in the open literature.

Fatigue calculation of allowable cycles:
For general ferritic and austenitic materials, the calculation of the allowable number of cycles are expressed in the following equation. However, the users can be recommended to find a specific fatigue equation for their own material to obtain a better result.
Using the calculated stresses above, the number of allowable cycles of the component can be evaluated based on fatigue assessment standard, such as EN 13445. The detail of the developed approach can be found in Bracco’s report (S. Bracco, 2012). This model can be applied for both drum and thick-walled components such as header. According to the EN 13445 standard, for a single cycle, the allowable number of fatigue cycles N can be computed as:

\[N = \frac{46000}{\Delta\Sigma R_i - 0.63 R_m + 11.5}\]

where Rm is the material tensile strength at room temperature while the reference stress range \(\Delta\SigmaR_i\) depends on the stress range \(\Delta\Sigma_i\)

Bracco, S. (2012). Dynamic simulation of combined cycles operating in transient conditions: An innovative approach to determine the steam drums life consumption. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS 2012.
Taler, J., & Duda, P. (2006). Solving direct and inverse heat conduction problems. Solving Direct and Inverse Heat Conduction Problems. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-33471-2

Class Documentation

	
class idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_Header(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	shell_side
	shell side config arguments

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.componentTotal. Valid values:
{ MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy
balance for material,
EnergyBalanceType.enthalpyPhase - ethalpy balances
for each phase, EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	tube_side
	tube side config arguments

	material_balance_type
	Indicates what type of mass balance should be
constructed, default -
MaterialBalanceType.componentTotal. Valid values:
{ MaterialBalanceType.none - exclude material
balances, MaterialBalanceType.componentPhase - use
phase component balances,
MaterialBalanceType.componentTotal - use total
component balances,
MaterialBalanceType.elementTotal - use total
element balances, MaterialBalanceType.total - use
total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy
balance for material,
EnergyBalanceType.enthalpyPhase - ethalpy balances
for each phase, EnergyBalanceType.energyTotal -
single energy balance for material,
EnergyBalanceType.energyPhase - energy balances
for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum
balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure
balances for each phase,
MomentumBalanceType.momentumTotal - single
momentum balance for material,
MomentumBalanceType.momentumPhase - momentum
balances for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	transformation_method
	Discretization method to use for DAE transformation. See
Pyomo documentation for supported transformations.

	transformation_scheme
	Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes.

	finite_elements
	Number of finite elements to use when discretizing length
domain (default=5). Should set to the number of tube rows

	collocation_points
	Number of collocation points to use per finite element
when discretizing length domain (default=3)

	flow_type
	Flow configuration of heat exchanger co_current: shell and
tube flows from 0 to 1 counter_current: shell side flows
from 0 to 1 tube side flows from 1 to 0

	tube_arrangement
	Tube arrangement could be in-line or staggered

	tube_side_water_phase
	Define water phase for property calls

	has_radiation
	Define if shell side gas radiation is to be considered

	tube_inner_diameter
	User must define inner diameter of tube

	tube_thickness
	User must define tube wall thickness

	radial_elements
	Number of finite elements to use when discretizing radius
domain (default=5).

	header_inner_diameter
	User must define inner diameter of header

	header_wall_thickness
	User must define header wall thickness

	header_radial_elements
	Number of finite elements to use when discretizing radius
domain (default=5).

	has_header
	If has_header is True, user must provide header thickness
and inner diameter.

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchangerCrossFlow2D_Header) New instance

	
class idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_HeaderData(component)[source]

	Standard Heat Exchanger Cross Flow Unit Model Class.

	
build()[source]

	Begin building model.

	Parameters

	None –

	Returns

	None

	
initialize(shell_state_args=None, tube_state_args=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	HeatExchangerCrossFlow1D initialisation routine

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = None).

	outlvl – sets output level of initialisation routine

	0 = no output (default)

	1 = return solver state for each step in routine

	2 = return solver state for each step in subroutines

	3 = include solver output infomation (tee=True)

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Drum 1D Model

Drum 1D Model

Introduction

The 1-D drum model is similar to the 0-D drum model, however, the 1-D heat conduction through the radius or thickness of the drum wall is modeled.
The heat conduction through insulation is modeled as steady state and no energy holdup or accumulation in the insulation layer is considered. Dynamics and energy holdup are accounted for in the drum metal.

Similar to the drum model, the drum 1D model consists of three main sub-unit operations:

	a flash model to separate the saturated steam from the saturated liquid water in the water/steam mixture,

	a mixer model to mix saturated liquid water with feed water, and

	a water tank model to calculate drum level and pressure drop.

First the water/steam mixture from boiler waterwall tubes (risers) enters the flash model and leaves in two separate streams (liquid water and steam).
Then, the saturated water from the flash model is mixed with the feed water stream (typically from the economizer or a water pipe linking the economizer and the drum)
and leave the mixer model in a single mixed stream. Finally, the mixed stream enters the water tank of the drum and leaves the vessel through the multiple downcomers (see Figure 1).

The sub-unit models for the flash and the mixer (Items 1 and 2 in the above list) are identical to the 0-D drum model. The main difference between them is the way the horizontal water tank model is modeled, especially with respect to the heat transfer from the liquid water through the drum metal wall, its insulation layer and to the ambient air. In other words, the drum is not adiabatic.
The heat transfer from the liquid water in the drum to the ambient air includes a) convective heat transfer between the liquid water and the wetted inner wall of the drum, b) heat conduction from the inner drum wall to the outer drum wall through the drum metal thickness, c) heat conduction from the insulation layer inner wall to its outer wall, and d) natural heat convection from the insulation outer wall to the ambient air, typical at a room temperature.
Figure 1 is a schematic of the cross-sectional area of the drum. As can be seen in the figure, the liquid water occupies the lower part of the drum and the saturated steam occupies the upper part. The metal wall and insulation layer are also shown in the figure. The water/steam mixture and feed water enter the drum while the saturated steam leaves the drum through the pipes in the upper part and the subcooled water leaves the drum to the downcomers.

[image: ../../../../_images/drum1D_1.png]
Figure 1. Schematic of a boiler drum with metal wall and insulation layer

Inlet Ports:

	water_steam_inlet: water/steam mixture from waterwall

	feedwater_inlet: feedwater from economizer/pipe

Outlet Ports:

	liquid_outlet: liquid to downcomer

	steam_outlet: saturated steam leaving the drum

Variables

Model inputs (variable name):

	water/steam inlet (water_steam_inlet: flow_mol, enth_mol, pressure)

	feedwater inlet (feedwater_inlet: flow_mol, enth_mol, pressure)

	drum diameter (drum_diameter)

	drum length (drum_length)

	number of downcomer tubes (number_downcomers)

	downcomer diameter (downcomer_diameter)

	drum level (drum_level)

	heat duty (heat_duty)

Model Outputs:

	vapor outlet (vap_outlet: flow_mol, enth_mol, pressure)

	liquid outlet (liq_outlet: flow_mol, enth_mol, pressure)

Constraints

As mentioned above, the drum model imports a HelmPhaseSeparator and mixer models, specific documentation for these models can be obtained in:
Once the water enters the tank model the main equations calculate water velocity and pressure drop calculation due to gravity based on water level and contraction to downcomer.
Water level (drum_leve) is either fixed for steady state simulation or calculated for dynamic model (Dynamic = True)

Main assumptions:

	Heat loss is a variable given by the user (zero heat loss can be specified if adiabatic)

	Pressure change due to gravity based on water level and contraction to downcomer is calculated

	Water level is either fixed for steady-state model or calculated for dynamic model

	Assume enthalpy_in == enthalpy_out + heat loss + energy accumulation

	Subcooled water from economizer and saturated water from waterwall are well mixed before entering the drum

Pressure equality constraint:

\[P_{SaturatedWater} = P_{FeedWater}\]

Pressure drop in unit:

\[deltaP = deltaP_{contraction} + deltaP_{gravity}\]

\[deltaP_{gravity} = f(\rho_{liquid}, acceleration gravity, drum_level)\]

\[deltaP_{contraction} = f(\rho_{liquid}, V)\]

where:
* V: fluid velocity (m/s, liquid only)

Note that the model builds an Pyomo Arc to connect the Liquid_outlet from the self.aFlash unit to the SaturatedWater inlet port of the mixer, and the mixed_state (Mixer outlet) is directly constructed as the Drum control_volume.properties_in.
Once the Drum model is constructed, the mixer and flash blocks can be found as self.aDrum.aMixer and self.aDrum.aFlash

Convective heat transfer:
Strictly speaking, the inner drum wall temperature is not uniform along the circumference since the temperature of the wetted lower section is different from that of the upper section in contact with the saturated steam. The heat convection between the liquid water and the inner drum wall is considered as the dominant mechanism compared to the heat convection between the saturated steam and the inner drum wall in the upper dry section. The main assumption for the 1-D drum model is that the latter part can be ignored and inner drum wall temperature is uniformly distributed.
The convective heat transfer coefficient between the liquid water and the inner wetted wall (wetted section only) is calculated based on pool boiling assumption

\[h_{in} = f (Pr, Pred, Mw, T_{wall,in}, T_{liq})\]

where P_red is the reduced pressure (ratio of the drum pressure to the critical pressure of water), Mw is the molecular weight of water in mol/g, T_(wall,in) is the wetted drum inner wall temperature, and T_liq is the liquid water temperature.
The heat transfer coefficient of the natural heat convection h_(conv,ins) at the outer insulation wall can be calculated from the Nusselt number N_u by.

\[h_{conv,ins}=\frac{N_u k_{air}}{D_{o,ins}}\]

where D_(o,ins) is the outside diameter of the insulation layer and k_air is the thermal conductivity of air. The N_u for natural convection of a horizontal cylindrical wall is correlated to Rayleigh number R_a and Prandtl number of air P_(r,air) by

The Rayleigh number R_a is defined as

\[R_a=\frac{gβ(T_{wall,out,ins}-T_{amb}) D_{o,ins}^3}{να}\]

where g is gravity, β is thermal expansion coefficient of air, T_(wall,out,ins) is the outside insulation wall temperature, T_amb is the ambient temperature, ν is kinematic viscosity of air, and α is thermal diffusivity of air. To simplify the model, the thermal and transport properties of air are assumed to be constant at a film temperature, the average of the room temperature of 25 C and a insulation wall temperature of 80 C.

The equivalent heat transfer coefficient of the natural convection at the drum metal wall outside the boundary (hconv,drum) can be calculated from hconv,ins as:

\[h_{conv,drum} = \frac{D_{o,ins} h_{conv,ins}}{D_{o,drum}}\]

where D_(o,drum) is the outside diameter of the drum metal wall

The energy accumulation for the insulation layer is ignored due to its low heat capacity compared with the drum metal wall. The heat transfer resistance of the insulation layer based on inner insulation area is considered though (r_ht,ins).
The heat transfer resistance of the insulation layer and the natural heat convection are combined to obtain the equivalent overall heat transfer coefficient at the outer boundary of the drum metal wall (hout).

The heat conduction through the thickness or radius of the drum metal can be described by a transient heat conduction equation of solid as

\[\frac{\partial{T}}{\partial{t}} = \alpha \nabla^2 T\]

In cylindrical coordinate system, it can be written as

\[\frac{\partial{T}}{\partial{t}} = \alpha \frac{\partial^2 T}{\partial{r}^2} + \frac{\alpha}{r} \frac{\partial{T}}{\partial{t}}\]

where T is the drum metal temperature, t is time, α is thermal diffusivity of drum metal, typically steel, and r is the radius. This partial differential equation can be discretized by Pyomo-DAE in the radius direction. The heat accumulation in the drum metal is represented by the solution of the transient temperatures along the radius direction.
To solve the transient heat conduction problem, we need to specify the boundary conditions. Figure 2 shows the drum metal wall and the liquid water inside the drum.

[image: ../../../../_images/drum1D_2.png]
Figure 2. Drum metal wall with liquid water

Drum Health Model

The model can be used to calculate the stress and allowable number of cycles of both the main body and location of critical point of the opening junction.
During transient operation, the component is subject to variations of pressure and temperature which cause thermal stress and thermo-mechanical fatigue. The temperature difference in both sides of the metal causes the thermal stress. Also, the cylinder is subjected to an inside and outside pressure, which can obtain the mechanical stresses.
The mechanical and thermal stresses are considered:

	Mechanical stress is calculated using S. Bracco, 2012 reference, and it is a function of the pressure and radius at the inside and outside surfaces.

	Thermmal stress is calculaed using Taler & Duda, 2006 refernce, and it is a function of the Young modus, a linear temperature expansion coefficient, and Poisson ratio of the steel material.

Fatigue calculation of allowable cycles:
Using the calculated stresses above, the number of allowable cycles of the component can be evaluated based on fatigue assessment standard, such as EN 13445. The detail of the developed approach can be found in Bracco’s report (S. Bracco, 2012). This model can be applied for both drum and thick-walled components such as header. According to the EN 13445 standard, for a single cycle, the allowable number of fatigue cycles N can be computed as a funciton of the material tensile strength at room temperature and a reference stress range.

[1] Bracco, S. (2012). Dynamic simulation of combined cycles operating in transient conditions: An innovative approach to determine the steam drums life consumption. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS 2012.

[2] Taler, J., & Duda, P. (2006). Solving direct and inverse heat conduction problems. Solving Direct and Inverse Heat Conduction Problems. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-33471-2

[3] European standard EN 13445: 2002 (2005). Unfired pressure vessels, (parts 1-5), CEN European Committee for Standardization, Part 3: Design, Issue 14.

Degrees of Freedom

Once the unit dimensions have been fixed, the model generally has 5 degrees of freedom. The water/steam mixture inlet state (flow_mol, enth_mol, and pressure) and feewater inlet state (flow_mol and enth_mol). The feedwater inlet pressure is usually free due to the pressure equality mentioned above.

Dynamic Model

The dynamic model version of the drum model can be constructed by selecting dynamic=True.
If dynamic = True, material accumulation, energy accumulation, and drum level must be calculated. Therefore, a dynamic initialization method has been developed set_initial_conditions to initialize the holdup terms.

 Water Pipe Model

Water Pipe Model

Introduction

The water pipe model is used to model a water or steam pipe connecting two units in a power plant. It calculates the pressure change between the pipe inlet and outlet due to friction, gravity, and optional expansion or contraction at the end of the pipe. The water pipe model does not provide the equations to calculate the heat loss. However, the user can specify the heat duty if configuration variable “has_heat_transfer” is set to True.
When declaring the water pipe model, the user needs to provide typical configuration variables for a control volume, the base class the model is derived from, including “dynamic”, “has_holdup”, “has_heat_transfer”, “has_pressure_change”, etc. While most of configuration variables have default values, the configuration variable for “property_package” has to be given as the IDAES property package for water implemented based on IAPWS water property table. The user needs to set the variable “water_phase” either as “Liq” for liquid water or “Vap” for water vapor. Currently the model does not support the pipe with two phase flow since the two-phase flow is usually unstable. The user also needs to specify the configuration variable “contraction_expansion_at_end”. If there is a contraction at the end of the pipe, the value for the variable should be “contraction”. If there is an expansion at the end, the value should be “expansion”. The value of “None” is used if there is no contraction or expansion at the end of the pipe.

Model inputs (variable name):

	number of pipes (number_of_pipes)

	tube dimensions (length, inner diameter, elevation change) (length, diameter, elevation_change)

	water/steam flow rate and states at inlet (flow_mol, enth_mol, pressure)

	pressure drop correction factor (fcorrection_dp)

	heat duty (usually fixed equal to 0)

	if expansion at the end of pipe is True, user needs to specify area ratio at the end (area_ratio), which is the area after contraction or expansion divided by the cross sectional area of the pipe)

Model Outputs:

	pressure drop (deltaP)

	water/steam flow rate and states at outlet (flow_mol, enth_mol, pressure)

Degrees of Freedom

As mentioned above, the waterpipe model includes rigorous pressure drop, therefore, detailed pipe dimensions are required. Aside from the inlet conditions and tube dimensions, the waterpipe model usually has one degree
of freedom, the heat duty, which can be fixed for it to be fully specified.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred from flue gas to tube side fluid

	deltaP

	\(\DeltaP\)

	time

	Pressure drop

Constraints

The main constraints in this model are used to compute the pressure drop.
Three types of pressure changes are considered in the pipe model, including the pressure change due to friction along the pipe length, the pressure change due to gravity if there is an elevation change from the inlet to the outlet, and the pressure change due to the contraction or expansion at the end.

Pressure drop:

\[\Delta P = \Delta P_{friction} + \Delta P_{gravity} + \Delta P_{contraction}\]

\[\Delta P_{tube friction} = f(diameter \rho, V, number of pipes, length, Re, fcorrection_{dp})\]

\[deltaP_{gravity} = f(\rho, acceleration gravity, elevation_{change})\]

\[deltaP_{contraction} = f(\rho, V, K_{loss})\]

Reynolds number:

\[Re_{tube} = \frac{tube_{di} V \rho}{\mu}\]

where:

	fcorrection_dp: correction factor if the pipe is not smooth

	diameter: inner diameter (m)

	\(\rho\) : density (kg/m^3)

	Re : Reynolds number

	V: fluid velocity (m/s)

	Kloss: loss coefficient due to the contraction (function of the area ratio)

Dynamic Model

The dynamic model version of the steam heater model can be constructed by selecting dynamic=True.
If dynamic = True, the material accumulation holdups are constructed. While, the metal energy holdup is not considered.

 Heat Exchanger With Three Streams

Heat Exchanger With Three Streams

The HeatExchangerWith3Streams model consists of a heat exchanger with three inlets, side_1 represents the hot stream, while side_2 and side_3 are cold streams.
This model is a simplified generic heat exchanger model with lumped UA (the product of the overall heat transfer coefficient and the heat transfer area).

In a power plant flowsheet this model is used to represent an air preheater unit. This is because modeling the Ljungström type preheater is quite challenging since it involves not only the hot and cold gas streams but also the energy stored in and relased from the metal parts.

Degrees of Freedom

Aside from the inlet conditions, a 3 inlet heat exchanger model usually has six degrees
of freedom, which must be fixed for it to be fully specified. Things that are
frequently fixed are two of:

	UA_side_2 - lumped overall heat transfer and heat transfer area of side 2

	UA_side_3 - lumped overall heat transfer and heat transfer area of side 3

	frac_heatloss - fraction of heat loss in the system

	deltaP_side_1 - pressure drop in side 1

	deltaP_side_2 - pressure drop in side 2

	deltaP_side_3 - pressure drop in side 3

Model Structure

The HeatExchangerWith3Streams model contains three ControlVolume0DBlock blocks. The
hot side is named side_1 and two cold sides are named side_2 and side_3. These names are not configurable.
The sign convention is that duty is positive for heat flowing from the hot side to the cold
side.

The control volumes are configured the same as the ControlVolume0DBlock in the
Heater model.
The HeatExchangerWith3Streams model contains additional constraints that calculate the amount
of heat transferred from the hot side to the cold side.

The HeatExchangerWith3Streams has three inlet ports and three outlet ports. By default these are
side_1_inlet, side_2_inlet, side_3_inlet, side_1_outlet, side_2_outlet, side_3_outlet.

Variables

	Variable

	Symbol

	Index Sets

	Doc

	heat_duty

	\(Q\)

	time

	Heat transferred (model includes 3 variables, one for each side)

	UA

	\(UA\)

	None

	lumped Heat transfer area and overall heat transfer coefficient

	LMTD

	\(LMTD\)

	time

	Log Mean Temperature difference, LMTD

Constraints

The default constraints can be overridden by providing alternative rules for
the heat transfer equation, temperature difference, heat transfer coefficient, shell
and tube pressure drop. This section describes the default constraints.

Heat transfer from hot to cold sides:

\[Q_{side_1} * (1-frac_{heat_loss}) = Q_{side_2} + Q_{side_3}\]

\[Q_{side_2} = UA_{side_2}\Delta T_2\]

\[Q_{side_3} = UA_{side_3}\Delta T_3\]

Temperature difference is:

\[\Delta T = \frac{\Delta T_1 - \Delta T_2}{\log_e\left(\frac{\Delta T_1}{\Delta T_2}\right)}\]

Note

DeltaT2 is a function of hot stream side 1 and cold stream side 2, and DeltaT3 is a function of hot side and cold stream side 3.

Class Documentation

	
class idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3Streams(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	side_1_property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_1_property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	side_2_property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_2_property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	side_3_property_package
	Property parameter object used to define property
calculations, default - useDefault. Valid values:
{ useDefault - use default package from parent model
or flowsheet, PhysicalParameterObject - a
PhysicalParameterBlock object.}

	side_3_property_package_args
	A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these, default -
None. Valid values: { see property package for
documentation.}

	material_balance_type
	Indicates what type of material balance should be
constructed, default -
MaterialBalanceType.componentPhase. Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase
component balances, MaterialBalanceType.componentTotal
- use total component balances,
MaterialBalanceType.elementTotal - use total element
balances, MaterialBalanceType.total - use total
material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy
balance for material, EnergyBalanceType.enthalpyPhase
- ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_heat_transfer
	Indicates whether terms for heat transfer should be
constructed, default - False. Valid values: {
True - include heat transfer terms, False -
exclude heat transfer terms.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	flow_type_side_2
	Flag indicating type of flow arrangement to use for heat
exchanger, default ‘counter-current’ counter-current
flow arrangement

	flow_type_side_3
	Flag indicating type of flow arrangement to use for heat
exchanger (default = ‘counter-current’ - counter-current
flow arrangement

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(HeatExchangerWith3Streams) New instance

	
class idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3StreamsData(component)[source]

	Standard Heat Exchanger Unit Model Class

	
build()[source]

	Begin building model

	
initialize(state_args_1=None, state_args_2=None, state_args_3=None, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	General Heat Exchanger initialisation routine.

	Keyword Arguments

	
	state_args_1 – a dict of arguments to be passed to the property
package(s) for side 1 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = None).

	state_args_2 – a dict of arguments to be passed to the property
package(s) for side 2 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = None).

	state_args_3 – a dict of arguments to be passed to the property
package(s) for side 3 of the heat exchanger to
provide an initial state for initialization
(see documentation of the specific property package)
(default = None).

	outlvl – sets output level of initialisation routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

 Property Models

Property Models

	Flue Gas Property Package

 Flue Gas Property Package

Flue Gas Property Package

A flue gas property package has been developed to provide properties of combustion gases and air.
The ideal gas property package includes the main components in flue gas: O2, N2, NO, CO2, H2O, SO2

Main parameters:

	molecular weight in kg/kg-mol indexed by component list,

	reference pressure & temperature in Pa and Kelvin,

	critical pressure and temperature in Pa and Kelvin indexed by component list,

	gas constant in J/(mol K),

	constants for specific heat capacity in J/(mol K) indexed by component list and parameter A to H,

	vapor pressure coefficients (Antoine Eq.) P in Bar and T in K indexed by component list and parameters A to C,

Source: NIST webbook (last update: 01/08/2020)

The main methods supported are:

	heat capacity in J/(mol K),

	enthalpy in J/mol,

	entropy in J/(mol K),

	volumetric flowrate m3/s,

	viscosity of mixture in kg/(m s),

	thermal conductivity mixture in J / (m K s),

	molar density m3/mol,

	reduced pressure and temperature (unitless),

 Flowsheet Models

Flowsheet Models

	Supercritical Coal-Fired Power Plant Flowsheet

 Supercritical Coal-Fired Power Plant Flowsheet

Supercritical Coal-Fired Power Plant Flowsheet

	This is an example supercritical pulverized coal (SCPC) power plant.This simulation model consist of a ~595 MW gross coal fired power plant.
	The dimensions and operating conditions used for this simulation do not represent any specific coal-fired power plant.

This model is for demonstration and tutorial purposes only. Before looking at the
model, it may be useful to look at the process flow diagram (PFD).

SCPC Power Plant (simplified description)

Inputs:

	Throttle valve opening,

	Feed water pump pressure,

	BFW - boiler feed water (from Feed water heaters),

	Coal from pulverizers

Main Assumptions:

Coal flowrate is a function of the plant load, the coal HHV is fixed and heat dutty
from fire side to water wall and platen superheater are fixed.

	Boiler heat exchanger network:
	
	Water Flow:
	Fresh water -> FWH’s -> Economizer -> Water Wall -> Primary SH -> Platen SH -> Finishing Superheate -> HP Turbine -> Reheater -> IP Turbine

	Flue Gas Flow:
	
	Fire Ball -> Platen SH -> Finishing SH -> Reheater -> o -> Economizer -> Air Preheater
	-> Primary SH –^

	Steam Flow:
	Boiler -> HP Turbine -> Reheater -> IP Turbine -> Condenser
HP, IP, and LP steam extractions to Feed Water Heaters

	Main Models used:
	
	Mixers: Attemperator, Flue gas mix

	Heater: Platen SH, Fire/Water side (simplified model), Feed Water Heaters, Hot Tank, Condenser

	
	BoilerHeatExchanger: Economizer, Primary SH, Finishing SH, Reheater
	
	
	Shell and tube heat exchanger
	
	tube side: Steam (side 1 holdup)

	shell side: flue gas (side 2 holdup)

	Steam Turbines

	Pumps

	Property packages used:
	
	IAPWS: Water/steam side

	IDEAL GAS: Flue Gas side

Figures Process Flow Diagram:

[image: ../../../../_images/Boiler_scpc_PFD.png]

 Power Plant Costing Library

Power Plant Costing Library

Contents

	Power Plant Costing Library

	Introduction

	Costing sub-blocks

	Capital Cost Stages

	Dollar year scaling

	Power Plant Costing Module

	Example

	Supercritical CO2 Costing Module

	Other Costing Modules

	Air Separation Unit

	Utility Functions

	Initialize Costing

	Total Flowsheet Cost Constraint

	Display Total Flowsheet Cost

	Display Individual Costs

	Checking Bounds

	References

Introduction

Note

The power plant costing method is available for most of the unit operations in power plants (Boiler, Feed Water Heaters, Compressor, Turbine, Condenser, etc.).

A capital cost methodology is developed in this module, both bare and erected cost and total plant cost are calculated based on costing correlations.
The Power Plant Costing Library contains two main costing functions get_PP_costing and get_SCO2_unit_cost.
The first function (get_PP_costing) can be called to include cost correlations for equipment typically used in simulation of 7 technologies: supercritical pulverized coal plants (SCPC),
subcritical pulverized coal plants, Two-stage IGCC, Single-stage IGCC, Single-stage dry-feed IGCC, natural gas air-fired plant (NGCC), and advanced ultra-supercritical PC (AUSC).
Similarly, get_sCO2_unit_cost can be called to include cost correlations for equipment in supercritical CO2 power cycle plants.

Details are given for each method later in this documentation,
however, there are many similarities between methods as discribed below:

Costing sub-blocks

In general, when get_PP_costing or get_sCO2_unit_cost is called on an instance of a unit model, a new sub-block is created
on that unit named costing (i.e. flowsheet.unit.costing). All variables and constraints related to costing will be
constructed within this new block (see detailed documentation for each unit for details on these variables and constraints).

Capital Cost Stages

There are multiple stages of capital cost, the lowest stage is the equipment cost which only includes
the cost of manufacturing the equipment. The next stage is the bare erected cost (BEC) which includes
the equipment cost and the cost of material and labor for installation. The final stage is the total
plant cost (TPC) which includes the BEC plus the engineering fee, process contingency,
and project contingency, all of which are typically estimated as a percentage of BEC.

\[bare_erected_cost = equipment_cost*(1 + material_cost + labor_cost)\]

\[total_plant_cost = bare_erected_cost*(1 + eng_fee + process_contingency + project_contingency)\]

Note

The equations above assume the additional costs (eng_fee or process and project contingencies) are given as percentages of BEC and TPC.

All costing methods calculate the bare erected and total plant costs. The sCO2 library is currently the only one
that includes an equipment cost.

Dollar year scaling

The value of money decreases over time due to inflation and missed investment opportunity.
Thus, all costs must be normalized to the same dollar year to be compared on a consistent basis.
This is done using a CE index and the following formula:

\[bare_erected_cost = bare_erected_cost_{base_year}*(CE_index/CE_index_{base_year})\]

In the costing functions this equation is built into the constraint for the lowest level capital cost in the selected method.

Table 1. Base years of costing modules

	Module

	Base Year

	Power Plant Costing

	2018

	sCO2 Costing

	2017

	ASU

	2011

The first time a ‘get costing’ function is called for a unit operation within a flowsheet, an additional costing block is created
on the flowsheet object (i.e. flowsheet.costing) in order to hold any global parameters relating to costing. The most
common of these paramters is the CE index parameter. The CE index will be set to the base year of the method called.

Note

The global paramters are created when the first instance of get_costing is called and use the values provided there for initialization. Subsequent get_costing calls use the existing paramters, and do not change the initialized values. i.e. any “year” argument provided to a get_costing call after the first will be ignored.

To manually set the dollar year the user must call m.fs.get_costing(year=2019) before any calls to a ‘get costing’ function are made.

Power Plant Costing Module

A default costing module has been developed based on the capital cost scaling methodology from
NETL’s Bituminous Baseline Report Rev 4 [1]. It provides costing correlations for common
variants of pulverized coal (PC), integrated gassification combined cycle (IGCC), and
natural gas combined cycle (NGCC) power generation technologies. Users should refer to
reference [2] for details of the costing correlations, however, a summary is provided below.

The module breaks down the cost of a power plant into separate accounts for each system
within the plant. The accounts are scaled based on a process parameter that determines
the size of the equipment needed. The cost of the account is computed based on the scaled parameter,
reference parameter, reference cost, and scaling
exponent determined by NETL in [1]. This equation is similar to a six tenth factor approach,
however, the exponents have been trained using several vendor quotes.

\[scaled_cost = reference_cost*(\frac{scaled_param}{reference_param})^\alpha\]

where:

	sacaled_cost - the cost of the system in Million dollars

	reference_cost - the cost of the reference system in thousands of dollars

	scaled_param - the value of the system’s process parameter

	reference_param - the value of the reference system’s process parameter

	alpha - scaling exponent

Note

The capital cost scaling equation can be applied to any capital cost stage. In the power plant costing library it is applied to the bare erected cost, while in the sCO2 library it is applied to the equipment cost.

The Power Plant costing method has five arguments, self, cost_accounts, scaled_param, units, and tech.

	self : an existing unit model or Pyomo Block

	cost_accounts : A list of accounts or a string containing the name of a pre-named account. If the input is a list all accounts must share the same process parameter. Pre-named accounts are listed below.

	scaled_param : The Pyomo Variable representing the accounts’ scaled parameter

	tech : The technology to cost, different technologies have different accounts. 1 - Supercritical PC, 2 - Subcritical PC, 3 - two-stage, slurry-feed IGCC 4 - single-stage, slurry-feed IGCC 5 - single-stage, dry-feed IGCC, 6 - NGCC, 7 - Advanced Ultrasupercritical PC

	units : The user must pass a string with the units the scaled_param is in. It serves as a check to make sure the costing method is being used correctly.

Many accounts scale using the same process parameter. For convenience the user is allowed to enter accounts as a list instead
of having to cost each account individually. If the accounts in the list do not use the same process parameter an error will be raised.

It is recognized that many users will be unfamiliar with the accounts in the Bituminous Baseline.
For this reason the cost_accounts argument will also accept a string with the name of a pre-named
account. Pre-nammed accounts aggregate the relevant accounts for certain systems. The pre-named
accounts for each technology can be found in the tables below.

Table 2. Pre-named Accounts for PC technologies

	Pre-named Account

	Accounts Included

	Process Parameter

	Units

	Coal Handling

	1.1, 1.2, 1.3, 1.4, 1.9a

	Coal Feed Rate

	lb/hr

	Sorbent Handling

	1.5, 1.6, 1.7, 1.8, 1.9b

	Limestone Feed Rate

	lb/hr

	Coal Feed

	2.1, 2.2, 2.9a

	Coal Feed Rate

	lb/hr

	Sorbent Feed

	2.5, 2.6, 2.9b

	Limestone Feed Rate

	lb/hr

	Feedwater System

	3.1, 3.3

	HP BFW Flow Rate

	lb/hr

	PC Boiler

	4.9

	HP BFW Flow Rate

	lb/hr

	Steam Turbine

	8.1

	Steam Turbine Power

	MW

	Condenser

	8.3

	Condenser Duty

	MMBtu/hr

	Cooling Tower

	9.1

	Cooling Tower Duty

	MMBtu/hr

	Circulating Water System

	9.2, 9.3, 9.4, 9.6, 9.7

	Circulating Water Flow Rate

	gpm

	Ash Handling

	10.6, 10.7, 10.9

	Total Ash Flow

	lb/hr

Table 3. Pre-named Accounts for IGCC technologies

	Pre-named Account

	Accounts Included

	Process Parameter

	Units

	Coal Handling

	1.1, 1.2, 1.3, 1.4, 1.9

	Coal Feed Rate

	lb/hr

	Coal Feed

	2.1, 2.2, 2.9

	Coal Feed Rate

	lb/hr

	Feedwater System

	3.1, 3.3

	HP BFW Flow Rate

	lb/hr

	Gasifier

	4.1

	Coal Feed Rate

	lb/hr

	Syngas Cooler

	4.2

	Syngas Cooler Duty

	MMBtu/hr

	ASU

	4.3a

	Oxygen Production

	tpd

	ASU Oxidant Compression

	4.3b

	Main Air Compressor Power

	kW

	Combustion Turbine

	6.1, 6.3

	Syngas Flowrate

	lb/hr

	Syngas Expander

	6.2

	Syngas Flowrate

	lb/hr

	HRSG

	7.1, 7.2

	HRSG Duty

	MMBtu/hr

	Steam Turbine

	8.1

	Steam Turbine Power

	MW

	Condenser

	8.3

	Condenser Duty

	MMBtu/hr

	Cooling Tower

	9.1

	Cooling Tower Duty

	MMBtu/hr

	Circulating Water System

	9.2, 9.3, 9.4, 9.6, 9.7

	Circulating Water Flow Rate

	gpm

	Slag Handling

	10.1, 10.2, 10.3, 10.6, 10.7, 10.8, 10.9

	Slag Production

	lb/hr

Table 4. Pre-named Accounts for NGCC technologies

	Pre-named Account

	Accounts Included

	Process Parameter

	Units

	Feedwater System

	3.1, 3.3

	HP BFW Flow Rate

	lb/hr

	Combustion Turbine

	6.1, 6.3

	Fuel Gas Flow

	lb/hr

	HRSG

	7.1, 7.2

	HRSG Duty

	MMBtu/hr

	Steam Turbine

	8.1

	Steam Turbine Power

	MW

	Condenser

	8.3

	Condenser Duty

	MMBtu/hr

	Cooling Tower

	9.1

	Cooling Tower Duty

	MMBtu/hr

	Circulating Water System

	9.2, 9.3, 9.4, 9.6, 9.7

	Circulating Water Flow Rate

	gpm

The library has a 7th technology of AUSC. These operate at higher temperatures that traditional
PC plants. The library contains modified correlation for the PC boiler, steam turbine, and steam piping
to reflect the use of high temperature materials.

Table 5. Pre-named Accounts for AUSC technologies

	Pre-named Account

	Accounts Included

	Process Parameter

	Units

	PC Boiler

	4.9

	HP BFW Flow Rate

	lb/hr

	Steam Turbine

	8.1

	Steam Turbine Power

	MW

	Steam Piping

	8.4

	HP BFW Flow Rate

	lb/hr

A call to get_PP_costing creates two variables and two constraints for each account in the list.
The variables are bare_erected_cost and total_plant_cost. Both variables are indexed
by the account number in string format. The function makes a new block called self.costing where
all variables and parameters associated with costing are stored.

Note

The bare_erected_cost and total_plant_cost are in Million dollars.

Example

Below is a simple example of how to add cost correlations to a flowsheet including a heat exchanger using the default IDAES costing module.

from pyomo.environ import (ConcreteModel, SolverFactory)
from idaes.core import FlowsheetBlock
from idaes.generic_models.unit_models.heat_exchanger import \
 (HeatExchanger, HeatExchangerFlowPattern)
from idaes.generic_models.properties import iapws95
from idaes.power_generation.costing.power_plant_costing import \
 (get_PP_costing, initialize_costing, display_total_plant_costs,
 display_flowsheet_cost)

m = ConcreteModel()
m.fs = FlowsheetBlock(default={"dynamic": False})

m.fs.properties = iapws95.Iapws95ParameterBlock()

m.fs.unit = HeatExchanger(default={
 "shell": {"property_package": m.fs.properties},
 "tube": {"property_package": m.fs.properties},
 "flow_pattern": HeatExchangerFlowPattern.countercurrent})
set inputs
m.fs.unit.shell_inlet.flow_mol[0].fix(100) # mol/s
m.fs.unit.shell_inlet.enth_mol[0].fix(3500) # j/s
m.fs.unit.shell_inlet.pressure[0].fix(101325) # Pa

m.fs.unit.tube_inlet.flow_mol[0].fix(100)
m.fs.unit.tube_inlet.enth_mol[0].fix(4000)
m.fs.unit.tube_inlet.pressure[0].fix(101325.0)

m.fs.unit.area.fix(1000) # m2
m.fs.unit.overall_heat_transfer_coefficient.fix(100) # W/m2K

m.fs.unit.initialize()

m.fs.unit.duty_MMbtu = pyo.Var(
 m.fs.time,
 initialize=1e5,
 doc="Condenser duty in MMbtu/hr")

@m.fs.unit.Constraint(m.fs.time)
def duty_conversion(b, t):
 conv_fact = 3.412/1e6
 return b.duty_MMbtu[t] == conv_fact*b.heat_duty[t]

get_PP_costing(m.fs.unit, 'Condenser', m.fs.unit.duty_MMbtu, 'MMBtu/hr', 1)
initialize costing equations
initialize_costing(fs)

opt = SolverFactory('ipopt')
opt.options = {'tol': 1e-6, 'max_iter': 50}
results = opt.solve(m, tee=True)

display_total_plant_costs(fs)
display_flowsheet_cost(fs)

Supercritical CO2 Costing Module

The sCO2 costing function, besides including the capital cost and engineering of the equipment, it can cost penalty due to the high temperature and pressure equipment required for sCO2 PC plants.
The function has has five arguments, self, equipment, scaled_param, temp_C, and n_equip.

	self : an existing unit model or Pyomo Block

	equipment : The type of equipment to be costed, see table 6

	scaled_param : The Pyomo Variable representing the component’s scaled parameter

	temp_C : The Pyomo Variable representing the hottest temperature of the piece of equiment being costed. Some pieces of equipment do not have a temperature associated with them, so the default argument is None.

	n_equip : The number of pieces of equipment to be costed. The function will evenly divide the scaled parameter between the number passed.

The equipment cost is calculated using the following two equations. A temperature correction factor account for advanced materials needed at high temperatures.

\[equipment_cost = reference_cost*(scaled_parameter)^\alpha * temperature_factor\]

\[\begin{split}temperature_factor = 1 + c*(T - T_{bp}) + d*(T - T_{bp})^2 & : if T \geq T_{bp}\\ (if T > 550, otherwise temperature_factor = 1)\end{split}\]

\[T_{bp} = 550 C\]

The bare erected and total plant costs are calculated as shown in the introduction.
There are currently no estimates for the total plant cost components, so bare erected cost will be the same as total plant cost for now.

Five variables and constraints are created within the costing block. Three are for the equipment, bare erected, and total plant costs. One is for the temperature correction factor.
The last one is for the scaled parameter divided by n_equip.

Table 6. sCO2 Costing Library Components

	Component

	Scaling Parameter

	Units

	Coal-fired heaters

	\(Q\)

	\(MW_{th}\)

	Natural gas-fired heaters

	\(Q\)

	\(MW_{th}\)

	Recuperators

	\(UA\)

	\(W/K\)

	Direct air coolers

	\(UA\)

	\(W/K\)

	Radial turbines

	\(W_{sh}\)

	\(MW_{sh}\)

	Axial turbines

	\(W_{sh}\)

	\(MW_{sh}\)

	IG centrifugal compressors

	\(W_{sh}\)

	\(MW_{sh}\)

	Barrel type compressors

	\(V_{in}\)

	\(m^3/s\)

	Gearboxes

	\(W_{e}\)

	\(MW_{sh}\)

	Generators

	\(W_{e}\)

	\(MW_{e}\)

	Explosion proof motors

	\(W_{e}\)

	\(MW_{e}\)

	Synchronous motors

	\(W_{e}\)

	\(MW_{e}\)

	Open drip-proof motors

	\(W_{e}\)

	\(MW_{e}\)

Other Costing Modules

Air Separation Unit

The ASU costing function calculates total plant cost in the exact same way as the get_PP_costing function.
get_ASU_cost takes two arguments: self, and scaled_param.

	self - a Pyomo Block or unit model

	scaled_param - The scaled parameter. For the ASU it is the oxygen flowrate in units of tons per day.

Utility Functions

Initialize Costing

The costing_initialization function will initialize all the variable within every costing block in the flowsheet.
It takes one argument, the flowsheet object. It should be called after all the calls to ‘get costing’ functions are
completed.

The function iterates through the flowsheet looking for costing blocks and calculates variables from constraints.

Total Flowsheet Cost Constraint

For optimization, a constraint summing all the total plant costs is required.
Calling build_flowsheet_cost_constraint(m) creates a variable named m.fs.flowsheet_cost
and builds the required constraint at the flowsheet level.

Note

The costing libraries can be used for simulation or optimization. For simulation, costing constraints can be built and solved after the flowsheet has been solved. For optimization, the costing constraints will need to be solved with the flowsheet.

Display Total Flowsheet Cost

Calling display_flowsheet_cost(m) will print the value of m.fs.flowsheet_cost.

Display Individual Costs

There are three functions for displaying individual costs.

	display_total_plant_costs(fs)

	display_bare_erected_costs(fs)

	display_equipment_costs(fs)

Each one prints out a list of the costed blocks and the cost level of the function chosen.
The functions should be called after solving the model.

Checking Bounds

Currently, only the sCO2 module has support for checking bounds.

All costing methods have a range, outside of which the correlations become inaccurate.
Calling check_sCO2_costing_bounds(fs) will display which components are within the proper range
and which are outside it. It should be called after the model is solved.

References

	DOE/NETL-2015/1723 Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminus Coal (PC) and Natural Gas to Electricity Revision 3 and 4

	DOE/NETL-341/013113 Quality Guidelines for Energy System Studies Capital Cost Scaling Methodology

	NETL_PUB_21490 Techno-economic Evaluation of Utility-Scale Power Plants Based on the Indirect sCO2 Brayton Cycle. Charles White, David Gray, John Plunkett, Walter Shelton, Nathan Weiland, Travis Shultz. September 25, 2017

	SCO2 Power Cycle Component Cost Correlations from DOE Data Spanning Multiple Scales and Applications. Nathan Weiland, Blake Lance, Sandeep Pidaparti. Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition GT2019. June 17-21, 2019, Phoenix, Arizona, USA

 Gas Solid Contactors Model Library

Gas Solid Contactors Model Library

This specialized IDAES application library contains a suite of generic advanced models that are applicable to gas-solid processes. The axially discretized models are one dimensional, with two phases (gas and solid).

	Gas Solid Contactors Flowsheets

	Gas Solid Contactors Unit Models

	Gas Solid Contactors Property Models

 Gas Solid Contactors Flowsheets

Gas Solid Contactors Flowsheets

Contents

	ss_BFB_methane_combustion

 ss_BFB_methane_combustion

ss_BFB_methane_combustion

 Gas Solid Contactors Unit Models

Gas Solid Contactors Unit Models

Contents

	Bubbling Fluidized Bed Reactor

	Moving Bed Reactor

 Bubbling Fluidized Bed Reactor

Bubbling Fluidized Bed Reactor

The IDAES Bubbling Fluidized Bed Reactor (BFBR) model represents a unit operation where two material streams,
a solid phase and a gas phase, pass through a linear vessel while undergoing chemical reaction(s).
The BFBR model is represented as a 1-D axially discretized model with two phases (gas and solid),
and two regions (bubble and emulsion). The model captures the gas-solid interaction between both phases and regions
through reaction, mass and heat transfer.

Assumptions:

	Cloud-wake region effects are negligigble and are not modelled.

	Gas emulsion is at minimum fluidization conditions.

	Gas feeds into emulsion region before the excess enters into the bubble region.

	Gas and solids are well mixed in the radial direction but vary axially.

Requirements:

	Property package contains temperature and pressure variables.

	Property package contains minimum fluidization velocity and voidage parameters.

The BFBR model equations are derived from:

	
	Lee, D.C. Miller. A one-dimensional (1-D) three-region model for a bubbling fluidized-bed adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484.

Degrees of Freedom

BFBRs generally have at least 3 (or more) degrees of freedom, consisting of design and operating variables. The design variables of reactor length, diameter and number of orifices in the distributor are typically the minimum variables to be fixed.

Model Structure

The core BFBR unit model consists of two inlet ports (named gas_inlet and solid_inlet),
two outlet ports (named gas_outlet and solid_outlet), and three ControlVolume1DBlock
Blocks (named bubble_region, gas_emulsion_region and solid_emulsion_region).

Construction Arguments

The IDAES BFBR model has construction arguments specific to the whole unit and to the individual regions.

Arguments that are applicable to the BFBR unit as a whole are:

	finite_elements - sets the number of finite elements to use when discretizing the spatial domains (default = 10).

	length_domain_set - sets the list of point to use to initialize a new ContinuousSet (default = [0.0, 1.0]).

	transformation_method - sets the discretization method to use by the Pyomo TransformationFactory
to transform the spatial domain (default = dae.finite_difference):

	dae.finite_difference - finite difference method.

	dae.collocation - orthogonal collocation method.

	transformation_scheme - sets the scheme to use when transforming a domain.
Selected schemes should be compatible with the transformation_method chosen (default = None):

	None - defaults to “BACKWARD” for finite difference transformation method and to “LAGRANGE-RADAU” for collocation transformation method

	BACKWARD - use a finite difference transformation method.

	FORWARD - use a finite difference transformation method.

	LAGRANGE-RADAU - use a collocation transformation method.

	collocation_points - sets the number of collocation points to use when discretizing the spatial domains (default = 3, collocation methods only).

	flow_type - indicates the flow arrangement within the unit to be modeled. Options are:

	‘co-current’ - (default) gas and solid streams both flow in the same direction (from x=0 to x=1)

	‘counter-current’ - gas and solid streams flow in opposite directions (gas from x=0 to x=1 and solid from x=1 to x=0).

	material_balance_type - indicates what type of energy balance should be constructed (default = MaterialBalanceType.componentTotal).

	MaterialBalanceType.componentTotal - use total component balances.

	MaterialBalanceType.total - use total material balance.

	energy_balance_type - indicates what type of energy balance should be constructed (default = EnergyBalanceType.enthalpyTotal).

	EnergyBalanceType.none - excludes energy balances.

	EnergyBalanceType.enthalpyTotal - single enthalpy balance for material.

	momentum_balance_type - indicates what type of momentum balance should be constructed (default = MomentumBalanceType.pressureTotal).

	MomentumBalanceType.none - exclude momentum balances.

	MomentumBalanceType.pressureTotal - single pressure balance for material.

	has_pressure_change - indicates whether terms for pressure change should be constructed (default = True).

	True - include pressure change terms.

	False - exclude pressure change terms.

Arguments that are applicable to the gas phase:

	property_package - property package to use when constructing bubble region Property Blocks (default = ‘use_parent_value’).
This is provided as a Physical Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the bubble region Property Blocks when they are created (default = ‘use_parent_value’).

	reaction_package - reaction package to use when constructing bubble region Reaction Blocks (default = None).
This is provided as a Reaction Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	reaction_package_args - set of arguments to be passed to the bubble region Reaction Blocks when they are created (default = None).

	has_equilibrium_reactions - sets flag to indicate if terms of equilibrium controlled reactions should be constructed (default = False).

Arguments that are applicable to the solid phase:

	property_package - property package to use when constructing bubble region Property Blocks (default = ‘use_parent_value’).
This is provided as a Physical Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	property_package_args - set of arguments to be passed to the bubble region Property Blocks when they are created (default = ‘use_parent_value’).

	reaction_package - reaction package to use when constructing bubble region Reaction Blocks (default = None).
This is provided as a Reaction Parameter Block by the Flowsheet when creating the model.
If a value is not provided, the ControlVolume Block will try to use the default property package if one is defined.

	reaction_package_args - set of arguments to be passed to the bubble region Reaction Blocks when they are created (default = None).

	has_equilibrium_reactions - sets flag to indicate if terms of equilibrium controlled reactions should be constructed (default = False).

Additionally, BFBR units have the following construction arguments which are passed to all the ControlVolume1DBlock Blocks
and are always specified to their default values.

	Argument

	Default Value

	dynamic

	useDefault

	has_holdup

	useDefault

Constraints

Geometric Constraints

Area of orifice:

\[A_{or} = \frac{1}{n_{or}}\]

Bed cross-sectional area:

\[A_{bed} = \pi \frac{D_{bed}^{2}}{4}\]

Area of bubble region:

\[A_{b,t,x} = \delta_{t,x} A_{bed}\]

Area of gas emulsion region:

\[A_{ge,t,x} = \delta_{e,t,x} \varepsilon_{e,t,x} A_{bed}\]

Area of solid emulsion region:

\[A_{se,t,x} = \delta_{e,t,x} {\left(1 - \varepsilon_{e,t,x} \right)} A_{bed}\]

Length of bubble region:

\[L_{b} = L_{bed}\]

Length of gas emulsion region:

\[L_{ge} = L_{bed}\]

Length of solid emulsion region:

\[L_{se} = L_{bed}\]

Hydrodynamic Constraints

Emulsion region volume fraction:

\[\delta_{e,t,x} = 1 -\delta_{t,x}\]

Average cross-sectional voidage:

\[\varepsilon_{t,x} = 1 - \left(1 - \varepsilon_{e,t,x} \right) \left(1 - \delta_{t,x} \right)\]

Emulsion region voidage:

\[\varepsilon_{e,t,x} = \varepsilon_{mf,se}\]

Bubble growth coefficient:

\[\gamma_{t,x} = \frac{0.0256}{v_{mf,se}} {\left(\frac{D_{bed}}{g} \right)}^{0.5}\]

Maximum bubble diameter:

\[d_{bm,t,x}^{5}g = 2.59^{5} {\left([v_{g,t,x} - v_{ge,t,x}] A_{bed} \right)}^{2}\]

Bubble diameter (gas inlet, x = 0):

\[d_{b,t,x} = 1.38g^{-0.2} {\left([v_{g,t,x} - v_{ge,t,x}]A_{or} \right)}^{0.4}\]

Bubble diameter (x > 0):

\[\frac{dd_{b,t,x}}{ dx } = \frac{0.3}{D_{bed}} L_{bed} {\left(d_{bm,t,x} - d_{b,t,x} - \gamma_{t,x}{\left(D_{bed} d_{b,t,x}\right)}^{0.5}\right)}\]

Bubble rise velocity:

\[v_{br,t,x}^{2} = 0.711^{2} g d_{b,t,x}\]

Bubble velocity:

\[v_{b,t,x} = v_{g,t,x} - v_{mf,se} + v_{br,t,x}\]

Emulsion region gas velocity:

\[v_{ge,t,x} = v_{mf,se}\]

Superficial gas velocity:

\[v_{g,t,x} = v_{b,t,x} \delta_{t,x} + v_{ge,t,x}\delta_{e,t,x}\]

Gas emulsion pressure drop:

if ‘has_pressure_change’ is ‘True’:

\[\Delta P_{ge,t,x} = - g {\left(1 - \varepsilon_{e,t,x} \right)} \rho_{mass,se,t,x}\]

elif ‘has_pressure_change’ is ‘False’:

\[P_{ge,t,x} = P_{g,t,inlet}\]

Mass Transfer Constraints

Bubble to emulsion gas mass transfer coefficient:

\[K_{be,t,x,j} d_{b,t,x}^{1.25} = 5.94 v_{mf,se} d_{b,t,x}^{0.25} + 5.85 D_{vap,ge,t,x,j}^{0.5} g^{0.25}\]

Bulk gas mass transfer:

if \(C_{ge,total,t,x}\) > \(C_{b,total,t,x}\):

\[K_{gbulkc,t,x,j} = 6 K_{d} \delta_{t,x} A_{bed} {\left(C_{ge,total,t,x} - C_{b,total,t,x} \right)} d_{b,t,x} y_{ge,t,x,j}\]

else:

\[K_{gbulkc,t,x,j} = 6 K_{d} \delta_{t,x} A_{bed} {\left(C_{ge,total,t,x} - C_{b,total,t,x} \right)} d_{b,t,x} y_{b,t,x,j}\]

Heat Transfer Constraints

Bubble to emulsion gas heat transfer coefficient:

\[H_{be,t,x,j} d_{b,t,x}^{1.25} = 4.5 v_{mf,se} c_{p_vap,b,t,x} C_{b,total,t,x} d_{b,t,x}^{0.25} + 5.85 {\left(k_{vap,b,t,x} C_{b,total,t,x} c_{p_vap,b,t,x} \right)}^{0.5} g^{0.25}\]

Convective heat transfer coefficient:

\[h_{tc,t,x} d_{p,se} = 0.03 k_{vap,e,t,x} {\left(v_{ge,t,x} d_{p,se} \frac{C_{ge,total,t,x}}{\mu_{vap,ge,t,x}} \right)}^{1.3}\]

Emulsion region gas-solids convective heat transfer:

\[h_{t_gs,t,x} d_{p,se} = 6 \delta_{e,t,x} {\left(1 - \varepsilon_{e,t,x} \right)} h_{tc,t,x} {\left(T_{ge,t,x} - T_{se,t,x} \right)}\]

Bulk gas heat transfer:

if \(C_{ge,total,t,x}\) > \(C_{b,total,t,x}\):

\[H_{gbulk,t,x} = K_{d} \delta_{t,x} A_{bed} {\left(C_{ge,total,t,x} - C_{b,total,t,x} \right)} d_{b,t,x} H_{ge,t,x}\]

else:

\[H_{gbulk,t,x} = K_{d} \delta_{t,x} A_{bed} {\left(C_{ge,total,t,x} - C_{b,total,t,x} \right)} d_{b,t,x} H_{b,t,x}\]

Mass and heat transfer terms in control volumes

Bubble mass transfer ‘(p=vap)’:

\[M_{tr,b,t,x,p,j} = K_{gbulkc,t,x,j} - A_{b,t,x} K_{be,t,x,j} {\left(C_{b,total,t,x} - C_{ge,total,t,x} \right)}\]

Gas emulsion mass transfer ‘(p=vap)’:

\[M_{tr,ge,t,x,p,j} = - K_{gbulkc,t,x,j} + A_{b,t,x} K_{be,t,x,j} {\left(C_{b,total,t,x} - C_{ge,total,t,x} \right)} + r_{hetero,ge,t,x,j}\]

if ‘energy_balance_type’ is not ‘EnergyBalanceType.none’:

Bubble heat transfer:

\[H_{tr, b, t,x} = H_{gbulk,t,x} - A_{b,t,x} H_{be,t,x,j} {\left(T_{b,t,x} - T_{ge,t,x} \right)}\]

Gas emulsion heat transfer:

\[H_{tr, ge, t,x} = - H_{gbulk,t,x} + A_{b,t,x} H_{be,t,x,j} {\left(T_{b,t,x} - T_{ge,t,x} \right)} - h_{t_gs,t,x} A_{bed}\]

Solid emulsion heat transfer:

\[H_{tr, se, t,x} = h_{t_gs,t,x} A_{bed}\]

Reaction constraints

if ‘homogeneous reaction package’ is not ‘None’:

Bubble rate reaction extent:

\[r_{ext,b,t,x,r} = A_{b,t,x} r_{b,t,x,r}\]

Gas emulsion rate reaction extent:

\[r_{ext,ge,t,x,r} = A_{ge,t,x} r_{ge,t,x,r}\]

if ‘heterogeneous reaction package’ is not ‘None’:

Solid emulsion rate reaction extent:

\[r_{ext,se,t,x,r} = A_{se,t,x} r_{se,t,x,r}\]

Gas emulsion heterogeneous rate reaction extent:

\[r_{hetero,ge,t,x,j} = A_{se,t,x} \sum_{r}^{reactions} {s_{se,j,r} r_{se,t,x,r}}\]

Flowrate constraints

Bubble gas flowrate:

\[F_{mol,b,t,x} = A_{bed} \delta_{t,x} v_{b,t,x} C_{b,total,t,x}\]

Emulsion gas flowrate:

\[F_{mol,ge,t,x} = A_{bed} v_{ge,t,x} C_{ge,total,t,x}\]

Inlet boundary conditions

if ‘has_pressure_change’ is ‘True’:

Gas emulsion pressure at inlet:

\[P_{ge,t,0} = P_{g,t,inlet} - \Delta P_{or}\]

Total gas balance at inlet:

\[F_{mol,b,t,0} + F_{mol,ge,t,0} = F_{mol,g,t,inlet}\]

Superficial gas velocity at inlet:

\[v_{g,t,0} = \frac{F_{mol,g,t,inlet}}{C_{ge,total,t,0} A_{bed}}\]

Bubble mole fraction at inlet:

\[y_{b,t,0,j} = y_{g,t,inlet,j}\]

Gas emulsion mole fraction at inlet:

\[y_{ge,t,0,j} = y_{g,t,inlet,j}\]

Solid emulsion mass flow at inlet:

if ‘flow_type’ is ‘co_current’ x = 0 else if ‘flow_type’ is ‘counter_current’ x = 1:

\[F_{mass,se,t,x} = F_{mass,s,t,inlet}\]

Solid emulsion mass fraction at inlet:

if ‘flow_type’ is ‘co_current’ x = 0 else if ‘flow_type’ is ‘counter_current’ x = 1:

\[x_{se,t,x} = x_{s,t,inlet}\]

if ‘energy_balance_type’ is not ‘EnergyBalanceType.none’:

Gas inlet energy balance:

\[H_{b,t,0} + H_{ge,t,0} = H_{g,t,inlet}\]

Gas emulsion temperature at inlet:

\[T_{ge,t,0} = T_{g,t,inlet}\]

elif ‘energy_balance_type’ is ‘EnergyBalanceType.none’:

Isothermal bubble region:

\[T_{b,t,x} = T_{g,t,inlet}\]

Isothermal gas emulsion region:

\[T_{ge,t,x} = T_{g,t,inlet}\]

Isothermal solid emulsion region:

\[T_{se,t,x} = T_{s,t,inlet}\]

if ‘flow_type’ is ‘co_current’ x = 0 else if ‘flow_type’ is ‘counter_current’ x = 1:

Solid inlet energy balance:

\[H_{se,t,x} = H_{s,t,inlet}\]

Outlet boundary conditions

Gas emulsion pressure at outlet:

\[P_{g,t,outlet} = P_{ge,t,1}\]

Total gas balance at outlet:

\[F_{mol,g,t,outlet} = F_{mol,b,t,1} + F_{mol,ge,t,1}\]

Solid outlet material balance:

if ‘flow_type’ is ‘co_current’ x = 1 else if ‘flow_type’ is ‘counter_current’ x = 0:

\[F_{mass,s,t,outlet} = F_{mass,se,t,x}\]

if ‘energy_balance_type’ is not ‘EnergyBalanceType.none’:

Gas outlet energy balance:

\[H_{g,t,outlet} = H_{b,t,1} + H_{ge,t,1}\]

Solid outlet energy balance:

if ‘flow_type’ is ‘co_current’ x = 1 else if ‘flow_type’ is ‘counter_current’ x = 0:

\[H_{s,t,outlet} = H_{se,t,x}\]

elif ‘energy_balance_type’ is ‘EnergyBalanceType.none’:

Gas outlet energy balance:

\[T_{g,t,outlet} = T_{ge,t,1}\]

Solid outlet energy balance:

if ‘flow_type’ is ‘co_current’ x = 1 else if ‘flow_type’ is ‘counter_current’ x = 0:

\[T_{s,t,outlet} = T_{se,t,x}\]

Variables

List of variables in the BFBR model:

	Variable

	Name

	Notes

	\(L_{bed}\)

	bed_height

	Bed height

	\(D_{bed}\)

	bed_diameter

	Reactor diameter

	\(A_{bed}\)

	bed_area

	Reactor cross-sectional area

	\(A_{or}\)

	area_orifice

	Distributor plate area per orifice

	\(n_{or}\)

	number_orifice

	Number of distributor plate orifices per area

	\(\delta_{t,x}\)

	delta

	Volume fraction occupied by bubble region

	\(\delta_{e,t,x}\)

	delta_e

	Volume fraction occupied by emulsion region

	\(\varepsilon_{t,x}\)

	voidage_average

	Cross-sectional average voidage

	\(\varepsilon_{e,t,x}\)

	voidage_emulsion

	Emulsion region voidage fraction

	\(\gamma_{t,x}\)

	bubble_growth_coeff

	Bubble growth coefficient

	\(d_{bm,t,x}\)

	bubble_diameter_max

	Maximum theoretical bubble diameter

	\(d_{b,t,x}\)

	bubble_diameter

	Average bubble diameter

	\(v_{g,t,x}\)

	velocity_superficial_gas

	Gas superficial velocity

	\(v_{ge,t,x}\)

	velocity_emulsion_gas

	Emulsion region superficial gas velocity

	\(v_{br,t,x}\)

	velocity_bubble_rise

	Bubble rise velocity

	\(v_{b,t,x}\)

	velocity_bubble

	Average bubble diameter

	\(K_{be,t,x,j}\)

	Kbe

	Bubble to emulsion gas mass transfer coefficient

	\(K_{gbulkc,t,x,j}\)

	Kgbulk_c

	Gas phase component bulk transfer rate

	\(H_{be,t,x,j}\)

	Hbe

	Bubble to emulsion gas heat transfer coefficient

	\(c_{p_vap,b,t,x}\)

	cp_mol

	Mixture mole heat capacity

	\(h_{tc,t,x}\)

	htc_conv

	Gas to solid convective heat transfer coefficient

	\(\mu_{vap,ge,t,x}\)

	visc_d

	Mixture dynamic viscosity

	\(h_{t_gs,t,x}\)

	ht_conv

	Gas to solid convective enthalpy transfer

	\(H_{gbulk,t,x}\)

	Hgbulk

	Bulk gas heat transfer between bubble and emulsion

	\(r_{hetero,ge,t,x,j}\)

	gas_emulsion_hetero_rxn

	Gas emulsion heterogeneous rate reaction generation

	\(L_{b}\)

	bubble_region.length

	

	\(L_{ge}\)

	gas_emulsion_region.length

	

	\(L_{se}\)

	solid_emulsion_region.length

	

	\(A_{b,t,x}\)

	bubble_region.area

	

	\(A_{ge,t,x}\)

	gas_emulsion_region.area

	

	\(A_{se,t,x}\)

	solid_emulsion_region.area

	

	\(\Delta P_{ge,t,x}\)

	gas_emulsion_region.deltaP

	pressure drop across gas emulsion region

	\(\rho_{mass,se,t,x}\)

	solid_emulsion_region.properties.dens_mass_particle

	solid particle mass density

	\(D_{vap,ge,t,x,j}\)

	gas_emulsion_region.properties.diffusion_comp

	gas component diffusion in gas emulsion region

	\(C_{b,total,t,x}\)

	bubble_region.properties.dens_mol_vap

	gas mole density in the bubble region

	\(C_{ge,total,t,x}\)

	gas_emulsion_region.properties.dens_mol_vap

	gas mole density in the emulsion region

	\(M_{tr,b,t,x,p,j}\)

	bubble_region.mass_transfer_term

	

	\(M_{tr,ge,t,x,p,j}\)

	gas_emulsion_region.mass_transfer_term

	

	\(M_{tr,se,t,x,p,j}\)

	solid_emulsion_region.mass_transfer_term

	

	\(r_{ext,b,t,x,r}\)

	bubble_region.rate_reaction_extent

	

	\(r_{ext,ge,t,x,r}\)

	gas_emulsion_region.rate_reaction_extent

	

	\(r_{ext,se,t,x,r}\)

	solid_emulsion_region.rate_reaction_extent

	

	\(r_{b,t,x,r}\)

	bubble_region.reactions.reaction_rate

	

	\(r_{ge,t,x,r}\)

	gas_emulsion_region.reactions.reaction_rate

	

	\(r_{se,t,x,r}\)

	solid_emulsion_region.reactions.reaction_rate

	

	\(k_{vap,b,t,x}\)

	bubble_region.properties.therm_cond

	bubble region thermal conductivity

	\(k_{vap,e,t,x}\)

	gas_emulsion_region.properties.therm_cond

	gas emulsion region thermal conductivity

	\(T_{b,t,x}\)

	bubble_region.properties.temperature

	

	\(T_{ge,t,x}\)

	gas_emulsion_region.properties.temperature

	

	\(T_{se,t,x}\)

	solid_emulsion_region.properties.temperature

	

	\(H_{tr, b, t,x}\)

	bubble_region.heat

	bubble region heat transfer term

	\(H_{tr, ge, t,x}\)

	gas_emulsion_region.heat

	gas emulsion region heat transfer term

	\(H_{tr, se, t,x}\)

	solid_emulsion_region.heat

	solid emulsion region heat transfer term

	\(F_{mol,b,t,x}\)

	bubble_region.properties.flow_mol

	

	\(F_{mol,ge,t,x}\)

	gas_emulsion_region.properties.flow_mol

	

	\(y_{b,t,x,j}\)

	bubble_region.properties.mole_frac

	

	\(y_{ge,t,x,j}\)

	gas_emulsion_region.properties.mole_frac

	

	\(x_{se,t,x,j}\)

	solid_emulsion_region.properties.mass_frac

	

	\(P_{ge,t,x}\)

	gas_emulsion_region.properties.pressure

	

	\(F_{mol,g,t,inlet}\)

	gas_inlet.flow_mol

	

	\(y_{g,t,inlet,j}\)

	gas_inlet.mole_frac

	

	\(P_{g,t,inlet}\)

	gas_inlet.pressure

	

	\(T_{g,t,inlet}\)

	gas_inlet.temperature

	

	\(H_{g,t,inlet}\)

	gas_inlet.enthalpy

	

	\(F_{mass,s,t,inlet}\)

	solid_inlet.flow_mass

	

	\(x_{s,t,inlet}\)

	solid_inlet.mass_frac

	

	\(T_{s,t,inlet}\)

	solid_inlet.temperature

	

	\(H_{s,t,inlet}\)

	solid_inlet.enthalpy

	

	\(F_{mass,se,t,x}\)

	solid_emulsion_region.properties.flow_mass

	

	\(H_{b,t,x}\)

	bubble_region.properties.enthalpy

	

	\(H_{ge,t,x}\)

	gas_emulsion_region.properties.enthalpy

	

	\(H_{se,t,x}\)

	solid_emulsion_region.properties.enthalpy

	

	\(F_{mol,g,t,outlet}\)

	gas_outlet.flow_mol

	

	\(y_{g,t,outlet,j}\)

	gas_outlet.mole_frac

	

	\(P_{g,t,outlet}\)

	gas_outlet.pressure

	

	\(T_{g,t,outlet}\)

	gas_outlet.temperature

	

	\(H_{g,t,outlet}\)

	gas_outlet.enthalpy

	

	\(F_{mass,s,t,outlet}\)

	solid_outlet.flow_mass

	

	\(x_{s,t,outlet}\)

	solid_outlet.mass_frac

	

	\(T_{s,t,outlet}\)

	solid_outlet.temperature

	

	\(H_{s,t,outlet}\)

	solid_outlet.mass_enthalpy

	

	\(v_{mf,se}\)

	solid_emulsion_region.properties.velocity_mf

	velocity at minimum fluidization

	\(\varepsilon_{mf,se}\)

	solid_emulsion_region.properties.voidage_mf

	voidage at minimum fluidization

	\(K_{d}\)

	Kd

	bulk gas permeation coefficient

	\(d_{p,se}\)

	solid_emulsion_region.properties._params.particle_dia

	

	\(\Delta P_{or}\)

	deltaP_orifice

	Pressure drop across orifice

Parameters

List of parameters in the BFBR model:

	Parameter

	Name

	Notes

	\(s_{se,j,r}\)

	rate_reaction_stoichiometry

	Reference to solid_emulsion_region.reactions.rate_reaction_stoichiometry

Subscripts

List of subscripts in the BFBR model:

	Subscript

	Name

	\(b\)

	bubble region

	\(e\)

	emulsion region

	\(g\)

	gas phase

	\(ge\)

	gas_emulsion

	\(j\)

	component

	\(p\)

	phase

	\(s\)

	solid phase

	\(se\)

	solid_emulsion

	\(r\)

	reaction

	\(t\)

	time

	\(x\)

	length

Initialization

The initialization method for this model will save the current state of the model before commencing initialization and reloads it afterwards.
The state of the model will be the same after initialization, only the initial guesses for unfixed variables will be changed.

The model allows for the passing of a dictionary of values of the state variables of the gas and solid phases that can be used as initial
guesses for the state variables throughout the time and spatial domains of the model. This is optional but recommended.
A typical guess could be values of the gas and solid inlet port variables at time t=0.

The model initialization proceeds through a sequential hierarchical method where the model equations are deactivated at the start of the
initialization routine, and the complexity of the model is built up through activation and solution of various sub-model blocks and equations
at each initialization step. At each step the model variables are updated to better guesses obtained from the model solution at that step.

The initialization routine proceeds as follows:

	Step 1. Initialize the thermo-physical and transport properties model blocks

	Step 2. Initialize geometric constraints

	Step 3. Initialize the hydrodynamic properties

	Step 4a. Initialize pressure drop and mass balances without reactions

	Step 4b. Initialize mass balances with reactions

	Step 5. Initialize energy balances

BFBR Class

	
class idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBed(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	finite_elements
	Number of finite elements to use when discretizing length
domain (default=20)

	length_domain_set
	length_domain_set - (optional) list of point to use to
initialize a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0]).

	transformation_method
	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory, default
- “dae.finite_difference”. Valid values: {
“dae.finite_difference” - Use a finite difference
transformation scheme, “dae.collocation” - use a
collocation transformation scheme}

	transformation_scheme
	Scheme to use when transforming domain. See Pyomo
documentation for supported schemes, default - None.
Valid values: { None - defaults to “BACKWARD” for
finite difference transformation method, and to “LAGRANGE-
RADAU” for collocation transformation method,
“BACKWARD” - Use a finite difference transformation
method, “FORWARD”” - use a finite difference
transformation method, “LAGRANGE-RADAU”” - use a
collocation transformation method}

	collocation_points
	Number of collocation points to use per finite element
when discretizing length domain (default=3)

	flow_type
	Flow configuration of Bubbling Fluidized Bed default -
“co_current”. Valid values: { “co_current” - gas
flows from 0 to 1, solid flows from 0 to 1,
“counter_current” - gas flows from 0 to 1, solid
flows from 1 to 0.}

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal. Valid
values: { MaterialBalanceType.none - exclude
material balances, MaterialBalanceType.componentPhase
- use phase component balances,
MaterialBalanceType.componentTotal - use total
component balances, MaterialBalanceType.elementTotal -
use total element balances, MaterialBalanceType.total
- use total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default - MomentumBalanceType.none.
Valid values: { MomentumBalanceType.none - exclude
momentum balances, MomentumBalanceType.pressureTotal -
single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	gas_phase_config
	gas phase config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium
reaction terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock
object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a
reaction block(s) and used when constructing these,
default - None. Valid values: { see reaction
package for documentation.}

	solid_phase_config
	solid phase config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium
reaction terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock
object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a
reaction block(s) and used when constructing these,
default - None. Valid values: { see reaction
package for documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(BubblingFluidizedBed) New instance

BFBRData Class

	
class idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBedData(component)[source]

	Standard Bubbling Fluidized Bed Unit Model Class.

	
build()[source]

	Begin building model

	Parameters

	None –

	Returns

	None

	
initialize(gas_phase_state_args={}, solid_phase_state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	Initialisation routine for Bubbling Fluidized Bed unit

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialisation routine
* 0 = no output (default)
* 1 = return solver state for each step in routine
* 2 = return solver state for each step in subroutines
* 3 = include solver output infomation (tee=True)

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
results_plot()[source]

	Plot method for common bubbling fluidized bed variables

	Variables plotted:
	Tge : temperature of gas in the emulsion region
Tgb : temperature of gas in the bubble region
Tse : temperature of solid in the emulsion region
Ge : flowrate of gas in the emulsion region
Gb : flowrate of gas in the bubble region
cet : total concentration of gas in the emulsion region
cbt : total concentration of gas in the bubble region
y_b : mole fraction of gas components in the bubble region
x_e : mass fraction of solid components in the emulsion region

 Moving Bed Reactor

Moving Bed Reactor

The IDAES Moving Bed Reactor (MBR) model represents a unit operation where two material streams – a
solid phase and a gas phase – pass through a linear reactor vessel while undergoing chemical reaction(s).
The two streams have opposite flow directions (counter-flow).
The MBR mathematical model is a 1-D rigorous first-principles model consisting of a set of differential
equations obtained by applying the mass, energy (for each phase) and momentum balance equations.

Assumptions:

	The radial concentration and temperature gradients are assumed to be negligible.

	The reactor is assumed to be adiabatic.

	The solid phase is assumed to be moving at a constant velocity determined by the solids feed rate to the reactor.

Requirements:

	Property package contains temperature and pressure variables.

	Property package contains minimum fluidization velocity.

The MBR model is based on:

	Ostace, A. Lee, C.O. Okoli, A.P. Burgard, D.C. Miller, D. Bhattacharyya, Mathematical modeling of a moving-bed reactor for chemical looping combustion of methane, in: M.R. Eden, M. Ierapetritou, G.P. Towler (Eds.),13th Int. Symp. Process Syst. Eng. (PSE 2018), Computer-Aided Chemical Engineering 2018, pp. 325–330 , San Diego, CA.

Degrees of Freedom

MBRs generally have at least 2 (or more) degrees of freedom, consisting of design and operating variables. The design variables of reactor length and diameter are typically the minimum variables to be fixed.

Model Structure

The core MBR unit model consists of two ControlVolume1DBlock Blocks (named gas_phase and solid_phase), each with one
Inlet Port (named gas_inlet and solid_inlet) and one Outlet Port (named gas_outlet and solid_outlet).

Constraints

In the following, the subscripts \(g\) and \(s\) refer to the gas and solid phases, respectively.
In addition to the constraints written by the control_volume Block, MBR units write the following Constraints:

Geometry Constraints

Area of the reactor bed:

\[A_{bed} = \pi \left(\frac{ D_{bed} }{ 2 } \right)^2\]

Area of the gas domain:

\[A_{g,t,x} = \varepsilon A_{bed}\]

Area of the solid domain:

\[A_{s,t,x} = (1 - \varepsilon) A_{bed}\]

Length of the gas domain:

\[L_{g} = L_{bed}\]

Length of the solid domain:

\[L_{s} = L_{bed}\]

Hydrodynamic Constraints

Superficial velocity of the gas:

\[u_{g,t,x} = \frac{ F_{mol,g,t,x} }{ A_{bed} \rho_{mol,g,t,x} }\]

Superficial velocity of the solids:

\[u_{s,t} = \frac{ F_{mass,s,t,inlet} }{ A_{bed} \rho_{mass,s,t,inlet} }\]

Pressure drop:

The constraints written by the MBR model to compute the pressure drop (if has_pressure_change is ‘True’) in the reactor depend upon the
construction arguments chosen:

If pressure_drop_type is simple_correlation:

\[- \frac{ dP_{g,t,x} }{ dx } = 0.2 \left(\rho_{mass,s,t,x} - \rho_{mass,g,t,x} \right) u_{g,t,x}\]

If pressure_drop_type is ergun_correlation:

\[- \frac{ dP_{g,t,x} }{ dx } = \frac{ 150 \mu_{g,t,x} {\left(1 - \varepsilon \right)}^{2} \left(u_{g,t,x} + u_{s,t} \right) }{ \varepsilon^{3} d_{p}^2 } + \frac{ 1.75 \left(1 - \varepsilon \right) \rho_{mass,g,t,x} \left(u_{g,t,x} + u_{s,t} \right)^{2} }{ \varepsilon^{3} d_{p} }\]

Reaction Constraints

Gas phase reaction extent:

If gas_phase_config.reaction_package is not ‘None’:

\[\xi_{g,t,x,r} = r_{g,t,x,r} A_{g,t,x}\]

Solid phase reaction extent:

If solid_phase_config.reaction_package is not ‘None’:

\[\xi_{s,t,x,r} = r_{s,t,x,r} A_{s,t,x}\]

Gas phase heterogeneous rate generation/consumption:

\[M_{g,t,x,p,j} = A_{s,t,x} \sum_{r}^{reactions} {\nu_{s,j,r} r_{s,t,x,r}}\]

Dimensionless numbers, mass and heat transfer coefficients

Particle Reynolds number:

\[Re_{p,t,x} = \frac{ u_{g,t,x} \rho_{mass,g,t,x} }{ \mu_{g,t,x} d_{p}}\]

Prandtl number:

\[Pr_{t,x} = \frac{ c_{p,t,x} \mu_{g,t,x} }{ k_{g,t,x} }\]

Particle Nusselt number:

\[Nu_{p,t,x} = 2 + 1.1 Pr_{t,x}^{1/3} \left| Re_{p,t,x} \right|^{0.6}\]

Particle to fluid heat transfer coefficient

\[h_{gs,t,x} d_{p} = Nu_{p,t,x} k_{g,t,x}\]

If energy_balance_type not EnergyBalanceType.none:

Gas phase - gas to solid heat transfer:

\[H_{g,t,x} = - \frac{ 6 } { d_{p} } h_{gs,t,x} \left(T_{g,t,x} - T_{s,t,x} \right) A_{s,t,x}\]

Solid phase - gas to solid heat transfer:

\[H_{s,t,x} = \frac{ 6 } { d_{p} } h_{gs,t,x} \left(T_{g,t,x} - T_{s,t,x} \right) A_{s,t,x}\]

List of Variables

	Variable

	Description

	Reference to

	\(A_{bed}\)

	Reactor bed cross-sectional area

	bed_area

	\(A_{g,t,x}\)

	Gas phase area (interstitial cross-sectional area)

	gas_phase.area

	\(A_{s,t,x}\)

	Solid phase area

	solid_phase.area

	\(c_{p,t,x}\)

	Gas phase heat capacity (constant \(P\))

	gas_phase.properties.cp_mass

	\(D_{bed}\)

	Reactor bed diameter

	bed_diameter

	\(F_{mass,s,t,inlet}\)

	Total mass flow rate of solids, at inlet (\(x=1\))

	solid_phase.properties.flow_mass

	\(F_{mol,g,t,x}\)

	Total molar flow rate of gas

	gas_phase.properties.flow_mol

	\(H_{g,t,x}\)

	Gas to solid heat transfer term, gas phase

	gas_phase.heat

	\(H_{s,t,x}\)

	Gas to solid heat transfer term, solid phase

	solid_phase.heat

	\(h_{gs,t,x}\)

	Gas-solid heat transfer coefficient

	gas_solid_htc

	\(k_{g,t,x}\)

	Gas thermal conductivity

	gas_phase.properties.therm_cond

	\(L_{bed}\)

	Reactor bed height

	bed_height

	\(L_{g}\)

	Gas domain length

	gas_phase.length

	\(L_{s}\)

	Solid domain length

	solid_phase.length

	\(M_{g,t,x,p,j}\)

	Rate generation/consumption term, gas phase

	gas_phase.mass_transfer_term

	\(Nu_{p,t,x}\)

	Particle Nusselt number

	Nu_particle

	\(dP_{g,t,x}\)

	Total pressure derivative w.r.t. \(x\) (axial position)

	gas_phase.deltaP

	\(Pr_{t,x}\)

	Prandtl number

	Pr

	\(r_{g,t,x,r}\)

	Gas phase reaction rate

	gas_phase.reactions.reaction_rate

	\(r_{s,t,x,r}\)

	Solid phase reaction rate

	solid_phase.reactions.reaction_rate

	\(Re_{p,t,x}\)

	Particle Reynolds number

	Re_particle

	\(T_{g,t,x}\)

	Gas phase temperature

	gas_phase.properties.temperature

	\(T_{s,t,x}\)

	Solid phase temperature

	solid_phase.properties.temperature

	\(u_{g,t,x}\)

	Superficial velocity of the gas

	velocity_superficial_gas

	\(u_{s,t}\)

	Superficial velocity of the solids

	velocity_superficial_solid

	Greek letters

	
	

	\(\varepsilon\)

	Reactor bed voidage

	bed_voidage

	\(\mu_{g,t,x}\)

	Dynamic viscosity of gas mixture

	gas_phase.properties.visc_d

	\(\xi_{g,t,x,r}\)

	Gas phase reaction extent

	gas_phase.rate_reaction_extent

	\(\xi_{s,t,x,r}\)

	Solid phase reaction extent

	solid_phase.rate_reaction_extent

	\(\rho_{mass,g,t,inlet}\)

	Density of gas mixture

	gas_phase.properties.dens_mass

	\(\rho_{mass,s,t,inlet}\)

	Density of solid particles

	solid_phase.properties.dens_mass_particle

	\(\rho_{mol,g,t,x}\)

	Molar density of the gas

	gas_phase.properties.dens_mole

List of Parameters

	Parameter

	Description

	Reference to

	\(d_{p}\)

	Solid particle diameter

	solid_phase.properties._params.particle_dia

	\(\nu_{s,j,r}\)

	Stoichiometric coefficients

	solid_phase.reactions.rate_reaction_stoichiometry

Initialization

The initialization method for this model will save the current state of the model before
commencing initialization and reloads it afterwards. The state of the model will be the same after
initialization, only the initial guesses for unfixed variables will be changed.

The model allows for the passing of a dictionary of values of the state variables of the gas and
solid phases that can be used as initial guesses for the state variables throughout the time and
spatial domains of the model. This is optional but recommended. A typical guess could be values
of the gas and solid inlet port variables at time \(t=0\).

The model initialization proceeds through a sequential hierarchical method where the model
equations are deactivated at the start of the initialization routine, and the complexity of the model
is built up through activation and solution of various sub-model blocks and equations at each
initialization step. At each step the model variables are updated to better guesses obtained from
the model solution at that step.

The initialization routine proceeds in as follows:

	Step 1: Initialize the thermo-physical and transport properties model blocks.

	Step 2: Initialize the hydrodynamic properties.

	Step 3a: Initialize mass balances without reactions and pressure drop.

	Step 3b: Initialize mass balances with reactions and without pressure drop.

	Step 3c: Initialize mass balances with reactions and pressure drop.

	Step 4: Initialize energy balances.

MBR Class

	
class idaes.gas_solid_contactors.unit_models.moving_bed.MBR(*args, **kwargs)

	
	Parameters

	
	rule (function) – A rule function or None. Default rule calls build().

	concrete (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, make this a toplevel model. Default - False.

	ctype (str [https://docs.python.org/3/library/stdtypes.html#str]) – Pyomo ctype of the block. Default - “Block”

	default (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Default ProcessBlockData config

	Keys
	
	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model, False - set as a
steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed or
not. Must be True if dynamic = True, default - False.
Valid values: { useDefault - get flag from parent
(default = False), True - construct holdup terms,
False - do not construct holdup terms}

	finite_elements
	Number of finite elements to use when discretizing length
domain (default=20)

	length_domain_set
	length_domain_set - (optional) list of point to use to
initialize a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0])

	transformation_method
	Method to use to transform domain. Must be a method
recognised by the Pyomo TransformationFactory, default
- “dae.finite_difference”. Valid values: {
“dae.finite_difference” - Use a finite difference
transformation method, “dae.collocation” - use a
collocation transformation method}

	transformation_scheme
	Scheme to use when transforming domain. See Pyomo
documentation for supported schemes, default - None.
Valid values: { None - defaults to “BACKWARD” for
finite difference transformation method, and to “LAGRANGE-
RADAU” for collocation transformation method,
“BACKWARD” - Use a finite difference transformation
method, “FORWARD”” - use a finite difference
transformation method, “LAGRANGE-RADAU”” - use a
collocation transformation method}

	collocation_points
	Number of collocation points to use per finite element
when discretizing length domain (default=3)

	flow_type
	Flow configuration of Moving Bed - counter_current: gas
side flows from 0 to 1 solid side flows from 1 to 0

	material_balance_type
	Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal. Valid
values: { MaterialBalanceType.none - exclude
material balances, MaterialBalanceType.componentPhase
- use phase component balances,
MaterialBalanceType.componentTotal - use total
component balances, MaterialBalanceType.elementTotal -
use total element balances, MaterialBalanceType.total
- use total material balance.}

	energy_balance_type
	Indicates what type of energy balance should be
constructed, default -
EnergyBalanceType.enthalpyTotal. Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy
balance for material, EnergyBalanceType.enthalpyPhase
- enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance
for material, EnergyBalanceType.energyPhase - energy
balances for each phase.}

	momentum_balance_type
	Indicates what type of momentum balance should be
constructed, default -
MomentumBalanceType.pressureTotal. Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure
balance for material,
MomentumBalanceType.pressurePhase - pressure balances
for each phase, MomentumBalanceType.momentumTotal -
single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances
for each phase.}

	has_pressure_change
	Indicates whether terms for pressure change should be
constructed, default - False. Valid values: {
True - include pressure change terms, False -
exclude pressure change terms.}

	pressure_drop_type
	Indicates what type of pressure drop correlation should be
used, default - “simple_correlation”. Valid
values: { “simple_correlation” - Use a simplified
pressure drop correlation, “ergun_correlation” - Use
the ergun equation.}

	gas_phase_config
	gas phase config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium
reaction terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock
object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a
reaction block(s) and used when constructing these,
default - None. Valid values: { see reaction
package for documentation.}

	solid_phase_config
	solid phase config arguments

	dynamic
	Indicates whether this model will be dynamic or not,
default = useDefault. Valid values: {
useDefault - get flag from parent (default =
False), True - set as a dynamic model, False -
set as a steady-state model.}

	has_holdup
	Indicates whether holdup terms should be constructed
or not. Must be True if dynamic = True, default -
False. Valid values: { useDefault - get flag
from parent (default = False), True - construct
holdup terms, False - do not construct holdup
terms}

	has_equilibrium_reactions
	Indicates whether terms for equilibrium controlled
reactions should be constructed, default - True.
Valid values: { True - include equilibrium
reaction terms, False - exclude equilibrium
reaction terms.}

	property_package
	Property parameter object used to define property
calculations (default = ‘use_parent_value’) -
‘use_parent_value’ - get package from parent (default
= None) - a ParameterBlock object

	property_package_args
	A dict of arguments to be passed to the
PropertyBlockData and used when constructing these
(default = ‘use_parent_value’) - ‘use_parent_value’ -
get package from parent (default = None) - a dict (see
property package for documentation)

	reaction_package
	Reaction parameter object used to define reaction
calculations, default - None. Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock
object.}

	reaction_package_args
	A ConfigBlock with arguments to be passed to a
reaction block(s) and used when constructing these,
default - None. Valid values: { see reaction
package for documentation.}

	initialize (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – ProcessBlockData config for individual elements. Keys
are BlockData indexes and values are dictionaries described under the
“default” argument above.

	idx_map (function) – Function to take the index of a BlockData element and
return the index in the initialize dict from which to read arguments.
This can be provided to overide the default behavior of matching the
BlockData index exactly to the index in initialize.

	Returns

	(MBR) New instance

MBRData Class

	
class idaes.gas_solid_contactors.unit_models.moving_bed.MBRData(component)[source]

	Standard Moving Bed Unit Model Class.

	
build()[source]

	Begin building model (pre-DAE transformation).

	Parameters

	None –

	Returns

	None

	
initialize(gas_phase_state_args={}, solid_phase_state_args={}, outlvl=0, solver='ipopt', optarg={'tol': 1e-06})[source]

	Initialisation routine for MB unit (default solver ipopt).

	Keyword Arguments

	
	state_args – a dict of arguments to be passed to the property
package(s) to provide an initial state for
initialization (see documentation of the specific
property package) (default = {}).

	outlvl – sets output level of initialisation routine

	optarg – solver options dictionary object (default={‘tol’: 1e-6})

	solver – str indicating whcih solver to use during
initialization (default = ‘ipopt’)

	Returns

	None

	
results_plot()[source]

	Plot method for common moving bed variables

	Variables plotted:
	Tg : Temperature in gas phase
Ts : Temperature in solid phase
vg : Superficial gas velocity
P : Pressure in gas phase
Ftotal : Total molar flowrate of gas
Mtotal : Total mass flowrate of solid
Cg : Concentration of gas components in the gas phase
y_frac : Mole fraction of gas components in the gas phase
x_frac : Mass fraction of solid components in the solid phase

 Gas Solid Contactors Property Models

Gas Solid Contactors Property Models

Contents

	methane_iron_OC_reduction

 methane_iron_OC_reduction

methane_iron_OC_reduction

Contents

 License

License

Institute for the Design of Advanced Energy Systems Process Systems Engineering
Framework (IDAES PSE Framework) Copyright (c) 2019, by the software owners: The
Regents of the University of California, through Lawrence Berkeley National
Laboratory, National Technology & Engineering Solutions of Sandia, LLC,
Carnegie Mellon University, West Virginia University Research Corporation, et al.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of the Institute for the Design of Advanced Energy Systems
(IDAES), University of California, Lawrence Berkeley National Laboratory,
National Technology & Engineering Solutions of Sandia, LLC, Sandia National
Laboratories, Carnegie Mellon University, West Virginia University Research
Corporation, U.S. Dept. of Energy, nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
(“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory,
without imposing a separate written license agreement for such Enhancements,
then you hereby grant Lawrence Berkeley National Laboratory the following
license: a non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof, in
binary and source code form.

 Copyright

Copyright

Institute for the Design of Advanced Energy Systems Process Systems Engineering
Framework (IDAES PSE Framework) was produced under the DOE Institute for the
Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2019 by the
software owners: The Regents of the University of California, through Lawrence
Berkeley National Laboratory, National Technology & Engineering Solutions of
Sandia, LLC, Carnegie Mellon University, West Virginia University Research
Corporation, et al. All rights reserved.

NOTICE. This Software was developed under funding from the U.S. Department of
Energy and the U.S. Government consequently retains certain rights. As such, the
U.S. Government has been granted for itself and others acting on its behalf a
paid-up, nonexclusive, irrevocable, worldwide license in the Software to
reproduce, distribute copies to the public, prepare derivative works, and
perform publicly and display publicly, and to permit other to do so. Copyright
(C) 2018-2019 IDAES - All Rights Reserved

 Python Module Index

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 idaes	

 	
 	
 idaes.apps.caprese.nmpc	

 	
 	
 idaes.apps.matopt.materials.canvas	

 	
 	
 idaes.apps.matopt.materials.design	

 	
 	
 idaes.apps.matopt.materials.lattices.lattice	

 	
 	
 idaes.apps.matopt.opt.mat_modeling	

 	
 	
 idaes.core.components	

 	
 	
 idaes.core.control_volume0d	

 	
 	
 idaes.core.control_volume1d	

 	
 	
 idaes.core.flowsheet_model	

 	
 	
 idaes.core.phases	

 	
 	
 idaes.core.process_base	

 	
 	
 idaes.core.process_block	

 	
 	
 idaes.core.property_base	

 	
 	
 idaes.core.reaction_base	

 	
 	
 idaes.core.unit_model	

 	
 	
 idaes.core.util.dyn_utils	

 	
 	
 idaes.core.util.homotopy	

 	
 	
 idaes.core.util.initialization	

 	
 	
 idaes.core.util.misc	

 	
 	
 idaes.core.util.model_serializer	

 	
 	
 idaes.core.util.model_statistics	

 	
 	
 idaes.core.util.scaling	

 	
 	
 idaes.core.util.tables	

 	
 	
 idaes.core.util.unit_costing	

 	
 	
 idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed	

 	
 	
 idaes.gas_solid_contactors.unit_models.moving_bed	

 	
 	
 idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack	

 	
 	
 idaes.generic_models.properties.cubic_eos.cubic_prop_pack	

 	
 	
 idaes.generic_models.properties.iapws95	

 	
 	
 idaes.generic_models.unit_models.cstr	

 	
 	
 idaes.generic_models.unit_models.equilibrium_reactor	

 	
 	
 idaes.generic_models.unit_models.feed	

 	
 	
 idaes.generic_models.unit_models.feed_flash	

 	
 	
 idaes.generic_models.unit_models.flash	

 	
 	
 idaes.generic_models.unit_models.gibbs_reactor	

 	
 	
 idaes.generic_models.unit_models.heat_exchanger_1D	

 	
 	
 idaes.generic_models.unit_models.heater	

 	
 	
 idaes.generic_models.unit_models.mixer	

 	
 	
 idaes.generic_models.unit_models.plug_flow_reactor	

 	
 	
 idaes.generic_models.unit_models.pressure_changer	

 	
 	
 idaes.generic_models.unit_models.product	

 	
 	
 idaes.generic_models.unit_models.separator	

 	
 	
 idaes.generic_models.unit_models.statejunction	

 	
 	
 idaes.generic_models.unit_models.stoichiometric_reactor	

 	
 	
 idaes.generic_models.unit_models.translator	

 	
 	
 idaes.power_generation.unit_models.feedwater_heater_0D	

 	
 	
 idaes.power_generation.unit_models.helm.turbine_inlet	

 	
 	
 idaes.power_generation.unit_models.helm.turbine_multistage	

 	
 	
 idaes.power_generation.unit_models.helm.turbine_outlet	

 	
 	
 idaes.power_generation.unit_models.helm.turbine_stage	

 	
 	
 idaes.power_generation.unit_models.helm.valve_steam	

 	
 	
 idaes.surrogate.pysmo.kriging	

 	
 	
 idaes.surrogate.pysmo.polynomial_regression	

 	
 	
 idaes.surrogate.pysmo.radial_basis_function	

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --by value

 	dmf-find command line option

 	
 --color

 	dmf-ls command line option

 	dmf-related command line option

 	dmf-status command line option

 	
 --contained resource

 	dmf-register command line option

 	
 --create

 	dmf-init command line option

 	idaes-bin-directory command line option

 	idaes-data-directory command line option

 	idaes-lib-directory command line option

 	
 --created value

 	dmf-find command line option

 	
 --derived resource

 	dmf-register command line option

 	
 --desc

 	dmf-init command line option

 	
 --exists

 	idaes-bin-directory command line option

 	idaes-data-directory command line option

 	idaes-lib-directory command line option

 	
 --file value

 	dmf-find command line option

 	
 --help

 	command line option

 	idaes-bin-directory command line option

 	idaes-copyright command line option

 	idaes-data-directory command line option

 	idaes-get-examples command line option

 	idaes-get-extensions command line option

 	idaes-lib-directory command line option

 	
 --is-subject

 	dmf-register command line option

 	
 --list,--no-list

 	dmf-rm command line option

 	
 --list-releases

 	idaes-get-examples command line option

 	
 --modified value

 	dmf-find command line option

 	
 --multiple

 	dmf-info command line option

 	dmf-rm command line option

 	
 --name

 	dmf-init command line option

 	
 --name value

 	dmf-find command line option

 	
 --no-color

 	dmf-ls command line option

 	dmf-related command line option

 	dmf-status command line option

 	
 --no-copy

 	dmf-register command line option

 	
 --no-download

 	idaes-get-examples command line option

 	
 --no-install

 	idaes-get-examples command line option

 	
 --no-prefix

 	dmf-ls command line option

 	
 --no-unicode

 	dmf-related command line option

 	
 --no-unique

 	dmf-register command line option

 	
 	
 --output value

 	dmf-find command line option

 	
 --prev resource

 	dmf-register command line option

 	
 --quiet

 	command line option

 	dmf command line option

 	
 --strict

 	dmf-register command line option

 	
 --type value

 	dmf-find command line option

 	
 --unicode

 	dmf-related command line option

 	
 --unstable

 	idaes-get-examples command line option

 	
 --url

 	idaes-get-extensions command line option

 	
 --used resource

 	dmf-register command line option

 	
 --verbose

 	command line option

 	dmf command line option

 	
 --version

 	dmf-register command line option

 	
 --version TEXT

 	idaes-get-examples command line option

 	
 -a,--all

 	dmf-status command line option

 	
 -d,--dir TEXT

 	idaes-get-examples command line option

 	
 -d,--direction

 	dmf-related command line option

 	
 -f,--format value

 	dmf-info command line option

 	
 -I

 	idaes-get-examples command line option

 	
 -l

 	idaes-get-examples command line option

 	
 -N

 	idaes-get-examples command line option

 	
 -q

 	command line option

 	dmf command line option

 	
 -r,--reverse

 	dmf-ls command line option

 	
 -s,--show

 	dmf-ls command line option

 	
 -s,--show info

 	dmf-status command line option

 	
 -S,--sort

 	dmf-ls command line option

 	
 -t,--type

 	dmf-register command line option

 	
 -U

 	idaes-get-examples command line option

 	
 -V

 	idaes-get-examples command line option

 	
 -v

 	command line option

 	dmf command line option

 	
 -y,--yes

 	dmf-rm command line option

_

 	
 	__init__() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	(idaes.surrogate.pysmo.sampling.CVTSampling method)

 	(idaes.surrogate.pysmo.sampling.HaltonSampling method)

 	(idaes.surrogate.pysmo.sampling.HammersleySampling method)

 	(idaes.surrogate.pysmo.sampling.LatinHypercubeSampling method)

 	(idaes.surrogate.pysmo.sampling.UniformSampling method)

 	
 	_GeneralVarLikeExpressionData (class in idaes.core.util.misc)

A

 	
 	activated_block_component_generator() (in module idaes.core.util.model_statistics)

 	activated_blocks_set() (in module idaes.core.util.model_statistics)

 	activated_constraints_generator() (in module idaes.core.util.model_statistics)

 	activated_constraints_set() (in module idaes.core.util.model_statistics)

 	activated_equalities_generator() (in module idaes.core.util.model_statistics)

 	activated_equalities_set() (in module idaes.core.util.model_statistics)

 	activated_inequalities_generator() (in module idaes.core.util.model_statistics)

 	activated_inequalities_set() (in module idaes.core.util.model_statistics)

 	activated_objectives_generator() (in module idaes.core.util.model_statistics)

 	activated_objectives_set() (in module idaes.core.util.model_statistics)

 	active_variables_in_deactivated_blocks_set() (in module idaes.core.util.model_statistics)

 	ActivityCoeffParameterBlock (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	ActivityCoeffStateBlock (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	ActivityCoeffStateBlockData (class in idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack)

 	add() (idaes.core.util.misc.IndexedVarLikeExpression method)

 	(idaes.core.util.misc.SimpleVarLikeExpression method)

 	add_adiabatic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_energy_mixing_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_energy_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_geometry() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_inlet_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_inlet_port_objects() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_inlet_state_blocks() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_isothermal() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_material_mixing_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_material_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_mixed_state_block() (idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_momentum_splitting_constraints() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_namespace_to() (idaes.apps.caprese.nmpc.NMPCSim class method)

 	add_objective_function() (idaes.apps.caprese.nmpc.NMPCSim method)

 	add_outlet_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_outlet_port_objects() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_outlet_state_blocks() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_phase_component_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_phase_energy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	
 	add_phase_enthalpy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_phase_momentum_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_phase_pressure_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_port() (idaes.core.unit_model.UnitModelBlockData method)

 	add_port_objects() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pressure_equality_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pressure_minimization_equations() (idaes.generic_models.unit_models.mixer.MixerData method)

 	add_pump() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	add_reaction_blocks() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_setpoint_to_controller() (idaes.apps.caprese.nmpc.NMPCSim method)

 	add_split_fractions() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	add_state_blocks() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_state_material_balances() (idaes.core.unit_model.UnitModelBlockData method)

 	add_total_component_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_element_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_energy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_enthalpy_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_material_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_momentum_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	add_total_pressure_balances() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	
 alamo

 	alamopy, [1]

 	
 alamopy

 	alamo, [1]

 	API

 	apply_transformation() (idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	arcs_to_stream_dict() (in module idaes.core.util.tables)

 	atoms (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(idaes.apps.matopt.opt.mat_modeling.MatOptModel attribute)

B

 	
 	badly_scaled_var_generator() (in module idaes.core.util.scaling)

 	base_class_module() (idaes.core.process_block.ProcessBlock class method)

 	base_class_name() (idaes.core.process_block.ProcessBlock class method)

 	binary (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	
 BoilerFireside

 	idaes.power_generation.unit_models.boiler_fireside

 	
 BoilerHeatExchanger

 	idaes.power_generation.unit_models.boiler_heat_exchanger

 	BoilerHeatExchanger (class in idaes.power_generation.unit_models.boiler_heat_exchanger)

 	BoilerHeatExchangerData (class in idaes.power_generation.unit_models.boiler_heat_exchanger)

 	bound() (idaes.core.util.model_serializer.StoreSpec class method)

 	bounds (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	BubblingFluidizedBed (class in idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed)

 	BubblingFluidizedBedData (class in idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed)

 	build() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.flowsheet_model.FlowsheetBlockData method)

 	(idaes.core.process_base.ProcessBlockData method)

 	(idaes.core.property_base.PhysicalParameterBlock method)

 	(idaes.core.property_base.StateBlockData method)

 	(idaes.core.reaction_base.ReactionBlockDataBase method)

 	(idaes.core.reaction_base.ReactionParameterBlock method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBedData method)

 	(idaes.gas_solid_contactors.unit_models.moving_bed.MBRData method)

 	(idaes.generic_models.control.pid_controller.PIDBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	(idaes.generic_models.properties.iapws95.Iapws95ParameterBlockData method)

 	(idaes.generic_models.properties.iapws95.Iapws95StateBlockData method)

 	(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	(idaes.generic_models.unit_models.cstr.CSTRData method)

 	(idaes.generic_models.unit_models.equilibrium_reactor.EquilibriumReactorData method)

 	(idaes.generic_models.unit_models.feed.FeedData method)

 	(idaes.generic_models.unit_models.feed_flash.FeedFlashData method)

 	(idaes.generic_models.unit_models.flash.FlashData method)

 	(idaes.generic_models.unit_models.gibbs_reactor.GibbsReactorData method)

 	(idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData method)

 	(idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData method)

 	(idaes.generic_models.unit_models.heater.HeaterData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.plug_flow_reactor.PFRData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.product.ProductData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.generic_models.unit_models.statejunction.StateJunctionData method)

 	(idaes.generic_models.unit_models.stoichiometric_reactor.StoichiometricReactorData method)

 	(idaes.generic_models.unit_models.translator.TranslatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_HeaderData method)

 	(idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData method)

 	(idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3StreamsData method)

 	(idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStageData method)

 	(idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData method)

 	(idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStageData method)

 	(idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStageData method)

 	(idaes.power_generation.unit_models.helm.valve_steam.HelmValveData method)

 	
 	build_reaction_block() (idaes.core.reaction_base.ReactionParameterBlock method)

 	build_state_block() (idaes.core.property_base.PhysicalParameterBlock method)

C

 	
 	calculate_bubble_point_pressure() (idaes.core.property_base.StateBlockData method)

 	calculate_bubble_point_temperature() (idaes.core.property_base.StateBlockData method)

 	calculate_dew_point_pressure() (idaes.core.property_base.StateBlockData method)

 	calculate_dew_point_temperature() (idaes.core.property_base.StateBlockData method)

 	calculate_error_between_states() (idaes.apps.caprese.nmpc.NMPCSim method)

 	calculate_full_state_setpoint() (idaes.apps.caprese.nmpc.NMPCSim method)

 	canv (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(idaes.apps.matopt.opt.mat_modeling.MatOptModel attribute)

 	Canvas (class in idaes.apps.matopt.materials.canvas)

 	
 command line option

 	--help

 	--quiet

 	--verbose

 	-q

 	-v

 	Component (class in idaes.core.components)

 	confDs (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	(idaes.apps.matopt.opt.mat_modeling.MatOptModel attribute)

 	confint_regression() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	constrain_control_inputs_piecewise_constant() (idaes.apps.caprese.nmpc.NMPCSim method)

 	
 	constraint_autoscale_large_jac() (in module idaes.core.util.scaling)

 	constraint_scaling_transform() (in module idaes.core.util.scaling)

 	constraint_scaling_transform_undo() (in module idaes.core.util.scaling)

 	construct_objective_weights() (idaes.apps.caprese.nmpc.NMPCSim method)

 	ControlVolume0DBlock (class in idaes.core.control_volume0d)

 	ControlVolume0DBlockData (class in idaes.core.control_volume0d)

 	ControlVolume1DBlock (class in idaes.core.control_volume1d)

 	ControlVolume1DBlockData (class in idaes.core.control_volume1d)

 	copy_non_time_indexed_values() (in module idaes.core.util.dyn_utils)

 	copy_values_at_time() (in module idaes.core.util.dyn_utils)

 	CRADA

 	create_inlet_list() (idaes.generic_models.unit_models.mixer.MixerData method)

 	create_outlet_list() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	create_stream_table_dataframe() (in module idaes.core.util.tables)

 	CSTR (class in idaes.generic_models.unit_models.cstr)

 	CSTRData (class in idaes.generic_models.unit_models.cstr)

 	CubicParameterData (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CubicStateBlock (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CubicStateBlockData (class in idaes.generic_models.properties.cubic_eos.cubic_prop_pack)

 	CVTSampling (class in idaes.surrogate.pysmo.sampling)

D

 	
 	data_scaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling static method)

 	data_scaling_minmax() (idaes.surrogate.pysmo.radial_basis_function.FeatureScaling static method)

 	data_unscaling() (idaes.surrogate.pysmo.polynomial_regression.FeatureScaling static method)

 	data_unscaling_minmax() (idaes.surrogate.pysmo.radial_basis_function.FeatureScaling static method)

 	deactivate_constraints_unindexed_by() (in module idaes.core.util.dyn_utils)

 	deactivate_model_at() (in module idaes.core.util.dyn_utils)

 	deactivated_blocks_set() (in module idaes.core.util.model_statistics)

 	deactivated_constraints_generator() (in module idaes.core.util.model_statistics)

 	deactivated_constraints_set() (in module idaes.core.util.model_statistics)

 	deactivated_equalities_generator() (in module idaes.core.util.model_statistics)

 	deactivated_equalities_set() (in module idaes.core.util.model_statistics)

 	deactivated_inequalities_generator() (in module idaes.core.util.model_statistics)

 	deactivated_inequalities_set() (in module idaes.core.util.model_statistics)

 	deactivated_objectives_generator() (in module idaes.core.util.model_statistics)

 	deactivated_objectives_set() (in module idaes.core.util.model_statistics)

 	declare_process_block_class() (in module idaes.core.process_block)

 	define_display_vars() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	define_metadata() (idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicParameterData class method)

 	(idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData class method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData class method)

 	define_port_members() (idaes.core.property_base.StateBlockData method)

 	define_state_vars() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	degrees_of_freedom() (in module idaes.core.util.model_statistics)

 	delta_temperature_amtd_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	delta_temperature_lmtd_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	delta_temperature_underwood_callback() (in module idaes.generic_models.unit_models.heat_exchanger)

 	derivative_variables_set() (in module idaes.core.util.model_statistics)

 	Design (class in idaes.apps.matopt.materials.design)

 	
 DMF

 	dmf

 	
 dmf

 	DMF

 	Help

 	
 dmf command line option

 	--quiet

 	--verbose

 	-q

 	-v

 	
 dmf-find command line option

 	--by value

 	--created value

 	--file value

 	--modified value

 	--name value

 	--output value

 	--type value

 	
 	
 dmf-info command line option

 	--multiple

 	-f,--format value

 	identifier

 	
 dmf-init command line option

 	--create

 	--desc

 	--name

 	path

 	
 dmf-ls command line option

 	--color

 	--no-color

 	--no-prefix

 	-r,--reverse

 	-s,--show

 	-S,--sort

 	
 dmf-register command line option

 	--contained resource

 	--derived resource

 	--is-subject

 	--no-copy

 	--no-unique

 	--prev resource

 	--strict

 	--used resource

 	--version

 	-t,--type

 	
 dmf-related command line option

 	--color

 	--no-color

 	--no-unicode

 	--unicode

 	-d,--direction

 	
 dmf-rm command line option

 	--list,--no-list

 	--multiple

 	-y,--yes

 	identifier

 	
 dmf-status command line option

 	--color

 	--no-color

 	-a,--all

 	-s,--show info

 	
 Downcomer

 	idaes.power_generation.unit_models.downcomer

 	
 Drum

 	idaes.power_generation.unit_models.drum

 	
 Drum1D

 	idaes.power_generation.unit_models.drum1D

E

 	
 	EquilibriumReactor (class in idaes.generic_models.unit_models.equilibrium_reactor)

 	
 	EquilibriumReactorData (class in idaes.generic_models.unit_models.equilibrium_reactor)

 	expressions_set() (in module idaes.core.util.model_statistics)

F

 	
 	FeatureScaling (class in idaes.surrogate.pysmo.polynomial_regression)

 	(class in idaes.surrogate.pysmo.radial_basis_function)

 	Feed (class in idaes.generic_models.unit_models.feed)

 	FeedData (class in idaes.generic_models.unit_models.feed)

 	FeedFlash (class in idaes.generic_models.unit_models.feed_flash)

 	FeedFlashData (class in idaes.generic_models.unit_models.feed_flash)

 	find_comp_in_block() (in module idaes.core.util.dyn_utils)

 	find_comp_in_block_at_time() (in module idaes.core.util.dyn_utils)

 	fix_initial_conditions() (idaes.core.process_base.ProcessBlockData method)

 	fix_state_vars() (in module idaes.core.util.initialization)

 	fix_vars_unindexed_by() (in module idaes.core.util.dyn_utils)

 	fixed_unused_variables_set() (in module idaes.core.util.model_statistics)

 	fixed_variables_generator() (in module idaes.core.util.model_statistics)

 	fixed_variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	fixed_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	fixed_variables_set() (in module idaes.core.util.model_statistics)

 	Flash (class in idaes.generic_models.unit_models.flash)

 	FlashData (class in idaes.generic_models.unit_models.flash)

 	flowsheet() (idaes.core.process_base.ProcessBlockData method)

 	
 FlowsheetBlock

 	idaes.core.flowsheet_model

 	
 	FlowsheetBlock (class in idaes.core.flowsheet_model)

 	
 FlowsheetBlockData

 	idaes.core.flowsheet_model

 	FlowsheetBlockData (class in idaes.core.flowsheet_model)

 	
 FlueGasParameterBlock

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasParameterData

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasStateBlock

 	idaes.power_generation.properties.IdealProp_FlueGas

 	
 FlueGasStateBlockData

 	idaes.power_generation.properties.IdealProp_FlueGas

 	from_json() (in module idaes.core.util.model_serializer)

 	
 FWH0D

 	idaes.power_generation.unit_models.feedwater_heater_0D

 	
 FWHCondensing0D

 	idaes.power_generation.unit_models.feedwater_heater_0D

 	FWHCondensing0D (class in idaes.power_generation.unit_models.feedwater_heater_0D)

 	FWHCondensing0DData (class in idaes.power_generation.unit_models.feedwater_heater_0D)

G

 	
 	generate_expression() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	generate_table() (in module idaes.core.util.tables)

 	get_activity_dict() (in module idaes.core.util.dyn_utils)

 	get_class_attr_list() (idaes.core.util.model_serializer.StoreSpec method)

 	get_component() (idaes.core.property_base.PhysicalParameterBlock method)

 	get_constraint_transform_applied_scaling_factor() (in module idaes.core.util.scaling)

 	get_costing() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	get_data_class_attr_list() (idaes.core.util.model_serializer.StoreSpec method)

 	get_default_scaling() (idaes.core.property_base.PhysicalParameterBlock method)

 	get_derivatives_at() (in module idaes.core.util.dyn_utils)

 	get_energy_density_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_energy_diffusion_terms() (idaes.core.property_base.StateBlockData method)

 	get_enthalpy_flow_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_feature_vector() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	
 	get_fixed_dict() (in module idaes.core.util.dyn_utils)

 	get_implicit_index_of_set() (in module idaes.core.util.dyn_utils)

 	get_index_of_set() (in module idaes.core.util.dyn_utils)

 	get_location_of_coordinate_set() (in module idaes.core.util.dyn_utils)

 	get_material_density_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_material_diffusion_terms() (idaes.core.property_base.StateBlockData method)

 	get_material_flow_basis() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_material_flow_terms() (idaes.core.property_base.StateBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	get_mixed_state_block() (idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	get_phase() (idaes.core.property_base.PhysicalParameterBlock method)

 	get_phase_component_set() (idaes.core.property_base.PhysicalParameterBlock method)

 	get_reaction_rate_basis() (idaes.core.reaction_base.ReactionBlockDataBase method)

 	get_scaling_factor() (in module idaes.core.util.scaling)

 	GibbsReactor (class in idaes.generic_models.unit_models.gibbs_reactor)

 	GibbsReactorData (class in idaes.generic_models.unit_models.gibbs_reactor)

H

 	
 	HaltonSampling (class in idaes.surrogate.pysmo.sampling)

 	HammersleySampling (class in idaes.surrogate.pysmo.sampling)

 	has_consistent_initial_conditions() (idaes.apps.caprese.nmpc.NMPCSim method)

 	
 Heater

 	idaes.generic_models.unit_models.heater

 	Heater (class in idaes.generic_models.unit_models.heater)

 	HeaterData (class in idaes.generic_models.unit_models.heater)

 	
 HeatExchanger

 	idaes.generic_models.unit_models.heat_exchanger

 	HeatExchanger (class in idaes.generic_models.unit_models.heat_exchanger)

 	HeatExchanger1D (class in idaes.generic_models.unit_models.heat_exchanger_1D)

 	HeatExchanger1DData (class in idaes.generic_models.unit_models.heat_exchanger_1D)

 	
 HeatExchangerCrossFlow2D_Header

 	idaes.power_generation.unit_models.boiler_heat_exchanger_2D

 	HeatExchangerCrossFlow2D_Header (class in idaes.power_generation.unit_models.boiler_heat_exchanger_2D)

 	HeatExchangerCrossFlow2D_HeaderData (class in idaes.power_generation.unit_models.boiler_heat_exchanger_2D)

 	HeatExchangerData (class in idaes.generic_models.unit_models.heat_exchanger)

 	
 HeatExchangerWith3Streams

 	idaes.power_generation.unit_models.heat_exchanger_3streams

 	HeatExchangerWith3Streams (class in idaes.power_generation.unit_models.heat_exchanger_3streams)

 	HeatExchangerWith3StreamsData (class in idaes.power_generation.unit_models.heat_exchanger_3streams)

 	
 HelmPhaseSeparator

 	idaes.power_generation.unit_models.helm.phase_separator

 	
 HelmTurbineInletStage

 	idaes.power_generation.unit_models.helm.turbine_inlet

 	
 	HelmTurbineInletStage (class in idaes.power_generation.unit_models.helm.turbine_inlet)

 	HelmTurbineInletStageData (class in idaes.power_generation.unit_models.helm.turbine_inlet)

 	
 HelmTurbineMultistage

 	idaes.power_generation.unit_models.helm.turbine_multistage

 	HelmTurbineMultistage (class in idaes.power_generation.unit_models.helm.turbine_multistage)

 	HelmTurbineMultistageData (class in idaes.power_generation.unit_models.helm.turbine_multistage)

 	
 HelmTurbineOutletStage

 	idaes.power_generation.unit_models.helm.turbine_outlet

 	HelmTurbineOutletStage (class in idaes.power_generation.unit_models.helm.turbine_outlet)

 	HelmTurbineOutletStageData (class in idaes.power_generation.unit_models.helm.turbine_outlet)

 	
 HelmTurbineStage

 	idaes.power_generation.unit_models.helm.turbine_stage

 	HelmTurbineStage (class in idaes.power_generation.unit_models.helm.turbine_stage)

 	HelmTurbineStageData (class in idaes.power_generation.unit_models.helm.turbine_stage)

 	
 HelmValve

 	idaes.power_generation.unit_models.helm.valve_steam

 	HelmValve (class in idaes.power_generation.unit_models.helm.valve_steam)

 	HelmValveData (class in idaes.power_generation.unit_models.helm.valve_steam)

 	
 Help

 	dmf

 	
 Home

 	idaes

 	homotopy() (in module idaes.core.util.homotopy)

 	htpx() (in module idaes.generic_models.properties.iapws95)

I

 	
 	Iapws95ParameterBlock (class in idaes.generic_models.properties.iapws95)

 	Iapws95ParameterBlockData (class in idaes.generic_models.properties.iapws95)

 	
 Iapws95StateBlock

 	idaes.generic_models.properties.iapws95

 	Iapws95StateBlock (class in idaes.generic_models.properties.iapws95)

 	Iapws95StateBlockData (class in idaes.generic_models.properties.iapws95)

 	
 idaes

 	Home

 	
 idaes-bin-directory command line option

 	--create

 	--exists

 	--help

 	
 idaes-copyright command line option

 	--help

 	
 idaes-data-directory command line option

 	--create

 	--exists

 	--help

 	
 idaes-get-examples command line option

 	--help

 	--list-releases

 	--no-download

 	--no-install

 	--unstable

 	--version TEXT

 	-d,--dir TEXT

 	-I

 	-l

 	-N

 	-U

 	-V

 	
 idaes-get-extensions command line option

 	--help

 	--url

 	
 idaes-lib-directory command line option

 	--create

 	--exists

 	--help

 	idaes.apps.caprese.nmpc (module)

 	idaes.apps.matopt.materials.canvas (module)

 	idaes.apps.matopt.materials.design (module)

 	idaes.apps.matopt.materials.lattices.lattice (module)

 	idaes.apps.matopt.opt.mat_modeling (module)

 	idaes.core.components (module)

 	idaes.core.control_volume0d (module)

 	idaes.core.control_volume1d (module)

 	
 idaes.core.flowsheet_model

 	FlowsheetBlock

 	FlowsheetBlockData

 	idaes.core.flowsheet_model (module)

 	idaes.core.phases (module)

 	idaes.core.process_base (module)

 	idaes.core.process_block (module)

 	idaes.core.property_base (module)

 	idaes.core.reaction_base (module)

 	idaes.core.unit_model (module)

 	idaes.core.util.dyn_utils (module)

 	idaes.core.util.homotopy (module)

 	idaes.core.util.initialization (module)

 	idaes.core.util.misc (module)

 	idaes.core.util.model_serializer (module)

 	idaes.core.util.model_statistics (module)

 	idaes.core.util.scaling (module)

 	idaes.core.util.tables (module)

 	idaes.core.util.unit_costing (module)

 	idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed (module)

 	idaes.gas_solid_contactors.unit_models.moving_bed (module)

 	idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack (module)

 	idaes.generic_models.properties.cubic_eos.cubic_prop_pack (module)

 	
 idaes.generic_models.properties.iapws95

 	Iapws95StateBlock

 	idaes.generic_models.properties.iapws95 (module)

 	idaes.generic_models.unit_models.cstr (module)

 	idaes.generic_models.unit_models.equilibrium_reactor (module)

 	idaes.generic_models.unit_models.feed (module)

 	idaes.generic_models.unit_models.feed_flash (module)

 	idaes.generic_models.unit_models.flash (module)

 	idaes.generic_models.unit_models.gibbs_reactor (module)

 	
 idaes.generic_models.unit_models.heat_exchanger

 	HeatExchanger

 	idaes.generic_models.unit_models.heat_exchanger_1D (module)

 	
 idaes.generic_models.unit_models.heater

 	Heater

 	idaes.generic_models.unit_models.heater (module)

 	idaes.generic_models.unit_models.mixer (module)

 	idaes.generic_models.unit_models.plug_flow_reactor (module)

 	idaes.generic_models.unit_models.pressure_changer (module)

 	idaes.generic_models.unit_models.product (module)

 	idaes.generic_models.unit_models.separator (module)

 	idaes.generic_models.unit_models.statejunction (module)

 	idaes.generic_models.unit_models.stoichiometric_reactor (module)

 	idaes.generic_models.unit_models.translator (module)

 	
 	
 idaes.power_generation.properties.IdealProp_FlueGas

 	FlueGasParameterBlock

 	FlueGasParameterData

 	FlueGasStateBlock

 	FlueGasStateBlockData

 	
 idaes.power_generation.unit_models.boiler_fireside

 	BoilerFireside

 	
 idaes.power_generation.unit_models.boiler_heat_exchanger

 	BoilerHeatExchanger

 	
 idaes.power_generation.unit_models.boiler_heat_exchanger_2D

 	HeatExchangerCrossFlow2D_Header

 	
 idaes.power_generation.unit_models.downcomer

 	Downcomer

 	
 idaes.power_generation.unit_models.drum

 	Drum

 	
 idaes.power_generation.unit_models.drum1D

 	Drum1D

 	
 idaes.power_generation.unit_models.feedwater_heater_0D

 	FWH0D

 	FWHCondensing0D

 	idaes.power_generation.unit_models.feedwater_heater_0D (module)

 	
 idaes.power_generation.unit_models.heat_exchanger_3streams

 	HeatExchangerWith3Streams

 	
 idaes.power_generation.unit_models.helm.phase_separator

 	HelmPhaseSeparator

 	
 idaes.power_generation.unit_models.helm.turbine_inlet

 	HelmTurbineInletStage

 	idaes.power_generation.unit_models.helm.turbine_inlet (module)

 	
 idaes.power_generation.unit_models.helm.turbine_multistage

 	HelmTurbineMultistage

 	idaes.power_generation.unit_models.helm.turbine_multistage (module)

 	
 idaes.power_generation.unit_models.helm.turbine_outlet

 	HelmTurbineOutletStage

 	idaes.power_generation.unit_models.helm.turbine_outlet (module)

 	
 idaes.power_generation.unit_models.helm.turbine_stage

 	HelmTurbineStage

 	idaes.power_generation.unit_models.helm.turbine_stage (module)

 	
 idaes.power_generation.unit_models.helm.valve_steam

 	HelmValve

 	idaes.power_generation.unit_models.helm.valve_steam (module)

 	
 idaes.power_generation.unit_models.steamheater

 	SteamHeater

 	
 idaes.power_generation.unit_models.waterpipe

 	WaterPipe

 	
 idaes.power_generation.unit_models.waterwall

 	WaterwallSection

 	idaes.surrogate.pysmo.kriging (module)

 	idaes.surrogate.pysmo.polynomial_regression (module)

 	idaes.surrogate.pysmo.radial_basis_function (module)

 	
 idaes.unit_models.heat_exchanger

 	Proportional-Integral-Derivative (PID) Controller

 	
 identifier

 	dmf-info command line option

 	dmf-rm command line option

 	IndexedVarLikeExpression (class in idaes.core.util.misc)

 	init_isentropic() (idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	initialize() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.property_base.StateBlock method)

 	(idaes.core.reaction_base.ReactionBlockBase method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBedData method)

 	(idaes.gas_solid_contactors.unit_models.moving_bed.MBRData method)

 	(idaes.generic_models.unit_models.feed.FeedData method)

 	(idaes.generic_models.unit_models.heat_exchanger.HeatExchangerData method)

 	(idaes.generic_models.unit_models.heat_exchanger_1D.HeatExchanger1DData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.product.ProductData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.generic_models.unit_models.statejunction.StateJunctionData method)

 	(idaes.generic_models.unit_models.translator.TranslatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger_2D.HeatExchangerCrossFlow2D_HeaderData method)

 	(idaes.power_generation.unit_models.feedwater_heater_0D.FWHCondensing0DData method)

 	(idaes.power_generation.unit_models.heat_exchanger_3streams.HeatExchangerWith3StreamsData method)

 	(idaes.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStageData method)

 	(idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData method)

 	(idaes.power_generation.unit_models.helm.turbine_outlet.HelmTurbineOutletStageData method)

 	(idaes.power_generation.unit_models.helm.turbine_stage.HelmTurbineStageData method)

 	(idaes.power_generation.unit_models.helm.valve_steam.HelmValveData method)

 	initialize_by_solving_elements() (idaes.apps.caprese.nmpc.NMPCSim method)

 	initialize_by_time_element() (in module idaes.core.util.initialization)

 	initialize_control_problem() (idaes.apps.caprese.nmpc.NMPCSim method)

 	initialize_from_initial_conditions() (idaes.apps.caprese.nmpc.NMPCSim method)

 	initialize_from_previous_sample() (idaes.apps.caprese.nmpc.NMPCSim method)

 	inject_control_inputs_into_plant() (idaes.apps.caprese.nmpc.NMPCSim method)

 	integer (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	is_flowsheet() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	is_property_constructed() (idaes.core.property_base.StateBlockData method)

 	(idaes.core.reaction_base.ReactionBlockDataBase method)

 	isfixed() (idaes.core.util.model_serializer.StoreSpec class method)

K

 	
 	KrigingModel (class in idaes.surrogate.pysmo.kriging)

L

 	
 	large_residuals_set() (in module idaes.core.util.model_statistics)

 	LatinHypercubeSampling (class in idaes.surrogate.pysmo.sampling)

 	Lattice (class in idaes.apps.matopt.materials.lattices.lattice)

 	list_models_requiring_property() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	
 	list_properties_required_by_model() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	list_required_properties() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	lock_attribute_creation_context() (idaes.core.property_base.StateBlockData method)

 	(idaes.core.reaction_base.ReactionBlockDataBase method)

M

 	
 	map_scaling_factor() (in module idaes.core.util.scaling)

 	MaterialDescriptor (class in idaes.apps.matopt.opt.mat_modeling)

 	MatOptModel (class in idaes.apps.matopt.opt.mat_modeling)

 	maximize() (idaes.apps.matopt.opt.mat_modeling.MatOptModel method)

 	MBR (class in idaes.gas_solid_contactors.unit_models.moving_bed)

 	MBRData (class in idaes.gas_solid_contactors.unit_models.moving_bed)

 	min_scaling_factor() (in module idaes.core.util.scaling)

 	minimize() (idaes.apps.matopt.opt.mat_modeling.MatOptModel method)

 	Mixer (class in idaes.generic_models.unit_models.mixer)

 	MixerData (class in idaes.generic_models.unit_models.mixer)

 	
 	model_check() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.flowsheet_model.FlowsheetBlockData method)

 	(idaes.core.unit_model.UnitModelBlockData method)

 	(idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack.ActivityCoeffStateBlockData method)

 	(idaes.generic_models.properties.cubic_eos.cubic_prop_pack.CubicStateBlockData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.pressure_changer.PressureChangerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	(idaes.power_generation.unit_models.boiler_heat_exchanger.BoilerHeatExchangerData method)

N

 	
 	name (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

 	NDA

 	NMPCSim (class in idaes.apps.caprese.nmpc)

 	number_activated_blocks() (in module idaes.core.util.model_statistics)

 	number_activated_constraints() (in module idaes.core.util.model_statistics)

 	number_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_activated_inequalities() (in module idaes.core.util.model_statistics)

 	number_activated_objectives() (in module idaes.core.util.model_statistics)

 	number_active_variables_in_deactivated_blocks() (in module idaes.core.util.model_statistics)

 	number_deactivated_blocks() (in module idaes.core.util.model_statistics)

 	number_deactivated_constraints() (in module idaes.core.util.model_statistics)

 	number_deactivated_equalities() (in module idaes.core.util.model_statistics)

 	number_deactivated_inequalities() (in module idaes.core.util.model_statistics)

 	number_deactivated_objectives() (in module idaes.core.util.model_statistics)

 	number_derivative_variables() (in module idaes.core.util.model_statistics)

 	number_expressions() (in module idaes.core.util.model_statistics)

 	number_fixed_unused_variables() (in module idaes.core.util.model_statistics)

 	
 	number_fixed_variables() (in module idaes.core.util.model_statistics)

 	number_fixed_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_fixed_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	number_large_residuals() (in module idaes.core.util.model_statistics)

 	number_total_blocks() (in module idaes.core.util.model_statistics)

 	number_total_constraints() (in module idaes.core.util.model_statistics)

 	number_total_equalities() (in module idaes.core.util.model_statistics)

 	number_total_inequalities() (in module idaes.core.util.model_statistics)

 	number_total_objectives() (in module idaes.core.util.model_statistics)

 	number_unfixed_variables() (in module idaes.core.util.model_statistics)

 	number_unfixed_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_unused_variables() (in module idaes.core.util.model_statistics)

 	number_variables() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_constraints() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_equalities() (in module idaes.core.util.model_statistics)

 	number_variables_in_activated_inequalities() (in module idaes.core.util.model_statistics)

 	number_variables_near_bounds() (in module idaes.core.util.model_statistics)

 	number_variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

O

 	
 	optimize() (idaes.apps.matopt.opt.mat_modeling.MatOptModel method)

P

 	
 	partition_outlet_flows() (idaes.generic_models.unit_models.separator.SeparatorData method)

 	
 path

 	dmf-init command line option

 	path_from_block() (in module idaes.core.util.dyn_utils)

 	PFR (class in idaes.generic_models.unit_models.plug_flow_reactor)

 	PFRData (class in idaes.generic_models.unit_models.plug_flow_reactor)

 	Phase (class in idaes.core.phases)

 	PhysicalParameterBlock (class in idaes.core.property_base)

 	PIDBlock (class in idaes.generic_models.control.pid_controller)

 	PIDBlockData (class in idaes.generic_models.control.pid_controller)

 	PolynomialRegression (class in idaes.surrogate.pysmo.polynomial_regression)

 	populate() (idaes.apps.matopt.opt.mat_modeling.MatOptModel method)

 	predict_output() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	PressureChanger (class in idaes.generic_models.unit_models.pressure_changer)

 	
 	PressureChangerData (class in idaes.generic_models.unit_models.pressure_changer)

 	print_models_requiring_property() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	print_properties_required_by_model() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	print_required_properties() (idaes.generic_models.properties.interrogator.properties_interrogator.PropertyInterrogatorData method)

 	(idaes.generic_models.properties.interrogator.reactions_interrogator.ReactionInterrogatorData method)

 	ProcessBlock (class in idaes.core.process_block)

 	ProcessBlockData (class in idaes.core.process_base)

 	Product (class in idaes.generic_models.unit_models.product)

 	ProductData (class in idaes.generic_models.unit_models.product)

 	propagate_indexed_component_scaling_factors() (in module idaes.core.util.scaling)

 	propagate_state() (in module idaes.core.util.initialization)

 	PropertyInterrogatorBlock (class in idaes.generic_models.properties.interrogator.properties_interrogator)

 	PropertyInterrogatorData (class in idaes.generic_models.properties.interrogator.properties_interrogator)

 	
 Proportional-Integral-Derivative (PID) Controller

 	idaes.unit_models.heat_exchanger

R

 	
 	r2_calculation() (idaes.surrogate.pysmo.kriging.KrigingModel static method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions static method)

 	RadialBasisFunctions (class in idaes.surrogate.pysmo.radial_basis_function)

 	ReactionBlockBase (class in idaes.core.reaction_base)

 	ReactionBlockDataBase (class in idaes.core.reaction_base)

 	ReactionInterrogatorBlock (class in idaes.generic_models.properties.interrogator.reactions_interrogator)

 	ReactionInterrogatorData (class in idaes.generic_models.properties.interrogator.reactions_interrogator)

 	ReactionParameterBlock (class in idaes.core.reaction_base)

 	release_state() (idaes.core.control_volume0d.ControlVolume0DBlockData method)

 	(idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.generic_models.unit_models.mixer.MixerData method)

 	(idaes.generic_models.unit_models.separator.SeparatorData method)

 	
 	report() (idaes.core.control_volume1d.ControlVolume1DBlockData method)

 	(idaes.core.property_base.StateBlock method)

 	report_statistics() (in module idaes.core.util.model_statistics)

 	results_plot() (idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed.BubblingFluidizedBedData method)

 	(idaes.gas_solid_contactors.unit_models.moving_bed.MBRData method)

 	revert_state_vars() (in module idaes.core.util.initialization)

 	rules (idaes.apps.matopt.opt.mat_modeling.MaterialDescriptor attribute)

S

 	
 	sample_points() (idaes.surrogate.pysmo.sampling.CVTSampling method)

 	(idaes.surrogate.pysmo.sampling.HaltonSampling method)

 	(idaes.surrogate.pysmo.sampling.HammersleySampling method)

 	(idaes.surrogate.pysmo.sampling.LatinHypercubeSampling method)

 	(idaes.surrogate.pysmo.sampling.UniformSampling method)

 	Separator (class in idaes.generic_models.unit_models.separator)

 	SeparatorData (class in idaes.generic_models.unit_models.separator)

 	set_additional_terms() (idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	set_bounds_from_initial() (idaes.apps.caprese.nmpc.NMPCSim method)

 	set_default_scaling() (idaes.core.property_base.PhysicalParameterBlock method)

 	set_read_callback() (idaes.core.util.model_serializer.StoreSpec method)

 	set_reference_values_from_initial() (idaes.apps.caprese.nmpc.NMPCSim method)

 	set_scaling_factor() (in module idaes.core.util.scaling)

 	set_write_callback() (idaes.core.util.model_serializer.StoreSpec method)

 	SimpleVarLikeExpression (class in idaes.core.util.misc)

 	
 	simulate_plant() (idaes.apps.caprese.nmpc.NMPCSim method)

 	solve_consistent_initial_conditions() (idaes.apps.caprese.nmpc.NMPCSim method)

 	solve_control_problem() (idaes.apps.caprese.nmpc.NMPCSim method)

 	solve_indexed_blocks() (in module idaes.core.util.initialization)

 	StateBlock (class in idaes.core.property_base)

 	StateBlockData (class in idaes.core.property_base)

 	StateJunction (class in idaes.generic_models.unit_models.statejunction)

 	StateJunctionData (class in idaes.generic_models.unit_models.statejunction)

 	
 SteamHeater

 	idaes.power_generation.unit_models.steamheater

 	StoichiometricReactor (class in idaes.generic_models.unit_models.stoichiometric_reactor)

 	StoichiometricReactorData (class in idaes.generic_models.unit_models.stoichiometric_reactor)

 	StoreSpec (class in idaes.core.util.model_serializer)

 	stream_states_dict() (in module idaes.core.util.tables)

 	stream_table() (idaes.core.flowsheet_model.FlowsheetBlockData method)

 	stream_table_dataframe_to_string() (in module idaes.core.util.tables)

T

 	
 	tag_state_quantities() (in module idaes.core.util.tables)

 	throttle_cv_fix() (idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData method)

 	to_json() (in module idaes.core.util.model_serializer)

 	total_blocks_set() (in module idaes.core.util.model_statistics)

 	total_constraints_set() (in module idaes.core.util.model_statistics)

 	total_equalities_generator() (in module idaes.core.util.model_statistics)

 	total_equalities_set() (in module idaes.core.util.model_statistics)

 	total_inequalities_generator() (in module idaes.core.util.model_statistics)

 	total_inequalities_set() (in module idaes.core.util.model_statistics)

 	
 	total_objectives_generator() (in module idaes.core.util.model_statistics)

 	total_objectives_set() (in module idaes.core.util.model_statistics)

 	training() (idaes.surrogate.pysmo.kriging.KrigingModel method)

 	(idaes.surrogate.pysmo.polynomial_regression.PolynomialRegression method)

 	(idaes.surrogate.pysmo.radial_basis_function.RadialBasisFunctions method)

 	transfer_current_plant_state_to_controller() (idaes.apps.caprese.nmpc.NMPCSim method)

 	Translator (class in idaes.generic_models.unit_models.translator)

 	TranslatorData (class in idaes.generic_models.unit_models.translator)

 	turbine_inlet_cf_fix() (idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData method)

 	turbine_outlet_cf_fix() (idaes.power_generation.unit_models.helm.turbine_multistage.HelmTurbineMultistageData method)

U

 	
 	unfix_initial_conditions() (idaes.core.process_base.ProcessBlockData method)

 	unfixed_variables_generator() (in module idaes.core.util.model_statistics)

 	unfixed_variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	unfixed_variables_set() (in module idaes.core.util.model_statistics)

 	UniformSampling (class in idaes.surrogate.pysmo.sampling)

 	UnitModelBlock (class in idaes.core.unit_model)

 	UnitModelBlockData (class in idaes.core.unit_model)

 	
 	unscaled_constraints_generator() (in module idaes.core.util.scaling)

 	unscaled_variables_generator() (in module idaes.core.util.scaling)

 	unset_default_scaling() (idaes.core.property_base.PhysicalParameterBlock method)

 	unset_scaling_factor() (in module idaes.core.util.scaling)

 	unused_variables_set() (in module idaes.core.util.model_statistics)

 	use_equal_pressure_constraint() (idaes.generic_models.unit_models.mixer.MixerData method)

 	use_minimum_inlet_pressure_constraint() (idaes.generic_models.unit_models.mixer.MixerData method)

V

 	
 	validate_fixedness() (idaes.apps.caprese.nmpc.NMPCSim method)

 	validate_sample_time() (idaes.apps.caprese.nmpc.NMPCSim method)

 	validate_slices() (idaes.apps.caprese.nmpc.NMPCSim method)

 	value() (idaes.core.util.model_serializer.StoreSpec class method)

 	value_isfixed() (idaes.core.util.model_serializer.StoreSpec class method)

 	value_isfixed_isactive() (idaes.core.util.model_serializer.StoreSpec class method)

 	variables_in_activated_constraints_set() (in module idaes.core.util.model_statistics)

 	
 	variables_in_activated_equalities_set() (in module idaes.core.util.model_statistics)

 	variables_in_activated_inequalities_set() (in module idaes.core.util.model_statistics)

 	variables_near_bounds_generator() (in module idaes.core.util.model_statistics)

 	variables_near_bounds_set() (in module idaes.core.util.model_statistics)

 	variables_only_in_inequalities() (in module idaes.core.util.model_statistics)

 	variables_set() (in module idaes.core.util.model_statistics)

 	VarLikeExpression (class in idaes.core.util.misc)

 	visualize() (idaes.core.flowsheet_model.FlowsheetBlockData method)

W

 	
 	
 WaterPipe

 	idaes.power_generation.unit_models.waterpipe

 	
 	
 WaterwallSection

 	idaes.power_generation.unit_models.waterwall

 Overview: module code

 All modules for which code is available

	idaes.apps.caprese.nmpc

	idaes.apps.matopt.materials.canvas

	idaes.apps.matopt.materials.design

	idaes.apps.matopt.materials.lattices.lattice

	idaes.apps.matopt.opt.mat_modeling

	idaes.core.components

	idaes.core.control_volume0d

	idaes.core.control_volume1d

	idaes.core.flowsheet_model

	idaes.core.phases

	idaes.core.process_base

	idaes.core.process_block

	idaes.core.property_base

	idaes.core.reaction_base

	idaes.core.unit_model

	idaes.core.util.dyn_utils

	idaes.core.util.homotopy

	idaes.core.util.initialization

	idaes.core.util.misc

	idaes.core.util.model_serializer

	idaes.core.util.model_statistics

	idaes.core.util.scaling

	idaes.core.util.tables

	idaes.dmf.model_data

	idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed

	idaes.gas_solid_contactors.unit_models.moving_bed

	idaes.generic_models.control.pid_controller

	idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack

	idaes.generic_models.properties.cubic_eos.cubic_prop_pack

	idaes.generic_models.properties.iapws95

	idaes.generic_models.properties.interrogator.properties_interrogator

	idaes.generic_models.properties.interrogator.reactions_interrogator

	idaes.generic_models.unit_models.cstr

	idaes.generic_models.unit_models.equilibrium_reactor

	idaes.generic_models.unit_models.feed

	idaes.generic_models.unit_models.feed_flash

	idaes.generic_models.unit_models.flash

	idaes.generic_models.unit_models.gibbs_reactor

	idaes.generic_models.unit_models.heat_exchanger

	idaes.generic_models.unit_models.heat_exchanger_1D

	idaes.generic_models.unit_models.heater

	idaes.generic_models.unit_models.mixer

	idaes.generic_models.unit_models.plug_flow_reactor

	idaes.generic_models.unit_models.pressure_changer

	idaes.generic_models.unit_models.product

	idaes.generic_models.unit_models.separator

	idaes.generic_models.unit_models.statejunction

	idaes.generic_models.unit_models.stoichiometric_reactor

	idaes.generic_models.unit_models.translator

	idaes.logger

	idaes.power_generation.unit_models.boiler_heat_exchanger

	idaes.power_generation.unit_models.boiler_heat_exchanger_2D

	idaes.power_generation.unit_models.feedwater_heater_0D

	idaes.power_generation.unit_models.heat_exchanger_3streams

	idaes.power_generation.unit_models.helm.turbine_inlet

	idaes.power_generation.unit_models.helm.turbine_multistage

	idaes.power_generation.unit_models.helm.turbine_outlet

	idaes.power_generation.unit_models.helm.turbine_stage

	idaes.power_generation.unit_models.helm.valve_steam

	idaes.surrogate.pysmo.kriging

	idaes.surrogate.pysmo.polynomial_regression

	idaes.surrogate.pysmo.radial_basis_function

	idaes.surrogate.pysmo.sampling

	idaes.ver

 idaes.logger

 Source code for idaes.logger

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
import idaes
import logging
import bisect
import threading
from collections.abc import Iterable

from contextlib import contextmanager
from pyutilib.misc import capture_output

Throw the standard levels in here, just let you access it all in one place
CRITICAL = logging.CRITICAL # 50
ERROR = logging.ERROR # 40
WARNING = logging.WARNING # 30
INFO_LOW = 21 #Most important info
INFO = logging.INFO # 20 #Medium info (default)
INFO_HIGH = 19 #Less improtant important info
DEBUG = logging.DEBUG # 10
NOTSET = logging.NOTSET # 0

levelname = { # the level name of all our extra info levels is "INFO"
 INFO_HIGH: "INFO",
 INFO_LOW: "INFO",
}

class _TagFilter(logging.Filter):
 """Filter applied to IDAES loggers returned by this modulue."""
 def filter(record):
 """Add in the custom level name and let the record through"""
 if record.levelno in levelname:
 record.levelname = levelname[record.levelno]
 if record.levelno >= WARNING:
 return True
 try:
 if record.tag is None or record.tag in idaes.cfg.logger_tags:
 return True
 except AttributeError:
 return True
 return False

def __info_low(self, *args, **kwargs):
 self.log(INFO_LOW, *args, **kwargs)

def __info_high(self, *args, **kwargs):
 self.log(INFO_HIGH, *args, **kwargs)

def __add_methods(log, tag=None):
 log.addFilter(_TagFilter)
 log = logging.LoggerAdapter(log, {"tag": tag})
 log.info_high = __info_high.__get__(log)
 log.info_low = __info_low.__get__(log)
 # hopefully adding this multiple times is not a problem
 return log

def _getLogger(name, logger_name="idaes", level=None, tag=None):
 assert tag in idaes.cfg.valid_logger_tags.union({None})
 if name.startswith("idaes."):
 name = name[6:]
 name = ".".join([logger_name, name])
 l = logging.getLogger(name)
 if level is not None:
 l.setLevel(level)
 return __add_methods(logging.getLogger(name), tag)

def getIdaesLogger(name, level=None, tag=None):
 """ Return an idaes logger.

 Args:
 name: usually __name__
 level: standard IDAES logging level (default use IDAES config)
 tag: logger tag for filtering, see valid_log_tags()

 Returns:
 logger
 """
 return _getLogger(name=name, logger_name="idaes", level=level, tag=tag)

getLogger = getIdaesLogger

[docs]def getSolveLogger(name, level=None, tag=None):
 """ Get a solver logger

 Args:
 name: logger name is "idaes.solve." + name (if name starts with "idaes."
 it is removed before creating the logger name)
 level: Log level
 tag: logger tag for filtering, see valid_log_tags()

 Returns:
 logger
 """
 return _getLogger(name=name, logger_name="idaes.solve", level=level, tag=tag)

[docs]def getInitLogger(name, level=None, tag=None):
 """ Get a model initialization logger

 Args:
 name: Object name (usually Pyomo Component name)
 level: Log level
 tag: logger tag for filtering, see valid_log_tags()

 Returns:
 logger
 """
 return _getLogger(name=name, logger_name="idaes.init", level=level, tag=tag)

[docs]def getModelLogger(name, level=None, tag=None):
 """ Get a logger for an IDAES model. This function helps users keep their
 loggers in a standard location and use the IDAES logging config.

 Args:
 name: Name (usually __name__). Any starting 'idaes.' is stripped off, so
 if a model is part of the idaes package, 'idaes' won't be repeated.
 level: Standard Python logging level (default use IDAES config)
 tag: logger tag for filtering, see valid_log_tags()

 Returns:
 logger
 """
 return _getLogger(name=name, logger_name="idaes.model",
 level=level, tag=tag)

[docs]def condition(res):
 """Get the solver termination condition to log. This isn't a specifc value
 that you can really depend on, just a message to pass on from the solver for
 the user's benefit. Sometimes the solve is in a try-except, so we'll handle
 None and str for those cases, where you don't have a real result."""

 if res is None:
 return "Error, no result"
 elif isinstance(res, str):
 return res
 else:
 s = str(res.solver.termination_condition)

 try:
 if "ipopt" in str(res.solver.message).lower():
 solver_message = " ".join(str(res.solver.message).split(" ")[2:])
 return "{} - {}".format(s, solver_message)
 else:
 return "{} - {}".format(s, str(res.solver.message))
 except:
 return s

def solver_capture_on():
 """This function turns on the solver capture for the solver_log context
 manager. If this is on, solver output within the solver_log context
 is captured and sent to the logger.

 """
 idaes.cfg.logger_capture_solver = True

def solver_capture_off():
 """This function turns off the solver capture for the solver_log context
 manager. If this is off, solver output within the solver_log context
 is just sent to stdout like normal.

 """
 idaes.cfg.logger_capture_solver = False

def solver_capture():
 """Return True if solver capture is on or False otherwise."""
 return idaes.cfg.logger_capture_solver

[docs]def log_tags():
 """Returns a set of logging tags to be logged.

 Returns:
 (set) tags to be logged
 """
 return idaes.cfg.logger_tags

[docs]def set_log_tags(tags):
 """Specify a set of tags to be logged

 Args:
 tags(iterable of str): Tags to log

 Returns:
 None
 """
 for m in tags:
 if m not in idaes.cfg.valid_logger_tags.union({None}):
 raise ValueError("{} is not a valid logging tag".format(m))
 idaes.cfg.logger_tags = set(tags)

[docs]def add_log_tag(tag):
 """Add a tag to the list of tags to log.

 Args:
 tag(str): Tag to log

 Returns:
 None
 """
 if tag not in idaes.cfg.valid_logger_tags.union({None}):
 raise ValueError("{} is not a valid logging tag".format(tag))
 idaes.cfg.logger_tags.add(tag)

[docs]def remove_log_tag(tag):
 """Remove a tag from the list of tags to log.

 Args:
 tag(str): Tag to no longer log

 Returns:
 None
 """
 try:
 idaes.cfg.logger_tags.remove(tag)
 except ValueError:
 pass

[docs]def valid_log_tags():
 """Returns a set of valid logging tag names.

 Returns:
 (set) valid tag names
 """
 return idaes.cfg.valid_logger_tags.union({None})

[docs]def add_valid_log_tag(tag):
 """Add a tag name to the list of valid names.

 Args:
 tag(str): A tag name

 Returns:
 None
 """
 assert isinstance(tag, str)
 idaes.cfg.valid_logger_tags.add(tag)

class IOToLogTread(threading.Thread):
 """This is a Thread class that can log solver messages and show them as
 they are produced, while the main thread is waiting on the solver to finish
 """

 def __init__(self, stream, logger, sleep=1.0, level=logging.ERROR):
 super().__init__(daemon=True)
 self.log = logger
 self.level = level
 self.stream = stream
 self.sleep = sleep
 self.stop = threading.Event()
 self.pos=0

 def log_value(self):
 try:
 v = self.stream.getvalue()[self.pos:]
 except ValueError:
 self.stop.set()
 return
 self.pos += len(v)
 for l in v.split("\n"):
 if l:
 self.log.log(self.level, l.strip())

 def run(self):
 while True:
 self.log_value()
 self.stop.wait(self.sleep)
 if self.stop.isSet():
 self.log_value()
 self.pos=0
 return

class SolverLogInfo(object):
 def __init__(self, tee=True, thread=None):
 self.tee = tee
 self.thread = thread

@contextmanager
def solver_log(logger, level=logging.ERROR):
 """Context manager to send solver output to a logger. This uses a separate
 thread to log solver output while the solver is running"""
 # wait 3 seconds to join thread. Should be plenty of time. In case
 # something goes horribly wrong though don't want to hang. The logging
 # thread is daemonic, so it will shut down with the main process even if it
 # stays around for some mysterious reason while the model is running.
 join_timeout = 3
 tee = logger.isEnabledFor(level)
 if not solver_capture():
 yield SolverLogInfo(tee=tee)
 else:
 with capture_output() as s:
 lt = IOToLogTread(s, logger=logger, level=level)
 lt.start()
 try:
 yield SolverLogInfo(tee=tee, thread=lt)
 except:
 lt.stop.set()
 lt.join(timeout=join_timeout)
 raise
 # thread should end when s is closed, but setting stop makes sure
 # the last of the output gets logged before closing s
 lt.stop.set()
 lt.join(timeout=join_timeout)

 idaes.ver

 Source code for idaes.ver

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""The API in this module is mostly for internal use, e.g. from 'setup.py' to get the version of
the package. But :class:`Version` has been written to be usable as a general
versioning interface.

Example of using the class directly:

.. doctest::

 >>> from idaes.ver import Version
 >>> my_version = Version(1, 2, 3)
 >>> print(my_version)
 1.2.3
 >>> tuple(my_version)
 (1, 2, 3)
 >>> my_version = Version(1, 2, 3, 'alpha')
 >>> print(my_version)
 1.2.3.a
 >>> tuple(my_version)
 (1, 2, 3, 'alpha')
 >>> my_version = Version(1, 2, 3, 'candidate', 1)
 >>> print(my_version)
 1.2.3.rc1
 >>> tuple(my_version)
 (1, 2, 3, 'candidate', 1)

If you want to add a version to a class, e.g. a model, then
simply inherit from ``HasVersion`` and initialize it with the
same arguments you would give the :class:`Version` constructor:

.. doctest::

 >>> from idaes.ver import HasVersion
 >>> class MyClass(HasVersion):
 ... def __init__(self):
 ... super(MyClass, self).__init__(1, 2, 3, 'alpha')
 ...
 >>> obj = MyClass()
 >>> print(obj.version)
 1.2.3.a

"""
import os
import re
import sys

__author__ = "Dan Gunter"

[docs]class Version(object):
 """This class attempts to be compliant with a subset of
 `PEP 440 <https://www.python.org/dev/peps/pep-0440/>`_.

 Note: If you actually happen to read the PEP, you will notice
 that pre- and post- releases, as well as "release epochs", are not
 supported.
 """

 _specifiers = {
 "alpha": "a",
 "beta": "b",
 "candidate": "rc",
 "development": "dev",
 "final": "", # this is the default
 }

[docs] def __init__(
 self, major, minor, micro, releaselevel="final", serial=None, label=None
):
 """Create new version object.

 Provided arguments are stored in public class
 attributes by the same name.

 Args:
 major (int): Major version
 minor (int): Minor version
 micro (int): Micro (aka patchlevel) version
 releaselevel (str): Optional PEP 440 specifier
 serial (int): Optional number associated with releaselevel
 label (str): Optional local version label
 """
 if releaselevel not in self._specifiers:
 raise ValueError(
 'Value "{}" for releaselevel not in ({})'.format(
 releaselevel, ",".join(sorted(self._specifiers.keys()))
)
)
 self.major, self.minor, self.micro = major, minor, micro
 self.releaselevel, self.serial, self.label = releaselevel, serial, label

[docs] def __iter__(self):
 """Return version information as a sequence.
 """
 items = [self.major, self.minor, self.micro]
 if self.releaselevel != "final":
 items.append(self.releaselevel)
 if self.serial is not None:
 items.append(self.serial)
 if self.label is not None:
 items.append(self.label)
 elif self.label is not None:
 items.append(0) # placeholder for serial
 items.append(self.label)
 for it in items:
 yield it

[docs] def __str__(self):
 """Return version information as a string.
 """
 return "{}.{}.{}{}".format(
 self.major,
 self.minor,
 self.micro,
 (
 ""
 if self.releaselevel == "final"
 else "."
 + self._specifiers[self.releaselevel]
 + ("" if self.serial is None else str(self.serial))
 + ("" if self.label is None else "+" + self.label)
),
)

[docs]class HasVersion(object):
 """Interface for a versioned class.
 """

[docs] def __init__(self, *args):
 """Constructor creates a `version` attribute that is
 an instance of :class:`Version` initialized with the provided args.

 Args:
 *args: Arguments to be passed to Version constructor.
 """
 self.version = Version(*args)

def git_hash():
 """Get current git hash, with no dependencies on external packages.
 """
 # find git root (in grandparent dir to this file, if anywhere)
 git_root = os.path.realpath(os.path.join(__file__, "..", "..", ".git"))
 if not os.path.exists(git_root) or not os.path.isdir(git_root):
 raise ValueError(f"git root '{git_root}' not found")
 # get HEAD ref's file
 try:
 head = open(os.path.join(git_root, "HEAD"))
 except FileNotFoundError as err:
 raise ValueError(f"cannot open HEAD: {err}")
 # parse file looking for 'ref: <path>'
 head_ref = None
 for line in head:
 ref_match = re.match(r"ref:\s+(\S+)", line)
 if ref_match:
 head_ref = ref_match.group(1)
 break
 if head_ref is None:
 raise ValueError(f"no ref found in HEAD '{head}'")
 # read value of ref in <path> found previously
 ref_file = os.path.join(git_root, head_ref)
 try:
 ref = open(ref_file).read().strip()
 except FileNotFoundError:
 raise ValueError(f"ref file '{ref_file}' not found")
 return ref

Get git hash. No output unless IDAES_DEBUG is set in env
gh = None
try:
 try:
 gh = git_hash()
 if os.environ.get("IDAES_DEBUG", None):
 print(f"git hash = {gh}", file=sys.stderr)
 except ValueError as err:
 if os.environ.get("IDAES_DEBUG", None):
 print(f"git_hash() error: {err}", file=sys.stderr)
except NameError: # eg, if invoked from setup.py
 pass

#: Package's version as an object
package_version = Version(1, 8, 0, "final", 0, gh)

#: Package's version as a simple string
__version__ = str(package_version)

 idaes.apps.caprese.nmpc

 Source code for idaes.apps.caprese.nmpc

-*- coding: utf-8 -*-
##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Class for performing NMPC simulations of IDAES flowsheets
"""

from pyomo.environ import (
 Block,
 Constraint,
 Var,
 TerminationCondition,
 SolverFactory,
 Objective,
 NonNegativeReals,
 Reals,
 TransformationFactory,
 Reference,
 value,
)
from pyomo.core.base.range import remainder
from pyomo.common.collections import ComponentMap
from pyomo.dae.initialization import (
 solve_consistent_initial_conditions,
 get_inconsistent_initial_conditions,
)
from pyutilib.misc.config import ConfigDict, ConfigValue

from idaes.core import FlowsheetBlock
from idaes.core.util.model_statistics import (
 degrees_of_freedom,
 activated_equalities_generator,
)
from idaes.core.util.dyn_utils import (
 deactivate_model_at,
 path_from_block,
 find_comp_in_block,
 find_comp_in_block_at_time,
)
from idaes.apps.caprese.common.config import (
 ControlInitOption,
 ElementInitializationInputOption,
 TimeResolutionOption,
 ControlPenaltyType,
 VariableCategory)
from idaes.apps.caprese.util import (
 initialize_by_element_in_range,
 find_slices_in_model,
 NMPCVarGroup,
 NMPCVarLocator,
 copy_values_at_time,
 add_noise_at_time,
 validate_list_of_vardata,
 validate_list_of_vardata_value_tuples,
 validate_solver,
 find_point_in_continuousset,
 get_violated_bounds_at_time)
from idaes.apps.caprese.base_class import DynamicBase
import idaes.logger as idaeslog

__author__ = "Robert Parker and David Thierry"

[docs]class NMPCSim(DynamicBase):
 """
 Main class for NMPC simulations of Pyomo models.
 """
 # pyomo.common.config.add_docstring_list
 CONFIG = DynamicBase.CONFIG

 # TODO: How to document config values?
 CONFIG.declare(
 'control_init_option',
 ConfigValue(
 default=ControlInitOption.FROM_INITIAL_CONDITIONS,
 domain=ControlInitOption.from_enum_or_string,
 doc='Option for how to initialize the controller model'
)
)
 CONFIG.declare(
 'element_initialization_input_option',
 ConfigValue(
 default=ElementInitializationInputOption.SET_POINT,
 domain=ElementInitializationInputOption.from_enum_or_string,
 doc=('Option for how to fix inputs when initializing '
 'by time element')
)
)
 CONFIG.declare(
 'time_resolution_option',
 ConfigValue(
 default=TimeResolutionOption.SAMPLE_POINTS,
 domain=TimeResolutionOption.from_enum_or_string,
 doc=('Option for specifying a time resolution in the '
 'objective function')
)
)
 CONFIG.declare(
 'calculate_error',
 ConfigValue(
 default=True,
 domain=bool,
 doc=('Flag for whether or not to calculate set-point-error '
 'when simulating plant')
)
)
 CONFIG.declare(
 'state_objective_weight_matrix_diagonal',
 ConfigValue(
 default=True,
 domain=bool,
 doc='Flag for whether state objective weights are diagonal'
)
)
 CONFIG.declare(
 'control_objective_weight_matrix_diagonal',
 ConfigValue(
 default=True,
 domain=bool,
 doc='Flag for whether control objective weights are diagonal'
)
)
 CONFIG.declare(
 'control_penalty_type',
 ConfigValue(
 default=ControlPenaltyType.ERROR,
 domain=ControlPenaltyType.from_enum_or_string,
 doc=('Type of control penalty that will be normed in '
 'objective functions')
)
)
 # TODO: Should I combine these into one config argument, then just override
 # for each's function if they need to change?
 CONFIG.declare(
 'add_plant_noise',
 ConfigValue(
 default=True,
 domain=bool,
 doc='Flag for whether to add noise to state loaded from plant'
)
)
 CONFIG.declare(
 'add_input_noise',
 ConfigValue(
 default=True,
 domain=bool,
 doc=('Flag for whether to add noise to inputs injected '
 'into plant')
)
)
 CONFIG.declare(
 'noise_weights',
 ConfigValue(
 default=[],
 domain=list,
 doc=('List of weights to override weights for variance '
 'in noise function')
)
)
 # ^ TODO: Really this should be a list of vardata, value tuples
 CONFIG.declare(
 'max_noise_weight',
 ConfigValue(
 default=1e6,
 domain=float,
 doc='Maximum value by which noise variance can be weighted'
)
)
 CONFIG.declare(
 'noise_arguments',
 ConfigValue(
 default={},
 domain=dict,
 doc='Extra arguments for noise function')
)
 CONFIG.declare(
 'noise_sigma_0',
 ConfigValue(
 default=0.05,
 domain=float,
 doc=('Nominal value of variance that will be scaled by weights '
 'for each state')
)
)
 CONFIG.declare(
 'setpoint',
 ConfigValue(
 default=[],
 domain=validate_list_of_vardata_value_tuples,
 doc=('User-specified list of VarDatas and their corresponding '
 'setpoints')
)
)
 CONFIG.declare('objective_weight_tolerance',
 ConfigValue(
 default=1e-6,
 domain=float,
 doc=('Minimum delta between nominal and set-point that will '
 'be used to calculate objective function weights')
)
)
 CONFIG.declare('objective_weight_override',
 ConfigValue(
 default=[],
 domain=validate_list_of_vardata_value_tuples,
 doc=('User-specified objective weight values for given '
 'variables that take precedence over calculated values')
)
)
 CONFIG.declare('objective_state_categories',
 ConfigValue(
 default=[VariableCategory.DIFFERENTIAL],
 domain=list,
 doc=('Variable categories that will be penalized as '
 'states in the objective function'),
)
)
 CONFIG.declare('sample_time',
 ConfigValue(
 default=1,
 domain=float,
 doc='Time period over which inputs will be held'
)
)
 CONFIG.declare('inputs_at_t0',
 ConfigValue(
 default=[],
 domain=validate_list_of_vardata,
 doc=('List of VarData objects corresponding to the inputs '
 'at time.first() in the plant model')
)
)
 CONFIG.declare('user_objective_name',
 ConfigValue(
 default='user_objective',
 domain=str,
 doc=('Name for the objective function created from the '
 'set-point provided by the user')
)
)
 CONFIG.declare('full_state_objective_name',
 ConfigValue(
 default='tracking_objective',
 domain=str,
 doc=('Name for full-state objective function calculated '
 'from that provided by the user')
)
)

 namespace_name = '_NMPC_NAMESPACE'

 @classmethod
 def get_namespace_name(cls):
 return cls.namespace_name

 def __init__(self, plant_model=None, plant_time_set=None,
 controller_model=None, controller_time_set=None, inputs_at_t0=None,
 sample_time=None, **kwargs):
 """Constructor method. Accepts plant and controller models needed for
 NMPC simulation, as well as time sets (Pyomo Sets) in each model
 Inputs at the first time point in the plant model are also required.
 Models provided are added to the NMPCSim instance as attributes.
 This constructor solves for consistent initial conditions
 in the plant and controller and performs categorization into lists of
 differential, derivative, algebraic, input, fixed, and scalar variables,
 which are added as attributes to a _NMPC_NAMESPACE Block on each model.

 Args:
 plant_model : Plant Pyomo model, NMPC of which will be
 simulated. Currently this must contain the entire
 timespan it is desired to simulate.
 plant_time_set : Set to treat as time in the plant model
 controller_model : Model to be used to calculate control inputs
 for the plant. Control inputs in controller
 must exist in the plant, and initial condition
 variables in the plant must exist in the
 controller.
 controller_time_set : Set to treat as time in the controller model
 inputs_at_t0 : List of VarData objects containing the variables
 to be treated as control inputs, at time.first().
 solver : Solver to be used for verification of consistent initial
 conditions, will also be used as the default solver if
 another is not provided for initializing or solving the
 optimal control problem.
 outlvl : IDAES logger output level. Default is idaes.logger.INFO.
 To see solver output, use idaes.logger.DEBUG.
 sample_time : Length of time each control input will be held for.
 This must be an integer multiple of the (finite
 element) discretization spacing in both the plant
 and controller models. Default is to use the
 controller model's discretization spacing.

 """
 self.config = self.CONFIG(kwargs)
 super(NMPCSim, self).__init__(plant_model, plant_time_set,
 controller_model, controller_time_set, inputs_at_t0,
 **kwargs)

 # Should I provide solver and outlvl as explicit args here?
 self.config.sample_time = sample_time
 self.config.inputs_at_t0 = inputs_at_t0
 # Maybe include a kwarg for require_steady - if False, set-point is not
 # forced to be a steady state

 # TODO: validate_time_set function

 init_log = idaeslog.getInitLogger('nmpc', level=self.config.outlvl)

 # Only need to manipulate bounds of controller model. Assume the
 # bounds in the plant model should remain in place for simulation.
 # (Should probably raise a warning if bounds are present...)
 for categ, vargroup in self.controller._NMPC_NAMESPACE.category_dict.items():
 self.set_bounds_from_initial(vargroup)
 # ^ This may be removed in favor of strip_bounds transformation

 # Validate inputs in the plant model and initial conditions
 # in the control model.
 # TODO: allow user to specify this if names don't match
 self.plant._NMPC_NAMESPACE.controller_ic_vars = find_slices_in_model(
 self.plant, self.plant_time,
 self.controller, self.controller_time,
 self.plant._NMPC_NAMESPACE.var_locator,
 self.controller._NMPC_NAMESPACE.ic_vars)
 self.controller._NMPC_NAMESPACE.plant_input_vars = find_slices_in_model(
 self.controller, self.controller_time,
 self.plant, self.plant_time,
 self.controller._NMPC_NAMESPACE.var_locator,
 self.plant._NMPC_NAMESPACE.input_vars.varlist)

 self.validate_fixedness(self.plant, self.controller)

 self.sample_time = self.config.sample_time
 self.validate_sample_time(self.sample_time,
 self.controller, self.plant)

 # Flag for whether controller has been initialized
 # by a previous solve
 self.controller_solved = False

 # Maps sample times in plant model to the normalized state error
 # This error will be defined by:
 # <(x_pred-x_meas), Q(x_pred-x_meas)>
 # where Q is the positive semi-definite matrix defining the norm
 # used in the objective function.
 #
 # Currently only diagonal matrices Q are supported, and values of None
 # are interpreted as zeros
 self.state_error = {}
 # Should I set state_error[0] = 0? Probably not, in case there is for
 # instance some measurement noise.
 # Remember: Need to calculate weight matrices before populating this.

 self.current_plant_time = 0

[docs] @classmethod
 def add_namespace_to(cls, model, time):
 """Adds the _NMPC_NAMESPACE block a model with a given time set.
 All necessary model-specific attributes, including constraints
 and objectives, will be added to this block.

 Args:
 model : Model to which to add the namespace
 time : Set to treat as time in the given model

 """
 name = '_NMPC_NAMESPACE'
 # Not _CAPRESE_NAMESPACE as I might want to add a similar
 # namespace for MHE
 if hasattr(model, name):
 raise ValueError('%s already exists on model. Please fix this.'
 % name)
 model.add_component(name, Block())
 super(NMPCSim, cls).add_namespace_to(model, time)

 # TODO: Should this method call _populate_namespace?
 # Otherwise this namespace doesn't have access to the get_time function.
 # Don't want to require that a model is categorized just to get_time,
 # which is what I'm doing right now, unless I call get_time on the base
 # namespace.

[docs] def validate_sample_time(self, sample_time, *models, **kwargs):
 """Makes sure sample points, or integer multiple of sample time-offsets
 from time.first(), lie on finite element boundaries, and that the
 horizon of each model is an integer multiple of sample time. Assembles
 a list of sample points and a dictionary mapping sample points to the
 number of finite elements in the preceding sampling period, and adds
 them as attributes to _NMPC_NAMESPACE.

 Args:
 sample_time: Sample time to check
 models: List of flowsheet models to check

 """
 config = self.config(kwargs)
 tolerance = config.continuous_set_tolerance
 for model in models:
 time = model._NMPC_NAMESPACE.get_time()
 horizon_length = time.last() - time.first()

 # TODO: This should probably be a DAE utility
 min_spacing = horizon_length
 for t in time:
 if t == time.first():
 continue
 prev = time.prev(t)
 if t - prev < min_spacing:
 min_spacing = t - prev
 # Sanity check:
 assert min_spacing > 0
 # Required so only one point can satisfy equality to tolerance
 if tolerance >= min_spacing/2:
 raise ValueError(
 'ContinuousSet tolerance is larger than half the minimum '
 'spacing. An element of this set will not necessarily be '
 'unique within this tolerance.')

 off_by = abs(remainder(horizon_length, sample_time))
 if off_by > tolerance:
 raise ValueError(
 'Sampling time must be an integer divider of '
 'horizon length within tolerance %f' % tolerance)
 n_samples = round(horizon_length/sample_time)
 model._NMPC_NAMESPACE.samples_per_horizon = n_samples

 finite_elements = time.get_finite_elements()

 sample_points = [time.first()]
 sample_no = 1
 fe_per = 0
 fe_per_sample_dict = {}
 for t in finite_elements:
 if t == time.first():
 continue
 fe_per += 1
 time_since = t - time.first()
 sp = sample_no*sample_time
 diff = abs(sp-time_since)
 if diff < tolerance:
 sample_points.append(t)
 sample_no += 1
 fe_per_sample_dict[sample_no] = fe_per
 fe_per = 0
 if time_since > sp:
 raise ValueError(
 'Could not find a time point for the %ith '
 'sample point' % sample_no)
 assert len(sample_points) == n_samples + 1
 model._NMPC_NAMESPACE.fe_per_sample = fe_per_sample_dict
 model._NMPC_NAMESPACE.sample_points = sample_points

[docs] def validate_slices(self, tgt_model, src_model, src_time, src_slices):
 """
 Given list of time-only slices in a source model, attempts to find
 each of them in the target model and returns a list of the found
 slices in the same order.
 Expects to find a var_locator ComponentMap attribute in the
 _NMPC_NAMESPACE of the target model.

 Args:
 tgt_model : Model to search for time-slices
 src_model : Model containing the slices to search for
 src_slices : List of time-only slices of variables in the source
 model

 Returns:
 List of time-only slices to same-named variables in the target
 model
 """
 t0 = src_time.first()
 tgt_slices = []
 namespace = getattr(tgt_model, self.namespace_name)
 locator = namespace.var_locator
 for _slice in src_slices:
 init_vardata = _slice[t0]
 # FIXME
 # This assumes that t0 is a valid time point for the target
 # model, even it is taken from the source.
 # Should use find_comp_in_block_at_time, which essentially
 # does the work of constructing a CUID with wildcard, but
 # here is tied to the target model's time set.
 # A better validation method might be:
 # src_comp -> cuid w/ wildcard -> target_comp...
 # this would still be the same amount of work/code in this
 # method. Would be nice to go straight from the source
 # Reference to the CUID, and from the CUID to the/a ref-
 # to-slice. cuid.to_reference() would be nice.
 tgt_vardata = find_comp_in_block(tgt_model,
 src_model,
 init_vardata)
 tgt_container = locator[tgt_vardata].group.varlist
 location = locator[tgt_vardata].location
 tgt_slices.append(tgt_container[location])
 return tgt_slices

[docs] def validate_fixedness(self, *models):
 """
 Makes sure that assumptions regarding fixedness for different points
 in time are valid. Differential, algebraic, and derivative variables
 may be fixed only at t0, only if they are initial conditions.
 Fixed variables must be fixed at all points in time, except possibly
 initial conditions.

 Expects to find "alg," "diff," "deriv," and "fixed" vars on each
 model's _NMPC_NAMESPACE, as well as a var_locator ComponentMap.

 Args:
 models: Models for which to validate fixedness

 """
 for model in models:
 time = model._NMPC_NAMESPACE.get_time()
 t0 = time.first()
 locator = model._NMPC_NAMESPACE.var_locator

 # Appropriate for this function to have categories specified
 for _slice in (model._NMPC_NAMESPACE.alg_vars.varlist +
 model._NMPC_NAMESPACE.diff_vars.varlist +
 model._NMPC_NAMESPACE.deriv_vars.varlist):
 var0 = _slice[t0]
 if locator[var0].is_ic:
 assert var0.fixed
 for t in time:
 if t == t0:
 continue
 assert not _slice[t].fixed
 else:
 for t in time:
 assert not _slice[t].fixed

 for var in model._NMPC_NAMESPACE.fixed_vars.varlist:
 for t in time:
 # Fixed vars, e.g. those used in boundary conditions,
 # may "overlap" with initial conditions. It is up to the user
 # to make sure model has appropriate number of degrees of
 # freedom
 if t == t0:
 continue
 assert var[t].fixed

[docs] def transfer_current_plant_state_to_controller(self, t_plant, **kwargs):
 """Transfers values of the initial condition variables at a specified
 time in the plant model to the initial time point of the controller
 model, adding noise if desired.

 Args:
 t_plant: Time point in plant model whose values will be transferred

 """
 # Would like to pass "noise_args" in as a bundle here. This can
 # probably be done with config blocks somehow.
 # TODO: allow specification of noise args
 config = self.config(kwargs)

 time = self.controller_time
 t0 = time.first()

 copy_values_at_time(self.controller._NMPC_NAMESPACE.ic_vars,
 self.plant._NMPC_NAMESPACE.controller_ic_vars,
 t0,
 t_plant)

 # Apply noise to new initial conditions
 add_noise = config.add_plant_noise

 noise_weights = config.noise_weights
 noise_sig_0 = config.noise_sigma_0
 noise_args = config.noise_arguments
 max_noise_weight = config.max_noise_weight

 locator = self.controller._NMPC_NAMESPACE.var_locator
 if add_noise:
 if not noise_weights:
 noise_weights = []
 for var in self.controller._NMPC_NAMESPACE.ic_vars:
 info = locator[var[t0]]
 loc = info.location
 obj_weight = info.group.weights[loc]

 if obj_weight is not None and obj_weight != 0:
 noise_weights.append(min(1/obj_weight,
 max_noise_weight))
 else:
 noise_weights.append(None)

 add_noise_at_time(self.controller._NMPC_NAMESPACE.ic_vars,
 t0,
 weights=noise_weights,
 sigma_0=noise_sig_0,
 **noise_args)

[docs] def inject_control_inputs_into_plant(self, t_plant, **kwargs):
 """Injects input variables from the first sampling time in the
 controller model to the sampling period in the plant model that
 starts at the specified time, adding noise if desired.

 Args:
 t_plant : First time point in plant model where inputs will be
 applied.

 """
 # config args for control_input_noise
 config = self.config(kwargs)
 tolerance = config.continuous_set_tolerance
 sample_time = self.config.sample_time

 # Send inputs to plant that were calculated for the end
 # of the first sample
 t_controller = find_point_in_continuousset(
 self.controller_time.first() + sample_time,
 self.controller_time, tolerance)
 assert t_controller in self.controller_time

 time = self.plant_time
 plant_sample_end = find_point_in_continuousset(
 t_plant + sample_time,
 time, tolerance)
 assert plant_sample_end in time
 plant_sample = [t for t in time if t > t_plant and t<= plant_sample_end]
 assert plant_sample_end in plant_sample
 # len(plant_sample) should be ncp*nfe_per_sample, assuming the expected
 # sample_time is passed in

 add_noise = config.add_input_noise
 noise_weights = config.noise_weights
 noise_sig_0 = config.noise_sigma_0
 noise_args = config.noise_arguments
 max_noise_weight = config.max_noise_weight

 # Need to get proper weights for plant's input vars
 locator = self.controller._NMPC_NAMESPACE.var_locator
 if add_noise:
 if not noise_weights:
 noise_weights = []
 for var in self.controller._NMPC_NAMESPACE.plant_input_vars:
 info = locator[var[t_controller]]
 loc = info.location
 obj_weight = info.group.weights[loc]
 if obj_weight is not None and obj_weight != 0:
 noise_weights.append(min(1/obj_weight, max_noise_weight))
 else:
 # By default, if state is not penalized in objective,
 # noise will not be applied to it here.
 # This may be incorrect, but user will have to override,
 # by providing their own weights, as I don't see a good
 # way of calculating a weight
 noise_weights.append(None)

 add_noise_at_time(self.controller._NMPC_NAMESPACE.plant_input_vars,
 t_controller,
 weights=noise_weights,
 sigma_0=noise_sig_0,
 **noise_args)
 #add_noise_at_time(self.plant.input_vars,
 # t_plant+sample_time,
 # weights=noise_weights,
 # sigma_0=noise_sig_0,
 # **noise_args)
 # Slight bug in logic here: noise is applied to plant variables,
 # but only controller variables have bounds.
 # Alternatives: add bounds to plant variables (undesirable)
 # apply noise to controller variables (maybe okay...)
 # ^ can always record nominal values, then revert
 # noise after it's copied into plant...
 # Right now I apply noise to controller model, and don't revert

 copy_values_at_time(self.plant._NMPC_NAMESPACE.input_vars.varlist,
 self.controller._NMPC_NAMESPACE.plant_input_vars,
 plant_sample,
 t_controller)

[docs] def has_consistent_initial_conditions(self, model, **kwargs):
 """
 Finds constraints at time.first() that are violated by more than
 tolerance. Returns True if any are found.
 """
 # This will raise an error if any constraints at t0 cannot be
 # evaluated, i.e. contain a variable of value None.
 namespace = getattr(model, self.get_namespace_name())
 time = namespace.get_time()
 config = self.config(kwargs)
 tolerance = config.tolerance
 inconsistent = get_inconsistent_initial_conditions(
 model,
 time,
 tol=tolerance,
 suppress_warnings=True)
 return not inconsistent

[docs] def solve_consistent_initial_conditions(self, model, **kwargs):
 """
 Uses pyomo.dae.initialization solve_consistent_initial_conditions
 function to solve for consistent initial conditions. Inputs are
 fixed at time.first() in attempt to eliminate degrees of freedom.
 """
 namespace = getattr(model, self.get_namespace_name())
 time = namespace.get_time()
 strip_bounds = kwargs.pop('strip_bounds', True)
 config = self.config(kwargs)
 outlvl = config.outlvl
 solver = config.solver
 solver_log = idaeslog.getSolveLogger('nmpc', level=outlvl)
 t0 = time.first()

 previously_fixed = ComponentMap()
 for var in namespace.input_vars:
 var0 = var[t0]
 previously_fixed[var0] = var0.fixed
 var0.fix()

 if strip_bounds:
 strip_var_bounds = TransformationFactory(
 'contrib.strip_var_bounds')
 strip_var_bounds.apply_to(model, reversible=True)

 with idaeslog.solver_log(solver_log, level=idaeslog.DEBUG) as slc:
 result = solve_consistent_initial_conditions(model, time, solver,
 tee=slc.tee)

 if strip_bounds:
 strip_var_bounds.revert(model)

 for var, was_fixed in previously_fixed.items():
 if not was_fixed:
 var.unfix()

 return result

[docs] def calculate_full_state_setpoint(self,
 setpoint,
 require_steady=True,
 allow_inconsistent=True,
 **kwargs):
 """Given a user-defined setpoint, i.e. a list of VarData, value tuples,
 calculates a full-state setpoint to be used in the objective function
 of the dynamic optimization problem. This is done by solving a single-
 time point optimization problem with the user's setpoint in the
 objective function.

 The solve is performed in the first time point blocks/constraints of the
 controller model. The procedure is:

 i. Check for inconsistent initial conditions. Warn user if found.
 ii. Populate controller setpoint attributes with user-defined
 values.
 iii. Populate reference attributes with (now consistent) initial
 conditions.
 iv. Calculate weights for variables specified.
 v. Add objective function based on these weights and setpoint
 values.
 vi. Solve for setpoint.
 vii. Deactivate just-added objective function.

 Args:
 setpoint : List of VarData, value tuples to be used in the objective
 function of the single-time point optimization problem
 require_steady : Bool telling whether or not to fix derivatives to
 zero when performing optimization

 """
 config = self.config(kwargs)
 solver = config.solver
 outlvl = config.outlvl
 tolerance = config.tolerance
 init_log = idaeslog.getInitLogger('nmpc', outlvl)
 user_objective_name = config.user_objective_name

 controller = self.controller
 time = self.controller_time
 t0 = time.first()
 category_dict = controller._NMPC_NAMESPACE.category_dict
 locator = controller._NMPC_NAMESPACE.var_locator

 # User should have already solved for consistent initial conditions if
 # they want them.
 inconsistent = get_inconsistent_initial_conditions(
 controller,
 time,
 tol=tolerance,
 suppress_warnings=True)
 if inconsistent:
 msg = ('Initial conditions are inconistent. Weights in the '
 'setpoint optimization problem may not be reasonable. Use the '
 'solve_consistent_initial_conditions before calling '
 'calculate_full_state_setpoint to remedy')
 if allow_inconsistent:
 init_log.warning(msg)
 else:
 raise RuntimeError(msg)

 # Categories of variables whose set point values will be added to controller
 # TODO: maybe this should be an argument
 categories = [VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT,
 VariableCategory.SCALAR]

 # Clear any previous existing setpoint values in these variables
 for categ in categories:
 group = category_dict[categ]
 for i in range(group.n_vars):
 group.set_setpoint(i, None)

 # Populate appropriate setpoint values from argument
 for vardata, val in setpoint:
 info = locator[vardata]
 categ = info.category
 loc = info.location
 group = category_dict[categ]
 group.set_setpoint(loc, val)

 # Calculate objective weights for all variables.
 for categ, vargroup in category_dict.items():
 if categ == VariableCategory.SCALAR:
 for i, var in enumerate(vargroup):
 vargroup.set_reference(i, var.value)
 else:
 for i, var in enumerate(vargroup):
 vargroup.set_reference(i, var[t0].value)

 override = config.objective_weight_override
 tolerance = config.objective_weight_tolerance

 self.construct_objective_weights(
 controller,
 objective_weight_override=override,
 objective_weight_tolerance=tolerance,
 categories=[VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT])

 # Save user setpoint and weights as attributes of namespace
 # in case they are required later
 user_setpoint = []
 user_setpoint_vars = []
 user_sp_weights = []
 for var, val in setpoint:
 user_setpoint.append(val)
 user_setpoint_vars.append(var)
 loc = locator[var].location
 user_sp_weights.append(locator[var].group.weights[loc])
 controller._NMPC_NAMESPACE.user_setpoint_weights = user_sp_weights
 controller._NMPC_NAMESPACE.user_setpoint = user_setpoint
 controller._NMPC_NAMESPACE.user_setpoint_vars = user_setpoint_vars

 # Add an objective function that only involves variables at t0
 self.add_objective_function(controller,
 control_penalty_type=ControlPenaltyType.ERROR,
 name=user_objective_name,
 objective_state_categories=[
 VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
],
 time_resolution_option=TimeResolutionOption.INITIAL_POINT)
 temp_objective = getattr(controller._NMPC_NAMESPACE, user_objective_name)

 self.solve_setpoint(
 categories=categories,
 require_steady=require_steady,
 **kwargs)

 # Deactivate objective that was just created
 temp_objective.deactivate()

 # Transfer setpoint values and reset initial values
 for categ in categories:
 vargroup = category_dict[categ]
 if categ == VariableCategory.SCALAR:
 for i, var in enumerate(vargroup):
 vargroup.set_setpoint(i, var.value)
 var.set_value(vargroup.reference[i])
 else:
 for i, var in enumerate(vargroup):
 vargroup.set_setpoint(i, var[t0].value)
 var[t0].set_value(vargroup.reference[i])

 def solve_setpoint(self,
 categories = [VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT,
 VariableCategory.SCALAR],
 require_steady=True,
 **kwargs):
 config = self.config(kwargs)
 solver = config.solver
 outlvl = config.outlvl
 init_log = idaeslog.getInitLogger('nmpc', outlvl)
 solver_log = idaeslog.getSolveLogger('nmpc', outlvl)
 controller = self.controller
 time = self.controller_time
 t0 = time.first()
 namespace = getattr(controller, self.namespace_name)
 category_dict = namespace.category_dict

 was_originally_active = ComponentMap([(comp, comp.active) for comp in
 controller.component_data_objects((Constraint, Block))])
 non_initial_time = list(time)[1:]
 deactivated = deactivate_model_at(controller, time, non_initial_time, outlvl)
 was_fixed = ComponentMap()

 # Fix/unfix variables as appropriate
 # Order matters here. If a derivative is used as an IC, we still want
 # it to be fixed if steady state is required.
 for var in namespace.ic_vars:
 var[t0].unfix()
 for var in category_dict[VariableCategory.INPUT]:
 was_fixed[var[t0]] = var[t0].fixed
 var[t0].unfix()
 if require_steady == True:
 for var in category_dict[VariableCategory.DERIVATIVE]:
 var[t0].fix(0.0)

 # Solve single-time point optimization problem
 dof = degrees_of_freedom(controller)
 if require_steady:
 assert dof == namespace.n_input_vars
 else:
 assert dof == namespace.n_input_vars + namespace.n_diff_vars
 init_log.info('Solving for full-state setpoint values')
 with idaeslog.solver_log(solver_log, level=idaeslog.DEBUG) as slc:
 results = solver.solve(controller, tee=slc.tee)
 if results.solver.termination_condition == TerminationCondition.optimal:
 init_log.info(
 'Successfully solved for full state setpoint values')
 else:
 msg = 'Failed to solve for full state setpoint values'
 init_log.error(msg)
 raise RuntimeError(msg)

 # Revert changes. Again, order matters
 if require_steady == True:
 for var in category_dict[VariableCategory.DERIVATIVE]:
 var[t0].unfix()
 for var in controller._NMPC_NAMESPACE.ic_vars:
 var[t0].fix()

 # Reactivate components that were deactivated
 for t, complist in deactivated.items():
 for comp in complist:
 if was_originally_active[comp]:
 comp.activate()

 # Fix inputs that were originally fixed
 for var in category_dict[VariableCategory.INPUT]:
 if was_fixed[var[t0]]:
 var[t0].fix()

[docs] def add_setpoint_to_controller(self, objective_name='tracking_objective',
 **kwargs):
 """User-facing function for the addition of a setpoint to the
 controller. Assumes the controller model's setpoint attributes have
 been populated with desired values. This function first calculates
 weights, then adds an objective function based on those weights
 and existing setpoint values.

 Args:
 objective_name : Name to use for the objective function added
 """
 # TODO: allow user to specify a steady state to use without having
 # called create_steady_state_setpoint
 config = self.config(kwargs)
 weight_override = config.objective_weight_override
 weight_tolerance = config.objective_weight_tolerance
 objective_state_categories = config.objective_state_categories
 time_resolution_option = config.time_resolution_option
 outlvl = config.outlvl
 #objective_name = config.full_state_objective_name

 self.construct_objective_weights(self.controller,
 objective_weight_override=weight_override,
 objective_weight_tolerance=weight_tolerance,
 categories=[
 VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT,
])

 # TODO: set point changes.
 self.add_objective_function(self.controller,
control_penalty_type=ControlPenaltyType.ACTION,
NOTE: Leaving this commented here in case this breaks something
 control_penalty_type=config.control_penalty_type,
 objective_state_categories=objective_state_categories,
 time_resolution_option=time_resolution_option,
 name=objective_name)

[docs] def set_reference_values_from_initial(self, vargroup, t0=None):
 """Sets the values in the reference list of an NMPCVarGroup from the
 values of the group's variables at t0

 Args:
 vargroup : NMPCVarGroup instance whose reference values to set
 t0 : Point in time at which variable values will be used to set
 reference values

 """
 if vargroup.is_scalar:
 raise ValueError(
 'No way to get initial conditions for a scalar component')
 else:
 if t0 is None:
 t0 = vargroup.t0
 for i in range(vargroup.n_vars):
 vargroup.reference[i] = vargroup.varlist[i][t0].value

[docs] def construct_objective_weights(self, model,
 categories=[VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT],
 **kwargs):
 """Constructs the objective weight values for the specified variable
 categories of a specified model. Weights are calculated for each
 variable in each group by taking the difference between the initial
 value and the setpoint value, making sure it is above a tolerance,
 and taking its reciprocal. Weights can be overridden by a list
 of VarData, value tuples passed in as the "objective_weight_override"
 config argument.

 Args:
 model : Model whose variables will be accessed to calculate weights,
 and whose weight attributes will be set.
 categories : List of VariableCategory enum items for which to
 calculate weights. Default is DIFFERENTIAL, ALGEBRAIC,
 DERIVATIVE, and INPUT

 """
 config = self.config(kwargs)
 override = config.objective_weight_override
 tol = config.objective_weight_tolerance

 # Variables to override must be VarData objects in the model
 # for whose objective function we are calculating weights
 category_dict = model._NMPC_NAMESPACE.category_dict

 weights_to_override = {}
 for ow_tpl in override:
 locator = model._NMPC_NAMESPACE.var_locator[ow_tpl[0]]
 weights_to_override[(locator.category, locator.location)] = \
 ow_tpl[1]

 # Given a vardata here, need to know its location so I know which
 # weight to override

 # Attempt to construct weight for each type of setpoint

 for categ in categories:
 vargroup = category_dict[categ]
 reference = vargroup.reference
 setpoint = vargroup.setpoint
 weights = vargroup.weights
 # construct the diagonal matrix (list).
 for loc, sp_value in enumerate(setpoint):

 # This assumes the vardata in sp is the same one
 # provided by the user. But these could differ by time
 # index...
 # Need to check by location, category here
 if (categ, loc) in weights_to_override:
 weights[loc] = weights_to_override[categ, loc]
 continue

 # If value is None, but variable was provided as override,
 # weight can still be non-None. This is okay.
 if sp_value is None or reference[loc] is None:
 weights[loc] = None
 continue

 diff = abs(reference[loc] - sp_value)
 if diff > tol:
 weight = 1./diff
 else:
 weight = 1./tol
 weights[loc] = weight

[docs] def add_objective_function(self, model, name='objective', state_weight=1,
 control_weight=1, **kwargs):
 """Adds an objective function based on already calculated weights
 and setpoint values to the _NMPC_NAMESPACE of a model.

 Args:
 model : Model to which to add objective function
 name : Name of objective function to add
 state_weight : Additional weight factor to apply to each state
 term in the objective function. Intended for a user
 that wants to weigh states and controls differently
 control_weight : Addtional weight factor to apply to each control
 term in the objective function. Intended for a user
 that wants to weigh states and controls differently

 """
 config = self.config(kwargs)
 outlvl = config.outlvl
 init_log = idaeslog.getInitLogger('nmpc', level=outlvl)
 time_resolution = config.time_resolution_option
 state_categories = config.objective_state_categories

 # Q and R are p.s.d. matrices that weigh the state and
 # control norms in the objective function
 Q_diagonal = config.state_objective_weight_matrix_diagonal
 R_diagonal = config.control_objective_weight_matrix_diagonal

 # User may want to penalize control action, i.e. ||u_i - u_{i-1}||,
 # or control error (from set point), i.e. ||u_i - u*||
 # Valid values are ACTION or ERROR
 control_penalty_type = config.control_penalty_type
 if not (control_penalty_type == ControlPenaltyType.ERROR or
 control_penalty_type == ControlPenaltyType.ACTION or
 control_penalty_type == ControlPenaltyType.NONE):
 raise ValueError(
 "control_penalty_type argument must be 'ACTION' or 'ERROR'")

 if not Q_diagonal or not R_diagonal:
 raise NotImplementedError('Q and R must be diagonal for now.')

 category_dict = model._NMPC_NAMESPACE.category_dict
 states = []
 Q_entries = []
 sp_states = []
 for categ in state_categories:
 if (categ == VariableCategory.INPUT and
 control_penalty_type != ControlPenaltyType.NONE):
 raise ValueError(
 '''INPUT variable cannot be penalized as both states and controls.
 Either set control_penalty_type to ControlPenaltyType.NONE or
 omit VariableCategory.INPUT from objective_state_categories.'''
)
 vargroup = category_dict[categ]
 states += vargroup.varlist
 Q_entries += vargroup.weights
 sp_states += vargroup.setpoint

 input_group = category_dict[VariableCategory.INPUT]
 controls = input_group.varlist
 R_entries = input_group.weights
 sp_controls = input_group.setpoint

 mod_time = model._NMPC_NAMESPACE.get_time()
 t0 = mod_time.first()
 # NOTE: t0 is now omitted from objective function, unless
 # INITIAL_POINT option is used
 if time_resolution == TimeResolutionOption.COLLOCATION_POINTS:
 time = [t for t in mod_time if t != mod_time.first()]
 if time_resolution == TimeResolutionOption.FINITE_ELEMENTS:
 time = [t for t in mod_time.get_finite_elements()
 if t != mod_time.first()]
 if time_resolution == TimeResolutionOption.SAMPLE_POINTS:
 sample_time = self.sample_time
 time = [t for t in model._NMPC_NAMESPACE.sample_points
 if t != mod_time.first()]
 if time_resolution == TimeResolutionOption.INITIAL_POINT:
 time = [t0]

 state_term = sum(Q_entries[i]*(states[i][t] - sp_states[i])**2
 for i in range(len(states)) if (Q_entries[i] is not None
 and sp_states[i] is not None)
 for t in time)
 # TODO: With what time resolution should states/controls be penalized?
 # I think they should be penalized every sample point

 if control_penalty_type == ControlPenaltyType.ERROR:
 control_term = sum(R_entries[i]*(controls[i][t] - sp_controls[i])**2
 for i in range(len(controls)) if (R_entries[i] is not None
 and sp_controls[i] is not None)
 for t in time)
 elif control_penalty_type == ControlPenaltyType.ACTION:
 # Override time list to be the list of sample points,
 # as these are the only points control action can be
 # nonzero
 action_time = model._NMPC_NAMESPACE.sample_points[1:]
 time_len = len(action_time)
 if time_len == 1:
 init_log.warning(
 'Warning: Control action penalty specfied '
 'for a model with a single time point.'
 'Control term in objective function will be empty.')
 control_term = sum(
 R_entries[i]*(controls[i][action_time[k]] -
 controls[i][action_time[k-1]])**2
 for i in range(len(controls))
 if (R_entries[i] is not None
 and sp_controls[i] is not None)
 for k in range(1, time_len)
)
 elif control_penalty_type == ControlPenaltyType.NONE:
 control_term = 0
 # Note: This term is only non-zero at the boundary between sampling
 # times. Could use this info to make the expression more compact

 obj_expr = state_term + control_term

 # TODO: Deactivate existing objectives
 obj = Objective(expr=obj_expr)
 model._NMPC_NAMESPACE.add_component(name, obj)

[docs] def set_bounds_from_initial(self, vargroup):
 """
 Builds lists of lower bound, upper bound tuples as attributes of the
 input model, based on the current bounds (and domains) of
 differential, algebraic, and input variables.

 Args:
 model : Model whose variables will be checked for bounds.

 """

 varlist = vargroup.varlist
 if not vargroup.is_scalar:
 t0 = vargroup.index_set.first()
 for i, var in enumerate(varlist):
 if not vargroup.is_scalar:
 # Just assume these (t0) are the bounds/domain I want
 lb = var[t0].lb
 ub = var[t0].ub
 domain = var[t0].domain
 else:
 lb = var.lb
 ub = var.ub
 domain = var.domain
 if (domain == NonNegativeReals and lb is None):
 lb = 0
 elif (domain == NonNegativeReals and lb < 0):
 lb = 0
 vargroup.set_lb(i, lb)
 vargroup.set_ub(i, ub)

[docs] def constrain_control_inputs_piecewise_constant(self,
 **kwargs):
 """Function to add piecewise constant (PWC) constraints to controller
 model. Requires model's _NMPC_NAMESPACE to know about input vars
 and to have as an attribute a sample points list.

 """
 config = self.config(kwargs)
 sample_time = config.sample_time
 outlvl = config.outlvl
 init_log = idaeslog.getInitLogger('nmpc', outlvl)
 init_log.info('Adding piecewise-constant constraints')

 model = self.controller

 # If sample_time is overwritten here, assume that the
 # provided sample_time should be used going forward
 # (in input injection, plant simulation, and controller initialization)
 if sample_time != self.config.sample_time:
 self.validate_sample_time(sample_time,
 self.controller, self.plant)
 self.config.sample_time = sample_time

 time = model._NMPC_NAMESPACE.get_time()

 # This rule will not be picklable as it is not declared
 # at module namespace
 # Can access sample_time as attribute of namespace block,
 # then rule can be located outside of class
 input_indices = [i for i in range(model._NMPC_NAMESPACE.input_vars.n_vars)]
 def pwc_rule(ns, t, i):
 # Unless t is at the boundary of a sample, require
 # input[t] == input[t_next]
 time = ns.get_time()
 if t in ns.sample_points or t == time.first():
 return Constraint.Skip
 t_next = time.next(t)
 inputs = ns.input_vars.varlist
 _slice = inputs[i]
 return _slice[t_next] == _slice[t]

 name = 'pwc_constraint'
 pwc_constraint = Constraint(time, input_indices,
 rule=pwc_rule)
 model._NMPC_NAMESPACE.add_component(name, pwc_constraint)

 pwc_constraint_list = [Reference(pwc_constraint[:, i])
 for i in input_indices]
 model._NMPC_NAMESPACE.pwc_constraint_list = pwc_constraint_list

[docs] def initialize_control_problem(self, **kwargs):
 """Function to initialize the controller model before solving the
 optimal control problem. Possible strategies are to use the initial
 conditions, to perform a simulation, or to use the results of the
 previous solve. Initialization from a previous (optimization)
 solve can only be done if an optimization solve has been performed
 since the last initialization. The strategy may be passed in as
 the control_init_option keyword (config) argument, otherwise the
 default will be used.

 """
 config = self.config(kwargs)
 strategy = config.control_init_option
 solver = config.solver

 input_type = config.element_initialization_input_option

 time = self.controller_time

 if strategy == ControlInitOption.FROM_PREVIOUS:
 self.initialize_from_previous_sample(self.controller, **kwargs)

 elif strategy == ControlInitOption.BY_TIME_ELEMENT:
 self.initialize_by_solving_elements(self.controller, self.controller_time,
 input_type=input_type, **kwargs)

 elif strategy == ControlInitOption.FROM_INITIAL_CONDITIONS:
 self.initialize_from_initial_conditions(self.controller, **kwargs)

 # Add check that initialization did not violate bounds/equalities?

 self.controller_solved = False

[docs] def initialize_by_solving_elements(self, model, time,
 input_type=ElementInitializationInputOption.SET_POINT,
 objective_name='tracking_objective',
 **kwargs):
 """Initializes the controller model by solving (a square simulation
 for) each time element.

 Args:
 model : Model to initialize
 time : Set to treat as time
 input_type : ElementInitializationInputOption enum item
 telling how to fix the inputs for the simulation

 """
 config = self.config(kwargs)
 tol = config.tolerance
 outlvl = config.outlvl
 objective = getattr(model._NMPC_NAMESPACE,
 objective_name)
 namespace = model._NMPC_NAMESPACE

 # Strip bounds before simulation as square solves will be performed
 strip_controller_bounds = TransformationFactory(
 'contrib.strip_var_bounds')
 strip_controller_bounds.apply_to(model, reversible=True)

 input_vars = model._NMPC_NAMESPACE.input_vars
 if input_type == ElementInitializationInputOption.SET_POINT:
 for i, _slice in enumerate(input_vars.varlist):
 for t in time:
 if t != time.first():
 _slice[t].fix(input_vars.setpoint[i])
 else:
 _slice[t].fix()
 elif input_type == ElementInitializationInputOption.INITIAL:
 for i, _slice in enumerate(input_vars.varlist):
 t0 = time.first()
 for t in time:
 _slice[t].fix(_slice[t0].value)
 else:
 raise ValueError('Unrecognized input option')
 # The above should ensure that all inputs are fixed and the
 # model has no dof upon simulation

 # Deactivate objective function
 # Here I assume the name of the objective function.
 # TODO: ObjectiveType Enum and objective_dict
 objective.deactivate()
 model._NMPC_NAMESPACE.pwc_constraint.deactivate()

 initialize_by_element_in_range(self.controller, self.controller_time,
 time.first(),
 time.last(),
 outlvl=outlvl,
 dae_vars=self.controller._NMPC_NAMESPACE.dae_vars,
 time_linking_variables=self.controller._NMPC_NAMESPACE.diff_vars)

 objective.activate()
 model._NMPC_NAMESPACE.pwc_constraint.activate()

 for _slice in self.controller._NMPC_NAMESPACE.input_vars:
 for t in time:
 if t != time.first():
 # Don't want to unfix inputs at time.first()
 _slice[t].unfix()

 strip_controller_bounds.revert(self.controller)

 timelist = list(time)
 for cat, group in namespace.category_dict.items():
 if (cat == VariableCategory.FIXED or cat == VariableCategory.INPUT
 or cat == VariableCategory.SCALAR):
 continue
 violated = get_violated_bounds_at_time(group, timelist, tol)
 if violated:
 raise ValueError(
 'Bounds violated after solving elements: %s'
 % str(violated))

[docs] def initialize_from_previous_sample(self, model,
 categories=[VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC,
 VariableCategory.DERIVATIVE,
 VariableCategory.INPUT],
 **kwargs):
 """Re-initializes values of variables in model to the values one
 sampling time in the future. Values for the last sampling time are
 currently set to values in the steady state model, assumed to be the
 set point.

 Args:
 model : Flowsheet model to initialize
 categories : List of VariableCategory enum items to initialize.
 Default contains DIFFERENTIAL, ALGEBRAIC, DERIVATIVE,
 and INPUT

 """
 # Should only do this if controller is initialized
 # from a prior solve.
 if not self.controller_solved:
 raise RuntimeError(
 'Cannot initialize from previous if the control '
 'problem has not previously been solved.'
)

 config = self.config(kwargs)
 sample_time = config.sample_time
 tolerance = config.continuous_set_tolerance

 # TODO
 # Should initialize dual variables here too.

 time = model._NMPC_NAMESPACE.get_time()
 category_dict = model._NMPC_NAMESPACE.category_dict
 # TODO: have some attribute for steady time
 # Or better yet, don't use a steady_model at all

 for categ in categories:
 varlist = category_dict[categ].varlist
 for i, _slice in enumerate(varlist):
 for t in time:
 # If not in last sample:
 if (time.last() - t) >= sample_time:
 t_next = find_point_in_continuousset(
 t + sample_time,
 time, tolerance=tolerance)
 _slice[t].set_value(_slice[t_next].value)
 else:
 _slice[t].set_value(category_dict[categ].setpoint[i])

[docs] def initialize_from_initial_conditions(self, model,
 categories=[VariableCategory.DERIVATIVE,
 VariableCategory.DIFFERENTIAL,
 VariableCategory.ALGEBRAIC],
 **kwargs):
 """
 Set values of differential, algebraic, and derivative variables to
 their values at the initial conditions.
 An implicit assumption here is that the initial conditions are
 consistent.

 Args:
 model : Flowsheet model whose variables are initialized
 categories : List of VariableCategory enum items to
 initialize. Default contains DERIVATIVE, DIFFERENTIAL,
 and ALGEBRAIC.

 """
 config = self.config(kwargs)
 time = model._NMPC_NAMESPACE.get_time()
 cat_dict = model._NMPC_NAMESPACE.category_dict
 for categ in categories:
 varlist = cat_dict[categ].varlist
 for v in varlist:
 v[:].set_value(v[0].value)

[docs] def solve_control_problem(self, **kwargs):
 """Function for solving optimal control problem, which calculates
 control inputs for the plant.

 """
 config = self.config(kwargs)
 solver = config.solver
 outlvl = config.outlvl
 init_log = idaeslog.getInitLogger('nmpc', level=outlvl)
 s_log = idaeslog.getSolveLogger('nmpc', level=outlvl)

 time = self.controller_time
 for _slice in self.controller._NMPC_NAMESPACE.input_vars:
 for t in time:
 if t == time.first():
 _slice[t].fix()
 else:
 _slice[t].unfix()

 assert (degrees_of_freedom(self.controller) ==
 self.controller._NMPC_NAMESPACE.n_input_vars*
 (self.controller._NMPC_NAMESPACE.samples_per_horizon))

 with idaeslog.solver_log(s_log, idaeslog.DEBUG) as slc:
 results = solver.solve(self.controller, tee=slc.tee)
 if results.solver.termination_condition == TerminationCondition.optimal:
 init_log.info('Successfully solved optimal control problem')
 self.controller_solved = True
 else:
 init_log.error('Failed to solve optimal control problem')
 raise ValueError

[docs] def simulate_plant(self, t_start, **kwargs):
 """Function for simulating plant model for one sampling period after
 inputs have been assigned from solve of controller model.

 Args:
 t_start : Beginning of timespan over which to simulate

 """
 config = self.config(kwargs)

 sample_time = self.config.sample_time
 # ^ Use self.config here, as I don't want user to override sample_time
 # at this point. How to throw an error if they do? - use immutable param
 # TODO
 calculate_error = config.calculate_error
 outlvl = config.outlvl
 init_log = idaeslog.getInitLogger('nmpc', level=outlvl)
 tol = config.continuous_set_tolerance

 t_end = t_start + sample_time
 assert t_start in self.plant_time
 t_end = find_point_in_continuousset(t_end, self.plant_time, tol)
 assert t_end in self.plant_time

 initialize_by_element_in_range(self.plant, self.plant_time, t_start, t_end,
 dae_vars=self.plant._NMPC_NAMESPACE.dae_vars,
 time_linking_vars=self.plant._NMPC_NAMESPACE.diff_vars,
 outlvl=outlvl)

 self.current_plant_time = t_end

 msg = ('Successfully simulated plant over the sampling period '
 'through ' + str(self.current_plant_time))
 init_log.info(msg)

 tc1 = self.controller_time.first() + sample_time

 if self.controller_solved and calculate_error:
 self.state_error[t_end] = self.calculate_error_between_states(
 self.controller, self.plant, tc1, t_end)

[docs] def calculate_error_between_states(self, mod1, mod2, t1, t2,
 Q_matrix=[],
 categories=[VariableCategory.DIFFERENTIAL],
 **kwargs):
 """
 Calculates the normalized (by the weighting matrix already calculated)
 error between the differential variables in different models and at
 different points in time.

 Args:
 mod1 : First flowsheet model
 mod2 : Second flowsheet model (may be same as the first)
 t1 : Time point of interest in first model
 t2 : Time point of interest in second model
 Q_matrix : List of weights by which to weigh the error for
 each state. Default is to use the same weights calculated
 for the controller objective function.

 """
 config = self.config(kwargs)

 Q_diagonal = config.state_objective_weight_matrix_diagonal
 if not Q_diagonal:
 raise ValueError('Only diagonal weighting matrices are supported')
 # Grab the weighting matrix from the controller model regardless of what
 # mod1 and mod2 are. This can be overwritten if desired.

 # TODO: allow option to override weights
 # As the default, weights are taken from model 1

 # Used to specify variables other than differential to use for
 # error calculation

 varlist_1 = []
 varlist_2 = []

 weight_matrix_provided = bool(Q_matrix)
 for categ in categories:
 varlist_1 += mod1._NMPC_NAMESPACE.category_dict[categ].varlist
 varlist_2 += mod2._NMPC_NAMESPACE.category_dict[categ].varlist
 if not weight_matrix_provided:
 Q_matrix += self.controller._NMPC_NAMESPACE.category_dict[categ].weights
 assert len(varlist_1) == len(varlist_2)
 n = len(varlist_1)

 assert t1 in mod1._NMPC_NAMESPACE.get_time()
 assert t2 in mod2._NMPC_NAMESPACE.get_time()

 error = sum(Q_matrix[i]*(varlist_1[i][t1].value -
 varlist_2[i][t2].value)**2
 for i in range(n) if Q_matrix[i] is not None)

 return error

 idaes.apps.matopt.materials.canvas

 Source code for idaes.apps.matopt.materials.canvas

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
import numpy as np
from copy import deepcopy

from ..util.util import myArrayEq, myPointsEq, ListHasPoint
from .parsers.PDB import readPointsAndAtomsFromPDB
from .parsers.XYZ import readPointsAndAtomsFromXYZ
from .parsers.CFG import readPointsAndAtomsFromCFG
from .geometry import RectPrism

[docs]class Canvas(object):
 """A class for combining geometric points and neighbors.

 This class contains a list of Cartesian points coupled with a graph of nodes for sites and arcs
 for bonds. A ``Canvas`` object establishes a mapping from the abstract, mathematical modeling of
 materials as graphs to the geometry of the material lattice. The list of points and neighbor
 connections necessary to create a ``Canvas`` object can be obtained from the combination of
 ``Lattice``, ``Shape``, and ``Tiling`` objects.
 """
 DBL_TOL = 1e-5

 # === STANDARD CONSTRUCTOR
 def __init__(self, Points=None, NeighborhoodIndexes=None, DefaultNN=0):
 if Points is None and NeighborhoodIndexes is None:
 Points = []
 NeighborhoodIndexes = []
 elif Points is None:
 Points = [None] * len(NeighborhoodIndexes)
 elif NeighborhoodIndexes is None:
 NeighborhoodIndexes = [[None] * DefaultNN for _ in range(len(Points))]
 self._Points = Points
 self._NeighborhoodIndexes = NeighborhoodIndexes
 self.__DefaultNN = DefaultNN
 assert (self.isConsistentWithDesign())

 # === CONSTRUCTOR - From PDB File
 @classmethod
 def fromPDB(cls, filename, Lat=None, DefaultNN=0):
 """Make Canvas by reading from PDB file.

 Args:
 filename(str): Name of PDB file to read.
 Lat (Lattice, optional): A lattice to define neighbor connections
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)

 Returns:
 Canvas: A new Canvas object.

 """
 Pts, _ = readPointsAndAtomsFromPDB(filename)
 result = cls(Points=Pts, DefaultNN=DefaultNN)
 if Lat is not None:
 result.setNeighborsFromFunc(Lat.getNeighbors)
 return result

 @classmethod
 def fromXYZ(cls, filename, Lat=None, DefaultNN=0):
 """Make Canvas by reading from XYZ file.

 Args:
 filename(str): Name of XYZ file to read.
 Lat (Lattice, optional): A lattice to define neighbor connections
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)

 Returns:
 Canvas: A new Canvas object.

 """
 Pts, _ = readPointsAndAtomsFromXYZ(filename)
 result = cls(Points=Pts, DefaultNN=DefaultNN)
 if Lat is not None:
 result.setNeighborsFromFunc(Lat.getNeighbors)
 return result

 @classmethod
 def fromCFG(cls, filename, Lat=None, DefaultNN=0):
 """Make Canvas by reading from CFG file.

 Args:
 filename(str): Name of CFG file to read.
 Lat (Lattice, optional): A lattice to define neighbor connections
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)

 Returns:
 Canvas: A new Canvas object.

 """
 Pts, _ = readPointsAndAtomsFromCFG(filename)
 result = cls(Points=Pts, DefaultNN=DefaultNN)
 if Lat is not None:
 result.setNeighborsFromFunc(Lat.getNeighbors)
 return result

 # === CONSTRUCTOR - From Lattice and Shape
 @classmethod
 def fromLatticeAndShape(cls, Lat, S, Seed=np.array([0, 0, 0], dtype=float), DefaultNN=0):
 """Make Canvas by iterating over Lattice points that fit in Shape.

 This constructor starts from a seed location and repeatedly adds
 neighbors until there are no more neighbors that lie inside the
 provided Shape object. It is potentially very slow and should only
 be considered if other methods are unavailable.
 Prefer Canvas.fromLatticeAndShapeScan.

 Args:
 DefaultNN:
 Lat(Lattice): Lattice to provide getNeighbors function.
 S(Shape): Shape to iterate over.
 Seed(numpy.ndarray, optional): Location to begin adding neighbors from.
 Should be on the Lattice.
 (Default value = np.array([0,0,0],dtype=float))
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)
 0: param 0]:
 dtype: Default value = float))
 0]:

 Returns:
 Canvas: A new Canvas object.

 """
 result = cls(DefaultNN=DefaultNN)
 Stack = [Seed]
 while len(Stack) > 0:
 P = Stack.pop()
 if not result.hasPoint(P) and P in S:
 PNs = Lat.getNeighbors(P)
 result.addLocation(P, len(PNs))
 # NOTE: At first, we checked if P needed to be added
 # (i.e., if it was not alreay in the Stack)
 # but doing so was significantly slower than
 # just extending the Stack without checks and
 # just checking if P was already in the result
 Stack.extend(PNs)
 result.setNeighborsFromFunc(Lat.getNeighbors)
 return result

 @classmethod
 def fromLatticeAndShapeScan(cls, Lat, argPolyhedron, DefaultNN=0):
 """Make Canvas by iterating over Lattice points that fit in Shape.

 This constructor takes advantage of methods in Lattice to
 efficiently scan over sites. This requires the Lattice.Scan
 method to produce a generator object.

 Args:
 DefaultNN:
 Lat(Lattice): Lattice with has defined Scan method.
 argPolyhedron(Polyhedron: Polyhedron): Shape to iterate over.
 NOTE: A Polyhedron is required because there is a
 complicated step in finding bounds for the Shape
 in the reference lattice space that is not
 generally valid for all Shapes.
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)

 Returns:
 Canvas: A new Canvas object.

 """
 result = cls(DefaultNN=DefaultNN)
 BBox = RectPrism.fromPointsBBox(argPolyhedron.getBounds())
 for P in Lat.Scan(BBox):
 if P in argPolyhedron:
 result.addLocation(P, len(Lat.getNeighbors(P)))
 result.setNeighborsFromFunc(Lat.getNeighbors)
 return result

 @classmethod
 def fromLatticeAndTiling(cls, Lat, T, Seed=np.array([0, 0, 0], dtype=float), DefaultNN=0):
 """Make Canvas by iterating over Lattice points that fit in Tiling.

 See documentation for fromLatticeAndShape.
 This constructor additionally makes the resulting Canvas periodic.

 Args:
 DefaultNN:
 Lat(Lattice): Lattice to provide getNeighbors function.
 T(Tiling): Tiling which provides a Shape to iterate over.
 Seed(numpy.ndarray, optional): Location to begin adding neighbors from.
 Should be on the Lattice.
 (Default value = np.array([0,0,0],dtype=float))
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)
 0: param 0]:
 dtype: Default value = float))
 0]:

 Returns:
 Canvas: A new Canvas object.

 """
 result = cls.fromLatticeAndShape(Lat, T.TileShape, Seed=Seed, DefaultNN=DefaultNN)
 result.makePeriodic(T, Lat.getNeighbors)
 return result

 @classmethod
 def fromLatticeAndTilingScan(cls, Lat, T, DefaultNN=0):
 """Make Canvas by iterating over Lattice points that fit in Tiling.

 See documentation for fromLatticeAndTiling.
 This constructor additionally makes the resulting Canvas periodic.

 Args:
 Lat(Lattice): Lattice with has defined Scan method.
 T(Tiling): Tiling that provides a Polyhedron shape.
 DefaultNN(int, optional): Number of neighbors to allocate
 in neighborhood. (Default value = 0)

 Returns:
 Canvas: A new Canvas object.

 """
 result = cls.fromLatticeAndShapeScan(Lat, T.TileShape, DefaultNN=DefaultNN)
 result.makePeriodic(T, Lat.getNeighbors)
 return result

 # === ASSERTION OF CLASS DESIGN
 def isConsistentWithDesign(self):
 """Determine if object is consistent with class assumptions."""
 if len(self.Points) != len(self.NeighborhoodIndexes):
 return False
 return True

 # === MANIPULATION METHODS
 def addLocation(self, P, NNeighbors=None):
 """Add new location to Points.

 Args:
 P(numpy.ndarray): Point to add.
 NNeighbors(int, optional): Number of neighbors to allocate
 in a neighborhood. If None, use the instance default
 self.DefaultNN (Default value = None)

 Returns:
 None.

 """
 assert (not self.hasPoint(P))
 self._Points.append(P)
 self._NeighborhoodIndexes.append([None] * (NNeighbors or self.__DefaultNN))
 assert (self.isConsistentWithDesign())

 def setNeighbors(self, P1, P2, l=None):
 """Set a (directed) neighbor connection between two points.

 Args:
 P1(numpy.ndarray): Canvas Point to set neighbor for.
 P2(numpy.ndarray): Canvas Point to set as neighbor.
 l(int, optional): Index of neighbor to set. For example, if
 l=3, then P2 is set to the fourth neighbor of P1.
 If None, appends to the neighborhood.
 (Default value = None)

 Returns:
 None.

 """
 assert (self.hasPoint(P1))
 assert (self.hasPoint(P2))
 i = self.getPointIndex(P1)
 j = self.getPointIndex(P2)
 self.setNeighborsIJ(i, j, l=l)
 assert (self.isConsistentWithDesign())

 def setNeighborsIJ(self, i, j, l=None):
 """Set a (directed) neighbor connection between two indices.

 Args:
 i(int): Index of location to set neighbor for.
 j(int): Index of location to set as neighbor.
 l(int, optional): Index of neighbor to set. For example, if
 l=3, then j is set to the fourth neighbor of i.
 If None, appends to the neighborhood.
 (Default value = None)

 Returns:
 None.

 """
 if l is None:
 self._NeighborhoodIndexes[i].append(j)
 else:
 self._NeighborhoodIndexes[i][l] = j
 assert (self.isConsistentWithDesign())

 def setNeighborLofI(self, PN, l, i, blnSetNoneOtherwise=True):
 """Set a (directed) neighbor connection between a Point and index.

 Args:
 blnSetNoneOtherwise:
 i:
 PN(numpy.ndarray): Canvas Point to set as neighbor.
 l(int): Index of neighbor to set. For example, if
 l=3, then PN is set as the fourth neighbor of i.
 i(int): Index of location to set neighbor for.
 blnSetNoneOtherwise(bool, optional): Flag to control behavior
 if PN is not found in Canvas. (Default value = True)

 Returns:
 None.

 """
 assert (i < len(self._NeighborhoodIndexes))
 assert (l < len(self._NeighborhoodIndexes[i]))
 if self.hasPoint(PN):
 self._NeighborhoodIndexes[i][l] = self.getPointIndex(PN)
 elif blnSetNoneOtherwise:
 self._NeighborhoodIndexes[i][l] = None
 assert (self.isConsistentWithDesign())

 def setNeighborsOfI(self, PNs, i):
 """Set a list of points as neighbors to an index.

 Args:
 PNs(list<numpy.ndarray>): Points to set as neighbors of i.
 i(int): Index to set neighbors for.

 Returns:
 None.

 """
 self._NeighborhoodIndexes[i] = [None] * len(PNs)
 for l, P in enumerate(PNs):
 self.setNeighborLofI(P, l, i)
 assert (self.isConsistentWithDesign())

 def setNeighborsFromFunc(self, NeighborsFunc):
 """Set neighbors across the Canvas from a functor.

 Args:
 NeighborsFunc(function): Function that takes as input a
 point (numpy.ndarray) and returns a list of points.

 Returns:
 None.

 """
 for i, P in enumerate(self.Points):
 PNs = NeighborsFunc(P)
 self.setNeighborsOfI(PNs, i)
 assert (self.isConsistentWithDesign())

 def makePeriodic(self, argTiling, NeighborsFunc):
 """Make connections periodic accross the edges of Tiling.

 Args:
 argTiling(Tiling: Tiling): Tiling to provide TilingDirections.
 NeighborsFunc(function): Function that takes as input a
 point (numpy.ndarray) and returns a list of points.

 Returns:
 None.

 """
 for i, P in enumerate(self.Points):
 LatNeighbors = NeighborsFunc(P)
 for l, Index in enumerate(self.NeighborhoodIndexes[i]):
 if Index is None:
 assert (not self.hasPoint(LatNeighbors[l])) # else, Canvas constructed incorrectly
 for TilingDirection in argTiling.TilingDirections:
 PtoTry = LatNeighbors[l] + TilingDirection
 if self.hasPoint(PtoTry):
 self._NeighborhoodIndexes[i][l] = self.getPointIndex(PtoTry)
 break

 def addShells(self, n, NeighborsFunc):
 """Add locations in n-shells around current Points.

 Args:
 n(int): Number of shells to add.
 NeighborsFunc(function): Function that takes as input a
 point (numpy.ndarray) and returns a list of points.

 Returns:
 None.

 """
 for _ in range(n):
 self.addShell(NeighborsFunc)

 def addShell(self, NeighborsFunc):
 """Add locations in a shell around current Points.

 Args:
 NeighborsFunc(function): Function that takes as input a
 point (numpy.ndarray) and returns a list of points.

 Returns:
 None.

 """
 Shell = self.getShell(NeighborsFunc)
 for P in Shell:
 self.addLocation(P)
 self.setNeighborsFromFunc(NeighborsFunc)

 def transform(self, TransF):
 """Transform the Points in Canvas accroding to a functor.

 Args:
 TransF(TransformFunc): Transformation to apply to Points.

 Returns:
 None.

 """
 for P in self._Points:
 TransF.transform(P)

 def getTransformed(self, TransF):
 """Copy and transform this Canvas.

 Args:
 TransF(TransformFunc): Transformation to apply to Points.

 Returns:
 None.

 """
 result = deepcopy(self)
 result.transform(TransF)
 return result

 def addOther(self, other, blnAssertNotAlreadyInCanvas=True):
 """Add other Canvas to this one.

 Args:
 other(Canvas): Canvas to append.
 blnAssertNotAlreadyInCanvas(bool, optional): Flag to enable
 assertion that all locations were new and unique.
 (Default value = True)

 Returns:
 None.

 """
 for P in other.Points:
 if blnAssertNotAlreadyInCanvas:
 assert (not self.hasPoint(P))
 self.addLocation(P)

 # === PROPERTY EVALUATION METHODS
 def __len__(self):
 """Get the number of Points for this Canvas."""
 return len(self.Points)

 def __eq__(self, other):
 """Compare strict equality of Canvas data."""
 return (myPointsEq(self.Points, other.Points, Canvas.DBL_TOL) and
 self.NeighborhoodIndexes == other.NeighborhoodIndexes)

 def hasPoint(self, P):
 """Identify if point is in Canvas.

 Args:
 P(numpy.ndarray): Point to identify in Canvas.

 Returns:
 bool) True if Points has P.

 """
 for Q in self.Points:
 # NOTE: There are several ways to test point membership.
 # This is optimized for speed.
 if myArrayEq(P, Q, Canvas.DBL_TOL):
 return True
 return False

 def getPointIndex(self, P):
 """Identify the index of a point in the Canvas.

 Args:
 P(numpy.ndarray): Point in the Canvas.

 Returns:
 int) Index of P in Points.

 """
 for i, Q in enumerate(self.Points):
 # NOTE: There are several ways to test point membership.
 # This is optimized for speed.
 if myArrayEq(P, Q, Canvas.DBL_TOL):
 return i
 return None

 def getNeighbors(self, P):
 """Identify set of neighbors to a point in Canvas.

 Args:
 P(numpy.ndarray): Point to get neighbors for.

 Returns:
 list<int>: Neighborhood of P.

 """
 return self.NeighborhoodIndexes[self.getPointIndex(P)]

 def getNeighborLofI(self, l, i):
 """Identify neighbor for specific index and neighbor order.

 Args:
 l(int): Order of neighbor in neighborhood
 i(int): Index to consider the neighborhood of.

 Returns:
 int: Index for neighbor l of i.

 """
 assert (i < len(self.NeighborhoodIndexes))
 assert (l < len(self.NeighborhoodIndexes[i]))
 return self.NeighborhoodIndexes[i][l]

 def getShell(self, NeighborsFunc):
 """Identify set of neighboring points not in Canvas.

 Args:
 NeighborsFunc(function): Function that takes as input a
 point (numpy.ndarray) and returns a list of points.

 Returns:
 list<numpy.ndarray>: Set of points to consider as
 neighboring shell.

 """
 result = []
 for i, P in enumerate(self.Points):
 Neighs = NeighborsFunc(P)
 for Neigh in Neighs:
 if (not self.hasPoint(Neigh) and
 not ListHasPoint(result, Neigh, Canvas.DBL_TOL)):
 result.append(Neigh)
 return result

 # === BASIC QUERY METHODS
 @property
 def Points(self):
 """Get Points in Canvas."""
 return self._Points

 @property
 def NeighborhoodIndexes(self):
 """Get description of neighborhoods in Canvas."""
 return self._NeighborhoodIndexes

 # === REPORTING METHODS
 def printPoints(self):
 """Pretty-print Points."""
 for i, P in enumerate(self.Points):
 print('{}: {}'.format(i, P))

 def printNeighborhoodIndexes(self):
 """Pretty-print NeighborhoodIndexes."""
 for i, Neighborhood in enumerate(self.NeighborhoodIndexes):
 print('{}: {}'.format(i, Neighborhood))

 idaes.apps.matopt.materials.design

 Source code for idaes.apps.matopt.materials.design

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
import os
from copy import deepcopy

from .atom import Atom
from .canvas import Canvas
from .parsers.PDB import readPointsAndAtomsFromPDB, writeDesignToPDB
from .parsers.XYZ import readPointsAndAtomsFromXYZ, writeDesignToXYZ
from .parsers.CFG import readPointsAndAtomsFromCFG, writeDesignToCFG
from .parsers.POSCAR import readPointsAndAtomsFromPOSCAR, writeDesignToPOSCAR

[docs]class Design(object):
 """A class used to represent material designs.

 This class combines a ``Canvas`` objects and a list of contents.
 It assigns an element (possibly None) to each point in the ``Canvas``.
 This generally works for any type of content, but it is intended
 to work with ``Atom`` objects and can be used to generate CFG, PDB, POSCAR, and XYZ files.
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, Canvas_=None, Contents=None):
 """Initialize a Design object from standard data."""
 if Canvas_ is not None and Contents is None:
 Contents = [None] * len(Canvas_)
 elif Canvas_ is not None and isinstance(Contents, Atom):
 Contents = [Contents] * len(Canvas_)
 elif Canvas_ is None:
 Canvas_ = Canvas()
 Contents = []
 self._Canvas = Canvas_
 self._Contents = Contents

 # === CONSTRUCTOR - From PDB
 @classmethod
 def fromPDB(cls, filename, DefaultNN=0):
 """Make a Design by reading from PDB file.

 Args:
 filename(str): PDB file to read from.
 DefaultNN(int, optional): Optional, the default number of nearest
 neighbors to initialize the Canvas with.

 Returns:
 (Design) A new Design.

 """
 Pts, Atoms = readPointsAndAtomsFromPDB(filename)
 return cls(Canvas(Points=Pts, DefaultNN=DefaultNN),
 Atoms)

 # === CONSTRUCTOR - From XYZ
 @classmethod
 def fromXYZ(cls, filename, DefaultNN=0):
 """Make a Design by reading from XYZ file.

 Args:
 filename(str): XYZ file to read from.
 DefaultNN(int, optional): Optional, the default number of nearest
 neighbors to initialize the Canvas with.

 Returns:
 (Design) A new Design.

 """
 Pts, Atoms = readPointsAndAtomsFromXYZ(filename)
 return cls(Canvas(Points=Pts, DefaultNN=DefaultNN),
 Atoms)

 # === CONSTRUCTOR - From CFG
 @classmethod
 def fromCFG(cls, filename, DefaultNN=0):
 """Makes a Design by reading from CFG file.

 Args:
 filename(str): CFG file to read from.
 DefaultNN(int, optional): Optional, the default number of nearest
 neighbors to initialize the Canvas with.

 Returns:
 (Design) A new Design.

 """
 Pts, Atoms = readPointsAndAtomsFromCFG(filename)
 return cls(Canvas(Points=Pts, DefaultNN=DefaultNN),
 Atoms)

 # === CONSTRUCTOR - From POSCAR/CONTCAR
 @classmethod
 def fromPOSCAR(cls, filename, DefaultNN=0):
 """Make a Design by reading from POSCAR file.

 Args:
 filename(str): POSCAR file to read from.
 DefaultNN(int, optional): Optional, the default number of nearest
 neighbors to initialize the Canvas with.

 Returns:
 (Design) A new Design.

 """
 Pts, Atoms = readPointsAndAtomsFromPOSCAR(filename)
 return cls(Canvas(Points=Pts, DefaultNN=DefaultNN),
 Atoms)

 fromCONTCAR = fromPOSCAR
 """Makes a Design by reading from CONTCAR file.
 See documentation for fromPOSCAR. """

 # === MANIPULATION METHODS
 def setContent(self, i, Elem):
 """Set content at a particular location.

 Args:
 i(int): Index to set.
 Elem(Atom/Any): Element to place in Contents.

 Returns:
 None.

 """
 self._Contents[i] = Elem

 def setContents(self, Elem):
 """Set content across all locations.

 Args:
 Elem(Atom/Any): Element to place in each index of Contents.

 Returns:
 None.

 """
 for i in range(len(self.Contents)):
 self.setContent(i, Elem)

 def transform(self, TransF):
 """Transform the this Design according to a functor.

 Args:
 TransF(TransformFunc): Transformation to apply to Canvas.

 Returns:
 None.

 """
 self._Canvas.transform(TransF)

 def getTransformed(self, TransF):
 """Copy and transform this Design.

 Args:
 TransF(TransformFunc): Transformation to apply to Canvas.

 Returns:
 Design) Deepcopy of Design after transformation is applied.

 """
 result = deepcopy(self)
 result.transform(TransF)
 return result

 def add(self, P, Elem):
 """Add point and element to this Design.

 Args:
 P(numpy.ndarray): Point to add.
 Elem(Atom/Any): Content to add.

 Returns:

 """
 self._Canvas.addLocation(P)
 self._Contents.append(Elem)

 def addOther(self, other, blnAssertNotAlreadyInDesign=True):
 """Add another Design to this one.

 Args:
 other(Design): Design to append.
 blnAssertNotAlreadyInDesign(bool, optional): Optional, flag to enable
 assertion that all locations were new and unique. (Default value = True)

 Returns:
 None.

 """
 self._Canvas.addOther(other.Canvas, blnAssertNotAlreadyInDesign)
 self._Contents.extend(other.Contents)

 # === PROPERTY EVALUATION METHODS
 def __len__(self):
 """Get the size of this Canvas for this Design."""
 return len(self.Canvas)

 def __eq__(self, other):
 """Compare strict equality of two Designs."""
 return self.Contents == other.Contents and self.Canvas == other.Canvas

 def isEquivalentTo(self, other,
 blnPreserveIndexing=False,
 blnIgnoreVoid=True):
 """Compare equivilancy of two Designs.

 Args:
 blnIgnoreVoid:
 other(Design): other Design to compare against.
 blnPreserveIndexing(bool, optional): Optional, flag to determine if
 index order is considered. (Default value = False)
 blnIgnoreVoid(bool, optional): Optional, flag to determine if void
 (i.e., None or Atom() contents) should be considered.
 For example, if all solid atoms are equivalent, but there
 are void locations that do not match. (Default value = True)

 Returns:
 bool) True if Designs are considered equivalent.

 """
 if not blnIgnoreVoid and len(self) != len(other):
 return False
 if blnPreserveIndexing:
 return self == other
 for i, P in enumerate(self.Canvas.Points):
 if not other.Canvas.hasPoint(P):
 return False
 else:
 j = other.Canvas.getPointIndex(P)
 if self.Contents[i] != other.Contents[j]:
 return False
 return True

 @property
 def NonVoidCount(self):
 """Count number of contents that are not considered void."""
 return sum(Elem is not None and Elem != Atom() for Elem in self.Contents)

 @property
 def NonVoidElems(self):
 """Get the set of non-void contents."""
 result = set(self.Contents)
 result.discard(None)
 result.discard(Atom())
 return result

 # === BASIC QUERY METHODS
 @property
 def Canvas(self):
 """Get the Canvas for this Design."""
 return self._Canvas

 @property
 def Contents(self):
 """Get the Contents for this Design."""
 return self._Contents

 # === REPORTING METHODS
 def toPDB(self, filename):
 """Write a Design to PDB file.

 Args:
 filename(str): PDB file to write to.

 Returns:
 None.

 """
 writeDesignToPDB(self, filename)

 def toXYZ(self, filename):
 """Write a Design to XYZ file.

 Args:
 filename(str): XYZ file to write to.

 Returns:
 None.

 """
 writeDesignToXYZ(self, filename)

 def toCFG(self, filename, GS=None, BBox=None, AuxPropMap=None, blnGroupByType=True):
 """Write a Design to CFG file.

 Args:
 blnGroupByType:
 AuxPropMap:
 BBox:
 filename(str): CFG file to write to.
 GS(float, optional): Optional, Global scaling to write to file
 (see CFG file format). (Default value = None)
 BBox(Parallelepiped, optional): Optional, Bounding box to write to file
 (see CFG file format). If not provided, calculates a
 rectangular prism 2x the necesary size to encompass points. (Default value = None)
 AuxPropMap(dict<tuple<str, optional): Optional, Auxilliary
 property map. Example: {('Energy','eV'):[0.0, 1.0, ...]} (Default value = None)
 blnGroupByType(bool, optional): Optional, flag to group atoms by element.
 (see CFG file format). (Default value = True)

 Returns:
 None.

 """
 writeDesignToCFG(self, filename, GS=GS, BBox=BBox, AuxPropMap=AuxPropMap, blnGroupByType=blnGroupByType)

 def toPOSCAR(self, filename, CommentLine=None, GS=None, BBox=None,
 Elems=None, blnUseDirect=True):
 """Write a Design to CFG file.

 Args:
 blnUseDirect:
 Elems:
 BBox:
 filename(str): CFG file to write to.
 CommentLine(str, optional): Optional, line to write at top of file. (Default value = None)
 GS(float, optional): Optional, Global scaling to write to file
 (see POSCAR file format). (Default value = None)
 BBox(Parallelepiped, optional): Optional, Bounding box to write to file
 (see POSCAR file format). If not provided, calculates a
 rectangular prism 2x the necesary size to encompass points. (Default value = None)
 Elems(list<Atom>, optional): Optional, order of elements to write to file.
 Only important because they are sometimes implicitly defined
 in other VASP files and may need to be in a definite order. (Default value = None)
 blnUseDirect(bool, optional): Optional, flag to switch between direct and
 cartesian flag of POSCAR file. (Default value = True)

 Returns:
 None.

 """
 writeDesignToPOSCAR(self, filename, CommentLine=CommentLine, GS=GS, BBox=BBox,
 Elems=Elems, blnUseDirect=blnUseDirect)

def loadFromPDBs(filenames, folder=None):
 """Load a list of Designs from PDB files.

 Args:
 filenames (list<str>): List of files to read.
 folder (str): Optional, folder to prepend to filenames.
 (Default value = None)

 Returns:
 (list<Design>): List of Designs created.

 """
 result = []
 for filename in filenames:
 if folder is not None:
 filename = os.path.join(folder, filename)
 result.append(Design.fromPDB(filename))
 return result

def loadFromXYZs(filenames, folder=None):
 """Load a list of Designs from XYZ files.

 Args:
 filenames (list<str>): List of files to read.
 folder (str): Optional, folder to prepend to filenames.
 (Default value = None)

 Returns:
 (list<Design>): List of Designs created.

 """
 result = []
 for filename in filenames:
 if folder is not None:
 filename = os.path.join(folder, filename)
 result.append(Design.fromXYZ(filename))
 return result

def loadFromCFGs(filenames, folder=None):
 """Load a list of Designs from CFG files.

 Args:
 filenames (list<str>): List of files to read.
 folder (str): Optional, folder to prepend to filenames.
 (Default value = None)

 Returns:
 (list<Design>): List of Designs created.

 """
 result = []
 for filename in filenames:
 if folder is not None:
 filename = os.path.join(folder, filename)
 result.append(Design.fromCFG(filename))
 return result

 idaes.apps.matopt.materials.lattices.lattice

 Source code for idaes.apps.matopt.materials.lattices.lattice

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
from abc import abstractmethod
from copy import deepcopy
import numpy as np

from ..transform_func import TransformFunc, ShiftFunc, ScaleFunc, RotateFunc, ReflectFunc

[docs]class Lattice(object):
 """A class used to represent crystal lattice locations.

 The class encodes methods for determining which Cartesian coordinates to
 consider as sites on an infinite crystal lattice. A ``Lattice`` can be constructed from
 a point on the lattice (i.e., a shift from the origin), an alignment (i.e., rotation from a
 nominal orientation), and appropriate scaling factors. With these attributes, we generally
 support the translation, rotation, and rescaling of lattices. Additionally, ``Lattice`` objects
 include a method for determining which sites should be considered neighbors.
 """

 # === DEFAULT CONSTRUCTOR
 def __init__(self):
 self._TransformFuncs = []

 # === MANIPULATION METHODS
 def applyTransF(self, TransF):
 if isinstance(TransF, TransformFunc):
 self._TransformFuncs.append(TransF)
 else:
 raise TypeError

 def shift(self, Shift):
 if type(Shift) is ShiftFunc:
 self.applyTransF(Shift)
 elif type(Shift) is np.ndarray:
 self.applyTransF(ShiftFunc(Shift))
 else:
 raise TypeError

 def scale(self, Scale, OriginOfScale=None):
 if type(Scale) is ScaleFunc:
 self.applyTransF(Scale)
 elif type(Scale) is np.ndarray:
 self.applyTransF(ScaleFunc(Scale, OriginOfScale))
 else:
 raise TypeError

 def rotate(self, Rotation, OriginOfRotation=None):
 if type(Rotation) is RotateFunc:
 self.applyTransF(Rotation)
 elif type(Rotation) is np.ndarray:
 self.applyTransF(RotateFunc(Rotation, OriginOfRotation))
 else:
 raise TypeError

 def reflect(self, Reflection):
 if type(Reflection) is ReflectFunc:
 self.applyTransF(Reflection)
 else:
 raise TypeError

 # === PROPERTY EVALUATION METHODS
 @abstractmethod
 def isOnLattice(self, P):
 raise NotImplementedError

 @abstractmethod
 def areNeighbors(self, P1, P2):
 raise NotImplementedError

 @abstractmethod
 def getNeighbors(self, P):
 raise NotImplementedError

 def _convertFromReference(self, P):
 for TransF in self._TransformFuncs:
 TransF.transform(P)

 def _convertToReference(self, P):
 for TransF in reversed(self._TransformFuncs):
 TransF.undo(P)

 def _getConvertFromReference(self, P):
 result = deepcopy(P)
 self._convertFromReference(result)
 return result

 def _getConvertToReference(self, P):
 result = deepcopy(P)
 self._convertToReference(result)
 return result

 idaes.apps.matopt.opt.mat_modeling

 Source code for idaes.apps.matopt.opt.mat_modeling

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
from abc import abstractmethod
from itertools import product

from pyomo.core.base.param import SimpleParam
from pyomo.opt.results import SolutionStatus

from .pyomo_modeling import *
from ..materials.design import Design

class IndexedElem(object):
 """Base class for indexed MatOpt objects.

 Should not be necessary for users to instantiate, but developers will
 utilize the constructors (especially fromComb) and mask method when
 creating new classes of Expression and Rule objects.

 Attributes:
 sites (list<int>): The sites that the object is indexed over
 bonds (list<int>): The bonds that the object is indexed over
 site_types (list<int>): The site types that the object is indexed over
 bond_types (list<int>): The bond types that the object is indexed over
 confs (list<int>): The conformations that the object is indexed over
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, sites=None, bonds=None, site_types=None, bond_types=None,
 confs=None):
 """Standard constructor of IndexedElem.

 Args:
 sites (list<int>): The sites that the object is indexed over
 bonds (list<tuple<int,int>>): The bonds that the object is indexed
 over
 site_types (list<BBlock>): The site types that the object is indexed
 over
 bond_types (list<tuple<BBlock,BBlock>>): The bond types that the
 object is indexed over
 confs (list<int>): The conformations that the object is indexed over
 """

 self._sites = sites
 self._bonds = bonds
 self._site_types = site_types
 self._bond_types = bond_types
 self._confs = confs

 # === CONSTRUCTOR - From combinations of other IndexedElem objecs
 @classmethod
 def fromComb(cls, *args):
 """Constructor of IndexedElem from other IndexedElem objects.

 This constructor creates a new indexing object by combining two
 other indexed objects. The various attributes are mixed according
 to three simple cases for each type of index:
 Case #1: Both objects are indexed over that index.
 The intersection of the two lists of indices is used.
 Case #2: Only one object has that index.
 The resulting object gains the index.
 Case #3: Both objects are not indexed over that index.
 The resulting object is also not indexed over that index.

 This is simply meant to reproduce the way we use set notation for
 writing products of expressions and variables in constraints.

 Args:
 *args (list<IndexedElem>): Objects to combine indices for.

 Returns:
 (IndexedElem) Index object from combination of indices.
 """
 LHS, RHS, *args = args
 Comb = cls._fromComb2(LHS, RHS)
 if len(args) > 0:
 return cls.fromComb(Comb, *args)
 else:
 return Comb

 # === AUXILIARY METHODS
 @classmethod
 def _fromComb2(cls, LHS, RHS):
 """Constructor of an IndexedElem from two other IndexedElem objects.

 Utilized in the recursive fromComb method, above.

 Args:
 LHS (IndexedElem): Object to combine indices for.
 RHS (IndexedElem): Object to combine indices for.

 Returns:
 (IndexedElem) Index object from combination of indices.
 """

 if LHS.sites is not None and RHS.sites is not None:
 sites = list(set(LHS.sites) & set(RHS.sites))
 else:
 sites = (LHS.sites if LHS.sites is not None else RHS.sites)
 if LHS.bonds is not None and RHS.bonds is not None:
 bonds = list(set(LHS.bonds) & set(RHS.bonds))
 else:
 bonds = (LHS.bonds if LHS.bonds is not None else RHS.bonds)
 if LHS.site_types is not None and RHS.site_types is not None:
 site_types = list(set(LHS.site_types) & set(RHS.site_types))
 else:
 site_types = (LHS.site_types if LHS.site_types is not None
 else RHS.site_types)
 if LHS.bond_types is not None and RHS.bond_types is not None:
 bond_types = list(set(LHS.bond_types) & set(RHS.bond_types))
 else:
 bond_types = (LHS.bond_types if LHS.bond_types is not None
 else RHS.bond_types)
 if LHS.confs is not None and RHS.confs is not None:
 confs = list(set(LHS.confs) & set(RHS.confs))
 else:
 confs = (LHS.confs if LHS.confs is not None else RHS.confs)
 return cls(sites=sites, bonds=bonds,
 site_types=site_types, bond_types=bond_types,
 confs=confs)

 def mask(self, index, Comb):
 """Method to identify the indexes relevant to this object.

 Given an instance of index that was generated by another IndexedElem
 object (Comb), we identify which parts of that index were relevant
 to this object.

 Example:
 VarIndexes = IndexedElem(sites=[1,2])
 CoefIndexes = IndexedElem(site_types=['A','B'])
 Comb = IndexedElem.fromComb(VarIndexes,CoefIndexes)
 for k in Comb.keys():
 site = VarIndexes.mask(k,Comb)
 site_type = CoefIndexes.mask(k,Comb)

 Args:
 index (tuple<int/BBlock>): index from which to identify relevant
 parts
 Comb (IndexedElem): object from which the index was generated

 Returns:
 (tuple<int/BBlock>) index with indices relevant to this object
 remaining
 """
 if Comb.sites is not None:
 i, *index = index
 if Comb.bonds is not None:
 i, j, *index = index
 if Comb.site_types is not None:
 k, *index = index
 if Comb.bond_types is not None:
 k, l, *index = index
 if Comb.confs is not None:
 c, *index = index
 result = []
 if self.sites is not None:
 result.append(i)
 if self.bonds is not None:
 result.append(i)
 result.append(j)
 if self.site_types is not None:
 result.append(k)
 if self.bond_types is not None:
 result.append(k)
 result.append(l)
 if self.confs is not None:
 result.append(c)
 if not result:
 result = [None]
 return tuple(result)

 @property
 def dims(self):
 """Relevant dimensions of indices.

 Returns:
 (list<bool>) flags to indicate which index sets are relevant.
 """

 return (self.sites is not None,
 self.bonds is not None,
 self.site_types is not None,
 self.bond_types is not None,
 self.confs is not None)

 @property
 def index_sets(self):
 """Sets (actually lists) of indices.

 Note that in the cases that there are no relevant indices, a
 dummy list [[None]] is returned to allow the [None] key to be
 included.

 Returns:
 (list<list<int/BBlock>>) lists of indices of each relevant type.
 """

 result = [s for s in (self.sites,
 self.bonds,
 self.site_types,
 self.bond_types,
 self.confs) if s is not None]
 if not result:
 result = [[None]]
 return result

 @property
 def index_dict(self):
 """Dictionary of relevant attributes.

 Returns:
 (dict<string:list<int/BBlock>>) attributes of this IndexedElem.
 """

 return {'sites': self.sites,
 'bonds': self.bonds,
 'site_types': self.site_types,
 'bond_types': self.bond_types,
 'confs': self.confs}

 @property
 def sites(self):
 """List of sites relevant to this object."""
 return self._sites

 @property
 def bonds(self):
 """List of bonds relevant to this object."""
 return self._bonds

 @property
 def site_types(self):
 """List of site types relevant to this object."""
 return self._site_types

 @property
 def bond_types(self):
 """List of bond types relevant to this object."""
 return self._bond_types

 @property
 def confs(self):
 """List of conformation types relevant to this object."""
 return self._confs

 def keys(self):
 """Method creating a generator for the keys relevant to this object.

 Note that the [None] key is returned in the case of an object
 not indexed by any of the possible index types. In other words,
 [None] is the key for a scalar variable/expression/coefficient.

 Returns:
 (generator<tuple<int/BBlock>>) keys generator
 (similar to dict.keys()).
 """

 index_sets = self.index_sets
 if len(index_sets) > 1:
 return product(*self.index_sets)
 elif len(index_sets) == 1:
 return (k for k in index_sets[0])
 else:
 raise NotImplementedError('There should always be at least '
 'a [None] key')

class Coef(IndexedElem):
 """A class for coefficient data indexed over material index sets.

 This class is useful for representing indexed data and automatically
 generating complex indexed expressions. For example, the multiplication
 of bond-type coefficients with bond-indexed variables would not be
 easily representable via standard Python objects.

 The key benefit is that these objects have the useful IndexedElem methods
 and also allow access of data via getitem operators.

 Attributes:
 vals (dict/list) data structure of coefficient values.
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, vals, **kwargs):
 """Standard constructor of indexed coefficients.

 Args:
 vals (list<float>/dict/other) Any data structure that supports the
 __gettitem__ method for keys generated by this object's
 IndexedElem.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """

 self.vals = vals
 IndexedElem.__init__(self, **kwargs)

 # === BASIC QUERY METHODS
 def __getitem__(self, k):
 """Method to access coefficient values by bracket operator"""
 return self.vals[k]

class Expr(IndexedElem):
 """An abstract class for representing expressions when building rules.

 The key benefit of this class is that we utilize the useful methods of
 IndexedElem and establish the interface for derived expressions.

 Expressions can be generated over a subset of the design space
 (i.e., only for some combinations of sites, site-types, etc.) by
 providing keywords that are passed to the constructor of IndexedElem.
 Else, the relevant indexes are infered from the expression components.

 Attributes:
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, **kwargs):
 """Standard constructor for abstract class Expr.

 Args:
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 IndexedElem.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 @abstractmethod
 def _pyomo_expr(self, index=None):
 """Abstract interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 raise NotImplementedError

class LinearExpr(Expr):
 """A class for representing simple expressions of site descriptors.

 The use of this class is to generate expressions from multiplication and
 summation of coefficients and descriptors. Importantly, expressions
 of this type maintain the same indexing of their component descriptors
 and coefficients. Summation is taken across multiple descriptors, not
 multiple instances of indexes.

 Attributes:
 coefs (float/list<float>): coefficient to multiply each descriptor by
 descs (Descriptor/list<Descriptor>): descriptors to add together
 offset (float/int): scalar value to add to the expression
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, descs=None, coefs=1.0, offset=0.0, **kwargs):
 """Standard constructor for linear expression objects.

 Args:
 coefs (float/list<float>): Optional, coefficient to multiply
 each descriptor by.
 Default: 1.0
 descs (Descriptor/list<Descriptor>): descriptors to add
 offset (float/int): Optional, scalar value to add to the expression
 Default: 0.0
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.coefs = (coefs if type(coefs) is list else [coefs])
 self.descs = (descs if type(descs) is list else [descs])
 self.offset = offset
 if descs is not None:
 if type(descs) is list:
 Comb = IndexedElem.fromComb(*descs)
 kwargs = {**Comb.index_dict, **kwargs}
 else:
 kwargs = {**descs.index_dict, **kwargs}
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 result = self.offset
 for it, desc in enumerate(self.descs):
 if desc is not None and self.coefs[it] is not None:
 result += self.coefs[it] * desc._pyomo_var[index]
 return result

class SiteCombination(Expr):
 """A class for representing summations of descriptors at two sites.

 Attributes:
 coefi (float/list<float>): coefficients at the first site
 desci (Descriptor/Expr): descriptor or expression for the first site
 coefj (float/list<float>): coefficients at the second site
 descj (Descriptor/Expr): descriptor or expression for the second site
 offset (float): scalar coefficient to add to the rest of the expression
 symmetric_bonds (bool): flag to indicate if site combinations should be
 considered symmetric (and therefore, should only generate half as
 many terms)
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, coefi, desci, coefj=None, descj=None, offset=0.0,
 symmetric_bonds=False, **kwargs):
 """Standard constructor for site combination expressions.

 Args:
 coefi (float/list<float>): coefficients at the first site.
 Default: 1.0
 desci (Descriptor/Expr): term for first site
 coefj (float/list<float>): Optional, coefficients at the second site.
 Default: Equal to the coefficient for the first site.
 descj (Descriptor/Expr): Optional, term for the second site.
 Default: Equal to the descriptor for the first site.
 offset (float): Optional, scalar coefficient to add to expression.
 Default: 1.0
 symmetric_bonds (bool): Optional, flag to indicate if combinations
 are symmetric.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.coefi = coefi
 self.desci = desci
 self.coefj = (coefj if coefj is not None else coefi)
 self.descj = (descj if descj is not None else desci)
 self.offset = offset
 self.symmetric_bonds = symmetric_bonds
 if 'bonds' not in kwargs:
 kwargs['bonds'] = [(i, j)
 for i in desci.sites
 for j in desci.canv.NeighborhoodIndexes[i]
 if (j is not None and (not symmetric_bonds
 or j > i))]
 if 'bond_types' in kwargs:
 pass # use the kwargs bond_types
 elif coefi.bond_types is not None:
 kwargs['bond_types'] = coefi.bond_types
 elif desci.site_types is not None:
 kwargs['bond_types'] = [(k, l)
 for k in desci.site_types
 for l in desci.site_types]
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if len(index) == 4:
 i, j, k, l = index
 elif len(index) == 2:
 i, j, k, l = index[0], index[1], (), ()
 else:
 raise NotImplementedError('Decide how to split the extra '
 'indices in this case...')
 if (type(self.coefi) is float or
 type(self.coefi) is int or
 type(self.coefi) is SimpleParam):
 ci = self.coefi
 else:
 coefi_index = self.coefi.mask((i, i, j, k, k, l),
 IndexedElem(sites=[i],
 bonds=[(i, j)],
 site_types=[k],
 bond_types=[(k, l)]))
 ci = self.coefi[coefi_index]

 if (type(self.coefj) is float or
 type(self.coefj) is int or
 type(self.coefj) is SimpleParam):
 cj = self.coefj
 else:
 coefj_index = self.coefj.mask((j, j, i, l, l, k),
 IndexedElem(sites=[j],
 bonds=[(j, i)],
 site_types=[l],
 bond_types=[(l, k)]))
 cj = self.coefj[coefj_index]
 desci_index = self.desci.mask((i, i, j, k, k, l),
 IndexedElem(sites=[i],
 bonds=[(i, j)],
 site_types=[k],
 bond_types=[(k, l)]))
 descj_index = self.descj.mask((j, j, i, l, l, k),
 IndexedElem(sites=[j],
 bonds=[(j, i)],
 site_types=[l],
 bond_types=[(l, k)]))
 di = self.desci._pyomo_expr(index=desci_index)
 dj = self.descj._pyomo_expr(index=descj_index)
 return self.offset + ci * di + cj * dj

class SumNeighborSites(Expr):
 """A class for expressions for summation across neighbor sites.

 Attributes:
 desc (Descriptor): descriptors to sum around a site
 coefs (float/list<float>): Optional, coefficients to multiple each
 neighbor term by.
 Default=1.0
 offset: Optional, term to add to the expression.
 Default=0.0
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0, **kwargs):
 """Standard constructor for expressions of neighbor summations.

 Args:
 desc (Descriptor): descriptors to sum around a site
 coefs (float/list<float>): Optional, coefficients to multiple each
 neighbor term by.
 Default=1.0
 offset: Optional, term to add to the expression.
 Default=0.0
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 kwargs = {**desc.index_dict, **kwargs}
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 i, *index = index
 if index == (None,):
 index = ()
 result = self.offset
 for n, j in enumerate(self.desc.canv.NeighborhoodIndexes[i]):
 if j is not None:
 result += (self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[n]) * self.desc._pyomo_var[(j, *index)]
 return result

class SumNeighborBonds(Expr):
 """A class for expressions from summation of neighbor bond descriptors.

 Attributes:
 desc (Descriptor/Expr): descriptors to sum over
 coefs (float/list<float>): coefficients to multiply bonds to
 neighbor sites
 offset (float): coefficient to add to the expression
 symmetric_bonds (bool): flag to indicate if bond variables should be
 added in a symmetric way
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 symmetric_bonds=False, **kwargs):
 """Standard constructor for summation of neighboring bonds

 Args:
 desc (Descriptor): descriptors to sum around a site
 coefs (float/list<float>): Optional, coefficients to multiple each
 neighbor term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 symmetric_bonds (bool): Optional, flag to indicate if bond variables
 should be considered symmetric.
 Default=False
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.symmetric_bonds = symmetric_bonds
 kwargs = {**desc.index_dict, **kwargs}
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 i, *index = index
 if index == (None,):
 index = ()
 result = self.offset
 for n, j in enumerate(self.desc.canv.NeighborhoodIndexes[i]):
 if j is not None:
 if self.symmetric_bonds:
 i, j = min(i, j), max(i, j)
 result += (self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else
 self.coefs[n]) * self.desc._pyomo_expr(index=(i, j, *index))
 return result

class SumSites(Expr):
 """A class for expressions formed by summation over canvas sites.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each site
 offset (float): coefficient to add to the expression
 sites_to_sum (list<int>): sites to consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 sites_to_sum=None, **kwargs):
 """Standard constructor for summation of site contributions.

 Args:
 desc (Descriptor): descriptors or expressions to sum across all sites
 coefs (float/list<float>): Optional, coefficients to multiple each
 site term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 sites_to_sum (list<int>): Optional, subset of canvas sites to sum.
 Default=None, meaning all sites in the desc object are considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.sites_to_sum = (sites_to_sum if sites_to_sum is not None
 else desc.sites)
 kwargs = {**desc.index_dict, **kwargs}
 kwargs.pop('sites')
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if index == (None,):
 index = ()
 result = self.offset
 for i in self.sites_to_sum:
 result += (self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else
 self.coefs[(i, *index)]) * self.desc._pyomo_var[(i, *index)]
 return result

class SumBonds(Expr):
 """A class for expressions formed by summation over canvas bonds.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each bond
 offset (float): coefficient to add to the expression
 bonds_to_sum (list<int>): bonds to consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 bonds_to_sum=None, **kwargs):
 """Standard constructor for summation of bond contributions.

 Args:
 desc (Descriptor): descriptors or expressions to sum across all bonds
 coefs (float/list<float>): Optional, coefficients to multiple each
 bond term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 bonds_to_sum (list<int>): Optional, subset of canvas bonds
 (i.e., neighbor connections) to sum.
 Default=None, meaning all bonds in the desc object are considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.bonds_to_sum = (bonds_to_sum if bonds_to_sum is not None
 else desc.bonds)
 kwargs = {**desc.index_dict, **kwargs}
 kwargs.pop('bonds')
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if index == (None,):
 index = ()
 result = self.offset
 for i, j in self.bonds_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, j, *index)])
 * self.desc._pyomo_var[(i, j, *index)])
 return result

class SumSiteTypes(Expr):
 """A class for expressions formed by summation over building block types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each building block type
 offset (float): coefficient to add to the expression
 site_types_to_sum (list<BBlock>): building block types to consider in
 the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 site_types_to_sum=None, **kwargs):
 """Standard constructor for summation of contributions by site-type.

 Args:
 desc (Descriptor): descriptors or expressions to sum across site types
 coefs (float/list<float>): Optional, coefficients to multiple each
 site-type term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 bonds_types_to_sum (list<int>): Optional, subset of site types
 to sum.
 Default=None, meaning all site-types in the desc object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.site_types_to_sum = (site_types_to_sum
 if site_types_to_sum is not None
 else desc.site_types)
 kwargs = {**desc.index_dict, **kwargs}
 kwargs.pop('site_types')
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 assert (index is not None)
 i, *index = index
 if index == (None,):
 index = ()
 result = self.offset
 for k in self.site_types_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, k, *index)])
 * self.desc._pyomo_var[(i, k, *index)])
 return result

class SumBondTypes(Expr):
 """A class for expressions formed by summation over building block types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each pair of building block types
 offset (float): coefficient to add to the expression
 bond_types_to_sum (list<tuple<BBlock,BBlock>>): building block pairs
 to consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 bond_types_to_sum=None, **kwargs):
 """Standard constructor for summation of contributions by bond-type.

 Args:
 desc (Descriptor): descriptors or expressions to sum across bond types
 coefs (float/list<float>): Optional, coefficients to multiple each
 bond-type term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 bonds_types_to_sum (list<tuple<BBlock,BBlock>>): Optional, subset
 of bond types to sum.
 Default=None, meaning all bond-types in the desc object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.bond_types_to_sum = (bond_types_to_sum
 if bond_types_to_sum is not None
 else desc.bond_types)
 kwargs = {**desc.index_dict, **kwargs}
 kwargs.pop('bond_types')
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 assert (index is not None)
 i, j, *index = index
 if index == (None,):
 index = ()
 result = self.offset
 for k, l in self.bond_types_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, j, k, l, *index)])
 * self.desc._pyomo_var[(i, j, k, l, *index)])
 return result

class SumSitesAndTypes(Expr):
 """A class for expressions formed by summation over sites and building
 block types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each building block type
 offset (float): coefficient to add to the expression
 sites_to_sum (list<int>): sites to consider in the summation
 site_types_to_sum (list<BBlock>): building block types to consider in
 the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 sites_to_sum=None,
 site_types_to_sum=None, **kwargs):
 """Standard constructor for summation of site contributions.

 Args:
 desc (Descriptor): descriptors or expressions to sum across all
 sites and site types
 coefs (float/list<float>): Optional, coefficients to multiple each
 site and site-type term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 sites_to_sum (list<int>): Optional, subset of canvas sites to sum.
 Default=None, meaning all sites in the desc object are considered.
 site_types_to_sum (list<BBlock>): Optional, subset of site types to
 sum.
 Default=None, meaning all site types in the desc object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.sites_to_sum = (sites_to_sum if sites_to_sum is not None
 else desc.sites)
 self.site_types_to_sum = (site_types_to_sum
 if site_types_to_sum is not None
 else desc.site_types)
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if index == (None,):
 index = ()
 result = self.offset
 for i in self.sites_to_sum:
 for k in self.site_types_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, k, *index)])
 * self.desc._pyomo_var[(i, k, *index)])
 return result

class SumBondsAndTypes(Expr):
 """A class for expressions formed by summation over bonds and bond types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each combination of bond and building block type
 offset (float): coefficient to add to the expression
 bonds_to_sum (list<tuple<int,int>>): bonds to consider in the summation
 bond_types_to_sum (list<tuple<BBlock,BBlock>>): building block types to
 consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, desc, coefs=1.0, offset=0.0,
 bonds_to_sum=None, bond_types_to_sum=None, **kwargs):
 """Standard constructor for summation of contributions by bond-type.

 Args:
 desc (Descriptor): descriptors or expressions to sum across bonds
 and bond types
 coefs (float/list<float>): Optional, coefficients to multiple each
 term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 bonds_to_sum (list<int>): Optional, subset of bonds to sum.
 Default=None, meaning all bonds in the desc object are considered.
 bonds_types_to_sum (list<int>): Optional, subset of bond types
 to sum.
 Default=None, meaning all bond-types in the desc object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.desc = desc
 self.coefs = coefs
 self.offset = offset
 self.bonds_to_sum = (bonds_to_sum if bonds_to_sum is not None
 else desc.bonds)
 self.bond_types_to_sum = (bond_types_to_sum
 if bond_types_to_sum is not None
 else desc.bond_types)
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if index == (None,):
 index = ()
 result = self.offset
 for i, j in self.bonds_to_sum:
 for k, l in self.bond_types_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[i, j, k, l])
 * self.desc._pyomo_var[i, j, k, l])
 return result

class SumConfs(Expr):
 """A class for expressions formed by summation over conformation types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each building block type
 offset (float): coefficient to add to the expression
 confs_to_sum (list<int>): conformations to consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, Zic, coefs=1.0, offset=0.0,
 confs_to_sum=None, **kwargs):
 """Standard constructor for summation of bond contributions.

 Args:
 Zic (Descriptor): descriptors or expressions to sum across
 conformations
 coefs (float/list<float>): Optional, coefficients to multiple each
 conformation term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 confs_to_sum (list<int>): Optional, subset of conformations to sum
 Default=None, meaning all conformations in the Zic object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.Zic = Zic
 self.coefs = coefs
 self.offset = offset
 self.confs_to_sum = (confs_to_sum if confs_to_sum is not None
 else Zic.confs)
 kwargs = {**Zic.index_dict, **kwargs}
 kwargs.pop('confs')
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 i, *index = index
 if index == (None,):
 index = ()
 result = self.offset
 for c in self.confs_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, c, *index)])
 * self.Zic._pyomo_var[(i, c, *index)])
 return result

class SumSitesAndConfs(Expr):
 """A class for expressions formed by summation over sites and building
 block types.

 Attributes:
 desc (Descriptor/Expr): descriptors or expressions to sum over
 coefs (float/list<float>): coefficients to multiply contributions
 from each building block type
 offset (float): coefficient to add to the expression
 sites_to_sum (list<int>): sites to consider in the summation
 confs_to_sum (list<BBlock>): conformations to consider in the summation
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, Zic, coefs=1.0, offset=0.0,
 sites_to_sum=None,
 confs_to_sum=None, **kwargs):
 """Standard constructor for summation of site and conformation
 contributions.

 Args:
 Zic (Descriptor): descriptors or expressions to sum across all sites
 and conformations.
 coefs (float/list<float>): Optional, coefficients to multiple each
 site and conformation term by.
 Default=1.0
 offset (float): Optional, coefficient to add to the expression.
 Default=0.0
 sites_to_sum (list<int>): Optional, subset of canvas sites to sum.
 Default=None, meaning all sites in the desc object are considered.
 confs_to_sum (list<int>): Optional, subset of conformations to sum.
 Default=None, meaning all conformations in the desc object are
 considered.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.Zic = Zic
 self.coefs = coefs
 self.offset = offset
 self.sites_to_sum = (sites_to_sum if sites_to_sum is not None
 else Zic.sites)
 self.confs_to_sum = (confs_to_sum if confs_to_sum is not None
 else Zic.confs)
 Expr.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_expr(self, index=None):
 """Interface for generating Pyomo expressions.

 Args:
 index (list): Optional, index to to create an instance of a Pyomo
 expression. In the case of a scalar, the valid index is None.

 Returns:
 An instance of a Pyomo expression.
 """
 if index == (None,):
 index = ()
 result = self.offset
 for i in self.sites_to_sum:
 for c in self.confs_to_sum:
 result += ((self.coefs if
 (type(self.coefs) is float or
 type(self.coefs) is int or
 type(self.coefs) is SimpleParam)
 else self.coefs[(i, c, *index)])
 * self.Zic._pyomo_var[(i, c, *index)])
 return result

class DescriptorRule(IndexedElem):
 """An abstract base class for rules to define material descriptors.

 This class is only the abstract interface for other well-defined rules.
 Rules get attached to MaterialDescriptor objects and are intended to be
 interpretable in relation to the descriptor that they are attached to.

 Examples:
 'Coordination number is equal to the sum of variables for the presence
 of any bond to the neighbors of a site.'
 -> m.CNi.rules.append(EqualTo(SumNeighborBonds(m.Bondij)))
 'Size of a cluster is equal to the number of of atoms'
 -> m.ClusterSize.rules.append(EqualTo(SumSites(m.Yi)))

 Rules can be applied over a subset of the design space (i.e., only for
 some combinations of sites, site-types, etc.) by providing keywords
 that are passed to the constructor of IndexedElem. Else, the relevant
 indexes are infered from the rule components.

 Attributes:
 (index information inherited from IndexedElem)
 """

 def __init__(self, **kwargs):
 """Standard constructor for DescriptorRule base class.

 Args:
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 IndexedElem.__init__(self, **kwargs)

 @abstractmethod
 def _pyomo_cons(self, var):
 """Abstract method to define necessary interface for descriptor rules.

 Args:
 var (MaterialDescriptor): Variable that the rule is attached to.
 (i.e., the variable that should be read before the class name to
 interpret the rule)

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 raise NotImplementedError

class SimpleDescriptorRule(DescriptorRule):
 """An base class for simple rules with a left and right hand side.

 This class is just intended to create a common interface for the
 EqualTo, LessThan, and GreaterThan rules.

 Attributes:
 expr (Expr): Right-hand side expression for the rule.
 (index information inherited from IndexedElem)
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, e, **kwargs):
 """Standard constructor for simple descriptor rules.

 Args:
 e (float/int/Expr): An expression to use are right hand side of
 a rule. If a float or int, a LinearExpr is created for the user.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.expr = (LinearExpr(offset=e)
 if type(e) is float or type(e) is int else e)
 kwargs = {**self.expr.index_dict, **kwargs}
 DescriptorRule.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 ConIndexes = IndexedElem.fromComb(var, self)
 return [Constraint(*ConIndexes.index_sets, rule=self._pyomo_rule(var))]

 def _pyomo_rule(self, LHS, operator, RHS):
 """Method to create a function for a Pyomo constraint rule.

 Args:
 LHS (MaterialDescriptor/Expr): The left hand side of a simple rule.
 operator (function): The relationship to encode in a rule.
 RHS (MaterialDescriptor/Expr): The right hand side of a simple rule.

 Returns:
 (function) A function interpretable by Pyomo for a 'rule' argument
 """
 ConIndexes = IndexedElem.fromComb(LHS, RHS)

 def rule(m, *args):
 LHS_index = LHS.mask(args, ConIndexes)
 RHS_index = RHS.mask(args, ConIndexes)
 return operator(LHS._pyomo_expr(LHS_index),
 RHS._pyomo_expr(RHS_index))

 return rule

class LessThan(SimpleDescriptorRule):
 """A class for rules implementing 'less than or equal to' an expression.

 Spelled out: 'the descriptor is less than or equal to a linear expression'

 Attributes:
 expr (Expr): Right-hand side expression for the rule.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 # --- Inherited from SimpleDescriptorRule ---

 # === PROPERTY EVALUATION METHODS
 def _pyomo_rule(self, desc):
 """Method to create a function for a Pyomo constraint rule.

 Args:
 desc (MaterialDescriptor/Expr): A descriptor to define as 'less than'
 the expression for this rule.

 Returns:
 (function) A function in the format of a Pyomo rule to construct a
 constraint.
 """

 def less_than(LHS, RHS):
 return LHS <= RHS

 return SimpleDescriptorRule._pyomo_rule(self, desc,
 less_than,
 self.expr)

class EqualTo(SimpleDescriptorRule):
 """A class for rules implementing 'equal to' an expression.

 Spelled out: 'the descriptor is equal to a linear expression'

 Attributes:
 expr (Expr): Right-hand side expression for the rule.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 # --- Inherited from SimpleDescriptorRule ---

 # === PROPERTY EVALUATION METHODS
 def _pyomo_rule(self, desc):
 """Method to create a function for a Pyomo constraint rule.

 Args:
 desc (MaterialDescriptor/Expr): A descriptor to define as 'equal to'
 the expression for this rule.

 Returns:
 (function) A function in the format of a Pyomo rule to construct a
 constraint.
 """

 def equal_to(LHS, RHS):
 return LHS == RHS

 return SimpleDescriptorRule._pyomo_rule(self, desc,
 equal_to,
 self.expr)

class GreaterThan(SimpleDescriptorRule):
 """A class for rules implementing 'greater than or equal to' an expr.

 Spelled out: 'descriptor is greater than or equal to a linear expression'

 Attributes:
 expr (Expr): Right-hand side expression for the rule.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 # --- Inherited from SimpleDescriptorRule ---

 # === PROPERTY EVALUATION METHODS
 def _pyomo_rule(self, desc):
 """Method to create a function for a Pyomo constraint rule.

 Args:
 desc (MaterialDescriptor/Expr): A descriptor to define as 'greater
 than' the expression for this rule.

 Returns:
 (function) A function in the format of a Pyomo rule to construct a
 constraint.
 """

 def greater_than(LHS, RHS):
 return LHS >= RHS

 return SimpleDescriptorRule._pyomo_rule(self, desc,
 greater_than,
 self.expr)

class FixedTo(DescriptorRule):
 """A class for rules that fix descriptors to required values.

 Spelled out: 'the descriptor is fixed to a scalar value'

 Attributes:
 val (float): the value that the descriptor is fixed to.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, val, **kwargs):
 """Standard constructor for FixedTo rules.

 Args:
 val (float): The value to fix descriptors to.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.val = val
 DescriptorRule.__init__(self, **kwargs)

 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 # NOTE: This method is used to ensure that basic variables that
 # are fixed get referenced to write basic constraints in
 # the model. Don't make constraints, but do instantiate
 # variables
 Comb = IndexedElem.fromComb(var, self)
 for k in Comb.keys():
 var._pyomo_var[k]
 return []

class Disallow(DescriptorRule):
 """A class for rules that disallow a previously-identified design.

 Spelled out: 'the descriptors must attain a different solution than
 a given design'

 Attributes:
 D (Design): the design from which variable values to disallow are infered
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, D, **kwargs):
 """Standard constructor for the Disallow rule.

 Args:
 D (Design): A design object to make infeasible in the resulting model
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.D = D
 DescriptorRule.__init__(self, **kwargs)

 def _pyomo_expr(self, var):
 """Method to create the integer cut for this disallowed design.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 An instance of a Pyomo expression.
 """
 if var.name == 'Yi':
 result = 0
 for i in range(len(self.D.Canvas)):
 if self.D.Contents[i] is None:
 result += var._pyomo_var[i]
 else:
 result += (1 - var._pyomo_var[i])
 elif var.name == 'Yik':
 result = 0
 for i in range(len(self.D.Canvas)):
 for k in self.D.NonVoidElems:
 if self.D.Contents[i] is not k:
 result += var._pyomo_var[i, k]
 else:
 result += (1 - var._pyomo_var[i, k])
 else:
 # NOTE: This rule was intended to disallow structures
 # or labelings of structures (i.e., Yi or Yik
 # variables). It is not clear how we can generally
 # disallow any general combination of variables.
 raise ValueError('Decide what to do in this case...')
 return result

 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 return Constraint(expr=(self._pyomo_expr(var) >= 1))

class PiecewiseLinear(DescriptorRule):
 """A class for rules implementing 'equal to a piecewise linear function'.

 Spelled out: 'the descriptor is equal to a piecewise linear expression'

 Note: Innequalities of 'less than' or 'greater than' a piecewie function
 can be achieved by introducing an auxiliary descriptor to be equal to the
 piecewise function. Then, inequalities can be introduced using the
 auxiliary descriptor. Alternatively, users can modify the con_type
 attribute that is interpreted by Pyomo.

 Attributes:
 values (list<float>): values of univariate piecewise linear function at
 each breakpoint.
 breakpoints (list<float>): breakpoints of the piecewise linear function.
 input_desc (MaterialDescriptor): descriptor as the arugment to the
 piecewise linear function
 con_type (string): indicates the bound type of the piecewise function.
 Options:
 “UB” - relevant descriptor is bounded above by piecewise function.
 “LB” - relevant descriptor is bounded below by piecewise function.
 “EQ” - relevant descriptor is equal to the piecewise function.
 (Default)

 See DescriptorRule for more information.
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, values, breakpoints, input_desc, con_type='EQ', **kwargs):
 """Standard constructor for simple descriptor rules.

 Args:
 values (list<float>): values of the function.
 breakpoints (list<float>): breakpoints of the function.
 input_desc (MaterialDescriptor): arugment to the function
 con_type (string): Optional, indicates the bound type of the
 piecewise function
 Options:
 “UB” - bounded above by piecewise function.
 “LB” - bounded below by piecewise function.
 “EQ” - equal to the piecewise function. (Default)
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.values = values
 self.breakpoints = breakpoints
 self.input_desc = input_desc
 self.con_type = con_type.upper()
 DescriptorRule.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Block>) list of Pyomo model block objects created by Piecewise
 function.
 """
 Comb = IndexedElem.fromComb(var, self)
 return [Piecewise(*Comb.index_sets,
 var._pyomo_var,
 self.input_desc._pyomo_var,
 pw_pts=self.breakpoints,
 f_rule=self.values,
 pw_constr_type=self.con_type,
 pw_repn='MC')]

class Implies(DescriptorRule):
 """A class for rules that define simple logical implications.

 Spelled out: 'if this descriptor is true (i.e., equal to one),
 then another set of simple rules also apply'

 Attributes:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to enforce if the logical predicate is true.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """
 DEFAULT_BIG_M = 9999

 # === STANDARD CONSTRUCTOR
 def __init__(self, concs, **kwargs):
 """Standard constructor for Implies rule.

 Args:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to conditionally enforce. Also, a single
 conclusion can be provided (i.e., a tuple<MaterialDescriptor,
 SimpleDescriptorRule>) and will be placed in a list.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.concs = (concs if type(concs) is list else [concs])
 Comb = IndexedElem.fromComb(*(desc for desc, conc in self.concs),
 *(conc for desc, conc in self.concs))
 kwargs = {**Comb.index_dict, **kwargs}
 DescriptorRule.__init__(self, **kwargs)

 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """

 result = []
 for (desc, conc) in self.concs:
 ConIndexes = IndexedElem.fromComb(var, desc, conc)

 def rule_lb(m, *args):
 v = var._pyomo_expr(index=var.mask(args, ConIndexes))
 d = desc._pyomo_expr(index=desc.mask(args, ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask(args,
 ConIndexes))
 body_lb = getLB(d - c)
 MLB = (body_lb if body_lb is not None
 else -Implies.DEFAULT_BIG_M)
 return MLB * (1 - v) <= d - c

 def rule_ub(m, *args):
 v = var._pyomo_expr(index=var.mask(args, ConIndexes))
 d = desc._pyomo_expr(index=desc.mask(args, ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask(args,
 ConIndexes))
 body_ub = getUB(d - c)
 MUB = (body_ub if body_ub is not None
 else Implies.DEFAULT_BIG_M)
 return d - c <= MUB * (1 - v)

 if isinstance(conc, LessThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_ub))
 if isinstance(conc, GreaterThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_lb))
 return result

class NegImplies(DescriptorRule):
 """A class for rules that define logical implications with negation.

 Spelled out: 'if this descriptor is not true (i.e., is equal to zero),
 then another simple rule also applies'

 Attributes:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to enforce if the logical predicate is false.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """
 DEFAULT_BIG_M = 9999

 # === STANDARD CONSTRUCTOR
 def __init__(self, concs, **kwargs):
 """Standard constructor for NegImplies rule.

 Args:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to conditionally enforce. Also, a single
 conclusion can be provided (i.e., a tuple<MaterialDescriptor,
 SimpleDescriptorRule>) and will be placed in a list.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.concs = (concs if type(concs) is list else [concs])
 Comb = IndexedElem.fromComb(*(desc for desc, conc in self.concs),
 *(conc for desc, conc in self.concs))
 kwargs = {**Comb.index_dict, **kwargs}
 DescriptorRule.__init__(self, **kwargs)

 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 result = []
 for (desc, conc) in self.concs:
 ConIndexes = IndexedElem.fromComb(var, desc, conc)

 def rule_lb(m, *args):
 v = var._pyomo_expr(index=var.mask(args, ConIndexes))
 d = desc._pyomo_expr(index=desc.mask(args, ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask(args,
 ConIndexes))
 body_lb = getLB(d - c)
 MLB = (body_lb if body_lb is not None
 else -NegImplies.DEFAULT_BIG_M)
 return MLB * (v) <= d - c

 def rule_ub(m, *args):
 v = var._pyomo_expr(index=var.mask(args, ConIndexes))
 d = desc._pyomo_expr(index=desc.mask(args, ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask(args,
 ConIndexes))
 body_ub = getUB(d - c)
 MUB = (body_ub if body_ub is not None
 else NegImplies.DEFAULT_BIG_M)
 return d - c <= MUB * v

 if isinstance(conc, LessThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_ub))
 if isinstance(conc, GreaterThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_lb))
 return result

class ImpliesSiteCombination(DescriptorRule):
 """A class for rules that define logical implications between two sites.

 Spelled out: 'if this bond-indexed descriptor is true (i.e., is equal
 to one), then a pair of simple rules hold on the two bonding sites'

 Attributes:
 canv (Canvas): the data structure to identify neighbor connections
 to apply rules over.
 concis (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to enforce at the first site in the pair if
 the logical predicate is true.
 concjs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to enforce at the second site in the pair if
 the logical predicate is true.
 symmetric_bonds (bool): flag to indicate if implications should be
 applied over symmetric bond indices
 (index information inherited from IndexedElem)

 See DescriptorRule for more information.
 """
 DEFAULT_BIG_M = 9999

 # === STANDARD CONSTRUCTOR
 def __init__(self, canv, concis, concjs, symmetric_bonds=False, **kwargs):
 """Standard constructor for ImpliesSiteCombination rules.

 Args:
 canv (Canvas): the data structure to identify neighbor connections
 to apply rules over.
 concis (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to conditionally enforce at the first
 site in a bond.
 Note: single conclusions can be provided (i.e., a
 tuple<MaterialDescriptor,SimpleDescriptorRule>) and will
 be placed in lists.
 concjs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to conditionally enforce at the second
 site in a bond.
 Note: single conclusions can be provided (i.e., a
 tuple<MaterialDescriptor,SimpleDescriptorRule>) and will
 be placed in lists.
 symmetric_bonds (bool): flag to indicate if a symmetric verions
 of bonds should be enumerated or if both directions should
 be included.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """

 self.canv = canv
 self.concis = (concis if type(concis) is list else [concis])
 self.concjs = (concjs if type(concjs) is list else [concjs])
 self.symmetric_bonds = symmetric_bonds
 Combi = IndexedElem.fromComb(*(desc for desc, conc in self.concis),
 *(conc for desc, conc in self.concis))
 Combj = IndexedElem.fromComb(*(desc for desc, conc in self.concjs),
 *(conc for desc, conc in self.concjs))
 assert (Combi.sites is not None and Combj.sites is not None)
 if 'bonds' not in kwargs:
 kwargs['bonds'] = [(i, j)
 for i in Combi.sites
 for j in canv.NeighborhoodIndexes[i]
 if (j is not None and
 j in Combj.sites and
 (not symmetric_bonds or j > i))]
 if sum(Combi.dims) > 1:
 raise NotImplementedError('Additional indexes are not supported, please contact MatOpt developer for '
 'possible feature addition')
 DescriptorRule.__init__(self, **kwargs)

 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 assert (var.bonds is not None)
 Comb = IndexedElem.fromComb(var, self)
 result = []
 # NOTE: After much confusion, I found a bug in the line of code
 # below. Be careful not to use variable names "expr"
 # because it gets mixed up with the Pyomo module "expr".
 # No error, but it gives garbage expressions and wasn't
 # clear to me what was being generated...
 # NOTE: Not clear if this was caused by module "expr" or the
 # conflict of two local "expr,conc" objects in the two
 # for loops...
 # for expr,conc in self.concis:
 for expri, conci in self.concis:
 def rule_i_lb(m, i, j):
 e = expri._pyomo_expr(index=(i,))
 c = conci.expr._pyomo_expr(index=(i,))
 body = e - c
 body_LB = getLB(body)
 MLBi = (body_LB if body_LB is not None
 else -ImpliesSiteCombination.DEFAULT_BIG_M)
 return MLBi * (1 - var._pyomo_var[i, j]) <= body

 def rule_i_ub(m, i, j):
 e = expri._pyomo_expr(index=(i,))
 c = conci.expr._pyomo_expr(index=(i,))
 body = e - c
 body_UB = getUB(body)
 MUBi = (body_UB if body_UB is not None
 else ImpliesSiteCombination.DEFAULT_BIG_M)
 return body <= MUBi * (1 - var._pyomo_var[i, j])

 if isinstance(conci, GreaterThan) or isinstance(conci, EqualTo):
 result.append(Constraint(*Comb.index_sets, rule=rule_i_lb))
 if isinstance(conci, LessThan) or isinstance(conci, EqualTo):
 result.append(Constraint(*Comb.index_sets, rule=rule_i_ub))
 # NOTE: See note above for variable name "expr"
 # for expr,conc in self.concjs:
 for exprj, concj in self.concjs:
 def rule_j_lb(m, i, j):
 e = exprj._pyomo_expr(index=(j,))
 c = concj.expr._pyomo_expr(index=(j,))
 body = e - c
 body_LB = getLB(body)
 MLBj = (body_LB if body_LB is not None
 else -ImpliesSiteCombination.DEFAULT_BIG_M)
 return MLBj * (1 - var._pyomo_var[i, j]) <= body

 def rule_j_ub(m, i, j):
 e = exprj._pyomo_expr(index=(j,))
 c = concj.expr._pyomo_expr(index=(j,))
 body = e - c
 body_UB = getUB(body)
 MUBj = (body_UB if body_UB is not None
 else ImpliesSiteCombination.DEFAULT_BIG_M)
 return body <= MUBj * (1 - var._pyomo_var[i, j])

 if isinstance(concj, GreaterThan) or isinstance(concj, EqualTo):
 result.append(Constraint(*Comb.index_sets, rule=rule_j_lb))
 if isinstance(concj, LessThan) or isinstance(concj, EqualTo):
 result.append(Constraint(*Comb.index_sets, rule=rule_j_ub))
 return result

class ImpliesNeighbors(DescriptorRule):
 """A class for rules that define logical implications on neighbor sites.

 Spelled out: 'if this site-indexed descriptor is true (i.e., is equal
 to one), then a set of simple rules hold on each of the neighboring
 sites'

 Attributes:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to enforce if the logical predicate is true.
 neighborhoods (list<list<int>>): neighborhood data structure to use
 if you do not want to use the neighborhoods of the descriptor
 that this rule is attached to.
 (index information inherited from IndexedElem)

 See DescriptorRule for more information on rules and Canvas for more
 information on 'neighborhoods'.
 """
 DEFAULT_BIG_M = 9999

 # === STANDARD CONSTRUCTOR
 def __init__(self, concs, neighborhoods=None, **kwargs):
 """Standard constructor for ImpliesNeighbors rules.

 Args:
 concs (list<tuple<MaterialDescriptor,SimpleDescriptorRule>>):
 list of conclusions to conditionally enforce. Also, a single
 conclusion can be provided (i.e., a tuple<MaterialDescriptor,
 SimpleDescriptorRule>) and will be placed in a list.
 neighborhoods (list<list<int>>) Optional, data structure to use
 as neighborhoods of interest. If not provided, then the
 neighborhoods of the descriptor that this rule is attached to
 is used.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self.concs = (concs if type(concs) is list else [concs])
 self.neighborhoods = neighborhoods
 Comb = IndexedElem.fromComb(*(desc for desc, conc in self.concs),
 *(conc for desc, conc in self.concs))
 assert (Comb.sites is not None)
 kwargs = {**Comb.index_dict, **kwargs}
 DescriptorRule.__init__(self, **kwargs)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_cons(self, var):
 """Method to create a Pyomo constraint from this rule.

 Args:
 var (MaterialDescriptor): The descriptor to be defined by this rule.

 Returns:
 (list<Constraint>) list of Pyomo constraint objects.
 """
 var_dict_wo_s = var.index_dict
 var_dict_wo_s.pop('sites') # no need to capture these sites
 neighborhoods = (self.neighborhoods if self.neighborhoods is not None
 else var.canv.NeighborhoodIndexes)
 bonds = [(i, j) for i in var.sites for j in neighborhoods[i]
 if j is not None]
 result = []
 # NOTE: After much confusion, I found a bug in the line of code
 # below. Be careful not to use variable names "expr"
 # because it gets mixed up with the Pyomo module "expr".
 # No error, but it gives garbage expressions and wasn't
 # clear to me what was being generated...
 # for expr,conc in self.concs:
 for expr_, conc in self.concs:
 Comb = IndexedElem.fromComb(expr_, conc)
 r_dict_wo_s = Comb.index_dict
 r_dict_wo_s.pop('sites') # no need to capture these sites
 ConIndexes = IndexedElem.fromComb(IndexedElem(bonds=bonds),
 IndexedElem(**var_dict_wo_s),
 IndexedElem(**r_dict_wo_s))

 def rule_lb(m, *args):
 i, j, *args = args
 v = var._pyomo_var[var.mask((i, None, *args), ConIndexes)]
 e = expr_._pyomo_expr(index=expr_.mask((j, None, *args),
 ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask((j, None, *args),
 ConIndexes))
 body = e - c
 body_LB = getLB(body)
 MLB = (body_LB if body_LB is not None
 else -ImpliesNeighbors.DEFAULT_BIG_M)
 return MLB * (1 - v) <= body

 def rule_ub(m, *args):
 i, j, *args = args
 v = var._pyomo_var[var.mask((i, None, *args), ConIndexes)]
 e = expr_._pyomo_expr(index=expr_.mask((j, None, *args),
 ConIndexes))
 c = conc.expr._pyomo_expr(index=conc.expr.mask((j, None, *args),
 ConIndexes))
 body = e - c
 body_UB = getUB(body)
 MUB = (body_UB if body_UB is not None
 else ImpliesNeighbors.DEFAULT_BIG_M)
 return body <= MUB * (1 - v)

 if isinstance(conc, GreaterThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_lb))
 if isinstance(conc, LessThan) or isinstance(conc, EqualTo):
 result.append(Constraint(*ConIndexes.index_sets, rule=rule_ub))
 return result

[docs]class MaterialDescriptor(IndexedElem):
 """A class to represent material geometric and energetic descriptors.

 This class holds the information to define mathematical optimization
 variables for the properties of materials. Additionally, each descriptor
 has a 'rules' list to which the user can append rules defining the
 descriptor and constraining the design space.

 Attributes:
 name (string): A unique (otherwise Pyomo will complain) name
 canv (``Canvas``): The canvas that the descriptor will be indexed over
 atoms (list<``BBlock``>): The building blocks to index the descriptor over.
 confDs (list<``Design``>): The designs for conformations to index over.
 integer (bool): Flag to indicate if the descriptor takes integer values.
 binary (bool): Flag to indicate if the descriptor takes boolean values.
 rules (list<``DescriptorRules``>): List of rules to define and constrain the material descriptor design space.
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the descriptor values across all indices. If dict, the bounds can be individually set for each index.

 See ``IndexedElem`` for more information on indexing.
 See ``DescriptorRule`` for information on defining descriptors.
 """
 DBL_TOL = 1e-5

 # === STANDARD CONSTRUCTOR
 def __init__(self, name, canv=None, atoms=None, confDs=None,
 bounds=(None, None), integer=False, binary=False,
 rules=[], **kwargs):
 """Standard constuctor for material descriptors.

 Note: It is generally not necessary for users to create
 MaterialDescriptors themselves. Instead, use the
 MatOptModel.add____Descriptor() methods for the right
 type of descriptor (i.e., Site, Bond, etc.).

 Args:
 name (string): A unique (otherwise Pyomo will complain) name
 canv (Canvas): The canvas that the descriptor will be indexed over
 atoms (list<BBlock>): Building blocks to index the descriptor over.
 confDs (list<Design>): The designs for conformations to index over.
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 **kwargs: Optional, index information passed to IndexedElem if
 interested in a subset of indices.
 Possible choices: sites, bonds, site_types, bond_types, confs.
 """
 self._name = name
 self._canv = canv
 self._atoms = atoms
 self._confDs = confDs
 self._integer = (integer or binary)
 self._binary = binary
 self._rules = (rules if type(rules) is list else [rules])
 self._bounds = bounds
 self._pyomo_var = None # Will be set by MatOptModel._make_pyomo_model
 IndexedElem.__init__(self, **kwargs)

 # === AUXILIARY METHODS
 def _fix_pyomo_var_by_rule(self, r, m):
 if self.name in ('Yik', 'Yi', 'Xijkl', 'Xij', 'Cikl', 'Ci', 'Zic'):
 return self.__fix_basic_pyomo_vars_by_rule(r, m)
 else:
 Comb = IndexedElem.fromComb(self, r)
 for k in Comb.keys():
 self._pyomo_var[k].fix(r.val)

 def __fix_basic_pyomo_vars_by_rule(self, r, m):
 Comb = IndexedElem.fromComb(self, r)
 if self.name == 'Yik':
 for i in Comb.sites:
 for k in Comb.site_types:
 fixYik(m, i, k, r.val)
 elif self.name == 'Yi':
 for i in Comb.sites:
 fixYi(m, i, r.val)
 elif self.name == 'Xijkl':
 for i, j in Comb.bonds:
 for k, l in Comb.bond_types:
 fixXijkl(m, i, j, k, l, r.val)
 elif self.name == 'Xij':
 for i, j in Comb.bonds:
 fixXij(m, i, j, r.val)
 elif self.name == 'Cikl':
 for i in Comb.sites:
 for k, l in Comb.bond_types:
 fixCikl(m, i, k, l, r.val)
 elif self.name == 'Ci':
 for i in Comb.sites:
 fixCi(m, i, r.val)
 elif self.name == 'Zic':
 for i in Comb.sites:
 for c in Comb.confs:
 fixZic(m, i, c, r.val)

 # === PROPERTY EVALUATION METHODS
 def _pyomo_cons(self, m):
 """Create a list of Pyomo constraints related to this descriptor."""
 result = []
 for rule in self.rules:
 if rule is not None:
 result.extend(rule._pyomo_cons(self))
 return result

 @property
 def _pyomo_bounds(self):
 """Creates a bound rule/tuple that can interpreted by Pyomo."""
 if type(self.bounds) is tuple:
 return self.bounds
 elif type(self.bounds) is dict:
 def rule_gen(m, *args):
 if args is not None and len(args) == 1:
 args = args[0]
 return self.bounds[args]

 return rule_gen
 else:
 # Else, assume that the user knows what they're doing
 # with functions for pyomo bounds
 return self.bounds

 def _pyomo_expr(self, index=None):
 """Interprets a variable as a Pyomo expression.

 Note: This is just necessary so that we can conveniently interpret
 MaterialDescriptor objects in place of Expr objects.
 """
 return self._pyomo_var[index]

 @property
 def values(self):
 """Creates a dictionary of desriptor values after optimization.

 Note: Uses the Pyomo 'value' function and only works after the
 optimization of a model.

 Returns:
 (dict) Dictionary of keys to values after optimization.
 """
 return {index: value(self._pyomo_var[index]) for index in self.keys()}

 # === BASIC QUERY METHODS
 @property
 def name(self):
 return self._name

 @property
 def canv(self):
 return self._canv

 @property
 def atoms(self):
 return self._atoms

 @property
 def confDs(self):
 return self._confDs

 @property
 def bounds(self):
 return self._bounds

 @property
 def integer(self):
 return self._integer

 @property
 def binary(self):
 return self._binary

 @property
 def continuous(self):
 return not self.integer

 @property
 def rules(self):
 return self._rules

[docs]class MatOptModel(object):
 """A class for the specification of a materials optimization problem.

 Once all the material information is specified, we use this class to
 specify the material design problem of interest. This class is intended
 to be interpretable without mathematical optimization background while
 the conversion to Pyomo optimization models happens automatically.

 Attributes:
 canv (``Canvas``): The canvas of the material design space
 atoms (list<``BBlock``>): The list of building blocks to consider.
 Note: This list does not need to include a void-atom type. We use 'None' to represent the absence of any building block at a given site.
 confDs (list<``Design``>): The list of conformations to consider.
 """

 # === STANDARD CONSTRUCTOR
 def __init__(self, canv, atoms=None, confDs=None):
 """Standard constructor for materials optimization problems.

 Args:
 canv (``Canvas``): The canvas of the material design space
 atoms (list<``BBlock``>): The list of building blocks to consider.
 Note: This list does not need to include a void-atom type. We use 'None' to represent the absence of any building block at a given site.
 confDs (list<``Design``>): The list of conformations to consider.
 """
 self._canv = canv
 self._atoms = atoms
 self._confDs = confDs
 self._descriptors = []
 self.addSitesDescriptor('Yi', binary=True, rules=None)
 self.addBondsDescriptor('Xij', binary=True, rules=None)
 self.addNeighborsDescriptor('Ci', integer=True, rules=None)
 self.addSitesTypesDescriptor('Yik', binary=True, rules=None)
 self.addBondsTypesDescriptor('Xijkl', binary=True, rules=None)
 self.addNeighborsTypesDescriptor('Cikl', integer=True, rules=None)
 self.addSitesConfsDescriptor('Zic', binary=True, rules=None)

 # === MANIPULATION METHODS
 def addGlobalDescriptor(self, name,
 bounds=(None, None), integer=False, binary=False,
 rules=None):
 """Method to add scalar descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 Desc = MaterialDescriptor(name=name, bounds=bounds,
 integer=integer, binary=binary, rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addSitesDescriptor(self, name,
 sites=None,
 bounds=(None, None), integer=False, binary=False,
 rules=None):
 """Method to add a site-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 sites (list<int>): Optional, subset of canvas sites to index the new
 descriptor over.
 Default: None (i.e., all sites in canvas are considered)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 sites = (sites if sites is not None else list(range(len(self.canv))))
 Desc = MaterialDescriptor(name=name, canv=self.canv,
 sites=sites,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addBondsDescriptor(self, name,
 bonds=None,
 bounds=(None, None), integer=False, binary=False,
 rules=None,
 symmetric_bonds=False):
 """Method to add a bond-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 bonds (list<tuple<int,int>>): Optional, subset of canvas neighbor
 pairs to index the new descriptor over.
 Default: None (i.e., all neighbor pairs included)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 bonds = (bonds if bonds is not None else
 [(i, j)
 for i in range(len(self.canv))
 for j in self.canv.NeighborhoodIndexes[i]
 if (j is not None and (not symmetric_bonds or j > i))])
 Desc = MaterialDescriptor(name=name, canv=self.canv,
 bonds=bonds,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addNeighborsDescriptor(self, name,
 sites=None,
 bounds=(None, None), integer=False, binary=False,
 rules=None):
 """Method to add a neighborhood-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 sites (list<int>): Optional, subset of canvas sites to index the new
 descriptor over.
 Default: None (i.e., all sites in canvas are considered)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 sites = (sites if sites is not None else list(range(len(self.canv))))
 Desc = MaterialDescriptor(name=name, canv=self.canv,
 sites=sites,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addGlobalTypesDescriptor(self, name,
 site_types=None, bond_types=None,
 bounds=(None, None),
 integer=False, binary=False,
 rules=None):
 """Method to add a type-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 site_types (list<BBlock>): Optional, subset of building block types
 to index the new descriptor over.
 Note: If both site_types and bond_types are left to None, then
 we decide to index over building block types by default.
 bond_types (list<tuple<BBlock,BBlock>>): Optional, subset of building
 block pairs to index the new descriptor over.
 Note: If both site_types and bond_types are left to None, then
 we decide to index over building block types by default.
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 site_types = (site_types if site_types is not None else
 (self.atoms if bond_types is None else None))
 bond_types = bond_types
 Desc = MaterialDescriptor(name=name, atoms=self.atoms,
 site_types=site_types, bond_types=bond_types,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addSitesTypesDescriptor(self, name,
 sites=None, site_types=None,
 bounds=(None, None), integer=False, binary=False,
 rules=None):
 """Method to add a site-and-type-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 sites (list<int>): Optional, subset of canvas sites to index the new
 descriptor over.
 Default: None (i.e., all sites in canvas are considered)
 site_types (list<BBlock>): Optional, subset of building block types
 to index the new descriptor over.
 Default: None (i.e., all building block types are considered)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 sites = (sites if sites is not None else list(range(len(self.canv))))
 site_types = (site_types if site_types is not None else self.atoms)
 Desc = MaterialDescriptor(name=name, atoms=self.atoms, canv=self.canv,
 sites=sites, site_types=site_types,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addBondsTypesDescriptor(self, name,
 bonds=None, bond_types=None,
 bounds=(None, None), integer=False, binary=False,
 rules=None,
 symmetric_bonds=False):
 """Method to add a bond-and-type-indexed descriptor to the model.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 bonds (list<tuple<int,int>>): Optional, subset of canvas neighbor
 pairs to index the new descriptor over.
 Default: None (i.e., all neighbor pairs included)
 bond_types (list<tuple<BBlock,BBlock>>): Optional, subset of
 building block pairs to index the new descriptor over.
 Default: None (i.e., all pairs of building blocks considered)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 bonds = (bonds if bonds is not None else
 [(i, j)
 for i in range(len(self.canv))
 for j in self.canv.NeighborhoodIndexes[i]
 if (j is not None and (not symmetric_bonds or j > i))])
 bond_types = (bond_types if bond_types is not None else
 [(k, l) for k in self.atoms for l in self.atoms])
 Desc = MaterialDescriptor(name=name, atoms=self.atoms, canv=self.canv,
 bonds=bonds, bond_types=bond_types,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addNeighborsTypesDescriptor(self, name,
 sites=None, bond_types=None,
 bounds=(None, None),
 integer=False, binary=False,
 rules=None):
 """Method to add a neighborhood-bond-type-indexed descriptor.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 sites (list<int>): Optional, subset of canvas sites to index the new
 descriptor over.
 Default: None (i.e., all sites in canvas are considered)
 bond_types (list<tuple<BBlock,BBlock>>): Optional, subset of building
 block pairs to index the new descriptor over.
 Default: None (i.e., all pairs of building blocks considered)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 assert (not hasattr(self, name))
 sites = (sites if sites is not None else list(range(len(self.canv))))
 bond_types = (bond_types if bond_types is not None else
 [(k, l) for k in self.atoms for l in self.atoms])
 Desc = MaterialDescriptor(name=name, atoms=self.atoms, canv=self.canv,
 sites=sites, bond_types=bond_types,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 def addSitesConfsDescriptor(self, name,
 sites=None, confs=None,
 bounds=(0, 1), integer=True, binary=True,
 rules=None):
 """Method to add a site-and-conformation-indexed descriptor.

 Args:
 name (string): A unique (otherwise Pyomo will complain) name.
 sites (list<int>): Optional, subset of canvas sites to index the new
 descriptor over.
 Default: None (i.e., all sites in canvas are considered)
 confs (list<int>): Optional, subset of conformation indices to index
 the new descriptor over.
 Default: None (i.e., all conformations included)
 bounds (tuple/dict/func): If tuple, the lower and upper bounds on the
 descriptor values across all indices. If dict, the bounds can be
 individually set for each index. Otherwise, advanced users can
 specify a function to be interpreted by Pyomo.
 integer (bool): Flag to indicate if the descriptor is integer.
 binary (bool): Flag to indicate if the descriptor is boolean.
 rules (list<DescriptorRules>): List of rules to define and constrain
 the material descriptor design space.
 """
 sites = (sites if sites is not None else list(range(len(self.canv))))
 confs = (confs if confs is not None else
 (list(range(len(self.confDs))) if self.confDs is not None
 else None))
 Desc = MaterialDescriptor(name=name, canv=self.canv,
 confDs=self.confDs,
 sites=sites, confs=confs,
 bounds=bounds, integer=integer, binary=binary,
 rules=rules)
 setattr(self, name, Desc)
 self._descriptors.append(Desc)

 # === PROPERTY EVALUATION METHODS
[docs] def maximize(self, func, **kwargs):
 """Method to maximize a target functionality of the material model.

 Args:
 func (``MaterialDescriptor``/``Expr``): Material functionality to optimize.
 **kwargs: Arguments to ``MatOptModel.optimize``

 Returns:
 (``Design``/list<``Design``>) Optimal designs.

 Raises:
 ``pyutilib.ApplicationError`` if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

 See ``MatOptModel.optimize`` method for details.
 """
 return self.optimize(func, sense=maximize, **kwargs)

[docs] def minimize(self, func, **kwargs):
 """Method to minimize a target functionality of the material model.

 Args:
 func (``MaterialDescriptor``/``Expr``): Material functionality to optimize.
 **kwargs: Arguments to ``MatOptModel.optimize``

 Returns:
 (``Design``/list<``Design``>) Optimal designs.

 Raises:
 ``pyutilib.ApplicationError`` if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)

 See ``MatOptModel.optimize`` method for details.
 """
 return self.optimize(func, sense=minimize, **kwargs)

[docs] def optimize(self, func, sense, nSolns=1,
 tee=True, disp=1, keepfiles=False,
 tilim=3600, trelim=None,
 solver='cplex'):
 """Method to create and optimize the materials design problem.

 This method automatically creates a new optimization model every
 time it is called. Then, it solves the model via Pyomo with the
 CPLEX solver.

 If multiple solutions (called a 'solution pool') are desired, then
 the nSolns argument can be provided and the populate method will
 be called instead.

 Args:
 func (``MaterialDescriptor``/``Expr``): Material functionality to optimize.
 sense (int): flag to indicate the choice to minimize or maximize the functionality of interest.
 Choices: minimize/maximize (Pyomo constants 1,-1 respectively)
 nSolns (int): Optional, number of Design objects to return.
 Default: 1 (See ``MatOptModel.populate`` for more information)
 tee (bool): Optional, flag to turn on solver output.
 Default: True
 disp (int): Optional, flag to control level of MatOpt output.
 Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
 Default: 1
 keepfiles (bool): Optional, flag to save temporary pyomo files.
 Default: True
 tilim (float): Optional, solver time limit (in seconds).
 Default: 3600
 trelim (float): Optional, solver tree memeory limit (in MB).
 Default: None (i.e., Pyomo/CPLEX default)
 solver (str): Solver choice. Currently only cplex or neos-cplex are supported
 Default: cplex

 Returns:
 (``Design``/list<``Design``>) Optimal design or designs, depending on the number of solutions requested by argument ``nSolns``.

 Raises:
 ``pyutilib.ApplicationError`` if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)
 """
 if nSolns > 1:
 return self.populate(func, sense=sense, nSolns=nSolns,
 tee=tee, disp=disp, keepfiles=keepfiles,
 tilim=tilim, trelim=trelim, solver=solver)
 elif nSolns == 1:
 self._pyomo_m = self._make_pyomo_model(func, sense)
 return self.__solve_pyomo_model(tee, disp, keepfiles, tilim, trelim,
 solver)

[docs] def populate(self, func, sense, nSolns,
 tee=True, disp=1, keepfiles=False,
 tilim=3600, trelim=None,
 solver='cplex'):
 """Method to a pool of solutions that optimize the material model.

 This method automatically creates a new optimization model every
 time it is called. Then, it solves the model via Pyomo with the
 CPLEX solver.

 The populate method iteratively solves the model, interprets the
 solution as a Design object, creates a constraint to disallow that
 design, and resolves to find the next best design. We build a pool
 of Designs that are gauranteed to be the nSolns-best solutions in the
 material design space.

 Args:
 func (``MaterialDescriptor``/``Expr``): Material functionality to optimize.
 sense (int): flag to indicate the choice to minimize or maximize the functionality of interest.
 Choices: minimize/maximize (Pyomo constants 1,-1 respectively)
 nSolns (int): Optional, number of Design objects to return.
 Default: 1 (See ``MatOptModel.populate`` for more information)
 tee (bool): Optional, flag to turn on solver output.
 Default: True
 disp (int): Optional, flag to control level of MatOpt output.
 Choices: 0: No MatOpt output (other than solver tee) 1: MatOpt output for outer level method 2: MatOpt output for solution pool & individual solns.
 Default: 1
 keepfiles (bool): Optional, flag to save temporary pyomo files.
 Default: True
 tilim (float): Optional, solver time limit (in seconds).
 Default: 3600
 trelim (float): Optional, solver tree memeory limit (in MB).
 Default: None (i.e., Pyomo/CPLEX default)
 solver (str): Solver choice. Currently only cplex or neos-cplex are supported
 Default: cplex

 Returns:
 (list<``Design``>) A list of optimal Designs in order of decreasing optimality.

 Raises:
 ``pyutilib.ApplicationError`` if MatOpt can not find usable solver (CPLEX or NEOS-CPLEX)
 """
 self._pyomo_m = self._make_pyomo_model(func, sense)
 self._pyomo_m.iSolns = Set(initialize=list(range(nSolns)))
 self._pyomo_m.IntCuts = Constraint(self._pyomo_m.iSolns)

 def dispPrint(*args):
 if disp > 0:
 print(*args)
 else:
 pass

 Ds = []
 for iSoln in range(nSolns):
 dispPrint('Starting populate for solution #{}... '.format(iSoln))
 D = self.__solve_pyomo_model(tee, disp - 1, keepfiles, tilim, trelim, solver)
 if D is not None:
 dispPrint('Found solution with objective: {}'.
 format(value(self._pyomo_m.obj)))
 Ds.append(D)
 if len(self._pyomo_m.Yik) > 0:
 self._pyomo_m.IntCuts.add(
 index=iSoln,
 expr=(Disallow(D)._pyomo_expr(self.Yik) >= 1))
 elif len(self._pyomo_m.Yi) > 0:
 self._pyomo_m.IntCuts.add(
 index=iSoln,
 expr=(Disallow(D)._pyomo_expr(self.Yi) >= 1))
 else:
 raise NotImplementedError('Decide what to do '
 'in this case...')
 else:
 dispPrint('No solution found. Terminating populate.')
 break
 dispPrint('Identified {} solutions via populate.'.format(len(Ds)))
 return Ds

 def _make_pyomo_model(self, obj_expr, sense):
 """Method to create a Pyomo concrete model object.

 This method creates a Pyomo model and also modifies several objects
 in the MatOpt framework. It creates Pyomo variable objects and
 attches references to those variables on each of the
 MaterialDescriptors attached to the MatOptModel.

 Args:
 obj_expr (MaterialDescriptor/Expr): Material functionality to
 optimize.
 sense (int): flag to indicate the choice to minimize or maximize the
 functionality of interest.
 Choices: minimize/maximize (Pyomo constants 1,-1 respectively)

 Returns:
 (ConcreteModel) Pyomo model object.
 """
 m = makeMyPyomoBaseModel(self.canv, Atoms=self.atoms, Confs=self.confDs)
 self.Yi._pyomo_var = m.Yi
 self.Xij._pyomo_var = m.Xij
 self.Ci._pyomo_var = m.Ci
 self.Yik._pyomo_var = m.Yik
 self.Xijkl._pyomo_var = m.Xijkl
 self.Cikl._pyomo_var = m.Cikl
 self.Zic._pyomo_var = m.Zic
 for desc in self._descriptors:
 if desc.name not in ('Yik', 'Yi', 'Xijkl', 'Xij', 'Cikl', 'Ci', 'Zic'):
 v = Var(*desc.index_sets,
 domain=(Binary if desc.binary
 else (Integers if desc.integer else Reals)),
 bounds=desc._pyomo_bounds,
 dense=False)
 setattr(m, desc.name, v)
 setattr(desc, '_pyomo_var', v)
 for desc in self._descriptors:
 for c, pyomo_con in enumerate(desc._pyomo_cons(m)):
 setattr(m, 'Assign{}_{}'.format(desc.name, c), pyomo_con)
 if sum(obj_expr.dims) == 0:
 m.obj = Objective(expr=obj_expr._pyomo_expr(index=(None,)),
 sense=sense)
 else:
 raise TypeError('The MaterialDescriptor chosen is not supported to be an objective, please contact MatOpt '
 'developer for potential fix')
 # NOTE: The timing of the call to addConsForGeneralVars is important
 # We need to call it after all user-defined descriptors are
 # encoded.
 # Else, lots of constraints for basic variables that are not
 # necessary will be written.
 addConsForGeneralVars(m)
 for desc in self._descriptors:
 for r in desc.rules:
 if isinstance(r, FixedTo):
 desc._fix_pyomo_var_by_rule(r, m)
 return m

 def __solve_pyomo_model(self, tee, disp, keepfiles, tilim, trelim, solver):
 """Method to solve the formulated Pyomo optimization model.

 This function is intended to standardize the printout and
 approach for converting results into Designs that is used
 by the optimize and populate methods.

 Args:
 tee (bool): Flag to turn on solver output.
 disp (int): Flag to control level of MatOpt output.
 keepfiles (bool): Flag to save temporary pyomo files.
 tilim (float): Solver time limit (in seconds).
 trelim (float): Solver tree memeory limit (in MB).
 solver (str): Solver choice. Currently only cplex or
 neos-cplex are supported

 Returns:
 (Design) The best design identified by the solver, if any.
 The quality of the solution (optimal vs best found at
 termination) can be found by reading the output display.
 In the case that the model was infeasible or no solution
 could be identified, the method returns 'None'.
 """
 if solver == 'cplex':
 opt = SolverFactory('cplex')
 opt.options['mip_tolerances_absmipgap'] = 0.0
 opt.options['mip_tolerances_mipgap'] = 0.0
 if tilim is not None:
 opt.options['timelimit'] = tilim
 if trelim is not None:
 opt.options['mip_limits_treememory'] = trelim
 res = opt.solve(self._pyomo_m, tee=tee,
 symbolic_solver_labels=True, keepfiles=keepfiles)
 elif solver == 'neos-cplex':
 with SolverManagerFactory('neos') as manager:
 opt = SolverFactory('cplex')
 opt.options['absmipgap'] = 0.0 # NOTE: different option names
 opt.options['mipgap'] = 0.0
 if tilim is not None:
 opt.options['timelimit'] = tilim
 if trelim is not None:
 opt.options['treememory'] = trelim
 res = manager.solve(self._pyomo_m, opt=opt)
 else:
 raise NotImplementedError('MatOpt is tailored to perform best with CPLEX (locally or through NEOS), '
 'please contact MatOpt developer for additional solver support ')
 solver_status = res.solver.status
 solver_term = res.solver.termination_condition
 soln_status = res.solution.status
 has_solution = (soln_status == SolutionStatus.optimal or
 soln_status == SolutionStatus.feasible or
 soln_status == SolutionStatus.bestSoFar or
 soln_status == SolutionStatus.globallyOptimal or
 soln_status == SolutionStatus.locallyOptimal)
 # NOTE: The block below is a hack to get around the fact that Pyomo
 # solution statuses are not flagged correctly all the time. If
 # solution status was unknown (but actually optimal or feasible)
 # then this should (hopefully) flag the solution as available
 if soln_status == SolutionStatus.unknown:
 value(self._pyomo_m.obj)
 has_solution = True

 def dispPrint(*args):
 if disp > 0:
 print(*args)
 else:
 pass

 if solver_status == SolverStatus.ok:
 dispPrint('The solver exited normally.')
 if (solver_term == TerminationCondition.optimal or
 solver_term == TerminationCondition.locallyOptimal or
 solver_term == TerminationCondition.globallyOptimal):
 # NOTE: This assertion should be re-enabled when Pyomo bug
 # described above is fixed.
 # assert(soln_status==SolutionStatus.optimal)
 dispPrint('A feasible and provably optimal solution '
 'is available.')
 else:
 dispPrint('The solver exited due to termination criteria: {}'
 .format(solver_term))
 if has_solution:
 dispPrint('A feasible (but not provably optimal) '
 'solution is available.')
 else:
 dispPrint('No solution available.')
 else:
 dispPrint('The solver did not exit normally. Status: {}'
 .format(solver_status))
 if has_solution:
 dispPrint('The Design has objective: {}'
 .format(value(self._pyomo_m.obj)))
 result = Design(self.canv)
 setDesignFromModel(result, self._pyomo_m)
 return result
 else:
 return None

 # === BASIC QUERY METHODS
 @property
 def canv(self):
 return self._canv

 @property
 def atoms(self):
 return self._atoms

 @property
 def confDs(self):
 return self._confDs

 @property
 def descriptors(self):
 return self._descriptors

 idaes.core.components

 Source code for idaes.core.components

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
IDAES Component objects

@author: alee
"""
from pyomo.environ import Set, Param, Var, units as pyunits
from pyomo.common.config import ConfigBlock, ConfigValue
from pyomo.core.base.units_container import _PyomoUnit

from .process_base import (declare_process_block_class,
 ProcessBlockData)
from .phases import PhaseType as PT
from .util.config import list_of_phase_types
from .util.exceptions import ConfigurationError
from idaes.core.util.misc import set_param_from_config
import idaes.logger as idaeslog

Set up logger
_log = idaeslog.getLogger(__name__)

@declare_process_block_class("Component")
class ComponentData(ProcessBlockData):
 CONFIG = ConfigBlock()

 CONFIG.declare("valid_phase_types", ConfigValue(
 domain=list_of_phase_types,
 doc="List of valid PhaseTypes (Enums) for this Component."))

 CONFIG.declare("elemental_composition", ConfigValue(
 domain=dict,
 description="Elemental composition of component",
 doc="Dict containing elemental composition in the form element "
 ": stoichiometry"))

 CONFIG.declare("henry_component", ConfigValue(
 domain=dict,
 description="Phases in which component follows Henry's Law",
 doc="Dict indicating phases in which component follows Herny's "
 "Law (keys) with values indicating form of law."))

 CONFIG.declare("dens_mol_liq_comp", ConfigValue(
 description="Method to use to calculate liquid phase molar density"))
 CONFIG.declare("cp_mol_liq_comp", ConfigValue(
 description="Method to calculate liquid component specific heats"))
 CONFIG.declare("cp_mol_ig_comp", ConfigValue(
 description="Method to calculate ideal gas component specific heats"
))
 CONFIG.declare("enth_mol_liq_comp", ConfigValue(
 description="Method to calculate liquid component molar enthalpies"))
 CONFIG.declare("enth_mol_ig_comp", ConfigValue(
 description="Method to calculate ideal gas component molar enthalpies"
))
 CONFIG.declare("entr_mol_liq_comp", ConfigValue(
 description="Method to calculate liquid component molar entropies"))
 CONFIG.declare("entr_mol_ig_comp", ConfigValue(
 description="Method to calculate ideal gas component molar entropies"))
 CONFIG.declare("pressure_sat_comp", ConfigValue(
 description="Method to use to calculate saturation pressure"))

 CONFIG.declare("phase_equilibrium_form", ConfigValue(
 domain=dict,
 description="Form of phase equilibrium constraints for component"))

 CONFIG.declare("parameter_data", ConfigValue(
 default={},
 domain=dict,
 description="Dict containing initialization data for parameters"))

 CONFIG.declare("_component_list_exists", ConfigValue(
 default=False,
 doc="Internal config argument indicating whether component_list "
 "needs to be populated."))
 CONFIG.declare("_electrolyte", ConfigValue(
 default=False,
 doc="Internal config argument indicating whether electrolyte "
 "component_lists needs to be populated."))

 def build(self):
 super(ComponentData, self).build()

 # If the component_list does not exist, add reference to new Component
 # The IF is mostly for backwards compatability, to allow for old-style
 # property packages where the component_list already exists but we
 # need to add new Component objects
 if not self.config._component_list_exists:
 if not self.config._electrolyte:
 self.__add_to_component_list()
 else:
 self._add_to_electrolyte_component_list()

 base_units = self.parent_block().get_metadata().default_units
 if isinstance(base_units["mass"], _PyomoUnit):
 # Backwards compatability check
 p_units = (base_units["mass"] /
 base_units["length"] /
 base_units["time"]**2)
 else:
 # Backwards compatability check
 p_units = None

 # Create Param for molecular weight if provided
 if "mw" in self.config.parameter_data:
 if isinstance(self.config.parameter_data["mw"], tuple):
 mw_init = pyunits.convert_value(
 self.config.parameter_data["mw"][0],
 from_units=self.config.parameter_data["mw"][1],
 to_units=base_units["mass"]/base_units["amount"])
 else:
 _log.debug("{} no units provided for parameter mw - assuming "
 "default units".format(self.name))
 mw_init = self.config.parameter_data["mw"]
 self.mw = Param(initialize=mw_init,
 units=base_units["mass"]/base_units["amount"])

 # Create Vars for common parameters
 param_dict = {"pressure_crit": p_units,
 "temperature_crit": base_units["temperature"],
 "omega": None}
 for p, u in param_dict.items():
 if p in self.config.parameter_data:
 self.add_component(p, Var(units=u))
 set_param_from_config(self, p)

 def is_solute(self):
 raise TypeError(
 "{} Generic Component objects do not support is_solute() method. "
 "Use a Solvent or Solute Component instead."
 .format(self.name))

 def is_solvent(self):
 raise TypeError(
 "{} Generic Component objects do not support is_solvent() method. "
 "Use a Solvent or Solute Component instead."
 .format(self.name))

 def __add_to_component_list(self):
 """
 Method to add reference to new Component in component_list
 """
 parent = self.parent_block()
 try:
 comp_list = getattr(parent, "component_list")
 comp_list.add(self.local_name)
 except AttributeError:
 # Parent does not have a component_list yet, so create one
 parent.component_list = Set(initialize=[self.local_name],
 ordered=True)

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent._non_aqueous_set.add(self.local_name)

 def _is_phase_valid(self, phase):
 # If no valid phases assigned, assume all are valid
 if self.config.valid_phase_types is None:
 return True

 # Check for behaviour of phase, and see if that is a valid behaviour
 # for component.
 elif phase.is_liquid_phase():
 # Check if this is an aqueous phase
 if phase.is_aqueous_phase():
 if (self._is_aqueous_phase_valid() and
 PT.aqueousPhase in self.config.valid_phase_types):
 return True
 else:
 return False
 elif PT.liquidPhase in self.config.valid_phase_types:
 return True
 else:
 return False
 elif (phase.is_vapor_phase() and
 PT.vaporPhase in self.config.valid_phase_types):
 return True
 elif (phase.is_solid_phase() and
 PT.solidPhase in self.config.valid_phase_types):
 return True
 else:
 return False

 def _is_aqueous_phase_valid(self):
 # Method to indicate if a component type is stable in the aqueous phase
 # General components may not appear in aqueous phases
 return False

TODO : What about LLE systems where a species is a solvent in one liquid
phase, but a solute in another?
@declare_process_block_class("Solute")
class SoluteData(ComponentData):
 """
 Component type for species which should be considered as solutes in
 LiquidPhases.
 """

 def is_solute(self):
 return True

 def is_solvent(self):
 return False

 def _is_aqueous_phase_valid(self):
 return True

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent.solute_set.add(self.local_name)

TODO : What about LLE systems where a species is a solvent in one liquid
phase, but a solute in another?
@declare_process_block_class("Solvent")
class SolventData(ComponentData):
 """
 Component type for species which should be considered as solvents in
 LiquidPhases.
 """

 def is_solute(self):
 return False

 def is_solvent(self):
 return True

 def _is_aqueous_phase_valid(self):
 return True

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent.solvent_set.add(self.local_name)

@declare_process_block_class("Ion")
class IonData(SoluteData):
 """
 Component type for ionic species. These can exist only in AqueousPhases,
 and are always solutes.
 """
 CONFIG = SoluteData.CONFIG()

 # Remove valid_phase_types argument, as ions are aqueous phase only
 CONFIG.__delitem__("valid_phase_types")

 CONFIG.declare("charge", ConfigValue(
 domain=int,
 doc="Charge of ionic species."))

 def _is_phase_valid(self, phase):
 return phase.is_aqueous_phase()

 def _is_aqueous_phase_valid(self):
 return True

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 raise NotImplementedError(
 "{} The IonData component class is inteded as a base class for "
 "the AnionData and CationData classes, and should not be used "
 "directly".format(self.name))

@declare_process_block_class("Anion")
class AnionData(IonData):
 """
 Component type for anionic species. These can exist only in AqueousPhases,
 and are always solutes.
 """
 CONFIG = IonData.CONFIG()

 def build(self):
 super().build()

 # Validate charge config argument
 if self.config.charge is None:
 raise ConfigurationError(
 "{} was not provided with a value for charge."
 .format(self.name))
 elif self.config.charge >= 0:
 raise ConfigurationError(
 "{} received invalid value for charge configuration argument."
 " Anions must have a negative charge.".format(self.name))

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent.anion_set.add(self.local_name)

@declare_process_block_class("Cation")
class CationData(IonData):
 """
 Component type for cationic species. These can exist only in AqueousPhases,
 and are always solutes.
 """
 CONFIG = IonData.CONFIG()

 def build(self):
 super().build()

 # Validate charge config argument
 if self.config.charge is None:
 raise ConfigurationError(
 "{} was not provided with a value for charge."
 .format(self.name))
 elif self.config.charge <= 0:
 raise ConfigurationError(
 "{} received invalid value for charge configuration argument."
 " Cations must have a positive charge.".format(self.name))

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent.cation_set.add(self.local_name)

@declare_process_block_class("Apparent")
class ApparentData(SoluteData):
 """
 Component type for apparent species. Apparent species are those compunds
 that are not stable in aqueous phases and immediately dissociate, however
 they may be stable in other phases (e.g. salts).
 """

 def _is_aqueous_phase_valid(self):
 return True

 def _add_to_electrolyte_component_list(self):
 """
 Special case method for adding references to new Component in
 component_lists for electrolyte systems,

 New Component types should overload this method
 """
 parent = self.parent_block()
 parent._apparent_set.add(self.local_name)

__all_components__ = [Component, Solute, Solvent, Ion, Anion, Cation, Apparent]

 idaes.core.control_volume0d

 Source code for idaes.core.control_volume0d

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Base class for control volumes.
"""
__author__ = "Andrew Lee"

Import Pyomo libraries
from pyomo.environ import Constraint, Param, Reals, units as pyunits, Var
from pyomo.dae import DerivativeVar

Import IDAES cores
from idaes.core import (
 declare_process_block_class,
 ControlVolumeBlockData,
 FlowDirection,
 MaterialFlowBasis,
 MaterialBalanceType
)
from idaes.core.util.exceptions import (
 BalanceTypeNotSupportedError,
 BurntToast,
 ConfigurationError,
 PropertyNotSupportedError
)
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.util import scaling as iscale
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

TODO : Custom terms in material balances, other types of material balances
TODO : Improve flexibility for get_material_flow_terms and associated

[docs]@declare_process_block_class("ControlVolume0DBlock", doc="""
 ControlVolume0DBlock is a specialized Pyomo block for IDAES non-discretized
 control volume blocks, and contains instances of ControlVolume0DBlockData.

 ControlVolume0DBlock should be used for any control volume with a defined
 volume and distinct inlets and outlets which does not require spatial
 discretization. This encompases most basic unit models used in process
 modeling.""")
class ControlVolume0DBlockData(ControlVolumeBlockData):
 """
 0-Dimensional (Non-Discretised) ControlVolume Class

 This class forms the core of all non-discretized IDAES models. It provides
 methods to build property and reaction blocks, and add mass, energy and
 momentum balances. The form of the terms used in these constraints is
 specified in the chosen property package.
 """
[docs] def build(self):
 """
 Build method for ControlVolume0DBlock blocks.

 Returns:
 None
 """
 # Call build method from base class
 super(ControlVolume0DBlockData, self).build()

[docs] def add_geometry(self):
 """
 Method to create volume Var in ControlVolume.

 Args:
 None

 Returns:
 None
 """
 units = self.config.property_package.get_metadata().get_derived_units

 self.volume = Var(self.flowsheet().config.time, initialize=1.0,
 doc='Volume of material in control volume',
 units=units('volume'))

[docs] def add_state_blocks(self,
 information_flow=FlowDirection.forward,
 has_phase_equilibrium=None):
 """
 This method constructs the inlet and outlet state blocks for the
 control volume.

 Args:
 information_flow: a FlowDirection Enum indicating whether
 information flows from inlet-to-outlet or
 outlet-to-inlet
 has_phase_equilibrium: indicates whether equilibrium calculations
 will be required in state blocks
 package_arguments: dict-like object of arguments to be passed to
 state blocks as construction arguments
 Returns:
 None
 """
 if has_phase_equilibrium is None:
 raise ConfigurationError(
 "{} add_state_blocks method was not provided with a "
 "has_phase_equilibrium argument.".format(self.name))
 elif has_phase_equilibrium not in [True, False]:
 raise ConfigurationError(
 "{} add_state_blocks method was provided with an invalid "
 "has_phase_equilibrium argument. Must be True or False"
 .format(self.name))

 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = has_phase_equilibrium
 # tmp_dict["parameters"] = self.config.property_package

 if information_flow == FlowDirection.forward:
 tmp_dict["defined_state"] = True
 elif information_flow == FlowDirection.backward:
 tmp_dict["defined_state"] = False
 else:
 raise ConfigurationError(
 '{} invalid value for information_flow argument. '
 'Valid values are FlowDirection.forward and '
 'FlowDirection.backward'.format(self.name))

 self.properties_in = (
 self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties at inlet",
 default=tmp_dict))

 # Reverse defined_state
 tmp_dict_2 = dict(**tmp_dict)
 tmp_dict_2["defined_state"] = not tmp_dict["defined_state"]

 self.properties_out = (
 self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties at outlet",
 default=tmp_dict_2))

[docs] def add_reaction_blocks(self, has_equilibrium=None):
 """
 This method constructs the reaction block for the control volume.

 Args:
 has_equilibrium: indicates whether equilibrium calculations
 will be required in reaction block
 package_arguments: dict-like object of arguments to be passed to
 reaction block as construction arguments

 Returns:
 None
 """
 if has_equilibrium is None:
 raise ConfigurationError(
 "{} add_reaction_blocks method was not provided with a "
 "has_equilibrium argument.".format(self.name))
 elif has_equilibrium not in [True, False]:
 raise ConfigurationError(
 "{} add_reaction_blocks method was provided with an "
 "invalid has_equilibrium argument. Must be True or False"
 .format(self.name))

 tmp_dict = dict(**self.config.reaction_package_args)
 tmp_dict["state_block"] = self.properties_out
 tmp_dict["has_equilibrium"] = has_equilibrium

 self.reactions = (
 self.config.reaction_package.build_reaction_block(
 self.flowsheet().config.time,
 doc="Reaction properties in control volume",
 default=tmp_dict))

 def _add_material_balance_common(self,
 balance_type,
 has_rate_reactions,
 has_equilibrium_reactions,
 has_phase_equilibrium,
 has_mass_transfer,
 custom_molar_term,
 custom_mass_term):
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 component_list = self.properties_in.component_list
 phase_list = self.properties_in.phase_list
 pc_set = self.properties_in.phase_component_set

 # Check that reaction block exists if required
 if has_rate_reactions or has_equilibrium_reactions:
 try:
 rblock = self.reactions
 except AttributeError:
 raise ConfigurationError(
 "{} does not contain a Reaction Block, but material "
 "balances have been set to contain reaction terms. "
 "Please construct a reaction block before adding "
 "balance equations.".format(self.name))

 if has_equilibrium_reactions:
 # Check that reaction block is set to calculate equilibrium
 for t in self.flowsheet().config.time:
 if self.reactions[t].config.has_equilibrium is False:
 raise ConfigurationError(
 "{} material balance was set to include "
 "equilibrium reactions, however the associated "
 "ReactionBlock was not set to include equilibrium "
 "constraints (has_equilibrium_reactions=False). "
 "Please correct your configuration arguments."
 .format(self.name))

 if has_phase_equilibrium:
 # Check that state blocks are set to calculate equilibrium
 for t in self.flowsheet().config.time:
 if not self.properties_out[t].config.has_phase_equilibrium:
 raise ConfigurationError(
 "{} material balance was set to include phase "
 "equilibrium, however the associated outlet "
 "StateBlock was not set to include equilibrium "
 "constraints (has_phase_equilibrium=False). Please"
 " correct your configuration arguments."
 .format(self.name))
 if not self.properties_in[t].config.has_phase_equilibrium:
 raise ConfigurationError(
 "{} material balance was set to include phase "
 "equilibrium, however the associated inlet "
 "StateBlock was not set to include equilibrium "
 "constraints (has_phase_equilibrium=False). Please"
 " correct your configuration arguments."
 .format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 if (self.properties_in[self.flowsheet().config.time.first()]
 .get_material_flow_basis() == MaterialFlowBasis.molar):
 flow_units = units("flow_mole")
 elif (self.properties_in[self.flowsheet().config.time.first()]
 .get_material_flow_basis() == MaterialFlowBasis.mass):
 flow_units = units("flow_mass")
 else:
 flow_units = None

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 elif (self.properties_in[self.flowsheet().config.time.first()]
 .get_material_flow_basis() == MaterialFlowBasis.molar):
 acc_units = units('amount')/f_time_units
 elif (self.properties_in[self.flowsheet().config.time.first()]
 .get_material_flow_basis() == MaterialFlowBasis.mass):
 acc_units = units('mass')/f_time_units
 else:
 acc_units = None

 # Test for components that must exist prior to calling this method
 if has_holdup:
 if not hasattr(self, "volume"):
 raise ConfigurationError(
 "{} control volume must have volume defined to have "
 "holdup and/or rate reaction terms. Please call the "
 "add_geometry method before adding balance equations."
 .format(self.name))

 # Material holdup and accumulation
 if has_holdup:
 self.material_holdup = Var(self.flowsheet().config.time,
 pc_set,
 domain=Reals,
 initialize=1.0,
 doc="Material holdup in control volume",
 units=units('amount'))
 if dynamic:
 self.material_accumulation = DerivativeVar(
 self.material_holdup,
 wrt=self.flowsheet().config.time,
 doc="Material accumulation in control volume",
 units=acc_units)

 # Create material balance terms as required
 # Kinetic reaction generation
 if has_rate_reactions:
 if not hasattr(self.config.reaction_package, "rate_reaction_idx"):
 raise PropertyNotSupportedError(
 "{} Reaction package does not contain a list of rate "
 "reactions (rate_reaction_idx), thus does not support "
 "rate-based reactions.".format(self.name))
 self.rate_reaction_generation = Var(
 self.flowsheet().config.time,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Amount of component generated in "
 "unit by kinetic reactions",
 units=flow_units)

 # Equilibrium reaction generation
 if has_equilibrium_reactions:
 if not hasattr(self.config.reaction_package,
 "equilibrium_reaction_idx"):
 raise PropertyNotSupportedError(
 "{} Reaction package does not contain a list of "
 "equilibrium reactions (equilibrium_reaction_idx), thus "
 "does not support equilibrium-based reactions."
 .format(self.name))
 self.equilibrium_reaction_generation = Var(
 self.flowsheet().config.time,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Amount of component generated in control volume "
 "by equilibrium reactions",
 units=flow_units)

 # Phase equilibrium generation
 if has_phase_equilibrium and \
 balance_type == MaterialBalanceType.componentPhase:
 if not hasattr(self.config.property_package,
 "phase_equilibrium_idx"):
 raise PropertyNotSupportedError(
 "{} Property package does not contain a list of phase "
 "equilibrium reactions (phase_equilibrium_idx), thus does "
 "not support phase equilibrium.".format(self.name))
 self.phase_equilibrium_generation = Var(
 self.flowsheet().config.time,
 self.config.property_package.phase_equilibrium_idx,
 domain=Reals,
 initialize=0.0,
 doc="Amount of generation in control volume by phase equilibria",
 units=flow_units)

 # Material transfer term
 if has_mass_transfer:
 self.mass_transfer_term = Var(
 self.flowsheet().config.time,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Component material transfer into unit",
 units=flow_units)

 # Create rules to substitute material balance terms
 # Accumulation term
 def accumulation_term(b, t, p, j):
 return pyunits.convert(b.material_accumulation[t, p, j],
 to_units=flow_units) if dynamic else 0

 def kinetic_term(b, t, p, j):
 return (b.rate_reaction_generation[t, p, j] if has_rate_reactions
 else 0)

 def equilibrium_term(b, t, p, j):
 return (b.equilibrium_reaction_generation[t, p, j]
 if has_equilibrium_reactions else 0)

 def phase_equilibrium_term(b, t, p, j):
 if has_phase_equilibrium and \
 balance_type == MaterialBalanceType.componentPhase:
 sd = {}
 for r in b.config.property_package.phase_equilibrium_idx:
 if b.config.property_package.\
 phase_equilibrium_list[r][0] == j:
 if b.config.property_package.\
 phase_equilibrium_list[r][1][0] == p:
 sd[r] = 1
 elif b.config.property_package.\
 phase_equilibrium_list[r][1][1] == p:
 sd[r] = -1
 else:
 sd[r] = 0
 else:
 sd[r] = 0

 return sum(b.phase_equilibrium_generation[t, r] * sd[r]
 for r in b.config.property_package.
 phase_equilibrium_idx)
 else:
 return 0

 def transfer_term(b, t, p, j):
 return (b.mass_transfer_term[t, p, j] if has_mass_transfer else 0)

 # TODO: Need to set material_holdup = 0 for non-present component-phase
 # pairs. Not ideal, but needed to close DoF. Is there a better way?

 # Material Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 pc_set,
 doc="Material holdup calculations")
 def material_holdup_calculation(b, t, p, j):
 if (p, j) in pc_set:
 return b.material_holdup[t, p, j] == (
 b.volume[t]*self.phase_fraction[t, p] *
 b.properties_out[t].get_material_density_terms(p, j))

 if has_rate_reactions:
 # Add extents of reaction and stoichiometric constraints
 self.rate_reaction_extent = Var(
 self.flowsheet().config.time,
 self.config.reaction_package.rate_reaction_idx,
 domain=Reals,
 initialize=0.0,
 doc="Extent of kinetic reactions",
 units=flow_units)

 @self.Constraint(self.flowsheet().config.time,
 pc_set,
 doc="Kinetic reaction stoichiometry constraint")
 def rate_reaction_stoichiometry_constraint(b, t, p, j):
 if (p, j) in pc_set:
 rparam = rblock[t].params
 return b.rate_reaction_generation[t, p, j] == (
 sum(rparam.rate_reaction_stoichiometry[r, p, j] *
 b.rate_reaction_extent[t, r]
 for r in b.config.reaction_package.
 rate_reaction_idx))
 else:
 return Constraint.Skip

 if has_equilibrium_reactions:
 # Add extents of reaction and stoichiometric constraints
 self.equilibrium_reaction_extent = Var(
 self.flowsheet().config.time,
 self.config.reaction_package.equilibrium_reaction_idx,
 domain=Reals,
 initialize=0.0,
 doc="Extent of equilibrium reactions",
 units=flow_units)

 @self.Constraint(self.flowsheet().config.time,
 pc_set,
 doc="Equilibrium reaction stoichiometry")
 def equilibrium_reaction_stoichiometry_constraint(b, t, p, j):
 if (p, j) in pc_set:
 return b.equilibrium_reaction_generation[t, p, j] == (
 sum(rblock[t].params.
 equilibrium_reaction_stoichiometry[r, p, j] *
 b.equilibrium_reaction_extent[t, r]
 for r in b.config.reaction_package.
 equilibrium_reaction_idx))
 else:
 return Constraint.Skip

 # Add custom terms and material balances
 if balance_type == MaterialBalanceType.componentPhase:
 def user_term_mol(b, t, p, j):
 if custom_molar_term is not None:
 flow_basis = b.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return custom_molar_term(t, p, j)
 elif flow_basis == MaterialFlowBasis.mass:
 try:
 return (custom_molar_term(t, p, j) *
 b.properties_out[t].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_molar_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 def user_term_mass(b, t, p, j):
 if custom_mass_term is not None:
 flow_basis = b.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.mass:
 return custom_mass_term(t, p, j)
 elif flow_basis == MaterialFlowBasis.molar:
 try:
 return (custom_mass_term(t, p, j) /
 b.properties_out[t].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_mass_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 @self.Constraint(self.flowsheet().config.time,
 pc_set,
 doc="Material balances")
 def material_balances(b, t, p, j):
 if (p, j) in pc_set:
 return accumulation_term(b, t, p, j) == (
 b.properties_in[t].get_material_flow_terms(p, j) -
 b.properties_out[t].get_material_flow_terms(p, j) +
 kinetic_term(b, t, p, j) *
 b._rxn_rate_conv(t, j, has_rate_reactions) +
 equilibrium_term(b, t, p, j) +
 phase_equilibrium_term(b, t, p, j) +
 transfer_term(b, t, p, j) +
 user_term_mol(b, t, p, j) +
 user_term_mass(b, t, p, j))
 else:
 return Constraint.Skip

 elif balance_type == MaterialBalanceType.componentTotal:
 def user_term_mol(b, t, j):
 if custom_molar_term is not None:
 flow_basis = b.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return custom_molar_term(t, j)
 elif flow_basis == MaterialFlowBasis.mass:
 try:
 return (custom_molar_term(t, j) *
 b.properties_out[t].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_molar_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 def user_term_mass(b, t, j):
 if custom_mass_term is not None:
 flow_basis = b.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.mass:
 return custom_mass_term(t, j)
 elif flow_basis == MaterialFlowBasis.molar:
 try:
 return (custom_mass_term(t, j) /
 b.properties_out[t].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_mass_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 @self.Constraint(self.flowsheet().config.time,
 component_list,
 doc="Material balances")
 def material_balances(b, t, j):
 cplist = []
 for p in phase_list:
 if (p, j) in pc_set:
 cplist.append(p)
 return (
 sum(accumulation_term(b, t, p, j) for p in cplist) ==
 sum(b.properties_in[t].get_material_flow_terms(p, j)
 for p in cplist) -
 sum(b.properties_out[t].get_material_flow_terms(p, j)
 for p in cplist) +
 sum(kinetic_term(b, t, p, j) for p in cplist) *
 b._rxn_rate_conv(t, j, has_rate_reactions) +
 sum(equilibrium_term(b, t, p, j) for p in cplist) +
 sum(transfer_term(b, t, p, j) for p in cplist) +
 user_term_mol(b, t, j) + user_term_mass(b, t, j))
 else:
 raise BurntToast()

 return self.material_balances

[docs] def add_phase_component_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_molar_term=None,
 custom_mass_term=None):
 """
 This method constructs a set of 0D material balances indexed by time,
 phase and component.

 Args:
 has_rate_reactions: whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions: whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium: whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer: whether generic mass transfer terms should be
 included in material balances
 custom_molar_term: a Pyomo Expression representing custom terms to
 be included in material balances on a molar basis.
 Expression must be indexed by time, phase list and
 component list
 custom_mass_term: a Pyomo Expression representing custom terms to
 be included in material balances on a mass basis.
 Expression must be indexed by time, phase list and
 component list

 Returns:
 Constraint object representing material balances
 """
 self._add_material_balance_common(
 balance_type=MaterialBalanceType.componentPhase,
 has_rate_reactions=has_rate_reactions,
 has_equilibrium_reactions=has_equilibrium_reactions,
 has_phase_equilibrium=has_phase_equilibrium,
 has_mass_transfer=has_mass_transfer,
 custom_molar_term=custom_molar_term,
 custom_mass_term=custom_mass_term)

 return self.material_balances

[docs] def add_total_component_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_molar_term=None,
 custom_mass_term=None):
 """
 This method constructs a set of 0D material balances indexed by time
 and component.

 Args:
 has_rate_reactions - whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions - whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium - whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer - whether generic mass transfer terms should be
 included in material balances
 custom_molar_term - a Pyomo Expression representing custom terms to
 be included in material balances on a molar basis.
 Expression must be indexed by time, phase list and
 component list
 custom_mass_term - a Pyomo Expression representing custom terms to
 be included in material balances on a mass basis.
 Expression must be indexed by time, phase list and
 component list

 Returns:
 Constraint object representing material balances
 """
 self._add_material_balance_common(
 balance_type=MaterialBalanceType.componentTotal,
 has_rate_reactions=has_rate_reactions,
 has_equilibrium_reactions=has_equilibrium_reactions,
 has_phase_equilibrium=has_phase_equilibrium,
 has_mass_transfer=has_mass_transfer,
 custom_molar_term=custom_molar_term,
 custom_mass_term=custom_mass_term)

 return self.material_balances

[docs] def add_total_element_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_elemental_term=None):
 """
 This method constructs a set of 0D element balances indexed by time.

 Args:
 has_rate_reactions - whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions - whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium - whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer - whether generic mass transfer terms should be
 included in material balances
 custom_elemental_term - a Pyomo Expression representing custom
 terms to be included in material balances on a molar
 elemental basis. Expression must be indexed by time and
 element list

 Returns:
 Constraint object representing material balances
 """
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 component_list = self.properties_in.component_list
 phase_list = self.properties_in.phase_list
 phase_component_set = self.properties_in.phase_component_set

 # Check that property package supports element balances
 if not hasattr(self.config.property_package, "element_list"):
 raise PropertyNotSupportedError(
 "{} property package provided does not contain a list of "
 "elements (element_list), and thus does not support "
 "elemental material balances. Please choose another type "
 "of material balance or a property package which supports "
 "elemental balances.")
 # Check for valid arguments to write total elemental balance
 if has_rate_reactions:
 raise ConfigurationError(
 "{} add_total_element_balances method provided with "
 "argument has_rate_reactions = True. Total element "
 "balances do not support rate based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 if has_equilibrium_reactions:
 raise ConfigurationError(
 "{} add_total_element_balances method provided with "
 "argument has_equilibrium_reactions = True. Total element "
 "balances do not support equilibrium based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 if has_phase_equilibrium:
 raise ConfigurationError(
 "{} add_total_element_balances method provided with "
 "argument has_phase_equilibrium = True. Total element "
 "balances do not support equilibrium based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 # Test for components that must exist prior to calling this method
 if has_holdup:
 if not hasattr(self, "volume"):
 raise ConfigurationError(
 "{} control volume must have volume defined to have "
 "holdup terms. Please call the "
 "add_geometry method before adding balance equations."
 .format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 else:
 acc_units = units('amount')/f_time_units

 # Identify linearly dependent elements
 # It is possible for there to be linearly dependent element balances
 # e.g. if a single species is the only source of two different elements
 linearly_dependent = []

 # Get a representative time point
 rtime = self.flowsheet().config.time.first()

 # For each component in the material, search for elements which are
 # unique to it
 for i in component_list:
 unique_elements = []
 for e in self.config.property_package.element_list:
 if self.properties_out[rtime].params.element_comp[i][e] != 0:
 # Assume unique until shown otherwise
 unique = True

 for j in component_list:
 if j == i:
 continue

 # If element appears in any other component, not unique
 if self.properties_out[
 rtime].params.element_comp[j][e] != 0:
 unique = False

 if unique:
 unique_elements.append(e)

 # If more than 1 unique element, they are linearly dependent
 if len(unique_elements) > 1:
 # Add all but the first to the list of linearly dependent
 linearly_dependent.extend(unique_elements[1:])

 # Set indexing set for element balances
 if len(linearly_dependent) == 0:
 # No linearly depednet equations, so use full element list
 e_index = self.config.property_package.element_list
 else:
 # Otherwise, use only non-dependent elements, and log a message
 _log.info_low("{} detected linearly dependent element balance "
 "equations. Element balances will NOT be written "
 "for the following elements: {}"
 .format(self.name, linearly_dependent))
 e_index = (self.config.property_package.element_list -
 linearly_dependent)

 # Add Material Balance terms
 if has_holdup:
 self.element_holdup = Var(
 self.flowsheet().config.time,
 self.config.property_package.element_list,
 domain=Reals,
 initialize=1.0,
 doc="Elemental holdup in control volume",
 units=units('amount'))

 if dynamic:
 self.element_accumulation = DerivativeVar(
 self.element_holdup,
 wrt=self.flowsheet().config.time,
 doc="Elemental accumulation in control volume",
 units=acc_units)

 # Method to convert mass flow basis to mole flow basis
 def conv_factor(b, t, j):
 flow_basis = b.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return 1
 elif flow_basis == MaterialFlowBasis.mass:
 return 1/b.properties_out[t].mw_comp[j]
 else:
 raise BalanceTypeNotSupportedError(
 "{} property package MaterialFlowBasis == 'other'. Cannot "
 "automatically generate elemental balances."
 .format(self.name))

 @self.Expression(self.flowsheet().config.time,
 phase_list,
 self.config.property_package.element_list,
 doc="Inlet elemental flow terms")
 def elemental_flow_in(b, t, p, e):
 return sum(conv_factor(b, t, j) *
 b.properties_in[t].get_material_flow_terms(p, j) *
 b.properties_out[t].params.element_comp[j][e]
 for j in component_list)

 @self.Expression(self.flowsheet().config.time,
 phase_list,
 self.config.property_package.element_list,
 doc="Outlet elemental flow terms")
 def elemental_flow_out(b, t, p, e):
 return sum(conv_factor(b, t, j) *
 b.properties_out[t].get_material_flow_terms(p, j) *
 b.properties_out[t].params.element_comp[j][e]
 for j in component_list)

 # Create material balance terms as needed
 if has_mass_transfer:
 self.elemental_mass_transfer_term = Var(
 self.flowsheet().config.time,
 e_index,
 domain=Reals,
 initialize=0.0,
 doc="Element material transfer into unit",
 units=units('flow_mole'))

 # Create rules to substitute material balance terms
 # Accumulation term
 def accumulation_term(b, t, e):
 return pyunits.convert(b.element_accumulation[t, e],
 to_units=units('flow_mole'))if dynamic else 0

 # Mass transfer term
 def transfer_term(b, t, e):
 return (b.elemental_mass_transfer_term[t, e]
 if has_mass_transfer else 0)

 # Custom term
 def user_term(t, e):
 if custom_elemental_term is not None:
 return custom_elemental_term(t, e)
 else:
 return 0

 # Element balances
 @self.Constraint(self.flowsheet().config.time,
 e_index,
 doc="Elemental material balances")
 def element_balances(b, t, e):
 return accumulation_term(b, t, e) == (
 sum(b.elemental_flow_in[t, p, e]
 for p in phase_list) -
 sum(b.elemental_flow_out[t, p, e]
 for p in phase_list) +
 transfer_term(b, t, e) +
 user_term(t, e))

 # Elemental Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 self.config.property_package.element_list,
 doc="Elemental holdup calculation")
 def elemental_holdup_calculation(b, t, e):
 return b.element_holdup[t, e] == (
 b.volume[t] *
 sum(conv_factor(b, t, j)*b.phase_fraction[t, p] *
 b.properties_out[t].get_material_density_terms(p, j) *
 b.properties_out[t]
 .params.element_comp[j][e]
 for p, j in phase_component_set))

 return self.element_balances

[docs] def add_total_material_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_material_balances (yet)."
 .format(self.name))

[docs] def add_total_enthalpy_balances(self,
 has_heat_of_reaction=False,
 has_heat_transfer=False,
 has_work_transfer=False,
 has_enthalpy_transfer=False,
 custom_term=None):
 """
 This method constructs a set of 0D enthalpy balances indexed by time
 and phase.

 Args:
 has_heat_of_reaction - whether terms for heat of reaction should
 be included in enthalpy balance
 has_heat_transfer - whether terms for heat transfer should be
 included in enthalpy balances
 has_work_transfer - whether terms for work transfer should be
 included in enthalpy balances
 has_enthalpy_transfer - whether terms for enthalpy transfer due to
 mass transfer should be included in enthalpy balance. This
 should generally be the same as the has_mas_trasnfer
 argument in the material balance methods
 custom_term - a Pyomo Expression representing custom terms to
 be included in enthalpy balances.
 Expression must be indexed by time and phase list

 Returns:
 Constraint object representing enthalpy balances
 """
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 phase_list = self.properties_in.phase_list

 # Test for components that must exist prior to calling this method
 if has_holdup:
 if not hasattr(self, "volume"):
 raise ConfigurationError(
 "{} control volume must have volume defined to have "
 "holdup terms. Please call the "
 "add_geometry method before adding balance equations."
 .format(self.name))
 if has_heat_of_reaction:
 if not (hasattr(self, "rate_reaction_extent") or
 hasattr(self, "equilibrium_reaction_extent")):
 raise ConfigurationError(
 "{} extent of reaction terms must exist in order to "
 "have heat of reaction terms. Please ensure that "
 "add_material_balance (or equivalent) is called before"
 " adding energy balances.".format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 else:
 acc_units = units('energy')/f_time_units

 # Create variables
 if has_holdup:
 self.energy_holdup = Var(
 self.flowsheet().config.time,
 phase_list,
 domain=Reals,
 initialize=1.0,
 doc="Energy holdup in control volume",
 units=units('energy'))

 if dynamic is True:
 self.energy_accumulation = DerivativeVar(
 self.energy_holdup,
 wrt=self.flowsheet().config.time,
 doc="Energy accumulation in control volume",
 units=acc_units)

 # Create energy balance terms as needed
 # Heat transfer term
 if has_heat_transfer:
 self.heat = Var(self.flowsheet().config.time,
 domain=Reals,
 initialize=0.0,
 doc="Heat transfered into control volume",
 units=units('power'))

 # Work transfer
 if has_work_transfer:
 self.work = Var(self.flowsheet().config.time,
 domain=Reals,
 initialize=0.0,
 doc="Work transfered into control volume",
 units=units('power'))

 # Enthalpy transfer
 if has_enthalpy_transfer:
 self.enthalpy_transfer = Var(
 self.flowsheet().config.time,
 domain=Reals,
 initialize=0.0,
 doc="Enthalpy transfered into control volume due to "
 "mass transfer",
 units=units('power'))

 # Heat of Reaction
 if has_heat_of_reaction:
 @self.Expression(self.flowsheet().config.time,
 doc="Heat of reaction term")
 def heat_of_reaction(b, t):
 if hasattr(self, "rate_reaction_extent"):
 rate_heat = -sum(b.rate_reaction_extent[t, r] *
 b.reactions[t].dh_rxn[r]
 for r in self.config.reaction_package.
 rate_reaction_idx)
 else:
 rate_heat = 0

 if hasattr(self, "equilibrium_reaction_extent"):
 equil_heat = -sum(
 b.equilibrium_reaction_extent[t, e] *
 b.reactions[t].dh_rxn[e]
 for e in self.config.reaction_package.
 equilibrium_reaction_idx)
 else:
 equil_heat = 0

 return rate_heat + equil_heat

 # Create rules to substitute energy balance terms
 # Accumulation term
 def accumulation_term(b, t, p):
 return (pyunits.convert(b.energy_accumulation[t, p],
 to_units=units('power'))
 if dynamic else 0)

 def heat_term(b, t):
 return b.heat[t] if has_heat_transfer else 0

 def work_term(b, t):
 return b.work[t] if has_work_transfer else 0

 def enthalpy_transfer_term(b, t):
 return b.enthalpy_transfer[t] if has_enthalpy_transfer else 0

 def rxn_heat_term(b, t):
 return b.heat_of_reaction[t] if has_heat_of_reaction else 0

 # Custom term
 def user_term(t):
 if custom_term is not None:
 return custom_term(t)
 else:
 return 0

 # Energy balance equation
 @self.Constraint(self.flowsheet().config.time, doc="Energy balances")
 def enthalpy_balances(b, t):
 return sum(accumulation_term(b, t, p) for p in phase_list) == (
 sum(b.properties_in[t].get_enthalpy_flow_terms(p) for p in phase_list)
 - sum(self.properties_out[t].get_enthalpy_flow_terms(p) for p in phase_list)
 + heat_term(b, t)
 + work_term(b, t)
 + enthalpy_transfer_term(b, t)
 + rxn_heat_term(b, t)
 + user_term(t))

 # Energy Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 phase_list,
 doc="Enthalpy holdup constraint")
 def energy_holdup_calculation(b, t, p):
 return b.energy_holdup[t, p] == (
 b.volume[t]*self.phase_fraction[t, p] *
 b.properties_out[t].get_energy_density_terms(p))

 return self.enthalpy_balances

[docs] def add_phase_enthalpy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_enthalpy_balances."
 .format(self.name))

[docs] def add_phase_energy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_energy_balances."
 .format(self.name))

[docs] def add_total_energy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_energy_balances."
 .format(self.name))

[docs] def add_total_pressure_balances(
 self, has_pressure_change=False, custom_term=None):
 """
 This method constructs a set of 0D pressure balances indexed by time.

 Args:
 has_pressure_change - whether terms for pressure change should be
 included in enthalpy balances
 custom_term - a Pyomo Expression representing custom terms to
 be included in pressure balances.
 Expression must be indexed by time

 Returns:
 Constraint object representing pressure balances
 """
 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 # Add Momentum Balance Variables as necessary
 if has_pressure_change:
 self.deltaP = Var(self.flowsheet().config.time,
 domain=Reals,
 initialize=0.0,
 doc="Pressure difference across unit",
 units=units("pressure"))

 # Create rules to substitute energy balance terms
 # Pressure change term
 def deltaP_term(b, t):
 return b.deltaP[t] if has_pressure_change else 0

 # Custom term
 def user_term(t):
 if custom_term is not None:
 return custom_term(t)
 else:
 return 0

 # Momentum balance equation
 @self.Constraint(self.flowsheet().config.time, doc='Momentum balance')
 def pressure_balance(b, t):
 return 0 == (
 b.properties_in[t].pressure
 - b.properties_out[t].pressure
 + deltaP_term(b, t)
 + user_term(t)
)

 return self.pressure_balance

[docs] def add_phase_pressure_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_pressure_balances."
 .format(self.name))

[docs] def add_phase_momentum_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_momentum_balances."
 .format(self.name))

[docs] def add_total_momentum_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_momentum_balances."
 .format(self.name))

[docs] def model_check(blk):
 """
 This method executes the model_check methods on the associated state
 blocks (if they exist). This method is generally called by a unit model
 as part of the unit's model_check method.

 Args:
 None

 Returns:
 None
 """
 # Try property block model check
 for t in blk.flowsheet().config.time:
 try:
 blk.properties_in[t].model_check()
 except AttributeError:
 _log.warning('{} ControlVolume inlet property block has no '
 'model checks. To correct this, add a model_check'
 ' method to the associated StateBlock class.'
 .format(blk.name))
 try:
 blk.properties_out[t].model_check()
 except AttributeError:
 _log.warning('{} ControlVolume outlet property block has no '
 'model checks. To correct this, add a '
 'model_check method to the associated '
 'StateBlock class.'.format(blk.name))

 try:
 blk.reactions[t].model_check()
 except AttributeError:
 _log.warning('{} ControlVolume outlet reaction block has no '
 'model check. To correct this, add a '
 'model_check method to the associated '
 'ReactionBlock class.'.format(blk.name))

[docs] def initialize(blk, state_args=None, outlvl=idaeslog.NOTSET, optarg=None,
 solver='ipopt', hold_state=True):
 '''
 Initialization routine for 0D control volume (default solver ipopt)

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output log level of initialization routine
 optarg : solver options dictionary object (default=None)
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization, **default** - True. **Valid values:**
 True - states variables are not unfixed, and a dict of
 returned containing flags for which states were fixed
 during initialization, **False** - state variables are
 unfixed after initialization by calling the release_state
 method.

 Returns:
 If hold_states is True, returns a dict containing flags for which
 states were fixed during initialization.
 '''
 # Get inlet state if not provided
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="control_volume")
 if state_args is None:
 state_args = {}
 state_dict = (
 blk.properties_in[
 blk.flowsheet().config.time.first()]
 .define_port_members())

 for k in state_dict.keys():
 if state_dict[k].is_indexed():
 state_args[k] = {}
 for m in state_dict[k].keys():
 state_args[k][m] = state_dict[k][m].value
 else:
 state_args[k] = state_dict[k].value

 # Initialize state blocks
 in_flags = blk.properties_in.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=hold_state,
 state_args=state_args,
)
 out_flags = blk.properties_out.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True,
 state_args=state_args,
)
 try:
 # TODO: setting state_vars_fixed may not work for heterogeneous
 # systems where a second control volume is involved, as we cannot
 # assume those state vars are also fixed. For now, heterogeneous
 # reactions should ignore the state_vars_fixed argument and always
 # check their state_vars.
 blk.reactions.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_vars_fixed=True,
)
 except AttributeError:
 pass

 # Unfix outlet properties
 blk.properties_out.release_state(
 flags=out_flags,
 outlvl=outlvl,
)
 init_log.info('Initialization Complete')
 return in_flags

[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 '''
 Method to release state variables fixed during initialization.

 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state = True.
 outlvl : sets output level of logging

 Returns:
 None
 '''
 blk.properties_in.release_state(flags, outlvl=outlvl)

 def _add_phase_fractions(self):
 """
 This method constructs the phase_fraction variables for the control
 volume, and the associated constraint on the sum of phase_fractions
 == 1. For systems with only one phase, phase_fraction is created as a
 Pyomo Expression with a value of 1.

 Args:
 None

 Returns:
 None
 """
 phase_list = self.properties_in.phase_list
 if len(phase_list) > 1:
 self.phase_fraction = Var(
 self.flowsheet().config.time,
 phase_list,
 initialize=1 / len(phase_list),
 doc='Volume fraction of holdup by phase')

 @self.Constraint(self.flowsheet().config.time,
 doc='Sum of phase fractions == 1')
 def sum_of_phase_fractions(self, t):
 return 1 == sum(self.phase_fraction[t, p]
 for p in phase_list)
 else:
 @self.Expression(self.flowsheet().config.time,
 phase_list,
 doc='Volume fraction of holdup by phase')
 def phase_fraction(self, t, p):
 return 1

 def _rxn_rate_conv(b, t, j, has_rate_reactions):
 """
 Wrapper method for the _rxn_rate_conv method to hide the x argument
 required for 1D control volumes.
 """
 # Call the method in control_volume_base with x=None
 return super()._rxn_rate_conv(t, None, j, has_rate_reactions)

 def _get_performance_contents(self, time_point=0):
 """
 Collect all CV variables which are present to report.
 """
 var_dict = {}
 expr_dict = {}
 param_dict = {}

 phase_component_set = self.properties_in.phase_component_set
 phase_list = self.properties_in.phase_list

 time_only_vars = {"volume": "Volume",
 "heat": "Heat Transfer",
 "work": "Work Transfer",
 "deltaP": "Pressure Change"}

 for v, n in time_only_vars.items():
 try:
 var_dict[n] = getattr(self, v)[time_point]
 except AttributeError:
 pass

 p_vars = {
 "phase_fraction": "Phase Fraction",
 "energy_holdup": "Energy Holdup",
 "energy_accumulation": "Energy Accumulation"}

 for v, n in p_vars.items():
 try:
 var_obj = getattr(self, v)
 for p in phase_list:
 var_dict[f"{n} [{p}]"] = var_obj[time_point, p]
 except AttributeError:
 pass

 pc_vars = {
 "material_holdup": "Material Holdup",
 "material_accumulation": "Material Accumulation",
 "rate_reaction_generation": "Rate Reaction Generation",
 "equilibrium_reaction_generation":
 "Equilibrium Reaction Generation",
 "mass_transfer_term": "Mass Transfer Term"}

 for v, n in pc_vars.items():
 try:
 var_obj = getattr(self, v)
 for p, j in phase_component_set:
 var_dict[f"{n} [{p}, {j}]"] = var_obj[time_point, p, j]
 except AttributeError:
 pass

 if hasattr(self, "rate_reaction_extent"):
 for r in self.config.reaction_package.rate_reaction_idx:
 var_dict[f"Rate Reaction Extent [{r}]"] = \
 self.rate_reaction_extent[time_point, r]
 if hasattr(self, "equilibrium_reaction_extent"):
 for r in self.config.reaction_package.equilibrium_reaction_idx:
 var_dict[f"Equilibrium Reaction Extent [{r}]"] = \
 self.equilibrium_reaction_extent[time_point, r]
 if hasattr(self, "phase_equilibrium_generation"):
 for r in self.config.property_package.phase_equilibrium_idx:
 var_dict[f"Phase Equilibrium Generation [{r}]"] = \
 self.phase_equilibrium_generation[time_point, r]

 e_vars = {
 "element_holdup": "Elemental Holdup",
 "element_accumulation": "Elemental Accumulation",
 "elemental_mass_transfer_term": "Elemental Transfer Term"}

 for v, n in e_vars.items():
 try:
 var_obj = getattr(self, v)
 for e in self.config.property_package.element_list:
 var_dict[f"{n} [{e}]"] = var_obj[time_point, e]
 except AttributeError:
 pass

 time_only_exprs = {"heat_of_reaction": "Heat of Reaction Term"}

 for e, n in time_only_exprs.items():
 try:
 expr_dict[n] = getattr(self, e)[time_point]
 except AttributeError:
 pass

 e_exprs = {"elemental_flow_in": "Element Flow In",
 "elemental_flow_out": "Element Flow Out"}

 for o, n in e_exprs.items():
 try:
 expr_obj = getattr(self, o)
 for p in phase_list:
 for e in self.config.property_package.element_list:
 expr_dict[f"{n} [{p}, {e}]"] = \
 expr_obj[time_point, p, e]
 except AttributeError:
 pass

 params = {}

 for p, n in params.items():
 try:
 param_dict[n] = getattr(self, p)
 except AttributeError:
 pass

 return {"vars": var_dict,
 "exprs": expr_dict,
 "params": param_dict}

 def _get_stream_table_contents(self, time_point=0):
 """
 Assume unit has standard configuration of 1 inlet and 1 outlet.

 Developers should overload this as appropriate.
 """
 try:
 return create_stream_table_dataframe({"In": self.properties_in,
 "Out": self.properties_out},
 time_point=time_point)
 except AttributeError:
 return (f"Unit model {self.name} does not have the standard Port "
 f"names (inet and outlet). Please contact the unit model "
 f"developer to develop a unit specific stream table.")

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 # If the paraent component of an indexed component has a scale factor, but
 # some of the data objects don't, propogate the indexed component scale
 # factor to the missing scaling factors.
 iscale.propagate_indexed_component_scaling_factors(self)

 phase_list = self.properties_in.phase_list

 # Default scale factors
 heat_sf_default = 1e-6
 work_sf_default = 1e-6
 volume_sf_default = 1e-3
 phase_frac_sf_default = 10

 # Function to set defaults so I don't need to reproduce the same code
 def _fill_miss_with_default(name, s):
 try:
 c = getattr(self, name)
 except AttributeError:
 return # it's okay if the attribute doesn't exist, spell carefully
 if iscale.get_scaling_factor(c) is None:
 for ci in c.values():
 if iscale.get_scaling_factor(ci) is None:
 iscale.set_scaling_factor(ci, s)

 # Set defaults where scale factors are missing
 _fill_miss_with_default("volume", heat_sf_default)
 _fill_miss_with_default("heat", heat_sf_default)
 _fill_miss_with_default("work", work_sf_default)
 _fill_miss_with_default("phase_fraction", phase_frac_sf_default)

 if hasattr(self, "energy_holdup"):
 for (t, p), v in self.energy_holdup.items():
 sf = iscale.get_scaling_factor(
 self.volume[t], default=1, warning=True)
 sf *= iscale.get_scaling_factor(
 self.properties_out[t].get_energy_density_terms(p),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "material_holdup"):
 for (t, p, i), v in self.material_holdup.items():
 sf = iscale.get_scaling_factor(
 self.volume[t], default=1, warning=True)
 sf *= iscale.get_scaling_factor(
 self.properties_out[t].get_material_density_terms(p, i),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "material_accumulation"):
 for i, v in self.material_accumulation.items():
 sf = 100*iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "energy_accumulation"):
 for i, v in self.energy_accumulation.items():
 sf = 100*iscale.get_scaling_factor(
 self.energy_holdup[i], default=1, warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "deltaP"):
 for t, v in self.deltaP.items():
 if iscale.get_scaling_factor(v) is None:
 s = iscale.get_scaling_factor(
 self.properties_in[t].pressure,
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, 10*s)

 # Material Holdup Constraints
 if hasattr(self, "material_holdup_calculation"):
 for i, c in self.material_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True))

 if hasattr(self, "pressure_balance"):
 for t, c in self.pressure_balance.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.properties_in[t].pressure, default=1, warning=True))

 # Material Balance Constraints
 if hasattr(self, "material_balances"):
 mb_type = self._constructed_material_balance_type
 if mb_type == MaterialBalanceType.componentPhase:
 for (t, p, j), c in self.material_balances.items():
 sf = iscale.get_scaling_factor(
 self.properties_in[t].get_material_flow_terms(p, j),
 default=1,
 warning=True)
 iscale.constraint_scaling_transform(c, sf)
 elif mb_type == MaterialBalanceType.componentTotal:
 for (t , j), c in self.material_balances.items():
 sf = iscale.min_scaling_factor(
 [self.properties_in[t].get_material_flow_terms(p, j)
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)
 else:
 # There are some other material balance types but they create
 # constraints with different names.
 _log.warning(f"Unknow material balance type {mb_type}")

 # Energy Balance Constraints
 if hasattr(self, "enthalpy_balances"):
 for t, c in self.enthalpy_balances.items():
 sf = iscale.min_scaling_factor(
 [self.properties_in[t].get_enthalpy_flow_terms(p)
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)

 if hasattr(self, "energy_holdup_calculation"):
 for i, c in self.energy_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.energy_holdup[i], default=1, warning=True))

 if hasattr(self, "meterial_holdup_calculation"):
 for i, c in self.material_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True))

 if hasattr(self, "rate_reaction_stoichiometry_constraint"):
 for i, c in self.rate_reaction_stoichiometry_constraint.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.rate_reaction_generation[i], default=1, warning=True))

 if hasattr(self, "equilibrium_reaction_stoichiometry_constraint"):
 for i, c in self.equilibrium_reaction_stoichiometry_constraint.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.equilibrium_reaction_generation[i], default=1, warning=True))

 if hasattr(self, "element_balances"):
 for (t, e), c in self.element_balances.items():
 sf = iscale.min_scaling_factor([self.elemental_flow_in[t, p, e]
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)

 if hasattr(self, "elemental_holdup_calculation"):
 for (t, e), c in self.elemental_holdup_calculation.items():
 flow_basis = self.properties_out[t].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 sf = 10.0 # start with 10 for phase fraction
 else:
 sf = 10.0/iscale.get_scaling_factor(
 self.properties_out[t].mw_comp[j],
 default=1,
 warning=True)
 sf *= iscale.min_scaling_factor(
 [self.properties_out[t].get_material_density_terms(p, j)
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)

 idaes.core.control_volume1d

 Source code for idaes.core.control_volume1d

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Base class for control volumes
"""

Import Python libraries
import copy
from enum import Enum

Import Pyomo libraries
from pyomo.environ import (Constraint,
 Param,
 Reals,
 TransformationFactory,
 units as pyunits,
 Var,
 Reference)
from pyomo.dae import ContinuousSet, DerivativeVar
from pyomo.common.config import ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 ControlVolumeBlockData,
 FlowDirection,
 MaterialFlowBasis,
 MaterialBalanceType)
from idaes.core.util.exceptions import (BalanceTypeNotSupportedError,
 ConfigurationError,
 PropertyNotSupportedError)
from idaes.core.util.misc import add_object_reference
from idaes.core.util.config import (is_transformation_method,
 is_transformation_scheme)
from idaes.core.util import scaling as iscale

import idaes.logger as idaeslog

__author__ = "Andrew Lee, Jaffer Ghouse"

_log = idaeslog.getLogger(__name__)

TODO : Custom terms in material balances, other types of material balances
Diffusion terms need to be added

Enumerate options for area
class DistributedVars(Enum):
 variant = 0
 uniform = 1

[docs]@declare_process_block_class("ControlVolume1DBlock", doc="""
 ControlVolume1DBlock is a specialized Pyomo block for IDAES control volume
 blocks discretized in one spatial direction, and contains instances of
 ControlVolume1DBlockData.

 ControlVolume1DBlock should be used for any control volume with a defined
 volume and distinct inlets and outlets where there is a single spatial
 domain parallel to the material flow direction. This encompases unit
 operations such as plug flow reactors and pipes.""")
class ControlVolume1DBlockData(ControlVolumeBlockData):
 """
 1-Dimensional ControlVolume Class

 This class forms the core of all 1-D IDAES models. It provides
 methods to build property and reaction blocks, and add mass, energy and
 momentum balances. The form of the terms used in these constraints is
 specified in the chosen property package.
 """
 CONFIG = ControlVolumeBlockData.CONFIG()
 CONFIG.declare("area_definition", ConfigValue(
 default=DistributedVars.uniform,
 domain=In(DistributedVars),
 description="Argument for defining form of area variable",
 doc="""Argument defining whether area variable should be spatially
 variant or not. **default** - DistributedVars.uniform.
 Valid values: {
 DistributedVars.uniform - area does not vary across spatial domian,
 DistributedVars.variant - area can vary over the domain and is indexed
 by time and space.}"""))
 CONFIG.declare("transformation_method", ConfigValue(
 default=None,
 domain=is_transformation_method,
 description="DAE transformation method",
 doc="""Method to use to transform domain. Must be a method recognised
by the Pyomo TransformationFactory."""))
 CONFIG.declare("transformation_scheme", ConfigValue(
 default=None,
 domain=is_transformation_scheme,
 description="DAE transformation scheme",
 doc="""Scheme to use when transformating domain. See Pyomo
documentation for supported schemes."""))
 CONFIG.declare("finite_elements", ConfigValue(
 default=None,
 domain=int,
 description="Number of finite elements",
 doc="""Number of finite elements to use in transformation (equivalent
to Pyomo nfe argument)."""))
 CONFIG.declare("collocation_points", ConfigValue(
 default=None,
 domain=int,
 description="Number of collocation points",
 doc="""Number of collocation points to use (equivalent to Pyomo ncp
argument)."""))

[docs] def build(self):
 """
 Build method for ControlVolume1DBlock blocks.

 Returns:
 None
 """
 # Call build method from base class
 super(ControlVolume1DBlockData, self).build()

 self._validate_config_args()

 def _validate_config_args(self):
 # Validate DAE config arguments
 if self.config.transformation_method is None:
 raise ConfigurationError(
 "{} was not provided a value for the transformation_method"
 " configuration argument. Please provide a valid value."
 .format(self.name))

 if self.config.transformation_scheme is None:
 raise ConfigurationError(
 "{} was not provided a value for the transformation_scheme"
 " configuration argument. Please provide a valid value."
 .format(self.name))
 elif ((self.config.transformation_method == "dae.finite_difference" and
 self.config.transformation_scheme not in ["BACKWARD", "FORWARD"])
 or (self.config.transformation_method == "dae.collocation" and
 self.config.transformation_scheme not in
 ["LAGRANGE-LEGENDRE", "LAGRANGE-RADAU"])):
 raise ConfigurationError(
 "{} transformation_scheme configuration argument is not "
 "consistent with transformation_method argument. See Pyomo"
 " documentation for argument options."
 .format(self.name))

[docs] def add_geometry(self,
 length_domain=None,
 length_domain_set=[0.0, 1.0],
 flow_direction=FlowDirection.forward):
 """
 Method to create spatial domain and volume Var in ControlVolume.

 Args:
 length_domain - (optional) a ContinuousSet to use as the length
 domain for the ControlVolume. If not provided, a
 new ContinuousSet will be created (default=None).
 ContinuousSet should be normalized to run between
 0 and 1.
 length_domain_set - (optional) list of point to use to initialize
 a new ContinuousSet if length_domain is not
 provided (default = [0.0, 1.0]).
 flow_direction - argument indicating direction of material flow
 relative to length domain. Valid values:
 - FlowDirection.forward (default), flow goes
 from 0 to 1.
 - FlowDirection.backward, flow goes from 1 to 0

 Returns:
 None
 """
 units = self.config.property_package.get_metadata().get_derived_units

 if length_domain is not None:
 # Validate domain and make a reference
 if isinstance(length_domain, ContinuousSet):
 add_object_reference(self, "length_domain", length_domain)
 else:
 raise ConfigurationError(
 "{} length_domain argument must be a Pyomo "
 "ContinuousSet object".format(self.name))
 else:
 # Create new length domain
 self.length_domain = ContinuousSet(
 bounds=(0.0, 1.0),
 initialize=length_domain_set,
 doc="Normalized length domain")

 # Validated and create flow direction attribute
 if flow_direction in (flwd for flwd in FlowDirection):
 self._flow_direction = flow_direction
 else:
 raise ConfigurationError("{} invalid value for flow_direction "
 "argument. Must be a FlowDirection Enum."
 .format(self.name))
 if flow_direction is FlowDirection.forward:
 self._flow_direction_term = -1
 else:
 self._flow_direction_term = 1

 # Add geomerty variables and constraints
 if self.config.area_definition == DistributedVars.variant:
 self.area = Var(self.flowsheet().config.time,
 self.length_domain,
 initialize=1.0,
 doc='Cross-sectional area of Control Volume',
 units=units("area"))
 else:
 self.area = Var(initialize=1.0,
 doc='Cross-sectional area of Control Volume',
 units=units("area"))
 self.length = Var(initialize=1.0,
 doc='Length of Control Volume',
 units=units("length"))

[docs] def add_state_blocks(self,
 information_flow=FlowDirection.forward,
 has_phase_equilibrium=None):
 """
 This method constructs the state blocks for the
 control volume.

 Args:
 information_flow: a FlowDirection Enum indicating whether
 information flows from inlet-to-outlet or
 outlet-to-inlet
 has_phase_equilibrium: indicates whether equilibrium calculations
 will be required in state blocks
 package_arguments: dict-like object of arguments to be passed to
 state blocks as construction arguments
 Returns:
 None
 """
 if has_phase_equilibrium is None:
 raise ConfigurationError(
 "{} add_state_blocks method was not provided with a "
 "has_phase_equilibrium argument.".format(self.name))
 elif has_phase_equilibrium not in [True, False]:
 raise ConfigurationError(
 "{} add_state_blocks method was provided with an invalid "
 "has_phase_equilibrium argument. Must be True or False"
 .format(self.name))

 # d0 is config for defined state d1 is config for not defined state
 d0 = dict(**self.config.property_package_args)
 d0.update(has_phase_equilibrium=has_phase_equilibrium,
 defined_state=True)
 d1 = copy.copy(d0)
 d1["defined_state"] = False

 def idx_map(i): # i = (t, x)
 if information_flow == FlowDirection.forward and \
 i[1] == self.length_domain.first():
 return 0
 elif information_flow == FlowDirection.backward and \
 i[1] == self.length_domain.last():
 return 0
 else:
 return 1
 self.properties = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Material properties",
 initialize={0: d0, 1: d1}, # TODO: What if the domain has different bounds?
 idx_map=idx_map)

[docs] def add_reaction_blocks(self, has_equilibrium=None):
 """
 This method constructs the reaction block for the control volume.

 Args:
 has_equilibrium: indicates whether equilibrium calculations
 will be required in reaction block
 package_arguments: dict-like object of arguments to be passed to
 reaction block as construction arguments

 Returns:
 None
 """
 if has_equilibrium is None:
 raise ConfigurationError(
 "{} add_reaction_blocks method was not provided with a "
 "has_equilibrium argument.".format(self.name))
 elif has_equilibrium not in [True, False]:
 raise ConfigurationError(
 "{} add_reaction_blocks method was provided with an "
 "invalid has_equilibrium argument. Must be True or False"
 .format(self.name))

 # TODO : Should not have ReactionBlock at inlet
 tmp_dict = dict(**self.config.reaction_package_args)
 tmp_dict["state_block"] = self.properties
 tmp_dict["has_equilibrium"] = has_equilibrium

 self.reactions = self.config.reaction_package.build_reaction_block(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Reaction properties in control volume",
 default=tmp_dict) # TODO: Do we need something similar to above to skip equilibrium at bounds?

 def _add_material_balance_common(self,
 balance_type,
 has_rate_reactions,
 has_equilibrium_reactions,
 has_phase_equilibrium,
 has_mass_transfer,
 custom_molar_term,
 custom_mass_term):
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 component_list = self.properties.component_list
 phase_list = self.properties.phase_list
 pc_set = self.properties.phase_component_set

 # Check that reaction block exists if required
 if has_rate_reactions or has_equilibrium_reactions:
 try:
 rblock = self.reactions
 except AttributeError:
 raise ConfigurationError(
 "{} does not contain a Reaction Block, but material "
 "balances have been set to contain reaction terms. "
 "Please construct a reaction block before adding "
 "balance equations.".format(self.name))

 if has_equilibrium_reactions:
 # Check that reaction block is set to calculate equilibrium
 for t in self.flowsheet().config.time:
 for x in self.length_domain:
 if self.reactions[t, x].config.has_equilibrium is False:
 raise ConfigurationError(
 "{} material balance was set to include "
 "equilibrium reactions, however the associated "
 "ReactionBlock was not set to include equilibrium "
 "constraints (has_equilibrium_reactions=False). "
 "Please correct your configuration arguments."
 .format(self.name))

 if has_phase_equilibrium:
 # Check that state blocks are set to calculate equilibrium
 for t in self.flowsheet().config.time:
 for x in self.length_domain:
 if not self.properties[t, x].config.has_phase_equilibrium:
 raise ConfigurationError(
 "{} material balance was set to include phase "
 "equilibrium, however the associated "
 "StateBlock was not set to include equilibrium "
 "constraints (has_phase_equilibrium=False). Please"
 " correct your configuration arguments."
 .format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 if units('length') is not None:
 if (self.properties[self.flowsheet().config.time.first(),
 self.length_domain.first()]
 .get_material_flow_basis() == MaterialFlowBasis.molar):
 holdup_l_units = units('amount')/units("length")
 flow_units = units('flow_mole')
 flow_l_units = units('flow_mole')/units('length')
 elif (self.properties[self.flowsheet().config.time.first(),
 self.length_domain.first()]
 .get_material_flow_basis() == MaterialFlowBasis.mass):
 holdup_l_units = units('mass')/units("length")
 flow_units = units('flow_mass')
 flow_l_units = units('flow_mass')/units('length')
 else:
 holdup_l_units = None
 flow_units = None
 flow_l_units = None
 else:
 holdup_l_units = None
 flow_units = None
 flow_l_units = None

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 elif (self.properties[self.flowsheet().config.time.first(),
 self.length_domain.first()]
 .get_material_flow_basis() == MaterialFlowBasis.other):
 acc_units = None
 else:
 acc_units = holdup_l_units/f_time_units

 # Material holdup and accumulation
 if has_holdup:
 self.material_holdup = Var(
 self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 domain=Reals,
 initialize=1.0,
 doc="Material holdup per unit length",
 units=holdup_l_units)
 if dynamic:
 self.material_accumulation = DerivativeVar(
 self.material_holdup,
 wrt=self.flowsheet().config.time,
 doc="Material accumulation per unit length",
 units=acc_units)

 # Create material balance terms as required
 # Flow terms and derivatives
 self._flow_terms = Var(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 initialize=1.0,
 doc="Flow terms for material balance equations",
 units=flow_units)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 doc="Material flow linking constraints")
 def material_flow_linking_constraints(b, t, x, p, j):
 return b._flow_terms[t, x, p, j] == \
 b.properties[t, x].get_material_flow_terms(p, j)

 self.material_flow_dx = DerivativeVar(
 self._flow_terms,
 wrt=self.length_domain,
 doc="Parital derivative of material flow "
 "wrt to normalized length",
 units=flow_units)

 # Kinetic reaction generation
 if has_rate_reactions:
 if not hasattr(self.config.reaction_package, "rate_reaction_idx"):
 raise PropertyNotSupportedError(
 "{} Reaction package does not contain a list of rate "
 "reactions (rate_reaction_idx), thus does not support "
 "rate-based reactions.".format(self.name))
 self.rate_reaction_generation = Var(
 self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Amount of component generated in "
 "by kinetic reactions per unit length",
 units=flow_l_units)

 # Equilibrium reaction generation
 if has_equilibrium_reactions:
 if not hasattr(self.config.reaction_package,
 "equilibrium_reaction_idx"):
 raise PropertyNotSupportedError(
 "{} Reaction package does not contain a list of "
 "equilibrium reactions (equilibrium_reaction_idx), thus "
 "does not support equilibrium-based reactions."
 .format(self.name))
 self.equilibrium_reaction_generation = Var(
 self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Amount of component generated by equilibrium "
 "reactions per unit length",
 units=flow_l_units)

 # Phase equilibrium generation
 if has_phase_equilibrium and \
 balance_type == MaterialBalanceType.componentPhase:
 if not hasattr(self.config.property_package,
 "phase_equilibrium_idx"):
 raise PropertyNotSupportedError(
 "{} Property package does not contain a list of phase "
 "equilibrium reactions (phase_equilibrium_idx), thus does "
 "not support phase equilibrium.".format(self.name))
 self.phase_equilibrium_generation = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.property_package.phase_equilibrium_idx,
 domain=Reals,
 initialize=0.0,
 doc="Amount of generation in unit by phase "
 "equilibria per unit length",
 units=flow_l_units)

 # Material transfer term
 if has_mass_transfer:
 self.mass_transfer_term = Var(
 self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 domain=Reals,
 initialize=0.0,
 doc="Component material transfer into unit per unit "
 "length",
 units=flow_l_units)

 # Create rules to substitute material balance terms
 # Accumulation term
 def accumulation_term(b, t, x, p, j):
 return pyunits.convert(b.material_accumulation[t, x, p, j],
 to_units=flow_l_units) if dynamic else 0

 def kinetic_term(b, t, x, p, j):
 return (b.rate_reaction_generation[t, x, p, j]
 if has_rate_reactions else 0)

 def equilibrium_term(b, t, x, p, j):
 return (b.equilibrium_reaction_generation[t, x, p, j]
 if has_equilibrium_reactions else 0)

 def phase_equilibrium_term(b, t, x, p, j):
 if has_phase_equilibrium and \
 balance_type == MaterialBalanceType.componentPhase:
 sd = {}
 for r in b.config.property_package.phase_equilibrium_idx:
 if b.config.property_package.\
 phase_equilibrium_list[r][0] == j:
 if b.config.property_package.\
 phase_equilibrium_list[r][1][0] == p:
 sd[r] = 1
 elif b.config.property_package.\
 phase_equilibrium_list[r][1][1] == p:
 sd[r] = -1
 else:
 sd[r] = 0
 else:
 sd[r] = 0

 return sum(
 b.phase_equilibrium_generation[t, x, r] * sd[r] for
 r in b.config.property_package.phase_equilibrium_idx)
 else:
 return 0

 def transfer_term(b, t, x, p, j):
 return (b.mass_transfer_term[t, x, p, j]
 if has_mass_transfer else 0)

 # TODO: Need to set material_holdup = 0 for non-present component-phase
 # pairs. Not ideal, but needed to close DoF. Is there a better way?

 # Material Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 doc="Material holdup calculations")
 def material_holdup_calculation(b, t, x, p, j):
 if (p, j) in pc_set:
 return b.material_holdup[t, x, p, j] == (
 b._area_func(t, x)*self.phase_fraction[t, x, p] *
 b.properties[t, x].get_material_density_terms(p, j))

 if has_rate_reactions:
 # Add extents of reaction and stoichiometric constraints
 self.rate_reaction_extent = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.reaction_package.rate_reaction_idx,
 domain=Reals,
 initialize=0.0,
 doc="Extent of kinetic reactions at point x",
 units=flow_l_units)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 doc="Kinetic reaction stoichiometry constraint")
 def rate_reaction_stoichiometry_constraint(b, t, x, p, j):
 if (p, j) in pc_set:
 rparam = rblock[t, x].config.parameters
 return b.rate_reaction_generation[t, x, p, j] == (
 sum(rparam.rate_reaction_stoichiometry[r, p, j] *
 b.rate_reaction_extent[t, x, r] for r in
 b.config.reaction_package.rate_reaction_idx))
 else:
 return Constraint.Skip

 if has_equilibrium_reactions:
 # Add extents of reaction and stoichiometric constraints
 self.equilibrium_reaction_extent = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.reaction_package.equilibrium_reaction_idx,
 domain=Reals,
 initialize=0.0,
 doc="Extent of equilibrium reactions at point x",
 units=flow_l_units)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 doc="Equilibrium reaction stoichiometry")
 def equilibrium_reaction_stoichiometry_constraint(b, t, x, p, j):
 if (p, j) in pc_set:
 return b.equilibrium_reaction_generation[t, x, p, j] == (
 sum(rblock[t, x].config.parameters.
 equilibrium_reaction_stoichiometry[r, p, j] *
 b.equilibrium_reaction_extent[t, x, r]
 for r in b.config.reaction_package.
 equilibrium_reaction_idx))
 else:
 return Constraint.Skip

 # Add custom terms and material balances
 if balance_type == MaterialBalanceType.componentPhase:
 def user_term_mol(b, t, x, p, j):
 if custom_molar_term is not None:
 flow_basis = b.properties[t, x].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return custom_molar_term(t, x, p, j)
 elif flow_basis == MaterialFlowBasis.mass:
 try:
 return (custom_molar_term(t, x, p, j) *
 b.properties[t, x].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_molar_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 def user_term_mass(b, t, x, p, j):
 if custom_mass_term is not None:
 flow_basis = b.properties[t, x].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.mass:
 return custom_mass_term(t, x, p, j)
 elif flow_basis == MaterialFlowBasis.molar:
 try:
 return (custom_mass_term(t, x, p, j) /
 b.properties[t, x].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_mass_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 pc_set,
 doc="Material balances")
 def material_balances(b, t, x, p, j):
 if ((b.config.transformation_scheme != "FORWARD" and
 x == b.length_domain.first()) or
 (b.config.transformation_scheme == "FORWARD" and
 x == b.length_domain.last())):
 return Constraint.Skip
 else:
 if (p, j) in pc_set:
 return b.length*accumulation_term(b, t, x, p, j) == (
 b._flow_direction_term *
 b.material_flow_dx[t, x, p, j] +
 b.length*kinetic_term(b, t, x, p, j) *
 b._rxn_rate_conv(t, x, j, has_rate_reactions) +
 b.length*equilibrium_term(b, t, x, p, j) +
 b.length*phase_equilibrium_term(b, t, x, p, j) +
 b.length*transfer_term(b, t, x, p, j) +
 #b.area*diffusion_term(b, t, x, p, j)/b.length +
 b.length*user_term_mol(b, t, x, p, j) +
 b.length*user_term_mass(b, t, x, p, j))
 else:
 return Constraint.Skip

 elif balance_type == MaterialBalanceType.componentTotal:
 def user_term_mol(b, t, x, j):
 if custom_molar_term is not None:
 flow_basis = b.properties[t, x].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return custom_molar_term(t, x, j)
 elif flow_basis == MaterialFlowBasis.mass:
 try:
 return (custom_molar_term(t, x, j) *
 b.properties[t, x].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_molar_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 def user_term_mass(b, t, x, j):
 if custom_mass_term is not None:
 flow_basis = b.properties[t, x].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.mass:
 return custom_mass_term(t, x, j)
 elif flow_basis == MaterialFlowBasis.molar:
 try:
 return (custom_mass_term(t, x, j) /
 b.properties[t, x].mw_comp[j])
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} property package does not support "
 "molecular weight (mw), which is required for "
 "using custom terms in material balances."
 .format(self.name))
 else:
 raise ConfigurationError(
 "{} contained a custom_mass_term argument, but "
 "the property package used an undefined basis "
 "(MaterialFlowBasis.other). Custom terms can "
 "only be used when the property package declares "
 "a molar or mass flow basis.".format(self.name))
 else:
 return 0

 # Add component balances
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 component_list,
 doc="Material balances")
 def material_balances(b, t, x, j):
 if ((b.config.transformation_scheme != "FORWARD" and
 x == b.length_domain.first()) or
 (b.config.transformation_scheme == "FORWARD" and
 x == b.length_domain.last())):
 return Constraint.Skip
 else:
 cplist = []
 for p in phase_list:
 if (p, j) in pc_set:
 cplist.append(p)
 return (
 b.length*sum(accumulation_term(b, t, x, p, j)
 for p in cplist) ==
 b._flow_direction_term*sum(
 b.material_flow_dx[t, x, p, j]
 for p in cplist) +
 b.length*sum(kinetic_term(b, t, x, p, j)
 for p in cplist) *
 b._rxn_rate_conv(t, x, j, has_rate_reactions) +
 b.length*sum(equilibrium_term(b, t, x, p, j)
 for p in cplist) +
 b.length*sum(transfer_term(b, t, x, p, j)
 for p in cplist) +
 b.length*user_term_mol(b, t, x, j) +
 b.length*user_term_mass(b, t, x, j))

[docs] def add_phase_component_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_molar_term=None,
 custom_mass_term=None):
 """
 This method constructs a set of 1D material balances indexed by time,
 length, phase and component.

 Args:
 has_rate_reactions: whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions: whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium: whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer: whether generic mass transfer terms should be
 included in material balances
 custom_molar_term: a Pyomo Expression representing custom terms to
 be included in material balances on a molar basis.
 Expression must be indexed by time, length domain, phase
 list and component list
 custom_mass_term: a Pyomo Expression representing custom terms to
 be included in material balances on a mass basis.
 Expression must be indexed by time, length domain, phase
 list and component list

 Returns:
 Constraint object representing material balances
 """
 self._add_material_balance_common(
 balance_type=MaterialBalanceType.componentPhase,
 has_rate_reactions=has_rate_reactions,
 has_equilibrium_reactions=has_equilibrium_reactions,
 has_phase_equilibrium=has_phase_equilibrium,
 has_mass_transfer=has_mass_transfer,
 custom_molar_term=custom_molar_term,
 custom_mass_term=custom_mass_term)

 return self.material_balances

[docs] def add_total_component_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_molar_term=None,
 custom_mass_term=None):
 """
 This method constructs a set of 1D material balances indexed by time
 length and component.

 Args:
 has_rate_reactions: whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions: whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium: whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer: whether generic mass transfer terms should be
 included in material balances
 custom_molar_term: a Pyomo Expression representing custom terms to
 be included in material balances on a molar basis.
 Expression must be indexed by time, length domain and
 component list
 custom_mass_term: a Pyomo Expression representing custom terms to
 be included in material balances on a mass basis.
 Expression must be indexed by time, length domain and
 component list

 Returns:
 Constraint object representing material balances
 """
 self._add_material_balance_common(
 balance_type=MaterialBalanceType.componentTotal,
 has_rate_reactions=has_rate_reactions,
 has_equilibrium_reactions=has_equilibrium_reactions,
 has_phase_equilibrium=has_phase_equilibrium,
 has_mass_transfer=has_mass_transfer,
 custom_molar_term=custom_molar_term,
 custom_mass_term=custom_mass_term)

 return self.material_balances

[docs] def add_total_element_balances(self,
 has_rate_reactions=False,
 has_equilibrium_reactions=False,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 custom_elemental_term=None):
 """
 This method constructs a set of 1D element balances indexed by time and
 length.

 Args:
 has_rate_reactions - whether default generation terms for rate
 reactions should be included in material balances
 has_equilibrium_reactions - whether generation terms should for
 chemical equilibrium reactions should be included in
 material balances
 has_phase_equilibrium - whether generation terms should for phase
 equilibrium behaviour should be included in material
 balances
 has_mass_transfer - whether generic mass transfer terms should be
 included in material balances
 custom_elemental_term - a Pyomo Expression representing custom
 terms to be included in material balances on a molar
 elemental basis. Expression must be indexed by time, length
 and element list

 Returns:
 Constraint object representing material balances
 """
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 component_list = self.properties.component_list
 pc_set = self.properties.phase_component_set

 # Check that property package supports element balances
 if not hasattr(self.config.property_package, "element_list"):
 raise PropertyNotSupportedError(
 "{} property package provided does not contain a list of "
 "elements (element_list), and thus does not support "
 "elemental material balances. Please choose another type "
 "of material balance or a property package which supports "
 "elemental balances.")

 # Check validity of arguments to write the total elemental balance
 if has_rate_reactions:
 raise ConfigurationError(
 "{} add_total_element_balances method as provided with "
 "argument has_rate_reactions = True. Total element "
 "balances do not support rate based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 if has_equilibrium_reactions:
 raise ConfigurationError(
 "{} add_total_element_balances method as provided with "
 "argument has_equilibrium_reactions = True. Total element "
 "balances do not support equilibrium based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 if has_phase_equilibrium:
 # Check that state blocks are set to calculate equilibrium
 raise ConfigurationError(
 "{} add_total_element_balances method as provided with "
 "argument has_phase_equilibrium = True. Total element "
 "balances do not support equilibrium based reactions, "
 "please correct your configuration arguments"
 .format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 if units('amount') is not None:
 amount_l_units = units('amount')/units('length')
 flow_units = units('flow_mole')
 flow_l_units = units('flow_mole')/units('length')
 else:
 amount_l_units = None
 flow_units = None
 flow_l_units = None

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 else:
 acc_units = amount_l_units/f_time_units

 # Identify linearly dependent elements
 # It is possible for there to be linearly dependent element balances
 # e.g. if a single species is the only source of two different elements
 linearly_dependent = []

 # Get a representative time point
 rtime = self.flowsheet().config.time.first()
 rdomain = self.length_domain.first()

 # For each component in the material, search for elements which are
 # unique to it
 for i in component_list:
 unique_elements = []
 for e in self.config.property_package.element_list:
 if self.properties[
 rtime, rdomain].params.element_comp[i][e] != 0:
 # Assume unique until shown otherwise
 unique = True

 for j in component_list:
 if j == i:
 continue

 # If element appears in any other component, not unique
 if self.properties[
 rtime, rdomain].params.element_comp[j][e] != 0:
 unique = False

 if unique:
 unique_elements.append(e)

 # If more than 1 unique element, they are linearly dependent
 if len(unique_elements) > 1:
 # Add all but the first to the list of linearly dependent
 linearly_dependent.extend(unique_elements[1:])

 # Set indexing set for element balances
 if len(linearly_dependent) == 0:
 # No linearly depednet equations, so use full element list
 e_index = self.config.property_package.element_list
 else:
 # Otherwise, use only non-dependent elements, and log a message
 _log.info_low("{} detected linearly dependent element balance "
 "equations. Element balances will NOT be written "
 "for the following elements: {}"
 .format(self.name, linearly_dependent))
 e_index = (self.config.property_package.element_list -
 linearly_dependent)

 # Add Material Balance terms
 if has_holdup:
 self.element_holdup = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.property_package.element_list,
 domain=Reals,
 initialize=1.0,
 doc="Elemental holdup per unit length",
 units=amount_l_units)

 if dynamic:
 self.element_accumulation = DerivativeVar(
 self.element_holdup,
 wrt=self.flowsheet().config.time,
 doc="Elemental accumulation per unit length",
 units=acc_units)

 self.elemental_flow_term = Var(self.flowsheet().config.time,
 self.length_domain,
 self.config.property_package.
 element_list,
 initialize=1.0,
 doc="Elemental flow terms",
 units=flow_units)

 # Method to convert mass flow basis to mole flow basis
 def conv_factor(b, t, x, j):
 flow_basis = b.properties[t, x].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 return 1
 elif flow_basis == MaterialFlowBasis.mass:
 return 1/b.properties[t, x].mw_comp[j]
 else:
 raise BalanceTypeNotSupportedError(
 "{} property package MaterialFlowBasis == 'other'. Cannot "
 "automatically generate elemental balances."
 .format(self.name))

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 self.config.property_package.element_list,
 doc="Elemental flow constraints")
 def elemental_flow_constraint(b, t, x, e):
 return b.elemental_flow_term[t, x, e] == (
 sum(conv_factor(b, t, x, j) *
 b.properties[t, x].get_material_flow_terms(p, j) *
 b.properties[t, x].config.parameters.element_comp[j][e]
 for p, j in pc_set))

 self.elemental_flow_dx = DerivativeVar(self.elemental_flow_term,
 wrt=self.length_domain,
 doc="Partial derivative of "
 "elemental flow wrt normalized "
 "length",
 units=flow_units)

 # Create material balance terms as needed
 if has_mass_transfer:
 self.elemental_mass_transfer_term = Var(
 self.flowsheet().config.time,
 self.length_domain,
 e_index,
 domain=Reals,
 initialize=0.0,
 doc="Element material transfer into unit per unit "
 "length",
 units=flow_l_units)

 # Create rules to substitute material balance terms
 # Accumulation term
 def accumulation_term(b, t, x, e):
 return pyunits.convert(b.element_accumulation[t, x, e],
 to_units=flow_l_units) if dynamic else 0

 # Mass transfer term
 def transfer_term(b, t, x, e):
 return (b.elemental_mass_transfer_term[t, x, e]
 if has_mass_transfer else 0)

 # Custom term
 def user_term(t, x, e):
 if custom_elemental_term is not None:
 return custom_elemental_term(t, x, e)
 else:
 return 0

 # Element balances
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 e_index,
 doc="Elemental material balances")
 def element_balances(b, t, x, e):
 if ((b.config.transformation_scheme != "FORWARD" and
 x == b.length_domain.first()) or
 (b.config.transformation_scheme == "FORWARD" and
 x == b.length_domain.last())):
 return Constraint.Skip
 else:
 return b.length * accumulation_term(b, t, x, e) == (
 b._flow_direction_term *
 b.elemental_flow_dx[t, x, e] +
 b.length * transfer_term(b, t, x, e) +
 b.length * user_term(t, x, e)) # +
 # TODO : Add diffusion terms
 #b.area*diffusion_term(b, t, x, e)/b.length)

 # Elemental Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 self.config.property_package.element_list,
 doc="Elemental holdup calculation")
 def elemental_holdup_calculation(b, t, x, e):
 return b.element_holdup[t, x, e] == (
 b._area_func(t, x) *
 sum(conv_factor(b, t, x, j)*b.phase_fraction[t, x, p] *
 b.properties[t, x].get_material_density_terms(p, j) *
 b.properties[t, x].config.parameters.element_comp[j][e]
 for p, j in pc_set))

 return self.element_balances

[docs] def add_total_material_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_material_balances (yet)."
 .format(self.name))

[docs] def add_total_enthalpy_balances(self,
 has_heat_of_reaction=False,
 has_heat_transfer=False,
 has_work_transfer=False,
 has_enthalpy_transfer=False,
 custom_term=None):
 """
 This method constructs a set of 1D enthalpy balances indexed by time
 and phase.

 Args:
 has_heat_of_reaction - whether terms for heat of reaction should
 be included in enthalpy balance
 has_heat_transfer - whether terms for heat transfer should be
 included in enthalpy balances
 has_work_transfer - whether terms for work transfer should be
 included in enthalpy balances
 has_enthalpy_transfer - whether terms for enthalpy transfer due to
 mass transfer should be included in enthalpy balance. This
 should generally be the same as the has_mas_trasnfer
 argument in the material balance methods
 custom_term - a Pyomo Expression representing custom terms to
 be included in enthalpy balances.
 Expression must be indexed by time, length and phase list

 Returns:
 Constraint object representing enthalpy balances
 """
 # Get dynamic and holdup flags from config block
 dynamic = self.config.dynamic
 has_holdup = self.config.has_holdup

 phase_list = self.properties.phase_list

 # Test for components that must exist prior to calling this method
 if has_heat_of_reaction:
 if not (hasattr(self, "rate_reaction_extent") or
 hasattr(self, "equilibrium_reaction_extent")):
 raise ConfigurationError(
 "{} extent of reaction terms must exist in order to "
 "have heat of reaction terms. Please ensure that "
 "add_material_balance (or equivalent) is called before"
 " adding energy balances.".format(self.name))

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 if units('energy') is not None:
 energy_l_units = units('energy')/units('length')
 power_l_units = units('power')/units('length')
 else:
 energy_l_units = None
 power_l_units = None

 # Get units for accumulation term if required
 if self.config.dynamic:
 f_time_units = self.flowsheet().config.time_units
 if (f_time_units is None) ^ (units('time') is None):
 raise ConfigurationError(
 "{} incompatible time unit specification between "
 "flowsheet and property package. Either both must use "
 "units, or neither.".format(self.name))

 if f_time_units is None:
 acc_units = None
 else:
 acc_units = energy_l_units/f_time_units

 # Create variables
 self._enthalpy_flow = Var(self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 initialize=1.0,
 doc="Enthalpy flow terms",
 units=units('power'))

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 doc="Enthapy flow linking constraints")
 def enthalpy_flow_linking_constraint(b, t, x, p):
 return b._enthalpy_flow[t, x, p] == \
 b.properties[t, x].get_enthalpy_flow_terms(p)

 self.enthalpy_flow_dx = DerivativeVar(self._enthalpy_flow,
 wrt=self.length_domain,
 doc="Partial derivative of "
 "enthalpy flow wrt normlaized "
 "length",
 units=units('power'))

 if has_holdup:
 self.energy_holdup = Var(
 self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 domain=Reals,
 initialize=1.0,
 doc="Enthalpy holdup per unit length",
 units=energy_l_units)

 if dynamic is True:
 self.energy_accumulation = DerivativeVar(
 self.energy_holdup,
 wrt=self.flowsheet().config.time,
 doc="Energy accumulation per unit length",
 units=acc_units)

 # Create energy balance terms as needed
 # Heat transfer term
 if has_heat_transfer:
 self.heat = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=0.0,
 doc="Heat transfered per unit length",
 units=power_l_units)

 # Work transfer
 if has_work_transfer:
 self.work = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=0.0,
 doc="Work transfered per unit length",
 units=power_l_units)

 # Enthalpy transfer
 if has_enthalpy_transfer:
 self.enthalpy_transfer = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=0.0,
 doc="Enthalpy transfered due to mass transfer per unit length",
 units=power_l_units)

 # Heat of Reaction
 if has_heat_of_reaction:
 @self.Expression(self.flowsheet().config.time,
 self.length_domain,
 doc="Heat of reaction term at point x")
 def heat_of_reaction(b, t, x):
 if hasattr(self, "rate_reaction_extent"):
 rate_heat = -sum(b.rate_reaction_extent[t, x, r] *
 b.reactions[t, x].dh_rxn[r]
 for r in self.config.reaction_package.
 rate_reaction_idx)
 else:
 rate_heat = 0

 if hasattr(self, "equilibrium_reaction_extent"):
 equil_heat = -sum(
 b.equilibrium_reaction_extent[t, x, e] *
 b.reactions[t, x].dh_rxn[e]
 for e in self.config.reaction_package.
 equilibrium_reaction_idx)
 else:
 equil_heat = 0

 return rate_heat + equil_heat

 # Create rules to substitute energy balance terms
 # Accumulation term
 def accumulation_term(b, t, x, p):
 return (pyunits.convert(b.energy_accumulation[t, x, p],
 to_units=power_l_units)
 if dynamic else 0)

 def heat_term(b, t, x):
 return b.heat[t, x] if has_heat_transfer else 0

 def work_term(b, t, x):
 return b.work[t, x] if has_work_transfer else 0

 def enthalpy_transfer_term(b, t, x):
 return b.enthalpy_transfer[t, x] if has_enthalpy_transfer else 0

 def rxn_heat_term(b, t, x):
 return b.heat_of_reaction[t, x] if has_heat_of_reaction else 0

 # Custom term
 def user_term(t, x):
 if custom_term is not None:
 return custom_term(t, x)
 else:
 return 0

 # Energy balance equation
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Energy balances")
 def enthalpy_balances(b, t, x):
 if ((b.config.transformation_scheme != "FORWARD" and
 x == b.length_domain.first()) or
 (b.config.transformation_scheme == "FORWARD" and
 x == b.length_domain.last())):
 return Constraint.Skip
 else:
 return b.length*sum(
 accumulation_term(b, t, x, p) for p in
 phase_list) == (
 b._flow_direction_term * sum(b.enthalpy_flow_dx[t, x, p]
 for p in phase_list) +
 b.length*heat_term(b, t, x) +
 b.length*work_term(b, t, x) +
 b.length*enthalpy_transfer_term(b, t, x) +
 b.length*rxn_heat_term(b, t, x) +
 b.length*user_term(t, x))
 # TODO : Add conduction/dispersion term

 # Energy Holdup
 if has_holdup:
 if not hasattr(self, "phase_fraction"):
 self._add_phase_fractions()

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 doc="Enthalpy holdup constraint")
 def energy_holdup_calculation(b, t, x, p):
 return b.energy_holdup[t, x, p] == (
 b._area_func(t, x) * self.phase_fraction[t, x, p] *
 b.properties[t, x].get_energy_density_terms(p))

 return self.enthalpy_balances

[docs] def add_phase_enthalpy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_enthalpy_balances."
 .format(self.name))

[docs] def add_phase_energy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_energy_balances."
 .format(self.name))

[docs] def add_total_energy_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_energy_balances."
 .format(self.name))

[docs] def add_total_pressure_balances(self,
 has_pressure_change=False,
 custom_term=None):
 """
 This method constructs a set of 1D pressure balances indexed by time.

 Args:
 has_pressure_change - whether terms for pressure change should be
 included in enthalpy balances
 custom_term - a Pyomo Expression representing custom terms to
 be included in pressure balances.
 Expression must be indexed by time and length domain

 Returns:
 Constraint object representing pressure balances
 """

 # Get units from property package
 units = self.config.property_package.get_metadata().get_derived_units

 if units('pressure') is not None:
 pressure_l_units = units('pressure')/units('length')
 else:
 pressure_l_units = None

 # Create dP/dx terms
 self.pressure = Reference(self.properties[:,:].pressure)

 self.pressure_dx = DerivativeVar(
 self.pressure,
 wrt=self.length_domain,
 doc="Partial derivative of pressure wrt "
 "normalized length domain",
 units=units('pressure'))

 # Add Momentum Balance Variables as necessary
 if has_pressure_change:
 self.deltaP = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=0.0,
 doc="Pressure difference per unit length "
 "of domain",
 units=pressure_l_units)

 # Create rules to substitute energy balance terms
 # Pressure change term
 def deltaP_term(b, t, x):
 return b.deltaP[t, x] if has_pressure_change else 0

 # Custom term
 def user_term(t, x):
 if custom_term is not None:
 return custom_term(t, x)
 else:
 return 0

 # Momentum balance equation
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc='Momentum balance')
 def pressure_balance(b, t, x):
 if ((b.config.transformation_scheme != "FORWARD" and
 x == b.length_domain.first()) or
 (b.config.transformation_scheme == "FORWARD" and
 x == b.length_domain.last())):
 return Constraint.Skip
 else:
 return 0 == (b._flow_direction_term*b.pressure_dx[t, x] +
 b.length*deltaP_term(b, t, x) +
 b.length*user_term(t, x))

 return self.pressure_balance

[docs] def add_phase_pressure_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_pressure_balances."
 .format(self.name))

[docs] def add_phase_momentum_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_phase_momentum_balances."
 .format(self.name))

[docs] def add_total_momentum_balances(self, *args, **kwargs):
 raise BalanceTypeNotSupportedError(
 "{} OD control volumes do not support "
 "add_total_momentum_balances."
 .format(self.name))

[docs] def apply_transformation(self):
 """
 Method to apply DAE transformation to the Control Volume length domain.
 Transformation applied will be based on the Control Volume
 configuration arguments.
 """
 if self.length_domain.parent_block() != self:
 raise ConfigurationError(
 "{} tried to apply a DAE transformation to an external "
 "domain. To avoid complications, the apply_transformation "
 "method only supports transformation of local domains."
 .format(self.name))

 if self.config.finite_elements is None:
 raise ConfigurationError(
 "{} was not provided a value for the finite_elements"
 " configuration argument. Please provide a valid value."
 .format(self.name))

 if (self.config.collocation_points is None and
 self.config.transformation_method == "dae.collocation"):
 raise ConfigurationError(
 "{} was not provided a value for the collocation_points"
 " configuration argument. Please provide a valid value."
 .format(self.name))

 if self.config.transformation_method == "dae.finite_difference":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(self,
 nfe=self.config.finite_elements,
 wrt=self.length_domain,
 scheme=self.config.transformation_scheme)
 elif self.config.transformation_method == "dae.collocation":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(
 self,
 wrt=self.length_domain,
 nfe=self.config.finite_elements,
 ncp=self.config.collocation_points,
 scheme=self.config.transformation_scheme)
 else:
 raise ConfigurationError("{} unrecognised transfromation_method, "
 "must match one of the Transformations "
 "supported by Pyomo's "
 "TransformationFactory."
 .format(self.name))

[docs] def model_check(blk):
 """
 This method executes the model_check methods on the associated state
 blocks (if they exist). This method is generally called by a unit model
 as part of the unit's model_check method.

 Args:
 None

 Returns:
 None
 """
 # Try property block model check
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 try:
 blk.properties[t, x].model_check()
 except AttributeError:
 _log.warning(
 '{} ControlVolume StateBlock has no '
 'model checks. To correct this, add a model_check'
 ' method to the associated StateBlock class.'
 .format(blk.name))

 try:
 blk.reactions[t, x].model_check()
 except AttributeError:
 _log.warning(
 '{} ControlVolume outlet reaction block has no '
 'model check. To correct this, add a '
 'model_check method to the associated '
 'ReactionBlock class.'.format(blk.name))

[docs] def initialize(blk, state_args=None, outlvl=idaeslog.NOTSET, optarg=None,
 solver='ipopt', hold_state=True):
 '''
 Initialization routine for 1D control volume (default solver ipopt)

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default=None)
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization, **default** - True. **Valid values:**
 True - states variables are not unfixed, and a dict of
 returned containing flags for which states were fixed
 during initialization, **False** - state variables are
 unfixed after initialization by calling the release_state
 method.

 Returns:
 If hold_states is True, returns a dict containing flags for which
 states were fixed during initialization else the release state is
 triggered.
 '''
 # Get inlet state if not provided
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="control_volume")

 # Get source block
 if blk._flow_direction == FlowDirection.forward:
 source_idx = blk.length_domain.first()
 else:
 source_idx = blk.length_domain.last()
 source = blk.properties[blk.flowsheet().config.time.first(),
 source_idx]

 # Fix source state and get state_args if not provided
 source_flags = {}
 if state_args is None:
 # No state args, create whilst fixing vars
 state_args = {}
 # Should be checking flow direction
 state_dict = source.define_port_members()

 for k in state_dict.keys():
 if state_dict[k].is_indexed():
 state_args[k] = {}
 source_flags[k] = {}
 for m in state_dict[k].keys():
 source_flags[k][m] = state_dict[k][m].fixed
 if state_dict[k][m].value is not None:
 state_dict[k][m].fix()
 state_args[k][m] = state_dict[k][m].value
 else:
 raise Exception("State variables have not been "
 "fixed nor have been given "
 "initial values.")
 else:
 source_flags[k] = state_dict[k].fixed
 if state_dict[k].value is not None:
 state_dict[k].fix()
 state_args[k] = state_dict[k].value
 else:
 raise Exception("State variables have not been "
 "fixed nor have been given "
 "initial values.")
 else:
 # State args provided
 state_dict = source.define_port_members()

 for k in state_dict.keys():
 source_flags[k] = {}
 if state_dict[k].is_indexed():
 for m in state_dict[k].keys():
 source_flags[k][m] = state_dict[k][m].fixed
 if not state_dict[k][m].fixed:
 state_dict[k][m].fix(state_args[k][m])
 else:
 source_flags[k] = state_dict[k].fixed
 if state_dict[k].value is not None:
 state_dict[k].fix()
 if not state_dict[k].fixed:
 state_dict[k].fix(state_args[k])

 # Initialize state blocks
 flags = blk.properties.initialize(
 state_args=state_args,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True,
)

 try:
 # TODO: setting state_vars_fixed may not work for heterogeneous
 # systems where a second control volume is involved, as we cannot
 # assume those state vars are also fixed. For now, heterogeneous
 # reactions should ignore the state_vars_fixed argument and always
 # check their state_vars.
 blk.reactions.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_vars_fixed=True,
)
 except AttributeError:
 pass

 init_log.info('Initialization Complete')

 # Unfix state variables except for source block
 blk.properties.release_state(flags)

 if hold_state is True:
 return source_flags
 else:
 blk.release_state(source_flags)

[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 '''
 Method to release state variables fixed during initialization.

 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state = True.
 outlvl : sets output level of logging

 Returns:
 None
 '''
 # Get source block
 if blk._flow_direction == FlowDirection.forward:
 source_idx = blk.length_domain.first()
 else:
 source_idx = blk.length_domain.last()
 source = blk.properties[blk.flowsheet().config.time.first(),
 source_idx]

 # Set fixed attribute on state vars based on flags
 state_dict = source.define_port_members()

 for k in state_dict.keys():
 if state_dict[k].is_indexed():
 for m in state_dict[k].keys():
 state_dict[k][m].fixed = flags[k][m]
 else:
 state_dict[k].fixed = flags[k]

 def _add_phase_fractions(self):
 """
 This method constructs the phase_fraction variables for the control
 volume, and the associated constraint on the sum of phase_fractions
 == 1. For systems with only one phase, phase_fraction is created as a
 Pyomo Expression with a value of 1.

 Args:
 None

 Returns:
 None
 """
 phase_list = self.properties.phase_list

 if len(phase_list) > 1:
 self.phase_fraction = Var(
 self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 initialize=1 / len(phase_list),
 doc='Volume fraction of holdup by phase')

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc='Sum of phase fractions == 1')
 def sum_of_phase_fractions(b, t, x):
 return 1 == sum(
 b.phase_fraction[t, x, p]
 for p in phase_list)
 else:
 @self.Expression(self.flowsheet().config.time,
 self.length_domain,
 phase_list,
 doc='Volume fraction of holdup by phase')
 def phase_fraction(self, t, x, p):
 return 1

 def _area_func(b, t, x):
 if b.config.area_definition == DistributedVars.uniform:
 return b.area
 return b.area[t, x]

[docs] def report(self, time_point=0, dof=False, ostream=None, prefix=""):
 """
 No report method defined for ControlVolume1D class. This is due to the
 difficulty of presenting spatially discretized data in a readable form
 without plotting.
 """
 raise NotImplementedError("""
 Due ot the difficultly in presenting spatially distributed data
 in a clean format, ControlVolume1D does not currently support
 the report method.""")

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 phase_list = self.properties.phase_list
 pc_set = self.properties.phase_component_set

 # Default scale factors
 # If the paraent component of an indexed component has a scale factor, but
 # some of the data objects don't, propogate the indexed component scale
 # factor to the missing scaling factors.
 iscale.propagate_indexed_component_scaling_factors(self)

 heat_sf_default = 1e-6*10
 work_sf_default = 1e-6*10
 area_sf_default = 1
 length_sf_default = 1

 # Function to set defaults so I don't need to reproduce the same code
 def _fill_miss_with_default(name, s):
 try:
 c = getattr(self, name)
 except AttributeError:
 return # it's okay if the attribute doesn't exist, spell careful
 if iscale.get_scaling_factor(c) is None:
 for ci in c.values():
 if iscale.get_scaling_factor(ci) is None:
 iscale.set_scaling_factor(ci, s)

 # Set defaults where scale factors are missing
 _fill_miss_with_default("heat", heat_sf_default)
 _fill_miss_with_default("work", work_sf_default)
 _fill_miss_with_default("area", area_sf_default)
 _fill_miss_with_default("length", length_sf_default)

 if hasattr(self, "energy_holdup"):
 for (t, x, p), v in self.energy_holdup.items():
 sf = iscale.get_scaling_factor(
 self._area_func(t,x), default=1, warning=True)
 sf *= iscale.get_scaling_factor(
 self.properties[t, x].get_energy_density_terms(p),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "material_holdup"):
 for (t, x, p, i), v in self.material_holdup.items():
 sf = iscale.get_scaling_factor(
 self._area_func(t,x), default=1, warning=True)
 sf *= iscale.get_scaling_factor(
 self.properties[t, x].get_material_density_terms(p, i),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "material_accumulation"):
 for i, v in self.material_accumulation.items():
 sf = 100*iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "energy_accumulation"):
 for i, v in self.energy_accumulation.items():
 sf = 100*iscale.get_scaling_factor(
 self.energy_holdup[i], default=1, warning=True)
 iscale.set_scaling_factor(v, sf)

 if hasattr(self, "deltaP"):
 for (t, x), v in self.deltaP.items():
 if iscale.get_scaling_factor(v) is None:
 s = iscale.get_scaling_factor(
 self.properties[t, x].pressure, default=1, warning=True)
 iscale.set_scaling_factor(v, 10*s)

 if hasattr(self, "pressure_dx"):
 for (t, x), v in self.pressure_dx.items():
 if iscale.get_scaling_factor(v) is None:
 s = iscale.get_scaling_factor(
 self.properties[t, x].pressure, default=1, warning=True)
 iscale.set_scaling_factor(v, 10*s)

 # Enthalpy flow variable and constraint
 if hasattr(self, "_enthalpy_flow"):
 for (t,x,p), v in self._enthalpy_flow.items():
 sf = iscale.get_scaling_factor(
 self.properties[t, x].get_enthalpy_flow_terms(p),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)
 iscale.set_scaling_factor(self.enthalpy_flow_dx[t,x,p], sf*100)
 c = self.enthalpy_flow_linking_constraint[t,x,p]
 iscale.constraint_scaling_transform(c, sf)

 if hasattr(self, "_flow_terms"):
 for (t,x,p,j), v in self._flow_terms.items():
 sf = iscale.get_scaling_factor(
 self.properties[t, x].get_material_flow_terms(p, j),
 default=1,
 warning=True)
 iscale.set_scaling_factor(v, sf)
 iscale.set_scaling_factor(self.material_flow_dx[t,x,p,j], sf*100)
 c = self.material_flow_linking_constraints[t,x,p,j]
 iscale.constraint_scaling_transform(c, sf)

 # Material Holdup Constraints
 if hasattr(self, "material_holdup_calculation"):
 for i, c in self.material_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True))

 if hasattr(self, "pressure_balance"):
 for i, c in self.pressure_balance.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.properties[i].pressure, default=1, warning=True))

 if hasattr(self, "material_balances"):
 mb_type = self._constructed_material_balance_type
 if mb_type == MaterialBalanceType.componentPhase:
 for (t, x, p, j), c in self.material_balances.items():
 sf = iscale.get_scaling_factor(
 self.properties[t,x].get_material_flow_terms(p, j),
 default=1,
 warning=True)
 iscale.constraint_scaling_transform(c, sf)
 elif mb_type == MaterialBalanceType.componentTotal:
 for (t, x, j), c in self.material_balances.items():
 sf = iscale.min_scaling_factor(
 [self.properties[t,x].get_material_flow_terms(p, j)
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)
 else:
 _log.warning(f"Unknow material balance type {mb_type}")

 # Energy Balance Constraints
 if hasattr(self, "enthalpy_balances"):
 for i, c in self.enthalpy_balances.items():
 sf = iscale.min_scaling_factor(
 [self.properties[i].get_enthalpy_flow_terms(p)
 for p in phase_list])
 iscale.constraint_scaling_transform(c, sf)

 if hasattr(self, "energy_holdup_calculation"):
 for i, c in self.energy_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.energy_holdup[i], default=1, warning=True))

 if hasattr(self, "meterial_holdup_calculation"):
 for i, c in self.material_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.material_holdup[i], default=1, warning=True))

 if hasattr(self, "elemental_holdup_calculation"):
 for i, c in self.elemental_holdup_calculation.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.element_holdup[i], default=1, warning=True))

 if hasattr(self, "element_balances"):
 for i, c in self.element_balances.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.elemental_flow_dx[i], default=1, warning=True))

 if hasattr(self, "elemental_flow_constraint"):
 for i, c in self.elemental_flow_constraint.items():
 iscale.constraint_scaling_transform(
 c, iscale.get_scaling_factor(
 self.elemental_flow_term[i], default=1, warning=True))

 if hasattr(self, "rate_reaction_stoichiometry_constraint"):
 for i, c in self.rate_reaction_stoichiometry_constraint.items():
 iscale.constraint_scaling_transform(c, iscale.get_scaling_factor(
 self.rate_reaction_generation[i], default=1, warning=True))

 if hasattr(self, "equilibrium_reaction_stoichiometry_constraint"):
 for i, c in self.equilibrium_reaction_stoichiometry_constraint.items():
 iscale.constraint_scaling_transform(c, iscale.get_scaling_factor(
 self.equilibrium_reaction_generation[i],
 default=1,
 warning=True))

 idaes.core.flowsheet_model

 Source code for idaes.core.flowsheet_model

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains the base class for constructing flowsheet models in the
IDAES modeling framework.
"""

import pyomo.environ as pe
from pyomo.dae import ContinuousSet
from pyomo.network import Arc
from pyomo.common.config import ConfigValue, In
from pyomo.core.base.units_container import _PyomoUnit

from idaes.core import (ProcessBlockData, declare_process_block_class,
 UnitModelBlockData, useDefault)
from idaes.core.util.config import (is_physical_parameter_block,
 is_time_domain,
 list_of_floats)
from idaes.core.util.exceptions import DynamicError, ConfigurationError
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.ui.fsvis.fsvis import visualize

from idaes.core.util import unit_costing as costing
import idaes.logger as idaeslog

Some more information about this module
__author__ = "John Eslick, Qi Chen, Andrew Lee"

__all__ = ['FlowsheetBlock', 'FlowsheetBlockData']

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("FlowsheetBlock", doc="""
 FlowsheetBlock is a specialized Pyomo block for IDAES flowsheet models, and
 contains instances of FlowsheetBlockData.""")
class FlowsheetBlockData(ProcessBlockData):
 """
 The FlowsheetBlockData Class forms the base class for all IDAES process
 flowsheet models. The main purpose of this class is to automate the tasks
 common to all flowsheet models and ensure that the necessary attributes of
 a flowsheet model are present.

 The most signfiicant role of the FlowsheetBlockData class is to
 automatically create the time domain for the flowsheet.
 """

 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("dynamic", ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Dynamic model flag",
 doc="""Indicates whether this model will be dynamic,
default - useDefault.
Valid values: {
useDefault - get flag from parent or False,
True - set as a dynamic model,
False - set as a steady-state model.}"""))
 CONFIG.declare("time", ConfigValue(
 default=None,
 domain=is_time_domain,
 description="Flowsheet time domain",
 doc="""Pointer to the time domain for the flowsheet. Users may provide
an existing time domain from another flowsheet, otherwise the flowsheet will
search for a parent with a time domain or create a new time domain and
reference it here."""))
 CONFIG.declare("time_set", ConfigValue(
 default=[0],
 domain=list_of_floats,
 description="Set of points for initializing time domain",
 doc="""Set of points for initializing time domain. This should be a
list of floating point numbers,
default - [0]."""))
 CONFIG.declare("time_units", ConfigValue(
 description="Units for time domain",
 doc="""Pyomo Units object describing the units of the time domain.
This must be defined for dynamic simulations, default = None."""))
 CONFIG.declare("default_property_package", ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Default property package to use in flowsheet",
 doc="""Indicates the default property package to be used by models
within this flowsheet if not otherwise specified,
default - None.
Valid values: {
None - no default property package,
a ParameterBlock object.}"""))

[docs] def build(self):
 """
 General build method for FlowsheetBlockData. This method calls a number
 of sub-methods which automate the construction of expected attributes
 of flowsheets.

 Inheriting models should call `super().build`.

 Args:
 None

 Returns:
 None
 """
 super(FlowsheetBlockData, self).build()

 self._time_units = None

 # Set up dynamic flag and time domain
 self._setup_dynamics()

 @property
 def time_units(self):
 return self._time_units

[docs] def is_flowsheet(self):
 """
 Method which returns True to indicate that this component is a
 flowsheet.

 Args:
 None

 Returns:
 True
 """
 return True

[docs] def model_check(self):
 """
 This method runs model checks on all unit models in a flowsheet.

 This method searches for objects which inherit from UnitModelBlockData
 and executes the model_check method if it exists.

 Args:
 None

 Returns:
 None
 """
 _log.info("Executing model checks.")
 for o in self.component_objects(descend_into=False):
 if isinstance(o, UnitModelBlockData):
 try:
 o.model_check()
 except AttributeError:
 # This should never happen, but just in case
 _log.warning('{} Model/block has no model_check method.'
 .format(o.name))

[docs] def stream_table(self, true_state=False, time_point=0, orient='columns'):
 """
 Method to generate a stream table by iterating over all Arcs in the
 flowsheet.

 Args:
 true_state : whether the state variables (True) or display
 variables (False, default) from the StateBlocks should
 be used in the stream table.
 time_point : point in the time domain at which to create stream
 table (default = 0)
 orient : whether stream should be shown by columns ("columns") or
 rows ("index")

 Returns:
 A pandas dataframe containing stream table information
 """
 dict_arcs = {}

 for a in self.component_objects(ctype=Arc, descend_into=False):
 dict_arcs[a.local_name] = a

 return create_stream_table_dataframe(dict_arcs,
 time_point=time_point,
 orient=orient,
 true_state=true_state)

[docs] def visualize(self, model_name, **kwargs):
 """
 Starts up a flask server that serializes the model and pops up a
 webpage with the visualization

 Args:
 model_name : The name of the model that flask will use as an argument
 for the webpage
 Keyword Args:
 **kwargs: Additional keywords for :func:`idaes.ui.fsvis.visualize()`

 Returns:
 None
 """
 visualize(self, model_name, **kwargs)

[docs] def get_costing(self, module=costing, year=None, integer_n_units=False):
 """
 Creates a new block called 'costing' at the flowsheet level. This block
 builds global parameters used in costing methods (power plant costing
 and generic costing).

 Args:
 self - idaes flowsheet
 year : used to build parameter CE_index (Chemical Engineering),
 this parameter is the same for all costing blocks in the flowsheet
 integer_n_units : flag to define variable domain (True: domain is
 within Integer numbers, False: domain is NonNegativeReals).
 Returns:
 None
 """
 self.costing = pe.Block()

 module.global_costing_parameters(self.costing, year=year,
 integer_n_units=integer_n_units)

 def _get_stream_table_contents(self, time_point=0):
 """
 Calls stream_table method and returns result
 """
 return self.stream_table(time_point)

 def _setup_dynamics(self):
 # Look for parent flowsheet
 fs = self.flowsheet()

 # Check the dynamic flag, and retrieve if necessary
 if self.config.dynamic == useDefault:
 if fs is None:
 # No parent, so default to steady-state and warn user
 _log.warning('{} is a top level flowsheet, but dynamic flag '
 'set to useDefault. Dynamic '
 'flag set to False by default'
 .format(self.name))
 self.config.dynamic = False

 else:
 # Get dynamic flag from parent flowsheet
 self.config.dynamic = fs.config.dynamic

 # Check for case when dynamic=True, but parent dynamic=False
 elif self.config.dynamic is True:
 if fs is not None and fs.config.dynamic is False:
 raise DynamicError(
 '{} trying to declare a dynamic model within '
 'a steady-state flowsheet. This is not '
 'supported by the IDAES framework. Try '
 'creating a dynamic flowsheet instead, and '
 'declaring some models as steady-state.'
 .format(self.name))

 # Validate units for time domain
 if self.config.time_units is None and self.config.dynamic:
 _log.warning("DEPRECATED: No units were specified for the time "
 "domain. Users should provide units via the "
 "time_units configuration argument.")
 elif self.config.time_units is None and not self.config.dynamic:
 _log.info_high("DEPRECATED: No units were specified for the time "
 "domain. Users should provide units via the "
 "time_units configuration argument.")
 elif not isinstance(self.config.time_units, _PyomoUnit):
 raise ConfigurationError(
 "{} unrecognised value for time_units argument. This must be "
 "a Pyomo Unit object (not a compound unit)."
 .format(self.name))

 if self.config.time is not None:
 # Validate user provided time domain
 if (self.config.dynamic is True and
 not isinstance(self.config.time, ContinuousSet)):
 raise DynamicError(
 '{} was set as a dynamic flowsheet, but time domain '
 'provided was not a ContinuousSet.'.format(self.name))
 self._time_units = self.config.time_units
 else:
 # If no parent flowsheet, set up time domain
 if fs is None:
 # Create time domain
 if self.config.dynamic:
 # Check if time_set has at least two points
 if len(self.config.time_set) < 2:
 # Check if time_set is at default value
 if self.config.time_set == [0.0]:
 # If default, set default end point to be 1.0
 self.config.time_set = [0.0, 1.0]
 else:
 # Invalid user input, raise Excpetion
 raise DynamicError(
 "Flowsheet provided with invalid "
 "time_set attribute - must have at "
 "least two values (start and end).")
 # For dynamics, need a ContinuousSet
 self.time = ContinuousSet(initialize=self.config.time_set)
 else:
 # For steady-state, use an ordered Set
 self.time = pe.Set(initialize=self.config.time_set,
 ordered=True)
 self._time_units = self.config.time_units

 # Set time config argument as reference to time domain
 self.config.time = self.time
 else:
 # Set time config argument to parent time
 self.config.time = fs.config.time
 self._time_units = fs._time_units

 idaes.core.phases

 Source code for idaes.core.phases

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
IDAES Phase objects

Created on Tue Feb 18 10:54:52 2020

@author: alee
"""
from enum import Enum

from pyomo.environ import Set
from pyomo.common.config import ConfigBlock, ConfigValue

from .process_base import (declare_process_block_class,
 ProcessBlockData)

Enumerate recognised Phase types
class PhaseType(Enum):
 undefined = 0
 liquidPhase = 1
 vaporPhase = 2
 solidPhase = 3
 aqueousPhase = 4

TODO: Document EoS options and parameter_Data
@declare_process_block_class("Phase")
class PhaseData(ProcessBlockData):
 CONFIG = ConfigBlock()
 CONFIG.declare("component_list", ConfigValue(
 default=None,
 domain=list,
 description="List of components in phase",
 doc="List of components which are present in phase. This is used "
 "to construct the phase-component Set for the property package."))
 CONFIG.declare("equation_of_state", ConfigValue(
 default=None,
 description="Equation of state for phase",
 doc="""A valid Python class with the necessary methods for
 constructing the desired equation of state (or similar
 model)."""))
 CONFIG.declare("equation_of_state_options", ConfigValue(
 default=None,
 description="Options for equation of state",
 doc="""A dict or ConfigBlock of options to be used when setting
 up equation of state for phase."""))
 CONFIG.declare("parameter_data", ConfigValue(
 default={},
 domain=dict,
 description="Dict containing initialization data for parameters"))
 CONFIG.declare("_phase_list_exists", ConfigValue(
 default=False,
 doc="Internal config argument indicating whether phase_list "
 "needs to be populated."))

 def build(self):
 super(PhaseData, self).build()

 # If the phase_list does not exist, add a reference to the new Phase
 # The IF is mostly for backwards compatability, to allow for old-style
 # property packages where the phase_list already exists but we need to
 # add new Phase objects
 if not self.config._phase_list_exists:
 self.__add_to_phase_list()

 # For the base Phase class, determine phase type based on component name
 # Derived classes will overload these and return the correct type
 # This will handle backwards compatability for old-style property packages
 def is_liquid_phase(self):
 if "Liq" in self.name:
 return True
 else:
 return False

 def is_solid_phase(self):
 if "Sol" in self.name:
 return True
 else:
 return False

 def is_vapor_phase(self):
 if "Vap" in self.name:
 return True
 else:
 return False

 def is_aqueous_phase(self):
 # Returns bool indicating if this phase involve electrolytes
 return False

 def __add_to_phase_list(self):
 """
 Method to add reference to new Phase in phase_list
 """
 parent = self.parent_block()
 try:
 phase_list = getattr(parent, "phase_list")
 phase_list.add(self.local_name)
 except AttributeError:
 # Parent does not have a phase_list yet, so create one
 parent.phase_list = Set(initialize=[self.local_name],
 ordered=True)

@declare_process_block_class("LiquidPhase")
class LiquidPhaseData(PhaseData):
 def is_liquid_phase(self):
 return True

 def is_solid_phase(self):
 return False

 def is_vapor_phase(self):
 return False

@declare_process_block_class("SolidPhase")
class SolidPhaseData(PhaseData):
 def is_liquid_phase(self):
 return False

 def is_solid_phase(self):
 return True

 def is_vapor_phase(self):
 return False

@declare_process_block_class("VaporPhase")
class VaporPhaseData(PhaseData):
 def is_liquid_phase(self):
 return False

 def is_solid_phase(self):
 return False

 def is_vapor_phase(self):
 return True

@declare_process_block_class("AqueousPhase")
class AqueousPhaseData(LiquidPhaseData):
 # Special phase type for liquid phases involving electrolytes
 # This is used to determine if we need to do the more complex component
 # list determinations
 def is_aqueous_phase(self):
 return True

List of all Phase types to use for validation
__all_phases__ = [Phase, LiquidPhase, SolidPhase, VaporPhase, AqueousPhase]

 idaes.core.process_base

 Source code for idaes.core.process_base

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Base for IDAES process model objects.
"""

import sys
import logging
import textwrap

from pyomo.core.base.block import _BlockData
from pyomo.core.base.misc import tabular_writer
from pyomo.environ import Block, value
from pyomo.gdp import Disjunct
from pyomo.common.config import ConfigBlock
from enum import Enum

from idaes.core.process_block import declare_process_block_class
from idaes.core.util.exceptions import (ConfigurationError,
 DynamicError,
 PropertyPackageError)
from idaes.core.util.tables import stream_table_dataframe_to_string
from idaes.core.util.model_statistics import (degrees_of_freedom,
 number_variables,
 number_activated_constraints,
 number_activated_blocks)

Some more inforation about this module
__author__ = "John Eslick, Qi Chen, Andrew Lee"

__all__ = ['ProcessBlockData']

useDefault = object()

Set up logger
_log = logging.getLogger(__name__)

Enumerate options for material flow basis
class MaterialFlowBasis(Enum):
 molar = 0
 mass = 1
 other = 2

[docs]@declare_process_block_class("ProcessBaseBlock")
class ProcessBlockData(_BlockData):
 """
 Base class for most IDAES process models and classes.

 The primary purpose of this class is to create the local config block to
 handle arguments provided by the user when constructing an object and to
 ensure that these arguments are stored in the config block.

 Additionally, this class contains a number of methods common to all IDAES
 classes.
 """
 CONFIG = ConfigBlock("ProcessBlockData", implicit=False)

 def __init__(self, component):
 """
 Initialize a ProcessBlockData object.

 Args:
 component(Block): container Block instance to which this _BlockData
 belongs.

 Returns:
 (ProcessBlockData): A new instance
 """
 super(ProcessBlockData, self).__init__(component=component)
 self._pb_configured = False

[docs] def build(self):
 """
 The build method is called by the default ProcessBlock rule. If a rule
 is sepecified other than the default it is important to call
 ProcessBlockData's build method to put information from the "default"
 and "initialize" arguments to a ProcessBlock derived class into the
 BlockData object's ConfigBlock.

 The the build method should usually be overloaded in a subclass derived
 from ProcessBlockData. This method would generally add Pyomo components
 such as variables, expressions, and constraints to the object. It is
 important for build() methods implimented in derived classes to call
 build() from the super class.

 Args:
 None

 Returns:
 None
 """
 self._get_config_args()

[docs] def flowsheet(self):
 """
 This method returns the components parent flowsheet object, i.e. the
 flowsheet component to which the model is attached. If the component
 has no parent flowsheet, the method returns None.

 Args:
 None

 Returns:
 Flowsheet object or None
 """
 parent = self.parent_block()

 while True:
 if parent is None:
 return None

 if hasattr(parent, 'is_flowsheet') and parent.is_flowsheet():
 return parent

 else:
 parent = parent.parent_block()

 def _get_config_args(self):
 """
 Get config arguments for this element and put them in the ConfigBlock
 """
 if self._pb_configured:
 return
 self._pb_configured = True
 idx_map = self.parent_component()._idx_map # index map function
 try:
 idx = self.index()
 except:
 idx = None
 if idx_map is not None:
 idx = idx_map(idx)
 initialize = self.parent_component()._block_data_config_initialize
 if idx in initialize:
 kwargs = initialize[idx]
 else:
 kwargs = self.parent_component()._block_data_config_default
 self.config = self.CONFIG(kwargs)

[docs] def fix_initial_conditions(self, state="steady-state"):
 """This method fixes the initial conditions for dynamic models.

 Args:
 state : initial state to use for simulation (default =
 'steady-state')

 Returns :
 None
 """
 if state == 'steady-state':
 for obj in self.component_objects((Block, Disjunct),
 descend_into=True):
 # Try to fix material_accumulation @ first time point
 try:
 obj.material_accumulation[
 obj.flowsheet().config.time.first(), ...].fix(0.0)
 except AttributeError:
 pass

 # Try to fix element_accumulation @ first time point
 try:
 obj.element_accumulation[
 obj.flowsheet().config.time.first(), ...].fix(0.0)
 except AttributeError:
 pass

 # Try to fix energy_accumulation @ first time point
 try:
 obj.energy_accumulation[
 obj.flowsheet().config.time.first(), ...].fix(0.0)
 except AttributeError:
 pass

 else:
 raise ValueError("Unrecognised value for argument 'state'. "
 "Valid values are 'steady-state'.")

[docs] def unfix_initial_conditions(self):
 """This method unfixed the initial conditions for dynamic models.

 Args:
 None

 Returns :
 None
 """
 for obj in self.component_objects(Block, descend_into=True):
 # Try to unfix material_accumulation @ first time point
 try:
 obj.material_accumulation[
 obj.flowsheet().config.time.first(), ...].unfix()
 except AttributeError:
 pass

 # Try to fix element_accumulation @ first time point
 try:
 obj.element_accumulation[
 obj.flowsheet().config.time.first(), ...].unfix()
 except AttributeError:
 pass

 # Try to fix energy_accumulation @ first time point
 try:
 obj.energy_accumulation[
 obj.flowsheet().config.time.first(), ...].unfix()
 except AttributeError:
 pass

 def report(self, time_point=0, dof=False, ostream=None, prefix=""):

 time_point = float(time_point)

 if ostream is None:
 ostream = sys.stdout

 # Get DoF and model stats
 if dof:
 dof_stat = degrees_of_freedom(self)
 nv = number_variables(self)
 nc = number_activated_constraints(self)
 nb = number_activated_blocks(self)

 # Get components to report in performance section
 performance = self._get_performance_contents(time_point=time_point)

 # Get stream table
 stream_table = self._get_stream_table_contents(time_point=time_point)

 # Set model type output
 if hasattr(self, "is_flowsheet") and self.is_flowsheet:
 model_type = "Flowsheet"
 else:
 model_type = "Unit"

 # Write output
 max_str_length = 84
 tab = " "*4
 ostream.write("\n"+"="*max_str_length+"\n")

 lead_str = f"{prefix}{model_type} : {self.name}"
 trail_str = f"Time: {time_point}"
 mid_str = " "*(max_str_length-len(lead_str)-len(trail_str))
 ostream.write(lead_str+mid_str+trail_str)

 if dof:
 ostream.write("\n"+"="*max_str_length+"\n")
 ostream.write(f"{prefix}{tab}Local Degrees of Freedom: {dof_stat}")
 ostream.write('\n')
 ostream.write(f"{prefix}{tab}Total Variables: {nv}{tab}"
 f"Activated Constraints: {nc}{tab}"
 f"Activated Blocks: {nb}")

 if performance is not None:
 ostream.write("\n"+"-"*max_str_length+"\n")
 ostream.write(f"{prefix}{tab}Unit Performance")
 ostream.write("\n"*2)
 if "vars" in performance.keys() and len(performance["vars"]) > 0:
 ostream.write(f"{prefix}{tab}Variables: \n\n")

 tabular_writer(
 ostream,
 prefix+tab,
 ((k, v) for k, v in performance["vars"].items()),
 ("Value", "Fixed", "Bounds"),
 lambda k, v: [
 "{:#.5g}".format(value(v)),
 v.fixed,
 v.bounds])

 if "exprs" in performance.keys() and len(performance["exprs"]) > 0:
 ostream.write("\n")
 ostream.write(f"{prefix}{tab}Expressions: \n\n")

 tabular_writer(
 ostream,
 prefix+tab,
 ((k, v) for k, v in performance["exprs"].items()),
 ("Value",),
 lambda k, v: [
 "{:#.5g}".format(value(v))])

 if ("params" in performance.keys() and
 len(performance["params"]) > 0):
 ostream.write("\n")
 ostream.write(f"{prefix}{tab}Parameters: \n\n")

 tabular_writer(
 ostream,
 prefix+tab,
 ((k, v) for k, v in performance["params"].items()),
 ("Value", "Mutable"),
 lambda k, v: [value(v),
 not v.is_constant()])

 if stream_table is not None:
 ostream.write("\n"+"-"*max_str_length+"\n")
 ostream.write(f"{prefix}{tab}Stream Table")
 ostream.write('\n')
 ostream.write(
 textwrap.indent(
 stream_table_dataframe_to_string(stream_table),
 prefix+tab))
 ostream.write("\n"+"="*max_str_length+"\n")

 def _get_performance_contents(self, time_point):
 return None

 def _get_stream_table_contents(self, time_point):
 return None

 def serialize_contents(self, time_point=0):
 return self._get_performance_contents(time_point), self._get_stream_table_contents(time_point)

 def _setup_dynamics(self):
 """
 This method automates the setting of the dynamic flag and time domain
 for unit models.

 Performs the following:
 1) Determines if this is a top level flowsheet
 2) Gets dynamic flag from parent if not top level, or checks validity
 of argument provided
 3) Checks has_holdup flag if present and dynamic = True

 Args:
 None

 Returns:
 None
 """
 # Get parent object
 if hasattr(self.parent_block(), "config"):
 # Parent block has a config block, so use this
 parent = self.parent_block()
 else:
 # Use parent flowsheet
 try:
 parent = self.flowsheet()
 except ConfigurationError:
 raise DynamicError('{} has no parent flowsheet from which to '
 'get dynamic argument. Please provide a '
 'value for this argument when constructing '
 'the unit.'
 .format(self.name))

 # Check the dynamic flag, and retrieve if necessary
 if self.config.dynamic == useDefault:
 # Get flag from parent flowsheet
 try:
 self.config.dynamic = parent.config.dynamic
 except AttributeError:
 # No flowsheet, raise exception
 raise DynamicError('{} parent flowsheet has no dynamic '
 'argument. Please provide a '
 'value for this argument when constructing '
 'the unit.'
 .format(self.name))

 # Check for case when dynamic=True, but parent dynamic=False
 if (self.config.dynamic and not parent.config.dynamic):
 raise DynamicError('{} trying to declare a dynamic model within '
 'a steady-state flowsheet. This is not '
 'supported by the IDAES framework. Try '
 'creating a dynamic flowsheet instead, and '
 'declaring some models as steady-state.'
 .format(self.name))

 # Set and validate has_holdup argument
 if self.config.has_holdup == useDefault:
 # Default to same value as dynamic flag
 self.config.has_holdup = self.config.dynamic
 elif self.config.has_holdup is False:
 if self.config.dynamic is True:
 # Dynamic model must have has_holdup = True
 raise ConfigurationError(
 "{} invalid arguments for dynamic and has_holdup. "
 "If dynamic = True, has_holdup must also be True "
 "(was False)".format(self.name))

 def _get_property_package(self):
 """
 This method gathers the necessary information about the property
 package to be used in the control volume block.

 If a property package has not been provided by the user, the method
 searches up the model tree until it finds an object with the
 'default_property_package' attribute and uses this package for the
 control volume block.

 The method also gathers any default construction arguments specified
 for the property package and combines these with any arguments
 specified by the user for the control volume block (user specified
 arguments take priority over defaults).

 Args:
 None

 Returns:
 None
 """
 # Get property_package block if not provided in arguments
 parent = self.parent_block()
 if self.config.property_package == useDefault:
 # Try to get property_package from parent
 try:
 if parent.config.property_package in [None, useDefault]:
 parent.config.property_package = \
 self._get_default_prop_pack()

 self.config.property_package = parent.config.property_package
 except AttributeError:
 self.config.property_package = self._get_default_prop_pack()

 # Check for any flowsheet level build arguments
 for k in self.config.property_package.config.default_arguments:
 if k not in self.config.property_package_args:
 self.config.property_package_args[k] = \
 self.config.property_package.config.default_arguments[k]

 def _get_default_prop_pack(self):
 """
 This method is used to find a default property package defined at the
 flowsheet level if a package is not provided as an argument when
 instantiating the control volume block.

 Args:
 None

 Returns:
 None
 """
 parent = self.flowsheet()
 while True:
 if parent is None:
 raise ConfigurationError(
 '{} no property package provided and '
 'no default defined by parent flowsheet(s).'
 .format(self.name))
 elif parent.config.default_property_package is not None:
 _log.info('{} Using default property package'
 .format(self.name))
 return parent.config.default_property_package

 parent = parent.flowsheet()

 def _get_indexing_sets(self):
 """
 This method collects all necessary indexing sets from property
 parameter block and makes references to these for use within the
 control volume block. Collected indexing sets are phase_list and
 component_list.

 Args:
 None

 Returns:
 None
 """
 # Check for phase list(s)
 if not hasattr(self.config.property_package, "phase_list"):
 raise PropertyPackageError(
 '{} property_package provided does not '
 'contain a phase_list. '
 'Please contact the developer of the property package.'
 .format(self.name))

 # Check for component list(s)
 if not hasattr(self.config.property_package, "component_list"):
 raise PropertyPackageError(
 '{} property_package provided does not '
 'contain a component_list. '
 'Please contact the developer of the property package.'
 .format(self.name))

 def _get_reaction_package(self):
 """
 This method gathers the necessary information about the reaction
 package to be used in the control volume block (if required).

 If a reaction package has been provided by the user, the method
 gathers any default construction arguments specified
 for the reaction package and combines these with any arguments
 specified by the user for the control volume block (user specified
 arguments take priority over defaults).

 Args:
 None

 Returns:
 None
 """
 if self.config.reaction_package is not None:
 # Check for any flowsheet level build arguments
 for k in self.config.reaction_package.config.default_arguments:
 if k not in self.config.reaction_package_args:
 self.config.reaction_package_args[k] = \
 self.config.reaction_package.config.default_arguments[k]

 def calculate_scaling_factors(self):
 # This lets you call super().calculate_scaling_factors() in a unit
 # model's calculate_scaling_factors method without worrying about
 # whether the parent class defines one. This allows for a more standized
 # form of calculate_scaling_factors() methods.
 pass

 idaes.core.process_block

 Source code for idaes.core.process_block

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
The process_block module simplifies inheritance of Pyomo blocks. The main
reason to subclass a Pyomo block is to create a block that comes with
pre-defined model equations. This is used in the IDAES modeling framework to
create modular process model blocks.
"""

import sys
import logging

from pyomo.common.config import ConfigBlock
from pyomo.environ import Block

__author__ = "John Eslick"
__all__ = ['ProcessBlock', 'declare_process_block_class']

def _rule_default(b, *args):
 """
 Default rule for ProcessBlock, which calls build(). A different rule can
 be specified to add additional build steps, or to not call build at all
 using the normal rule argument to ProcessBlock init.
 """
 try:
 b.build()
 except Exception:
 logging.getLogger(__name__).exception(
 "Failure in build: {}".format(b))
 raise

_process_block_docstring = """
 Args:
 rule (function): A rule function or None. Default rule calls build().
 concrete (bool): If True, make this a toplevel model. **Default** - False.
 ctype (str): Pyomo ctype of the block. **Default** - "Block"
 default (dict): Default ProcessBlockData config{}
 initialize (dict): ProcessBlockData config for individual elements. Keys
 are BlockData indexes and values are dictionaries described under the
 "default" argument above.
 idx_map (function): Function to take the index of a BlockData element and
 return the index in the initialize dict from which to read arguments.
 This can be provided to overide the default behavior of matching the
 BlockData index exactly to the index in initialize.
 Returns:
 ({}) New instance
 """

_config_block_keys_docstring = """

 ..

 Keys
{}
 ..
"""

def _process_kwargs(o, kwargs):
 kwargs.setdefault("rule", _rule_default)
 o._block_data_config_default = kwargs.pop("default", None)
 o._block_data_config_initialize = ConfigBlock(implicit=True)
 o._block_data_config_initialize.set_value(kwargs.pop("initialize", None))
 o._idx_map = kwargs.pop("idx_map", None)

class _IndexedProcessBlockMeta(type):
 """Metaclass used to create an indexed model class."""

 def __new__(meta, name, bases, dct):
 def __init__(self, *args, **kwargs):
 _process_kwargs(self, kwargs)
 bases[0].__init__(self, *args, **kwargs)
 dct["__init__"] = __init__
 dct["__process_block__"] = "indexed"
 return type.__new__(meta, name, bases, dct)

class _ScalarProcessBlockMeta(type):
 """Metaclass used to create a scalar model class."""

 def __new__(meta, name, bases, dct):
 def __init__(self, *args, **kwargs):
 _process_kwargs(self, kwargs)
 bases[0].__init__(self, component=self)
 bases[1].__init__(self, *args, **kwargs)
 dct["__init__"] = __init__
 dct["__process_block__"] = "scalar"
 return type.__new__(meta, name, bases, dct)

[docs]class ProcessBlock(Block):
 __doc__ = """
 ProcessBlock is a Pyomo Block that is part of a system to make Pyomo
 Block easier to subclass. The main difference between a Pyomo Block and
 ProcessBlock from the user perspective is that a ProcessBlock has a rule
 assigned by default that calls the build() method for the contained
 ProcessBlockData objects. The default rule can be overridden, but the new
 rule should always call build() for the ProcessBlockData object.
 """ + _process_block_docstring.format("", "ProcessBlock")

 def __new__(cls, *args, **kwds):
 """Create a new indexed or scalar ProcessBlock subclass instance
 depending on whether there are args. If there are args those should be
 an indexing set."""
 if hasattr(cls, "__process_block__"):
 # __process_block__ is a class attribute created when making an
 # indexed or scalar subclass of ProcessBlock (or subclass thereof).
 # If cls dosen't have it, the indexed or scalar class has not been
 # created yet.
 #
 # You get here after creating a new indexed or scalar class in the
 # next if below. The first time in, cls is a ProcessBlock subclass
 # that is neither indexed or scalar so you go to the if below and
 # create an index or scalar subclass of cls.
 return super(Block, cls).__new__(cls)
 if args == (): # no args so make scalar class
 bname = "_Scalar{}".format(cls.__name__)
 n = _ScalarProcessBlockMeta(bname, (cls._ComponentDataClass, cls),{})
 return n.__new__(n) #calls this __new__() again with scalar class
 else: # args so make indexed class
 bname = "_Indexed{}".format(cls.__name__)
 n = _IndexedProcessBlockMeta(bname, (cls,), {})
 return n.__new__(n) #calls this __new__() again with indexed class

[docs] @classmethod
 def base_class_name(cls):
 """Name given by the user to the ProcessBase class.

 Return:
 (str) Name of the class.
 Raises:
 AttributeError, if no base class name was set, e.g. this class
 was *not* wrapped by the `declare_process_block_class`
 decorator.

 """
 return cls._orig_name

[docs] @classmethod
 def base_class_module(cls):
 """Return module of the associated ProcessBase class.

 Return:
 (str) Module of the class.
 Raises:
 AttributeError, if no base class module was set, e.g. this class
 was *not* wrapped by the `declare_process_block_class` decorator.

 """
 return cls._orig_module

[docs]def declare_process_block_class(name, block_class=ProcessBlock, doc=""):
 """
 Declare a new ProcessBlock subclass.

 This is a decorator function for a class definition, where the class is
 derived from Pyomo's _BlockData. It creates a ProcessBlock subclass to
 contain the decorated class. The only requirment is that the subclass of
 _BlockData contain a build() method. The purpose of this decorator is to
 simplify subclassing Pyomo's block class.

 Args:
 name: name of class to create
 block_class: ProcessBlock or a subclass of ProcessBlock, this allows
 you to use a subclass of ProcessBlock if needed. The typical use
 case for Subclassing ProcessBlock is to impliment methods that
 operate on elements of an indexed block.
 doc: Documentation for the class. This should play nice with sphinx.

 Returns:
 Decorator function

 """
 def proc_dec(cls): # Decorator function
 # create a new class called name from block_class
 try:
 cb_doc = cls.CONFIG.generate_documentation(
 block_start="", block_end="", item_start="%s\n",
 indent_spacing=4, item_body="%s", item_end="\n", width=66)
 cb_doc += "\n"
 cb_doc = '\n'.join(' '*12 + x for x in cb_doc.splitlines())
 except:
 cb_doc = ""
 if cb_doc != "":
 cb_doc = _config_block_keys_docstring.format(cb_doc)
 ds = "\n".join([doc, _process_block_docstring.format(cb_doc, name)])
 c = type(name, (block_class,),
 {"__module__": cls.__module__,
 "_ComponentDataClass": cls,
 "__doc__":ds})
 setattr(sys.modules[cls.__module__], name, c)
 setattr(cls, '_orig_name', name)
 setattr(cls, '_orig_module', cls.__module__)
 return cls
 return proc_dec # return decorator function

 idaes.core.property_base

 Source code for idaes.core.property_base

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains classes for property blocks and property parameter blocks.
"""

import sys

Import Pyomo libraries
from pyomo.environ import Set, value, Var, Param, Expression, Constraint
from pyomo.core.base.var import _VarData
from pyomo.core.base.expression import _ExpressionData
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.core.base.misc import tabular_writer

Import IDAES cores
from idaes.core.process_block import ProcessBlock
from idaes.core import ProcessBlockData
from idaes.core import property_meta
from idaes.core import MaterialFlowBasis
from idaes.core.phases import Phase, PhaseData
from idaes.core.components import Component, ComponentData
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.exceptions import (BurntToast,
 ConfigurationError,
 PropertyNotSupportedError,
 PropertyPackageError)
from idaes.core.util.misc import add_object_reference
from idaes.core.util.model_statistics import (degrees_of_freedom,
 number_variables,
 number_activated_constraints,
 number_activated_blocks)
from idaes.core.util import scaling as iscale
import idaes.logger as idaeslog

Some more information about this module
__author__ = "Andrew Lee, John Eslick"

__all__ = ['StateBlockData',
 'StateBlock',
 'PhysicalParameterBlock']

Set up logger
_log = idaeslog.getLogger(__name__)

class _lock_attribute_creation_context(object):
 """Context manager to lock creation of new attributes on a state block"""
 def __init__(self, block):
 self.block = block
 def __enter__(self):
 self.block._lock_attribute_creation = True
 def __exit__(self, exc_type, exc_value, traceback):
 self.block._lock_attribute_creation = False

[docs]class PhysicalParameterBlock(ProcessBlockData,
 property_meta.HasPropertyClassMetadata):
 """
 This is the base class for thermophysical parameter blocks. These are
 blocks that contain a set of parameters associated with a specific
 thermophysical property package, and are linked to by all instances of
 that property package.
 """
 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("default_arguments", ConfigBlock(
 implicit=True,
 description="Default arguments to use with Property Package"))

[docs] def build(self):
 """
 General build method for PropertyParameterBlocks. Inheriting models
 should call super().build.

 Args:
 None

 Returns:
 None
 """
 super(PhysicalParameterBlock, self).build()

 # Need this to work with the Helmholtz EoS package
 if not hasattr(self, "_state_block_class"):
 self._state_block_class = None

 # This is a dict to store default property scaling factors. They are
 # defined in the parameter block to provide a universal default for
 # quantities in a particular kind of state block. For example, you can
 # set flow scaling once instead of for every state block. Some of these
 # may be left for the user to set and some may be defined in a property
 # module where reasonable defaults can be defined a priori. See
 # set_default_scaling, get_default_scaling, and unset_default_scaling
 self.default_scaling_factor = {}

[docs] def set_default_scaling(self, attrbute, value, index=None):
 """Set a default scaling factor for a property.

 Args:
 attribute: property attribute name
 value: default scaling factor
 index: for indexed properties, if this is not provied the scaling
 factor default applies to all indexed elements where specific
 indexes are no specifcally specified.

 Returns:
 None
 """
 self.default_scaling_factor[(attrbute, index)] = value

[docs] def unset_default_scaling(self, attrbute, index=None):
 """Remove a previously set default value

 Args:
 attribute: property attribute name
 index: optional index for indexed properties

 Returns:
 None
 """
 try:
 del self.default_scaling_factor[(attrbute, index)]
 except KeyError:
 pass

[docs] def get_default_scaling(self, attrbute, index=None):
 """ Returns a default scale factor for a property

 Args:
 attribute: property attribute name
 index: optional index for indexed properties

 Returns:
 None
 """
 try:
 # If a specific component data index exists
 return self.default_scaling_factor[(attrbute, index)]
 except KeyError:
 try:
 # indexed, but no specifc index?
 return self.default_scaling_factor[(attrbute, None)]
 except KeyError:
 # Can't find a default scale factor for what you asked for
 return None

 @property
 def state_block_class(self):
 if self._state_block_class is not None:
 return self._state_block_class
 else:
 raise AttributeError(
 "{} has not assigned a StateBlock class to be associated "
 "with this property package. Please contact the developer of "
 "the property package.".format(self.name))

 @state_block_class.setter
 def state_block_class(self, val):
 _log.warning("DEPRECATED: state_block_class should not be set "
 "directly. Property package developers should set the "
 "_state_block_class attribute instead.")
 self._state_block_class = val

[docs] def build_state_block(self, *args, **kwargs):
 """
 Methods to construct a StateBlock assoicated with this
 PhysicalParameterBlock. This will automatically set the parameters
 construction argument for the StateBlock.

 Returns:
 StateBlock

 """
 default = kwargs.pop("default", {})
 initialize = kwargs.pop("initialize", {})

 if initialize == {}:
 default["parameters"] = self
 else:
 for i in initialize.keys():
 initialize[i]["parameters"] = self

 return self.state_block_class(*args,
 **kwargs,
 default=default,
 initialize=initialize)

[docs] def get_phase_component_set(self):
 """
 Method to get phase-component set for property package. If a phase-
 component set has not been constructed yet, this method will construct
 one.

 Args:
 None

 Returns:
 Phase-Component Set object
 """
 try:
 return self._phase_component_set
 except AttributeError:
 # Phase-component set does not exist, so create one.
 pc_set = []
 for p in self.phase_list:
 p_obj = self.get_phase(p)
 if p_obj.config.component_list is not None:
 c_list = p_obj.config.component_list
 else:
 c_list = self.component_list
 for j in c_list:
 pc_set.append((p, j))

 self._phase_component_set = Set(initialize=pc_set, ordered=True)

 return self._phase_component_set

[docs] def get_component(self, comp):
 """
 Method to retrieve a Component object based on a name from the
 component_list.

 Args:
 comp: name of Component object to retrieve

 Returns:
 Component object
 """
 obj = getattr(self, comp)
 if not isinstance(obj, ComponentData):
 raise PropertyPackageError(
 "{} get_component found an attribute {}, but it does not "
 "appear to be an instance of a Component object."
 .format(self.name, comp))
 return obj

[docs] def get_phase(self, phase):
 """
 Method to retrieve a Phase object based on a name from the phase_list.

 Args:
 phase: name of Phase object to retrieve

 Returns:
 Phase object
 """
 obj = getattr(self, phase)
 if not isinstance(obj, PhaseData):
 raise PropertyPackageError(
 "{} get_phase found an attribute {}, but it does not "
 "appear to be an instance of a Phase object."
 .format(self.name, phase))
 return obj

 # TODO : Deprecate this code at some point
 def _validate_parameter_block(self):
 """
 Backwards compatability checks.

 This is code to check for old-style property packages and create
 the necessary Phase and Component objects.

 It also tries to catch some possible mistakes and provide the user with
 useful error messages.
 """
 try:
 # Check names in component list have matching Component objects
 for c in self.component_list:
 try:
 obj = getattr(self, str(c))
 if not isinstance(obj, ComponentData):
 raise TypeError(
 "Property package {} has an object {} whose "
 "name appears in component_list but is not an "
 "instance of Component".format(self.name, c))
 except AttributeError:
 # No object with name c, must be old-style package
 self._make_component_objects()
 break
 except AttributeError:
 # No component list
 raise PropertyPackageError("Property package {} has not defined a "
 "component list.".format(self.name))

 try:
 # Valdiate that names in phase list have matching Phase objects
 for p in self.phase_list:
 try:
 obj = getattr(self, str(p))
 if not isinstance(obj, PhaseData):
 raise TypeError(
 "Property package {} has an object {} whose "
 "name appears in phase_list but is not an "
 "instance of Phase".format(self.name, p))
 except AttributeError:
 # No object with name p, must be old-style package
 self._make_phase_objects()
 break
 except AttributeError:
 # No phase list
 raise PropertyPackageError("Property package {} has not defined a "
 "phase list.".format(self.name))

 # Also check that the phase-component set has been created.
 self.get_phase_component_set()

 def _make_component_objects(self):
 _log.warning("DEPRECATED: {} appears to be an old-style property "
 "package. It will be automatically converted to a "
 "new-style package, however users are strongly encouraged"
 " to convert their property packages to use phase and "
 "component objects."
 .format(self.name))
 for c in self.component_list:
 if hasattr(self, c):
 # An object with this name already exists, raise exception
 raise PropertyPackageError(
 "{} could not add Component object {} - an object with "
 "that name already exists.".format(self.name, c))

 self.add_component(str(c), Component(
 default={"_component_list_exists": True}))

 def _make_phase_objects(self):
 _log.warning("DEPRECATED: {} appears to be an old-style property "
 "package. It will be automatically converted to a "
 "new-style package, however users are strongly encouraged"
 " to convert their property packages to use phase and "
 "component objects."
 .format(self.name))
 for p in self.phase_list:
 if hasattr(self, p):
 # An object with this name already exists, raise exception
 raise PropertyPackageError(
 "{} could not add Phase object {} - an object with "
 "that name already exists.".format(self.name, p))

 try:
 pc_list = self.phase_comp[p]
 except AttributeError:
 pc_list = None
 self.add_component(str(p), Phase(
 default={"component_list": pc_list,
 "_phase_list_exists": True}))

[docs]class StateBlock(ProcessBlock):
 """
 This is the base class for state block objects. These are used when
 constructing the SimpleBlock or IndexedBlock which will contain the
 PropertyData objects, and contains methods that can be applied to
 multiple StateBlockData objects simultaneously.
 """

 @property
 def component_list(self):
 return self._return_component_list()

 def _return_component_list(self):
 return self._get_parameter_block().component_list

 @property
 def phase_list(self):
 return self._return_phase_list()

 def _return_phase_list(self):
 return self._get_parameter_block().phase_list

 @property
 def phase_component_set(self):
 return self._return_phase_component_set()

 def _return_phase_component_set(self):
 return self._get_parameter_block().get_phase_component_set()

 def _get_parameter_block(self):
 try:
 return self._block_data_config_default["parameters"]
 except (KeyError, TypeError):
 # Need to get parameters from initialize dict
 # We will also confirm these are all the same whilst we are at it
 param = None
 if self._block_data_config_default is None:
 self._block_data_config_default = {}
 for v in self._block_data_config_initialize.values():
 if param is None:
 param = v["parameters"]
 elif param is not v["parameters"]:
 raise ConfigurationError(
 "{} StateBlock must use the same parameter block for "
 "elements. When using the initialize argument, please "
 "ensure that the same value is used for all parameter "
 "keys.".format(self.name))
 self._block_data_config_default["parameters"] = param
 return param

[docs] def initialize(self, *args, **kwargs):
 """
 This is a default initialization routine for StateBlocks to ensure
 that a routine is present. All StateBlockData classes should
 overload this method with one suited to the particular property package

 Args:
 None

 Returns:
 None
 """
 raise NotImplementedError('{} property package has not implemented an'
 ' initialize method. Please contact '
 'the property package developer'
 .format(self.name))

[docs] def report(self, index=(0), true_state=False,
 dof=False, ostream=None, prefix=""):
 """
 Default report method for StateBlocks. Returns a Block report populated
 with either the display or state variables defined in the
 StateBlockData class.

 Args:
 index : tuple of Block indices indicating which point in time (and
 space if applicable) to report state at.
 true_state : whether to report the display variables (False
 default) or the actual state variables (True)
 dof : whether to show local degrees of freedom in the report
 (default=False)
 ostream : output stream to write report to
 prefix : string to append to the beginning of all output lines

 Returns:
 Printed output to ostream
 """

 if ostream is None:
 ostream = sys.stdout

 # Get DoF and model stats
 if dof:
 dof_stat = degrees_of_freedom(self[index])
 nv = number_variables(self[index])
 nc = number_activated_constraints(self[index])
 nb = number_activated_blocks(self[index])

 # Create stream table
 if true_state:
 disp_dict = self[index].define_state_vars()
 else:
 disp_dict = self[index].define_display_vars()

 stream_attributes = {}

 for k in disp_dict:
 for i in disp_dict[k]:
 if i is None:
 stream_attributes[k] = disp_dict[k][i]
 else:
 stream_attributes[k+" "+i] = disp_dict[k][i]

 # Write output
 max_str_length = 84
 tab = " "*4
 ostream.write("\n"+"="*max_str_length+"\n")

 lead_str = f"{prefix}State : {self.name}"
 trail_str = f"Index: {index}"
 mid_str = " "*(max_str_length-len(lead_str)-len(trail_str))
 ostream.write(lead_str+mid_str+trail_str)

 if dof:
 ostream.write("\n"+"="*max_str_length+"\n")
 ostream.write(f"{prefix}{tab}Local Degrees of Freedom: {dof_stat}")
 ostream.write('\n')
 ostream.write(f"{prefix}{tab}Total Variables: {nv}{tab}"
 f"Activated Constraints: {nc}{tab}"
 f"Activated Blocks: {nb}")

 ostream.write("\n"+"-"*max_str_length+"\n")
 ostream.write(f"{prefix}{tab}State Report")

 if any(isinstance(v, _VarData) for k, v in stream_attributes.items()):
 ostream.write("\n"*2)
 ostream.write(f"{prefix}{tab}Variables: \n\n")
 tabular_writer(
 ostream,
 prefix+tab,
 ((k, v) for k, v in stream_attributes.items()
 if isinstance(v, _VarData)),
 ("Value", "Fixed", "Bounds"),
 lambda k, v: ["{:#.5g}".format(value(v)),
 v.fixed,
 v.bounds])

 if any(isinstance(v, _ExpressionData) for
 k, v in stream_attributes.items()):
 ostream.write("\n"*2)
 ostream.write(f"{prefix}{tab}Expressions: \n\n")
 tabular_writer(
 ostream,
 prefix+tab,
 ((k, v) for k, v in stream_attributes.items()
 if isinstance(v, _ExpressionData)),
 ("Value",),
 lambda k, v: ["{:#.5g}".format(value(v))])

 ostream.write("\n"+"="*max_str_length+"\n")

[docs]class StateBlockData(ProcessBlockData):
 """
 This is the base class for state block data objects. These are
 blocks that contain the Pyomo components associated with calculating a
 set of thermophysical and transport properties for a given material.
 """
 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("parameters", ConfigValue(
 domain=is_physical_parameter_block,
 description="""A reference to an instance of the Property Parameter
Block associated with this property package."""))
 CONFIG.declare("defined_state", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Flag indicating if incoming state is fully defined",
 doc="""Flag indicating whether the state should be considered fully
defined, and thus whether constraints such as sum of mass/mole fractions should
be included,
default - False.
Valid values: {
True - state variables will be fully defined,
False - state variables will not be fully defined.}"""))
 CONFIG.declare("has_phase_equilibrium", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Phase equilibrium constraint flag",
 doc="""Flag indicating whether phase equilibrium constraints
should be constructed in this state block,
default - True.
Valid values: {
True - StateBlock should calculate phase equilibrium,
False - StateBlock should not calculate phase equilibrium.}"""))

 def __init__(self, *args, **kwargs):
 self._lock_attribute_creation = False
 super().__init__(*args, **kwargs)

[docs] def lock_attribute_creation_context(self):
 """Returns a context manager that does not allow attributes to be created
 while in the context and allows attributes to be created normally outside
 the context.
 """
 return _lock_attribute_creation_context(self)

[docs] def is_property_constructed(self, attr):
 """Returns True if the attribute ``attr`` already exists, or false if it
 would be added in ``__getattr__``, or does not exist.

 Args:
 attr (str): Attribute name to check

 Return:
 True if the attribute is already constructed, False otherwise
 """
 with self.lock_attribute_creation_context():
 return hasattr(self, attr)

 @property
 def component_list(self):
 return self.parent_component().component_list

 @property
 def phase_list(self):
 return self.parent_component().phase_list

 @property
 def phase_component_set(self):
 return self.parent_component().phase_component_set

[docs] def build(self):
 """
 General build method for StateBlockDatas.

 Args:
 None

 Returns:
 None
 """
 super(StateBlockData, self).build()
 add_object_reference(self, "_params", self.config.parameters)

 # TODO: Deprecate this at some point
 # Backwards compatability check for old-style property packages
 self._params._validate_parameter_block()

 @property
 def params(self):
 return self._params

[docs] def define_state_vars(self):
 """
 Method that returns a dictionary of state variables used in property
 package. Implement a placeholder method which returns an Exception to
 force users to overload this.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' define_state_vars method. Please contact '
 'the property package developer.')

[docs] def define_port_members(self):
 """
 Method used to specify components to populate Ports with. Defaults to
 define_state_vars, and developers should overload as required.
 """
 return self.define_state_vars()

[docs] def define_display_vars(self):
 """
 Method used to specify components to use to generate stream tables and
 other outputs. Defaults to define_state_vars, and developers should
 overload as required.
 """
 return self.define_state_vars()

[docs] def get_material_flow_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for material flow to use in
 the material balances.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_material_flow_terms method. Please '
 'contact the property package developer.')

[docs] def get_material_density_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for material density to use in
 the material balances .
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_material_density_terms method. Please '
 'contact the property package developer.')

[docs] def get_material_diffusion_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for material diffusion to use
 in the material balances.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_material_diffusion_terms method. '
 'Please contact the property package '
 'developer.')

[docs] def get_enthalpy_flow_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for enthalpy flow to use in
 the energy balances.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_enthalpy_flow_terms method. Please '
 'contact the property package developer.')

[docs] def get_energy_density_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for enthalpy density to use in
 the energy balances.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_energy_density_terms method. Please '
 'contact the property package developer.')

[docs] def get_energy_diffusion_terms(self, *args, **kwargs):
 """
 Method which returns a valid expression for energy diffusion to use in
 the energy balances.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' get_energy_diffusion_terms method. '
 'Please contact the property package '
 'developer.')

[docs] def get_material_flow_basis(self, *args, **kwargs):
 """
 Method which returns an Enum indicating the basis of the material flow
 term.
 """
 return MaterialFlowBasis.other

[docs] def calculate_bubble_point_temperature(self, *args, **kwargs):
 """
 Method which computes the bubble point temperature for a multi-
 component mixture given a pressure and mole fraction.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' calculate_bubble_point_temperature method.'
 ' Please contact the property package '
 'developer.')

[docs] def calculate_dew_point_temperature(self, *args, **kwargs):
 """
 Method which computes the dew point temperature for a multi-
 component mixture given a pressure and mole fraction.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' calculate_dew_point_temperature method.'
 ' Please contact the property package '
 'developer.')

[docs] def calculate_bubble_point_pressure(self, *args, **kwargs):
 """
 Method which computes the bubble point pressure for a multi-
 component mixture given a temperature and mole fraction.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' calculate_bubble_point_pressure method.'
 ' Please contact the property package '
 'developer.')

[docs] def calculate_dew_point_pressure(self, *args, **kwargs):
 """
 Method which computes the dew point pressure for a multi-
 component mixture given a temperature and mole fraction.
 """
 raise NotImplementedError('{} property package has not implemented the'
 ' calculate_dew_point_pressure method.'
 ' Please contact the property package '
 'developer.')

 def __getattr__(self, attr):
 """
 This method is used to avoid generating unnecessary property
 calculations in state blocks. __getattr__ is called whenever a
 property is called for, and if a propery does not exist, it looks for
 a method to create the required property, and any associated
 components.

 Create a property calculation if needed. Return an attrbute error if
 attr == 'domain' or starts with a _ . The error for _ prevents a
 recursion error if trying to get a function to create a property and
 that function doesn't exist. Pyomo also ocasionally looks for things
 that start with _ and may not exist. Pyomo also looks for the domain
 attribute, and it may not exist.
 This works by creating a property calculation by calling the "_"+attr
 function.

 A list of __getattr__ calls is maintained in self.__getattrcalls to
 check for recursive loops which maybe useful for debugging. This list
 is cleared after __getattr__ completes successfully.

 Args:
 attr: an attribute to create and return. Should be a property
 component.
 """
 if self._lock_attribute_creation:
 raise AttributeError(
 f"{attr} does not exist, and attribute creation is locked.")

 def clear_call_list(self, attr):
 """Local method for cleaning up call list when a call is handled.

 Args:
 attr: attribute currently being handled
 """
 if self.__getattrcalls[-1] == attr:
 if len(self.__getattrcalls) <= 1:
 del self.__getattrcalls
 else:
 del self.__getattrcalls[-1]
 else:
 raise PropertyPackageError(
 "{} Trying to remove call {} from __getattr__"
 " call list, however this is not the most "
 "recent call in the list ({}). This indicates"
 " a bug in the __getattr__ calls. Please "
 "contact the IDAES developers with this bug."
 .format(self.name, attr, self.__getattrcalls[-1]))

 # Check that attr is not something we shouldn't touch
 if attr == "domain" or attr.startswith("_"):
 # Don't interfere with anything by getting attributes that are
 # none of my business
 raise PropertyPackageError(
 '{} {} does not exist, but is a protected '
 'attribute. Check the naming of your '
 'components to avoid any reserved names'
 .format(self.name, attr))

 if attr == "config":
 try:
 self._get_config_args()
 return self.config
 except:
 raise BurntToast("{} getattr method was triggered by a call "
 "to the config block, but _get_config_args "
 "failed. This should never happen.")

 # Check for recursive calls
 try:
 # Check if __getattrcalls is initialized
 self.__getattrcalls
 except AttributeError:
 # Initialize it
 self.__getattrcalls = [attr]
 else:
 # Check to see if attr already appears in call list
 if attr in self.__getattrcalls:
 # If it does, indicates a recursive loop.
 if attr == self.__getattrcalls[-1]:
 # attr method is calling itself
 self.__getattrcalls.append(attr)
 raise PropertyPackageError(
 '{} _{} made a recursive call to '
 'itself, indicating a potential '
 'recursive loop. This is generally '
 'caused by the {} method failing to '
 'create the {} component.'
 .format(self.name, attr, attr, attr))
 else:
 self.__getattrcalls.append(attr)
 raise PropertyPackageError(
 '{} a potential recursive loop has been '
 'detected whilst trying to construct {}. '
 'A method was called, but resulted in a '
 'subsequent call to itself, indicating a '
 'recursive loop. This may be caused by a '
 'method trying to access a component out '
 'of order for some reason (e.g. it is '
 'declared later in the same method). See '
 'the __getattrcalls object for a list of '
 'components called in the __getattr__ '
 'sequence.'
 .format(self.name, attr))
 # If not, add call to list
 self.__getattrcalls.append(attr)

 # Get property information from properties metadata
 try:
 m = self.config.parameters.get_metadata().properties

 if m is None:
 raise PropertyPackageError(
 '{} property package get_metadata()'
 ' method returned None when trying to create '
 '{}. Please contact the developer of the '
 'property package'.format(self.name, attr))
 except KeyError:
 # If attr not in metadata, assume package does not
 # support property
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} {} is not supported by property package (property is '
 'not listed in package metadata properties).'
 .format(self.name, attr, attr))

 # Get method name from resulting properties
 try:
 if m[attr]['method'] is None:
 # If method is none, property should be constructed
 # by property package, so raise PropertyPackageError
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} should be constructed automatically '
 'by property package, but is not present. '
 'This can be caused by methods being called '
 'out of order.'.format(self.name, attr))
 elif m[attr]['method'] is False:
 # If method is False, package does not support property
 # Raise NotImplementedError
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} {} is not supported by property package '
 '(property method is listed as False in '
 'package property metadata).'
 .format(self.name, attr))
 elif isinstance(m[attr]['method'], str):
 # Try to get method name in from PropertyBlock object
 try:
 f = getattr(self, m[attr]['method'])
 except AttributeError:
 # If fails, method does not exist
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} package property metadata method '
 'returned a name that does not correspond'
 ' to any method in the property package. '
 'Please contact the developer of the '
 'property package.'.format(self.name, attr))
 else:
 # Otherwise method name is invalid
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} package property metadata method '
 'returned invalid value for method name. '
 'Please contact the developer of the '
 'property package.'
 .format(self.name, attr))
 except KeyError:
 # No method key - raise Exception
 # Need to use an AttributeError so Pyomo.DAE will handle this
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} package property metadata method '
 'does not contain a method for {}. '
 'Please select a package which supports '
 'the necessary properties for your process.'
 .format(self.name, attr))

 # Call attribute if it is callable
 # If this fails, it should return a meaningful error.
 if callable(f):
 try:
 f()
 except Exception:
 # Clear call list and reraise error
 clear_call_list(self, attr)
 raise
 else:
 # If f is not callable, inform the user and clear call list
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} tried calling attribute {} in order to create '
 'component {}. However the method is not callable.'
 .format(self.name, f, attr))

 # Clear call list, and return
 comp = getattr(self, attr)
 clear_call_list(self, attr)
 return comp

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 # Get scaling factor defaults, if no scaling factor set
 for v in self.component_data_objects(
 (Constraint, Var, Expression),
 descend_into=False):
 if iscale.get_scaling_factor(v) is None: # don't replace if set
 name = v.getname().split("[")[0]
 index = v.index()
 sf = self.config.parameters.get_default_scaling(name, index)
 if sf is not None:
 iscale.set_scaling_factor(v, sf)

 idaes.core.reaction_base

 Source code for idaes.core.reaction_base

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains classes for reaction blocks and reaction parameter blocks.
"""

Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core.process_block import ProcessBlock
from idaes.core import ProcessBlockData
from idaes.core import property_meta
from idaes.core import MaterialFlowBasis
from idaes.core.util.exceptions import (BurntToast,
 PropertyNotSupportedError,
 PropertyPackageError)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block,
 is_state_block)
from idaes.core.util.misc import add_object_reference
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

Some more information about this module
__author__ = "Andrew Lee, John Eslick"

__all__ = ['ReactionBlockData',
 'ReactionBlock',
 'ReactionParameterBlock']

class _lock_attribute_creation_context(object):
 """Context manager to lock creation of new attributes on a state block"""
 def __init__(self, block):
 self.block = block
 def __enter__(self):
 self.block._lock_attribute_creation = True
 def __exit__(self, exc_type, exc_value, traceback):
 self.block._lock_attribute_creation = False

[docs]class ReactionParameterBlock(ProcessBlockData,
 property_meta.HasPropertyClassMetadata):
 """
 This is the base class for reaction parameter blocks. These are blocks
 that contain a set of parameters associated with a specific reaction
 package, and are linked to by all instances of that reaction package.
 """
 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("property_package", ConfigValue(
 description="Reference to associated PropertyPackageParameter "
 "object",
 domain=is_physical_parameter_block))
 CONFIG.declare("default_arguments", ConfigBlock(
 description="Default arguments to use with Property Package",
 implicit=True))

 def __init__(self, *args, **kwargs):
 self.__reaction_block_class = None
 super().__init__(*args, **kwargs)

[docs] def build(self):
 """
 General build method for ReactionParameterBlocks. Inheriting models
 should call super().build.

 Args:
 None

 Returns:
 None
 """
 super(ReactionParameterBlock, self).build()

 if not hasattr(self, "_reaction_block_class"):
 self._reaction_block_class = None

 # TODO: Need way to tie reaction package to a specfic property package
 self._validate_property_parameter_units()
 self._validate_property_parameter_properties()

 @property
 def reaction_block_class(self):
 if self._reaction_block_class is not None:
 return self._reaction_block_class
 else:
 raise AttributeError(
 "{} has not assigned a ReactionBlock class to be associated "
 "with this reaction package. Please contact the developer of "
 "the reaction package.".format(self.name))

 @reaction_block_class.setter
 def reaction_block_class(self, val):
 _log.warning("DEPRECATED: reaction_block_class should not be set "
 "directly. Property package developers should set the "
 "_reaction_block_class attribute instead.")
 self._reaction_block_class = val

[docs] def build_reaction_block(self, *args, **kwargs):
 """
 Methods to construct a ReactionBlock assoicated with this
 ReactionParameterBlock. This will automatically set the parameters
 construction argument for the ReactionBlock.

 Returns:
 ReactionBlock

 """
 default = kwargs.pop("default", {})
 initialize = kwargs.pop("initialize", {})

 if initialize == {}:
 default["parameters"] = self
 else:
 for i in initialize.keys():
 initialize[i]["parameters"] = self

 return self.reaction_block_class(*args,
 **kwargs,
 default=default,
 initialize=initialize)

 def _validate_property_parameter_units(self):
 """
 Checks that the property parameter block associated with the
 reaction block uses the same set of default units.
 """
 r_units = self.get_metadata().default_units
 prop_units = self.config.property_package.get_metadata().default_units
 for u in r_units:
 try:
 # TODO: This check is for backwards compatability with
 # pre-units property packages. It can be removed once these are
 # fully deprecated.
 if isinstance(prop_units[u], str) and (
 prop_units[u] != r_units[u]):
 raise KeyError()
 elif prop_units[u] is not r_units[u]:
 raise KeyError()
 except KeyError:
 raise PropertyPackageError(
 '{} the property package associated with this '
 'reaction package does not use the same set of '
 'units of measurement ({}). Please choose a '
 'property package which uses the same units.'
 .format(self.name, u))

 def _validate_property_parameter_properties(self):
 """
 Checks that the property parameter block associated with the
 reaction block supports the necessary properties with correct units.
 """
 req_props = self.get_metadata().required_properties
 supp_props = self.config.property_package.get_metadata().properties

 for p in req_props:
 if p not in supp_props:
 raise PropertyPackageError(
 '{} the property package associated with this '
 'reaction package does not support the necessary '
 'property, {}. Please choose a property package '
 'which supports all required properties.'
 .format(self.name, p))
 elif supp_props[p]['method'] is False:
 raise PropertyPackageError(
 '{} the property package associated with this '
 'reaction package does not support the necessary '
 'property, {}. Please choose a property package '
 'which supports all required properties.'
 .format(self.name, p))

 # Check property units
 if req_props[p]['units'] != supp_props[p]['units']:
 raise PropertyPackageError(
 '{} the units associated with property {} in this '
 'reaction package ({}) do not match with the units '
 'used in the assoicated property package ({}). Please '
 'choose a property package which used the same '
 'units for all properties.'
 .format(self.name,
 p,
 req_props[p]['units'],
 supp_props[p]['units']))

[docs]class ReactionBlockBase(ProcessBlock):
 """
 This is the base class for reaction block objects. These are used when
 constructing the SimpleBlock or IndexedBlock which will contain the
 PropertyData objects, and contains methods that can be applied to
 multiple ReactionBlockData objects simultaneously.
 """
[docs] def initialize(self, *args):
 """
 This is a default initialization routine for ReactionBlocks to ensure
 that a routine is present. All ReactionBlockData classes should
 overload this method with one suited to the particular reaction package

 Args:
 None

 Returns:
 None
 """
 raise NotImplementedError('{} reaction package has not implemented the'
 ' initialize method. Please contact '
 'the reaction package developer'
 .format(self.name))

 def report(self, index=(0), true_state=False,
 dof=False, ostream=None, prefix=""):
 raise NotImplementedError(
 """The current Reaction Package has not implemented a report
 method. Please contact the package developer about this.""")

[docs]class ReactionBlockDataBase(ProcessBlockData):
 """
 This is the base class for reaction block data objects. These are
 blocks that contain the Pyomo components associated with calculating a
 set of reacion properties for a given material.
 """
 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("parameters", ConfigValue(
 domain=is_reaction_parameter_block,
 description="""A reference to an instance of the Reaction Parameter
Block associated with this property package."""))
 CONFIG.declare("state_block", ConfigValue(
 domain=is_state_block,
 description="""A reference to an instance of a StateBlock with
which this reaction block should be associated."""))
 CONFIG.declare("has_equilibrium", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Equilibrium constraint flag",
 doc="""Flag indicating whether equilibrium constraints
should be constructed in this reaction block,
default - True.
Valid values: {
True - ReactionBlock should enforce equilibrium constraints,
False - ReactionBlock should not enforce equilibrium constraints.}"""))

 def __init__(self, *args, **kwargs):
 self._lock_attribute_creation = False
 super().__init__(*args, **kwargs)

[docs] def lock_attribute_creation_context(self):
 """Returns a context manager that does not allow attributes to be created
 while in the context and allows attributes to be created normally outside
 the context.
 """
 return _lock_attribute_creation_context(self)

[docs] def is_property_constructed(self, attr):
 """Returns True if the attribute ``attr`` already exists, or false if it
 would be added in ``__getattr__``, or does not exist.

 Args:
 attr (str): Attribute name to check

 Return:
 True if the attribute is already constructed, False otherwise
 """
 with self.lock_attribute_creation_context():
 return hasattr(self, attr)

[docs] def build(self):
 """
 General build method for PropertyBlockDatas. Inheriting models should
 call super().build.

 Args:
 None

 Returns:
 None
 """
 super(ReactionBlockDataBase, self).build()
 add_object_reference(self, "_params", self.config.parameters)

 self._validate_state_block()

 @property
 def params(self):
 return self._params

 def _validate_state_block(self):
 """
 Method to validate that the associated state block matches with the
 PropertyParameterBlock assoicated with the ReactionParameterBlock.
 """
 # Add a reference to the corresponding state block data for later use
 add_object_reference(self,
 "state_ref",
 self.config.state_block[self.index()])

 # Validate that property package of state matches that of reaction pack
 if (self.config.parameters.config.property_package !=
 self.state_ref.config.parameters):
 raise PropertyPackageError(
 '{} the StateBlock associated with this '
 'ReactionBlock does not match with the '
 'PropertyParamterBlock associated with the '
 'ReactionParameterBlock. The modelling framework '
 'does not support mixed associations of property '
 'and reaction packages.'
 .format(self.name))

[docs] def get_reaction_rate_basis(self):
 """
 Method which returns an Enum indicating the basis of the reaction rate
 term.
 """
 return MaterialFlowBasis.other

 def __getattr__(self, attr):
 """
 This method is used to avoid generating unnecessary property
 calculations in reaction blocks. __getattr__ is called whenever a
 property is called for, and if a propery does not exist, it looks for
 a method to create the required property, and any associated
 components.

 Create a property calculation if needed. Return an attrbute error if
 attr == 'domain' or starts with a _ . The error for _ prevents a
 recursion error if trying to get a function to create a property and
 that function doesn't exist. Pyomo also ocasionally looks for things
 that start with _ and may not exist. Pyomo also looks for the domain
 attribute, and it may not exist.
 This works by creating a property calculation by calling the "_"+attr
 function.

 A list of __getattr__ calls is maintained in self.__getattrcalls to
 check for recursive loops which maybe useful for debugging. This list
 is cleared after __getattr__ completes successfully.

 Args:
 attr: an attribute to create and return. Should be a property
 component.
 """
 if self._lock_attribute_creation:
 raise AttributeError(
 f"{attr} does not exist, and attribute creation is locked.")

 def clear_call_list(self, attr):
 """Local method for cleaning up call list when a call is handled.

 Args:
 attr: attribute currently being handled
 """
 if self.__getattrcalls[-1] == attr:
 if len(self.__getattrcalls) <= 1:
 del self.__getattrcalls
 else:
 del self.__getattrcalls[-1]
 else:
 raise PropertyPackageError(
 "{} Trying to remove call {} from __getattr__"
 " call list, however this is not the most "
 "recent call in the list ({}). This indicates"
 " a bug in the __getattr__ calls. Please "
 "contact the IDAES developers with this bug."
 .format(self.name, attr, self.__getattrcalls[-1]))

 # Check that attr is not something we shouldn't touch
 if attr == "domain" or attr.startswith("_"):
 # Don't interfere with anything by getting attributes that are
 # none of my business
 raise PropertyPackageError(
 '{} {} does not exist, but is a protected '
 'attribute. Check the naming of your '
 'components to avoid any reserved names'
 .format(self.name, attr))

 if attr == "config":
 try:
 self._get_config_args()
 return self.config
 except:
 raise BurntToast("{} getattr method was triggered by a call "
 "to the config block, but _get_config_args "
 "failed. This should never happen.")

 # Check for recursive calls
 try:
 # Check if __getattrcalls is initialized
 self.__getattrcalls
 except AttributeError:
 # Initialize it
 self.__getattrcalls = [attr]
 else:
 # Check to see if attr already appears in call list
 if attr in self.__getattrcalls:
 # If it does, indicates a recursive loop.
 if attr == self.__getattrcalls[-1]:
 # attr method is calling itself
 self.__getattrcalls.append(attr)
 raise PropertyPackageError(
 '{} _{} made a recursive call to '
 'itself, indicating a potential '
 'recursive loop. This is generally '
 'caused by the {} method failing to '
 'create the {} component.'
 .format(self.name, attr, attr, attr))
 else:
 self.__getattrcalls.append(attr)
 raise PropertyPackageError(
 '{} a potential recursive loop has been '
 'detected whilst trying to construct {}. '
 'A method was called, but resulted in a '
 'subsequent call to itself, indicating a '
 'recursive loop. This may be caused by a '
 'method trying to access a component out '
 'of order for some reason (e.g. it is '
 'declared later in the same method). See '
 'the __getattrcalls object for a list of '
 'components called in the __getattr__ '
 'sequence.'
 .format(self.name, attr))
 # If not, add call to list
 self.__getattrcalls.append(attr)

 # Get property information from get_supported_properties
 try:
 m = self.config.parameters.get_metadata().properties

 if m is None:
 raise PropertyPackageError(
 '{} reaction package get_supported_properties'
 ' method returned None when trying to create '
 '{}. Please contact the developer of the '
 'property package'.format(self.name, attr))
 except KeyError:
 # If attr not in get_supported_properties, assume package does not
 # support property
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} {} is not supported by reaction package (property is '
 'not listed in get_supported_properties).'
 .format(self.name, attr, attr))

 # Get method name from get_supported_properties
 try:
 if m[attr]['method'] is None:
 # If method is none, property should be constructed
 # by property package, so raise PropertyPackageError
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} should be constructed automatically '
 'by reaction package, but is not present. '
 'This can be caused by methods being called '
 'out of order.'.format(self.name, attr))
 elif m[attr]['method'] is False:
 # If method is False, package does not support property
 # Raise NotImplementedError
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} {} is not supported by reaction package '
 '(property method is listed as False in '
 'get_supported_properties).'
 .format(self.name, attr))
 elif isinstance(m[attr]['method'], str):
 # Try to get method name in from PropertyBlock object
 try:
 f = getattr(self, m[attr]['method'])
 except AttributeError:
 # If fails, method does not exist
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} get_supported_properties method '
 'returned a name that does not correspond'
 ' to any method in the reaction package. '
 'Please contact the developer of the '
 'reaction package.'.format(self.name, attr))
 else:
 # Otherwise method name is invalid
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} {} get_supported_properties method '
 'returned invalid value for method name. '
 'Please contact the developer of the '
 'reaction package.'
 .format(self.name, attr))
 except KeyError:
 # No method key - raise Exception
 # Need to use an AttributeError so Pyomo.DAE will handle this
 clear_call_list(self, attr)
 raise PropertyNotSupportedError(
 '{} get_supported_properties method '
 'does not contain a method for {}. '
 'Please select a package which supports '
 'the necessary properties for your process.'
 .format(self.name, attr))

 # Call attribute if it is callable
 # If this fails, it should return a meaningful error.
 if callable(f):
 try:
 f()
 except Exception:
 # Clear call list and reraise error
 clear_call_list(self, attr)
 raise
 else:
 # If f is not callable, inform the user and clear call list
 clear_call_list(self, attr)
 raise PropertyPackageError(
 '{} tried calling attribute {} in order to create '
 'component {}. However the method is not callable.'
 .format(self.name, f, attr))

 # Clear call list, and return
 comp = getattr(self, attr)
 clear_call_list(self, attr)
 return comp

 idaes.core.unit_model

 Source code for idaes.core.unit_model

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Base class for unit models
"""

from pyomo.environ import Reference, SolverFactory
from pyomo.network import Port
from pyomo.common.config import ConfigValue, In

from .process_base import (declare_process_block_class,
 ProcessBlockData,
 useDefault)
from .property_base import StateBlock
from .control_volume_base import (ControlVolumeBlockData,
 FlowDirection,
 MaterialBalanceType)
from idaes.core.util.exceptions import (BurntToast,
 ConfigurationError,
 PropertyPackageError,
 BalanceTypeNotSupportedError)
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.core.util.unit_costing
import idaes.logger as idaeslog

__author__ = "John Eslick, Qi Chen, Andrew Lee"

__all__ = ['UnitModelBlockData', 'UnitModelBlock']

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("UnitModelBlock")
class UnitModelBlockData(ProcessBlockData):
 """
 This is the class for process unit operations models. These are models that
 would generally appear in a process flowsheet or superstructure.
 """
 # Create Class ConfigBlock
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("dynamic", ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Dynamic model flag",
 doc="""Indicates whether this model will be dynamic or not,
default = useDefault.
Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model,
False - set as a steady-state model.}"""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Holdup construction flag",
 doc="""Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True,
default - False.
Valid values: {
useDefault - get flag from parent (default = False),
True - construct holdup terms,
False - do not construct holdup terms}"""))

[docs] def build(self):
 """
 General build method for UnitModelBlockData. This method calls a number
 of sub-methods which automate the construction of expected attributes
 of unit models.

 Inheriting models should call `super().build`.

 Args:
 None

 Returns:
 None
 """
 super(UnitModelBlockData, self).build()

 # Set up dynamic flag and time domain
 self._setup_dynamics()

[docs] def model_check(blk):
 """
 This is a general purpose initialization routine for simple unit
 models. This method assumes a single ControlVolume block called
 controlVolume and tries to call the model_check method of the
 controlVolume block. If an AttributeError is raised, the check is
 passed.

 More complex models should overload this method with a model_check
 suited to the particular application, especially if there are multiple
 ControlVolume blocks present.

 Args:
 None

 Returns:
 None
 """
 # Run control volume block model checks
 try:
 blk.controlVolume.model_check()
 except AttributeError:
 pass

[docs] def add_port(blk, name=None, block=None, doc=None):
 """
 This is a method to build Port objects in a unit model and
 connect these to a specified StateBlock.

 Keyword Args:
 name : name to use for Port object.
 block : an instance of a StateBlock to use as the source to
 populate the Port object
 doc : doc string for Port object

 Returns:
 A Pyomo Port object and associated components.
 """
 # Validate block object
 if not isinstance(block, StateBlock):
 raise ConfigurationError("{} block object provided to add_port "
 "method is not an instance of a "
 "StateBlock object. IDAES port objects "
 "should only be associated with "
 "StateBlocks.".format(blk.name))

 # Create empty Port
 p = Port(noruleinit=True, doc=doc)
 setattr(blk, name, p)

 p._state_block = (block,)

 # Get dict of Port members and names
 member_list = block[
 blk.flowsheet().config.time.first()].define_port_members()

 # Create References for port members
 for s in member_list:
 if not member_list[s].is_indexed():
 slicer = block[:].component(member_list[s].local_name)
 else:
 slicer = block[:].component(member_list[s].local_name)[...]

 r = Reference(slicer)

 # Add Reference to Port
 p.add(r, s)

 return p

[docs] def add_inlet_port(blk, name=None, block=None, doc=None):
 """
 This is a method to build inlet Port objects in a unit model and
 connect these to a specified control volume or state block.

 The name and block arguments are optional, but must be used together.
 i.e. either both arguments are provided or neither.

 Keyword Args:
 name : name to use for Port object (default = "inlet").
 block : an instance of a ControlVolume or StateBlock to use as the
 source to populate the Port object. If a ControlVolume is
 provided, the method will use the inlet state block as
 defined by the ControlVolume. If not provided, method will
 attempt to default to an object named control_volume.
 doc : doc string for Port object (default = "Inlet Port")

 Returns:
 A Pyomo Port object and associated components.
 """
 if block is None:
 # Check that name is None
 if name is not None:
 raise ConfigurationError(
 "{} add_inlet_port was called without a block argument"
 " but a name argument was provided. Either both "
 "a name and a block must be provided or neither."
 .format(blk.name))
 else:
 name = "inlet"
 # Try for default ControlVolume name
 try:
 block = blk.control_volume
 except AttributeError:
 raise ConfigurationError(
 "{} add_inlet_port was called without a block argument"
 " but no default ControlVolume exists "
 "(control_volume). Please provide block to which the "
 "Port should be associated.".format(blk.name))
 else:
 # Check that name is not None
 if name is None:
 raise ConfigurationError(
 "{} add_inlet_port was called with a block argument, "
 "but a name argument was not provided. Either both "
 "a name and a block must be provided or neither."
 .format(blk.name))

 if doc is None:
 doc = "Inlet Port"

 # Create empty Port
 p = Port(noruleinit=True, doc=doc)
 setattr(blk, name, p)

 # Get dict of Port members and names
 if isinstance(block, ControlVolumeBlockData):
 try:
 member_list = (block.properties_in[
 block.flowsheet().config.time.first()]
 .define_port_members())
 p._state_block = (block.properties_in,)
 except AttributeError:
 try:
 member_list = (block.properties[
 block.flowsheet().config.time.first(), 0]
 .define_port_members())
 if block._flow_direction == FlowDirection.forward:
 p._state_block = (block.properties,
 block.length_domain.first())
 elif block._flow_direction == FlowDirection.backward:
 p._state_block = (block.properties,
 block.length_domain.last())
 except AttributeError:
 raise PropertyPackageError(
 "{} property package does not appear to have "
 "implemented a define_port_memebers method. "
 "Please contact the developer of the property "
 "package.".format(blk.name))
 elif isinstance(block, StateBlock):
 member_list = block[
 blk.flowsheet().config.time.first()].define_port_members()
 p._state_block = (block,)
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))

 # Create References for port members
 for s in member_list:
 if not member_list[s].is_indexed():
 if isinstance(block, ControlVolumeBlockData):
 try:
 slicer = block.properties_in[:].component(
 member_list[s].local_name)
 except AttributeError:
 if block._flow_direction == FlowDirection.forward:
 _idx = block.length_domain.first()
 elif block._flow_direction == FlowDirection.backward:
 _idx = block.length_domain.last()
 else:
 raise BurntToast(
 "{} flow_direction argument received "
 "invalid value. This should never "
 "happen, so please contact the IDAES "
 "developers with this bug."
 .format(blk.name))
 slicer = (block.properties[:, _idx]
 .component(member_list[s].local_name))
 elif isinstance(block, StateBlock):
 slicer = block[:].component(member_list[s].local_name)
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))
 else:
 if isinstance(block, ControlVolumeBlockData):
 try:
 slicer = block.properties_in[:].component(
 member_list[s].local_name)[...]
 except AttributeError:
 if block._flow_direction == FlowDirection.forward:
 _idx = block.length_domain.first()
 elif block._flow_direction == FlowDirection.backward:
 _idx = block.length_domain.last()
 else:
 raise BurntToast(
 "{} flow_direction argument received "
 "invalid value. This should never "
 "happen, so please contact the IDAES "
 "developers with this bug."
 .format(blk.name))
 slicer = (block.properties[:, _idx].component(
 member_list[s].local_name))[...]
 elif isinstance(block, StateBlock):
 slicer = block[:].component(member_list[s].local_name)[...]
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))

 r = Reference(slicer)

 # Add Reference to Port
 p.add(r, s)

 return p

[docs] def add_outlet_port(blk, name=None, block=None, doc=None):
 """
 This is a method to build outlet Port objects in a unit model and
 connect these to a specified control volume or state block.

 The name and block arguments are optional, but must be used together.
 i.e. either both arguments are provided or neither.

 Keyword Args:
 name : name to use for Port object (default = "outlet").
 block : an instance of a ControlVolume or StateBlock to use as the
 source to populate the Port object. If a ControlVolume is
 provided, the method will use the outlet state block as
 defined by the ControlVolume. If not provided, method will
 attempt to default to an object named control_volume.
 doc : doc string for Port object (default = "Outlet Port")

 Returns:
 A Pyomo Port object and associated components.
 """
 if block is None:
 # Check that name is None
 if name is not None:
 raise ConfigurationError(
 "{} add_outlet_port was called without a block "
 "argument but a name argument was provided. Either "
 "both a name and a block must be provided or neither."
 .format(blk.name))
 else:
 name = "outlet"
 # Try for default ControlVolume name
 try:
 block = blk.control_volume
 except AttributeError:
 raise ConfigurationError(
 "{} add_outlet_port was called without a block "
 "argument but no default ControlVolume exists "
 "(control_volume). Please provide block to which the "
 "Port should be associated.".format(blk.name))
 else:
 # Check that name is not None
 if name is None:
 raise ConfigurationError(
 "{} add_outlet_port was called with a block argument, "
 "but a name argument was not provided. Either both "
 "a name and a block must be provided or neither."
 .format(blk.name))

 if doc is None:
 doc = "Outlet Port"

 # Create empty Port
 p = Port(noruleinit=True, doc=doc)
 setattr(blk, name, p)

 # Get dict of Port members and names
 if isinstance(block, ControlVolumeBlockData):
 try:
 member_list = (block.properties_out[
 block.flowsheet().config.time.first()]
 .define_port_members())
 p._state_block = (block.properties_out,)
 except AttributeError:
 try:
 member_list = (block.properties[
 block.flowsheet().config.time.first(), 0]
 .define_port_members())
 if block._flow_direction == FlowDirection.forward:
 p._state_block = (block.properties,
 block.length_domain.last())
 elif block._flow_direction == FlowDirection.backward:
 p._state_block = (block.properties,
 block.length_domain.first())
 except AttributeError:
 raise PropertyPackageError(
 "{} property package does not appear to have "
 "implemented a define_port_members method. "
 "Please contact the developer of the property "
 "package.".format(blk.name))
 elif isinstance(block, StateBlock):
 member_list = block[
 blk.flowsheet().config.time.first()].define_port_members()
 p._state_block = (block,)
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))

 # Create References for port members
 for s in member_list:
 if not member_list[s].is_indexed():
 if isinstance(block, ControlVolumeBlockData):
 try:
 slicer = block.properties_out[:].component(
 member_list[s].local_name)
 except AttributeError:
 if block._flow_direction == FlowDirection.forward:
 _idx = block.length_domain.last()
 elif block._flow_direction == FlowDirection.backward:
 _idx = block.length_domain.first()
 else:
 raise BurntToast(
 "{} flow_direction argument received "
 "invalid value. This should never "
 "happen, so please contact the IDAES "
 "developers with this bug."
 .format(blk.name))
 slicer = (block.properties[:, _idx]
 .component(member_list[s].local_name))
 elif isinstance(block, StateBlock):
 slicer = block[:].component(member_list[s].local_name)
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))
 else:
 # Need to use slice notation on indexed comenent as well
 if isinstance(block, ControlVolumeBlockData):
 try:
 slicer = block.properties_out[:].component(
 member_list[s].local_name)[...]
 except AttributeError:
 if block._flow_direction == FlowDirection.forward:
 _idx = block.length_domain.last()
 elif block._flow_direction == FlowDirection.backward:
 _idx = block.length_domain.first()
 else:
 raise BurntToast(
 "{} flow_direction argument received "
 "invalid value. This should never "
 "happen, so please contact the IDAES "
 "developers with this bug."
 .format(blk.name))
 slicer = (block.properties[:, _idx].component(
 member_list[s].local_name))[...]
 elif isinstance(block, StateBlock):
 slicer = block[:].component(member_list[s].local_name)[...]
 else:
 raise ConfigurationError(
 "{} block provided to add_inlet_port "
 "method was not an instance of a "
 "ControlVolume or a StateBlock."
 .format(blk.name))

 r = Reference(slicer)

 # Add Reference to Port
 p.add(r, s)

 return p

[docs] def add_state_material_balances(self, balance_type, state_1, state_2):
 """
 Method to add material balances linking two State Blocks in a Unit
 Model. This method is not intended to replace Control Volumes, but
 to automate writing material balances linking isolated State Blocks
 in those models where this is required.

 Args:
 balance_type - a MaterialBalanceType Enum indicating the type
 of material balances to write
 state_1 - first State Block to be linked by balances
 state_2 - second State Block to be linked by balances

 Returns:
 None
 """
 # Confirm that both state blocks stem from the same parameter block
 if not isinstance(state_1, StateBlock):
 raise ConfigurationError(
 "{} state_1 argument to add_state_material_balances "
 "was not an instance of a State Block.".format(self.name))

 if not isinstance(state_2, StateBlock):
 raise ConfigurationError(
 "{} state_2 argument to add_state_material_balances "
 "was not an instance of a State Block.".format(self.name))

 # Check that no constraint with the same name exists
 # We will only support using this method once per Block
 if hasattr(self, "state_material_balances"):
 raise AttributeError(
 "{} a set of constraints named state_material_balances "
 "already exists in the current UnitModel. To avoid "
 "confusion, add_state_material_balances is only supported "
 "once per UnitModel.".format(self.name))

 # Get a representative time point for testing
 rep_time = self.flowsheet().config.time.first()
 if state_1[rep_time].params is not state_2[rep_time].params:
 raise ConfigurationError(
 "{} add_state_material_balances method was provided with "
 "State Blocks are not linked to the same "
 "instance of a Physical Parameter Block. This method "
 "only supports linking State Blocks from the same "
 "Physical Parameter Block.".format(self.name))

 if balance_type == MaterialBalanceType.useDefault:
 balance_type = (
 state_1[rep_time].default_material_balance_type()
)

 phase_list = state_1[rep_time].params.phase_list
 component_list = state_1[rep_time].params.component_list

 if balance_type == MaterialBalanceType.componentPhase:
 # TODO : Should we include an optional phase equilibrium term here
 # to allow for systems where a phase-transition may occur?

 @self.Constraint(
 self.flowsheet().config.time,
 phase_list,
 component_list,
 doc="State material balances",
)
 def state_material_balances(b, t, p, j):
 return state_1[t].get_material_flow_terms(
 p, j
) == state_2[t].get_material_flow_terms(p, j)

 elif balance_type == MaterialBalanceType.componentTotal:

 @self.Constraint(
 self.flowsheet().config.time,
 component_list,
 doc="State material balances",
)
 def state_material_balances(b, t, j):
 return sum(
 state_1[t].get_material_flow_terms(p, j)
 for p in phase_list
) == sum(
 state_2[t].get_material_flow_terms(p, j)
 for p in phase_list
)

 elif balance_type == MaterialBalanceType.total:

 @self.Constraint(
 self.flowsheet().config.time,
 doc="State material balances",
)
 def state_material_balances(b, t):
 return sum(
 sum(
 state_1[t].get_material_flow_terms(p, j)
 for j in component_list
)
 for p in phase_list
) == sum(
 sum(
 state_2[t].get_material_flow_terms(p, j)
 for j in component_list
)
 for p in phase_list
)

 elif balance_type == MaterialBalanceType.elementTotal:
 raise BalanceTypeNotSupportedError(
 "{} add_state_material_balances does not support "
 "MaterialBalanceType.elementTotal.".format(self.name)
)
 elif balance_type == MaterialBalanceType.none:
 raise BalanceTypeNotSupportedError(
 "{} add_state_material_balances does not support "
 "MaterialBalanceType.None.".format(self.name)
)
 else:
 raise BurntToast(
 "{} add_state_material_balances received an unexpected "
 "argument for balance_type. This should never happen. Please "
 "contact the IDAES developers with this bug.".format(self.name)
)

 def _get_stream_table_contents(self, time_point=0):
 """
 Assume unit has standard configuration of 1 inlet and 1 outlet.

 Developers should overload this as appropriate.
 """
 try:
 return create_stream_table_dataframe({"Inlet": self.inlet,
 "Outlet": self.outlet},
 time_point=time_point)
 except AttributeError:
 raise ConfigurationError(
 f"Unit model {self.name} does not have the standard Port "
 f"names (inet and outlet). Please contact the unit model "
 f"developer to develop a unit specific stream table.")

[docs] def initialize(blk, state_args=None, outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 '''
 This is a general purpose initialization routine for simple unit
 models. This method assumes a single ControlVolume block called
 controlVolume, and first initializes this and then attempts to solve
 the entire unit.

 More complex models should overload this method with their own
 initialization routines,

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 '''
 # Set solver options
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # Initialize control volume block
 flags = blk.control_volume.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args,
)

 init_log.info_high('Initialization Step 1 Complete.')

 # ---
 # Solve unit

 # if costing block exists, deactivate
 if hasattr(blk, "costing"):
 blk.costing.deactivate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)

 init_log.info_high(
 "Initialization Step 2 {}.".format(idaeslog.condition(results))
)

 # if costing block exists, activate and initialize
 if hasattr(blk, "costing"):
 blk.costing.activate()
 idaes.core.util.unit_costing.initialize(blk.costing)
 # ---
 # Release Inlet state
 blk.control_volume.release_state(flags, outlvl)

 init_log.info('Initialization Complete: {}'
 .format(idaeslog.condition(results)))

 idaes.core.util.dyn_utils

 Source code for idaes.core.util.dyn_utils

-*- coding: utf-8 -*-
##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains utility functions for dynamic IDAES models.
"""

from pyomo.environ import Block, Constraint, Var
from pyomo.dae import ContinuousSet, DerivativeVar
from pyomo.dae.set_utils import (is_explicitly_indexed_by,
 is_in_block_indexed_by, get_index_set_except)
from pyomo.common.collections import ComponentSet

from idaes.core import FlowsheetBlock
from collections import Counter
import idaes.logger as idaeslog

__author__ = "Robert Parker"

def is_implicitly_indexed_by(comp, s, stop_at=None):
 raise NotImplementedError(
 'The name is_implicitly_indexed_by is deprecated. Please import '
 'is_in_block_indexed_by from pyomo.dae.set_utils instead.')

[docs]def get_activity_dict(b):
 """
 Function that builds a dictionary telling whether or not each
 ConstraintData and BlockData object in a model is active.
 Uses the objects' ids as the hash.

 Args:
 b : A Pyomo Block to be searched for active components

 Returns:
 A dictionary mapping id of constraint and block data objects
 to a bool indicating if they are active
 """
 # Note: active constraints/blocks contained in an inactive block will still
 # be marked as active.
 return {id(con): con.active
 for con in b.component_data_objects((Constraint, Block))}

[docs]def get_fixed_dict(b):
 """
 Function that builds a dictionary telling whether or not each VarData
 object in a model is fixed. Uses the objects' ids as the hash.

 Args:
 b : A Pyomo block to be searched for fixed variables

 Returns:
 A dictionary mapping id of VarData objects to a bool indicating if
 they are fixed
 """
 return {id(var): var.fixed for var in b.component_data_objects(Var)}

[docs]def deactivate_model_at(b, cset, pts, outlvl=idaeslog.NOTSET):
 """
 Finds any block or constraint in block b, indexed explicitly (and not
 implicitly) by cset, and deactivates it at points specified.
 Implicitly indexed components are excluded because one of their parent
 blocks will be deactivated, so deactivating them too would be redundant.

 Args:
 b : Block to search
 cset : ContinuousSet of interest
 pts : Value or list of values, in ContinuousSet, to deactivate at

 Returns:
 A dictionary mapping points in pts to lists of
 component data that have been deactivated there
 """
 if not type(pts) is list:
 pts = [pts]
 for pt in pts:
 if not pt in cset:
 msg = str(pt) + ' is not in ContinuousSet ' + cset.name
 raise ValueError(msg)
 deactivated = {pt: [] for pt in pts}

 visited = set()
 for comp in b.component_objects([Block, Constraint], active=True):
 # Record components that have been visited in case component_objects
 # contains duplicates (due to references)
 if id(comp) in visited:
 continue
 visited.add(id(comp))

 if (is_explicitly_indexed_by(comp, cset) and
 not is_in_block_indexed_by(comp, cset)):
 info = get_index_set_except(comp, cset)
 non_cset_set = info['set_except']
 index_getter = info['index_getter']

 for non_cset_index in non_cset_set:
 for pt in pts:
 index = index_getter(non_cset_index, pt)
 try:
 comp[index].deactivate()
 deactivated[pt].append(comp[index])
 except KeyError:
 # except KeyError to allow Constraint/Block.Skip
 msg = (comp.name + ' has no index ' + str(index))
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue

 return deactivated

[docs]def deactivate_constraints_unindexed_by(b, time):
 """
 Searches block b for and constraints not indexed by time
 and deactivates them.

 Args:
 b : Block to search
 time : Set with respect to which to find unindexed constraints

 Returns:
 List of constraints deactivated
 """
 conlist = []

 visited = set()
 for comp in b.component_objects(Constraint, active=True):
 if id(comp) in visited:
 continue
 visited.add(id(comp))

 if (not is_explicitly_indexed_by(comp, time) and
 not is_in_block_indexed_by(comp, time)):
 for index in comp:
 compdata = comp[index]
 if compdata.active:
 compdata.deactivate()
 conlist.append(compdata)

 return conlist

[docs]def fix_vars_unindexed_by(b, time):
 """
 Searches block b for variables not indexed by time
 and fixes them.

 Args:
 b : Block to search
 time : Set with respect to which to find unindexed variables

 Returns:
 List of variables fixed
 """
 varlist = []

 visited = set()
 for var in b.component_objects(Var):
 if id(var) in visited:
 continue
 visited.add(id(var))

 if (not is_explicitly_indexed_by(var, time) and
 not is_in_block_indexed_by(var, time)):
 for index in var:
 vardata = var[index]
 if (not vardata.fixed and vardata.value is not None):
 # Can't fix a variable with a value of None, but this
 # should be called after a solve, so any variable with
 # value of None is stale and won't be sent to solver,
 # so it doesn't need to be fixed to maintain correct
 # degrees of freedom
 vardata.fix()
 varlist.append(vardata)

 return varlist

[docs]def get_location_of_coordinate_set(setprod, subset):
 """For a SetProduct and some 1-dimensional coordinate set of that
 SetProduct, returns the location of an index of the coordinate
 set within the index of the setproduct.

 Args:
 setprod : SetProduct containing the subset of interest
 subset : 1-dimensional set whose location will be found in the
 SetProduct

 Returns:
 Integer location of the subset within the SetProduct
 """
 if subset.dimen != 1:
 # This could be supported in the future if there is demand for it
 raise ValueError(
 'Cannot get the location of %s because it is multi-dimensional'
 %(subset.name))

 loc = None
 i = 0
 found = False
 if hasattr(setprod, 'subsets'):
 subsets = setprod.subsets()
 elif hasattr(setprod, 'set_tuple'):
 subsets = setprod.set_tuple
 else:
 subsets = [setprod]
 for _set in subsets:
 if _set is subset:
 if found:
 raise ValueError(
 'Cannot get the location of %s because it appears '
 'multiple times'%(_set.name))
 found = True
 loc = i
 i += 1
 else:
 i += _set.dimen
 return loc

[docs]def get_index_of_set(comp, wrt):
 """For some data object of an indexed component, gets the value of the
 index corresponding to some 1-dimensional pyomo set.

 Args:
 comp : Component data object whose index will be searched
 wrt : Set whose index will be searched for

 Returns:
 Value of the specified set in the component data object
 """
 parent = comp.parent_component()
 if not is_explicitly_indexed_by(parent, wrt):
 raise ValueError(
 "Component %s is not explicitly indexed by set %s."
 %(comp.name, wrt.name))

 index = comp.index()
 if not type(index) is tuple:
 index = (index,)
 loc = get_location_of_coordinate_set(parent.index_set(), wrt)
 return index[loc]

[docs]def get_implicit_index_of_set(comp, wrt):
 """For some data object contained (at some level of the hierarchy) in a
 block indexed by wrt, returns the index corresponding to wrt in that
 block.

 Args:
 comp : Component data object whose (parent blocks') indices will be
 searched
 wrt : Set whose index will be searched for

 Returns:
 Value of the specified set
 """
 val = None
 found = False
 if is_explicitly_indexed_by(comp.parent_component(), wrt):
 val = get_index_of_set(comp, wrt)
 found = True

 parent_block = comp.parent_block()
 while parent_block is not None:
 parent_component = parent_block.parent_component()
 if is_explicitly_indexed_by(parent_component, wrt):
 if found:
 raise ValueError(
 "Cannot get the index of set %s because it appears "
 "multiple times in the hierarchy"%(wrt.name))
 val = get_index_of_set(parent_block, wrt)
 found = True
 parent_block = parent_block.parent_block()

 # Will return val even if it is None.
 # User can decide what to do in this case.
 return val

[docs]def get_derivatives_at(b, time, pts):
 """
 Finds derivatives with respect to time at points specified.
 No distinction made for multiple derivatives or mixed partials.

 Args:
 b : Block to search for derivatives
 time : ContinuousSet to look for derivatives with respect to
 pts : Value or list of values in time set at which to return
 derivatives

 Returns
 Dictionary mapping time points to lists of derivatives
 at those points
 """
 if not type(pts) is list:
 pts = [pts]
 dvdict = {pt: [] for pt in pts}

 visited = set()
 for var in b.component_objects(Var):
 if id(var) in visited:
 continue
 visited.add(id(var))

 if not isinstance(var, DerivativeVar):
 continue
 if time not in ComponentSet(var.get_continuousset_list()):
 continue

 info = get_index_set_except(var, time)
 non_time_set = info['set_except']
 index_getter = info['index_getter']
 for pt in pts:
 for non_time_index in non_time_set:
 index = index_getter(non_time_index, pt)
 dvdict[pt].append(var[index])

 return dvdict

TODO: should be able to replace this function everywhere
with getname and find_component
^ not true. Cannot call find_component from a BlockData object
Or on a name containing a decimal index
component looks like a similar substitute for BlockDatas, but
cannot seem to call on names including indices at all
[docs]def path_from_block(comp, blk, include_comp=False):
 """
 Returns a list of tuples with (local_name, index) pairs required
 to locate comp from blk

 Args:
 comp : Component(Data) object to locate
 blk : Block(Data) to locate comp from
 include_comp : Bool of whether or not to include the
 local_name, index of the component itself

 Returns:
 A list of string, index tuples that can be used to locate
 comp from blk
 """
 parent_data = comp.parent_block()
 route = []
 # Walk up the hierarchy tree until blk is reached
 while parent_data != blk:
 parent_obj = parent_data.parent_component()
 # Record the local name and index required to locate the current block
 # from the parent_component of its parent_block
 # Pre-pend to the existing (name, index) list
 route = [(parent_obj.local_name, parent_data.index())] + route
 # If top-levelmodel has been reached, break
 # (This should not happen)
 if parent_data.parent_block() == None:
 break
 parent_data = parent_data.parent_block()

 # Append comp's name and index to the list if desired:
 if include_comp:
 if hasattr(comp, 'index'):
 route.append((comp.parent_component().local_name, comp.index()))
 else:
 # Not obvious what the right thing to do is if comp has no index
 # attribute...
 route.append((comp.parent_component().local_name, None))
 return route

[docs]def find_comp_in_block(tgt_block, src_block, src_comp, allow_miss=False):
 """This function finds a component in a source block, then uses the same
 local names and indices to try to find a corresponding component in a target
 block. This is used when we would like to verify that a component of the
 same name exists in the target block, as in model predictive control where
 certain variables must be correllated between plant and controller model.

 Args:
 tgt_block : Target block that will be searched for component
 src_block : Source block in which the original component is located
 src_comp : Component whose name will be searched for in target block
 allow_miss : If True, will ignore attribute and key errors due to
 searching for non-existant components in the target model

 Returns:
 Component with the same name in the target block
 """

 local_parent = tgt_block
 for r in path_from_block(src_comp, src_block, include_comp=False):
 # Don't include comp as I want to use this to find IndexedComponents,
 # for which [r[1]] will result in a KeyError.
 try:
 local_parent = getattr(local_parent, r[0])[r[1]]
 except AttributeError:
 if allow_miss:
 return None
 else:
 raise AttributeError(
 '%s has no attribute %s. Use allow_miss=True if this '
 'is expected and acceptable.' % (local_parent.name, r[0]))
 except KeyError:
 if allow_miss:
 return None
 else:
 raise KeyError(
 '%s is not a valid index for %s, use allow_miss=True '
 'if this is expected and acceptable.' % (str(r[1]),
 getattr(local_parent, r[0]).name))

 # This logic should return the IndexedComponent or ComponentData,
 # whichever is appropriate
 try:
 tgt_comp = getattr(local_parent, src_comp.parent_component().local_name)
 except AttributeError:
 if allow_miss:
 return None
 else:
 raise AttributeError(
 '%s has no attribute %s. Use allow_miss=True if this '
 'is expected and acceptable.' % (local_parent.name,
 src_comp.parent_component().local_name))
 # tgt_comp is now an indexed component or simple component

 if hasattr(src_comp, 'index'):
 # If comp has index, attempt to access it in tgt_comp
 index = src_comp.index()
 try:
 tgt_comp = tgt_comp[index]
 except KeyError:
 if allow_miss:
 return None
 else:
 raise KeyError(
 '%s is not a valid index for %s, use allow_miss=True '
 'if this is expected and acceptable.' % (str(index),
 tgt_comp.name))

 return tgt_comp

[docs]def find_comp_in_block_at_time(tgt_block, src_block, src_comp,
 time, t0, allow_miss=False):
 """This function finds a component in a source block, then uses the same
 local names and indices to try to find a corresponding component in a target
 block, with the exception of time index in the target component, which is
 replaced by a specified time point. This is used for validation of a
 component by its name in the case where blocks may differ by at most time
 indices, for example validating a steady-state model or a model with a
 different time discretization.

 Args:
 tgt_block : Target block that will be searched for component
 src_block : Source block in which the original component is located
 src_comp : Component whose name will be searched for in target block
 time : Set whose index will be replaced in the target component
 t0 : Index of the time set that will be used in the target
 component
 allow_miss : If True, will ignore attribute and key errors due to
 searching for non-existant components in the target model

 """
 # Could extend this to allow replacing indices of multiple sets
 # (useful for PDEs)

 if t0 not in time:
 raise KeyError(
 't0 must be in the time set')
 if time.model() is not tgt_block.model():
 raise ValueError(
 'time must belong to the same model as the target block')
 if src_block.model() is not src_comp.model():
 raise ValueError(
 'src_block and src_comp must be components of the same model')

 local_parent = tgt_block
 for r in path_from_block(src_comp, src_block, include_comp=False):
 # Don't include comp as I want to use this to find IndexedComponents,
 # for which [r[1]] will result in a KeyError.

 # If local_parent is indexed by time, need to replace time index
 # in r[1]

 try:
 local_parent = getattr(local_parent, r[0])
 except AttributeError:
 if allow_miss:
 return None
 else:
 raise AttributeError(
 '%s has no attribute %s. Use allow_miss=True if this '
 'is expected and acceptable.' % (local_parent.name, r[0]))

 index = r[1]

 # Can abstract the following into a function:
 # replace_time_index or something
 if is_explicitly_indexed_by(local_parent, time):
 index_set = local_parent.index_set()
 time_loc = get_location_of_coordinate_set(index_set, time)

 if type(index) is not tuple:
 index = (index,)
 index = list(index)

 # Replace time index with t0
 index[time_loc] = t0
 index = tuple(index)

 try:
 local_parent = local_parent[index]
 except KeyError:
 if allow_miss:
 return None
 else:
 raise KeyError(
 '%s is not a valid index for %s, use allow_miss=True '
 'if this is expected and acceptable.' % (str(index),
 local_parent.name))

 # This logic should return the IndexedComponent or ComponentData,
 # whichever is appropriate
 try:
 tgt_comp = getattr(local_parent, src_comp.parent_component().local_name)
 except AttributeError:
 if allow_miss:
 return None
 else:
 raise AttributeError(
 '%s has no attribute %s. Use allow_miss=True if this '
 'is expected and acceptable.' % (local_parent.name,
 src_comp.parent_component().local_name))
 # tgt_comp is now an indexed component or simple component

 if hasattr(src_comp, 'index'):
 # If comp has index, attempt to access it in tgt_comp
 index = src_comp.index()

 if is_explicitly_indexed_by(tgt_comp, time):
 index_set = tgt_comp.index_set()
 time_loc = get_location_of_coordinate_set(index_set, time)

 if type(index) is not tuple:
 index = (index,)
 index = list(index)

 # Replace time index with t0
 index[time_loc] = t0
 index = tuple(index)

 try:
 tgt_comp = tgt_comp[index]
 except KeyError:
 if allow_miss:
 return None
 else:
 raise KeyError(
 '%s is not a valid index for %s, use allow_miss=True '
 'if this is expected and acceptable.' % (str(index),
 tgt_comp.name))

 return tgt_comp

[docs]def copy_non_time_indexed_values(
 fs_tgt,
 fs_src,
 copy_fixed=True,
 outlvl=idaeslog.NOTSET,
):
 """
 Function to set the values of all variables that are not (implicitly
 or explicitly) indexed by time to their values in a different flowsheet.

 Args:
 fs_tgt : Flowsheet into which values will be copied.
 fs_src : Flowsheet from which values will be copied.
 copy_fixed : Bool marking whether or not to copy over fixed variables
 in the target flowsheet.
 outlvl : Outlevel for the IDAES logger.

 Returns:
 None
 """
 time_tgt = fs_tgt.time

 var_visited = set()
 for var_tgt in fs_tgt.component_objects(Var,
 descend_into=False):
 if id(var_tgt) in var_visited:
 continue
 var_visited.add(id(var_tgt))

 if is_explicitly_indexed_by(var_tgt, time_tgt):
 continue
 var_src = fs_src.find_component(var_tgt.local_name)
 # ^ this find_component is fine because var_tgt is a Var not VarData
 # and its local_name is used. Assumes that there are no other decimal
 # indices in between fs_src and var_src

 if var_src is None:
 # Log a warning
 msg = ('Warning copying values: ' + varname +
 ' does not exist in source block ' + fs_src.name)
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue

 for index in var_tgt:
 if not copy_fixed and var_tgt[index].fixed:
 continue
 var_tgt[index].set_value(var_src.value)

 blk_visited = set()
 for blk_tgt in fs_tgt.component_objects(Block):

 if id(blk_tgt) in blk_visited:
 continue
 blk_visited.add(id(blk_tgt))

 if (is_in_block_indexed_by(blk_tgt, time_tgt) or
 is_explicitly_indexed_by(blk_tgt, time_tgt)):
 continue
 # block is not even implicitly indexed by time
 for b_index in blk_tgt:

 var_visited = set()
 for var_tgt in blk_tgt[b_index].component_objects(Var,
 descend_into=False):
 if id(var_tgt) in var_visited:
 continue
 var_visited.add(id(var_tgt))

 if is_explicitly_indexed_by(var_tgt, time_tgt):
 continue

 # can't used find_component(local_name) here because I might
 # have decimal indices
 try:
 local_parent = fs_src
 for r in path_from_block(var_tgt, fs_tgt):
 local_parent = getattr(local_parent, r[0])[r[1]]
 except AttributeError:
 # log warning
 msg = ('Warning copying values: ' + r[0] +
 ' does not exist in source' + local_parent.name)
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue
 except KeyError:
 msg = ('Warning copying values: ' + str(r[1]) +
 ' is not a valid index for' +
 getattr(local_parent, r[0]).name)
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue

 var_src = getattr(local_parent, var_tgt.local_name)

 for index in var_tgt:
 if not copy_fixed and var_tgt[index].fixed:
 continue
 var_tgt[index].set_value(var_src[index].value)

[docs]def copy_values_at_time(fs_tgt, fs_src, t_target, t_source,
 copy_fixed=True, outlvl=idaeslog.NOTSET):
 """
 Function to set the values of all (explicitly or implicitly) time-indexed
 variables in a flowsheet to similar values (with the same name) but at
 different points in time and (potentially) in different flowsheets.

 Args:
 fs_tgt : Target flowsheet, whose variables' values will get set
 fs_src : Source flowsheet, whose variables' values will be used to
 set those of the target flowsheet. Could be the target
 flowsheet
 t_target : Target time point
 t_source : Source time point
 copy_fixed : Bool of whether or not to copy over fixed variables in
 target model
 outlvl : IDAES logger output level

 Returns:
 None
 """
 time_target = fs_tgt.time
 var_visited = set()
 for var_target in fs_tgt.component_objects(Var):
 if id(var_target) in var_visited:
 continue
 var_visited.add(id(var_target))

 if not is_explicitly_indexed_by(var_target, time_target):
 continue
 n = var_target.index_set().dimen

 local_parent = fs_src

 varname = var_target.getname(fully_qualified=True, relative_to=fs_tgt)
 # Calling find_component here makes the assumption that varname does not
 # contain decimal indices.
 var_source = fs_src.find_component(varname)
 if var_source is None:
 # Log a warning
 msg = ('Warning copying values: ' + varname +
 ' does not exist in source block ' + fs_src.name)
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue
 	
 if n == 1:
 if not copy_fixed and var_target[t_target].fixed:
 continue
 var_target[t_target].set_value(var_source[t_source].value)
 elif n >= 2:
 index_info = get_index_set_except(var_target, time_target)
 non_time_index_set = index_info['set_except']
 index_getter = index_info['index_getter']
 for non_time_index in non_time_index_set:
 source_index = index_getter(non_time_index, t_source)
 target_index = index_getter(non_time_index, t_target)
 if not copy_fixed and var_target[target_index].fixed:
 continue
 var_target[target_index].set_value(
 var_source[source_index].value)

 blk_visited = set()
 for blk_target in fs_tgt.component_objects(Block):
 if id(blk_target) in blk_visited:
 continue
 blk_visited.add(id(blk_target))

 if not is_explicitly_indexed_by(blk_target, time_target):
 continue
 n = blk_target.index_set().dimen

 blkname = blk_target.getname(fully_qualified=True, relative_to=fs_tgt)
 blk_source = fs_src.find_component(blkname)
 if blk_source is None:
 # log warning
 msg = ('Warning copying values: ' + blkname +
 ' does not exist in source' + fs_src.name)
 init_log = idaeslog.getInitLogger(__name__, outlvl)
 init_log.warning(msg)
 continue

 if n == 1:
 target_index = t_target
 source_index = t_source

 var_visited = set()
 for var_target in blk_target[target_index].component_data_objects(Var):
 if id(var_target) in var_visited:
 continue
 var_visited.add(id(var_target))

 if not copy_fixed and var_target.fixed:
 continue

 # Here, find_component will not work from BlockData object
 local_parent = blk_source[source_index]
 for r in path_from_block(var_target, blk_target[target_index]):
 local_parent = getattr(local_parent, r[0])[r[1]]
 var_source = getattr(local_parent,
 var_target.parent_component().local_name)[
 var_target.index()]
 var_target.set_value(var_source.value)

 elif n >= 2:
 index_info = get_index_set_except(blk_target, time_target)
 non_time_index_set = index_info['set_except']
 index_getter = index_info['index_getter']
 for non_time_index in non_time_index_set:
 source_index = index_getter(non_time_index, t_source)
 target_index = index_getter(non_time_index, t_target)

 var_visited = set()
 for var_target in blk_target[target_index].component_data_objects(Var):
 if id(var_target) in var_visited:
 continue
 var_visited.add(id(var_target))

 if not copy_fixed and var_target.fixed:
 continue

 local_parent = blk_source[source_index]
 for r in path_from_block(var_target,
 blk_target[target_index]):
 local_parent = getattr(local_parent, r[0])[r[1]]
 var_source = getattr(local_parent,
 var_target.parent_component().local_name)[
 var_target.index()]
 var_target.set_value(var_source.value)

 idaes.core.util.homotopy

 Source code for idaes.core.util.homotopy

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
IDAES Homotopy meta-solver routine.
"""

__author__ = "Andrew Lee"

import logging

from pyomo.environ import (Block,
 SolverFactory,
 TerminationCondition)
from pyomo.core.base.var import _VarData
from pyomo.contrib.parmest.ipopt_solver_wrapper import ipopt_solve_with_stats

from idaes.core.util.model_serializer import to_json, from_json
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.util.exceptions import ConfigurationError
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

[docs]def homotopy(model, variables, targets,
 max_solver_iterations=50, max_solver_time=10,
 step_init=0.1, step_cut=0.5, iter_target=4, step_accel=0.5,
 max_step=1, min_step=0.05, max_eval=200):
 """
 Homotopy meta-solver routine using Ipopt as the non-linear solver. This
 routine takes a model along with a list of fixed variables in that model
 and a list of target values for those variables. The routine then tries to
 iteratively move the values of the fixed variables to their target values
 using an adaptive step size.

 Args:
 model : model to be solved
 variables : list of Pyomo Var objects to be varied using homotopy.
 Variables must be fixed.
 targets : list of target values for each variable
 max_solver_iterations : maximum number of solver iterations per
 homotopy step (default=50)
 max_solver_time : maximum cpu time for the solver per homotopy step
 (default=10)
 step_init : initial homotopy step size (default=0.1)
 step_cut : factor by which to reduce step size on failed step
 (default=0.5)
 step_accel : acceleration factor for adjusting step size on successful
 step (default=0.5)
 iter_target : target number of solver iterations per homotopy step
 (default=4)
 max_step : maximum homotopy step size (default=1)
 min_step : minimum homotopy step size (default=0.05)
 max_eval : maximum number of homotopy evaluations (both successful and
 unsuccessful) (default=200)

 Returns:
 Termination Condition : A Pyomo TerminationCondition Enum indicating
 how the meta-solver terminated (see documentation)
 Solver Progress : a fraction indication how far the solver progressed
 from the initial values to the target values
 Number of Iterations : number of homotopy evaluations before solver
 terminated
 """
 eps = 1e-3 # Tolerance for homotopy step convergence to 1

 # Get model logger
 _log = logging.getLogger(__name__)

 # Validate model is an instance of Block
 if not isinstance(model, Block):
 raise TypeError("Model provided was not a valid Pyomo model object "
 "(instance of Block). Please provide a valid model.")
 if degrees_of_freedom(model) != 0:
 raise ConfigurationError(
 "Degrees of freedom in model are not equal to zero. Homotopy "
 "should not be used on probelms which are not well-defined.")

 # Validate variables and targets
 if len(variables) != len(targets):
 raise ConfigurationError(
 "Number of variables and targets do not match.")
 for i in range(len(variables)):
 v = variables[i]
 t = targets[i]

 if not isinstance(v, _VarData):
 raise TypeError("Variable provided ({}) was not a valid Pyomo Var "
 "component.".format(v))

 # Check that v is part of model
 parent = v.parent_block()
 while parent != model:
 if parent is None:
 raise ConfigurationError("Variable {} is not part of model"
 .format(v))
 parent = parent.parent_block()

 # Check that v is fixed
 if not v.fixed:
 raise ConfigurationError(
 "Homotopy metasolver provided with unfixed variable {}."
 "All variables must be fixed.".format(v.name))

 # Check bounds on v (they don't really matter, but check for sanity)
 if v.ub is not None:
 if v.value > v.ub:
 raise ConfigurationError(
 "Current value for variable {} is greater than the "
 "upper bound for that variable. Please correct this "
 "before continuing.".format(v.name))
 if t > v.ub:
 raise ConfigurationError(
 "Target value for variable {} is greater than the "
 "upper bound for that variable. Please correct this "
 "before continuing.".format(v.name))
 if v.lb is not None:
 if v.value < v.lb:
 raise ConfigurationError(
 "Current value for variable {} is less than the "
 "lower bound for that variable. Please correct this "
 "before continuing.".format(v.name))
 if t < v.lb:
 raise ConfigurationError(
 "Target value for variable {} is less than the "
 "lower bound for that variable. Please correct this "
 "before continuing.".format(v.name))

 # TODO : Should we be more restrictive on these values to avoid users
 # TODO : picking numbers that are less likely to solve (but still valid)?
 # Validate homotopy parameter selections
 if not 0.05 <= step_init <= 0.8:
 raise ConfigurationError("Invalid value for step_init ({}). Must lie "
 "between 0.05 and 0.8.".format(step_init))
 if not 0.1 <= step_cut <= 0.9:
 raise ConfigurationError("Invalid value for step_cut ({}). Must lie "
 "between 0.1 and 0.9.".format(step_cut))
 if step_accel < 0:
 raise ConfigurationError("Invalid value for step_accel ({}). Must be "
 "greater than or equal to 0."
 .format(step_accel))
 if iter_target < 1:
 raise ConfigurationError("Invalid value for iter_target ({}). Must be "
 "greater than or equal to 1."
 .format(iter_target))
 if not isinstance(iter_target, int):
 raise ConfigurationError("Invalid value for iter_target ({}). Must be "
 "an an integer.".format(iter_target))
 if not 0.05 <= max_step <= 1:
 raise ConfigurationError("Invalid value for max_step ({}). Must lie "
 "between 0.05 and 1."
 .format(max_step))
 if not 0.01 <= min_step <= 0.1:
 raise ConfigurationError("Invalid value for min_step ({}). Must lie "
 "between 0.01 and 0.1."
 .format(min_step))
 if not min_step <= max_step:
 raise ConfigurationError("Invalid argumnets: step_min must be less "
 "or equal to step_max.")
 if not min_step <= step_init <= max_step:
 raise ConfigurationError("Invalid arguments: step_init must lie "
 "between min_step and max_step.")
 if max_eval < 1:
 raise ConfigurationError("Invalid value for max_eval ({}). Must be "
 "greater than or equal to 1."
 .format(step_accel))
 if not isinstance(max_eval, int):
 raise ConfigurationError("Invalid value for max_eval ({}). Must be "
 "an an integer.".format(iter_target))

 # Create solver object
 solver_obj = SolverFactory('ipopt')

 # Perform initial solve of model to confirm feasible initial solution
 results, solved, sol_iter, sol_time, sol_reg = ipopt_solve_with_stats(
 model, solver_obj, max_solver_iterations, max_solver_time)

 if not solved:
 _log.exception("Homotopy Failed - initial solution infeasible.")
 return TerminationCondition.infeasible, 0, 0
 elif sol_reg != "-":
 _log.warning(
 "Homotopy - initial solution converged with regularization.")
 return TerminationCondition.other, 0, 0
 else:
 _log.info("Homotopy - initial point converged")

 # Set up homotopy variables
 # Get initial values and deltas for all variables
 v_init = []
 for i in range(len(variables)):
 v_init.append(variables[i].value)

 n_0 = 0.0 # Homotopy progress variable
 s = step_init # Set step size to step_init
 iter_count = 0 # Counter for homotopy iterations

 # Save model state to dict
 # TODO : for very large models, it may be necessary to dump this to a file
 current_state = to_json(model, return_dict=True)

 while n_0 < 1.0:
 iter_count += 1 # Increase iter_count regardless of success or failure

 # Calculate next n value given current step size
 if n_0 + s >= 1.0-eps:
 n_1 = 1.0
 else:
 n_1 = n_0 + s

 _log.info("Homotopy Iteration {}. Next Step: {} (Current: {})"
 .format(iter_count, n_1, n_0))

 # Update values for all variables using n_1
 for i in range(len(variables)):
 variables[i].fix(targets[i]*n_1 + v_init[i]*(1-n_1))

 # Solve model at new state
 results, solved, sol_iter, sol_time, sol_reg = ipopt_solve_with_stats(
 model, solver_obj, max_solver_iterations, max_solver_time)

 # Check solver output for convergence
 if solved:
 # Step succeeded - accept current state
 current_state = to_json(model, return_dict=True)

 # Update n_0 to accept current step
 n_0 = n_1

 # Check solver iterations and calculate next step size
 s_proposed = s*(1 + step_accel*(iter_target/sol_iter-1))

 if s_proposed > max_step:
 s = max_step
 elif s_proposed < min_step:
 s = min_step
 else:
 s = s_proposed
 else:
 # Step failed - reload old state
 from_json(model, current_state)

 # Try to cut back step size
 if s > min_step:
 # Step size can be cut
 s = max(min_step, s*step_cut)
 else:
 # Step is already at minimum size, terminate homotopy
 _log.exception(
 "Homotopy failed - could not converge at minimum step "
 "size. Current progress is {}".format(n_0))
 return TerminationCondition.minStepLength, n_0, iter_count

 if iter_count >= max_eval: # Use greater than or equal to to be safe
 _log.exception("Homotopy failed - maximum homotopy iterations "
 "exceeded. Current progress is {}".format(n_0))
 return TerminationCondition.maxEvaluations, n_0, iter_count

 if sol_reg == "-":
 _log.info("Homotopy successful - converged at target values in {} "
 "iterations.".format(iter_count))
 return TerminationCondition.optimal, n_0, iter_count
 else:
 _log.exception(
 "Homotopy failed - converged at target values with "
 "regularization in {} iterations.".format(iter_count))
 return TerminationCondition.other, n_0, iter_count

 idaes.core.util.initialization

 Source code for idaes.core.util.initialization

-*- coding: UTF-8 -*-
##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains utility functions for initialization of IDAES models.
"""

from pyomo.environ import (Block, Var, TerminationCondition, SolverFactory,
 Constraint)
from pyomo.network import Arc
from pyomo.dae import ContinuousSet
from pyomo.core.expr.visitor import identify_variables

from idaes.core import FlowsheetBlock
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.util.dyn_utils import (get_activity_dict,
 deactivate_model_at, deactivate_constraints_unindexed_by,
 fix_vars_unindexed_by, get_derivatives_at, copy_values_at_time,
 get_implicit_index_of_set)
import idaes.logger as idaeslog

__author__ = "Andrew Lee, John Siirola, Robert Parker"

[docs]def fix_state_vars(blk, state_args={}):
 """
 Method for fixing state variables within StateBlocks. Method takes an
 optional argument of values to use when fixing variables.

 Args:
 blk : An IDAES StateBlock object in which to fix the state variables
 state_args : a dict containing values to use when fixing state
 variables. Keys must match with names used in the
 define_state_vars method, and indices of any variables must
 agree.

 Returns:
 A dict keyed by block index, state variable name (as defined by
 define_state_variables) and variable index indicating the fixed status
 of each variable before the fix_state_vars method was applied.
 """
 # For sanity, handle cases where state_args is None
 if state_args is None:
 state_args = {}

 flags = {}
 for k in blk.keys():
 for n, v in blk[k].define_state_vars().items():
 for i in v:
 flags[k, n, i] = v[i].is_fixed()

 # If not fixed, fix at either guess provided or current value
 if not v[i].is_fixed():
 if n in state_args:
 # Try to get initial guess from state_args
 try:
 if i is None:
 val = state_args[n]
 else:
 val = state_args[n][i]
 except KeyError:
 raise ConfigurationError(
 'Indexes in state_args did not agree with '
 'those of state variable {}. Please ensure '
 'that indexes for initial guesses are correct.'
 .format(n))
 v[i].fix(val)
 else:
 # No guess, try to use current value
 if v[i].value is not None:
 v[i].fix()
 else:
 # No initial value - raise Exception before this
 # gets to a solver.
 raise ConfigurationError(
 'State variable {} does not have a value '
 'assigned. This usually occurs when a Var '
 'is not assigned an initial value when it is '
 'created. Please ensure all variables have '
 'valid values before fixing them.'
 .format(v.name))

 return flags

[docs]def revert_state_vars(blk, flags):
 """
 Method to revert the fixed state of the state variables within an IDAES
 StateBlock based on a set of flags of the previous state.

 Args:
 blk : an IDAES StateBlock
 flags : a dict of bools indicating previous state with keys in the form
 (StateBlock index, state variable name (as defined by
 define_state_vars), var indices).

 Returns:
 None
 """
 for k in blk.keys():
 for n, v in blk[k].define_state_vars().items():
 for i in v:
 try:
 if not flags[k, n, i]:
 v[i].unfix()
 except KeyError:
 raise ConfigurationError(
 'Indices of flags proved do not match with indices of'
 'the StateBlock. Please make sure you are using the '
 'correct StateBlock.')

[docs]def propagate_state(stream, direction="forward"):
 """
 This method propagates values between Ports along Arcs. Values can be
 propagated in either direction using the direction argument.

 Args:
 stream : Arc object along which to propagate values
 direction: direction in which to propagate values. Default = 'forward'
 Valid value: 'forward', 'backward'.

 Returns:
 None
 """
 if not isinstance(stream, Arc):
 raise TypeError("Unexpected type of stream argument. Value must be "
 "a Pyomo Arc.")

 if direction == "forward":
 value_source = stream.source
 value_dest = stream.destination
 elif direction == "backward":
 value_source = stream.destination
 value_dest = stream.source
 else:
 raise ValueError("Unexpected value for direction argument: ({}). "
 "Value must be either 'forward' or 'backward'."
 .format(direction))

 for v in value_source.vars:
 for i in value_source.vars[v]:
 if not isinstance(value_dest.vars[v], Var):
 raise TypeError("Port contains one or more members which are "
 "not Vars. propogate_state works by assigning "
 "to the value attribute, thus can only be "
 "when Port members are Pyomo Vars.")
 if not value_dest.vars[v][i].fixed:
 value_dest.vars[v][i].value = value_source.vars[v][i].value

HACK, courtesy of J. Siirola
[docs]def solve_indexed_blocks(solver, blocks, **kwds):
 """
 This method allows for solving of Indexed Block components as if they were
 a single Block. A temporary Block object is created which is populated with
 the contents of the objects in the blocks argument and then solved.

 Args:
 solver : a Pyomo solver object to use when solving the Indexed Block
 blocks : an object which inherits from Block, or a list of Blocks
 kwds : a dict of argumnets to be passed to the solver

 Returns:
 A Pyomo solver results object
 """
 # Check blocks argument, and convert to a list of Blocks
 if isinstance(blocks, Block):
 blocks = [blocks]

 try:
 # Create a temporary Block
 tmp = Block(concrete=True)

 nBlocks = len(blocks)

 # Iterate over indexed objects
 for i, b in enumerate(blocks):
 # Check that object is a Block
 if not isinstance(b, Block):
 raise TypeError("Trying to apply solve_indexed_blocks to "
 "object containing non-Block objects")
 # Append components of BlockData to temporary Block
 try:
 tmp._decl["block_%s" % i] = i
 tmp._decl_order.append((b, i+1 if i < nBlocks-1 else None))
 except Exception:
 raise Exception("solve_indexed_blocks method failed adding "
 "components to temporary block.")

 # Set ctypes on temporary Block
 tmp._ctypes[Block] = [0, nBlocks-1, nBlocks]

 # Solve temporary Block
 results = solver.solve(tmp, **kwds)

 finally:
 # Clean up temporary Block contents so they are not removed when Block
 # is garbage collected.
 tmp._decl = {}
 tmp._decl_order = []
 tmp._ctypes = {}

 # Return results
 return results

[docs]def initialize_by_time_element(fs, time, **kwargs):
 """
 Function to initialize Flowsheet fs element-by-element along
 ContinuousSet time. Assumes sufficient initialization/correct degrees
 of freedom such that the first finite element can be solved immediately
 and each subsequent finite element can be solved by fixing differential
 and derivative variables at the initial time point of that finite element.

 Args:
 fs : Flowsheet to initialize
 time : Set whose elements will be solved for individually
 solver : Pyomo solver object initialized with user's desired options
 outlvl : IDAES logger outlvl
 ignore_dof : Bool. If True, checks for square problems will be skipped.

 Returns:
 None
 """
 if not isinstance(fs, FlowsheetBlock):
 raise TypeError('First arg must be a FlowsheetBlock')
 if not isinstance(time, ContinuousSet):
 raise TypeError('Second arg must be a ContinuousSet')

 if time.get_discretization_info() == {}:
 raise ValueError('ContinuousSet must be discretized')

 scheme = time.get_discretization_info()['scheme']
 fep_list = time.get_finite_elements()
 nfe = time.get_discretization_info()['nfe']

 if scheme == 'LAGRANGE-RADAU':
 ncp = time.get_discretization_info()['ncp']
 elif scheme == 'LAGRANGE-LEGENDRE':
 msg = 'Initialization does not support collocation with Legendre roots'
 raise NotImplementedError(msg)
 elif scheme == 'BACKWARD Difference':
 ncp = 1
 elif scheme == 'FORWARD Difference':
 ncp = 1
 msg = 'Forward initialization (explicit Euler) has not yet been implemented'
 raise NotImplementedError(msg)
 elif scheme == 'CENTRAL Difference':
 msg = 'Initialization does not support central finite difference'
 raise NotImplementedError(msg)
 else:
 msg = 'Unrecognized discretization scheme. '
 'Has the model been discretized along the provided ContinuousSet?'
 raise ValueError(msg)
 # Disallow Central/Legendre discretizations.
 # Neither of these seem to be square by default for multi-finite element
 # initial value problems.

 # Create logger objects
 outlvl = kwargs.pop('outlvl', idaeslog.NOTSET)
 init_log = idaeslog.getInitLogger(__name__, level=outlvl)
 solver_log = idaeslog.getSolveLogger(__name__, level=outlvl)

 ignore_dof = kwargs.pop('ignore_dof', False)
 solver = kwargs.pop('solver', SolverFactory('ipopt'))
 fix_diff_only = kwargs.pop('fix_diff_only', True)
 # This option makes the assumption that the only variables that
 # link constraints to previous points in time (which must be fixed)
 # are the derivatives and differential variables. Not true if a controller
 # is being present, but should be a good assumption otherwise, and is
 # significantly faster than searching each constraint for time-linking
 # variables.

 if not ignore_dof:
 if degrees_of_freedom(fs) != 0:
 msg = ('Original model has nonzero degrees of freedom. This was '
 'unexpected. Use keyword arg igore_dof=True to skip this '
 'check.')
 init_log.error(msg)
 raise ValueError('Nonzero degrees of freedom.')

 # Get dict telling which constraints/blocks are already inactive:
 # dict: id(compdata) -> bool (is active?)
 was_originally_active = get_activity_dict(fs)

 # Deactivate flowsheet except at t0, solve to ensure consistency
 # of initial conditions.
 non_initial_time = [t for t in time]
 non_initial_time.remove(time.first())
 deactivated = deactivate_model_at(fs, time, non_initial_time,
 outlvl=idaeslog.ERROR)

 if not ignore_dof:
 if degrees_of_freedom(fs) != 0:
 msg = ('Model has nonzero degrees of freedom at initial conditions.'
 ' This was unexpected. Use keyword arg igore_dof=True to skip'
 ' this check.')
 init_log.error(msg)
 raise ValueError('Nonzero degrees of freedom.')

 init_log.info(
 'Model is inactive except at t=0. Solving for consistent initial conditions.')
 with idaeslog.solver_log(solver_log, level=idaeslog.DEBUG) as slc:
 results = solver.solve(fs, tee=slc.tee)
 if results.solver.termination_condition == TerminationCondition.optimal:
 init_log.info('Successfully solved for consistent initial conditions')
 else:
 init_log.error('Failed to solve for consistent initial conditions')
 raise ValueError('Solver failed in initialization')

 deactivated[time.first()] = deactivate_model_at(fs, time, time.first(),
 outlvl=idaeslog.ERROR)[time.first()]

 # Here, deactivate non-time-indexed components. Do this after solve
 # for initial conditions in case these were used to specify initial
 # conditions
 con_unindexed_by_time = deactivate_constraints_unindexed_by(fs, time)
 var_unindexed_by_time = fix_vars_unindexed_by(fs, time)

 # Now model is completely inactive

 # For each timestep, we need to
 # 1. Activate model at points we're solving for
 # 2. Fix initial conditions (differential variables at previous timestep)
 # of finite element
 # 3. Solve the (now) square system
 # 4. Revert the model to its prior state

 # This will make use of the following dictionaries mapping
 # time points -> time derivatives and time-differential variables
 derivs_at_time = get_derivatives_at(fs, time, [t for t in time])
 dvars_at_time = {t: [d.parent_component().get_state_var()[d.index()]
 for d in derivs_at_time[t]]
 for t in time}

 # Perform a solve for 1 -> nfe; i is the index of the finite element
 init_log.info('Flowsheet has been deactivated. Beginning element-wise initialization')
 for i in range(1, nfe+1):
 t_prev = time[(i-1)*ncp+1]
 # Non-initial time points in the finite element:
 fe = [time[k] for k in range((i-1)*ncp+2, i*ncp+2)]

 init_log.info(f'Entering step {i}/{nfe} of initialization')

 # Activate components of model that were active in the presumably
 # square original system
 for t in fe:
 for comp in deactivated[t]:
 if was_originally_active[id(comp)]:
 comp.activate()

 # Get lists of derivative and differential variables
 # at initial time point of finite element
 init_deriv_list = derivs_at_time[t_prev]
 init_dvar_list = dvars_at_time[t_prev]

 # Variables that were originally fixed
 fixed_vars = []
 if fix_diff_only:
 for drv in init_deriv_list:
 # Cannot fix variables with value None.
 # Any variable with value None was not solved for
 # (either stale or not included in previous solve)
 # and we don't want to fix it.
 if not drv.fixed:
 fixed_vars.append(drv)
 if not drv.value is None:
 drv.fix()
 for dv in init_dvar_list:
 if not dv.fixed:
 fixed_vars.append(dv)
 if not dv.value is None:
 dv.fix()
 else:
 for con in fs.component_data_objects(Constraint, active=True):
 for var in identify_variables(con.expr,
 include_fixed=False):
 t_idx = get_implicit_index_of_set(var, time)
 if t_idx is None:
 continue
 if t_idx <= t_prev:
 fixed_vars.append(var)
 var.fix()

 # Initialize finite element from its initial conditions
 for t in fe:
 copy_values_at_time(fs, fs, t, t_prev, copy_fixed=False,
 outlvl=idaeslog.ERROR)

 # Log that we are solving finite element {i}
 init_log.info(f'Solving finite element {i}')

 if not ignore_dof:
 if degrees_of_freedom(fs) != 0:
 msg = (f'Model has nonzero degrees of freedom at finite element'
 ' {i}. This was unexpected. '
 'Use keyword arg igore_dof=True to skip this check.')
 init_log.error(msg)
 raise ValueError('Nonzero degrees of freedom')

 with idaeslog.solver_log(solver_log, level=idaeslog.DEBUG) as slc:
 results = solver.solve(fs, tee=slc.tee)
 if results.solver.termination_condition == TerminationCondition.optimal:
 init_log.info(f'Successfully solved finite element {i}')
 else:
 init_log.error(f'Failed to solve finite element {i}')
 raise ValueError('Failure in initialization solve')

 # Deactivate components that may have been activated
 for t in fe:
 for comp in deactivated[t]:
 comp.deactivate()

 # Unfix variables that have been fixed
 for var in fixed_vars:
 var.unfix()

 # Log that initialization step {i} has been finished
 init_log.info(f'Initialization step {i} complete')

 # Reactivate components of the model that were originally active
 for t in time:
 for comp in deactivated[t]:
 if was_originally_active[id(comp)]:
 comp.activate()

 for con in con_unindexed_by_time:
 con.activate()
 for var in var_unindexed_by_time:
 var.unfix()

 # Logger message that initialization is finished
 init_log.info('Initialization completed. Model has been reactivated')

 idaes.core.util.misc

 Source code for idaes.core.util.misc

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

"""
This module contains miscellaneous utility functions for use in IDAES models.
"""
import xml.dom.minidom

import pyomo.environ as pyo
from pyomo.core.base.expression import _GeneralExpressionData
from pyomo.core.base.plugin import ModelComponentFactory
from pyomo.core.base.indexed_component import (
 UnindexedComponent_set,)
from pyomo.core.base.util import disable_methods
from pyomo.common.config import ConfigBlock

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

Author: Andrew Lee
def add_object_reference(self, local_name, remote_object):
 """
 Method to create a reference in the local model to a remote Pyomo object.
 This method should only be used where Pyomo Reference objects are not
 suitable (such as for referencing scalar Pyomo objects where the None
 index is undesirable).

 Args:
 local_name : name to use for local reference (str)
 remote_object : object to make a reference to

 Returns:
 None
 """
 try:
 object.__setattr__(self, local_name, remote_object)
 except AttributeError:
 raise AttributeError(
 "{} failed to construct reference to {} - remote "
 "object does not exist.".format(self.name, remote_object)
)

Author: Jaffer Ghouse
def extract_data(data_dict):
 """
 General method that returns a rule to extract data from a python
 dictionary. This method allows the param block to have a database for
 a parameter but extract a subset of this data to initialize a Pyomo
 param object.
 """

 def _rule_initialize(m, *args):
 if len(args) > 1:
 return data_dict[args]
 else:
 return data_dict[args[0]]

 return _rule_initialize

Author: John Eslick
def TagReference(s, description=""):
 """
 Create a Pyomo reference with an added description string attribute to
 describe the reference. The intended use for these references is to create
 a time-indexed reference to variables in a model corresponding to plant
 measurment tags.

 Args:
 s: Pyomo time slice of a variable or expression
 description (str): A description the measurment

 Returns:
 A Pyomo Reference object with an added doc attribute
 """
 r = pyo.Reference(s)
 r.description = description
 return r

Author John Eslick
def svg_tag(
 tags,
 svg,
 outfile=None,
 idx=None,
 tag_map=None,
 show_tags=False,
 byte_encoding="utf-8",
 tag_format={},
 tag_format_default="{:.4e}"
):
 """
 Replace text in a SVG with tag values for the model. This works by looking
 for text elements in the SVG with IDs that match the tags or are in tag_map.

 Args:
 tags: A dictionary where the key is the tag and the value is a Pyomo
 Reference. The reference could be indexed. In typical IDAES
 applications the references would be indexed by time.
 svg: a file pointer or a string continaing svg contents
 outfile: a file name to save the results, if None don't save
 idx: if None not indexed, otherwise an index in the indexing set of the
 reference
 tag_map: dictionary with svg id keys and tag values, to map svg ids to
 tags
 show_tags: Put tag labels of the diagram instead of numbers
 byte_encoding: If svg is given as a byte-array, use this encoding to
 convert it to a string.
 tag_format: A dictionary of formatting strings. If the formatting
 string is a callable, it should be a function that takes the value
 to display and returns a formatting string.
 tag_format_default: The default formatting if not explicitly by
 tag_format. If the formatting string is a callable, it should be a
 function that takes the value to display and returns a formatting
 string.

 Returns:
 SVG String
 """
 if isinstance(svg, str): # assume this is svg content string
 pass
 elif isinstance(svg, bytes):
 svg = svg.decode(byte_encoding)
 elif hasattr(svg, "read"): # file-like object to svg
 svg = svg.read()
 else:
 raise TypeError("SVG must either be a string or a file-like object")
 # Make tag map here because the tags may not make valid XML IDs if no
 # tag_map provided we'll go ahead and handle XML @ (maybe more in future)
 if tag_map is None:
 tag_map = dict()
 for tag in tags:
 new_tag = tag.replace("@", "_")
 tag_map[new_tag] = tag
 # Search for text in the svg that has an id in tags
 doc = xml.dom.minidom.parseString(svg)
 texts = doc.getElementsByTagName("text")
 for t in texts:
 id = t.attributes["id"].value
 if id in tag_map:
 # if it's multiline change last line
 try:
 tspan = t.getElementsByTagName("tspan")[-1]
 except IndexError:
 _log.warning(f"Text object but no tspan for tag {tag_map[id]}.")
 _log.warning(f"Skipping output for {tag_map[id]}.")
 continue
 try:
 tspan = tspan.childNodes[0]
 except IndexError:
 # No child node means there is a line with no text, so add some.
 tspan.appendChild(doc.createTextNode(""))
 tspan = tspan.childNodes[0]
 try:
 if show_tags:
 val = tag_map[id]
 elif idx is None:
 val = pyo.value(tags[tag_map[id]], exception=False)
 else:
 val = pyo.value(tags[tag_map[id]][idx], exception=False)
 except ZeroDivisionError:
 val = "Divide_by_0"
 tf = tag_format.get(tag_map[id], tag_format_default)
 try:
 if callable(tf): # conditional formatting
 tspan.nodeValue = tf(val).format(val)
 else:
 tspan.nodeValue = tf.format(val)
 except ValueError:
 # whatever it is, it doesn't match the format. Usually this
 # happens when a string is given, but it is using a default
 # number format
 tspan.nodeValue = val

 new_svg = doc.toxml()
 # If outfile is provided save to a file
 if outfile is not None:
 with open(outfile, "w") as f:
 f.write(new_svg)
 # Return the SVG as a string. This lets you take several passes at adding
 # output without saving and loading files.
 return new_svg

Author: John Eslick
def copy_port_values(destination, source):
 """
 Copy the variable values in the source port to the destination port. The
 ports must containt the same variables.

 Args:
 (pyomo.Port): Copy values from this port
 (pyomo.Port): Copy values to this port

 Returns:
 None
 """
 for k, v in destination.vars.items():
 if isinstance(v, pyo.Var):
 for i in v:
 v[i].value = pyo.value(source.vars[k][i])

def set_param_from_config(b, param, config=None, index=None):
 """
 Utility method to set parameter value from a config block. This allows for
 converting units if required. This method directly sets the value of the
 parameter.

 Args:
 b - block on which parameter and config block are defined
 param - name of parameter as str. Used to find param and config arg
 units - units of param object (used if conversion required)
 config - (optional) config block to get parameter data from. If
 unset, assumes b.config.
 index - (optional) used for pure component properties where a single
 property may have multiple parameters associated with it.

 Returns:
 None
 """
 if config is None:
 try:
 config = b.config
 except AttributeError:
 raise AttributeError(
 "{} - set_param_from_config method was not provided with a "
 "config argument, but no default Config block exists. Please "
 "specify the Config block to use via the config argument."
 .format(b.name))

 # Check that config is an instance of a Config Block
 if not isinstance(config, ConfigBlock):
 raise TypeError(
 "{} - set_param_from_config - config argument provided is not an "
 "instance of a Config Block.".format(b.name))

 if index is None:
 try:
 param_obj = getattr(b, param)
 except AttributeError:
 raise AttributeError(
 "{} - set_param_from_config method was provided with param "
 "argument {}, but no attribute of that name exists."
 .format(b.name, param))

 try:
 p_data = config.parameter_data[param]
 except (KeyError, AttributeError):
 raise KeyError(
 "{} - set_param_from_config method was provided with param "
 "argument {}, but the config block does not contain a "
 "value for this parameter.".format(b.name, param))
 else:
 try:
 param_obj = getattr(b, param+"_"+index)
 except AttributeError:
 raise AttributeError(
 "{} - set_param_from_config method was provided with param and"
 " index arguments {} {}, but no attribute with that "
 "combination ({}_{}) exists."
 .format(b.name, param, index, param, index))

 try:
 p_data = config.parameter_data[param][index]
 except (KeyError, AttributeError):
 raise KeyError(
 "{} - set_param_from_config method was provided with param and"
 " index arguments {} {}, but the config block does not contain"
 " a value for this parameter and index."
 .format(b.name, param, index))

 units = param_obj.get_units()

 if isinstance(p_data, tuple):
 # 11 Dec 2020 - There is currently a bug in Pyomo where trying to
 # convert the units of a unitless quantity results in a TypeError.
 # To avoid this, we check here for cases where both the parameter and
 # user provided value are unitless and bypass unit conversion.
 if ((units is None or units is pyo.units.dimensionless) and
 (p_data[1] is None or p_data[1] is pyo.units.dimensionless)):
 param_obj.value = p_data[0]
 else:
 param_obj.value = pyo.units.convert_value(
 p_data[0], from_units=p_data[1], to_units=units)
 else:
 _log.debug("{} no units provided for parameter {} - assuming default "
 "units".format(b.name, param))
 param_obj.value = p_data

Creating a Component derived from Pyomo's Expression to use in cases
where an Expression could be mistaken for a Var.
Author: Andrew Lee
[docs]class _GeneralVarLikeExpressionData(_GeneralExpressionData):
 """
 An object derived from _GeneralExpressionData which implements methods for
 common APIs on Vars.

 Constructor Arguments:
 expr: The Pyomo expression stored in this expression.

 component: The Expression object that owns this data.

 Public Class Attributes:
 expr: The expression owned by this data.

 Private class attributes:
 _component: The expression component.
 """

 # Define methods for common APIs on Vars in case user mistakes
 # an Expression for a Var
 @property
 def value(self):
 # Overload value so it behaves like a Var
 return pyo.value(self.expr)

 @value.setter
 def value(self, expr):
 # Overload value seter to prevent users changing the expression body
 raise TypeError(
 "%s is an Expression and does not have a value which can be set."
 % (self.name))

 def setlb(self, val=None):
 raise TypeError(
 "%s is an Expression and can not have bounds. "
 "Use an inequality Constraint instead."
 % (self.name))

 def setub(self, val=None):
 raise TypeError(
 "%s is an Expression and can not have bounds. "
 "Use an inequality Constraint instead."
 % (self.name))

 def fix(self, val=None):
 raise TypeError(
 "%s is an Expression and can not be fixed. "
 "Use an equality Constraint instead."
 % (self.name))

 def unfix(self):
 raise TypeError(
 "%s is an Expression and can not be unfixed."
 % (self.name))

[docs]@ModelComponentFactory.register(
 "Named expressions that can be used in places of variables.")
class VarLikeExpression(pyo.Expression):
 """
 A shared var-like expression container, which may be defined over a index.

 Constructor Arguments:
 initialize: A Pyomo expression or dictionary of expressions used
 to initialize this object.

 expr: A synonym for initialize.

 rule: A rule function used to initialize this object.
 """

 _ComponentDataClass = _GeneralVarLikeExpressionData
 NoConstraint = (1000,)
 Skip = (1000,)

 def __new__(cls, *args, **kwds):
 if cls is not VarLikeExpression:
 return super(VarLikeExpression, cls).__new__(cls)
 if not args or (args[0] is UnindexedComponent_set and len(args) == 1):
 return super(VarLikeExpression, cls).__new__(
 AbstractSimpleVarLikeExpression)
 else:
 return super(VarLikeExpression, cls).__new__(
 IndexedVarLikeExpression)

[docs]class SimpleVarLikeExpression(_GeneralVarLikeExpressionData,
 VarLikeExpression):

 def __init__(self, *args, **kwds):
 _GeneralVarLikeExpressionData.__init__(self, expr=None, component=self)
 VarLikeExpression.__init__(self, *args, **kwds)

 #
 # From Pyomo: Leaving this method for backward compatibility reasons.
 # (probably should be removed)
 # Note: Doesn't seem to work without it
 #
[docs] def add(self, index, expr):
 """Add an expression with a given index."""
 if index is not None:
 raise KeyError(
 "SimpleExpression object '%s' does not accept "
 "index values other than None. Invalid value: %s"
 % (self.name, index))
 if (type(expr) is tuple) and \
 (expr == pyo.Expression.Skip):
 raise ValueError(
 "Expression.Skip can not be assigned "
 "to an Expression that is not indexed: %s"
 % (self.name))
 self.set_value(expr)
 return self

@disable_methods({'set_value', 'is_constant', 'is_fixed', 'expr'})
class AbstractSimpleVarLikeExpression(SimpleVarLikeExpression):
 pass

[docs]class IndexedVarLikeExpression(VarLikeExpression):

 #
 # From Pyomo: Leaving this method for backward compatibility reasons
 # Note: It allows adding members outside of self._index.
 # This has always been the case. Not sure there is
 # any reason to maintain a reference to a separate
 # index set if we allow this.
 #
[docs] def add(self, index, expr):
 """Add an expression with a given index."""
 if (type(expr) is tuple) and (expr == pyo.Expression.Skip):
 return None
 cdata = _GeneralVarLikeExpressionData(expr, component=self)
 self._data[index] = cdata
 return cdata

 # Define methods for common APIs on Vars in case user mistakes
 # an Expression for a Var
 def setlb(self, val=None):
 raise TypeError(
 "%s is an Expression and can not have bounds. "
 "Use inequality Constraints instead."
 % (self.name))

 def setub(self, val=None):
 raise TypeError(
 "%s is an Expression and can not have bounds. "
 "Use inequality Constraints instead."
 % (self.name))

 def fix(self, val=None):
 raise TypeError(
 "%s is an Expression and can not be fixed. "
 "Use equality Constraints instead."
 % (self.name))

 def unfix(self):
 raise TypeError(
 "%s is an Expression and can not be unfixed."
 % (self.name))

 idaes.core.util.model_serializer

 Source code for idaes.core.util.model_serializer

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Functions for saving and loading Pyomo objects to json
"""

from pyomo.environ import *
from pyomo.network import Port, Arc
from pyomo.dae import *
from pyomo.core.base.component import ComponentData
import json
import datetime
import time
import gzip

Some more inforation about this module
__author__ = "John Eslick"
__format_version__ = 4

def _can_serialize(o):
 try:
 json.dumps(o)
 return True
 except TypeError:
 return False

def _set_active(o, d):
 """
 Set if component is active, used for read active attribute callback.
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 if d:
 o.activate()
 else:
 o.deactivate()

def _set_fixed(o, d):
 """
 Set if variable is fixed, used for read fixed attribute callback.
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 if d:
 o.fix()
 else:
 o.unfix()

def _get_value(o):
 """
 Get object value attribute callback.
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 return value(o, exception=False)

def _set_value(o, d):
 """
 Set object value attribute callback. This doen't allow the value of an
 immutable paramter to be set (which would raise an exeption in Pyomo)
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 if isinstance(o, Param) and not o._mutable:
 return #ignore requests to set immutable params
 else:
 try:
 o.value = d
 except AttributeError:
 o = d # this would be an indexed parameter

def _set_lb(o, d):
 """
 Set variable lower bound, used for read lb attribute callback.
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 o.setlb(d)

def _set_ub(o, d):
 """
 Set variable upper bound, use for read ub attribute callback.
 Args:
 o: object whoes attribute is to be set
 d: attribute value
 Returns:
 None
 """
 o.setub(d)

def _only_fixed(o, d):
 """
 Returns a list of attributes to read for a variable, only whether it is
 fixed for non-fixed variables and if it is fixed and the value for fixed
 variables. The allows you to set up a serializer that only reads fixed
 variable values.

 Args:
 o: Pyomo component being loaded
 d: State dictionary for the component o.
 Returns:
 An attribute list to read. Loads fixed for either fixed or un-fixed
 variables, but only reads in values for unfixed variables. This is
 useful for intialization functions.
 """
 if d["fixed"]:
 return ("value", "fixed")
 else:
 return ("fixed",)

class Counter(object):
 """
 This is a counter object, which is an easy way to pass an interger pointer
 around between methods.
 """
 def __init__(self):
 self.count = 0

[docs]class StoreSpec(object):
 """
 A StoreSpec object tells the serializer functions what to read or write.
 The default settings will produce a StoreSpec configured to load/save the
 typical attributes required to load/save a model state.

 Args:
 classes: A list of classes to save. Each class is represented by a
 list (or tupple) containing the following elements: (1) class
 (compared using isinstance) (2) attribute list or None, an emptry
 list store the object, but none of its attributes, None will not
 store objects of this class type (3) optional load filter function.
 The load filter function returns a list of attributes to read based
 on the state of an object and its saved state. The allows, for
 example, loading values for unfixed variables, or only loading
 values whoes current value is less than one. The filter function
 only applies to load not save. Filter functions take two arguments
 (a) the object (current state) and (b) the dictionary containing the
 saved state of an object. More specific classes should come before
 more general classes. For example if an obejct is a HeatExchanger
 and a UnitModel, and HeatExchanger is listed first, it will follow
 the HeatExchanger settings. If UnitModel is listed first in the
 classes list, it will follow the UnitModel settings.
 data_classes: This takes the same form as the classes argument.
 This is for component data classes.
 skip_classes: This is a list of classes to skip. If a class appears
 in the skip list, but also appears in the classes argument, the
 classes argument will override skip_classes. The use for this is to
 specifically exclude certain classes that would get caught by more
 general classes (e.g. UnitModel is in the class list, but you want
 to exclude HeatExchanger which is derived from UnitModel).
 ignore_missing: If True will ignore a component or attribute that exists
 in the model, but not in the stored state. If false an excpetion
 will be raised for things in the model that should be loaded but
 aren't in the stored state. Extra items in the stored state will not
 raise an exception regaurdless of this argument.
 suffix: If True store suffixes and component ids. If false, don't store
 suffixes.
 suffix_filter: None to store all siffixes if suffix=True, or a list of
 suffixes to store if suffix=True
 """
 def __init__(
 self,
 classes=(
 (Param, ("_mutable",)),
 (Var, ()),
 (Expression, ()),
 (Component, ("active",)),
),
 data_classes=(
 (pyomo.core.base.var._VarData,
 ("fixed", "stale", "value", "lb", "ub")),
 (pyomo.core.base.param._ParamData, ("value",)),
 (int, ("value",)),
 (float, ("value",)),
 (pyomo.core.base.expression._ExpressionData, ()),
 (pyomo.core.base.component.ComponentData, ("active",)),
),
 skip_classes=(ExternalFunction, Set, Port, Expression, RangeSet),
 ignore_missing=True,
 suffix=True,
 suffix_filter=None):
 """
 (see above)
 """
 # Callbacks are used for attributes that cannont be directly get or set
 self.write_cbs={ # Write callbacks (writing state so get attr)
 "value":_get_value}
 self.read_cbs={ # Reads callbacks (reading in state so set attr)
 "_mutable": None,
 "active":_set_active,
 "fixed":_set_fixed,
 "lb":_set_lb,
 "ub":_set_ub,
 "value":_set_value}
 # Add skip classes to classes list, with None as attr list to skip
 skip_classes2 = [] #need to put skips at front of list
 self.classes = [i[0] for i in classes]
 for i in skip_classes:
 if i not in self.classes:
 skip_classes2.append((i, None))
 classes = skip_classes2 + list(classes) # comined classes with skips
 # Create lists of classes, attribute lists, and filter functions
 # Can get class index from class list the use it to get associated items
 self.classes = [i[0] for i in classes]
 self.data_classes = [i[0] for i in data_classes]
 self.class_attrs = [i[1] for i in classes]
 self.data_class_attrs = [i[1] for i in data_classes]
 # Create filter function lists, use None if not supplied
 self.class_filter = []
 for i in classes:
 if len(i) < 3:
 self.class_filter.append(None)
 else:
 self.class_filter.append(i[2])
 self.data_class_filter = []
 for i in data_classes:
 if len(i) < 3:
 self.data_class_filter.append(None)
 else:
 self.data_class_filter.append(i[2])
 self.ignore_missing = ignore_missing
 self.include_suffix = suffix
 self.suffix_filter = suffix_filter

[docs] def set_read_callback(self, attr, cb=None):
 """
 Set a callback to set an attribute, when reading from json or dict.
 """
 self.read_cbs[attr] = cb

[docs] def set_write_callback(self, attr, cb=None):
 """
 Set a callback to get an attribute, when writing to json or dict.
 """
 self.write_cbs[attr] = cb

[docs] def get_class_attr_list(self, o):
 """
 Look up what attributes to save/load for an Component object.
 Args:
 o: Object to look up attribute list for.
 Return:
 A list of attributes and a filter function for object type
 """
 alist = [] # Attributes to store
 ff = None # Load filter function
 for i, cl in enumerate(self.classes):
 if isinstance(o, cl):
 alist = self.class_attrs[i]
 ff = self.class_filter[i]
 break
 return (alist, ff)

[docs] def get_data_class_attr_list(self, o):
 """
 Look up what attributes to save/load for an ComponentData object.
 Args:
 o: Object to look up attribute list for.
 Return:
 A list of attributes and a filter function for object type
 """
 alist = [] # Attributes to store
 ff = None # Load filter function
 for i, cl in enumerate(self.data_classes):
 if isinstance(o, cl):
 alist = self.data_class_attrs[i]
 ff = self.data_class_filter[i]
 break
 return (alist, ff)

[docs] @classmethod
 def bound(cls):
 """Returns a StoreSpec object to store variable bounds only."""
 return cls(classes=((Var, ()),),
 data_classes=((pyomo.core.base.var._VarData, ("lb", "ub")),),
 suffix=False)

[docs] @classmethod
 def value(cls):
 """Returns a StoreSpec object to store variable values only."""
 return cls(
 classes=((Var, ()),),
 data_classes=((pyomo.core.base.var._VarData, ("value",)),),
 suffix=False)

[docs] @classmethod
 def isfixed(cls):
 """Returns a StoreSpec object to store if variables are fixed."""
 return cls(
 classes=((Var, ()),),
 data_classes=((pyomo.core.base.var._VarData, ("fixed",)),),
 suffix=False)

 @classmethod
 def suffix(cls, suffix_filter=None):
 return cls(
 classes=((Suffix, ()),),
 data_classes=(),
 suffix=True,
 suffix_filter=suffix_filter)

[docs] @classmethod
 def value_isfixed(cls, only_fixed):
 """
 Return a StoreSpec object to store variable values and if fixed.

 Args:
 only_fixed: Only load fixed variable values
 """
 if only_fixed:
 return cls(
 classes=((Var, ()),),
 data_classes=(
 (pyomo.core.base.var._VarData,
 ("value", "fixed"), _only_fixed),),
 suffix=False)
 else:
 return cls(
 classes=((Var, ()),),
 data_classes=((pyomo.core.base.var._VarData,
 ("value", "fixed")),),
 suffix=False)

[docs] @classmethod
 def value_isfixed_isactive(cls, only_fixed):
 """
 Retur a StoreSpec object to store variable values, if variables are
 fixed and if components are active.

 Args:
 only_fixed: Only load fixed variable values
 """
 if only_fixed:
 return cls(
 classes=((Var, ()), (Param, ()), (Component, ("active",))),
 data_classes=(
 (pyomo.core.base.var._VarData, ("value", "fixed"), _only_fixed),
 (pyomo.core.base.param._ParamData, ("value",)),
 (pyomo.core.base.component.ComponentData, ("active",))),
 suffix=False,
)
 else:
 return cls(
 classes=(
 (Var, ()),
 (Param, ()),
 (Component, ("active",))),
 data_classes=(
 (pyomo.core.base.var._VarData, ("value", "fixed")),
 (pyomo.core.base.param._ParamData, ("value",)),
 (pyomo.core.base.component.ComponentData, ("active",))),
 suffix=False
)

def _may_have_subcomponents(o):
 """
 Args:
 o: an object.
 Returns:
 True if the object has a callable component_objects method, otherwise
 False.
 """
 if hasattr(o, "component_objects"):
 if hasattr(o.component_objects, "__call__"):
 return True

def _write_component(sd, o, wts, count=None, lookup={}, suffixes=[]):
 """
 Writes a component state to the save dictionary under a key given by the
 components name.

 Args:
 sd: dictionary to to save the object into, will create a key that is the
 object name (not fully qualified)
 o: object to save
 wts: a StoreSpec object indicating what object attributes to write
 count: count the number of Pyomo componets written also used for ids
 lookup: is a lookup table for compoent ids from components
 suffixes: is a list of suffixes, that we are delaying writing
 Returns:
 None
 """
 # Get list of attributes to save, also returns ff, which is a filter
 # function and only used in reading stuff back in.
 alist, ff = wts.get_class_attr_list(o)
 if alist is None: return #alist is none means skip this component type
 # Get the componet name, doesn't need to be fully quified or unique because
 # we are storing the state in a hierarchy structure
 oname = o.getname(fully_qualified=False)
 # Create a dictionary for this component, if storing suffixes assign it
 # a sequential id number and create a lookup table that takes the component
 # and returns its id for use later in writing suffix data
 sd[oname] = {"__type__":str(type(o))}
 if wts.include_suffix:
 sd[oname]["__id__"] = count.count
 lookup[id(o)] = count.count #used python id() here for efficency
 if count is not None: count.count += 1 # incriment the componet counter
 for a in alist: # store the desired attributes
 if a in wts.write_cbs:
 if wts.write_cbs[a] is None:
 sd[oname][a] = getattr(o, a, None)
 else:
 sd[oname][a] = wts.write_cbs[a](o)
 else:
 sd[oname][a] = getattr(o, a, None)
 sd[oname]["data"] = {} # create a dict for compoent data and subcomponents
 if isinstance(o, Suffix): # if is a suffix, make a list and delay writing
 if wts.include_suffix: # data until all compoents have an assigned id
 if wts.suffix_filter is None or oname in wts.suffix_filter:
 suffixes.append(
 {'sd':sd[oname]["data"], 'o':o, 'wts':wts, 'lookup':lookup})
 else: # if not suffix go ahead and write the data
 _write_component_data(sd=sd[oname]["data"], o=o, wts=wts, lookup=lookup,
 count=count, suffixes=suffixes)

def _write_component_data(sd, o, wts, count=None, lookup={}, suffixes=[]):
 """
 Iterate through the component data and write to the sd dictionary. The keys
 for the data items are added to the dictionary. If the component has
 subcomponents they are written by a recursive call to _write_component under
 the __pyomo_components__ key.

 Args:
 sd: dictionary to to save the object into, will create keys that are the
 data object indexes repn.
 o: object to save
 wts: a StoreSpec object indicating what object attributes to write
 count: count the number of Pyomo componets written also used for ids
 lookup: is a lookup table for compoent ids from components
 suffixes: is a list of suffixes, that we are delaying writing
 Returns:
 None
 """
 if wts.include_suffix and isinstance(o, Suffix):
 # make special provision for writing suffixes.
 for key in o:
 el = o[key]
 if id(key) not in lookup:
 # didn't store these compoents so can't write suffix.
 continue
 if not _can_serialize(el):
 # Since I had the bright idea to expressions in suffixes
 # not everything in a suffix is serializable.
 continue
 sd[lookup[id(key)]] = el # Asssume keys are Pyomo model components
 else: # rest of compoents with normal componet data structure
 frst = True # on first item when true
 try:
 item_keys = o.keys()
 except AttributeError:
 item_keys = [None]
 for key in item_keys:
 if key is None and isinstance(o, ComponentData) \
 and not isinstance(o, Component):
 el = o
 else:
 el = o[key]
 if frst: # assume all item are same type, use first to get alist
 alist, ff = wts.get_data_class_attr_list(el) # get attributes
 if alist is None: return # if None then skip writing
 frst = False # done with first only stuff
 edict = {"__type__":str(type(el))}
 if wts.include_suffix: # if writing suffixes give data compoents an id
 edict["__id__"] = count.count
 lookup[id(el)] = count.count # and add to lookup table
 if count is not None: count.count += 1 # inciment component counter
 sd[repr(key)] = edict # stick item dict into component data dict
 for a in alist: # store desired attributes
 if a in wts.write_cbs:
 if wts.write_cbs[a] is None:
 edict[a] = getattr(el, a)
 else:
 edict[a] = wts.write_cbs[a](el)
 else:
 edict[a] = getattr(el, a)
 hascomps = False # Has sub-components (like a Block would have)
 if _may_have_subcomponents(el): # block or block like component
 for o2 in el.component_objects(descend_into=False):
 # loop through sub-components
 if not hascomps: # if here it does have sub-components
 cdict = {} # so store those in __pyomo_components__
 edict["__pyomo_components__"] = cdict
 hascomps = True # only make __pyomo_components__ dict once
 # write each sub-component
 _write_component(sd=cdict, o=o2, wts=wts, count=count,
 lookup=lookup, suffixes=suffixes)

def component_data_to_dict(o, wts):
 """
 Component data to a dict.
 """
 el = o
 alist, ff = wts.get_data_class_attr_list(el) # get attributes
 if alist is None: return # if None then skip writing
 edict = {} # if not writing suffixes don't need ids
 for a in alist: # store desired attributes
 edict[a] = getattr(el, a)
 hascomps = False # Has sub-components (like a Block would have)
 if _may_have_subcomponents(el): # block or block like component
 for o2 in el.component_objects(descend_into=False):
 # loop through sub-components
 if not hascomps: # if here it does have sub-components
 cdict = {} # so store those in __pyomo_components__
 edict["__pyomo_components__"] = cdict
 hascomps = True # only make __pyomo_components__ dict once
 # write each sub-component
 _write_component(sd=cdict, o=o2, wts=wts)
 return edict

[docs]def to_json(o, fname=None, human_read=False, wts=None, metadata={}, gz=None,
 return_dict=False, return_json_string=False):
 """
 Save the state of a model to a Python dictionary, and optionally dump it
 to a json file. To load a model state, a model with the same structure must
 exist. The model itself cannot be recreated from this.

 Args:
 o: The Pyomo component object to save. Usually a Pyomo model, but could
 also be a subcomponent of a model (usually a sub-block).
 fname: json file name to save model state, if None only create
 python dict
 gz: If fname is given and gv is True gzip the json file. The default is
 True if the file name ends with '.gz' otherwise False.
 human_read: if True, add indents and spacing to make the json file more
 readable, if false cut out whitespace and make as compact as
 possilbe
 metadata: A dictionary of addtional metadata to add.
 wts: is What To Save, this is a StoreSpec object that specifies what
 object types and attributes to save. If None, the default is used
 which saves the state of the compelte model state.
 metadata: addtional metadata to save beyond the standard format_version,
 date, and time.
 return_dict: default is False if true returns a dictionary representation
 return_json_string: default is False returns a json string

 Returns:
 If return_dict is True returns a dictionary serialization of the Pyomo
 component. If return_dict is False and return_json_string is True
 returns a json string dump of the dict. If fname is given the dictionary
 is also written to a json file. If gz is True and fname is given, writes
 a gzipped json file.
 """
 if gz is None:
 if isinstance(fname, str):
 gz = fname.endswith(".gz")
 else:
 gz = False

 suffixes = []
 lookup = {}
 count = Counter()
 start_time = time.time()
 if wts is None:
 wts = StoreSpec()
 now = datetime.datetime.now()
 sd={"__metadata__":{
 "format_version":__format_version__,
 "date":datetime.date.isoformat(now.date()),
 "time":datetime.time.isoformat(now.time()),
 "other":metadata}}
 # first write the component
 _write_component(sd, o, wts, count, suffixes=suffixes, lookup=lookup)
 for s in suffixes:
 _write_component_data(**s)
 pdict = {}
 sd["__metadata__"]["__performance__"] = pdict
 pdict["n_components"] = count.count
 dict_time = time.time()
 pdict["etime_make_dict"] = dict_time - start_time
 # This returns the dict but if fname is specified also save to json file
 dump_kw = {'indent': 2} if human_read else {'separators': (',', ':')}
 if fname is not None:
 if gz:
 with gzip.open(fname, 'w') as f:
 f.write(json.dumps(sd, **dump_kw).encode('utf-8'))
 else:
 with open(fname, "w") as f:
 json.dump(sd, f, **dump_kw)
 file_time = time.time()
 # unfortunatly I can't write how long it took to write the file in the file
 pdict["etime_write_file"] = file_time - dict_time
 if return_dict:
 # In interactive environments returning the dict can cuase it to print
 # an extreemly large amount of stuff. So added this option to make sure
 # it's really what you want.
 return sd
 elif return_json_string:
 return json.dumps(sd, **dump_kw)
 else:
 return None

def _read_component(sd, o, wts, lookup={}, suffixes={}, root_name=None):
 """
 Read a component dictionary into a model
 """
 alist, ff = wts.get_class_attr_list(o)
 if alist is None: return
 if root_name is None:
 oname = o.getname(fully_qualified=False)
 else:
 oname = root_name
 try:
 odict = sd[oname]
 except KeyError as e:
 if wts.ignore_missing:
 return
 else:
 raise(e)
 if ff is not None:
 alist = ff(o, odict)
 if wts.include_suffix:
 lookup[odict['__id__']] = o
 for a in alist:
 try:
 if a in wts.read_cbs:
 if wts.read_cbs[a] is None:
 pass
 else:
 wts.read_cbs[a](o, odict[a])
 else:
 setattr(o, a, odict[a])
 except KeyError as e:
 if wts.ignore_missing:
 return
 else:
 raise(e)
 if isinstance(o, Suffix):
 if wts.include_suffix: # make a dict of suffixes to read at the end
 if wts.suffix_filter is None or oname in wts.suffix_filter:
 suffixes[odict['__id__']] = odict["data"] # is populated
 else: # read nonsufix component data
 _read_component_data(odict["data"], o, wts,
 lookup=lookup, suffixes=suffixes)

def _read_component_data(sd, o, wts, lookup={}, suffixes={}):
 """
 Read a Pyomo component's data in from a dict.

 Args:
 sd: dictionary to read from
 o: Pyomo component whoes data to read
 wts: StoreSpec object specifying what to read in
 lookup: a lookup table for id to componet for reading suffixes
 suffixes: a list of suffixes put off reading until end

 Returns:
 None
 """
 alist = [] # list of attributes to read
 c = 0 # counter of data items in component
 try:
 item_keys = o.keys()
 except AttributeError:
 item_keys = [None]
 for key in item_keys:
 if key is None and isinstance(o, ComponentData) \
 and not isinstance(o, Component):
 el = o
 else:
 el = o[key]
 if c == 0: # if first data item assume all itmes are same and get alist
 alist, ff = wts.get_data_class_attr_list(el) #ff is fileter function
 if alist is None: return #skip reading this type
 c += 1
 try: # get data from dict
 edict = sd[repr(key)]
 except KeyError as e: # data was missing either ignore or raise except
 if wts.ignore_missing:
 return # if ignore missing option its okay
 else:
 raise(e) # else raise exception
 if ff is not None: # if a filer function was given, use it to make a
 # new a list based on the model and whats stored for the state
 # this lets you contionally load things, for example only load
 # values for unfixed variables.
 alist = ff(o, edict)
 if wts.include_suffix: # if loading suffixes make lookup table id to item
 lookup[edict['__id__']] = el
 for a in alist: # read in desired attributes
 try:
 if a in wts.read_cbs:
 if wts.read_cbs[a] is None:
 pass
 else:
 wts.read_cbs[a](el, edict[a])
 else: # directly set an attribute
 setattr(el, a, edict[a])
 except KeyError as e: # attribute missing
 if wts.ignore_missing:
 return # if ignore option then is okay
 else:
 raise(e) # otherwise raise an exception
 if _may_have_subcomponents(el) and "__pyomo_components__" in edict:
 # read sub-components of block-like
 for o2 in el.component_objects(descend_into=False):
 # recursive read here
 _read_component(edict["__pyomo_components__"], o2, wts,
 lookup=lookup, suffixes=suffixes)

def component_data_from_dict(sd, o, wts):
 """
 Component data to a dict.
 """
 el = o
 alist = [] # list of attributes to read
 alist, ff = wts.get_data_class_attr_list(el) #ff is fileter function
 if alist is None: return #skip reading this type
 edict = sd
 if ff is not None:
 alist = ff(o, edict)
 for a in alist: # read in desired attributes
 try:
 if a in wts.read_cbs: # use a callback
 wts.read_cbs[a](el, edict[a])
 else: # directly set an attribute
 setattr(el, a, edict[a])
 except KeyError as e: # attribute missing
 if wts.ignore_missing:
 return # if ignore option then is okay
 else:
 raise(e) # otherwise raise an exception
 if _may_have_subcomponents(el): # read sub-components of block-like
 for o2 in el.component_objects(descend_into=False):
 # recursive read here
 _read_component(edict["__pyomo_components__"], o2, wts)

def _read_suffixes(lookup, suffixes):
 """
 Go through the list of suffixes and read the data back in.

 Args:
 lookup: a lookup table to go from id to component
 suffixes: a dictionary with suffix id keys and value dict value
 Returns:
 None
 """
 for uid in suffixes:
 d = suffixes[uid]
 s = lookup[uid] # suffixes keys are ids, so get suffix component
 for key in d: # set values from value dict
 try:
 kc = lookup[int(key)] # use int because json turn keys to string
 except KeyError:
 continue
 s[kc] = d[key]

[docs]def from_json(o, sd=None, fname=None, s=None, wts=None, gz=None, root_name=None):
 """
 Load the state of a Pyomo component state from a dictionary, json file, or
 json string. Must only specify one of sd, fname, or s as a non-None value.
 This works by going through the model and loading the state of each
 sub-compoent of o. If the saved state contains extra information, it is
 ignored. If the save state doesn't contain an enetry for a model component
 that is to be loaded an error will be raised, unless ignore_missing = True.

 Args:
 o: Pyomo component to for which to load state
 sd: State dictionary to load, if None, check fname and s
 fname: JSON file to load, only used if sd is None
 s: JSON string to load only used if both sd and fname are None
 wts: StoreSpec object specifying what to load
 gz: If True assume the file specified by fname is gzipped. The default is
 True if fname ends with '.gz' otherwise False.

 Returns:
 Dictionary with some perfomance information. The keys are
 "etime_load_file", how long in seconds it took to load the json file
 "etime_read_dict", how long in seconds it took to read models state
 "etime_read_suffixes", how long in seconds it took to read suffixes
 """
 if gz is None:
 if isinstance(fname, str):
 gz = fname.endswith(".gz")
 else:
 gz = False

 # keeping track of elapsed time. want to make sure I don't do anything
 # that's too slow.
 start_time = time.time()
 # Get the model state dict from one of three sources
 if sd is not None: # Existing Python dict (for in-memory stuff).
 pass
 elif fname is not None: # Read in from a json file
 if gz:
 with gzip.open(fname, 'r') as f:
 fr = f.read()
 sd = json.loads(fr)
 else:
 with open(fname, "r") as f:
 sd = json.load(f) #json file
 elif s is not None: # Use a json string (not really sure if useful)
 sd=json.loads(s) #json string
 else: # Didn't specify at least one source
 raise Exception("Need to specify a data source to load from")
 dict_time = time.time() # To calculate how long it took to read file
 if wts is None: # if no StoreSpec object given use the default, which should
 wts = StoreSpec() # be the typlical save everything important
 lookup = {} # A dict to use for a lookup tables
 suffixes={} # A list of suffixes delayed to end so lookup is complete
 # Read toplevel componet (is recursive)
 _read_component(
 sd, o, wts, lookup=lookup, suffixes=suffixes, root_name=root_name)
 read_time = time.time() # to calc time to read model state minus suffixes
 # Now read in the suffixes
 _read_suffixes(lookup, suffixes)
 suffix_time = time.time() # to calculate time to read suffixes
 pdict = {} # return some perfomance information, to make sure not too slow
 pdict["etime_load_file"] = dict_time - start_time
 pdict["etime_read_dict"] = read_time - dict_time
 pdict["etime_read_suffixes"] = suffix_time - read_time
 return pdict

 idaes.core.util.model_statistics

 Source code for idaes.core.util.model_statistics

-*- coding: utf-8 -*-
##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains utility functions for reporting structural statistics of
IDAES models.
"""

__author__ = "Andrew Lee"

import sys

from pyomo.environ import Block, Constraint, Expression, Objective, Var, value
from pyomo.dae import DerivativeVar
from pyomo.core.expr.current import identify_variables
from pyomo.common.collections import ComponentSet

Block methods
[docs]def total_blocks_set(block):
 """
 Method to return a ComponentSet of all Block components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Block components in block (including block
 itself)
 """
 total_blocks_set = ComponentSet(
 block.component_data_objects(
 ctype=Block, active=None, descend_into=True))
 total_blocks_set.add(block)
 return total_blocks_set

[docs]def number_total_blocks(block):
 """
 Method to return the number of Block components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Block components in block (including block itself)
 """
 b = 1 # Start at 1 to include main model
 for o in block.component_data_objects(
 ctype=Block, active=None, descend_into=True):
 b += 1
 return b

[docs]def activated_blocks_set(block):
 """
 Method to return a ComponentSet of all activated Block components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all activated Block components in block
 (including block itself)
 """
 block_set = ComponentSet()
 if block.active:
 block_set.add(block)
 for b in block.component_data_objects(
 ctype=Block, active=True, descend_into=True):
 block_set.add(b)
 return block_set

[docs]def number_activated_blocks(block):
 """
 Method to return the number of activated Block components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of activated Block components in block (including block itself)
 """
 b = 0
 if block.active:
 b = 1
 for o in block.component_data_objects(
 ctype=Block, active=True, descend_into=True):
 b += 1
 return b

[docs]def deactivated_blocks_set(block):
 """
 Method to return a ComponentSet of all deactivated Block components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all deactivated Block components in block
 (including block itself)
 """
 # component_data_objects active=False does not seem to work as expected
 # Use difference of total and active block sets
 return total_blocks_set(block) - activated_blocks_set(block)

[docs]def number_deactivated_blocks(block):
 """
 Method to return the number of deactivated Block components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of deactivated Block components in block (including block
 itself)
 """
 # component_data_objects active=False does not seem to work as expected
 # Use difference of total and active block sets
 return number_total_blocks(block) - number_activated_blocks(block)

Basic Constraint methods
[docs]def total_constraints_set(block):
 """
 Method to return a ComponentSet of all Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Constraint components in block
 """
 return ComponentSet(activated_block_component_generator(
 block, ctype=Constraint))

[docs]def number_total_constraints(block):
 """
 Method to return the total number of Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Constraint components in block
 """
 tc = 0
 for c in activated_block_component_generator(block, ctype=Constraint):
 tc += 1
 return tc

[docs]def activated_constraints_generator(block):
 """
 Generator which returns all activated Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all activated Constraint components block
 """
 for c in activated_block_component_generator(block, ctype=Constraint):
 if c.active:
 yield c

[docs]def activated_constraints_set(block):
 """
 Method to return a ComponentSet of all activated Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all activated Constraint components in block
 """
 return ComponentSet(activated_constraints_generator(block))

[docs]def number_activated_constraints(block):
 """
 Method to return the number of activated Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of activated Constraint components in block
 """
 tc = 0
 for c in activated_constraints_generator(block):
 tc += 1
 return tc

[docs]def deactivated_constraints_generator(block):
 """
 Generator which returns all deactivated Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all deactivated Constraint components block
 """
 for c in activated_block_component_generator(block, ctype=Constraint):
 if not c.active:
 yield c

[docs]def deactivated_constraints_set(block):
 """
 Method to return a ComponentSet of all deactivated Constraint components in
 a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all deactivated Constraint components in block
 """
 return ComponentSet(deactivated_constraints_generator(block))

[docs]def number_deactivated_constraints(block):
 """
 Method to return the number of deactivated Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 Number of deactivated Constraint components in block
 """
 tc = 0
 for c in deactivated_constraints_generator(block):
 tc += 1
 return tc

Equality Constraints
[docs]def total_equalities_generator(block):
 """
 Generator which returns all equality Constraint components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all equality Constraint components block
 """
 for c in activated_block_component_generator(block, ctype=Constraint):
 if (c.upper is not None and
 c.lower is not None and
 c.upper == c.lower):
 yield c

[docs]def total_equalities_set(block):
 """
 Method to return a ComponentSet of all equality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all equality Constraint components in block
 """
 return ComponentSet(total_equalities_generator(block))

[docs]def number_total_equalities(block):
 """
 Method to return the total number of equality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 Number of equality Constraint components in block
 """
 tc = 0
 for c in total_equalities_generator(block):
 tc += 1
 return tc

[docs]def activated_equalities_generator(block):
 """
 Generator which returns all activated equality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all activated equality Constraint components
 block
 """
 for c in block.component_data_objects(
 Constraint, active=True, descend_into=True):
 if (c.upper is not None and c.lower is not None and
 c.upper == c.lower):
 yield c

[docs]def activated_equalities_set(block):
 """
 Method to return a ComponentSet of all activated equality Constraint
 components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all activated equality Constraint components
 in block
 """
 return ComponentSet(activated_equalities_generator(block))

[docs]def number_activated_equalities(block):
 """
 Method to return the number of activated equality Constraint components in
 a model.

 Args:
 block : model to be studied

 Returns:
 Number of activated equality Constraint components in block
 """
 tc = 0
 for o in activated_equalities_generator(block):
 tc += 1
 return tc

[docs]def deactivated_equalities_generator(block):
 """
 Generator which returns all deactivated equality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all deactivated equality Constraint
 components block
 """
 for c in total_equalities_generator(block):
 if not c.active:
 yield c

[docs]def deactivated_equalities_set(block):
 """
 Method to return a ComponentSet of all deactivated equality Constraint
 components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all deactivated equality Constraint components
 in block
 """
 return ComponentSet(deactivated_equalities_generator(block))

[docs]def number_deactivated_equalities(block):
 """
 Method to return the number of deactivated equality Constraint components
 in a model.

 Args:
 block : model to be studied

 Returns:
 Number of deactivated equality Constraint components in block
 """
 tc = 0
 for c in deactivated_equalities_generator(block):
 tc += 1
 return tc

Inequality Constraints
[docs]def total_inequalities_generator(block):
 """
 Generator which returns all inequality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all inequality Constraint components block
 """
 for c in activated_block_component_generator(block, ctype=Constraint):
 if c.upper is None or c.lower is None:
 yield c

[docs]def total_inequalities_set(block):
 """
 Method to return a ComponentSet of all inequality Constraint components in
 a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all inequality Constraint components in block
 """
 return ComponentSet(total_inequalities_generator(block))

[docs]def number_total_inequalities(block):
 """
 Method to return the total number of inequality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 Number of inequality Constraint components in block
 """
 c = 0
 for o in total_inequalities_generator(block):
 c += 1
 return c

[docs]def activated_inequalities_generator(block):
 """
 Generator which returns all activated inequality Constraint components in a
 model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all activated inequality Constraint
 components block
 """
 for c in block.component_data_objects(
 Constraint, active=True, descend_into=True):
 if c.upper is None or c.lower is None:
 yield c

[docs]def activated_inequalities_set(block):
 """
 Method to return a ComponentSet of all activated inequality Constraint
 components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all activated inequality Constraint components
 in block
 """
 return ComponentSet(activated_inequalities_generator(block))

[docs]def number_activated_inequalities(block):
 """
 Method to return the number of activated inequality Constraint components
 in a model.

 Args:
 block : model to be studied

 Returns:
 Number of activated inequality Constraint components in block
 """
 c = 0
 for o in activated_inequalities_generator(block):
 c += 1
 return c

[docs]def deactivated_inequalities_generator(block):
 """
 Generator which returns all deactivated inequality Constraint components in
 a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all indeactivated equality Constraint
 components block
 """
 for c in total_inequalities_generator(block):
 if not c.active:
 yield c

[docs]def deactivated_inequalities_set(block):
 """
 Method to return a ComponentSet of all deactivated inequality Constraint
 components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all deactivated inequality Constraint
 components in block
 """
 return ComponentSet(deactivated_inequalities_generator(block))

[docs]def number_deactivated_inequalities(block):
 """
 Method to return the number of deactivated inequality Constraint components
 in a model.

 Args:
 block : model to be studied

 Returns:
 Number of deactivated inequality Constraint components in block
 """
 c = 0
 for o in deactivated_inequalities_generator(block):
 c += 1
 return c

Basic Variable Methods
Always use ComponentSets for Vars to avoid duplication of References
i.e. number methods should alwys use the ComponentSet, not a generator
[docs]def variables_set(block):
 """
 Method to return a ComponentSet of all Var components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components in block
 """
 return ComponentSet(block.component_data_objects(
 ctype=Var, active=True, descend_into=True))

[docs]def number_variables(block):
 """
 Method to return the number of Var components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components in block
 """
 return len(variables_set(block))

[docs]def fixed_variables_generator(block):
 """
 Generator which returns all fixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all fixed Var components block
 """
 for v in block.component_data_objects(
 ctype=Var, active=True, descend_into=True):
 if v.fixed:
 yield v

[docs]def fixed_variables_set(block):
 """
 Method to return a ComponentSet of all fixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all fixed Var components in block
 """
 return ComponentSet(fixed_variables_generator(block))

[docs]def number_fixed_variables(block):
 """
 Method to return the number of fixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of fixed Var components in block
 """
 return len(fixed_variables_set(block))

[docs]def unfixed_variables_generator(block):
 """
 Generator which returns all unfixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all unfixed Var components block
 """
 for v in block.component_data_objects(
 ctype=Var, active=True, descend_into=True):
 if not v.fixed:
 yield v

[docs]def unfixed_variables_set(block):
 """
 Method to return a ComponentSet of all unfixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all unfixed Var components in block
 """
 return ComponentSet(unfixed_variables_generator(block))

[docs]def number_unfixed_variables(block):
 """
 Method to return the number of unfixed Var components in a model.

 Args:
 block : model to be studied

 Returns:
 Number of unfixed Var components in block
 """
 return len(unfixed_variables_set(block))

[docs]def variables_near_bounds_generator(block, tol=1e-4):
 """
 Generator which returns all Var components in a model which have a value
 within tol (relative) of a bound.

 Args:
 block : model to be studied
 tol : relative tolerance for inclusion in generator (default = 1e-4)

 Returns:
 A generator which returns all Var components block that are close to a
 bound
 """
 for v in block.component_data_objects(
 ctype=Var, active=True, descend_into=True):
 # To avoid errors, check that v has a value
 if v.value is None:
 continue

 # First, determine absolute tolerance to apply to bounds
 if v.ub is not None and v.lb is not None:
 # Both upper and lower bounds, apply tol to (upper - lower)
 atol = value((v.ub - v.lb)*tol)
 elif v.ub is not None:
 # Only upper bound, apply tol to bound value
 atol = abs(value(v.ub*tol))
 elif v.lb is not None:
 # Only lower bound, apply tol to bound value
 atol = abs(value(v.lb*tol))
 else:
 continue

 if v.ub is not None and value(v.ub - v.value) <= atol:
 yield v
 elif v.lb is not None and value(v.value - v.lb) <= atol:
 yield v

[docs]def variables_near_bounds_set(block, tol=1e-4):
 """
 Method to return a ComponentSet of all Var components in a model which have
 a value within tol (relative) of a bound.

 Args:
 block : model to be studied
 tol : relative tolerance for inclusion in generator (default = 1e-4)

 Returns:
 A ComponentSet including all Var components block that are close to a
 bound
 """
 return ComponentSet(variables_near_bounds_generator(block, tol))

[docs]def number_variables_near_bounds(block, tol=1e-4):
 """
 Method to return the number of all Var components in a model which have
 a value within tol (relative) of a bound.

 Args:
 block : model to be studied
 tol : relative tolerance for inclusion in generator (default = 1e-4)

 Returns:
 Number of components block that are close to a bound
 """
 return len(variables_near_bounds_set(block, tol))

Variables in Constraints
[docs]def variables_in_activated_constraints_set(block):
 """
 Method to return a ComponentSet of all Var components which appear within a
 Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components which appear within
 activated Constraints in block
 """
 var_set = ComponentSet()
 for c in block.component_data_objects(
 ctype=Constraint, active=True, descend_into=True):
 for v in identify_variables(c.body):
 var_set.add(v)
 return var_set

[docs]def number_variables_in_activated_constraints(block):
 """
 Method to return the number of Var components that appear within active
 Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which appear within active Constraints in
 block
 """
 return len(variables_in_activated_constraints_set(block))

[docs]def variables_in_activated_equalities_set(block):
 """
 Method to return a ComponentSet of all Var components which appear within
 an equality Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components which appear within
 activated equality Constraints in block
 """
 var_set = ComponentSet()
 for c in activated_equalities_generator(block):
 for v in identify_variables(c.body):
 var_set.add(v)
 return var_set

[docs]def number_variables_in_activated_equalities(block):
 """
 Method to return the number of Var components which appear within activated
 equality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which appear within activated equality
 Constraints in block
 """
 return len(variables_in_activated_equalities_set(block))

[docs]def variables_in_activated_inequalities_set(block):
 """
 Method to return a ComponentSet of all Var components which appear within
 an inequality Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components which appear within
 activated inequality Constraints in block
 """
 var_set = ComponentSet()
 for c in activated_inequalities_generator(block):
 for v in identify_variables(c.body):
 var_set.add(v)
 return var_set

[docs]def number_variables_in_activated_inequalities(block):
 """
 Method to return the number of Var components which appear within activated
 inequality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which appear within activated inequality
 Constraints in block
 """
 return len(variables_in_activated_inequalities_set(block))

[docs]def variables_only_in_inequalities(block):
 """
 Method to return a ComponentSet of all Var components which appear only
 within inequality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components which appear only within
 inequality Constraints in block
 """
 return (variables_in_activated_inequalities_set(block) -
 variables_in_activated_equalities_set(block))

[docs]def number_variables_only_in_inequalities(block):
 """
 Method to return the number of Var components which appear only within
 activated inequality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which appear only within activated inequality
 Constraints in block
 """
 return len(variables_only_in_inequalities(block))

Fixed Variables in Constraints
[docs]def fixed_variables_in_activated_equalities_set(block):
 """
 Method to return a ComponentSet of all fixed Var components which appear
 within an equality Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all fixed Var components which appear within
 activated equality Constraints in block
 """
 var_set = ComponentSet()
 for v in variables_in_activated_equalities_set(block):
 if v.fixed:
 var_set.add(v)
 return var_set

[docs]def number_fixed_variables_in_activated_equalities(block):
 """
 Method to return the number of fixed Var components which appear within
 activated equality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of fixed Var components which appear within activated equality
 Constraints in block
 """
 return len(fixed_variables_in_activated_equalities_set(block))

[docs]def unfixed_variables_in_activated_equalities_set(block):
 """
 Method to return a ComponentSet of all unfixed Var components which appear
 within an activated equality Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all unfixed Var components which appear within
 activated equality Constraints in block
 """
 var_set = ComponentSet()
 for v in variables_in_activated_equalities_set(block):
 if not v.fixed:
 var_set.add(v)
 return var_set

[docs]def number_unfixed_variables_in_activated_equalities(block):
 """
 Method to return the number of unfixed Var components which appear within
 activated equality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of unfixed Var components which appear within activated equality
 Constraints in block
 """
 return len(unfixed_variables_in_activated_equalities_set(block))

[docs]def fixed_variables_only_in_inequalities(block):
 """
 Method to return a ComponentSet of all fixed Var components which appear
 only within activated inequality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all fixed Var components which appear only
 within activated inequality Constraints in block
 """
 var_set = ComponentSet()
 for v in variables_only_in_inequalities(block):
 if v.fixed:
 var_set.add(v)
 return var_set

[docs]def number_fixed_variables_only_in_inequalities(block):
 """
 Method to return the number of fixed Var components which only appear
 within activated inequality Constraints in a model.

 Args:
 block : model to be studied

 Returns:
 Number of fixed Var components which only appear within activated
 inequality Constraints in block
 """
 return len(fixed_variables_only_in_inequalities(block))

Unused and un-Transformed Variables
[docs]def unused_variables_set(block):
 """
 Method to return a ComponentSet of all Var components which do not appear
 within any activated Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Var components which do not appear within
 any Constraints in block
 """
 return variables_set(block) - variables_in_activated_constraints_set(block)

[docs]def number_unused_variables(block):
 """
 Method to return the number of Var components which do not appear within
 any activated Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which do not appear within any activagted
 Constraints in block
 """
 return len(unused_variables_set(block))

[docs]def fixed_unused_variables_set(block):
 """
 Method to return a ComponentSet of all fixed Var components which do not
 appear within any activated Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all fixed Var components which do not appear
 within any Constraints in block
 """
 var_set = ComponentSet()
 for v in unused_variables_set(block):
 if v.fixed:
 var_set.add(v)
 return var_set

[docs]def number_fixed_unused_variables(block):
 """
 Method to return the number of fixed Var components which do not appear
 within any activated Constraint in a model.

 Args:
 block : model to be studied

 Returns:
 Number of fixed Var components which do not appear within any activated
 Constraints in block
 """
 return len(fixed_unused_variables_set(block))

[docs]def derivative_variables_set(block):
 """
 Method to return a ComponentSet of all DerivativeVar components which
 appear in a model. Users should note that DerivativeVars are converted to
 ordinary Vars when a DAE transformation is applied. Thus, this method is
 useful for detecting any DerivativeVars which were do transformed.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all DerivativeVar components which appear in
 block
 """
 return ComponentSet(block.component_data_objects(
 ctype=DerivativeVar, active=True, descend_into=True))

[docs]def number_derivative_variables(block):
 """
 Method to return the number of DerivativeVar components which
 appear in a model. Users should note that DerivativeVars are converted to
 ordinary Vars when a DAE transformation is applied. Thus, this method is
 useful for detecting any DerivativeVars which were do transformed.

 Args:
 block : model to be studied

 Returns:
 Number of DerivativeVar components which appear in block
 """
 return len(derivative_variables_set(block))

Objective methods
[docs]def total_objectives_generator(block):
 """
 Generator which returns all Objective components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all Objective components block
 """
 for o in activated_block_component_generator(block, ctype=Objective):
 yield o

[docs]def total_objectives_set(block):
 """
 Method to return a ComponentSet of all Objective components which appear
 in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Objective components which appear in block
 """
 return ComponentSet(total_objectives_generator(block))

[docs]def number_total_objectives(block):
 """
 Method to return the number of Objective components which appear in a model

 Args:
 block : model to be studied

 Returns:
 Number of Objective components which appear in block
 """
 c = 0
 for o in total_objectives_generator(block):
 c += 1
 return c

[docs]def activated_objectives_generator(block):
 """
 Generator which returns all activated Objective components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all activated Objective components block
 """
 for o in activated_block_component_generator(block, ctype=Objective):
 if o.active:
 yield o

[docs]def activated_objectives_set(block):
 """
 Method to return a ComponentSet of all activated Objective components which
 appear in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all activated Objective components which
 appear in block
 """
 return ComponentSet(activated_objectives_generator(block))

[docs]def number_activated_objectives(block):
 """
 Method to return the number of activated Objective components which appear
 in a model.

 Args:
 block : model to be studied

 Returns:
 Number of activated Objective components which appear in block
 """
 c = 0
 for o in activated_objectives_generator(block):
 c += 1
 return c

[docs]def deactivated_objectives_generator(block):
 """
 Generator which returns all deactivated Objective components in a model.

 Args:
 block : model to be studied

 Returns:
 A generator which returns all deactivated Objective components block
 """
 for o in activated_block_component_generator(block, ctype=Objective):
 if not o.active:
 yield o

[docs]def deactivated_objectives_set(block):
 """
 Method to return a ComponentSet of all deactivated Objective components
 which appear in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all deactivated Objective components which
 appear in block
 """
 return ComponentSet(deactivated_objectives_generator(block))

[docs]def number_deactivated_objectives(block):
 """
 Method to return the number of deactivated Objective components which
 appear in a model.

 Args:
 block : model to be studied

 Returns:
 Number of deactivated Objective components which appear in block
 """
 c = 0
 for o in deactivated_objectives_generator(block):
 c += 1
 return c

Expression methods
Always use ComponentsSets here to avoid duplication of References
[docs]def expressions_set(block):
 """
 Method to return a ComponentSet of all Expression components which appear
 in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including all Expression components which appear in
 block
 """
 return ComponentSet(block.component_data_objects(
 ctype=Expression, active=True, descend_into=True))

[docs]def number_expressions(block):
 """
 Method to return the number of Expression components which appear in a
 model.

 Args:
 block : model to be studied

 Returns:
 Number of Expression components which appear in block
 """
 return len(expressions_set(block))

Other model statistics
[docs]def degrees_of_freedom(block):
 """
 Method to return the degrees of freedom of a model.

 Args:
 block : model to be studied

 Returns:
 Number of degrees of freedom in block.
 """
 return (number_unfixed_variables_in_activated_equalities(block) -
 number_activated_equalities(block))

[docs]def large_residuals_set(block, tol=1e-5):
 """
 Method to return a ComponentSet of all Constraint components with a
 residual greater than a given threshold which appear in a model.

 Args:
 block : model to be studied
 tol : residual threshold for inclusion in ComponentSet

 Returns:
 A ComponentSet including all Constraint components with a residual
 greater than tol which appear in block
 """
 large_residuals_set = ComponentSet()
 for c in block.component_data_objects(
 ctype=Constraint, active=True, descend_into=True):
 if c.active and value(c.lower - c.body()) > tol:
 large_residuals_set.add(c)
 elif c.active and value(c.body() - c.upper) > tol:
 large_residuals_set.add(c)
 return large_residuals_set

[docs]def number_large_residuals(block, tol=1e-5):
 """
 Method to return the number Constraint components with a residual greater
 than a given threshold which appear in a model.

 Args:
 block : model to be studied
 tol : residual threshold for inclusion in ComponentSet

 Returns:
 Number of Constraint components with a residual greater than tol which
 appear in block
 """
 lr = 0
 for c in block.component_data_objects(
 ctype=Constraint, active=True, descend_into=True):
 if c.active and value(c.lower - c.body()) > tol:
 lr += 1
 elif c.active and value(c.body() - c.upper) > tol:
 lr += 1
 return lr

[docs]def active_variables_in_deactivated_blocks_set(block):
 """
 Method to return a ComponentSet of any Var components which appear within
 an active Constraint but belong to a deacitvated Block in a model.

 Args:
 block : model to be studied

 Returns:
 A ComponentSet including any Var components which belong to a
 deacitvated Block but appear in an activate Constraint in block
 """
 var_set = ComponentSet()
 block_set = activated_blocks_set(block)
 for v in variables_in_activated_constraints_set(block):
 if v.parent_block() not in block_set:
 var_set.add(v)
 return var_set

[docs]def number_active_variables_in_deactivated_blocks(block):
 """
 Method to return the number of Var components which appear within an active
 Constraint but belong to a deacitvated Block in a model.

 Args:
 block : model to be studied

 Returns:
 Number of Var components which belong to a deacitvated Block but appear
 in an activate Constraint in block
 """
 return len(active_variables_in_deactivated_blocks_set(block))

Reporting methods
[docs]def report_statistics(block, ostream=None):
 """
 Method to print a report of the model statistics for a Pyomo Block

 Args:
 block : the Block object to report statistics from
 ostream : output stream for printing (defaults to sys.stdout)

 Returns:
 Printed output of the model statistics
 """
 if ostream is None:
 ostream = sys.stdout

 tab = " "*4
 header = '='*72

 if block.name == "unknown":
 name_str = ""
 else:
 name_str = f"- {block.name}"

 ostream.write("\n")
 ostream.write(header+"\n")
 ostream.write(f"Model Statistics {name_str} \n")
 ostream.write("\n")
 ostream.write(f"Degrees of Freedom: "
 f"{degrees_of_freedom(block)} \n")
 ostream.write("\n")
 ostream.write(f"Total No. Variables: "
 f"{number_variables(block)} \n")
 ostream.write(f"{tab}No. Fixed Variables: "
 f"{number_fixed_variables(block)}"
 f"\n")
 ostream.write(
 f"{tab}No. Unused Variables: "
 f"{number_unused_variables(block)} (Fixed):"
 f"{number_fixed_unused_variables(block)})"
 f"\n")
 nv_alias = number_variables_only_in_inequalities
 nfv_alias = number_fixed_variables_only_in_inequalities
 ostream.write(
 f"{tab}No. Variables only in Inequalities:"
 f" {nv_alias(block)}"
 f" (Fixed: {nfv_alias(block)}) \n")
 ostream.write("\n")
 ostream.write(
 f"Total No. Constraints: "
 f"{number_total_constraints(block)} \n")
 ostream.write(
 f"{tab}No. Equality Constraints: "
 f"{number_total_equalities(block)}"
 f" (Deactivated: "
 f"{number_deactivated_equalities(block)})"
 f"\n")
 ostream.write(
 f"{tab}No. Inequality Constraints: "
 f"{number_total_inequalities(block)}"
 f" (Deactivated: "
 f"{number_deactivated_inequalities(block)})"
 f"\n")
 ostream.write("\n")
 ostream.write(
 f"No. Objectives: "
 f"{number_total_objectives(block)}"
 f" (Deactivated: "
 f"{number_deactivated_objectives(block)})"
 f"\n")
 ostream.write("\n")
 ostream.write(
 f"No. Blocks: {number_total_blocks(block)}"
 f" (Deactivated: "
 f"{number_deactivated_blocks(block)}) \n")
 ostream.write(f"No. Expressions: "
 f"{number_expressions(block)} \n")
 ostream.write(header+"\n")
 ostream.write("\n")

Common sub-methods
[docs]def activated_block_component_generator(block, ctype):
 """
 Generator which returns all the components of a given ctype which exist in
 activated Blocks within a model.

 Args:
 block : model to be studied
 ctype : type of Pyomo component to be returned by generator.

 Returns:
 A generator which returns all components of ctype which appear in
 activated Blocks in block
 """
 # Yield local components first
 for c in block.component_data_objects(ctype=ctype,
 active=None,
 descend_into=False):
 yield c

 # Then yield components in active sub-blocks
 for b in block.component_data_objects(
 ctype=Block, active=True, descend_into=True):
 for c in b.component_data_objects(ctype=ctype,
 active=None,
 descend_into=False):
 yield c

 idaes.core.util.scaling

 Source code for idaes.core.util.scaling

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This module contains utilities to provide variable and expression scaling
factors by providing an expression to calculate them via a suffix.

The main purpose of this code is to use the calculate_scaling_factors function
to calculate scaling factors to be used with the Pyomo scaling transformation or
with solvers. A user can provide a scaling_expression suffix to calculate scale
factors from existing variable scaling factors. This allows scaling factors from
a small set of fundamental variables to be propagated to the rest of the model.

The scaling_expression suffix contains Pyomo expressions with model variables.
The expressions can be evaluated with variable scaling factors in place of
variables to calculate additional scaling factors.
"""

__author__ = "John Eslick, Tim Bartholomew"

import pyomo.environ as pyo
from pyomo.core.expr import current as EXPR
from pyomo.core.expr.visitor import identify_variables
from pyomo.network import Arc
from pyomo.contrib.pynumero.interfaces.pyomo_nlp import PyomoNLP
from pyomo.common.modeling import unique_component_name
from pyomo.core.base.constraint import _ConstraintData
from pyomo.common.collections import ComponentMap
from pyomo.util.calc_var_value import calculate_variable_from_constraint
from idaes.core.util.exceptions import ConfigurationError
import idaes.logger as idaeslog

__author__ = "John Eslick, Tim Bartholomew, Robert Parker"
_log = idaeslog.getLogger(__name__)

def __none_mult(x, y):
 """PRIVATE FUNCTION, If x or y is None return None, else return x * y"""
 if x is not None and y is not None:
 return x * y
 return None

def scale_arc_constraints(blk):
 """Find Arc constraints in a block and its subblocks. Then scale them based
 on the minimum scaling factor of the variables in the constraint.

 Args:
 blk: Block in which to look for Arc constraints to scale.

 Returns:
 None
 """
 for arc in blk.component_data_objects(Arc, descend_into=True):
 arc_block = arc.expanded_block
 if arc_block is None: # arc not expanded or port empty?
 _log.warning(
 f"{arc} has no constraints. Has the Arc expansion transform "
 "been appied?")
 continue
 for c in arc_block.component_data_objects(pyo.Constraint, descend_into=True):
 sf = min_scaling_factor(identify_variables(c.body))
 constraint_scaling_transform(c, sf)

[docs]def map_scaling_factor(iter, default=1, warning=False, func=min):
 """Map get_scaling_factor to an iterable of Pyomo components, and call func
 on the result. This could be use, for example, to get the minimum or
 maximum scaling factor of a set of components.

 Args:
 iter: Iterable yeilding Pyomo componentes
 default: The default value used when a scaling factor is missing. The
 default is default=1.
 warning: Log a warning for missing scaling factors
 func: The function to call on the resulting iterable of scaling factors.
 The default is min().

 Returns:
 The result of func on the set of scaling factors
 """
 return func(
 map(
 lambda x: get_scaling_factor(x, default=default, warning=warning),
 iter
)
)

[docs]def min_scaling_factor(iter, default=1, warning=True):
 """Map get_scaling_factor to an iterable of Pyomo components, and get the
 minimum caling factor.

 Args:
 iter: Iterable yeilding Pyomo componentes
 default: The default value used when a scaling factor is missing. If
 None, this will raise an exception when scaling factors are missing.
 The default is default=1.
 warning: Log a warning for missing scaling factors

 Returns:
 Minimum scaling factor of the components in iter
 """
 return map_scaling_factor(iter, default=default, warning=warning, func=min)

[docs]def propagate_indexed_component_scaling_factors(
 blk,
 typ=(pyo.Var, pyo.Constraint, pyo.Expression),
 overwrite=False,
 descend_into=True):
 """Use the parent component scaling factor to set all component data object
 scaling factors.

 Args:
 blk: The block on which to search for components
 typ: Component type(s) (default=(Var, Constraint, Expression, Param))
 overwrite: if a data object already has a scaling factor should it be
 overwrittten (default=False)
 descend_into: descend into child blocks (default=True)
 """
 for c in blk.component_objects(typ, descend_into=descend_into):
 if get_scaling_factor(c) is not None and c.is_indexed():
 for cdat in c.values():
 if overwrite or get_scaling_factor(cdat) is None:
 set_scaling_factor(cdat, get_scaling_factor(c))

def calculate_scaling_factors(blk):
 """Look for calculate_scaling_factors methods and run them. This uses a
 recursive function to execute the subblock calculate_scaling_factors
 methods first.
 """
 def cs(blk2):
 """ Recursive function for to do subblocks first"""
 for b in blk2.component_data_objects(pyo.Block, descend_into=False):
 cs(b)
 if hasattr(blk2, "calculate_scaling_factors"):
 blk2.calculate_scaling_factors()
 # Call recursive function to run calculate_scaling_factors on blocks from
 # the bottom up.
 cs(blk)
 # If a scale factor is set for an indexed component, propagate it to the
 # component data if a scale factor hasn't already been explicitly set
 propagate_indexed_component_scaling_factors(blk)
 # Use the variable scaling factors to scale the arc constraints.
 scale_arc_constraints(blk)

[docs]def set_scaling_factor(c, v, data_objects=True):
 """Set a scaling factor for a model component. This function creates the
 scaling_factor suffix if needed.

 Args:
 c: component to supply scaling factor for
 v: scaling factor
 Returns:
 None
 """
 if isinstance(c, (float, int)):
 # property packages can return 0 for material balance terms on components
 # doesn't exist. This handles the case where you get a constant 0 and
 # need it's scale factor to scale the mass balance.
 return 1
 try:
 suf = c.parent_block().scaling_factor
 except AttributeError:
 c.parent_block().scaling_factor = pyo.Suffix(direction=pyo.Suffix.EXPORT)
 suf = c.parent_block().scaling_factor

 suf[c] = v
 if data_objects and c.is_indexed():
 for cdat in c.values():
 suf[cdat] = v

[docs]def get_scaling_factor(c, default=None, warning=False, exception=False):
 """Get a component scale factor.

 Args:
 c: component
 default: value to return if no scale factor exists (default=None)
 """
 try:
 sf = c.parent_block().scaling_factor[c]
 except (AttributeError, KeyError):
 if warning:
 _log.warning(f"Accessing missing scaling factor for {c}")
 if exception and default is None:
 _log.error(f"Accessing missing scaling factor for {c}")
 raise
 sf = default
 return sf

[docs]def unset_scaling_factor(c, data_objects=True):
 """Delete a component scaling factor.

 Args:
 c: component

 Returns:
 None
 """
 try:
 del c.parent_block().scaling_factor[c]
 except (AttributeError, KeyError):
 pass # no scaling factor suffix, is fine
 try:
 if data_objects and c.is_indexed():
 for cdat in c.values():
 del cdat.parent_block().scaling_factor[cdat]
 except (AttributeError, KeyError):
 pass # no scaling factor suffix, is fine

def __set_constraint_transform_applied_scaling_factor(c, v):
 """PRIVATE FUNCTION Set the scaling factor used to transform a constraint.
 This is used to keep track of scaling tranformations that have been applied
 to constraints.

 Args:
 c: component to supply scaling factor for
 v: scaling factor
 Returns:
 None
 """
 try:
 c.parent_block().constaint_transformed_scaling_factor[c] = v
 except AttributeError:
 c.parent_block().constaint_transformed_scaling_factor = pyo.Suffix(
 direction=pyo.Suffix.LOCAL)
 c.parent_block().constaint_transformed_scaling_factor[c] = v

[docs]def get_constraint_transform_applied_scaling_factor(c, default=None):
 """Get a the scale factor that was used to transform a
 constraint.

 Args:
 c: constraint data object
 default: value to return if no scaling factor exisits (default=None)

 Returns:
 The scaling factor that has been used to transform the constraint or the
 default.
 """
 try:
 sf = c.parent_block().constaint_transformed_scaling_factor.get(c, default)
 except AttributeError:
 sf = default # when there is no suffix
 return sf

def __unset_constraint_transform_applied_scaling_factor(c):
 """PRIVATE FUNCTION: Delete the recorded scale factor that has been used
 to transform constraint c. This is used when undoing a constraint
 transformation.
 """
 try:
 del c.parent_block().constaint_transformed_scaling_factor[c]
 except AttributeError:
 pass # no scaling factor suffix, is fine
 except KeyError:
 pass # no scaling factor is fine

[docs]def constraint_scaling_transform(c, s):
 """This transforms a constraint by the argument s. The scaling factor
 applies to original constraint (e.g. if one where to call this twice in a row
 for a constraint with a scaling factor of 2, the original constraint would
 still, only be scaled by a factor of 2.)

 Args:
 c: Pyomo constraint
 s: scale factor applied to the constraint as originally written

 Returns:
 None
 """
 if not isinstance(c, _ConstraintData):
 raise TypeError(f"{c} is not a constraint or is an indexed constraint")
 st = get_constraint_transform_applied_scaling_factor(c, default=1)
 v = s/st
 c.set_value(
 (__none_mult(c.lower, v), __none_mult(c.body, v), __none_mult(c.upper, v)))
 __set_constraint_transform_applied_scaling_factor(c, s)

[docs]def constraint_scaling_transform_undo(c):
 """The undoes the scaling transforms previously applied to a constraint.

 Args:
 c: Pyomo constraint

 Returns:
 None
 """
 if not isinstance(c, _ConstraintData):
 raise TypeError(f"{c} is not a constraint or is an indexed constraint")
 v = get_constraint_transform_applied_scaling_factor(c)
 if v is None:
 return # hasn't been transformed, so nothing to do.
 c.set_value(
 (__none_mult(c.lower, 1/v), __none_mult(c.body, 1/v), __none_mult(c.upper, 1/v)))
 __unset_constraint_transform_applied_scaling_factor(c)

[docs]def unscaled_variables_generator(blk, descend_into=True, include_fixed=False):
 """Generator for unscaled variables

 Args:
 block

 Yields:
 variables with no scale factor
 """
 for v in blk.component_data_objects(pyo.Var, descend_into=descend_into):
 if v.fixed and not include_fixed:
 continue
 if get_scaling_factor(v) is None:
 yield v

[docs]def unscaled_constraints_generator(blk, descend_into=True):
 """Generator for unscaled constraints

 Args:
 block

 Yields:
 constraints with no scale factor
 """
 for c in blk.component_data_objects(
 pyo.Constraint, active=True, descend_into=descend_into):
 if get_scaling_factor(c) is None and \
 get_constraint_transform_applied_scaling_factor(c) is None:
 yield c

[docs]def badly_scaled_var_generator(
 blk, large=1e4, small=1e-3, zero=1e-10, descend_into=True, include_fixed=False):
 """This provides a rough check for variables with poor scaling based on
 their current scale factors and values. For each potentially poorly scaled
 variable it returns the var and its current scaled value.

 Args:
 blk: pyomo block
 large: Magnitude that is considered to be too large
 small: Magnitude that is considered to be too small
 zero: Magnitude that is considered to be zero, variables with a value of
 zero are okay, and not reported.

 Yields:
 variable data object, current absolute value of scaled value
 """
 for v in blk.component_data_objects(pyo.Var, descend_into=descend_into):
 if v.fixed and not include_fixed:
 continue
 val = pyo.value(v, exception=False)
 if val is None:
 continue
 sf = get_scaling_factor(v, default=1)
 sv = abs(val * sf) # scaled value
 if sv > large:
 yield v, sv
 elif sv < zero:
 continue
 elif sv < small:
 yield v, sv

[docs]def constraint_autoscale_large_jac(
 m,
 ignore_constraint_scaling=False,
 ignore_variable_scaling=False,
 max_grad=100,
 min_scale=1e-6,
 no_scale = False
):
 """Automatically scale constraints based on the Jacobian. This function
 immitates Ipopt's default constraint scaling. This scales constraints down
 to avoid extremely large values in the Jacobian

 Args:
 m: model to scale
 ignore_constraint_scaling: ignore existing constraint scaling
 ignore_variable_scaling: ignore existing variable scaling
 max_grad: maximum value in Jacobian after scaling, subject to minimum
 scaling factor restriction.
 min_scale: minimum scaling factor allowed, keeps constraints from being
 scaled too much.
 no_scale: just calculate the Jacobian and scaled Jacobian, don't scale
 anything
 """
 # Pynumero requires an objective, but I don't, so let's see if we have one
 n_obj = 0
 for c in m.component_data_objects(pyo.Objective, active=True):
 n_obj += 1
 # Add an objective if there isn't one
 if n_obj == 0:
 dummy_objective_name = unique_component_name(m, "objective")
 setattr(m, dummy_objective_name, pyo.Objective(expr=0))
 # Create NLP and calculate the objective
 nlp = PyomoNLP(m)
 jac = nlp.evaluate_jacobian().tocsr()
 # Get lists of varibles and constraints to translate Jacobian indexes
 clist = nlp.get_pyomo_constraints()
 vlist = nlp.get_pyomo_variables()
 # Create a scaled Jacobian to account for variable scaling, for now ignore
 # constraint scaling
 jac_scaled = jac.copy()
 for i in range(len(clist)):
 for j in jac_scaled[i].indices:
 v = vlist[j]
 if ignore_variable_scaling:
 sv = 1
 else:
 sv = get_scaling_factor(v, default=1)
 jac_scaled[i,j] = jac_scaled[i,j]/sv
 # calculate constraint scale factors
 for i in range(len(clist)):
 c = clist[i]
 sc = get_scaling_factor(c, default=1)
 if not no_scale:
 if (ignore_constraint_scaling or get_scaling_factor(c) is None):
 row = jac_scaled[i]
 for d in row.indices:
 row[0,d] = abs(row[0,d])
 mg = row.max()
 if mg > max_grad:
 sc = max(min_scale, max_grad/mg)
 set_scaling_factor(c, sc)
 for j in jac_scaled[i].indices:
 # update the scaled jacobian
 jac_scaled[i,j] = jac_scaled[i,j]*sc
 # delete dummy objective
 if n_obj == 0:
 delattr(m, dummy_objective_name)
 return jac, jac_scaled, nlp

class CacheVars(object):
 """
 A class for saving the values of variables then reloading them,
 usually after they have been used to perform some solve or calculation.
 """
 def __init__(self, vardata_list):
 self.vars = vardata_list
 self.cache = [None for var in self.vars]

 def __enter__(self):
 for i, var in enumerate(self.vars):
 self.cache[i] = var.value
 return self

 def __exit__(self, ex_type, ex_value, ex_traceback):
 for i, var in enumerate(self.vars):
 var.set_value(self.cache[i])

class FlattenedScalingAssignment(object):
 """
 A class to assist in the calculation of scaling factors when a
 variable-constraint assignment can be constructed, especially when
 the variables and constraints are all indexed by some common set(s).
 """
 def __init__(self, scaling_factor, varconlist=[], nominal_index=()):
 """
 Args:
 scaling_factor: A Pyomo scaling_factor Suffix that will hold all
 the scaling factors calculated
 varconlist: A list of variable, constraint tuples. These variables
 and constraints should be indexed by the same sets,
 so they may need to be references-to-slices along some
 common sets.
 nominal_index: The index of variables and constraints to access
 when a calculation needs to be performed using
 data objects.
 """
 self.scaling_factor = scaling_factor
 self.nominal_index = nominal_index
 if nominal_index is None or nominal_index == ():
 self.dim = 0
 else:
 try:
 self.dim = len(nominal_index)
 except TypeError:
 self.dim = 1

 varlist = []
 conlist = []
 for var, con in varconlist:
 varlist.append(var)
 conlist.append(con)
 self.varlist = varlist
 self.conlist = conlist

 data_getter = self.get_representative_data_object
 var_con_data_list = [(data_getter(var), data_getter(con))
 for var, con in varconlist]
 con_var_data_list = [(data_getter(con), data_getter(var))
 for var, con in varconlist]
 self.var2con = ComponentMap(var_con_data_list)
 self.con2var = ComponentMap(con_var_data_list)

 def get_representative_data_object(self, obj):
 """
 Gets a data object from an object of the appropriate dimension
 """
 if self.dim == 0:
 # In this way, obj can be a data object and this class can be
 # used even if the assignment is not between "flattened components"
 return obj
 else:
 nominal_index = self.nominal_index
 return obj[nominal_index]

 def calculate_variable_scaling_factor(self, var):
 """
 Calculates the scaling factor of a variable based on the
 constraint assigned to it. Loads each variable in that constraint
 with its nominal value (inverse of scaling factor), calculates
 the value of the target variable from the constraint, then sets
 its scaling factor to the inverse of the calculated value.
 """
 vardata = self.get_representative_data_object(var)
 condata = self.var2con[vardata]
 scaling_factor = self.scaling_factor

 in_constraint = list(identify_variables(condata.expr))
 source_vars = [v for v in in_constraint if v is not vardata]
 nominal_source = [1/scaling_factor[var] for var in source_vars]

 with CacheVars(in_constraint) as cache:
 for v, nom_val in zip(source_vars, nominal_source):
 v.set_value(nom_val)
 # This assumes that target var is initialized to a somewhat
 # reasonable value
 calculate_variable_from_constraint(vardata, condata)
 nominal_target = vardata.value
 if nominal_target == 0:
 target_factor = 1.0
 else:
 target_factor = abs(1/nominal_target)

 if self.dim == 0:
 scaling_factor[var] = target_factor
 else:
 for v in var.values():
 scaling_factor[v] = target_factor

 def set_constraint_scaling_factor(self, con):
 """
 Sets the scaling factor of a constraint to that of its assigned variable
 """
 condata = self.get_representative_data_object(con)
 vardata = self.con2var[condata]
 scaling_factor = self.scaling_factor

 var_factor = scaling_factor[vardata]
 if self.dim == 0:
 scaling_factor[con] = var_factor
 else:
 for c in con.values():
 scaling_factor[c] = var_factor

 def set_derivative_factor_from_state(self, deriv, nominal_wrt=1.0):
 """
 Sets the scaling factor for a DerivativeVar equal to the factor for
 its state var at every index. This method needs access to the
 get_state_var method, so deriv must be an actual DerivativeVar,
 not a reference-to-slice.
 """
 scaling_factor = self.scaling_factor
 state_var = deriv.get_state_var()
 for index, dv in deriv.items():
 state_data = state_var[index]
 nominal_state = 1/scaling_factor[state_data]
 nominal_deriv = nominal_state/nominal_wrt
 scaling_factor[dv] = 1/nominal_deriv

##
DEPRECATED functions below.
##

def scale_single_constraint(c):
 """This transforms a constraint with its scaling factor. If there is no
 scaling factor for the constraint, the constraint is not scaled and a
 message is logged. After transforming the constraint the scaling factor,
 scaling expression, and nomical value are all unset to ensure the constraint
 isn't scaled twice.

 Args:
 c: Pyomo constraint

 Returns:
 None
 """
 _log.warning(
 "DEPRECATED: scale_single_constraint() will be removed and has no "
 "direct replacement")
 if not isinstance(c, _ConstraintData):
 raise TypeError(
 "{} is not a constraint and cannot be the input to "
 "scale_single_constraint".format(c.name))

 v = get_scaling_factor(c)
 if v is None:
 _log.warning(
 f"{c.name} constraint has no scaling factor, so it was not scaled.")
 return
 c.set_value(
 (__none_mult(c.lower, v), __none_mult(c.body, v), __none_mult(c.upper, v)))
 unset_scaling_factor(c)

def scale_constraints(blk, descend_into=True):
 """This scales all constraints with their scaling factor suffix for a model
 or block. After scaling the constraints, the scaling factor and expression
 for each constraint is set to 1 to avoid double scaling the constraints.

 Args:
 blk: Pyomo block
 descend_into: indicates whether to descend into the other blocks on blk.
 (default = True)

 Returns:
 None
 """
 _log.warning(
 "DEPRECATED: scale_single_constraint() will be removed and has no "
 "direct replacement")
 for c in blk.component_data_objects(pyo.Constraint, descend_into=False):
 scale_single_constraint(c)
 if descend_into:
 for b in blk.component_objects(pyo.Block, descend_into=True):
 for c in b.component_data_objects(pyo.Constraint, descend_into=False):
 scale_single_constraint(c)

 idaes.core.util.tables

 Source code for idaes.core.util.tables

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

from pandas import DataFrame
from collections import OrderedDict
from pyomo.environ import value
from pyomo.network import Arc, Port

from idaes.core.util.exceptions import ConfigurationError
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

__author__ = "John Eslick, Andrew Lee"

[docs]def arcs_to_stream_dict(
 blk, additional=None, descend_into=True, sort=False, prepend=None, s={}):
 """
 Creates a stream dictionary from the Arcs in a model, using the Arc names as
 keys. This can be used to automate the creation of the streams dictionary
 needed for the ``create_stream_table_dataframe()`` and ``stream_states_dict()``
 functions.

 Args:
 blk (pyomo.environ._BlockData): Pyomo model to search for Arcs
 additional (dict): Additional states to add to the stream dictionary,
 which aren't represented by arcs in blk, for example feed or
 product streams without Arcs attached or states internal to a unit
 model.
 descend_into (bool): If True, search subblocks for Arcs as well. The
 default is True.
 sort (bool): If True sort keys and return an OrderedDict
 prepend (str): Prepend a string to the arc name joined with a '.'.
 This can be useful to prevent conflicting names when sub blocks
 contain Arcs that have the same names when used in combination
 with descend_into=False.
 s (dict): Add streams to an existing stream dict.

 Returns:
 Dictionary with Arc names as keys and the Arcs as values.

 """
 if s is None:
 s = {}
 for c in blk.component_objects(Arc, descend_into=descend_into):
 key = c.getname()
 if prepend is not None:
 key = ".".join([prepend, key])
 s[key] = c
 if additional is not None:
 s.update(additional)
 if sort:
 s = OrderedDict(sorted(s.items()))
 return s

[docs]def stream_states_dict(streams, time_point=0):
 """
 Method to create a dictionary of state block representing stream states.
 This takes a dict with stream name keys and stream values.

 Args:
 streams : dict with name keys and stream values. Names will be used as
 display names for stream table, and streams may be Arcs, Ports or
 StateBlocks.
 time_point : point in the time domain at which to generate stream table
 (default = 0)

 Returns:
 A pandas DataFrame containing the stream table data.
 """
 stream_dict = OrderedDict()

 def _stream_dict_add(sb, n, i=None):
 """add a line to the stream table"""
 if i is None:
 key = n
 else:
 key = "{}[{}]".format(n, i)
 stream_dict[key] = sb

 for n in streams.keys():
 try:
 if isinstance(streams[n], Arc):
 for i, a in streams[n].items():
 sb = _get_state_from_port(a.ports[1], time_point)
 _stream_dict_add(sb, n, i)
 elif isinstance(streams[n], Port):
 sb = _get_state_from_port(streams[n], time_point)
 _stream_dict_add(sb, n)
 else:
 sb = streams[n][time_point]
 _stream_dict_add(sb, n)
 except (AttributeError, KeyError):
 raise TypeError(
 f"Unrecognised component type for stream argument {streams[n]}."
 f" The stream_states_dict function only supports Arcs, "
 f"Ports or StateBlocks."
)
 return stream_dict

[docs]def tag_state_quantities(blocks, attributes, labels, exception=False):
 """ Take a stream states dictionary, and return a tag dictionary for stream
 quantities. This takes a dictionary (blk) that has state block labels as
 keys and state blocks as values. The attributes are a list of attributes to
 tag. If an element of the attribute list is list-like, the fist element is
 the attribute and the remaining elements are indexes. Lables provides a list
 of attribute lables to be used to create the tag. Tags are blk_key + label
 for the attribute.

 Args:
 blocks (dict): Dictionary of state blocks. The key is the block label to
 be used in the tag, and the value is a state block.
 attributes (list-like): A list of attriutes to tag. It is okay if a
 particular attribute does not exist in a state bock. This allows
 you to mix state blocks with differnt sets of attributes. If an
 attribute is indexed, the attribute can be specified as a list or
 tuple where the first element is the attribute and the remaining
 elements are indexes.
 labels (list-like): These are attribute lables. The order corresponds to the
 attribute list. They are used to create the tags. Tags are in the
 form blk.key + label.
 exception (bool): If True, raise exceptions releated to invalid or
 missing indexes. If false missing or bad indexes are ignored and
 None is used for the table value. Setting this to False allows
 tables where some state blocks have the same attributes with differnt
 indexing. (default is True)

 Return:
 (dict): Dictionary where the keys are tags and the values are model
 attributes, usually Pyomo component data objects.
 """

 tags={}
 if labels is None:
 lables = attributes
 for a in attributes:
 if isinstance(a, (tuple, list)):
 if len(a) == 2:
 # in case there are multiple indexes and user gives tuple
 label = f"{a[0]}[{a[1]}]"
 if len(a) > 2:
 label = f"{a[0]}[{a[1:]}]"
 else:
 label = a[0]

 for key, s in blocks.items():
 for i, a in enumerate(attributes):
 j = None
 if isinstance(a, (list, tuple)):
 # if a is list or tuple, the first element should be the
 # attribute and the remaining elements should be indexes.
 if len(a) == 2:
 j = a[1] # catch user supplying list-like of indexes
 if len(a) > 2:
 j = a[1:]
 #if len(a) == 1, we'll say that's fine here. Don't know why you
 #would put the attribute in a list-like if not indexed, but I'll
 #allow it.
 a = a[0]
 v = getattr(s, a, None)
 if j is not None and v is not None:
 try:
 v = v[j]
 except KeyError:
 if not exception:
 v = None
 else:
 _log.error(f"{j} is not a valid index of {a}")
 raise KeyError(f"{j} is not a valid index of {a}")
 try:
 value(v, exception=False)
 except TypeError:
 if not exception:
 v = None
 else:
 _log.error(
 f"Cannot calculate value of {a} (may be subscriptable)")
 raise TypeError(
 f"Cannot calculate value of {a} (may be subscriptable)")
 except ZeroDivisionError:
 pass # this one is okay
 if v is not None:
 tags[f"{key}{labels[i]}"] = v
 return tags

[docs]def create_stream_table_dataframe(
 streams, true_state=False, time_point=0, orient="columns"
):
 """
 Method to create a stream table in the form of a pandas dataframe. Method
 takes a dict with name keys and stream values. Use an OrderedDict to list
 the streams in a specific order, otherwise the dataframe can be sorted
 later.

 Args:
 streams : dict with name keys and stream values. Names will be used as
 display names for stream table, and streams may be Arcs, Ports or
 StateBlocks.
 true_state : indicated whether the stream table should contain the
 display variables define in the StateBlock (False, default) or the
 state variables (True).
 time_point : point in the time domain at which to generate stream table
 (default = 0)
 orient : orientation of stream table. Accepted values are 'columns'
 (default) where streams are displayed as columns, or 'index' where
 stream are displayed as rows.

 Returns:
 A pandas DataFrame containing the stream table data.
 """
 stream_attributes = OrderedDict()
 stream_states = stream_states_dict(streams=streams, time_point=time_point)
 for key, sb in stream_states.items():
 stream_attributes[key] = {}
 if true_state:
 disp_dict = sb.define_state_vars()
 else:
 disp_dict = sb.define_display_vars()
 for k in disp_dict:
 for i in disp_dict[k]:
 if i is None:
 stream_attributes[key][k] = value(disp_dict[k][i])
 else:
 stream_attributes[key][k + " " + str(i)] = value(disp_dict[k][i])

 return DataFrame.from_dict(stream_attributes, orient=orient)

[docs]def stream_table_dataframe_to_string(stream_table, **kwargs):
 """
 Method to print a stream table from a dataframe. Method takes any argument
 understood by DataFrame.to_string
 """
 # Set some default values for keyword arguments
 na_rep = kwargs.pop("na_rep", "-")
 justify = kwargs.pop("justify", "center")
 float_format = kwargs.pop("float_format", lambda x: "{:#.5g}".format(x))

 # Print stream table
 return stream_table.to_string(
 na_rep=na_rep, justify=justify, float_format=float_format, **kwargs
)

def _get_state_from_port(port, time_point):
 # Check port for _state_block attribute
 try:
 if len(port._state_block) == 1:
 return port._state_block[0][time_point]
 else:
 return port._state_block[0][time_point, port._state_block[1]]
 except AttributeError:
 # Port was not created by IDAES add_port methods. Return exception for
 # the user to fix.
 raise ConfigurationError(
 f"Port {port.name} does not have a _state_block attribute, "
 f"thus cannot determine StateBlock to use for collecting data."
 f" Please provide the associated StateBlock instead, or use "
 f"the IDAES add_port methods to create the Port."
)

[docs]def generate_table(blocks, attributes, heading=None, exception=True):
 """
 Create a Pandas DataFrame that contains a list of user-defined attributes
 from a set of Blocks.

 Args:
 blocks (dict): A dictionary with name keys and BlockData objects for
 values. Any name can be associated with a block. Use an OrderedDict
 to show the blocks in a specific order, otherwise the dataframe can
 be sorted later.
 attributes (list or tuple of strings): Attributes to report from a
 Block, can be a Var, Param, or Expression. If an attribute doesn't
 exist or doesn't have a valid value, it will be treated as missing
 data.
 heading (list or tuple of srings): A list of strings that will be used
 as column headings. If None the attribute names will be used.
 exception (bool): If True, raise exceptions releated to invalid or
 missing indexes. If false missing or bad indexes are ignored and
 None is used for the table value. Setting this to False allows
 tables where some state blocks have the same attributes with differnt
 indexing. (default is True)
 Returns:
 (DataFrame): A Pandas dataframe containing a data table
 """
 if heading is None:
 heading = attributes
 st = DataFrame(columns=heading)
 row = [None] * len(attributes) # not a big deal but save time on realloc
 for key, s in blocks.items():
 for i, a in enumerate(attributes):
 j = None
 if isinstance(a, (list, tuple)):
 # if a is list or tuple, assume index supplied
 try:
 assert len(a) > 1
 except AssertionError:
 _log.error(f"An index must be supplided for attribute {a[0]}")
 raise AssertionError(
 f"An index must be supplided for attribute {a[0]}")
 j = a[1:]
 a = a[0]
 v = getattr(s, a, None)
 if j is not None and v is not None:
 try:
 v = v[j]
 except KeyError:
 if not exception:
 v = None
 else:
 _log.error(f"{j} is not a valid index of {a}")
 raise KeyError(f"{j} is not a valid index of {a}")
 try:
 v = value(v, exception=False)
 except TypeError:
 if not exception:
 v = None
 else:
 _log.error(
 f"Cannot calculate value of {a} (may be subscriptable)")
 raise TypeError(
 f"Cannot calculate value of {a} (may be subscriptable)")
 except ZeroDivisionError:
 v = None
 row[i] = v
 st.loc[key] = row
 return st

 idaes.dmf.model_data

 Source code for idaes.dmf.model_data

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

"""
This module contains functions to read and manage data for use in parameter
esitmation, data reconciliation, and validation.
"""

__author__ = "John Eslick"

import logging
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pint
import os

import pyomo.environ as pyo
import warnings

try:
 import seaborn as sns
 from PyPDF2 import PdfFileMerger
except ImportError:
 sns = None

_log = logging.getLogger(__file__)

def _strip(tag):
 """
 Tag renaming function to remove whitespace, depending on the csv format
 column heading items can pick up some extra whitespace when read into Pandas
 """
 return tag.strip()

Some common unit string conversions, these are ones we've come across that
are not handled by pint. We can organize and refine known unit strings
more in the future.
_unit_strings = {
 # Pressure
 "PSI": "psi",
 "PSIA": "psi",
 "psia": "psi",
 "PSIG": "psig",
 "INWC": "inH2O gauge",
 "IN WC": "inH2O gauge",
 "IN/WC": "inH2O gauge",
 '" H2O': "inH2O gauge",
 "INHG": "inHg",
 "IN HG": "inHg",
 "IN/HG": "inHg",
 "HGA": "inHg",
 "IN HGA": "inHg",
 # Fraction
 "PCT": "percent",
 "pct": "percent",
 "PERCT": "percent",
 "PERCT.": "percent",
 "PCNT": "percent",
 "PPM": "ppm",
 "PPB": "ppb",
 "% OPEN": "percent open",
 "% CLSD": "percent closed",
 "% CLOSED": "percent closed",
 # Length
 "IN": "in",
 "INS": "in",
 "INCHES": "in",
 "Inches": "in",
 "FT": "ft",
 "FEET": "ft",
 "FOOT": "ft",
 "Feet": "ft",
 "MILS": "minch",
 # Speed
 "MPH": "mile/hr",
 "IPS": "in/s",
 # Volume
 "KGAL": "kgal",
 # Vol Flow
 "GPM": "gal/min",
 "gpm": "gal/min",
 "CFM": "ft^3/min",
 "KCFM": "ft^3/mmin",
 "SCFM": "ft^3/min",
 "KSCFM": "ft^3/mmin", # be careful with this one
 # I don't know how to indicate its
 # a volumetric flow at standard
 # conditions
 # Angle
 "DEG": "deg",
 # Angular Speed
 "RPM": "rpm",
 # Fequency
 "HZ": "hz",
 # Temperature
 "DEG F": "degF",
 "Deg F": "degF",
 "deg F": "degF",
 "DEG C": "degC",
 "Deg C": "degC",
 "deg C": "degC",
 "DEGF": "degF",
 "DegF": "degF",
 "DEGC": "degC",
 "DegC": "degC",
 # Temperature Difference
 "DELTA DEG F": "delta_degF",
 "DETLA Deg F": "delta_degF",
 "DETLA deg F": "delta_degF",
 "DETLA DEG C": "delta_degC",
 "DETLA Deg C": "delta_degC",
 "DELTA deg C": "delta_degC",
 "DELTA DEGF": "delta_degF",
 "DELTA DegF": "delta_degF",
 "DELTA degF": "delta_degF",
 "DELTA DEGC": "delta_degC",
 "DELTA DegC": "delta_degC",
 "DELTA degC": "delta_degC",
 "Delta DEG F": "delta_degF",
 "Delta Deg F": "delta_degF",
 "Delta deg F": "delta_degF",
 "Delta DEG C": "delta_degC",
 "Delta Deg C": "delta_degC",
 "Delta deg C": "delta_degC",
 "Delta DEGF": "delta_degF",
 "Delta DegF": "delta_degF",
 "Delta degF": "delta_degF",
 "Delta DEGC": "delta_degC",
 "Delta DegC": "delta_degC",
 "Delta degC": "delta_degC",
 "delta DEG F": "delta_degF",
 "delta Deg F": "delta_degF",
 "delta deg F": "delta_degF",
 "delta DEG C": "delta_degC",
 "delta Deg C": "delta_degC",
 "delta deg C": "delta_degC",
 "delta DEGF": "delta_degF",
 "delta DegF": "delta_degF",
 "delta degF": "delta_degF",
 "delta DEGC": "delta_degC",
 "delta DegC": "delta_degC",
 "delta degC": "delta_degC",
 # Energy
 "MBTU": "kbtu",
 # Mass
 "MLB": "klb",
 "K LB": "klb",
 "K LBS": "klb",
 "lb.": "lb",
 # Mass flow
 "TPH": "ton/hr",
 "tph": "ton/hr",
 "KLB/HR": "klb/hr",
 "KPPH": "klb/hr",
 # Current
 "AMP": "amp",
 "AMPS": "amp",
 "Amps": "amp",
 "Amp": "amp",
 "AMP AC": "amp",
 # pH
 "PH": "pH",
 # VARS (volt-amp reactive)
 "VARS": "VAR",
 "MVARS": "MVAR",
}

_gauge_pressures = {"psig": "psi", "inH2O gauge": "inH2O"}

_ignore_units = [
 "percent",
 "ppm",
 "ppb",
 "pH",
 "VAR",
 "MVAR",
 "H2O",
 "percent open",
 "percent closed",
]

_register_new_units = [
 "in_H2O = 248.84 Pa = inH2O",
]

def unit_convert(
 x,
 frm,
 to=None,
 system=None,
 unit_string_map={},
 ignore_units=[],
 gauge_pressures={},
 ambient_pressure=1.0,
 ambient_pressure_unit="atm",
):
 """Convert the quantity x to a different set of units. X can be a numpy array
 or pandas series. The from unit is translated into a string that pint
 can recognize by first looking in unit_string_map then looking in
 know aliases defined in this file. If it is neither place it will be given
 to pint as-is. This translation of the unit is done so that data can be read
 in with the original provided units.

 Args:
 x (float, numpy.array, pandas.series): quantity to convert
 frm (str): original unit string
 to (str): new unit string, or specify "system"
 system (str): unit system to covert to, or specify "to"
 unit_string_map (dict): keys are unit strings and values are
 corresponding strings that pint can recognize. This only applies to
 the from string.
 ignore_units (list, or tuple): units to not convert
 gauge_pressures (dict): keys are units strings to be considered gauge
 pressures and the values are corresponding absolute pressure units
 ambient_pressure (float, numpy.array, pandas.series): pressure to add
 to gauge pressure to convert it to absolute pressure. The default
 is 1. The unit is atm by default, but can be changed with the
 ambient_pressure_unit argument.
 ambient_pressure_unit (str): Unit for ambient pressure, default is atm,
 and should be a unit recognized by pint
 Returns:
 (tuple): quantity and unit string
 """
 ureg = pint.UnitRegistry(system=system)
 for u in _register_new_units:
 ureg.define(u)
 if frm in unit_string_map:
 frm = unit_string_map[frm]
 elif frm in _unit_strings:
 frm = _unit_strings[frm]
 # Now check for gauge pressure
 gauge = False
 if frm in gauge_pressures:
 gauge = True
 frm = gauge_pressures[frm]
 elif frm in _gauge_pressures:
 gauge = True
 frm = _gauge_pressures[frm]
 q = ureg.Quantity
 if (frm in _ignore_units) or (frm in ignore_units):
 return (x, frm)
 else:
 try:
 ureg.parse_expression(frm)
 except pint.errors.UndefinedUnitError:
 warnings.warn(
 "In unit conversion, from unit '{}' is not defined."
 " No conversion.".format(frm),
 UserWarning,
)
 return x, frm
 if to is None:
 y = q(np.array(x), ureg.parse_expression(frm)).to_base_units()
 else:
 y = q(np.array(x), ureg.parse_expression(frm)).to(to)
 if gauge:
 # convert gauge pressure to absolute
 y = y + ambient_pressure * ureg.parse_expression(ambient_pressure_unit)
 return (y.magnitude, str(y.units))

def update_metadata_model_references(model, metadata):
 """
 Create model references from refernce strings in the metadata. This updates
 the 'reference' field in the metadata.

 Args:
 model (pyomo.environ.Block): Pyomo model
 metadata (dict): Tag metadata dictionary

 Returns:
 None
 """
 for tag, md in metadata.items():
 if md["reference_string"]:
 try:
 md["reference"] = pyo.Reference(
 eval(md["reference_string"], {"m": model})
)
 except (KeyError, AttributeError, NameError):
 warnings.warn(
 "Tag reference {} not found".format(md["reference_string"]),
 UserWarning,
)

This prevents breakage, can remove after example updates.
upadate_metadata_model_references = update_metadata_model_references

[docs]def read_data(
 csv_file,
 csv_file_metadata,
 model=None,
 rename_mapper=None,
 unit_system=None,
 ambient_pressure=1.0,
 ambient_pressure_unit="atm",
):
 """
 Read CSV data into a Pandas DataFrame.

 The data should be in a form where the first row contains column headings
 where each column is labeled with a data tag, and the first column contains
 data point labels or time stamps. The metadata should be in a csv file where
 the first column is the tag name, the second column is the model reference (
 which can be empty), the third column is the tag description, and the fourth
 column is the unit of measure string. Any additional information can be
 added to columns after the fourth column and will be ignored. The units of
 measure should be something that is recognized by pint, or in the aliases
 defined in this file. Any tags not listed in the metadata will be dropped.

 The function returns two items a pandas.DataFrame containing process data,
 and a dictionary with tag metadata. The metadata dictionary keys are tag name,
 and the values are dictionaries with the keys: "reference_string", "description",
 "units", and "reference".

 Args:
 csv_file (str): Path of file to read
 csv_file_metadata (str): Path of csv file to read column metadata from
 model (pyomo.environ.ConcreteModel): Optional model to map tags to
 rename_mapper (Callable): Optional function to rename tags
 unit_system (str): Optional system of units to atempt convert to
 ambient_pressure (float, numpy.array, pandas.series, str): Optional
 pressure to use to convert gauge pressure to absolute. If a string is
 supplied, the corresponding data tag is assumed to be ambient pressure.
 ambient_pressure_unit (str): Optional ambient pressure unit, should be a
 unit recognized by pint.

 Returns:
 (pandas.DataFrame, dict)
 """
 # read file
 df = pd.read_csv(csv_file, parse_dates=True, index_col=0)
 # Drop empty columns
 df.drop(df.columns[df.columns.str.contains("Unnamed")], axis=1, inplace=True)
 df.rename(mapper=_strip, axis="columns", inplace=True)
 if rename_mapper:
 # Change tag names in some systematic way with the function rename_mapper
 df.rename(mapper=rename_mapper, axis="columns", inplace=True)
 metadata = {}
 if csv_file_metadata:
 with open(csv_file_metadata, "r") as f:
 reader = csv.reader(f)
 for line in reader:
 tag = line[0].strip()
 if rename_mapper:
 tag = rename_mapper(tag)
 metadata[tag] = {
 "reference_string": line[1].strip(),
 "reference": None,
 "description": line[2].strip(),
 "units": line[3].strip(),
 }
 # If a model was provided, map the tags with a reference string to the model
 if model:
 update_metadata_model_references(model, metadata)
 # Drop the columns with no metadata (assuming those are columns to ignore)
 for tag in df:
 if tag not in metadata:
 df.drop(tag, axis=1, inplace=True)

 # Check if a data tag was specified to use as ambient pressure in conversion
 # of gauge pressures. If so, get the numbers and replace the tag string
 if isinstance(ambient_pressure, str):
 try:
 ambient_pressure = np.array(df[ambient_pressure])
 except KeyError:
 _log.exception(
 "Tag '{}' does not exist for ambient pressure".format(ambient_pressure)
)
 raise

 # If unit_system is specified bulk convert everything to that system of units
 # also update the meta data
 if unit_system:
 for tag in df:
 df[tag], metadata[tag]["units"] = unit_convert(
 df[tag],
 metadata[tag]["units"],
 system=unit_system,
 ambient_pressure=ambient_pressure,
 ambient_pressure_unit=ambient_pressure_unit,
)

 return df, metadata

def _bin_number(x, bin_size):
 return np.array(x / bin_size, dtype=int)

[docs]def bin_data(
 df,
 bin_by,
 bin_no,
 bin_nom,
 bin_size,
 min_value=None,
 max_value=None):
 """
 Sort data into bins by a column value. If the min or max are given and
 the value in bin_by for a row is out of the range [min, max], the row is
 dropped from the data frame.

 Args:
 df (pandas.DataFrame): Data frame to add bin information to
 bin_by (str): A column for values to bin by
 bin_no (str): A new column for bin number
 bin_nom (str): A new column for the mid-point value of bin_by
 bin_size (float): size of a bin
 min_value (in {float, None}): Smallest value to keep or None for no lower
 max_value (in (float, None}): Largest value to keep or None for no upper

 Returns:
 (dict): returns the data frame, and a dictionary with the number of rows
 in each bin.
 """

 # Drop rows outside [min, max]
 df.drop(index=df.index[np.isnan(df[bin_by])], inplace=True)
 if min_value is not None:
 df.drop(index=df.index[df[bin_by] < min_value], inplace=True)
 else:
 min_value = min(df[bin_by])
 if max_value is not None:
 df.drop(index=df.index[df[bin_by] > max_value], inplace=True)

 # Want the bins to line up so 0 is between bins and want min_value in bin 0.
 bin_offset = _bin_number(min_value, bin_size)
 df[bin_no] = _bin_number(df[bin_by], bin_size) - bin_offset
 df[bin_nom] = bin_size * (df[bin_no] + bin_offset + 0.5)
 a, b = np.unique(df[bin_no], return_counts=True)
 hist = dict(zip(a, b))
 return hist

[docs]def bin_stdev(df, bin_no, min_data=4):
 """
 Calculate the standard deviation for each column in each bin.

 Args:
 df (pandas.DataFrame): pandas data frame that is a bin number column
 bin_no (str): Column to group by, usually contains bin number
 min_data (int): Minimum number of data points requitred to calculate
 standard deviation for a bin (default=4)

 Returns:
 dict: key is the bin number and the value is a pandas.Serries with column
 standard deviations
 """
 nos = np.unique(df[bin_no])
 res = {}
 for i in nos:
 idx = df.index[df[bin_no] == i]
 if len(idx) < min_data:
 continue
 df2 = df.loc[idx]
 res[i] = df2.std(axis=0)
 return res

[docs]def data_rec_plot_book(
 df_data,
 df_rec,
 bin_nom,
 file="data_rec_plot_book.pdf",
 tmp_dir="tmp_plots",
 xlabel=None,
 metadata=None,
 cols=None,
 skip_cols=[]):
 """
 Make box and whisker plots from process data compared to data rec results
 based on bins from the bin_data() function. The df_data and df_rec data
 frames should have the same index set and the df_data data frame contains
 the bin data. This will plot the intersection of columns containg numerical
 data.

 Args:
 df_data: data frame with original data
 df_rec: data frame with reconciled data
 bin_nom: bin mid-point value column
 file: path for generated pdf
 tmp_dir: a directory to store temporary plots in
 xlabel: Label for x axis
 metadata: tag meta data dictionary
 cols: List of columns to plot, if None plot all
 skip_cols: List of columns not to plot, this overrides cols

 Return:
 None

 """
 if sns is None:
 _log.error(
 "Plotting data requires the 'seaborn' and 'PyPDF2' packages. "
 "Install the required packages before using the data_book() function. "
 "Plot terminated."
)
 return

 if not os.path.isdir(tmp_dir):
 os.mkdir(tmp_dir)

 pdfs = []
 flierprops = dict(markerfacecolor='0.5', markersize=2, marker="o", linestyle='none')
 f = plt.figure(figsize=(16, 9))
 if cols is None:
 cols = df_data.columns

 cols = sorted(set(cols).intersection(df_rec.columns))

 f = plt.figure(figsize=(16, 9))
 ax = sns.countplot(x=bin_nom, data=df_data)
 ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
 fname = os.path.join(tmp_dir, "plot_hist.pdf")
 f.savefig(fname, bbox_inches='tight')
 pdfs.append(fname)
 plt.close(f)

 for i, col in enumerate(cols):
 if col in skip_cols:
 continue
 f = plt.figure(i, figsize=(16, 9))

 x = pd.concat([df_data[bin_nom], df_data[bin_nom]], ignore_index=True)
 y = pd.concat([df_data[col], df_rec[col]], ignore_index=True)
 h = ["Data"] * len(df_data.index) + ["Reconciled"] * len(df_data.index)
 ax = sns.boxplot(x=x, y=y, hue=h, flierprops=flierprops)
 ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
 if metadata is not None:
 md = metadata.get(col, {})
 yl = "{} {} [{}]".format(
 col,
 md.get("description", ""),
 md.get("units", "none")
)
 else:
 yl = col
 fname = os.path.join(tmp_dir, f"plot_{i}.pdf")
 ax.set(xlabel=xlabel, ylabel=yl)
 f.savefig(fname, bbox_inches='tight')
 pdfs.append(fname)
 plt.close(f)

 # Combine pdfs into one multi-page document
 writer = PdfFileMerger()
 for pdf in pdfs:
 writer.append(pdf)
 writer.write(file)
 _log.info(f"Plot written to {file}.")

[docs]def data_plot_book(
 df,
 bin_nom,
 file="data_plot_book.pdf",
 tmp_dir="tmp_plots",
 xlabel=None,
 metadata=None,
 cols=None,
 skip_cols=[]):
 """
 Make box and whisker plots from process data based on bins from the
 bin_data() function.

 Args:
 df: data frame
 bin_nom: bin mid-point value column
 file: path for generated pdf
 tmp_dir: a directory to store temporary plots in
 xlabel: Label for x axis
 metadata: tag meta data dictionary

 Return:
 None

 """
 if sns is None:
 _log.error(
 "Plotting data requires the 'seaborn' and 'PyPDF2' packages. "
 "Install the required packages before using the data_book() function. "
 "Plot terminated."
)
 return

 if not os.path.isdir(tmp_dir):
 os.mkdir(tmp_dir)

 pdfs = []
 flierprops = dict(markerfacecolor='0.5', markersize=2, marker="o", linestyle='none')
 f = plt.figure(figsize=(16, 9))
 if cols is None:
 cols = sorted(df.columns)
 else:
 cols = sorted(cols)

 f = plt.figure(figsize=(16, 9))
 ax = sns.countplot(x=bin_nom, data=df)
 ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
 fname = os.path.join(tmp_dir, "plot_hist.pdf")
 f.savefig(fname, bbox_inches='tight')
 pdfs.append(fname)
 plt.close(f)

 for i, col in enumerate(cols):
 if col in skip_cols:
 continue
 f = plt.figure(i, figsize=(16, 9))
 ax = sns.boxplot(x=df[bin_nom], y=df[col], flierprops=flierprops)
 ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
 if metadata is not None:
 md = metadata.get(col, {})
 yl = "{} {} [{}]".format(
 col,
 md.get("description", ""),
 md.get("units", "none")
)
 else:
 yl = col
 fname = os.path.join(tmp_dir, f"plot_{i}.pdf")
 ax.set(xlabel=xlabel, ylabel=yl)
 f.savefig(fname, bbox_inches='tight')
 pdfs.append(fname)
 plt.close(f)

 # Combine pdfs into one multi-page document
 writer = PdfFileMerger()
 for pdf in pdfs:
 writer.append(pdf)
 writer.write(file)
 _log.info(f"Plot written to {file}.")

 idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed

 Source code for idaes.gas_solid_contactors.unit_models.bubbling_fluidized_bed

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
IDAES Bubbling Fluidized Bed Model.

The 2-region bubbling fluidized bed model is a 1D axially discretized model
with two phases (gas and solid), and two regions (bubble and emulsion)
resulting in 3 control volume_1D blocks (bubble, gas_emulsion solid_emulsion).
The model captures the gas-solid interaction between both phases and regions
through reaction, mass and heat transfer.

Equations written in this model were derived from:
A. Lee, D.C. Miller. A one-dimensional (1-D) three-region model for a bubbling
fluidized-bed Adsorber, Ind. Eng. Chem. Res. 52 (2013) 469–484.

Assumptions:
Property package contains temperature and pressure variables
Property package contains minimum fluidization velocity and voidage parameters
Gas emulsion is at minimum fluidization conditions
Gas feeds into emulsion region before the excess enters into the bubble region

"""

Import Python libraries
import matplotlib.pyplot as plt

Import Pyomo libraries
from pyomo.environ import (SolverFactory, Var, Param, Reals,
 TerminationCondition, Constraint,
 TransformationFactory, sqrt, value)
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.util.calc_var_value import calculate_variable_from_constraint
from pyomo.dae import ContinuousSet, DerivativeVar

Import IDAES cores
from idaes.core import (ControlVolume1DBlock, UnitModelBlockData,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 FlowDirection)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block)
from idaes.core.util.exceptions import (ConfigurationError,
 BurntToast)
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.control_volume1d import DistributedVars
from idaes.core.util.constants import Constants as constants
from idaes.core.util.math import smooth_min, smooth_max
import idaes.logger as idaeslog

__author__ = "Chinedu Okoli"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("BubblingFluidizedBed")
class BubblingFluidizedBedData(UnitModelBlockData):
 """Standard Bubbling Fluidized Bed Unit Model Class."""

 # Create template for unit level config arguments
 CONFIG = UnitModelBlockData.CONFIG()

 # Unit level config arguments
 CONFIG.declare("finite_elements", ConfigValue(
 default=10,
 domain=int,
 description="Number of finite elements length domain",
 doc="""Number of finite elements to use when discretizing length
domain (default=20)"""))
 CONFIG.declare("length_domain_set", ConfigValue(
 default=[0.0, 1.0],
 domain=list,
 description="Number of finite elements length domain",
 doc="""length_domain_set - (optional) list of point to use to
initialize a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0])."""))
 CONFIG.declare("transformation_method", ConfigValue(
 default="dae.finite_difference",
 domain=In(["dae.finite_difference", "dae.collocation"]),
 description="Method to use for DAE transformation",
 doc="""Method to use to transform domain. Must be a method recognised
by the Pyomo TransformationFactory,
default - "dae.finite_difference".
Valid values: {
"dae.finite_difference" - Use a finite difference transformation scheme,
"dae.collocation" - use a collocation transformation scheme}"""))
 CONFIG.declare("transformation_scheme", ConfigValue(
 default=None,
 domain=In([None, "BACKWARD", "FORWARD", "LAGRANGE-RADAU"]),
 description="Scheme to use for DAE transformation",
 doc="""Scheme to use when transforming domain. See Pyomo
documentation for supported schemes,
default - None.
Valid values: {
None - defaults to "BACKWARD" for finite difference transformation method,
and to "LAGRANGE-RADAU" for collocation transformation method,
"BACKWARD" - Use a finite difference transformation method,
"FORWARD"" - use a finite difference transformation method,
"LAGRANGE-RADAU"" - use a collocation transformation method}"""))
 CONFIG.declare("collocation_points", ConfigValue(
 default=3,
 domain=int,
 description="Number of collocation points per finite element",
 doc="""Number of collocation points to use per finite element when
discretizing length domain (default=3)"""))
 CONFIG.declare("flow_type", ConfigValue(
 default="co_current",
 domain=In(['co_current', 'counter_current']),
 description="Flow configuration of Bubbling Fluidized Bed",
 doc="""Flow configuration of Bubbling Fluidized Bed
default - "co_current".
Valid values: {
"co_current" - gas flows from 0 to 1, solid flows from 0 to 1,
"counter_current" - gas flows from 0 to 1, solid flows from 1 to 0.}"""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.componentTotal,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal.
Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.enthalpyTotal,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal.
Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.none.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))

 # Create template for phase specific config arguments
 _PhaseTemplate = UnitModelBlockData.CONFIG()
 _PhaseTemplate.declare("has_equilibrium_reactions", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Equilibrium reaction construction flag",
 doc="""Indicates whether terms for equilibrium controlled reactions
should be constructed,
default - True.
Valid values: {
True - include equilibrium reaction terms,
False - exclude equilibrium reaction terms.}"""))
 _PhaseTemplate.declare("property_package", ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a ParameterBlock object"""))
 _PhaseTemplate.declare("property_package_args", ConfigValue(
 default={},
 domain=dict,
 description="Arguments for constructing gas property package",
 doc="""A dict of arguments to be passed to the PropertyBlockData
and used when constructing these
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a dict (see property package for documentation)"""))
 _PhaseTemplate.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 _PhaseTemplate.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 implicit_domain=ConfigBlock,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))

 # Create individual config blocks for the gas and solid phases
 CONFIG.declare("gas_phase_config",
 _PhaseTemplate(doc="gas phase config arguments"
))
 CONFIG.declare("solid_phase_config",
 _PhaseTemplate(doc="solid phase config arguments"
))

 # ===
[docs] def build(self):
 """
 Begin building model

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to build default attributes
 super(BubblingFluidizedBedData, self).build()

 # Consistency check for transformation method and transformation scheme
 if (self.config.transformation_method == "dae.finite_difference" and
 self.config.transformation_scheme is None):
 self.config.transformation_scheme = "BACKWARD"
 elif (self.config.transformation_method == "dae.collocation" and
 self.config.transformation_scheme is None):
 self.config.transformation_scheme = "LAGRANGE-RADAU"
 elif (self.config.transformation_method == "dae.finite_difference" and
 self.config.transformation_scheme != "BACKWARD" and
 self.config.transformation_scheme != "FORWARD"):
 raise ConfigurationError("{} invalid value for "
 "transformation_scheme argument. "
 "Must be ""BACKWARD"" or ""FORWARD"" "
 "if transformation_method is"
 " ""dae.finite_difference""."
 .format(self.name))
 elif (self.config.transformation_method == "dae.collocation" and
 self.config.transformation_scheme != "LAGRANGE-RADAU"):
 raise ConfigurationError("{} invalid value for "
 "transformation_scheme argument."
 "Must be ""LAGRANGE-RADAU"" if "
 "transformation_method is"
 " ""dae.collocation""."
 .format(self.name))

 # Set flow directions for the control volume blocks
 # Gas flows from 0 to 1, solid flows from 0 to 1
 if self.config.flow_type == "co_current":
 set_direction_gas = FlowDirection.forward
 set_direction_solid = FlowDirection.forward
 # Gas flows from 0 to 1, solid flows from 1 to 0
 if self.config.flow_type == "counter_current":
 set_direction_gas = FlowDirection.forward
 set_direction_solid = FlowDirection.backward

 # Set arguments for gas phase if homogeneous reaction block
 if self.config.gas_phase_config.reaction_package is not None:
 has_rate_reaction_gas = True
 else:
 has_rate_reaction_gas = False

 # Set arguments for emulsion region if heterogeneous reaction block
 if self.config.solid_phase_config.reaction_package is not None:
 has_rate_reaction_solid = True
 else:
 has_rate_reaction_solid = False

 # Set heat transfer terms
 if self.config.energy_balance_type != EnergyBalanceType.none:
 has_heat_transfer = True
 else:
 has_heat_transfer = False

 # Set heat of reaction terms
 if (self.config.energy_balance_type != EnergyBalanceType.none
 and self.config.gas_phase_config.reaction_package
 is not None):
 has_heat_of_reaction_gas = True
 else:
 has_heat_of_reaction_gas = False

 if (self.config.energy_balance_type != EnergyBalanceType.none
 and self.config.solid_phase_config.reaction_package
 is not None):
 has_heat_of_reaction_solid = True
 else:
 has_heat_of_reaction_solid = False

 # Create a unit model length domain
 self.length_domain = ContinuousSet(
 bounds=(0.0, 1.0),
 initialize=self.config.length_domain_set,
 doc="Normalized length domain")

 # ===
 """ Build Control volume 1D for the bubble region and
 populate its control volume"""

 self.bubble = ControlVolume1DBlock(default={
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "area_definition": DistributedVars.variant,
 "property_package": self.config.gas_phase_config.property_package,
 "property_package_args":
 self.config.gas_phase_config.property_package_args,
 "reaction_package": self.config.gas_phase_config.reaction_package,
 "reaction_package_args":
 self.config.gas_phase_config.reaction_package_args})

 self.bubble.add_geometry(
 length_domain=self.length_domain,
 length_domain_set=self.config.length_domain_set,
 flow_direction=set_direction_gas)

 self.bubble.add_state_blocks(
 information_flow=set_direction_gas,
 has_phase_equilibrium=False)

 if self.config.gas_phase_config.reaction_package is not None:
 self.bubble.add_reaction_blocks(
 has_equilibrium=(
 self.config.gas_phase_config.has_equilibrium_reactions)
)

 self.bubble.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=False,
 has_mass_transfer=True,
 has_rate_reactions=has_rate_reaction_gas)

 self.bubble.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=has_heat_transfer,
 has_heat_of_reaction=has_heat_of_reaction_gas)

 self.bubble.add_momentum_balances(
 balance_type=MomentumBalanceType.none,
 has_pressure_change=False)

 # ===
 """ Build Control volume 1D for the gas_emulsion region and
 populate its control volume"""

 self.gas_emulsion = ControlVolume1DBlock(default={
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "area_definition": DistributedVars.variant,
 "property_package": self.config.gas_phase_config.property_package,
 "property_package_args":
 self.config.gas_phase_config.property_package_args,
 "reaction_package":
 self.config.gas_phase_config.reaction_package,
 "reaction_package_args":
 self.config.gas_phase_config.reaction_package_args})

 self.gas_emulsion.add_geometry(
 length_domain=self.length_domain,
 length_domain_set=self.config.
 length_domain_set,
 flow_direction=set_direction_gas)

 self.gas_emulsion.add_state_blocks(
 information_flow=set_direction_gas,
 has_phase_equilibrium=False)

 if self.config.gas_phase_config.reaction_package is not None:
 self.gas_emulsion.add_reaction_blocks(
 has_equilibrium=(
 self.config.gas_phase_config.has_equilibrium_reactions)
)

 self.gas_emulsion.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=False,
 has_mass_transfer=True,
 has_rate_reactions=has_rate_reaction_gas)

 self.gas_emulsion.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=has_heat_transfer,
 has_heat_of_reaction=has_heat_of_reaction_gas)

 self.gas_emulsion.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # ===
 """ Build Control volume 1D for solid emulsion region and
 populate solid control volume"""

 self.solid_emulsion = ControlVolume1DBlock(default={
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "area_definition": DistributedVars.variant,
 "property_package":
 self.config.solid_phase_config.property_package,
 "property_package_args":
 self.config.solid_phase_config.property_package_args,
 "reaction_package":
 self.config.solid_phase_config.reaction_package,
 "reaction_package_args":
 self.config.solid_phase_config.reaction_package_args})

 self.solid_emulsion.add_geometry(
 length_domain=self.length_domain,
 length_domain_set=self.config.
 length_domain_set,
 flow_direction=set_direction_solid)

 self.solid_emulsion.add_state_blocks(
 information_flow=set_direction_solid,
 has_phase_equilibrium=False)

 if self.config.solid_phase_config.reaction_package is not None:
 # TODO - a generalization of the heterogeneous reaction block
 # The heterogeneous reaction block does not use the
 # add_reaction_blocks in control volumes as control volumes are
 # currently setup to handle only homogeneous reaction properties.
 # Thus appending the heterogeneous reaction block to the
 # solid state block is currently hard coded here.

 tmp_dict = dict(
 **self.config.solid_phase_config.reaction_package_args)
 tmp_dict["gas_state_block"] = self.gas_emulsion.properties
 tmp_dict["solid_state_block"] = (
 self.solid_emulsion.properties)
 tmp_dict["has_equilibrium"] = (
 self.config.solid_phase_config.has_equilibrium_reactions)
 tmp_dict["parameters"] = (
 self.config.solid_phase_config.reaction_package)
 self.solid_emulsion.reactions = (
 self.config.solid_phase_config.reaction_package.
 reaction_block_class(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Reaction properties in control volume",
 default=tmp_dict))

 self.solid_emulsion.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 has_rate_reactions=has_rate_reaction_solid)

 self.solid_emulsion.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=has_heat_transfer,
 has_heat_of_reaction=has_heat_of_reaction_solid)

 self.solid_emulsion.add_momentum_balances(
 balance_type=MomentumBalanceType.none,
 has_pressure_change=False)

 # ===
 """ Add Ports for gas and solid inlets and outlets"""
 # Build inlet and outlet state blocks for model to be attached to ports
 # Extra state blocks are included at the inlet and outlets to model
 # the mass and energy balances (splitting and mixing) that takes place
 # between the gas feed/product from the reactor, and the bubble and
 # gas_emulsion regions at the reactor boundaries. It is also used to
 # capture the different solid phase boundaries resulting from the
 # varying solid flow directions (co_current and counter_current)
 self.gas_inlet_block = (
 self.config.gas_phase_config.property_package.build_state_block(
 self.flowsheet().config.time,
 default={"defined_state": True}))

 self.gas_outlet_block = (
 self.config.gas_phase_config.property_package.build_state_block(
 self.flowsheet().config.time,
 default={"defined_state": False}))

 self.solid_inlet_block = (
 self.config.solid_phase_config.property_package.build_state_block(
 self.flowsheet().config.time,
 default={"defined_state": True}))

 self.solid_outlet_block = (
 self.config.solid_phase_config.property_package.build_state_block(
 self.flowsheet().config.time,
 default={"defined_state": False}))

 # Add Ports for gas side
 self.add_inlet_port(name="gas_inlet",
 block=self.gas_inlet_block)
 self.add_outlet_port(name="gas_outlet",
 block=self.gas_outlet_block)

 # Add Ports for solid side
 self.add_inlet_port(name="solid_inlet",
 block=self.solid_inlet_block)
 self.add_outlet_port(name="solid_outlet",
 block=self.solid_outlet_block)

 # ===
 """ Apply transformation and add performace equation method"""
 self._make_vars_params()
 self._apply_transformation()
 self._make_performance()

 # ===
 def _make_vars_params(self):
 """
 Make model variables and parameters.

 Args:
 None

 Returns:
 None
 """

 # Declare Mutable Parameters
 self.eps = Param(mutable=True,
 default=1e-8,
 doc='Smoothing Factor for Smooth IF Statements')

 # Vessel dimensions
 self.bed_diameter = Var(domain=Reals,
 initialize=1,
 doc='Reactor Diameter [m]')
 self.bed_area = Var(domain=Reals,
 initialize=1,
 doc='Reactor Cross-sectional Area [m2]')
 self.bed_height = Var(domain=Reals,
 initialize=1,
 doc='Bed Height [m]')

 # Distributor Design
 self.area_orifice = Var(
 domain=Reals,
 initialize=1,
 doc='Distributor Plate Area per Orifice [m^2/orifice]')
 self.number_orifice = Var(
 domain=Reals,
 doc='Distributor Plate Orifices per Area [orifices/m^2]')

 # Velocities
 self.velocity_superficial_gas = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Gas Superficial Velocity [m/s]')
 self.velocity_bubble = Var(
 self.flowsheet().config.time,
 self.length_domain, domain=Reals,
 doc='Bubble Velocity [m/s]')
 self.velocity_emulsion_gas = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Emulsion Region Superficial Gas Velocity [m/s]')

 # Bubble Dimensions and Hydrodynamics
 self.bubble_diameter = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Average Bubble Diameter [m]')
 self.delta = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Volume Fraction Occupied by Bubble Region [m^3/m^3]')
 self.delta_e = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Volume Fraction Occupied by Emulsion Region [m^3/m^3]')
 self.voidage_average = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Cross-Sectional Average Voidage Fraction [m^3/m^3]')
 self.voidage_emulsion = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Emulsion Region Voidage Fraction [m^3/m^3]')
 self.bubble_growth_coeff = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Bubble Growth Coefficient [-]')
 self.bubble_diameter_max = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Maximum Theoretical Bubble Diameter [m]')
 self.velocity_bubble_rise = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Bubble Rise Velocity [m/s]')

 # Gas emulsion heterogeneous reaction variable
 self.gas_emulsion_hetero_rxn = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.gas_phase_config.property_package.component_list,
 domain=Reals,
 initialize=0.0,
 doc='Heterogeneous Rate Reaction'
 'Generation in the Gas Emulsion')

 # Mass transfer coefficients
 self.Kbe = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.gas_phase_config.property_package.component_list,
 domain=Reals,
 initialize=1,
 doc='Bubble to Emulsion Gas Mass Transfer Coefficient [1/s]')
 self.Kgbulk_c = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.gas_phase_config.property_package.component_list,
 domain=Reals,
 initialize=1,
 doc='Gas Phase Component Bulk Transfer Rate [mol/m.s]')

 # Heat transfer coefficients
 self.Hbe = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Bubble to Emulsion Gas Heat Transfer Coefficient'
 '[kJ/m^3.K.s]')
 self.Hgbulk = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Gas Phase Bulk Enthalpy Transfer Rate [kJ/m.s]')
 self.htc_conv = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Gas to Solid Energy Convective Heat Transfer'
 'Coefficient [kJ/m^2.K.s]')

 # Heat transfer terms
 self.ht_conv = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Gas to Solid Convective Enthalpy Transfer in'
 'Emulsion Region [kJ/m^2.K.s]')

 # Reformulation variables
 self._reform_var_1 = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 doc='Reformulation Variable in Bubble'
 'Diameter Equation [reform var 1]')
 self._reform_var_2 = Var(
 self.flowsheet().config.time,
 self.length_domain,
 self.config.gas_phase_config.property_package.component_list,
 domain=Reals,
 initialize=1,
 doc='Bubble to Emulsion Gas Mass Transfer'
 'Coefficient Reformulation Variable [reform var 2]')
 self._reform_var_3 = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Bubble to Emulsion Gas Mass Transfer'
 'Coefficient Reformulation Variable [reform var 3]')
 self._reform_var_4 = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Bubble to Emulsion Gas Heat Transfer'
 'Coefficient Reformulation Variable [reform var 4]')
 self._reform_var_5 = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals,
 initialize=1,
 doc='Convective Heat Transfer'
 'Coefficient Reformulation Variable [reform var 5]')

 # Derivative variables
 self.ddia_bubbledx = DerivativeVar(
 self.bubble_diameter,
 wrt=self.length_domain,
 doc='Derivative of Bubble Diameter with Respect to Bed Height')

 # Fixed variables (these are parameters that can be estimated)
 self.Kd = Var(domain=Reals,
 initialize=1,
 doc='Bulk Gas Permeation Coefficient [m/s]')
 self.Kd.fix()
 self.deltaP_orifice = Var(domain=Reals,
 initialize=3.400,
 doc='Pressure Drop Across Orifice [bar]')
 self.deltaP_orifice.fix()

 # ===
 def _apply_transformation(self):
 """
 Method to apply DAE transformation to the Control Volume length domain.
 Transformation applied will be based on the Control Volume
 configuration arguments.
 """
 if self.config.finite_elements is None:
 raise ConfigurationError(
 "{} was not provided a value for the finite_elements"
 " configuration argument. Please provide a valid value."
 .format(self.name))

 if self.config.transformation_method == "dae.finite_difference":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(self,
 wrt=self.length_domain,
 nfe=self.config.finite_elements,
 scheme=self.config.transformation_scheme)
 elif self.config.transformation_method == "dae.collocation":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(
 self,
 wrt=self.length_domain,
 nfe=self.config.finite_elements,
 ncp=self.config.collocation_points,
 scheme=self.config.transformation_scheme)

 # ===
 def _make_performance(self):
 # local aliases used to shorten object names
 gas_phase = self.config.gas_phase_config
 solid_phase = self.config.solid_phase_config

 # Add performance equations

 # ---
 # Geometry contraints

 # Distributor design - Area of orifice
 @self.Constraint(doc="Area of Orifice")
 def orifice_area(b):
 return 1e1 * b.number_orifice*b.area_orifice == 1e1

 # Bed area
 @self.Constraint(doc="Bed Area")
 def bed_area_eqn(b):
 return b.bed_area == (
 constants.pi*(0.5*b.bed_diameter)**2)

 # Area of bubble, gas_emulsion, solid_emulsion
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Cross-sectional Area Occupied by Bubbles")
 def bubble_area(b, t, x):
 return (b.bubble.area[t, x] ==
 b.bed_area*b.delta[t, x])

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Cross-sectional Area Occupied by Gas Emulsion")
 def gas_emulsion_area(b, t, x):
 return (b.gas_emulsion.area[t, x] ==
 b.bed_area*b.delta_e[t, x]*b.voidage_emulsion[t, x])

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Cross-sectional Area Occupied by Solid Emulsion")
 def solid_emulsion_area(b, t, x):
 return (b.solid_emulsion.area[t, x] ==
 b.bed_area*b.delta_e[t, x]*(1-b.voidage_emulsion[t, x]))

 # Length of bubble, gas_emulsion, solid_emulsion
 @self.Constraint(doc="Bubble Region Length")
 def bubble_length(b):
 return (b.bubble.length == b.bed_height)

 @self.Constraint(doc="Gas Emulsion Region Length")
 def gas_emulsion_length(b):
 return (b.gas_emulsion.length == b.bed_height)

 @self.Constraint(doc="Solid Emulsion Region Length")
 def solid_emulsion_length(b):
 return (b.solid_emulsion.length == b.bed_height)

 # ---
 # Hydrodynamic contraints

 # Emulsion region volume fraction
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Emulsion Region Volume Fraction")
 def emulsion_vol_frac(b, t, x):
 return (b.delta_e[t, x] == 1 - b.delta[t, x])

 # Average cross-sectional voidage
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Average Cross-sectional Voidage")
 def average_voidage(b, t, x):
 return (1 - b.voidage_average[t, x] == (1 - b.delta[t, x]) *
 (1 - b.voidage_emulsion[t, x]))

 # Bubble growth coefficient
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Growth Coefficient")
 def bubble_growth_coefficient(b, t, x):
 return (1e2*(b.bubble_growth_coeff[t, x] *
 b.solid_emulsion.properties[t, x]._params.velocity_mf
)**2 == 1e2 *
 (2.56e-2**2) * (
 b.bed_diameter/constants.acceleration_gravity))

 # Maximum bubble diameter
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Maximum Bubble Diameter")
 def bubble_diameter_maximum(b, t, x):
 return ((b.bubble_diameter_max[t, x]**5) *
 constants.acceleration_gravity ==
 (2.59**5)*((b.velocity_superficial_gas[t, x] -
 b.velocity_emulsion_gas[t, x]) *
 b.bed_area)**2)

 # Bubble diameter reformulation equation
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Diameter Reformulation")
 def _reformulation_eqn_1(b, t, x):
 return (b._reform_var_1[t, x]**2 ==
 b.bed_diameter*b.bubble_diameter[t, x])

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Diameter")
 def bubble_diameter_eqn(b, t, x):
 if x == b.length_domain.first():
 return (1e3*b.bubble_diameter[t, x] ** 5 == 1e3 * (1.38 ** 5) *
 (constants.acceleration_gravity ** -1) *
 ((b.velocity_superficial_gas[t, x]
 - b.velocity_emulsion_gas[t, x]) *
 b.area_orifice) ** 2)
 else:
 return (1e2 * b.ddia_bubbledx[t, x] * b.bed_diameter ==
 1e2 * b.bubble.length *
 0.3 * (b.bubble_diameter_max[t, x]
 - b.bubble_diameter[t, x] -
 b.bubble_growth_coeff[t, x]*b._reform_var_1[t, x]))

 # Bubble rise velocity
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Rise Velocity")
 def bubble_velocity_rise(b, t, x):
 return (b.velocity_bubble_rise[t, x]**2 == (0.711**2) *
 constants.acceleration_gravity *
 b.bubble_diameter[t, x])

 # Emulsion region voidage - Davidson model
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Emulsion Region Voidage")
 def emulsion_voidage(b, t, x):
 return (b.voidage_emulsion[t, x] ==
 b.solid_emulsion.properties[t, x]._params.voidage_mf
)

 # Bubble velocity - Davidson model
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Velocity")
 def bubble_velocity(b, t, x):
 return (
 b.velocity_bubble[t, x] ==
 b.velocity_superficial_gas[t, x] -
 b.solid_emulsion.properties[t, x]._params.velocity_mf +
 b.velocity_bubble_rise[t, x])

 # Emulsion region gas velocity - Davidson model
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Emulsion Region Superficial Gas Velocity")
 def emulsion_gas_velocity(b, t, x):
 return (
 b.velocity_emulsion_gas[t, x] ==
 b.solid_emulsion.properties[t, x]._params.velocity_mf)

 # Superficial gas velocity (computes delta at the boundary from
 # known vg at gas inlet)
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Superficial Gas Velocity")
 def velocity_gas_superficial(b, t, x):
 return (b.velocity_superficial_gas[t, x] ==
 b.velocity_bubble[t, x] * b.delta[t, x] +
 b.velocity_emulsion_gas[t, x])

 # Particle porosity constraint
 # Particle porosity is assumed constant
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Constant particle porosity")
 def particle_porosity_constraint(b, t, x):
 return (
 b.solid_emulsion.properties[t, x].particle_porosity ==
 b.solid_inlet_block[t].particle_porosity)

 # Gas_emulsion pressure drop calculation
 if self.config.has_pressure_change:
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas Emulsion Pressure Drop Calculation")
 def gas_emulsion_pressure_drop(b, t, x):
 # 1e5 = pressure unit conversion factor from Pa to bar
 return (1e-2*(b.gas_emulsion.deltaP[t, x] *
 1e5) ==
 1e-2*(- constants.acceleration_gravity *
 (1 - b.voidage_average[t, x]) *
 b.solid_emulsion.properties[t, x].dens_mass_particle)
)

 elif self.config.has_pressure_change is False:
 # If pressure change is false set pressure drop to zero
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Isobaric Gas emulsion")
 def isobaric_gas_emulsion(b, t, x):
 return (1e2*b.gas_emulsion.properties[t, x].pressure ==
 1e2*b.gas_inlet.pressure[0])

 # ---
 # Mass transfer constraints
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Bubble to Emulsion Gas Mass Transfer"
 "Coefficient Reformulation [reform eqn 2]")
 def _reformulation_eqn_2(b, t, x, j):
 # 1e-4 = diffusion unit conversion factor from cm2/s to m2/s
 return (1e2*b._reform_var_2[t, x, j]**2 == 1e2 *
 34.2225 * (
 1e-4 *
 b.gas_emulsion.properties[t, x].diffusion_comp[j]) *
 constants.acceleration_gravity ** 0.5)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble to Emulsion Gas Mass Transfer"
 "Coefficient Reformulation [reform eqn 3]")
 def _reformulation_eqn_3(b, t, x):
 return (1e2*b._reform_var_3[t, x]**4 ==
 1e2*b.bubble_diameter[t, x])

 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Bubble to Emulsion Gas Mass Transfer Coefficient")
 def bubble_cloud_mass_trans_coeff(b, t, x, j):
 return (
 b.Kbe[t, x, j] * b._reform_var_3[t, x]**5 ==
 0.36 * 4.5 * b._reform_var_3[t, x] *
 b.solid_emulsion.properties[t, x]._params.velocity_mf +
 b._reform_var_2[t, x, j])

 # Bulk gas mass transfer
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Bulk Gas Mass Transfer Between Bubble and Emulsion")
 def bubble_cloud_bulk_mass_trans(b, t, x, j):
 conc_diff = (b.gas_emulsion.properties[t, x].dens_mol -
 b.bubble.properties[t, x].dens_mol)
 return (b.Kgbulk_c[t, x, j] * b.bubble_diameter[t, x] ==
 6 * b.Kd * b.delta[t, x] * b.bed_area *
 (b.gas_emulsion.properties[t, x].mole_frac_comp[j] *
 smooth_max(conc_diff, 0, b.eps) +
 b.bubble.properties[t, x].mole_frac_comp[j] *
 smooth_min(conc_diff, 0, b.eps)))
 # ---
 # Heat transfer constraints

 if self.config.energy_balance_type != EnergyBalanceType.none:
 # Bubble to emulsion gas heat transfer coefficient
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble to Emulsion Gas Heat Transfer"
 "Coeff. Reformulation Eqn [reform eqn 4]")
 def _reformulation_eqn_4(b, t, x):
 return (b._reform_var_4[t, x]**2 ==
 34.2225 * b.bubble.properties[t, x].therm_cond *
 b.bubble.properties[t, x].enth_mol *
 b.bubble.properties[t, x].dens_mol *
 (constants.acceleration_gravity ** 0.5))

 # Convective heat transfer coefficient
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Convective Heat Transfer"
 "Coeff. Reformulation Eqn [reform eqn 5]")
 def _reformulation_eqn_5(b, t, x):
 return (
 1e2 * b._reform_var_5[t, x] *
 b.gas_emulsion.properties[t, x].visc_d ==
 1e2 * b.velocity_emulsion_gas[t, x] *
 b.solid_emulsion.properties[t, x]._params.particle_dia *
 b.gas_emulsion.properties[t, x].dens_mol)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble to Emulsion Gas Heat Transfer"
 "Coefficient")
 def bubble_cloud_heat_trans_coeff(b, t, x):
 return (
 b.Hbe[t, x] * b._reform_var_3[t, x] ** 5 == 4.5 *
 b.solid_emulsion.properties[t, x]._params.velocity_mf *
 b.bubble.properties[t, x].enth_mol *
 b.bubble.properties[t, x].dens_mol *
 b._reform_var_3[t, x] +
 b._reform_var_4[t, x])

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Convective Heat Transfer Coefficient")
 def convective_heat_trans_coeff(b, t, x):
 return (
 1e6*b.htc_conv[t, x] *
 b.solid_emulsion.properties[t, x]._params.particle_dia ==
 1e6 * 0.03 * b.gas_emulsion.properties[t, x].therm_cond *
 ((b._reform_var_5[t, x]**2 + b.eps)**0.5) ** 1.3)

 # Gas to solid convective heat transfer # replaced "ap" with
 # "6/(dp*rho_sol)"
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas to Solid Convective Enthalpy Transfer"
 "in Emulsion Region")
 def convective_heat_transfer(b, t, x):
 return (
 b.ht_conv[t, x] *
 b.solid_emulsion.properties[t, x]._params.particle_dia ==
 6 * b.delta_e[t, x] * (1 - b.voidage_emulsion[t, x]) *
 b.htc_conv[t, x] *
 (b.gas_emulsion.properties[t, x].temperature -
 b.solid_emulsion.properties[t, x].temperature))

 # Bulk gas heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bulk Gas Heat Transfer Between"
 "Bubble and Emulsion")
 def bubble_cloud_bulk_heat_trans(b, t, x):
 conc_diff = (
 b.gas_emulsion.properties[t, x].dens_mol -
 b.bubble.properties[t, x].dens_mol)
 return (
 b.Hgbulk[t, x] * b.bubble_diameter[t, x] ==
 6 * b.Kd * b.delta[t, x] * b.bed_area *
 (b.gas_emulsion.properties[t, x].enth_mol *
 smooth_max(conc_diff, 0, b.eps) +
 b.bubble.properties[t, x].enth_mol *
 smooth_min(conc_diff, 0, b.eps)))
 # ---
 # Mass and heat transfer terms in control volumes

 # Bubble mass transfer
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Bubble Mass Transfer")
 def bubble_mass_transfer(b, t, x, j):
 comp_conc_diff = (
 b.bubble.properties[t, x].dens_mol_comp[j] -
 b.gas_emulsion.properties[t, x].dens_mol_comp[j])
 return (1e3*b.bubble.mass_transfer_term[t, x, 'Vap', j] ==
 1e3*(b.Kgbulk_c[t, x, j] -
 b.bubble.area[t, x] *
 b.Kbe[t, x, j] * comp_conc_diff))

 # Gas_emulsion mass transfer
 def gas_emulsion_hetero_rxn_term(b, t, x, j):
 return (b.gas_emulsion_hetero_rxn[t, x, j]
 if solid_phase.reaction_package else 0)

 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Gas Emulsion Mass Transfer")
 def gas_emulsion_mass_transfer(b, t, x, j):
 comp_conc_diff = (
 b.bubble.properties[t, x].dens_mol_comp[j] -
 b.gas_emulsion.properties[t, x].dens_mol_comp[j])
 return (1e3*b.gas_emulsion.mass_transfer_term[t, x, 'Vap', j] ==
 1e3*(- b.Kgbulk_c[t, x, j] +
 b.bubble.area[t, x] *
 b.Kbe[t, x, j] * comp_conc_diff +
 gas_emulsion_hetero_rxn_term(b, t, x, j)))

 if self.config.energy_balance_type != EnergyBalanceType.none:
 # Bubble - heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble - Heat Transfer")
 def bubble_heat_transfer(b, t, x):
 return (b.bubble.heat[t, x] == b.Hgbulk[t, x] -
 b.Hbe[t, x] *
 (b.bubble.properties[t, x].temperature -
 b.gas_emulsion.properties[t, x].temperature) *
 b.bubble.area[t, x])

 # Gas emulsion - heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas Emulsion - Heat Transfer")
 def gas_emulsion_heat_transfer(b, t, x):
 return (b.gas_emulsion.heat[t, x] ==
 b.Hbe[t, x] *
 (b.bubble.properties[t, x].temperature -
 b.gas_emulsion.properties[t, x].temperature) *
 b.bubble.area[t, x] - b.Hgbulk[t, x] -
 b.ht_conv[t, x] * b.bed_area)

 # Solid emulsion - heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Solid Emulsion - Heat Transfer")
 def solid_emulsion_heat_transfer(b, t, x):
 return (b.solid_emulsion.heat[t, x] ==
 b.ht_conv[t, x] * b.bed_area)

 # ---
 # Reaction contraints

 # Build homogeneous reaction constraints

 if gas_phase.reaction_package is not None:
 # Bubble rate reaction extent
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.reaction_package.rate_reaction_idx,
 doc="Bubble Rate Reaction Extent")
 def bubble_rxn_ext_constraint(b, t, x, r):
 return b.bubble.rate_reaction_extent[t, x, r] == (
 b.bubble.reactions[t, x].reaction_rate[r] *
 b.bubble.area[t, x])

 if gas_phase.reaction_package is not None:
 # Gas emulsion rate reaction extent
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.reaction_package.rate_reaction_idx,
 doc="Gas Emulsion Rate Reaction Extent")
 def gas_emulsion_rxn_ext_constraint(b, t, x, r):
 return b.gas_emulsion.rate_reaction_extent[t, x, r] == (
 b.gas_emulsion.reactions[t, x].reaction_rate[r] *
 b.gas_emulsion.area[t, x])

 # Build hetereogeneous reaction constraints
 if solid_phase.reaction_package is not None:
 # Solid side rate reaction extent
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 solid_phase.reaction_package.rate_reaction_idx,
 doc="Solid Emulsion Rate Reaction Extent")
 def solid_emulsion_rxn_ext_constraint(b, t, x, r):
 return (
 b.solid_emulsion.rate_reaction_extent[t, x, r] ==
 b.solid_emulsion.reactions[t, x].reaction_rate[r] *
 b.solid_emulsion.area[t, x])

 # Gas side heterogeneous rate reaction generation
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.component_list,
 doc="Gas Emulsion Heterogeneous Rate Reaction Generation")
 def gas_emulsion_hetero_rxn_eqn(b, t, x, j):
 return (
 b.gas_emulsion_hetero_rxn[t, x, j] ==
 sum(
 b.solid_emulsion.reactions[t, x].
 rate_reaction_stoichiometry[r, 'Vap', j] *
 b.solid_emulsion.reactions[t, x].reaction_rate[r]
 for r in solid_phase.reaction_package.rate_reaction_idx
) * b.solid_emulsion.area[t, x])

 # ---
 # Flowrate constraints

 # Bubble gas flowrate - this eqn calcs bubble conc. (dens_mol)
 # which is then used to calculate the bubble pressure
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Bubble Gas Flowrate Constraint")
 def bubble_gas_flowrate(b, t, x):
 return (b.bubble.properties[t, x].flow_mol ==
 b.bed_area * b.delta[t, x] * b.velocity_bubble[t, x] *
 b.bubble.properties[t, x].dens_mol)

 # Emulsion gas flowrate - this eqn indirectly calcs bubble voidage
 # (delta) in conjuction with the mass conservation eqns in the
 # gas_emulsion CV1D.
 # This eqn arises because the emulsion region gas is assumed to be at
 # minimum fluidization conditions (delta varies to account for this)
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Emulsion Gas Flowrate Constraint")
 def emulsion_gas_flowrate(b, t, x):
 return (b.gas_emulsion.properties[t, x].flow_mol ==
 b.bed_area * b.velocity_emulsion_gas[t, x] *
 b.gas_emulsion.properties[t, x].dens_mol)

 # ---
 # Inlet boundary Conditions

 # Gas_emulsion pressure at inlet
 if self.config.has_pressure_change:
 @self.Constraint(self.flowsheet().config.time,
 doc="Gas Emulsion Pressure at Inlet")
 def gas_emulsion_pressure_in(b, t):
 return (1e2*b.gas_emulsion.properties[t, 0].pressure ==
 1e2*b.gas_inlet_block[t].pressure - b.deltaP_orifice)

 # Total gas balance at inlet
 @self.Constraint(self.flowsheet().config.time,
 doc="Total Gas Balance at Inlet")
 def gas_mole_flow_in(b, t):
 return (b.gas_inlet_block[t].flow_mol ==
 b.bubble.properties[t, 0].flow_mol +
 b.gas_emulsion.properties[t, 0].flow_mol)

 # Superficial velocity of gas at inlet
 @self.Constraint(self.flowsheet().config.time,
 doc="Superficial Velocity of Gas at Inlet")
 def velocity_superficial_gas_inlet(b, t):
 return (b.gas_inlet_block[t].flow_mol ==
 b.velocity_superficial_gas[t, 0] * b.bed_area *
 b.gas_emulsion.properties[t, 0].dens_mol)

 # Bubble mole frac at inlet
 @self.Constraint(
 self.flowsheet().config.time,
 gas_phase.property_package.component_list,
 doc="Bubble Mole Fraction at Inlet")
 def bubble_mole_frac_in(b, t, j):
 return (1e2*b.gas_inlet_block[t].mole_frac_comp[j] ==
 1e2*b.bubble.properties[t, 0].mole_frac_comp[j])

 # Gas_emulsion mole frac at inlet
 @self.Constraint(
 self.flowsheet().config.time,
 gas_phase.property_package.component_list,
 doc="Gas Emulsion Mole Fraction at Inlet")
 def gas_emulsion_mole_frac_in(b, t, j):
 return (1e2*b.gas_inlet_block[t].mole_frac_comp[j] ==
 1e2*b.gas_emulsion.properties[t, 0].mole_frac_comp[j])

 # Solid emulsion mass flow at inlet
 @self.Constraint(self.flowsheet().config.time,
 doc="Solid Emulsion Mass Flow at Inlet")
 def solid_emulsion_mass_flow_in(b, t):
 if (self.config.flow_type == "co_current"):
 return (b.solid_inlet_block[t].flow_mass ==
 b.solid_emulsion.properties[t, 0].flow_mass)
 elif (self.config.flow_type == "counter_current"):
 return (b.solid_inlet_block[t].flow_mass ==
 b.solid_emulsion.properties[t, 1].flow_mass)

 # Solid emulsion mass frac at inlet
 @self.Constraint(
 self.flowsheet().config.time,
 solid_phase.property_package.component_list,
 doc="Solid Emulsion Mass Fraction at Inlet")
 def solid_emulsion_mass_frac_in(b, t, j):
 if (self.config.flow_type == "co_current"):
 return (1e2 * b.solid_inlet_block[t].mass_frac_comp[j] ==
 1e2 *
 b.solid_emulsion.properties[t, 0].mass_frac_comp[j])
 elif (self.config.flow_type == "counter_current"):
 return (1e2 * b.solid_inlet_block[t].mass_frac_comp[j] ==
 1e2 *
 b.solid_emulsion.properties[t, 1].mass_frac_comp[j])

 if self.config.energy_balance_type != EnergyBalanceType.none:
 @self.Constraint(
 self.flowsheet().config.time,
 gas_phase.property_package.phase_list,
 doc="Gas Inlet Energy Balance")
 def gas_energy_balance_in(b, t, p):
 return (b.gas_inlet_block[t].get_enthalpy_flow_terms(p) ==
 b.bubble._enthalpy_flow[t, 0, p] +
 b.gas_emulsion._enthalpy_flow[t, 0, p])

 # Gas emulsion temperature at inlet
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Gas Emulsion Temperature at Inlet")
 def gas_emulsion_temperature_in(b, t):
 return (b.gas_inlet_block[t].temperature ==
 b.gas_emulsion.properties[t, 0].temperature)

 # Solid inlet energy balance
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Solid Inlet Energy Balance")
 def solid_energy_balance_in(b, t):
 if (self.config.flow_type == "co_current"):
 return (b.solid_inlet_block[t].
 get_enthalpy_flow_terms('Sol') ==
 b.solid_emulsion._enthalpy_flow[t, 0, 'Sol'])
 elif (self.config.flow_type == "counter_current"):
 return (b.solid_inlet_block[t].
 get_enthalpy_flow_terms('Sol') ==
 b.solid_emulsion._enthalpy_flow[t, 1, 'Sol'])

 elif self.config.energy_balance_type == EnergyBalanceType.none:
 # If energy balance is none fix gas and solid temperatures to inlet
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Isothermal solid emulsion constraint")
 def isothermal_solid_emulsion(b, t, x):
 return (
 b.solid_emulsion.properties[t, x].temperature ==
 b.solid_inlet.temperature[t])

 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Isothermal gas emulsion constraint")
 def isothermal_gas_emulsion(b, t, x):
 return (
 b.gas_emulsion.properties[t, x].temperature ==
 b.gas_inlet.temperature[t])

 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Isothermal gas emulsion constraint")
 def isothermal_bubble(b, t, x):
 return (
 b.bubble.properties[t, x].temperature ==
 b.gas_inlet.temperature[t])

 # ---
 # Outlet boundary Conditions
 # Gas outlet pressure
 @self.Constraint(self.flowsheet().config.time,
 doc="Gas Outlet Pressure")
 def gas_pressure_out(b, t):
 return (1e2*b.gas_outlet.pressure[t] ==
 1e2*b.gas_emulsion.properties[t, 1].pressure)

 # Gas outlet material balance
 @self.Constraint(
 self.flowsheet().config.time,
 gas_phase.property_package.phase_list,
 gas_phase.property_package.component_list,
 doc="Gas Outlet Material Balance")
 def gas_material_balance_out(b, t, p, j):
 return (b.gas_outlet_block[t].get_material_flow_terms(p, j) ==
 b.bubble._flow_terms[t, 1, p, j] +
 b.gas_emulsion._flow_terms[t, 1, p, j])

 # Solid outlet material balance
 @self.Constraint(
 self.flowsheet().config.time,
 solid_phase.property_package.phase_list,
 solid_phase.property_package.component_list,
 doc="Solid Outlet Material Balance")
 def solid_material_balance_out(b, t, p, j):
 if (self.config.flow_type == "co_current"):
 return (
 b.solid_outlet_block[t].get_material_flow_terms(p, j) ==
 b.solid_emulsion._flow_terms[t, 1, p, j])
 elif (self.config.flow_type == "counter_current"):
 return (
 b.solid_outlet_block[t].get_material_flow_terms(p, j) ==
 b.solid_emulsion._flow_terms[t, 0, p, j])

 if self.config.energy_balance_type != EnergyBalanceType.none:
 # Gas outlet energy balance
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Gas Outlet Energy Balance")
 def gas_energy_balance_out(b, t):
 return (b.gas_outlet_block[t].get_enthalpy_flow_terms('Vap') ==
 b.bubble._enthalpy_flow[t, 1, 'Vap'] +
 b.gas_emulsion._enthalpy_flow[t, 1, 'Vap'])

 # Solid outlet energy balance
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Solid Outlet Energy Balance")
 def solid_energy_balance_out(b, t):
 if (self.config.flow_type == "co_current"):
 return (
 b.solid_outlet_block[t].get_enthalpy_flow_terms('Sol')
 ==
 b.solid_emulsion._enthalpy_flow[t, 1, 'Sol'])
 elif (self.config.flow_type == "counter_current"):
 return (
 b.solid_outlet_block[t].get_enthalpy_flow_terms('Sol')
 ==
 b.solid_emulsion._enthalpy_flow[t, 0, 'Sol'])

 elif self.config.energy_balance_type == EnergyBalanceType.none:
 # Gas outlet energy balance
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Gas Outlet Energy Balance")
 def gas_energy_balance_out(b, t):
 return (b.gas_outlet_block[t].temperature ==
 b.gas_emulsion.properties[t, 1].temperature)

 # Solid outlet energy balance
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Solid Outlet Energy Balance")
 def solid_energy_balance_out(b, t):
 if (self.config.flow_type == "co_current"):
 return (b.solid_outlet_block[t].temperature ==
 b.solid_emulsion.properties[t, 1].temperature)
 elif (self.config.flow_type == "counter_current"):
 return (b.solid_outlet_block[t].temperature ==
 b.solid_emulsion.properties[t, 0].temperature)

 # ===
 # Model initialization routine

[docs] def initialize(blk, gas_phase_state_args={}, solid_phase_state_args={},
 outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 """
 Initialisation routine for Bubbling Fluidized Bed unit

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialisation routine
 * 0 = no output (default)
 * 1 = return solver state for each step in routine
 * 2 = return solver state for each step in subroutines
 * 3 = include solver output infomation (tee=True)

 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 # Set logger for initialization and solve
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # local aliases used to shorten object names
 gas_phase = blk.config.gas_phase_config
 solid_phase = blk.config.solid_phase_config

 # Keep all unit model geometry constraints, derivative_var constraints,
 # and property block constraints active. Additionaly, in control
 # volumes - keep conservation linking constraints and
 # holdup calculation (for dynamic flowsheets) constraints active

 geometry_constraints_terms = ["orifice_area", "bed_area_eqn",
 "bubble_area", "gas_emulsion_area",
 "solid_emulsion_area", "bubble_length",
 "gas_emulsion_length",
 "solid_emulsion_length"]
 endswith_terms = ("_disc_eq", "linking_constraint",
 "linking_constraints", "_holdup_calculation")
 startswith_terms = ("properties", "gas_inlet_block",
 "gas_outlet_block", "solid_inlet_block",
 "solid_outlet_block")

 for c in blk.component_objects(Constraint, descend_into=True):
 if not c.parent_block().local_name.startswith(startswith_terms) \
 and not c.local_name.endswith(endswith_terms) \
 and c.local_name not in geometry_constraints_terms:
 c.deactivate()

 # Deactivate outlet blocks (activate at last initialization solve)
 blk.gas_outlet_block.deactivate()
 blk.solid_outlet_block.deactivate()

 # ---
 # Fix Initial Values of State Variables and initialize unit model
 # and inlet property blocks
 init_log.info('Initialize Property Block Constraints')

 # Initialize inlet property blocks
 blk.gas_inlet_block.initialize(
 state_args=gas_phase_state_args,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver)
 blk.solid_inlet_block.initialize(
 state_args=solid_phase_state_args,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 # Initialize bubble region block
 bubble_region_flags = (
 blk.bubble.properties.initialize(
 state_args=gas_phase_state_args,
 hold_state=True,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver))

 # Initialize gas_emulsion region block
 gas_emulsion_region_flags = (
 blk.gas_emulsion.properties.initialize(
 state_args=gas_phase_state_args,
 hold_state=True,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver))

 # Initialize solid_emulsion properties block
 solid_emulsion_region_flags = (
 blk.solid_emulsion.properties.initialize(
 state_args=solid_phase_state_args,
 hold_state=True,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver))

 init_log.info_high("Initialization Step 1 Complete.")

 # ---
 # Initialize geometric constraints, property block constraints
 # and reaction block constraints
 # Fix delta, delta_e and void_emul to inital values for square problem
 blk.delta.fix()
 blk.delta_e.fix()
 blk.voidage_emulsion.fix()
 blk.bubble_diameter.fix() # Fix is needed because of its DerivativeVar

 init_log.info('Initialize Geometric Constraints')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 2 {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 2 Failed.'
 .format(blk.name))

 # ---
 # Initialize hydrodynamics
 # vel_superficial_gas, delta are fixed during this stage
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 # Superficial velocity initialized at 3 * min fluidization vel.
 blk.velocity_superficial_gas[t, x].fix(
 value(3 *
 blk.solid_inlet_block[t]._params.velocity_mf))
 blk.velocity_emulsion_gas[t, x] = value(
 blk.solid_inlet_block[t]._params.velocity_mf)
 blk.bubble_diameter[t, x] = value(
 1.38 * (constants.acceleration_gravity**(-0.2)) *
 ((blk.velocity_superficial_gas[t, x] -
 blk.velocity_emulsion_gas[t, x]) *
 (1/blk.number_orifice))**0.4)
 blk.bubble_diameter_max[t, x] = value(
 2.59 * (constants.acceleration_gravity**(-0.2)) *
 ((blk.velocity_superficial_gas[t, x] -
 blk.velocity_emulsion_gas[t, x]) *
 ((constants.pi/4) * blk.bed_diameter**2))**0.4)
 blk.bubble_growth_coeff[t, x] = value(
 2.56e-2 * sqrt(blk.bed_diameter /
 constants.acceleration_gravity) /
 blk.solid_inlet_block[t]._params.velocity_mf)
 blk.velocity_bubble_rise[t, x] = value(
 0.711 * sqrt(constants.acceleration_gravity *
 blk.bubble_diameter[t, x]))
 blk.velocity_bubble[t, x] = (
 blk.velocity_superficial_gas[t, x].value +
 blk.velocity_bubble_rise[t, x].value -
 blk.solid_inlet_block[t]._params.velocity_mf.value)
 blk.delta[t, x].fix((blk.velocity_superficial_gas[t, x].value -
 blk.velocity_emulsion_gas[t, x].value) /
 blk.velocity_bubble[t, x].value)
 blk.delta_e[t, x] = (1 - blk.delta[t, x].value)
 blk.voidage_emulsion[t, x] = (
 blk.solid_inlet_block[t]._params.voidage_mf.value)
 blk.voidage_average[t, x] = (
 1 - (1 - blk.voidage_emulsion[t, x].value) *
 (1 - blk.delta[t, x].value))
 blk._reform_var_1[t, x] = sqrt(
 blk.bed_diameter.value *
 blk.bubble_diameter[t, x].value)

 # Unfix variables to make problem square
 blk.delta_e.unfix()
 blk.voidage_emulsion.unfix()
 blk.bubble_diameter.unfix()

 # Activate relavant constraints
 blk.emulsion_vol_frac.activate()
 blk.average_voidage.activate()
 blk.bubble_growth_coefficient.activate()
 blk.bubble_diameter_maximum.activate()
 blk._reformulation_eqn_1.activate()
 blk.bubble_diameter_eqn.activate()
 blk.bubble_velocity_rise.activate()
 blk.bubble_velocity.activate()
 blk.emulsion_voidage.activate()
 blk.emulsion_gas_velocity.activate()

 init_log.info('Initialize Hydrodynamics')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 3 {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 3 Failed.'
 .format(blk.name))

 # ---
 # Initialize mass balance - no reaction

 # Initialize variables
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 calculate_variable_from_constraint(
 blk._reform_var_3[t, x],
 blk._reformulation_eqn_3[t, x])
 for j in (gas_phase.property_package.component_list):
 calculate_variable_from_constraint(
 blk._reform_var_2[t, x, j],
 blk._reformulation_eqn_2[t, x, j])
 calculate_variable_from_constraint(
 blk.Kbe[t, x, j],
 blk.bubble_cloud_mass_trans_coeff[t, x, j])

 # Unfix variables, and fix reaction rate variables (no rxns assumed)
 # Unfix material balance state variables but keep other states fixed
 blk.bubble.properties.release_state(bubble_region_flags)
 blk.gas_emulsion.properties.release_state(
 gas_emulsion_region_flags)
 blk.solid_emulsion.properties.release_state(
 solid_emulsion_region_flags)

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.gas_emulsion.properties[t, x].pressure.fix()
 blk.bubble.properties[t, x].temperature.fix()
 blk.gas_emulsion.properties[t, x].temperature.fix()
 blk.solid_emulsion.properties[t, x].temperature.fix()

 # Fix reaction rate variables (no rxns assumed)
 # Homogeneous reactions (gas phase rxns)
 if gas_phase.reaction_package is not None:
 for t in blk.flowsheet().config.time:
 bubble_rxn_gen = blk.bubble.rate_reaction_generation
 gas_emulsion_rxn_gen = (
 blk.gas_emulsion.rate_reaction_generation)
 for x in blk.length_domain:
 for j in gas_phase.property_package.component_list:
 # Bubble region
 (bubble_rxn_gen[t, x, 'Vap', j].fix(0.0))
 # Gas emulsion region
 (gas_emulsion_rxn_gen[t, x, 'Vap', j].fix(0.0))

 # Heterogeneous rxns (solid phase rxns with gas phase interactions)
 if solid_phase.reaction_package is not None:
 # local alias
 solid_emulsion_rxn_gen = (
 blk.solid_emulsion.rate_reaction_generation)
 for t in blk.flowsheet().config.time:
 # Solid emulsion region
 for x in blk.length_domain:
 for j in solid_phase.property_package.component_list:
 (solid_emulsion_rxn_gen[t, x, 'Sol', j].fix(0.0))
 # Gas emulsion region
 for x in blk.length_domain:
 for j in gas_phase.property_package.component_list:
 blk.gas_emulsion_hetero_rxn[t, x, j].fix(0.0)

 # Unfix delta and velocity_superficial_gas
 blk.velocity_superficial_gas.unfix()
 blk.delta.unfix()

 # Activate relevant model level constraints
 blk.velocity_gas_superficial.activate()
 blk._reformulation_eqn_2.activate()
 blk._reformulation_eqn_3.activate()
 blk.bubble_cloud_mass_trans_coeff.activate()
 blk.bubble_cloud_bulk_mass_trans.activate()
 blk.bubble_mass_transfer.activate()
 blk.gas_emulsion_mass_transfer.activate()
 blk.bubble_gas_flowrate.activate()
 blk.emulsion_gas_flowrate.activate()
 blk.particle_porosity_constraint.activate()

 # Activate relevant boundary constraints
 blk.velocity_superficial_gas_inlet.activate()
 blk.gas_mole_flow_in.activate()
 blk.bubble_mole_frac_in.activate()
 blk.gas_emulsion_mole_frac_in.activate()
 blk.solid_emulsion_mass_flow_in.activate()
 blk.solid_emulsion_mass_frac_in.activate()

 # Activate relevant control volume constraints
 blk.bubble.material_balances.activate()
 blk.gas_emulsion.material_balances.activate()
 blk.solid_emulsion.material_balances.activate()

 # Initialize, unfix and activate pressure drop related
 # variables and constraints
 if blk.config.has_pressure_change:
 blk.gas_emulsion_pressure_in.activate()
 blk.gas_emulsion_pressure_drop.activate()
 blk.gas_emulsion.pressure_balance.activate()

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.gas_emulsion.properties[t, x].pressure.unfix()
 calculate_variable_from_constraint(
 blk.gas_emulsion.deltaP[t, x],
 blk.gas_emulsion_pressure_drop[t, x])

 elif blk.config.has_pressure_change is False:
 blk.isobaric_gas_emulsion.activate()

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.gas_emulsion.properties[t, x].pressure.unfix()

 init_log.info('Initialize Mass Balances')
 init_log.info_high('initialize mass balances with no reactions')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 4a {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 4a Failed.'
 .format(blk.name))

 # ---
 # Initialize mass balance - with reactions

 # Homogeneous reactions (gas phase rxns)
 if gas_phase.reaction_package is not None:
 # local aliases used to shorten object names
 bubble_rxn_gen = blk.bubble.rate_reaction_generation
 bubble_stoichiometry_eqn = (
 blk.bubble.rate_reaction_stoichiometry_constraint)
 gas_emulsion_rxn_gen = blk.gas_emulsion.rate_reaction_generation
 gas_emulsion_stoichiometry_eqn = (
 blk.gas_emulsion.rate_reaction_stoichiometry_constraint)

 # Initialize, unfix and activate relevant model and CV1D
 # variables and constraints
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 for r in (gas_phase.reaction_package.rate_reaction_idx):
 calculate_variable_from_constraint(
 blk.bubble.rate_reaction_extent[t, x, r],
 blk.bubble_rxn_ext_constraint[t, x, r])
 calculate_variable_from_constraint(
 blk.gas_emulsion.rate_reaction_extent[t, x, r],
 blk.gas_emulsion_rxn_ext_constraint[t, x, r])
 for j in gas_phase.property_package.component_list:
 blk.bubble.rxn_generation[t, x, 'Vap', j].unfix()
 calculate_variable_from_constraint(
 bubble_rxn_gen[t, x, 'Vap', j],
 bubble_stoichiometry_eqn[t, x, 'Vap', j])
 gas_emulsion_rxn_gen[t, x, 'Vap', j].unfix()
 calculate_variable_from_constraint(
 gas_emulsion_rxn_gen[t, x, 'Vap', j],
 gas_emulsion_stoichiometry_eqn[t, x, 'Vap', j])

 bubble_stoichiometry_eqn.activate()
 blk.bubble_rxn_ext_constraint.activate()
 gas_emulsion_stoichiometry_eqn.activate()
 blk.gas_emulsion_rxn_ext_constraint.activate()

 # Initialize homogeneous reaction property packages
 blk.bubble.reactions.activate()
 blk.gas_emulsion.reactions.activate()

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 bubble = blk.bubble.reactions[t, x]
 for c in bubble.component_objects(
 Constraint, descend_into=False):
 c.activate()
 gas_emulsion = blk.gas_emulsion.reactions[t, x]
 for c in gas_emulsion.component_objects(
 Constraint, descend_into=False):
 c.activate()

 blk.bubble.reactions.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 blk.gas_emulsion.reactions.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 # Heterogeneous rxns (solid phase rxns with gas phase interactions)
 if solid_phase.reaction_package is not None:
 # local aliases used to shorten object names
 solid_emulsion_rxn_gen = (
 blk.solid_emulsion.rate_reaction_generation)
 solid_emulsion_stoichiometry_eqn = (
 blk.solid_emulsion.rate_reaction_stoichiometry_constraint)

 # Initialize, unfix and activate relevant model and
 # CV1D variables and constraints
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 for j in gas_phase.property_package.component_list:
 blk.gas_emulsion_hetero_rxn[t, x, j].unfix()
 calculate_variable_from_constraint(
 blk.gas_emulsion_hetero_rxn[t, x, j],
 blk.gas_emulsion_hetero_rxn_eqn[t, x, j])
 for x in blk.length_domain:
 for r in solid_phase.reaction_package.rate_reaction_idx:
 calculate_variable_from_constraint(
 blk.solid_emulsion.rate_reaction_extent[t, x, r],
 blk.solid_emulsion_rxn_ext_constraint[t, x, r])
 for j in solid_phase.property_package.component_list:
 solid_emulsion_rxn_gen[t, x, 'Sol', j].unfix()
 calculate_variable_from_constraint(
 solid_emulsion_rxn_gen[t, x, 'Sol', j],
 solid_emulsion_stoichiometry_eqn[t, x, 'Sol', j])

 blk.solid_emulsion_rxn_ext_constraint.activate()
 blk.gas_emulsion_hetero_rxn_eqn.activate()
 solid_emulsion_stoichiometry_eqn.activate()

 # Initialize heterogeneous reaction property package
 blk.solid_emulsion.reactions.activate()
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 obj = blk.solid_emulsion.reactions[t, x]
 for c in obj.component_objects(
 Constraint, descend_into=False):
 c.activate()

 blk.solid_emulsion.reactions.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 if (gas_phase.reaction_package is not None or
 solid_phase.reaction_package is not None):
 init_log.info_high('initialize mass balances with reactions')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 4b {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 4b Failed.'
 .format(blk.name))

 # ---
 # Initialize energy balance
 if blk.config.energy_balance_type != EnergyBalanceType.none:
 # Initialize relevant heat transfer variables
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 calculate_variable_from_constraint(
 blk._reform_var_4[t, x],
 blk._reformulation_eqn_4[t, x])
 calculate_variable_from_constraint(
 blk._reform_var_5[t, x],
 blk._reformulation_eqn_5[t, x])
 calculate_variable_from_constraint(
 blk.Hbe[t, x],
 blk.bubble_cloud_heat_trans_coeff[t, x])
 calculate_variable_from_constraint(
 blk.htc_conv[t, x],
 blk.convective_heat_trans_coeff[t, x])
 calculate_variable_from_constraint(
 blk.ht_conv[t, x],
 blk.convective_heat_transfer[t, x])

 # Unfix temperature variables
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.bubble.properties[t, x].temperature.unfix()
 blk.gas_emulsion.properties[t, x].temperature.unfix()
 blk.solid_emulsion.properties[t, x].temperature.unfix()

 # Activate relevant model level constraints
 blk._reformulation_eqn_4.activate()
 blk._reformulation_eqn_5.activate()
 blk.bubble_cloud_heat_trans_coeff.activate()
 blk.convective_heat_trans_coeff.activate()
 blk.convective_heat_transfer.activate()
 blk.bubble_cloud_bulk_heat_trans.activate()
 blk.bubble_heat_transfer.activate()
 blk.gas_emulsion_heat_transfer.activate()
 blk.solid_emulsion_heat_transfer.activate()

 # Activate energy balance equations
 blk.bubble.enthalpy_balances.activate()
 blk.gas_emulsion.enthalpy_balances.activate()
 blk.solid_emulsion.enthalpy_balances.activate()

 # Activate energy balance boundary conditions
 blk.gas_energy_balance_in.activate()
 blk.gas_emulsion_temperature_in.activate()
 blk.solid_energy_balance_in.activate()

 init_log.info('Initialize Energy Balances')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 5 {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 5 Failed.'
 .format(blk.name))

 # Initialize energy balance
 if blk.config.energy_balance_type == EnergyBalanceType.none:
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.bubble.properties[t, x].temperature.unfix()
 blk.gas_emulsion.properties[t, x].temperature.unfix()
 blk.solid_emulsion.properties[t, x].temperature.unfix()

 blk.isothermal_gas_emulsion.activate()
 blk.isothermal_bubble.activate()
 blk.isothermal_solid_emulsion.activate()

 init_log.info('Initialize Energy Balances')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 5 {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 5 Failed.'
 .format(blk.name))
 # ---
 # Initialize outlet conditions
 # Initialize gas_outlet block
 blk.gas_outlet_block.activate()
 blk.solid_outlet_block.activate()

 # Activate outlet boundary conditions
 blk.gas_pressure_out.activate()
 blk.gas_material_balance_out.activate()
 blk.solid_material_balance_out.activate()

 blk.gas_energy_balance_out.activate()
 blk.solid_energy_balance_out.activate()

 blk.gas_outlet_block.initialize(
 state_args=gas_phase_state_args,
 hold_state=False,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver)
 blk.solid_outlet_block.initialize(
 state_args=solid_phase_state_args,
 hold_state=False,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 init_log.info('Initialize Outlet Conditions')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 6 {}.".format(
 idaeslog.condition(results))
)
 else:
 init_log.warning('{} Initialisation Step 6 Failed.'
 .format(blk.name))

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {
 "Gas Inlet": self.gas_inlet,
 "Gas Outlet": self.gas_outlet,
 "Solid Inlet": self.solid_inlet,
 "Solid Outlet": self.solid_outlet,
 },
 time_point=time_point,
)

[docs] def results_plot(blk):
 '''
 Plot method for common bubbling fluidized bed variables

 Variables plotted:
 Tge : temperature of gas in the emulsion region
 Tgb : temperature of gas in the bubble region
 Tse : temperature of solid in the emulsion region
 Ge : flowrate of gas in the emulsion region
 Gb : flowrate of gas in the bubble region
 cet : total concentration of gas in the emulsion region
 cbt : total concentration of gas in the bubble region
 y_b : mole fraction of gas components in the bubble region
 x_e : mass fraction of solid components in the emulsion region
 '''
 print()
 print('================================= Reactor plots ==============='
 '==================')
 # local aliases used to shorten object names
 gas_phase = blk.config.gas_phase_config
 solid_phase = blk.config.solid_phase_config

 Tge = []
 Tgb = []
 Tse = []
 Ge = []
 Gb = []
 cet = []
 cbt = []

 for t in blk.flowsheet().config.time:
 for x in blk.gas_emulsion.length_domain:
 Tge.append(value(
 blk.gas_emulsion.properties[t, x].temperature))
 Tgb.append(value(
 blk.bubble.properties[t, x].temperature))
 Tse.append(value(
 blk.solid_emulsion.properties[t, x].temperature))
 Ge.append(value(blk.gas_emulsion.properties[t, x].flow_mol))
 Gb.append(value(blk.bubble.properties[t, x].flow_mol))
 cet.append(value(
 blk.gas_emulsion.properties[t, x].dens_mol))
 cbt.append(value(
 blk.bubble.properties[t, x].dens_mol))

 # Bed temperature profile
 plt.figure(1)
 plt.plot(blk.gas_emulsion.length_domain, Tge, label='Tge')
 plt.plot(blk.gas_emulsion.length_domain, Tgb, label='Tgb')

 plt.legend(loc=9, ncol=2)
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("Gas temperatures in bed regions (K)")

 plt.figure(2)
 plt.plot(blk.gas_emulsion.length_domain, Tse, label='Tse')

 plt.legend(loc=9, ncol=3)
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("Solid temperatures in bed regions (K)")

 plt.figure(3)
 plt.plot(blk.gas_emulsion.length_domain, Ge, label='Ge')
 plt.plot(blk.gas_emulsion.length_domain, Gb, label='Gb')

 plt.legend(loc=9, ncol=2)
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("Gas flow (mol/s)")

 plt.figure(4)
 plt.plot(blk.gas_emulsion.length_domain, cbt, label='cbt')
 plt.plot(blk.gas_emulsion.length_domain, cet, label='cet')

 plt.legend(loc=9, ncol=3)
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("gas conc. mol/s")

 # Gas phase mole composition
 for t in blk.flowsheet().config.time:
 for i in (gas_phase.property_package.component_list):
 y_b = []
 for x in blk.gas_emulsion.length_domain:
 y_b.append(value(
 blk.bubble.properties[t, x].mole_frac_comp[i]))
 plt.figure(5)
 plt.plot(blk.gas_emulsion.length_domain, y_b, label=i)
 plt.legend(loc=9, ncol=len(
 gas_phase.property_package.component_list))
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("Gas bubble mole frac. (-)")

 # Solid phase mass composition
 for t in blk.flowsheet().config.time:
 for i in (solid_phase.property_package.component_list):
 x_e = []
 for x in blk.solid_emulsion.length_domain:
 x_e.append(value(
 blk.solid_emulsion.properties[t, x].mass_frac_comp[i]))
 plt.figure(6)
 plt.plot(blk.solid_emulsion.length_domain, x_e, label=i)
 plt.legend(loc=9, ncol=len(
 solid_phase.property_package.component_list))
 plt.grid()
 plt.xlabel("Bed height")
 plt.ylabel("Solid emulsion mass frac. (-)")

 idaes.gas_solid_contactors.unit_models.moving_bed

 Source code for idaes.gas_solid_contactors.unit_models.moving_bed

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
IDAES Moving Bed Model.

The moving bed model is a 1D axially discretized model with a gas and
solid phase and a counter-current flow direction. The model captures
the gas-solid interaction between both phases through reaction, mass
and heat transfer.

Equations written in this model were derived from:
A. Ostace, A. Lee, C.O. Okoli, A.P. Burgard, D.C. Miller, D. Bhattacharyya,
Mathematical modeling of a moving-bed reactor for chemical looping combustion
of methane, in: M.R. Eden, M. Ierapetritou, G.P. Towler (Eds.),13th Int. Symp.
Process Syst. Eng. (PSE 2018), Computer-Aided Chemical Engineering 2018,
pp. 325–330 , San Diego, CA.

Assumptions:
Property package contains temperature and pressure variables.
Property package contains minimum fluidization velocity.

"""
from __future__ import division

Import Python libraries
import matplotlib.pyplot as plt

Import Pyomo libraries
from pyomo.environ import (SolverFactory, Var, Param, Reals, value,
 TransformationFactory, Constraint,
 TerminationCondition)
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.util.calc_var_value import calculate_variable_from_constraint
from pyomo.dae import ContinuousSet

Import IDAES cores
from idaes.core import (ControlVolume1DBlock,
 UnitModelBlockData,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 FlowDirection)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block)
from idaes.core.util.exceptions import (ConfigurationError,
 BurntToast)
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.control_volume1d import DistributedVars
from idaes.core.util.constants import Constants as constants
from idaes.core.util.math import smooth_abs
import idaes.logger as idaeslog

__author__ = "Chinedu Okoli", "Anca Ostace"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("MBR")
class MBRData(UnitModelBlockData):
 """Standard Moving Bed Unit Model Class."""

 # Create template for unit level config arguments
 CONFIG = UnitModelBlockData.CONFIG()

 # Unit level config arguments
 CONFIG.declare("finite_elements", ConfigValue(
 default=10,
 domain=int,
 description="Number of finite elements length domain",
 doc="""Number of finite elements to use when discretizing length
domain (default=20)"""))
 CONFIG.declare("length_domain_set", ConfigValue(
 default=[0.0, 1.0],
 domain=list,
 description="Number of finite elements length domain",
 doc="""length_domain_set - (optional) list of point to use to
initialize a new ContinuousSet if length_domain is not
provided (default = [0.0, 1.0])"""))
 CONFIG.declare("transformation_method", ConfigValue(
 default="dae.finite_difference",
 description="Method to use for DAE transformation",
 doc="""Method to use to transform domain. Must be a method recognised
by the Pyomo TransformationFactory,
default - "dae.finite_difference".
Valid values: {
"dae.finite_difference" - Use a finite difference transformation method,
"dae.collocation" - use a collocation transformation method}"""))
 CONFIG.declare("transformation_scheme", ConfigValue(
 default=None,
 domain=In([None, "BACKWARD", "FORWARD", "LAGRANGE-RADAU"]),
 description="Scheme to use for DAE transformation",
 doc="""Scheme to use when transforming domain. See Pyomo
documentation for supported schemes,
default - None.
Valid values: {
None - defaults to "BACKWARD" for finite difference transformation method,
and to "LAGRANGE-RADAU" for collocation transformation method,
"BACKWARD" - Use a finite difference transformation method,
"FORWARD"" - use a finite difference transformation method,
"LAGRANGE-RADAU"" - use a collocation transformation method}"""))
 CONFIG.declare("collocation_points", ConfigValue(
 default=3,
 domain=int,
 description="Number of collocation points per finite element",
 doc="""Number of collocation points to use per finite element when
discretizing length domain (default=3)"""))
 CONFIG.declare("flow_type", ConfigValue(
 default="counter_current",
 domain=In(['counter_current']),
 description="Flow configuration of Moving Bed",
 doc="""Flow configuration of Moving Bed
- counter_current: gas side flows from 0 to 1
solid side flows from 1 to 0"""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.componentTotal,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal.
Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.enthalpyTotal,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal.
Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("pressure_drop_type", ConfigValue(
 default="simple_correlation",
 domain=In(["simple_correlation", "ergun_correlation"]),
 description="Construction flag for type of pressure drop",
 doc="""Indicates what type of pressure drop correlation should be used,
default - "simple_correlation".
Valid values: {
"simple_correlation" - Use a simplified pressure drop correlation,
"ergun_correlation" - Use the ergun equation.}"""))

 # Create template for phase specific config arguments
 _PhaseTemplate = UnitModelBlockData.CONFIG()
 _PhaseTemplate.declare("has_equilibrium_reactions", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Equilibrium reaction construction flag",
 doc="""Indicates whether terms for equilibrium controlled reactions
should be constructed,
default - True.
Valid values: {
True - include equilibrium reaction terms,
False - exclude equilibrium reaction terms.}"""))
 _PhaseTemplate.declare("property_package", ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a ParameterBlock object"""))
 _PhaseTemplate.declare("property_package_args", ConfigValue(
 default={},
 domain=dict,
 description="Arguments for constructing gas property package",
 doc="""A dict of arguments to be passed to the PropertyBlockData
and used when constructing these
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a dict (see property package for documentation)"""))
 _PhaseTemplate.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 _PhaseTemplate.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 implicit_domain=ConfigBlock,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))

 # Create individual config blocks for gas and solid sides
 CONFIG.declare("gas_phase_config",
 _PhaseTemplate(doc="gas phase config arguments"))
 CONFIG.declare("solid_phase_config",
 _PhaseTemplate(doc="solid phase config arguments"))

 # ===
[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to build default attributes
 super(MBRData, self).build()

 # Consistency check for transformation method and transformation scheme
 if (self.config.transformation_method == "dae.finite_difference" and
 self.config.transformation_scheme is None):
 self.config.transformation_scheme = "BACKWARD"
 elif (self.config.transformation_method == "dae.collocation" and
 self.config.transformation_scheme is None):
 self.config.transformation_scheme = "LAGRANGE-RADAU"
 elif (self.config.transformation_method == "dae.finite_difference" and
 self.config.transformation_scheme != "BACKWARD" and
 self.config.transformation_scheme != "FORWARD"):
 raise ConfigurationError("{} invalid value for "
 "transformation_scheme argument. "
 "Must be ""BACKWARD"" or ""FORWARD"" "
 "if transformation_method is"
 " ""dae.finite_difference""."
 .format(self.name))
 elif (self.config.transformation_method == "dae.collocation" and
 self.config.transformation_scheme != "LAGRANGE-RADAU"):
 raise ConfigurationError("{} invalid value for "
 "transformation_scheme argument."
 "Must be ""LAGRANGE-RADAU"" if "
 "transformation_method is"
 " ""dae.collocation""."
 .format(self.name))

 # Set flow directions for the control volume blocks
 # Gas flows from 0 to 1, solid flows from 1 to 0
 # An if statement is used here despite only one option to allow for
 # future extensions to other flow configurations
 if self.config.flow_type == "counter_current":
 set_direction_gas = FlowDirection.forward
 set_direction_solid = FlowDirection.backward
 else:
 raise BurntToast(
 "{} encountered unrecognized argument "
 "for flow type. Please contact the IDAES"
 " developers with this bug.".format(self.name))

 # Set arguments for gas sides if homoogeneous reaction block
 if self.config.gas_phase_config.reaction_package is not None:
 has_rate_reaction_gas_phase = True
 else:
 has_rate_reaction_gas_phase = False

 # Set arguments for gas and solid sides if heterogeneous reaction block
 if self.config.solid_phase_config.reaction_package is not None:
 has_rate_reaction_solid_phase = True
 has_mass_transfer_gas_phase = True
 else:
 has_rate_reaction_solid_phase = False
 has_mass_transfer_gas_phase = False

 # Set heat transfer terms
 if self.config.energy_balance_type != EnergyBalanceType.none:
 has_heat_transfer = True
 else:
 has_heat_transfer = False

 # Set heat of reaction terms
 if (self.config.energy_balance_type != EnergyBalanceType.none
 and self.config.gas_phase_config.reaction_package is not None):
 has_heat_of_reaction_gas_phase = True
 else:
 has_heat_of_reaction_gas_phase = False

 if (self.config.energy_balance_type != EnergyBalanceType.none
 and self.config.solid_phase_config.
 reaction_package is not None):
 has_heat_of_reaction_solid_phase = True
 else:
 has_heat_of_reaction_solid_phase = False

 # Create a unit model length domain
 self.length_domain = ContinuousSet(
 bounds=(0.0, 1.0),
 initialize=self.config.length_domain_set,
 doc="Normalized length domain")

 # ===
 """ Build Control volume 1D for gas phase and
 populate gas control volume"""

 self.gas_phase = ControlVolume1DBlock(default={
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points,
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "area_definition": DistributedVars.variant,
 "property_package": self.config.gas_phase_config.property_package,
 "property_package_args":
 self.config.gas_phase_config.property_package_args,
 "reaction_package": self.config.gas_phase_config.reaction_package,
 "reaction_package_args":
 self.config.gas_phase_config.reaction_package_args})

 self.gas_phase.add_geometry(
 length_domain=self.length_domain,
 length_domain_set=self.config.length_domain_set,
 flow_direction=set_direction_gas)

 self.gas_phase.add_state_blocks(
 information_flow=set_direction_gas,
 has_phase_equilibrium=False)

 if self.config.gas_phase_config.reaction_package is not None:
 self.gas_phase.add_reaction_blocks(
 has_equilibrium=self.config.gas_phase_config.
 has_equilibrium_reactions)

 self.gas_phase.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=False,
 has_mass_transfer=has_mass_transfer_gas_phase,
 has_rate_reactions=has_rate_reaction_gas_phase)

 self.gas_phase.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=has_heat_transfer,
 has_heat_of_reaction=has_heat_of_reaction_gas_phase)

 self.gas_phase.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # ===
 """ Build Control volume 1D for solid phase and
 populate solid control volume"""

 # Set argument for heterogeneous reaction block
 self.solid_phase = ControlVolume1DBlock(default={
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points,
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "area_definition": DistributedVars.variant,
 "property_package":
 self.config.solid_phase_config.property_package,
 "property_package_args":
 self.config.solid_phase_config.property_package_args,
 "reaction_package":
 self.config.solid_phase_config.reaction_package,
 "reaction_package_args":
 self.config.solid_phase_config.reaction_package_args})

 self.solid_phase.add_geometry(
 length_domain=self.length_domain,
 length_domain_set=self.config.length_domain_set,
 flow_direction=set_direction_solid)

 self.solid_phase.add_state_blocks(
 information_flow=set_direction_solid,
 has_phase_equilibrium=False)

 if self.config.solid_phase_config.reaction_package is not None:
 # TODO - a generalization of the heterogeneous reaction block
 # The heterogeneous reaction block does not use the
 # add_reaction_blocks in control volumes as control volumes are
 # currently setup to handle only homogeneous reaction properties.
 # Thus appending the heterogeneous reaction block to the
 # solid state block is currently hard coded here.

 tmp_dict = dict(**self.config.solid_phase_config.
 reaction_package_args)
 tmp_dict["gas_state_block"] = self.gas_phase.properties
 tmp_dict["solid_state_block"] = self.solid_phase.properties
 tmp_dict["has_equilibrium"] = (self.config.solid_phase_config.
 has_equilibrium_reactions)
 tmp_dict["parameters"] = (self.config.solid_phase_config.
 reaction_package)
 self.solid_phase.reactions = (
 self.config.solid_phase_config.reaction_package.
 reaction_block_class(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Reaction properties in control volume",
 default=tmp_dict))

 self.solid_phase.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=False,
 has_mass_transfer=False,
 has_rate_reactions=has_rate_reaction_solid_phase)

 self.solid_phase.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=has_heat_transfer,
 has_heat_of_reaction=has_heat_of_reaction_solid_phase)

 self.solid_phase.add_momentum_balances(
 balance_type=MomentumBalanceType.none,
 has_pressure_change=False)

 # ===
 """ Add ports"""
 # Add Ports for gas side
 self.add_inlet_port(name="gas_inlet", block=self.gas_phase)
 self.add_outlet_port(name="gas_outlet", block=self.gas_phase)

 # Add Ports for solid side
 self.add_inlet_port(name="solid_inlet", block=self.solid_phase)
 self.add_outlet_port(name="solid_outlet", block=self.solid_phase)

 # ===
 """ Add performace equation method"""
 self._apply_transformation()
 self._make_performance()

 # ===
 def _apply_transformation(self):
 """
 Method to apply DAE transformation to the Control Volume length domain.
 Transformation applied will be based on the Control Volume
 configuration arguments.
 """
 if self.config.finite_elements is None:
 raise ConfigurationError(
 "{} was not provided a value for the finite_elements"
 " configuration argument. Please provide a valid value."
 .format(self.name))

 if self.config.transformation_method == "dae.finite_difference":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(self,
 wrt=self.length_domain,
 nfe=self.config.finite_elements,
 scheme=self.config.transformation_scheme)
 elif self.config.transformation_method == "dae.collocation":
 self.discretizer = TransformationFactory(
 self.config.transformation_method)
 self.discretizer.apply_to(
 self,
 wrt=self.length_domain,
 nfe=self.config.finite_elements,
 ncp=self.config.collocation_points,
 scheme=self.config.transformation_scheme)

 def _make_performance(self):
 """
 Constraints for unit model.

 Args:
 None

 Returns:
 None
 """
 # local aliases used to shorten object names
 gas_phase = self.config.gas_phase_config
 solid_phase = self.config.solid_phase_config

 # Declare Mutable Parameters
 self.eps = Param(mutable=True,
 default=1e-8,
 doc='Smoothing Factor for Smooth IF Statements')

 # Unit Model variables
 self.bed_diameter = Var(domain=Reals,
 initialize=1,
 doc='Reactor diameter [m]')
 self.bed_area = Var(domain=Reals,
 initialize=1,
 doc='Reactor cross-sectional area [m2]')
 self.bed_height = Var(domain=Reals, initialize=1,
 doc='Bed length [m]')

 # Phase specific variables
 self.velocity_superficial_gas = Var(
 self.flowsheet().config.time,
 self.length_domain,
 domain=Reals, initialize=0.05,
 doc='Gas superficial velocity [m/s]')
 self.velocity_superficial_solid = Var(
 self.flowsheet().config.time,
 domain=Reals, initialize=0.005,
 doc='Solid superficial velocity [m/s]')

 # Dimensionless numbers, mass and heat transfer coefficients
 self.Re_particle = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals, initialize=1.0,
 doc='Particle Reynolds number [-]')

 self.Pr = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals, initialize=1.0,
 doc='Prandtl number of gas in bed [-]')

 self.Nu_particle = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals, initialize=1.0,
 doc='Particle Nusselt number [-]')
 self.gas_solid_htc = Var(self.flowsheet().config.time,
 self.length_domain,
 domain=Reals, initialize=1.0,
 doc='Gas-solid heat transfer coefficient'
 '[kJ/(m2Ks)]')

 # Fixed variables (these are parameters that can be estimated)
 self.bed_voidage = Var(domain=Reals,
 initialize=0.4,
 doc="Bed voidage [-]")
 self.bed_voidage.fix()

 # ===
 # Add performance equations

 # ---
 # Geometry contraints

 # Bed area
 @self.Constraint(doc="Bed area")
 def bed_area_eqn(b):
 return b.bed_area == (
 constants.pi*(0.5*b.bed_diameter)**2)

 # Area of gas side, and solid side
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas side area")
 def gas_phase_area(b, t, x):
 return (b.gas_phase.area[t, x] ==
 b.bed_area*b.bed_voidage)

 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Solid side area")
 def solid_phase_area(b, t, x):
 return (b.solid_phase.area[t, x] ==
 b.bed_area*(1-b.bed_voidage))

 # Length of gas side, and solid side
 @self.Constraint(doc="Gas side length")
 def gas_phase_length(b):
 return (b.gas_phase.length == b.bed_height)

 @self.Constraint(doc="Solid side length")
 def solid_phase_length(b):
 return (b.solid_phase.length == b.bed_height)

 # ---
 # Hydrodynamic contraints

 # Gas superficial velocity
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas superficial velocity")
 def gas_super_vel(b, t, x):
 return (b.velocity_superficial_gas[t, x] * b.bed_area *
 b.gas_phase.properties[t, x].dens_mol ==
 b.gas_phase.properties[t, x].flow_mol)

 # Solid superficial velocity
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Solid superficial velocity")
 # This equation uses inlet values to compute the constant solid
 # superficial velocity, and then computes the solid particle density
 # through the rest of the bed.
 def solid_super_vel(b, t, x):
 return (b.velocity_superficial_solid[t] * b.bed_area *
 b.solid_phase.properties[t, x].dens_mass_particle ==
 b.solid_phase.properties[t, x].flow_mass)

 # Gas side pressure drop calculation
 if (self.config.has_pressure_change and
 self.config.pressure_drop_type ==
 "simple_correlation"):
 # Simplified pressure drop
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas side pressure drop calculation -"
 "simplified pressure drop")
 def gas_phase_config_pressure_drop(b, t, x):
 return b.gas_phase.deltaP[t, x]*1e5 == -0.2*(
 b.velocity_superficial_gas[t, x] *
 (b.solid_phase.properties[t, x].dens_mass_particle -
 b.gas_phase.properties[t, x].dens_mass))
 elif (self.config.has_pressure_change and
 self.config.pressure_drop_type == "ergun_correlation"):
 # Ergun equation
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas side pressure drop calculation -"
 "ergun equation")
 def gas_phase_config_pressure_drop(b, t, x):
 return (1e2*-b.gas_phase.deltaP[t, x]*1e5 ==
 1e2*(
 150*(1 - b.bed_voidage) ** 2 *
 b.gas_phase.properties[t, x].visc_d *
 (b.velocity_superficial_gas[t, x] +
 b.velocity_superficial_solid[t]) /
 (b.solid_phase.properties[t, x].
 _params.particle_dia ** 2 * b.bed_voidage ** 3)) +
 1e2*(
 1.75*b.gas_phase.properties[t, x].dens_mass *
 (1 - b.bed_voidage) *
 (b.velocity_superficial_gas[t, x] +
 b.velocity_superficial_solid[t]) ** 2 /
 (b.solid_phase.properties[t, x]._params.particle_dia *
 b.bed_voidage**3)))
 # The above expression has no absolute values - assumes:
 # (velocity_superficial_gas + velocity_superficial_solid) > 0
 else:
 raise BurntToast(
 "{} encountered unrecognized argument for "
 "the pressure drop correlation. Please contact the IDAES"
 " developers with this bug.".format(self.name))
 # ---
 # Reaction contraints

 # Build homogeneous reaction constraints
 if gas_phase.reaction_package is not None:
 # Gas side rate reaction extent
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 gas_phase.reaction_package.rate_reaction_idx,
 doc="Gas side rate reaction extent")
 def gas_phase_config_rxn_ext(b, t, x, r):
 return 1e3*b.gas_phase.rate_reaction_extent[t, x, r] == 1e3*(
 b.gas_phase.reactions[t, x].reaction_rate[r] *
 b.gas_phase.area[t, x])

 # Build hetereogeneous reaction constraints
 if solid_phase.reaction_package is not None:
 # Solid side rate reaction extent
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 solid_phase.reaction_package.rate_reaction_idx,
 doc="Solid side rate reaction extent")
 def solid_phase_config_rxn_ext(b, t, x, r):
 return 1e3*b.solid_phase.rate_reaction_extent[t, x, r] == 1e3*(
 b.solid_phase.reactions[t, x].reaction_rate[r] *
 b.solid_phase.area[t, x])

 # Gas side heterogeneous rate reaction generation
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 gas_phase.property_package.phase_list,
 gas_phase.property_package.component_list,
 doc='Gas side heterogeneous'
 'rate reaction generation')
 def gas_comp_hetero_rxn(b, t, x, p, j):
 return 1e3*b.gas_phase.mass_transfer_term[t, x, p, j] == 1e3*(
 sum(b.solid_phase.reactions[t, x].
 rate_reaction_stoichiometry[r, p, j] *
 b.solid_phase.reactions[t, x].reaction_rate[r]
 for r in (
 solid_phase.reaction_package.rate_reaction_idx)
) * b.solid_phase.area[t, x])

 # ---
 if self.config.energy_balance_type != EnergyBalanceType.none:
 # Solid phase - gas to solid heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Solid phase - gas to solid heat transfer")
 def solid_phase_heat_transfer(b, t, x):
 return (b.solid_phase.heat[t, x] *
 b.solid_phase.properties[t, x]._params.particle_dia ==
 6 * b.gas_solid_htc[t, x] *
 (b.gas_phase.properties[t, x].temperature -
 b.solid_phase.properties[t, x].temperature) *
 b.solid_phase.area[t, x])

 # Dimensionless numbers, mass and heat transfer coefficients
 # Particle Reynolds number
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Particle Reynolds number")
 def reynolds_number_particle(b, t, x):
 return (b.Re_particle[t, x] *
 b.gas_phase.properties[t, x].visc_d ==
 b.velocity_superficial_gas[t, x] *
 b.solid_phase.properties[t, x]._params.particle_dia *
 b.gas_phase.properties[t, x].dens_mass)

 # Prandtl number
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Prandtl number of gas in bed")
 def prandtl_number(b, t, x):
 return (b.Pr[t, x] *
 b.gas_phase.properties[t, x].therm_cond ==
 b.solid_phase.properties[t, x].cp_mass *
 b.gas_phase.properties[t, x].visc_d)

 # Particle Nusselt number
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Particle Nusselt number")
 def nusselt_number_particle(b, t, x):
 return (b.Nu_particle[t, x] ** 3 ==
 (2.0 + 1.1 * (smooth_abs(b.Re_particle[t, x], b.eps) **
 0.6) ** 3) *
 b.Pr[t, x])

 # Gas-solid heat transfer coefficient
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas-solid heat transfer coefficient")
 def gas_solid_htc_eqn(b, t, x):
 return (1e-3*b.gas_solid_htc[t, x] *
 b.solid_phase.properties[t, x]._params.particle_dia ==
 1e-3 * b.Nu_particle[t, x] *
 b.gas_phase.properties[t, x].therm_cond)

 # Gas phase - gas to solid heat transfer
 @self.Constraint(self.flowsheet().config.time,
 self.length_domain,
 doc="Gas phase - gas to solid heat transfer")
 def gas_phase_heat_transfer(b, t, x):
 return (b.gas_phase.heat[t, x] *
 b.solid_phase.properties[t, x]._params.particle_dia ==
 -6 * b.gas_solid_htc[t, x] *
 (b.gas_phase.properties[t, x].temperature -
 b.solid_phase.properties[t, x].temperature) *
 b.solid_phase.area[t, x])

 elif self.config.energy_balance_type == EnergyBalanceType.none:
 # If energy balance is none fix gas and solid temperatures to inlet
 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Isothermal gas phase constraint")
 def isothermal_gas_phase(b, t, x):
 if x == self.length_domain.first():
 return Constraint.Skip
 else:
 return (
 b.gas_phase.properties[t, x].temperature ==
 b.gas_inlet.temperature[t])

 @self.Constraint(
 self.flowsheet().config.time,
 self.length_domain,
 doc="Isothermal solid phase constraint")
 def isothermal_solid_phase(b, t, x):
 if x == self.length_domain.last():
 return Constraint.Skip
 else:
 return (
 b.solid_phase.properties[t, x].temperature ==
 b.solid_inlet.temperature[t])

 # ===
 # Model initialization routine

[docs] def initialize(blk, gas_phase_state_args={}, solid_phase_state_args={},
 outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 """
 Initialisation routine for MB unit (default solver ipopt).

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialisation routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """

 # Set up logger for initialization and solve
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # local aliases used to shorten object names
 gas_phase = blk.config.gas_phase_config
 solid_phase = blk.config.solid_phase_config

 # Keep all unit model geometry constraints, derivative_var constraints,
 # and property block constraints active. Additionaly, in control
 # volumes - keep conservation linking constraints and
 # holdup calculation (for dynamic flowsheets) constraints active

 geometry_constraints_terms = ["bed_area_eqn",
 "solid_phase_area",
 "gas_phase_area",
 "gas_phase_length",
 "solid_phase_length"]
 endswith_terms = ("_disc_eq", "linking_constraint",
 "linking_constraints", "_holdup_calculation")
 startswith_terms = ("properties")

 for c in blk.component_objects(Constraint, descend_into=True):
 if not c.parent_block().local_name.startswith(startswith_terms) \
 and not c.local_name.endswith(endswith_terms) \
 and c.local_name not in geometry_constraints_terms:
 c.deactivate()

 # ---
 # Initialize thermophysical property constraints
 init_log.info('Initialize Thermophysical Properties')
 # Initialize gas_phase block
 gas_phase_flags = blk.gas_phase.properties.initialize(
 state_args=gas_phase_state_args,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True)

 # Initialize solid_phase properties block
 solid_phase_flags = blk.solid_phase.properties.initialize(
 state_args=solid_phase_state_args,
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True)

 init_log.info_high("Initialization Step 1 Complete.")

 # ---
 # Initialize hydrodynamics (gas velocity)
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 calculate_variable_from_constraint(
 blk.velocity_superficial_gas[t, x],
 blk.gas_super_vel[t, x])

 blk.gas_super_vel.activate()

 init_log.info('Initialize Hydrodynamics')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 2 {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 2 Failed.'
 .format(blk.name))

 # ---
 # Initialize mass balance - no reaction and no pressure drop

 # Unfix material balance state variables (including particle porosity)
 # but keep other states fixed
 blk.gas_phase.properties.release_state(
 gas_phase_flags)
 blk.solid_phase.properties.release_state(
 solid_phase_flags)
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 blk.gas_phase.properties[t, x].pressure.fix()
 blk.gas_phase.properties[t, x].temperature.fix()
 blk.solid_phase.properties[t, x].temperature.fix()

 blk.gas_phase.material_balances.activate()

 if gas_phase.reaction_package is not None:
 for t in blk.flowsheet().config.time:
 gas_rxn_gen = blk.gas_phase.rate_reaction_generation
 for x in blk.length_domain:
 for p in gas_phase.property_package.phase_list:
 for j in gas_phase.property_package.component_list:
 (gas_rxn_gen[t, x, p, j].fix(0.0))

 blk.solid_phase.material_balances.activate()
 blk.solid_super_vel.activate()

 if solid_phase.reaction_package is not None:
 for t in blk.flowsheet().config.time:
 solid_rxn_gen = blk.solid_phase.rate_reaction_generation
 for x in blk.length_domain:
 for p in solid_phase.property_package.phase_list:
 for j in solid_phase.property_package.component_list:
 (solid_rxn_gen[t, x, p, j].fix(0.0))

 # Gas side heterogeneous rate reaction generation
 for x in blk.length_domain:
 for p in gas_phase.property_package.phase_list:
 for j in gas_phase.property_package.component_list:
 (blk.gas_phase.mass_transfer_term[t, x, p, j].fix(
 0.0))

 init_log.info('Initialize Mass Balances')
 init_log.info_high('initialize mass balances - no reactions '
 'and no pressure drop')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 3a {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 3a Failed.'
 .format(blk.name))

 # Initialize mass balance - with reaction and no pressure drop
 if gas_phase.reaction_package is not None:
 # local aliases used to shorten object names
 gas_rxn_gen = blk.gas_phase.rate_reaction_generation
 gas_phase_stoichiometry_eqn = (
 blk.gas_phase.rate_reaction_stoichiometry_constraint)

 # Initialize reaction property package
 blk.gas_phase.reactions.activate()
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 obj = blk.gas_phase.reactions[t, x]
 for c in obj.component_objects(
 Constraint, descend_into=False):
 c.activate()

 blk.gas_phase.reactions.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 for r in gas_phase.reaction_package.rate_reaction_idx:
 calculate_variable_from_constraint(
 blk.gas_phase.rate_reaction_extent[t, x, r],
 blk.gas_phase_config_rxn_ext[t, x, r])
 for p in gas_phase.property_package.phase_list:
 for j in gas_phase.property_package.component_list:
 (gas_rxn_gen[t, x, p, j].unfix())
 calculate_variable_from_constraint(
 gas_rxn_gen[t, x, p, j],
 gas_phase_stoichiometry_eqn[t, x, p, j])

 gas_phase_stoichiometry_eqn.activate()
 blk.gas_phase_config_rxn_ext.activate()

 if solid_phase.reaction_package is not None:
 # local aliases used to shorten object names
 solid_rxn_gen = blk.solid_phase.rate_reaction_generation
 solid_phase_stoichiometry_eqn = (
 blk.solid_phase.rate_reaction_stoichiometry_constraint)
 gas_mass_transfer_term = blk.gas_phase.mass_transfer_term

 # Initialize reaction property package
 blk.solid_phase.reactions.activate()
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 obj = blk.solid_phase.reactions[t, x]
 for c in obj.component_objects(
 Constraint, descend_into=False):
 c.activate()

 blk.solid_phase.reactions.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver)

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 for p in gas_phase.property_package.phase_list:
 for j in gas_phase.property_package.component_list:
 (gas_mass_transfer_term[t, x, p, j].unfix())
 calculate_variable_from_constraint(
 gas_mass_transfer_term[t, x, p, j],
 blk.gas_comp_hetero_rxn[t, x, p, j])
 for x in blk.length_domain:
 for r in solid_phase.reaction_package.rate_reaction_idx:
 calculate_variable_from_constraint(
 blk.solid_phase.rate_reaction_extent[t, x, r],
 blk.solid_phase_config_rxn_ext[t, x, r])
 for p in solid_phase.property_package.phase_list:
 for j in solid_phase.property_package.component_list:
 (solid_rxn_gen[t, x, p, j].unfix())
 calculate_variable_from_constraint(
 solid_rxn_gen[t, x, p, j],
 solid_phase_stoichiometry_eqn[t, x, p, j])

 blk.gas_comp_hetero_rxn.activate()
 blk.solid_phase.rate_reaction_stoichiometry_constraint.activate()
 blk.solid_phase_config_rxn_ext.activate()

 if (gas_phase.reaction_package is not None or
 solid_phase.reaction_package is not None):
 init_log.info_high('initialize mass balances - with reactions '
 'and no pressure drop')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 3b {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 3b Failed.'
 .format(blk.name))

 # Initialize mass balance - with pressure drop
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 # Unfix all pressure variables except at the inlet
 if (blk.gas_phase.properties[t, x].config.defined_state
 is False):
 blk.gas_phase.properties[t, x].pressure.unfix()

 blk.gas_phase.pressure_balance.activate()

 # Set scaling factors for pressure balance equation
 blk.gas_phase.scaling_factor_pressure = 1e2

 if blk.config.has_pressure_change:
 blk.gas_phase_config_pressure_drop.activate()

 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 calculate_variable_from_constraint(
 blk.gas_phase.deltaP[t, x],
 blk.gas_phase_config_pressure_drop[t, x])

 init_log.info_high('initialize mass balances - with reactions '
 'and pressure drop')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 3c {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 3c Failed.'
 .format(blk.name))
 # ---
 # Initialize energy balance
 if blk.config.energy_balance_type != EnergyBalanceType.none:
 # Initialize dimensionless numbers,
 # mass and heat transfer coefficients
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 calculate_variable_from_constraint(
 blk.Re_particle[t, x],
 blk.reynolds_number_particle[t, x])
 calculate_variable_from_constraint(
 blk.Pr[t, x],
 blk.prandtl_number[t, x])
 calculate_variable_from_constraint(
 blk.Nu_particle[t, x],
 blk.nusselt_number_particle[t, x])
 calculate_variable_from_constraint(
 blk.gas_solid_htc[t, x],
 blk.gas_solid_htc_eqn[t, x])
 calculate_variable_from_constraint(
 blk.gas_phase.heat[t, x],
 blk.gas_phase_heat_transfer[t, x])
 calculate_variable_from_constraint(
 blk.solid_phase.heat[t, x],
 blk.solid_phase_heat_transfer[t, x])

 # Unfix temperatures
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 # Unfix all gas temperature variables except at the inlet
 if (blk.gas_phase.properties[t, x].config.defined_state
 is False):
 blk.gas_phase.properties[t, x].temperature.unfix()
 for x in blk.length_domain:
 # Unfix all solid temperature variables except at the inlet
 if (blk.solid_phase.properties[t, x].config.defined_state
 is False):
 blk.solid_phase.properties[t, x].temperature.unfix()

 blk.reynolds_number_particle.activate()
 blk.prandtl_number.activate()
 blk.nusselt_number_particle.activate()
 blk.gas_solid_htc_eqn.activate()

 # Activate gas phase energy balance equations
 blk.gas_phase_heat_transfer.activate()
 blk.gas_phase.enthalpy_balances.activate()

 # Activate solid phase energy balance equations
 blk.solid_phase_heat_transfer.activate()
 blk.solid_phase.enthalpy_balances.activate()

 init_log.info('Initialize Energy Balances')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 4 {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 4 Failed.'
 .format(blk.name))

 # Initialize energy balance
 if blk.config.energy_balance_type == EnergyBalanceType.none:
 for t in blk.flowsheet().config.time:
 for x in blk.length_domain:
 # Unfix all gas temperature variables except at the inlet
 if (blk.gas_phase.properties[t, x].config.defined_state
 is False):
 blk.gas_phase.properties[t, x].temperature.unfix()
 for x in blk.length_domain:
 # Unfix all solid temperature variables except at the inlet
 if (blk.solid_phase.properties[t, x].config.defined_state
 is False):
 blk.solid_phase.properties[t, x].temperature.unfix()

 blk.isothermal_gas_phase.activate()
 blk.isothermal_solid_phase.activate()

 init_log.info('Initialize Energy Balances')
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = opt.solve(blk, tee=slc.tee)
 if results.solver.termination_condition \
 == TerminationCondition.optimal:
 init_log.info_high(
 "Initialization Step 4 {}.".format(
 idaeslog.condition(results))
)
 else:
 _log.warning('{} Initialisation Step 4 Failed.'
 .format(blk.name))

[docs] def results_plot(blk):
 '''
 Plot method for common moving bed variables

 Variables plotted:
 Tg : Temperature in gas phase
 Ts : Temperature in solid phase
 vg : Superficial gas velocity
 P : Pressure in gas phase
 Ftotal : Total molar flowrate of gas
 Mtotal : Total mass flowrate of solid
 Cg : Concentration of gas components in the gas phase
 y_frac : Mole fraction of gas components in the gas phase
 x_frac : Mass fraction of solid components in the solid phase
 '''
 print()
 print('================================= Reactor plots ==============='
 '==================')
 # local aliases used to shorten object names
 gas_phase = blk.config.gas_phase_config
 solid_phase = blk.config.solid_phase_config

 Tg = []
 Ts = []
 P = []
 Ftotal = []
 Mtotal = []
 vg = []

 for t in blk.flowsheet().config.time:
 for x in blk.gas_phase.length_domain:
 vg.append(value(blk.velocity_superficial_gas[t, x]))

 fig_vg = plt.figure(1)
 plt.plot(blk.gas_phase.length_domain, vg, label='vg')
 plt.legend(loc=0, ncol=2)
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Superficial gas velocity [m/s]")
 fig_vg.savefig('superficial_vel.png')

 # Pressure profile
 for t in blk.flowsheet().config.time:
 for x in blk.gas_phase.length_domain:
 P.append(blk.gas_phase.properties[t, x].pressure.value)

 fig_P = plt.figure(2)
 plt.plot(blk.gas_phase.length_domain, P, label='P')
 plt.legend(loc=0, ncol=2)
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Total Pressure [bar]")
 fig_P.savefig('Pressure.png')

 # Temperature profile
 for t in blk.flowsheet().config.time:
 for x in blk.gas_phase.length_domain:
 Tg.append(blk.gas_phase.properties[t, x].temperature.value)
 for x in blk.solid_phase.length_domain:
 Ts.append(blk.solid_phase.properties[t, x].temperature.value)
 fig_T = plt.figure(3)
 plt.plot(blk.gas_phase.length_domain, Tg, label='Tg')
 plt.plot(blk.solid_phase.length_domain, Ts, label='Ts')
 plt.legend(loc=0, ncol=2)
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Temperature [K]")
 fig_T.savefig('Temperature.png')

 # Bulk gas phase total molar flow rate
 for t in blk.flowsheet().config.time:
 for x in blk.gas_phase.length_domain:
 Ftotal.append(blk.gas_phase.properties[t, x].flow_mol.value)
 fig_Ftotal = plt.figure(4)
 plt.plot(blk.gas_phase.length_domain, Ftotal)
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Total molar gas flow rate [mol/s]")
 fig_Ftotal.savefig('Total_gas_flow.png')

 # Bulk solid phase total mass flow rate
 for t in blk.flowsheet().config.time:
 for x in blk.solid_phase.length_domain:
 Mtotal.append(blk.solid_phase.properties[t, x].flow_mass.value)
 fig_Mtotal = plt.figure(5)
 plt.plot(blk.solid_phase.length_domain, Mtotal)
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Solid total mass flow rate [kg/s]")
 fig_Mtotal.savefig('Total_solid_flow.png')

 # Gas phase mole fractions
 for t in blk.flowsheet().config.time:
 for j in gas_phase.property_package.component_list:
 y_frac = []
 for x in blk.gas_phase.length_domain:
 y_frac.append(value(
 blk.gas_phase.properties[t, x].mole_frac_comp[j]))
 fig_y = plt.figure(6)
 plt.plot(blk.gas_phase.length_domain, y_frac, label=j)
 plt.legend(loc=0, ncol=len(gas_phase.property_package.component_list))
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("y_frac [-]")
 fig_y.savefig('Gas_mole_fractions.png')

 # Solid phase mass fractions
 for t in blk.flowsheet().config.time:
 for j in solid_phase.property_package.component_list:
 x_frac = []
 for x in blk.solid_phase.length_domain:
 x_frac.append(value(
 blk.solid_phase.properties[t, x].mass_frac_comp[j]))
 fig_x = plt.figure(7)
 plt.plot(blk.solid_phase.length_domain, x_frac, label=j)
 plt.legend(loc=0, ncol=len(
 solid_phase.property_package.component_list))
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("x_frac [-]")
 fig_x.savefig('Solid_mass_fractions.png')

 # Gas phase concentrations
 for t in blk.flowsheet().config.time:
 for j in gas_phase.property_package.component_list:
 Cg = []
 for x in blk.gas_phase.length_domain:
 Cg.append(
 blk.gas_phase.properties[t, x].
 dens_mol_comp[j].value)
 fig_Cg = plt.figure(8)
 plt.plot(blk.gas_phase.length_domain, Cg, label=j)
 plt.legend(loc=0, ncol=len(gas_phase.property_package.component_list))
 plt.grid()
 plt.xlabel("Bed height [-]")
 plt.ylabel("Concentration [mol/m3]")
 fig_Cg.savefig('Gas_concentration.png')

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {
 "Gas Inlet": self.gas_inlet,
 "Gas Outlet": self.gas_outlet,
 "Solid Inlet": self.solid_inlet,
 "Solid Outlet": self.solid_outlet,
 },
 time_point=time_point,
)

 idaes.generic_models.control.pid_controller

 Source code for idaes.generic_models.control.pid_controller

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
PID controller block
"""

__author__ = "John Eslick"

from enum import Enum

import pyomo.environ as pyo

from idaes.core import ProcessBlockData, declare_process_block_class
from pyomo.common.config import ConfigValue, In
from idaes.core.util.math import smooth_max, smooth_min
from idaes.core.util.exceptions import ConfigurationError
from pyomo.dae import ContinuousSet

class PIDForm(Enum):
 """Enum for the pid ``pid_form`` option.
 Either standard or velocity form."""
 standard = 1
 velocity = 2

[docs]@declare_process_block_class("PIDBlock", doc="""
This is a PID controller block. The PID Controller block must be added
after the DAE transformation.""")
class PIDBlockData(ProcessBlockData):
 CONFIG = ProcessBlockData.CONFIG()
 CONFIG.declare("pv", ConfigValue(
 default=None,
 description="Measured process variable",
 doc="A Pyomo Var, Expression, or Reference for the measured"
 " process variable. Should be indexed by time."))
 CONFIG.declare("output", ConfigValue(
 default=None,
 description="Controlled process variable",
 doc="A Pyomo Var, Expression, or Reference for the controlled"
 " process variable. Should be indexed by time."))
 CONFIG.declare("upper", ConfigValue(
 default=1.0,
 domain=float,
 description="Output upper limit",
 doc="The upper limit for the controller output, default=1"))
 CONFIG.declare("lower", ConfigValue(
 default=0.0,
 domain=float,
 description="Output lower limit",
 doc="The lower limit for the controller output, default=0"))
 CONFIG.declare("calculate_initial_integral", ConfigValue(
 default=True,
 domain=bool,
 description="Calculate the initial integral term value if true, "
 " otherwise provide a variable err_i0, which can be fixed",
 doc="Calculate the initial integral term value if true, otherwise"
 " provide a variable err_i0, which can be fixed, default=True"))
 CONFIG.declare("pid_form", ConfigValue(
 default=PIDForm.velocity,
 domain=In(PIDForm),
 description="Velocity or standard form",
 doc="Velocity or standard form"))
 # TODO<jce> options for P, PI, and PD, you can currently do PI by setting
 # the derivative time to 0, this class should handle PI and PID
 # controllers. Proportional, only controllers are sufficiently
 # different that another class should be implemented.
 # TODO<jce> Anti-windup the integral term can keep accumulating error when
 # the controller output is at a bound. This can cause trouble,
 # and ways to deal with it should be implemented
 # TODO<jce> Implement way to better deal with the integral term for setpoint
 # changes (see bumpless). I need to look into the more, but this
 # would basically use the calculation like the one already used
 # for the first time point to calculate integral error to keep the
 # controller output from suddenly jumping in response to a set
 # point change or transition from manual to automatic control.

 def _build_standard(self, time_set, t0):
 # Want to fix the output variable at the first time step to make
 # solving easier. This calculates the initial integral error to line up
 # with the initial output value, keeps the controller from initially
 # jumping.
 if self.config.calculate_initial_integral:
 @self.Expression(doc="Initial integral error")
 def err_i0(b):
 return (b.time_i[t0]*(b.output[t0] - b.gain[t0]*b.pterm[t0] -
 b.gain[t0]*b.time_d[t0]*b.err_d[t0]) /
 b.gain[t0])
 # integral error
 @self.Expression(time_set, doc="Integral error")
 def err_i(b, t_end):
 return b.err_i0 + sum((b.iterm[t] + b.iterm[time_set.prev(t)]) *
 (t - time_set.prev(t))/2.0
 for t in time_set if t <= t_end and t > t0)
 # Calculate the unconstrained controller output
 @self.Expression(time_set, doc="Unconstrained controller output")
 def unconstrained_output(b, t):
 return b.gain[t]*(
 b.pterm[t] +
 1.0/b.time_i[t]*b.err_i[t] +
 b.time_d[t]*b.err_d[t]
)

 @self.Expression(doc="Initial integral error at the end")
 def err_i_end(b):
 return b.err_i[time_set.last()]

 def _build_velocity(self, time_set, t0):
 if self.config.calculate_initial_integral:
 @self.Expression(doc="Initial integral error")
 def err_i0(b):
 return (b.time_i[t0]*(b.output[t0] - b.gain[t0]*b.pterm[t0] -
 b.gain[t0]*b.time_d[t0]*b.err_d[t0]) /
 b.gain[t0])

 # Calculate the unconstrained controller output
 @self.Expression(time_set, doc="Unconstrained controller output")
 def unconstrained_output(b, t):
 if t == t0:
 # do the standard first step so I have a previous time
 # for the rest of the velocity form
 return b.gain[t]*(
 b.pterm[t] +
 1.0/b.time_i[t]*b.err_i0 +
 b.time_d[t]*b.err_d[t]
)
 tb = time_set.prev(t) # time back a step
 return self.output[tb] + self.gain[t]*(
 b.pterm[t] - b.pterm[tb] +
 (t - tb)/b.time_i[t]*(b.err[t] + b.err[tb])/2 +
 b.time_d[t]*(b.err_d[t] - b.err_d[tb])
)

 @self.Expression(doc="Initial integral error at the end")
 def err_i_end(b):
 tl = time_set.last()
 return (b.time_i[tl]*(b.output[tl] - b.gain[tl]*b.pterm[tl] -
 b.gain[tl]*b.time_d[tl]*b.err_d[tl]) /
 b.gain[tl])

[docs] def build(self):
 """
 Build the PID block
 """
 if isinstance(self.flowsheet().time, ContinuousSet):
 # time may not be a continuous set if you have a steady state model
 # in the steady state model case obviously the controller should
 # not be active, but you can still add it.
 if 'scheme' not in self.flowsheet().time.get_discretization_info():
 # if you have a dynamic model, must do time discretization
 # before adding the PID model
 raise RuntimeError(
 "PIDBlock must be added after time discretization")

 super().build() # do the ProcessBlockData voodoo for config
 # Check for required config
 if self.config.pv is None:
 raise ConfigurationError("Controller configuration requires 'pv'")
 if self.config.output is None:
 raise ConfigurationError(
 "Controller configuration requires 'output'")

 # Shorter pointers to time set information
 time_set = self.flowsheet().config.time
 t0 = time_set.first()

 # Get units of time domain, PV and output
 t_units = self.flowsheet().config.time_units
 pv_units = self.config.pv.get_units()
 out_units = self.config.output.get_units()
 gain_units = out_units/pv_units if pv_units is not None else None
 err_d_units = pv_units/t_units if pv_units is not None else None
 err_i_units = pv_units*t_units if pv_units is not None else None

 # Variable for basic controller settings may change with time.
 self.setpoint = pyo.Var(time_set,
 doc="Setpoint",
 units=pv_units)
 self.gain = pyo.Var(time_set,
 doc="Controller gain",
 units=gain_units)
 self.time_i = pyo.Var(time_set, doc="Integral time", units=t_units)
 self.time_d = pyo.Var(time_set, doc="Derivative time", units=t_units)

 # Make the initial derivative term a variable so you can set it. This
 # should let you carry on from the end of another time period
 self.err_d0 = pyo.Var(doc="Initial derivative term",
 initialize=0,
 units=err_d_units)
 self.err_d0.fix()

 if not self.config.calculate_initial_integral:
 self.err_i0 = pyo.Var(doc="Initial integral term",
 initialize=0,
 units=err_i_units)
 self.err_i0.fix()

 # Make references to the output and measured variables
 self.pv = pyo.Reference(self.config.pv) # No duplicate
 self.output = pyo.Reference(self.config.output) # No duplicate

 # Create an expression for error from setpoint
 @self.Expression(time_set, doc="Setpoint error")
 def err(b, t):
 return self.setpoint[t] - self.pv[t]

 # Use expressions to allow the some future configuration
 @self.Expression(time_set)
 def pterm(b, t):
 return -self.pv[t]

 @self.Expression(time_set)
 def dterm(b, t):
 return -self.pv[t]

 @self.Expression(time_set)
 def iterm(b, t):
 return self.err[t]
 # Output limits parameter
 self.limits = pyo.Param(["l", "h"],
 mutable=True,
 doc="controller output limits",
 initialize={"l": self.config.lower,
 "h": self.config.upper},
 units=out_units)

 # Smooth min and max are used to limit output, smoothing parameter here
 self.smooth_eps = pyo.Param(
 mutable=True,
 initialize=1e-4,
 doc="Smoothing parameter for controller output limits",
 units=out_units)

 # This is ugly, but want integral and derivative error as expressions,
 # nice implementation with variables is harder to initialize and solve
 @self.Expression(time_set, doc="Derivative error.")
 def err_d(b, t):
 if t == t0:
 return self.err_d0
 else:
 return ((b.dterm[t] - b.dterm[time_set.prev(t)]) /
 (t - time_set.prev(t)))

 if self.config.pid_form == PIDForm.standard:
 self._build_standard(time_set, t0)
 else:
 self._build_velocity(time_set, t0)

 # Add the controller output constraint and limit it with smooth min/max
 e = self.smooth_eps
 h = self.limits["h"]
 l = self.limits["l"]
 @self.Constraint(time_set, doc="Controller output constraint")
 def output_constraint(b, t):
 if t == t0:
 return pyo.Constraint.Skip
 else:
 return self.output[t] ==\
 smooth_min(
 smooth_max(self.unconstrained_output[t], l, e), h, e)

 idaes.generic_models.properties.iapws95

 Source code for idaes.generic_models.properties.iapws95

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""IDAES IAPWS-95 Steam properties

Dropped all critical enhancments and non-analytic terms ment to improve
accruacy near the critical point. These tend to cause singularities in the
equations, and it is assumend that we will try to avoid operating very close to
the critical point.

 References: (some of this is only used in the C++ part)
 International Association for the Properties of Water and Steam (2016).
 IAPWS R6-95 (2016), "Revised Release on the IAPWS Formulation 1995 for
 the Properties of Ordinary Water Substance for General Scientific Use,"
 URL: http://iapws.org/relguide/IAPWS95-2016.pdf
 Wagner, W., A. Pruss (2002). "The IAPWS Formulation 1995 for the
 Thermodynamic Properties of Ordinary Water Substance for General and
 Scientific Use." J. Phys. Chem. Ref. Data, 31, 387-535.
 Wagner, W. et al. (2000). "The IAPWS Industrial Formulation 1997 for the
 Thermodynamic Properties of Water and Steam," ASME J. Eng. Gas Turbines
 and Power, 122, 150-182.
 Akasaka, R. (2008). "A Reliable and Useful Method to Determine the
 Saturation State from Helmholtz Energy Equations of State." Journal of
 Thermal Science and Technology, 3(3), 442-451.
 International Association for the Properties of Water and Steam (2011).
 IAPWS R15-11, "Release on the IAPWS Formulation 2011 for the
 Thermal Conductivity of Ordinary Water Substance,"
 URL: http://iapws.org/relguide/ThCond.pdf
 International Association for the Properties of Water and Steam (2008).
 IAPWS R12-08, "Release on the IAPWS Formulation 2008 for the Viscosity
 of Ordinary Water Substance,"
 URL: http://iapws.org/relguide/visc.pdf
"""
__author__ = "John Eslick"

Import Python libraries
import os

Import Pyomo libraries
from pyomo.environ import (
 Expression,
 Param,
 RangeSet,
 Set,
 exp,
 sqrt,
 units as pyunits
)

Import IDAES
from idaes.core import declare_process_block_class

import idaes
import idaes.logger as idaeslog
from idaes.generic_models.properties.helmholtz.helmholtz import (
 _available,
 _htpx,
 HelmholtzParameterBlockData,
 HelmholtzStateBlockData,
 HelmholtzThermoExpressions,
 PhaseType,
 StateVars,
 _StateBlock,
)

Logger
_log = idaeslog.getLogger(__name__)
_so = os.path.join(idaes.bin_directory, "iapws95_external.so")

def iapws95_available():
 """Make sure the compiled IAPWS-95 functions are available. Yes, in Windows
 the .so extention is still used.
 """
 return _available(_so)

[docs]def htpx(T, P=None, x=None):
 """
 Convenience function to calculate steam enthalpy from temperature and
 either pressure or vapor fraction. This function can be used for inlet
 streams and initialization where temperature is known instead of enthalpy.

 User must provided values for one (and only one) of arguments P and x.

 Args:
 T: Temperature [K] (between 200 and 3000)
 P: Pressure [Pa] (between 1 and 1e9), None if saturated steam
 x: Vapor fraction [mol vapor/mol total] (between 0 and 1), None if
 superheated or subcooled

 Returns:
 Total molar enthalpy [J/mol].
 """
 prop = Iapws95StateBlock(default={"parameters": Iapws95ParameterBlock()})
 return _htpx(T=T, P=P, x=x, prop=prop,
 Tmin=270, Tmax=3e3, Pmin=1e-4, Pmax=1e6)

[docs]@declare_process_block_class("Iapws95ParameterBlock")
class Iapws95ParameterBlockData(HelmholtzParameterBlockData):
 CONFIG = HelmholtzParameterBlockData.CONFIG()

[docs] def build(self):
 self._set_parameters(
 library=_so,
 eos_tag="iapws95",
 state_block_class=Iapws95StateBlock,
 component_list=Set(initialize=["H2O"]),
 phase_equilibrium_idx=Set(initialize=[1]),
 phase_equilibrium_list={1: ["H2O", ("Vap", "Liq")]},
 mw=Param(initialize=0.01801528,
 doc="Molecular weight [kg/mol]",
 units=pyunits.kg/pyunits.mol),
 temperature_crit=Param(
 initialize=647.096,
 doc="Critical temperature [K]",
 units=pyunits.K),
 pressure_crit=Param(initialize=2.2064e7,
 doc="Critical pressure [Pa]",
 units=pyunits.Pa),
 dens_mass_crit=Param(initialize=322,
 doc="Critical density [kg/m3]",
 units=pyunits.kg/pyunits.m**3),
 specific_gas_constant=Param(
 initialize=461.51805,
 doc="Water Specific Gas Constant [J/kg/K]",
 units=pyunits.J/pyunits.kg/pyunits.K),
 pressure_bounds=(0.1, 1e9),
 temperature_bounds=(250, 2500),
 enthalpy_bounds=(0, 1e5),
)
 super().build()
 # Thermal conductivity parameters.
 # "Release on the IAPWS Formulation 2011 for the Thermal Conductivity
 # of Ordinary Water Substance"
 self.tc_L0 = Param(
 RangeSet(0, 5),
 initialize={
 0: 2.443221e-3,
 1: 1.323095e-2,
 2: 6.770357e-3,
 3: -3.454586e-3,
 4: 4.096266e-4,
 },
 doc="0th order thermal conductivity parameters",
 units=pyunits.K*pyunits.m/pyunits.mW)

 self.tc_L1 = Param(
 RangeSet(0, 5),
 RangeSet(0, 6),
 initialize={
 (0, 0): 1.60397357,
 (1, 0): 2.33771842,
 (2, 0): 2.19650529,
 (3, 0): -1.21051378,
 (4, 0): -2.7203370,
 (0, 1): -0.646013523,
 (1, 1): -2.78843778,
 (2, 1): -4.54580785,
 (3, 1): 1.60812989,
 (4, 1): 4.57586331,
 (0, 2): 0.111443906,
 (1, 2): 1.53616167,
 (2, 2): 3.55777244,
 (3, 2): -0.621178141,
 (4, 2): -3.18369245,
 (0, 3): 0.102997357,
 (1, 3): -0.463045512,
 (2, 3): -1.40944978,
 (3, 3): 0.0716373224,
 (4, 3): 1.1168348,
 (0, 4): -0.0504123634,
 (1, 4): 0.0832827019,
 (2, 4): 0.275418278,
 (3, 4): 0.0,
 (4, 4): -0.19268305,
 (0, 5): 0.00609859258,
 (1, 5): -0.00719201245,
 (2, 5): -0.0205938816,
 (3, 5): 0.0,
 (4, 5): 0.012913842,
 },
 doc="1st order thermal conductivity parameters",
)
 # Viscosity parameters
 # "Release on the IAPWS Formulation 2008 for the Viscosity of
 # Ordinary Water Substance "
 self.visc_H0 = Param(
 RangeSet(0, 4),
 initialize={0: 1.67752, 1: 2.20462, 2: 0.6366564, 3: -0.241605},
 doc="0th order viscosity parameters",
)

 self.visc_H1 = Param(
 RangeSet(0, 6),
 RangeSet(0, 7),
 initialize={
 (0, 0): 5.20094e-1,
 (1, 0): 8.50895e-2,
 (2, 0): -1.08374,
 (3, 0): -2.89555e-1,
 (4, 0): 0.0,
 (5, 0): 0.0,
 (0, 1): 2.22531e-1,
 (1, 1): 9.99115e-1,
 (2, 1): 1.88797,
 (3, 1): 1.26613,
 (4, 1): 0.0,
 (5, 1): 1.20573e-1,
 (0, 2): -2.81378e-1,
 (1, 2): -9.06851e-1,
 (2, 2): -7.72479e-1,
 (3, 2): -4.89837e-1,
 (4, 2): -2.57040e-1,
 (5, 2): 0.0,
 (0, 3): 1.61913e-1,
 (1, 3): 2.57399e-1,
 (2, 3): 0.0,
 (3, 3): 0.0,
 (4, 3): 0.0,
 (5, 3): 0.0,
 (0, 4): -3.25372e-2,
 (1, 4): 0.0,
 (2, 4): 0.0,
 (3, 4): 6.98452e-2,
 (4, 4): 0.0,
 (5, 4): 0.0,
 (0, 5): 0.0,
 (1, 5): 0.0,
 (2, 5): 0.0,
 (3, 5): 0.0,
 (4, 5): 8.72102e-3,
 (5, 5): 0.0,
 (0, 6): 0.0,
 (1, 6): 0.0,
 (2, 6): 0.0,
 (3, 6): -4.35673e-3,
 (4, 6): 0.0,
 (5, 6): -5.93264e-4,
 },
 doc="1st order viscosity parameters",
)
 self.set_default_scaling("therm_cond_phase", 1e2, index="Liq")
 self.set_default_scaling("therm_cond_phase", 1e1, index="Vap")
 self.set_default_scaling("visc_d_phase", 1e5, index="Liq")
 self.set_default_scaling("visc_d_phase", 1e6, index="Vap")
 self.set_default_scaling("visc_k_phase", 1e5, index="Liq")
 self.set_default_scaling("visc_k_phase", 1e7, index="Vap")

[docs]@declare_process_block_class(
 "Iapws95StateBlock",
 block_class=_StateBlock,
 doc="""This is some placeholder doc.""",
)
class Iapws95StateBlockData(HelmholtzStateBlockData):
 """
 This is a property package for calculating thermophysical properties of
 water.
 """

[docs] def build(self, *args):
 """
 Callable method for Block construction
 """
 super().build(*args)

 phlist = self.config.parameters.private_phase_list
 tau = self.tau
 delta = self.dens_phase_red # this shorter name is from IAPWS

 # Phase Thermal conductiviy
 def rule_tc(b, p):
 L0 = self.config.parameters.tc_L0
 L1 = self.config.parameters.tc_L1
 return pyunits.convert(
 (sqrt(1.0 / tau) / sum(L0[i] * tau ** i for i in L0) *
 exp(delta[p] * sum(
 (tau - 1)**i * sum(L1[i, j] * (delta[p] - 1)**j
 for j in range(0, 6))
 for i in range(0, 5)))),
 to_units=pyunits.W/pyunits.K/pyunits.m)

 self.therm_cond_phase = Expression(
 phlist, rule=rule_tc, doc="Thermal conductivity [W/K/m]"
)

 # Phase dynamic viscosity
 def rule_mu(b, p):
 H0 = self.config.parameters.visc_H0
 H1 = self.config.parameters.visc_H1
 # The units of this are really weird, so I am just going to append
 # units to the expression rather than give units to the parameters
 return (
 1e-4*sqrt(1.0 / tau) / sum(H0[i] * tau ** i for i in H0) *
 exp(delta[p] * sum((tau - 1)**i *
 sum(H1[i, j] * (delta[p] - 1)**j
 for j in range(0, 7))
 for i in range(0, 6))) *
 pyunits.Pa*pyunits.s)

 self.visc_d_phase = Expression(
 phlist, rule=rule_mu, doc="Viscosity (dynamic) [Pa*s]"
)

 # Phase kinimatic viscosity
 def rule_nu(b, p):
 return self.visc_d_phase[p] / self.dens_mass_phase[p]

 self.visc_k_phase = Expression(
 phlist, rule=rule_nu, doc="Kinematic viscosity [m^2/s]"
)

 idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack

 Source code for idaes.generic_models.properties.activity_coeff_models.activity_coeff_prop_pack

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Ideal gas + Ideal/Non-ideal liquid property package.

VLE calucations assuming an ideal gas for the gas phase. For the liquid phase,
options include ideal liquid or non-ideal liquid using an activity
coefficient model; options include Non Random Two Liquid Model (NRTL) or the
Wilson model to compute the activity coefficient. This property package
supports the following combinations for gas-liquid mixtures:
1. Ideal (vapor) - Ideal (liquid)
2. Ideal (vapor) - NRTL (liquid)
3. Ideal (vapor) - Wilson (liquid)

This property package currently supports the flow_mol, temperature, pressure
and mole_frac_comp as state variables (mole basis). Support for other
combinations will be available in the future.

Please note that the parameters required to compute the activity coefficient
for the component needs to be provided by the user in the parameter block or
can be estimated by the user if VLE data is available. Please see the
documentation for more details.

SI units.

References:

1. "The properties of gases and liquids by Robert C. Reid"
2. "Perry's Chemical Engineers Handbook by Robert H. Perry".
3. H. Renon and J.M. Prausnitz, "Local compositions in thermodynamic excess
 functions for liquid mixtures.", AIChE Journal Vol. 14, No.1, 1968.
"""

Import Pyomo libraries
from pyomo.environ import Constraint, log, NonNegativeReals, value, Var, exp,\
 Expression, Param, sqrt, SolverFactory, units as pyunits
from pyomo.common.config import ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 MaterialFlowBasis,
 PhysicalParameterBlock,
 StateBlockData,
 StateBlock,
 MaterialBalanceType,
 EnergyBalanceType,
 LiquidPhase,
 VaporPhase)
from idaes.core.util.initialization import (fix_state_vars,
 revert_state_vars,
 solve_indexed_blocks)
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.util.constants import Constants as const
import idaes.logger as idaeslog

Some more inforation about this module
__author__ = "Jaffer Ghouse"
__version__ = "0.0.2"

Set up logger
_log = idaeslog.getLogger(__name__)

@declare_process_block_class("ActivityCoeffParameterBlock")
class ActivityCoeffParameterData(PhysicalParameterBlock):
 """
 Property Parameter Block Class
 Contains parameters and indexing sets associated with properties for
 BTX system.
 """
 # Config block for the _IdealStateBlock
 CONFIG = PhysicalParameterBlock.CONFIG()

 CONFIG.declare("activity_coeff_model", ConfigValue(
 default="Ideal",
 domain=In(["Ideal", "NRTL", "Wilson"]),
 description="Flag indicating the activity coefficient model",
 doc="""Flag indicating the activity coefficient model to be used
for the non-ideal liquid, and thus corresponding constraints should be
included,
default - Ideal liquid.
Valid values: {
"NRTL" - Non Random Two Liquid Model,
"Wilson" - Wilson Liquid Model,}"""))

 CONFIG.declare("state_vars", ConfigValue(
 default="FTPz",
 domain=In(["FTPz", "FcTP"]),
 description="Flag indicating the choice for state variables",
 doc="""Flag indicating the choice for state variables to be used
 for the state block, and thus corresponding constraints should be
 included,
 default - FTPz
 Valid values: {
 "FTPx" - Total flow, Temperature, Pressure and Mole fraction,
 "FcTP" - Component flow, Temperature and Pressure}"""))

 CONFIG.declare("valid_phase", ConfigValue(
 default=("Vap", "Liq"),
 domain=In(["Liq", "Vap", ("Vap", "Liq"), ("Liq", "Vap")]),
 description="Flag indicating the valid phase",
 doc="""Flag indicating the valid phase for a given set of
conditions, and thus corresponding constraints should be included,
default - ("Vap", "Liq").
Valid values: {
"Liq" - Liquid only,
"Vap" - Vapor only,
("Vap", "Liq") - Vapor-liquid equilibrium,
("Liq", "Vap") - Vapor-liquid equilibrium,}"""))

 def build(self):
 """Callable method for Block construction."""
 super(ActivityCoeffParameterData, self).build()

 self._state_block_class = ActivityCoeffStateBlock

 # Create Phase objects
 if self.config.valid_phase == ('Liq', 'Vap') or \
 self.config.valid_phase == ('Vap', 'Liq') or \
 self.config.valid_phase == 'Liq':
 self.Liq = LiquidPhase()

 if self.config.valid_phase == ('Liq', 'Vap') or \
 self.config.valid_phase == ('Vap', 'Liq') or \
 self.config.valid_phase == 'Vap':
 self.Vap = VaporPhase()

 # Add activity coefficient parameters as necessary
 if self.config.valid_phase == ("Liq", "Vap") or \
 self.config.valid_phase == ("Vap", "Liq"):
 if self.config.activity_coeff_model == "NRTL":
 # NRTL Model specific variables (values to be fixed by user
 # or need to be estimated based on VLE data)
 # See documentation for suggested or typical values.
 self.alpha = Var(self.component_list,
 self.component_list,
 initialize=0.3,
 doc="Non-randomness parameter for NRTL model")

 self.tau = Var(self.component_list,
 self.component_list,
 initialize=1.0,
 doc="Binary interaction parameter "
 "for NRTL model")
 if self.config.activity_coeff_model == "Wilson":
 # Wilson Model specific variables (values to be fixed by
 # user or need to be estimated based on VLE data)
 self.vol_mol_comp = Var(self.component_list,
 initialize=1.0,
 doc="Molar volume of component",
 units=pyunits.m**3/pyunits.mol)

 self.tau = Var(self.component_list,
 self.component_list,
 initialize=1.0,
 doc="Binary interaction parameter for "
 "Wilson model")

 @classmethod
 def define_metadata(cls, obj):
 """Define properties supported and units."""
 obj.add_properties(
 {"flow_mol": {"method": None, "units": "mol/s"},
 "mole_frac_comp": {"method": None, "units": "no unit"},
 "temperature": {"method": None, "units": "K"},
 "pressure": {"method": None, "units": "Pa"},
 "flow_mol_phase": {"method": None, "units": "mol/s"},
 "density_mol": {"method": "_density_mol",
 "units": "mol/m^3"},
 "pressure_sat": {"method": "_pressure_sat", "units": "Pa"},
 "mole_frac_phase_comp": {"method": "_mole_frac_phase",
 "units": "no unit"},
 "energy_internal_mol_phase_comp": {
 "method": "_energy_internal_mol_phase_comp",
 "units": "J/mol"},
 "energy_internal_mol_phase": {
 "method": "_energy_internal_mol_phase",
 "units": "J/mol"},
 "enth_mol_phase_comp": {"method": "_enth_mol_phase_comp",
 "units": "J/mol"},
 "enth_mol_phase": {"method": "_enth_mol_phase",
 "units": "J/mol"},
 "entr_mol_phase_comp": {"method": "_entr_mol_phase_comp",
 "units": "J/mol"},
 "entr_mol_phase": {"method": "_entr_mol_phase",
 "units": "J/mol"},
 "gibbs_mol_phase_comp": {"method": "_gibbs_mol_phase_comp",
 "units": "J/mol"},
 "temperature_bubble": {"method": "_temperature_bubble",
 "units": "K"},
 "temperature_dew": {"method": "_temperature_dew",
 "units": "K"},
 "pressure_bubble": {"method": "_pressure_bubble",
 "units": "Pa"},
 "pressure_dew": {"method": "_pressure_dew",
 "units": "Pa"},
 "fug_vap": {"method": "_fug_vap", "units": "Pa"},
 "fug_liq": {"method": "_fug_liq", "units": "Pa"},
 'ds_form': {'method': '_ds_form', 'units': 'J/mol.K'}})

 obj.add_default_units({"time": pyunits.s,
 "length": pyunits.m,
 "mass": pyunits.kg,
 "amount": pyunits.mol,
 "temperature": pyunits.K})

class _ActivityCoeffStateBlock(StateBlock):
 """
 This Class contains methods which should be applied to Property Blocks as a
 whole, rather than individual elements of indexed Property Blocks.
 """

 def initialize(blk, state_args={}, hold_state=False,
 state_vars_fixed=False, outlvl=idaeslog.NOTSET,
 solver="ipopt", optarg={"tol": 1e-8}):
 """
 Initialization routine for property package.
 Keyword Arguments:
 state_args : Dictionary with initial guesses for the state vars
 chosen. Note that if this method is triggered
 through the control volume, and if initial guesses
 were not provided at the unit model level, the
 control volume passes the inlet values as initial
 guess.

 If FTPz are chosen as state_vars, then keys for
 the state_args dictionary are:
 flow_mol, temperature, pressure and mole_frac_comp

 If FcTP are chose as the state_vars, then keys for
 the state_args dictionary are:
 flow_mol_comp, temperature, pressure.

 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default=None)
 solver : str indicating whcih solver to use during
 initialization (default = "ipopt")
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization (default=False).
 - True - states varaibles are not unfixed, and
 a dict of returned containing flags for
 which states were fixed during
 initialization.
 - False - state variables are unfixed after
 initialization by calling the
 relase_state method
 state_vars_fixed: Flag to denote if state vars have already been
 fixed.
 - True - states have already been fixed and
 initialization does not need to worry
 about fixing and unfixing variables.
 - False - states have not been fixed. The state
 block will deal with fixing/unfixing.

 Returns:
 If hold_states is True, returns a dict containing flags for
 which states were fixed during initialization.
 """
 # Deactivate the constraints specific for outlet block i.e.
 # when defined state is False
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="properties")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="properties")

 for k in blk.keys():
 if (blk[k].config.defined_state is False) and \
 (blk[k].params.config.state_vars == "FTPz"):
 blk[k].eq_mol_frac_out.deactivate()

 # Fix state variables if not already fixed
 if state_vars_fixed is False:
 flags = fix_state_vars(blk, state_args)
 else:
 # Check when the state vars are fixed already result in dof 0
 for k in blk.keys():
 if degrees_of_freedom(blk[k]) != 0:
 raise Exception("State vars fixed but degrees of freedom "
 "for state block is not zero during "
 "initialization.")

 if optarg is None:
 sopt = {"tol": 1e-8}
 else:
 sopt = optarg

 opt = SolverFactory("ipopt")
 opt.options = sopt

 # ---
 # Initialization sequence: Deactivating certain constraints
 # for 1st solve
 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 if c.local_name in ["eq_total",
 "eq_comp",
 "eq_mole_frac"
 "eq_sum_mol_frac",
 "eq_phase_equilibrium",
 "eq_enth_mol_phase",
 "eq_entr_mol_phase",
 "eq_Gij_coeff",
 "eq_A",
 "eq_B",
 "eq_activity_coeff"]:
 c.deactivate()

 # First solve for the active constraints that remain (p_sat, T_bubble,
 # T_dew). Valid only for a 2 phase block. If single phase,
 # no constraints are active.
 # NOTE: "k" is the last value from the previous for loop
 # only for the purpose of having a valid index. The assumption
 # here is that for all values of "k", the attribute exists.
 if (blk[k].config.has_phase_equilibrium) or \
 (blk[k].config.parameters.config.valid_phase ==
 ("Liq", "Vap")) or \
 (blk[k].config.parameters.config.valid_phase ==
 ("Vap", "Liq")):

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)

 else:
 res="skipped"
 init_log.info("Initialization Step 1 {}.".format(idaeslog.condition(res)))

 # Continue initialization sequence and activate select constraints
 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 if c.local_name in ["eq_total",
 "eq_comp",
 "eq_sum_mol_frac",
 "eq_phase_equilibrium"]:
 c.activate()
 if blk[k].config.parameters.config.activity_coeff_model \
 != "Ideal":
 # assume ideal and solve
 blk[k].activity_coeff_comp.fix(1)

 # Second solve for the active constraints
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Initialization Step 2 {}.".format(idaeslog.condition(res)))

 # Activate activity coefficient specific constraints
 for k in blk.keys():
 if blk[k].config.parameters.config.activity_coeff_model \
 != "Ideal":
 for c in blk[k].component_objects(Constraint):
 if c.local_name in ["eq_Gij_coeff",
 "eq_A",
 "eq_B"]:
 c.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Initialization Step 3 {}.".format(idaeslog.condition(res)))

 for k in blk.keys():
 if blk[k].config.parameters.config.activity_coeff_model \
 != "Ideal":
 blk[k].eq_activity_coeff.activate()
 blk[k].activity_coeff_comp.unfix()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Initialization Step 4 {}.".format(idaeslog.condition(res)))

 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 if c.local_name in ["eq_enth_mol_phase",
 "eq_entr_mol_phase"]:
 c.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Initialization Step 5 {}.".format(idaeslog.condition(res)))

 if state_vars_fixed is False:
 if hold_state is True:
 return flags
 else:
 blk.release_state(flags, outlvl=outlvl)

 init_log.info("Initialization Complete: {}".format(idaeslog.condition(res)))

 def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 """
 Method to relase state variables fixed during initialization.
 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state=True.
 outlvl : sets output level of of logging
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="properties")
 for k in blk.keys():
 if (not blk[k].config.defined_state and
 blk[k].params.config.state_vars == "FTPz"):
 blk[k].eq_mol_frac_out.activate()

 if flags is None:
 init_log.debug("No flags passed to release_state().")
 return

 # Unfix state variables
 revert_state_vars(blk, flags)

 init_log.info("State Released.")

[docs]@declare_process_block_class("ActivityCoeffStateBlock",
 block_class=_ActivityCoeffStateBlock)
class ActivityCoeffStateBlockData(StateBlockData):
 """An example property package for ideal VLE."""

[docs] def build(self):
 """Callable method for Block construction."""
 super(ActivityCoeffStateBlockData, self).build()

 # Check for valid phase indicator and consistent flags
 if self.config.has_phase_equilibrium and \
 self.config.parameters.config.valid_phase in ["Vap", "Liq"]:
 raise ConfigurationError("Inconsistent inputs. Valid phase"
 " flag not set to VL for the state"
 " block but has_phase_equilibrium"
 " is set to True.")
 self._make_state_vars()
 self._make_vars()
 if not self.config.has_phase_equilibrium and \
 self.config.parameters.config.valid_phase == "Liq":
 self._make_liq_phase_eq()

 if (self.config.has_phase_equilibrium) or \
 (self.config.parameters.config.valid_phase ==
 ("Liq", "Vap")) or \
 (self.config.parameters.config.valid_phase ==
 ("Vap", "Liq")):
 if self.config.parameters.config.activity_coeff_model == "NRTL":
 self._make_NRTL_eq()
 if self.config.parameters.config.activity_coeff_model == "Wilson":
 self._make_Wilson_eq()
 self._make_flash_eq()

 if not self.config.has_phase_equilibrium and \
 self.config.parameters.config.valid_phase == "Vap":
 self._make_vap_phase_eq()

 def _make_state_vars(self):
 """List the necessary state variable objects."""

 if self.params.config.state_vars == "FTPz":
 self.flow_mol = Var(initialize=1.0,
 domain=NonNegativeReals,
 doc="Total molar flowrate [mol/s]",
 units=pyunits.mol/pyunits.s)
 self.mole_frac_comp = Var(
 self.params.component_list,
 bounds=(0, 1),
 initialize=1 / len(self.params.component_list),
 doc="Mixture mole fraction")
 self.pressure = Var(initialize=101325,
 domain=NonNegativeReals,
 doc="State pressure [Pa]",
 units=pyunits.Pa)
 self.temperature = Var(initialize=298.15,
 domain=NonNegativeReals,
 doc="State temperature [K]",
 units=pyunits.K)
 else:
 self.flow_mol_comp = Var(
 self.params.component_list,
 initialize=1 / len(self.params.component_list),
 domain=NonNegativeReals,
 doc="Component molar flowrate [mol/s]",
 units=pyunits.mol/pyunits.s)
 self.pressure = Var(initialize=101325,
 domain=NonNegativeReals,
 doc="State pressure [Pa]",
 units=pyunits.Pa)
 self.temperature = Var(initialize=298.15,
 domain=NonNegativeReals,
 doc="State temperature [K]",
 units=pyunits.K)

 def _make_vars(self):

 if self.params.config.state_vars == "FTPz":
 self.flow_mol_phase = Var(self.params.phase_list,
 initialize=0.5,
 units=pyunits.mol/pyunits.s)
 else:
 self.flow_mol_phase_comp = Var(self.params._phase_component_set,
 initialize=0.5,
 units=pyunits.mol/pyunits.s)

 def rule_mix_mole_frac(self, i):
 return self.flow_mol_comp[i] / \
 sum(self.flow_mol_comp[i]
 for i in self.params.component_list)
 self.mole_frac_comp = Expression(self.params.component_list,
 rule=rule_mix_mole_frac)

 self.mole_frac_phase_comp = \
 Var(self.params._phase_component_set,
 initialize=1 / len(self.params.component_list),
 bounds=(0, 1))

 def _make_liq_phase_eq(self):

 if self.params.config.state_vars == "FTPz":
 def rule_total_mass_balance(self):
 return self.flow_mol_phase["Liq"] == self.flow_mol
 self.eq_total = Constraint(rule=rule_total_mass_balance)

 def rule_comp_mass_balance(self, i):
 return self.flow_mol * self.mole_frac_comp[i] == \
 self.flow_mol_phase["Liq"] * \
 self.mole_frac_phase_comp["Liq", i]
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 if self.config.defined_state is False:
 # applied at outlet only
 self.eq_mol_frac_out = \
 Constraint(expr=sum(self.mole_frac_comp[i]
 for i in self.params.component_list) == 1)
 else:
 def rule_comp_mass_balance(self, i):
 return self.flow_mol_comp[i] == \
 self.flow_mol_phase_comp["Liq", i]
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 def rule_mole_frac(self, i):
 return self.mole_frac_phase_comp["Liq", i] * \
 sum(self.flow_mol_phase_comp["Liq", i]
 for i in self.params.component_list) == \
 self.flow_mol_phase_comp["Liq", i]
 self.eq_mole_frac = Constraint(self.params.component_list,
 rule=rule_mole_frac)

 def _make_vap_phase_eq(self):

 if self.params.config.state_vars == "FTPz":
 def rule_total_mass_balance(self):
 return self.flow_mol_phase["Vap"] == self.flow_mol
 self.eq_total = Constraint(rule=rule_total_mass_balance)

 def rule_comp_mass_balance(self, i):
 return self.flow_mol * self.mole_frac_comp[i] == \
 self.flow_mol_phase["Vap"] * \
 self.mole_frac_phase_comp["Vap", i]
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 if self.config.defined_state is False:
 # applied at outlet only
 self.eq_mol_frac_out = \
 Constraint(expr=sum(self.mole_frac_comp[i]
 for i in self.params.component_list)
 == 1)
 else:
 def rule_comp_mass_balance(self, i):
 return self.flow_mol_comp[i] == \
 self.flow_mol_phase_comp["Vap", i]
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 def rule_mole_frac(self, i):
 return self.mole_frac_phase_comp["Vap", i] * \
 sum(self.flow_mol_phase_comp["Vap", i]
 for i in self.params.component_list) == \
 self.flow_mol_phase_comp["Vap", i]
 self.eq_mole_frac = Constraint(self.params.component_list,
 rule=rule_mole_frac)

 def _make_flash_eq(self):

 if self.params.config.state_vars == "FTPz":
 # Total mole balance
 def rule_total_mass_balance(self):
 return self.flow_mol_phase["Liq"] + \
 self.flow_mol_phase["Vap"] == self.flow_mol
 self.eq_total = Constraint(rule=rule_total_mass_balance)

 # Component mole balance
 def rule_comp_mass_balance(self, i):
 return self.flow_mol * self.mole_frac_comp[i] == (
 self.flow_mol_phase["Liq"] *
 self.mole_frac_phase_comp["Liq", i] +
 self.flow_mol_phase["Vap"] *
 self.mole_frac_phase_comp["Vap", i])
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 # sum of mole fractions constraint (sum(x_i)-sum(y_i)=0)
 def rule_mole_frac(self):
 return sum(self.mole_frac_phase_comp["Liq", i]
 for i in self.params.component_list) -\
 sum(self.mole_frac_phase_comp["Vap", i]
 for i in self.params.component_list) == 0
 self.eq_sum_mol_frac = Constraint(rule=rule_mole_frac)

 if self.config.defined_state is False:
 # applied at outlet only as complete state information unknown
 self.eq_mol_frac_out = \
 Constraint(expr=sum(self.mole_frac_comp[i]
 for i in self.params.component_list) == 1)
 else:
 def rule_comp_mass_balance(self, i):
 return self.flow_mol_comp[i] == \
 self.flow_mol_phase_comp["Liq", i] + \
 self.flow_mol_phase_comp["Vap", i]
 self.eq_comp = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 def rule_mole_frac(self, p, i):
 return self.mole_frac_phase_comp[p, i] * \
 sum(self.flow_mol_phase_comp[p, i]
 for i in self.params.component_list) == \
 self.flow_mol_phase_comp[p, i]
 self.eq_mole_frac = Constraint(self.params._phase_component_set,
 rule=rule_mole_frac)

 # Smooth Flash Formulation

 # Please refer to Burgard et al., "A Smooth, Square Flash
 # Formulation for Equation Oriented Flowsheet Optimization",
 # Computer Aided Chemical Engineering 44, 871-876, 2018.

 self._temperature_equilibrium = \
 Var(initialize=self.temperature.value,
 doc="Temperature for calculating "
 "phase equilibrium",
 units=pyunits.K)

 self._t1 = Var(initialize=self.temperature.value,
 doc="Intermediate temperature for calculating "
 "the equilibrium temperature",
 units=pyunits.K)

 self.eps_1 = Param(default=0.01,
 mutable=True,
 doc="Smoothing parameter for equilibrium "
 "temperature",
 units=pyunits.K)
 self.eps_2 = Param(default=0.0005,
 mutable=True,
 doc="Smoothing parameter for equilibrium "
 "temperature",
 units=pyunits.K)

 # Equation #13 in reference cited above
 # Approximation for max(temperature, temperature_bubble)
 def rule_t1(b):
 return b._t1 == 0.5 * \
 (b.temperature + b.temperature_bubble +
 sqrt((b.temperature - b.temperature_bubble)**2 +
 b.eps_1**2))
 self._t1_constraint = Constraint(rule=rule_t1)

 # Equation #14 in reference cited above
 # Approximation for min(_t1, temperature_dew)
 # TODO : Add option for supercritical extension
 def rule_teq(b):
 return b._temperature_equilibrium == 0.5 * \
 (b._t1 + b.temperature_dew -
 sqrt((b._t1 - b.temperature_dew)**2 +
 b.eps_2**2))
 self._teq_constraint = Constraint(rule=rule_teq)

 def rule_phase_eq(self, i):
 return self.fug_vap[i] == self.fug_liq[i]
 self.eq_phase_equilibrium = Constraint(self.params.component_list,
 rule=rule_phase_eq)

 def _make_NRTL_eq(self):

 # NRTL model variables
 self.Gij_coeff = Var(self.params.component_list,
 self.params.component_list,
 initialize=1.0,
 doc="Gij coefficient for use in NRTL model ")

 self.activity_coeff_comp = Var(self.params.component_list,
 initialize=1.0,
 doc="Activity coefficient of component")

 self.A = Var(self.params.component_list,
 initialize=1.0,
 doc="Intermediate variable to compute activity"
 " coefficient")

 self.B = Var(self.params.component_list,
 initialize=1.0,
 doc="Intermediate variable to compute activity"
 " coefficient")

 def rule_Gij_coeff(self, i, j):
 # i,j component
 if i != j:
 return self.Gij_coeff[i, j] == exp(-self.params.alpha[i, j] *
 self.params.tau[i, j])
 else:
 self.Gij_coeff[i, j].fix(1)
 return Constraint.Skip

 self.eq_Gij_coeff = Constraint(self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff)

 # First sum part in the NRTL equation
 def rule_A(self, i):
 value_1 = sum(self.mole_frac_phase_comp["Liq", j] *
 self.params.tau[j, i] * self.Gij_coeff[j, i]
 for j in self.params.component_list)
 value_2 = sum(self.mole_frac_phase_comp["Liq", k] *
 self.Gij_coeff[k, i]
 for k in self.params.component_list)
 return self.A[i] == value_1 / value_2
 self.eq_A = Constraint(self.params.component_list, rule=rule_A)

 # Second sum part in the NRTL equation
 def rule_B(self, i):
 value = sum((self.mole_frac_phase_comp["Liq", j] *
 self.Gij_coeff[i, j] /
 sum(self.mole_frac_phase_comp["Liq", k] *
 self.Gij_coeff[k, j]
 for k in self.params.component_list)) *
 (self.params.tau[i, j] - sum(
 self.mole_frac_phase_comp["Liq", m] *
 self.params.tau[m, j] *
 self.Gij_coeff[m, j]
 for m in self.params.component_list) /
 sum(self.mole_frac_phase_comp["Liq", k] *
 self.Gij_coeff[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return self.B[i] == value
 self.eq_B = Constraint(self.params.component_list, rule=rule_B)

 # Activity coefficient using NRTL
 def rule_activity_coeff(self, i):
 return log(self.activity_coeff_comp[i]) == self.A[i] + self.B[i]
 self.eq_activity_coeff = Constraint(self.params.component_list,
 rule=rule_activity_coeff)

 def _make_Wilson_eq(self):

 # Wilson model variables
 self.Gij_coeff = Var(self.params.component_list,
 self.params.component_list,
 initialize=1.0,
 doc="Gij coefficient for use in Wilson model ")

 self.activity_coeff_comp = Var(self.params.component_list,
 initialize=1.0,
 doc="Activity coefficient of component")

 self.A = Var(self.params.component_list,
 initialize=1.0,
 doc="Intermediate variable to compute activity"
 " coefficient")

 self.B = Var(self.params.component_list,
 initialize=1.0,
 doc="Intermediate variable to compute activity"
 " coefficient")

 def rule_Gij_coeff(self, i, j):
 # component i,j
 if i != j:
 return self.Gij_coeff[i, j] == \
 (self.params.vol_mol_comp[i] /
 self.params.vol_mol_comp[j]) * exp(-self.params.tau[i, j])
 else:
 self.Gij_coeff[i, j].fix(1)
 return Constraint.Skip

 self.eq_Gij_coeff = Constraint(self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff)

 # First sum part in Wilson equation
 def rule_A(self, i):
 value_1 = log(sum(self.mole_frac_phase_comp["Liq", j] *
 self.Gij_coeff[j, i]
 for j in self.params.component_list))
 return self.A[i] == value_1
 self.eq_A = Constraint(self.params.component_list, rule=rule_A)

 # Second sum part in Wilson equation
 def rule_B(self, i):
 value = sum((self.mole_frac_phase_comp["Liq", j] *
 self.Gij_coeff[i, j] /
 sum(self.mole_frac_phase_comp["Liq", k] *
 self.Gij_coeff[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return self.B[i] == value
 self.eq_B = Constraint(self.params.component_list, rule=rule_B)

 # Activity coefficient using Wilson equation
 def rule_activity_coeff(self, i):
 return log(self.activity_coeff_comp[i]) == \
 1 - self.A[i] - self.B[i]
 self.eq_activity_coeff = Constraint(self.params.component_list,
 rule=rule_activity_coeff)

 def _pressure_sat(self):
 self.pressure_sat = Var(self.params.component_list,
 initialize=101325,
 doc="vapor pressure",
 units=pyunits.Pa)

 def rule_reduced_temp(self, i):
 # reduced temperature is variable "x" in the documentation
 return (self.params.temperature_critical[i] -
 self._temperature_equilibrium) / \
 self.params.temperature_critical[i]
 self._reduced_temp = Expression(self.params.component_list,
 rule=rule_reduced_temp)

 def rule_P_vap(self, j):
 return (1 - self._reduced_temp[j]) * \
 log(self.pressure_sat[j] /
 self.params.pressure_critical[j]) == \
 (self.params.pressure_sat_coeff[j, "A"] *
 self._reduced_temp[j] +
 self.params.pressure_sat_coeff[j, "B"] *
 self._reduced_temp[j]**1.5 +
 self.params.pressure_sat_coeff[j, "C"] *
 self._reduced_temp[j]**3 +
 self.params.pressure_sat_coeff[j, "D"] *
 self._reduced_temp[j]**6)
 self.eq_P_vap = Constraint(self.params.component_list,
 rule=rule_P_vap)

 def _fug_vap(self):
 def rule_fug_vap(self, i):
 return self.mole_frac_phase_comp["Vap", i] * self.pressure
 self.fug_vap = Expression(self.params.component_list,
 rule=rule_fug_vap)

 def _fug_liq(self):
 def rule_fug_liq(self, i):
 if self.config.parameters.config.\
 activity_coeff_model == "Ideal":
 return self.mole_frac_phase_comp["Liq", i] * \
 self.pressure_sat[i]
 else:
 return self.mole_frac_phase_comp["Liq", i] * \
 self.activity_coeff_comp[i] * self.pressure_sat[i]
 self.fug_liq = Expression(self.params.component_list,
 rule=rule_fug_liq)

 def _density_mol(self):
 self.density_mol = Var(self.params.phase_list,
 doc="Molar density",
 units=pyunits.mol/pyunits.m**3)

 def density_mol_calculation(self, p):
 if p == "Vap":
 return self.pressure == (self.density_mol[p] *
 const.gas_constant *
 self.temperature)
 elif p == "Liq": # TODO: Add a correlation to compute liq density
 _log.warning("Using a place holder for liquid density "
 "{}. Please provide value or expression to "
 "compute the liquid density".format(self.name))
 return self.density_mol[p] == 11.1E3 # mol/m3

 try:
 # Try to build constraint
 self.density_mol_calculation = Constraint(
 self.params.phase_list, rule=density_mol_calculation)
 except AttributeError:
 # If constraint fails, clean up so that DAE can try again later
 self.del_component(self.density_mol)
 self.del_component(self.density_mol_calculation)
 raise

 def _energy_internal_mol_phase(self):
 self.energy_internal_mol_phase = Var(
 self.params.phase_list,
 doc="Phase molar specific internal energy [J/mol]",
 units=pyunits.J/pyunits.mol)

 def rule_energy_internal_mol_phase(b, p):
 return b.energy_internal_mol_phase[p] == sum(
 b.energy_internal_mol_phase_comp[p, i] *
 b.mole_frac_phase_comp[p, i]
 for i in b.params.component_list)
 self.eq_energy_internal_mol_phase = Constraint(
 self.params.phase_list,
 rule=rule_energy_internal_mol_phase)

 def _energy_internal_mol_phase_comp(self):
 self.energy_internal_mol_phase_comp = Var(
 self.params._phase_component_set,
 doc="Phase-component molar specific internal energy [J/mol]",
 units=pyunits.J/pyunits.mol)

 def rule_energy_internal_mol_phase_comp(b, p, j):
 if p == "Vap":
 return b.energy_internal_mol_phase_comp[p, j] == \
 b.enth_mol_phase_comp[p, j] - \
 const.gas_constant * \
 (b.temperature - b.params.temperature_ref)
 else:
 return b.energy_internal_mol_phase_comp[p, j] == \
 b.enth_mol_phase_comp[p, j]
 self.eq_energy_internal_mol_phase_comp = Constraint(
 self.params._phase_component_set,
 rule=rule_energy_internal_mol_phase_comp)

 def _enth_mol_phase(self):
 self.enth_mol_phase = Var(
 self.params.phase_list,
 doc="Phase molar specific enthalpies [J/mol]",
 units=pyunits.J/pyunits.mol)

 def rule_enth_mol_phase(b, p):
 return b.enth_mol_phase[p] == sum(
 b.enth_mol_phase_comp[p, i] *
 b.mole_frac_phase_comp[p, i]
 for i in b.params.component_list)
 self.eq_enth_mol_phase = Constraint(self.params.phase_list,
 rule=rule_enth_mol_phase)

 def _enth_mol_phase_comp(self):
 self.enth_mol_phase_comp = Var(self.params._phase_component_set,
 doc="Phase-component molar specific "
 "enthalpies [J/mol]",
 units=pyunits.J/pyunits.mol)

 def rule_enth_mol_phase_comp(b, p, j):
 if p == "Vap":
 return b._enth_mol_comp_vap(j)
 else:
 return b._enth_mol_comp_liq(j)
 self.eq_enth_mol_phase_comp = Constraint(
 self.params._phase_component_set,
 rule=rule_enth_mol_phase_comp)

 def _enth_mol_comp_liq(self, j):
 # Liquid phase comp enthalpy (J/mol)
 # 1E3 conversion factor to convert from J/kmol to J/mol
 return self.enth_mol_phase_comp["Liq", j] == \
 self.params.dh_form["Liq", j] + \
 pyunits.convert((
 (self.params.cp_mol_liq_comp_coeff_E[j] / 5) *
 (self.temperature**5 -
 self.params.temperature_reference**5)
 + (self.params.cp_mol_liq_comp_coeff_D[j] / 4) *
 (self.temperature**4 -
 self.params.temperature_reference**4)
 + (self.params.cp_mol_liq_comp_coeff_C[j] / 3) *
 (self.temperature**3 -
 self.params.temperature_reference**3)
 + (self.params.cp_mol_liq_comp_coeff_B[j] / 2) *
 (self.temperature**2 -
 self.params.temperature_reference**2)
 + self.params.cp_mol_liq_comp_coeff_A[j] *
 (self.temperature - self.params.temperature_reference)),
 to_units=pyunits.J/pyunits.mol)

 def _enth_mol_comp_vap(self, j):

 # Vapor phase component enthalpy (J/mol)
 return self.enth_mol_phase_comp["Vap", j] == \
 self.params.dh_form["Vap", j] + \
 ((self.params.cp_mol_vap_comp_coeff_E[j] / 5) *
 (self.temperature**5 -
 self.params.temperature_reference**5)
 + (self.params.cp_mol_vap_comp_coeff_D[j] / 4) *
 (self.temperature**4 -
 self.params.temperature_reference**4)
 + (self.params.cp_mol_vap_comp_coeff_C[j] / 3) *
 (self.temperature**3 -
 self.params.temperature_reference**3)
 + (self.params.cp_mol_vap_comp_coeff_B[j] / 2) *
 (self.temperature**2 -
 self.params.temperature_reference**2)
 + self.params.cp_mol_vap_comp_coeff_A[j] *
 (self.temperature -
 self.params.temperature_reference))

 def _entr_mol_phase(self):
 self.entr_mol_phase = Var(
 self.params.phase_list,
 doc="Phase molar specific enthropies [J/mol.K]",
 units=pyunits.J/pyunits.mol/pyunits.K)

 def rule_entr_mol_phase(self, p):
 return self.entr_mol_phase[p] == sum(
 self.entr_mol_phase_comp[p, i] *
 self.mole_frac_phase_comp[p, i]
 for i in self.params.component_list)
 self.eq_entr_mol_phase = Constraint(self.params.phase_list,
 rule=rule_entr_mol_phase)

 def _entr_mol_phase_comp(self):
 self.entr_mol_phase_comp = Var(
 self.params._phase_component_set,
 doc="Phase-component molar specific entropies [J/mol.K]",
 units=pyunits.J/pyunits.mol/pyunits.K)

 def rule_entr_mol_phase_comp(self, p, j):
 if p == "Vap":
 return self._entr_mol_comp_vap(j)
 else:
 return self._entr_mol_comp_liq(j)
 self.eq_entr_mol_phase_comp = Constraint(
 self.params._phase_component_set,
 rule=rule_entr_mol_phase_comp)

 def _entr_mol_comp_liq(self, j):
 # Liquid phase comp entropy (J/mol.K)
 # 1E3 conversion factor to convert from J/kmol.K to J/mol.K
 return self.entr_mol_phase_comp['Liq', j] == (
 self.params.ds_form["Liq", j] +
 pyunits.convert((
 (self.params.cp_mol_liq_comp_coeff_E[j] / 4) *
 (self.temperature**4 - self.params.temperature_reference**4)
 + (self.params.cp_mol_liq_comp_coeff_D[j] / 3) *
 (self.temperature**3 - self.params.temperature_reference**3)
 + (self.params.cp_mol_liq_comp_coeff_C[j] / 2) *
 (self.temperature**2 - self.params.temperature_reference**2)
 + self.params.cp_mol_liq_comp_coeff_B[j] *
 (self.temperature - self.params.temperature_reference)
 + self.params.cp_mol_liq_comp_coeff_A[j] *
 log(self.temperature / self.params.temperature_reference)),
 to_units=pyunits.J/pyunits.mol/pyunits.K))

 def _entr_mol_comp_vap(self, j):
 # component molar entropy of vapor phase
 return self.entr_mol_phase_comp["Vap", j] == (
 self.params.ds_form["Vap", j] +
 ((self.params.cp_mol_vap_comp_coeff_E[j] / 4) *
 (self.temperature**4 - self.params.temperature_reference**4)
 + (self.params.cp_mol_vap_comp_coeff_D[j] / 3) *
 (self.temperature**3 - self.params.temperature_reference**3)
 + (self.params.cp_mol_vap_comp_coeff_C[j] / 2) *
 (self.temperature**2 - self.params.temperature_reference**2)
 + self.params.cp_mol_vap_comp_coeff_B[j] *
 (self.temperature - self.params.temperature_reference)
 + self.params.cp_mol_vap_comp_coeff_A[j] *
 log(self.temperature / self.params.temperature_reference)) -
 const.gas_constant * log(self.mole_frac_phase_comp['Vap', j] *
 self.pressure /
 self.params.pressure_reference))

 def _gibbs_mol_phase_comp(self):
 self.gibbs_mol_phase_comp = Var(
 self.params._phase_component_set,
 doc="Phase-component molar specific Gibbs energies [J/mol]",
 units=pyunits.J/pyunits.mol)

 def rule_gibbs_mol_phase_comp(self, p, j):
 return self.gibbs_mol_phase_comp[p, j] == \
 self.enth_mol_phase_comp[p, j] - \
 self.temperature*self.entr_mol_phase_comp[p, j]
 self.eq_gibbs_mol_phase_comp = Constraint(
 self.params._phase_component_set,
 rule=rule_gibbs_mol_phase_comp)

[docs] def get_material_flow_terms(self, p, j):
 """Create material flow terms for control volume."""
 if (p == "Vap") and (j in self.params.component_list):
 if self.params.config.state_vars == "FTPz":
 return self.flow_mol_phase["Vap"] * \
 self.mole_frac_phase_comp["Vap", j]
 else:
 return self.flow_mol_phase_comp["Vap", j]
 elif (p == "Liq") and (j in self.params.component_list):
 if self.params.config.state_vars == "FTPz":
 return self.flow_mol_phase["Liq"] * \
 self.mole_frac_phase_comp["Liq", j]
 else:
 return self.flow_mol_phase_comp["Liq", j]
 else:
 return 0

[docs] def get_enthalpy_flow_terms(self, p):
 """Create enthalpy flow terms."""
 if p == "Vap":
 if self.params.config.state_vars == "FTPz":
 return self.flow_mol_phase["Vap"] * self.enth_mol_phase["Vap"]
 else:
 return sum(self.flow_mol_phase_comp["Vap", j]
 for j in self.params.component_list) * \
 self.enth_mol_phase["Vap"]
 elif p == "Liq":
 if self.params.config.state_vars == "FTPz":
 return self.flow_mol_phase["Liq"] * self.enth_mol_phase["Liq"]
 else:
 return sum(self.flow_mol_phase_comp["Liq", j]
 for j in self.params.component_list) * \
 self.enth_mol_phase["Liq"]

[docs] def get_material_density_terms(self, p, j):
 """Create material density terms."""
 if p == "Liq":
 if j in self.params.component_list:
 return self.density_mol[p]*self.mole_frac_phase_comp["Liq", j]
 else:
 return 0
 elif p == "Vap":
 if j in self.params.component_list:
 return self.density_mol[p]*self.mole_frac_phase_comp["Vap", j]
 else:
 return 0

[docs] def get_energy_density_terms(self, p):
 """Create enthalpy density terms."""
 if p == "Liq":
 return self.density_mol[p] * self.energy_internal_mol_phase["Liq"]
 elif p == "Vap":
 return self.density_mol[p] * self.energy_internal_mol_phase["Vap"]

[docs] def get_material_flow_basis(self):
 """Declare material flow basis."""
 return MaterialFlowBasis.molar

[docs] def define_state_vars(self):
 """Define state vars."""

 if self.params.config.state_vars == "FTPz":
 return {"flow_mol": self.flow_mol,
 "mole_frac_comp": self.mole_frac_comp,
 "temperature": self.temperature,
 "pressure": self.pressure}
 else:
 return {"flow_mol_comp": self.flow_mol_comp,
 "temperature": self.temperature,
 "pressure": self.pressure}

[docs] def model_check(blk):
 """Model checks for property block."""
 # Check temperature bounds
 if value(blk.temperature) < blk.temperature.lb:
 _log.error("{} Temperature set below lower bound."
 .format(blk.name))
 if value(blk.temperature) > blk.temperature.ub:
 _log.error("{} Temperature set above upper bound."
 .format(blk.name))

 # Check pressure bounds
 if value(blk.pressure) < blk.pressure.lb:
 _log.error("{} Pressure set below lower bound.".format(blk.name))
 if value(blk.pressure) > blk.pressure.ub:
 _log.error("{} Pressure set above upper bound.".format(blk.name))

Bubble and Dew Points
 def _temperature_bubble(self):
 self.temperature_bubble = Var(initialize=298.15,
 doc="Bubble point temperature (K)",
 units=pyunits.K)

 def rule_psat_bubble(m, j):
 return self.params.pressure_critical[j] * \
 exp((self.params.pressure_sat_coeff[j, "A"] *
 (1 - self.temperature_bubble /
 self.params.temperature_critical[j]) +
 self.params.pressure_sat_coeff[j, "B"] *
 (1 - self.temperature_bubble /
 self.params.temperature_critical[j])**1.5 +
 self.params.pressure_sat_coeff[j, "C"] *
 (1 - self.temperature_bubble /
 self.params.temperature_critical[j])**3 +
 self.params.pressure_sat_coeff[j, "D"] *
 (1 - self.temperature_bubble /
 self.params.temperature_critical[j])**6) /
 (1 - (1 - self.temperature_bubble /
 self.params.temperature_critical[j])))

 try:
 # Try to build expression
 self._p_sat_bubbleT = Expression(self.params.component_list,
 rule=rule_psat_bubble)

 def rule_temp_bubble(self):
 if self.config.parameters.config.activity_coeff_model == \
 "Ideal":

 return sum(self.mole_frac_comp[i] *
 self._p_sat_bubbleT[i]
 for i in self.params.component_list) - \
 self.pressure == 0
 elif self.config.parameters.config.\
 activity_coeff_model == "NRTL":
 # NRTL model variables
 def rule_Gij_coeff_bubble(self, i, j):
 if i != j:
 return exp(-self.params.alpha[i, j] * self.params.tau[i, j])
 else:
 return 1

 self.Gij_coeff_bubble = Expression(
 self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff_bubble)

 def rule_A_bubble(self, i):
 value_1 = sum(self.mole_frac_comp[j] *
 self.params.tau[j, i] *
 self.Gij_coeff_bubble[j, i]
 for j in self.params.component_list)
 value_2 = sum(self.mole_frac_comp[k] *
 self.Gij_coeff_bubble[k, i]
 for k in self.params.component_list)
 return value_1 / value_2
 self.A_bubble = Expression(self.params.component_list,
 rule=rule_A_bubble)

 def rule_B_bubble(self, i):
 value = sum(
 (self.mole_frac_comp[j] *
 self.Gij_coeff_bubble[i, j] /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_bubble[k, j]
 for k in self.params.component_list)) *
 (self.params.tau[i, j] - sum(
 self.mole_frac_comp[m] *
 self.params.tau[m, j] *
 self.Gij_coeff_bubble[m, j]
 for m in self.params.component_list) /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_bubble[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return value
 self.B_bubble = Expression(self.params.component_list,
 rule=rule_B_bubble)

 def rule_activity_coeff_bubble(self, i):
 return exp(self.A_bubble[i] + self.B_bubble[i])
 self.activity_coeff_comp_bubble = \
 Expression(self.params.component_list,
 rule=rule_activity_coeff_bubble)

 return sum(self.mole_frac_comp[i] *
 self.activity_coeff_comp_bubble[i] *
 self._p_sat_bubbleT[i]
 for i in self.params.component_list) - \
 self.pressure == 0
 else:
 def rule_Gij_coeff_bubble(self, i, j):
 if i != j:
 return (self.params.vol_mol_comp[i] /
 self.params.vol_mol_comp[j]) * \
 exp(-self.params.tau[i, j])
 else:
 return 1

 self.Gij_coeff_bubble = \
 Expression(self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff_bubble)

 def rule_A_bubble(self, i):
 value_1 = log(sum(
 self.mole_frac_comp[j] *
 self.Gij_coeff_bubble[j, i]
 for j in self.params.component_list))
 return value_1
 self.A_bubble = Expression(self.params.component_list,
 rule=rule_A_bubble)

 def rule_B_bubble(self, i):
 value = sum((self.mole_frac_comp[j] *
 self.Gij_coeff_bubble[i, j] /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_bubble[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return value
 self.B_bubble = Expression(self.params.component_list,
 rule=rule_B_bubble)

 def rule_activity_coeff_bubble(self, i):
 return exp(1 - self.A_bubble[i] - self.B_bubble[i])
 self.activity_coeff_comp_bubble = \
 Expression(self.params.component_list,
 rule=rule_activity_coeff_bubble)

 return sum(self.mole_frac_comp[i] *
 self.activity_coeff_comp_bubble[i] *
 self._p_sat_bubbleT[i]
 for i in self.params.component_list) - \
 self.pressure == 0
 self.eq_temperature_bubble = Constraint(rule=rule_temp_bubble)

 except AttributeError:
 # If expression fails, clean up so that DAE can try again later
 # Deleting only var/expression as expression construction will fail
 # first; if it passes then constraint construction will not fail.
 self.del_component(self.temperature_bubble)
 self.del_component(self._p_sat_bubbleT)

 def _temperature_dew(self):

 self.temperature_dew = Var(initialize=298.15,
 doc="Dew point temperature (K)",
 units=pyunits.K)

 def rule_psat_dew(m, j):
 return self.params.pressure_critical[j] * \
 exp((self.params.pressure_sat_coeff[j, "A"] *
 (1 - self.temperature_dew /
 self.params.temperature_critical[j]) +
 self.params.pressure_sat_coeff[j, "B"] *
 (1 - self.temperature_dew /
 self.params.temperature_critical[j])**1.5 +
 self.params.pressure_sat_coeff[j, "C"] *
 (1 - self.temperature_dew /
 self.params.temperature_critical[j])**3 +
 self.params.pressure_sat_coeff[j, "D"] *
 (1 - self.temperature_dew /
 self.params.temperature_critical[j])**6) /
 (1 - (1 - self.temperature_dew /
 self.params.temperature_critical[j])))

 try:
 # Try to build expression
 self._p_sat_dewT = Expression(self.params.component_list,
 rule=rule_psat_dew)

 def rule_temp_dew(self):
 if self.config.parameters.config.activity_coeff_model == \
 "Ideal":
 return self.pressure * \
 sum(self.mole_frac_comp[i] /
 self._p_sat_dewT[i]
 for i in self.params.component_list) - 1 == 0
 elif self.config.parameters.config.\
 activity_coeff_model == "NRTL":
 # NRTL model variables
 def rule_Gij_coeff_dew(self, i, j):
 if i != j:
 return exp(-self.params.alpha[i, j] * self.params.tau[i, j])
 else:
 return 1

 self.Gij_coeff_dew = Expression(
 self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff_dew)

 def rule_A_dew(self, i):
 value_1 = sum(self.mole_frac_comp[j] *
 self.params.tau[j, i] * self.Gij_coeff_dew[j, i]
 for j in self.params.component_list)
 value_2 = sum(self.mole_frac_comp[k] *
 self.Gij_coeff_dew[k, i]
 for k in self.params.component_list)
 return value_1 / value_2
 self.A_dew = Expression(self.params.component_list,
 rule=rule_A_dew)

 def rule_B_dew(self, i):
 value = sum(
 (self.mole_frac_comp[j] *
 self.Gij_coeff_dew[i, j] /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_dew[k, j]
 for k in self.params.component_list)) *
 (self.params.tau[i, j] - sum(
 self.mole_frac_comp[m] *
 self.params.tau[m, j] *
 self.Gij_coeff_dew[m, j]
 for m in self.params.component_list) /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_dew[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return value
 self.B_dew = Expression(self.params.component_list,
 rule=rule_B_dew)

 def rule_activity_coeff_dew(self, i):
 return exp(self.A_dew[i] + self.B_dew[i])
 self.activity_coeff_comp_dew = \
 Expression(self.params.component_list,
 rule=rule_activity_coeff_dew)

 return sum(self.mole_frac_comp[i] *
 self.pressure /
 (self.activity_coeff_comp[i] *
 self._p_sat_dewT[i])
 for i in self.params.component_list) - 1 == 0
 else:
 def rule_Gij_coeff_dew(self, i, j):
 if i != j:
 return (self.params.vol_mol_comp[i] /
 self.params.vol_mol_comp[j]) * \
 exp(-self.params.tau[i, j])
 else:
 return 1

 self.Gij_coeff_dew = \
 Expression(self.params.component_list,
 self.params.component_list,
 rule=rule_Gij_coeff_dew)

 def rule_A_dew(self, i):
 value_1 = log(sum(
 self.mole_frac_comp[j] *
 self.Gij_coeff_dew[j, i]
 for j in self.params.component_list))
 return value_1
 self.A_dew = Expression(self.params.component_list,
 rule=rule_A_dew)

 def rule_B_dew(self, i):
 value = sum((self.mole_frac_comp[j] *
 self.Gij_coeff_dew[i, j] /
 sum(self.mole_frac_comp[k] *
 self.Gij_coeff_dew[k, j]
 for k in self.params.component_list))
 for j in self.params.component_list)
 return value
 self.B_dew = Expression(self.params.component_list,
 rule=rule_B_dew)

 def rule_activity_coeff_dew(self, i):
 return exp(1 - self.A_dew[i] - self.B_dew[i])
 self.activity_coeff_comp_dew = \
 Expression(self.params.component_list,
 rule=rule_activity_coeff_dew)

 return sum(self.mole_frac_comp[i] *
 self.pressure /
 (self.activity_coeff_comp[i] *
 self._p_sat_dewT[i])
 for i in self.params.component_list) - 1 == 0
 self.eq_temperature_dew = Constraint(rule=rule_temp_dew)
 except AttributeError:
 # If expression fails, clean up so that DAE can try again later
 # Deleting only var/expression as expression construction will fail
 # first; if it passes then constraint construction will not fail.
 self.del_component(self.temperature_dew)
 self.del_component(self._p_sat_dewT)

 def default_material_balance_type(self):
 return MaterialBalanceType.componentTotal

 def default_energy_balance_type(self):
 return EnergyBalanceType.enthalpyTotal

 idaes.generic_models.properties.cubic_eos.cubic_prop_pack

 Source code for idaes.generic_models.properties.cubic_eos.cubic_prop_pack

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
General Cubic Equation of State property package with VLE calucations.
Cubic formulation and pure component property correlations from:
"The Properties of Gases and Liquids, 4th Edition", Reid, Prausnitz and Poling,
McGraw-Hill, 1987

Smooth Vapor-Liquid Equilibrium formulation from:
"A Smooth, Square Flash Formulation for Equation-Oriented Flowsheet
Optimization", Burgard et al., Proceedings of the 13 the International
Symposium on Process Systems Engineering – PSE 2018, July 1-5, 2018, San Diego

All results have been cross-referenced against other sources.
"""
Import Python libraries
import math
import os
from enum import Enum

Import Pyomo libraries
from pyomo.environ import (Constraint,
 exp,
 Expression,
 ExternalFunction,
 log,
 NonNegativeReals,
 SolverFactory,
 sqrt,
 Param,
 PositiveReals,
 value,
 Var,
 units as pyunits)
from pyomo.common.config import ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 MaterialFlowBasis,
 PhysicalParameterBlock,
 StateBlockData,
 StateBlock,
 MaterialBalanceType,
 EnergyBalanceType,
 LiquidPhase,
 VaporPhase)
from idaes.core.util.initialization import (solve_indexed_blocks,
 fix_state_vars,
 revert_state_vars)
from idaes.core.util.exceptions import BurntToast
from idaes.core.util.model_statistics import (degrees_of_freedom,
 number_activated_equalities)
from idaes.core.util.math import safe_log
from idaes import bin_directory
from idaes.core.util.constants import Constants as const
import idaes.logger as idaeslog
import idaes.core.util.scaling as iscale

Set up logger
_log = idaeslog.getLogger(__name__)

Set path to root finder .so file
_so = os.path.join(bin_directory, "cubic_roots.so")

def cubic_roots_available():
 """Make sure the compiled cubic root functions are available. Yes, in
 Windows the .so extention is still used.
 """
 return os.path.isfile(_so)

class CubicEoS(Enum):
 PR = 0
 SRK = 1

EoS_param = {
 CubicEoS.PR: {'u': 2, 'w': -1, 'omegaA': 0.45724, 'coeff_b': 0.07780},
 CubicEoS.SRK: {'u': 1, 'w': 0, 'omegaA': 0.42748, 'coeff_b': 0.08664}
 }

[docs]@declare_process_block_class("CubicParameterBlock")
class CubicParameterData(PhysicalParameterBlock):
 """
 General Property Parameter Block Class
 """
 # Config block for the _IdealStateBlock
 CONFIG = PhysicalParameterBlock.CONFIG()

 CONFIG.declare("valid_phase", ConfigValue(
 default=('Vap', 'Liq'),
 domain=In(['Liq', 'Vap', ('Vap', 'Liq'), ('Liq', 'Vap')]),
 description="Flag indicating the valid phase",
 doc="""Flag indicating the valid phase for a given set of
conditions, and thus corresponding constraints should be included,
default - ('Vap', 'Liq').
Valid values: {
'Liq' - Liquid only,
'Vap' - Vapor only,
('Vap', 'Liq') - Vapor-liquid equilibrium,
('Liq', 'Vap') - Vapor-liquid equilibrium,}"""))

[docs] def build(self):
 '''
 Callable method for Block construction.
 '''
 super(CubicParameterData, self).build()

 self._state_block_class = CubicStateBlock

 # Create Phase objects
 if self.config.valid_phase == ('Liq', 'Vap') or \
 self.config.valid_phase == ('Vap', 'Liq') or \
 self.config.valid_phase == 'Liq':
 self.Liq = LiquidPhase()

 if self.config.valid_phase == ('Liq', 'Vap') or \
 self.config.valid_phase == ('Vap', 'Liq') or \
 self.config.valid_phase == 'Vap':
 self.Vap = VaporPhase()

 self.set_default_scaling("flow_mol", 1e-3)
 self.set_default_scaling("mole_frac_comp", 10)
 self.set_default_scaling("temperature", 1e-1)
 self.set_default_scaling("temperature_dew", 1e-1)
 self.set_default_scaling("temperature_bubble", 1e-1)
 self.set_default_scaling("flow_mol_phase", 1e-2)
 self.set_default_scaling("dens_mol_phase", 1)
 self.set_default_scaling("dens_mass_phase", 1e-1)
 self.set_default_scaling("pressure", 1e-6)
 self.set_default_scaling("pressure_sat", 1e-6)
 self.set_default_scaling("pressure_dew", 1e-6)
 self.set_default_scaling("pressure_bubble", 1e-6)
 self.set_default_scaling("mole_frac_phase_comp", 10)
 self.set_default_scaling("enth_mol_phase", 1e-3, index="Liq")
 self.set_default_scaling("enth_mol_phase", 1e-4, index="Vap")
 self.set_default_scaling("enth_mol", 1e-3)
 self.set_default_scaling("entr_mol_phase", 1e-2)
 self.set_default_scaling("entr_mol", 1e-2)
 self.set_default_scaling("mw", 100)
 self.set_default_scaling("mw_phase", 100)
 self.set_default_scaling("fug_phase_comp", 1)
 self.set_default_scaling("fug_coeff_phase_comp", 1)
 self.set_default_scaling("gibbs_mol_phase", 1e-3)

[docs] @classmethod
 def define_metadata(cls, obj):
 """Define properties supported and units."""
 obj.add_properties(
 {'flow_mol': {'method': None, 'units': 'mol/s'},
 'mole_frac_comp': {'method': None, 'units': 'none'},
 'temperature': {'method': None, 'units': 'K'},
 'pressure': {'method': None, 'units': 'Pa'},
 'flow_mol_phase': {'method': None, 'units': 'mol/s'},
 'dens_mol_phase': {'method': '_dens_mol_phase',
 'units': 'mol/m^3'},
 'dens_mass_phase': {'method': '_dens_mass_phase',
 'units': 'kg/m^3'},
 'pressure_sat': {'method': '_pressure_sat', 'units': 'Pa'},
 'mole_frac_phase_comp': {'method': '_mole_frac_phase',
 'units': 'no unit'},
 'enth_mol_phase': {'method': '_enth_mol_phase',
 'units': 'J/mol'},
 'enth_mol': {'method': '_enth_mol', 'units': 'J/mol'},
 'entr_mol_phase': {'method': '_entr_mol_phase',
 'units': 'J/mol'},
 'entr_mol': {'method': '_entr_mol', 'units': 'J/mol.K'},
 'fug_phase_comp': {'method': '_fug_phase', 'units': 'Pa'},
 'fug_coeff_phase_comp': {'method': '_fug_coeff_phase',
 'units': '-'},
 'gibbs_mol_phase': {'method': '_gibbs_mol_phase',
 'units': 'J/mol'},
 'mw': {'method': '_mw', 'units': 'kg/mol'},
 'mw_phase': {'method': '_mw_phase', 'units': 'kg/mol'},
 'temperature_bubble': {'method': '_temperature_bubble',
 'units': 'K'},
 'temperature_dew': {'method': '_temperature_dew',
 'units': 'K'},
 'pressure_bubble': {'method': '_pressure_bubble',
 'units': 'Pa'},
 'pressure_dew': {'method': '_pressure_dew',
 'units': 'Pa'}})

 obj.add_default_units({'time': pyunits.s,
 'length': pyunits.m,
 'mass': pyunits.kg,
 'amount': pyunits.mol,
 'temperature': pyunits.K})

class _CubicStateBlock(StateBlock):
 """
 This Class contains methods which should be applied to Property Blocks as a
 whole, rather than individual elements of indexed Property Blocks.
 """

 def initialize(blk, state_args=None, state_vars_fixed=False,
 hold_state=False, outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-8}):
 """
 Initialization routine for property package.
 Keyword Arguments:
 state_args : Dictionary with initial guesses for the state vars
 chosen. Note that if this method is triggered
 through the control volume, and if initial guesses
 were not provided at the unit model level, the
 control volume passes the inlet values as initial
 guess. Expected keys in state_args dict are:
 * flow_mol
 * mole_frac_comp (dict with components as keys)
 * pressure
 * temperature
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default=None)
 state_vars_fixed: Flag to denote if state vars have already been
 fixed.
 - True - states have already been fixed and
 initialization does not need to worry
 about fixing and unfixing variables.
 - False - states have not been fixed. The state
 block will deal with fixing/unfixing.
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization (default=False).
 - True - states varaibles are not unfixed, and
 a dict of returned containing flags for
 which states were fixed during
 initialization.
 - False - state variables are unfixed after
 initialization by calling the
 relase_state method
 Returns:
 If hold_states is True, returns a dict containing flags for
 which states were fixed during initialization.
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="properties")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="properties")

 init_log.info('Starting initialization')

 # Deactivate the constraints specific for outlet block i.e.
 # when defined state is False
 for k in blk.keys():
 if blk[k].config.defined_state is False:
 blk[k].sum_mole_frac_out.deactivate()

 # Fix state variables if not already fixed
 if state_vars_fixed is False:
 flags = fix_state_vars(blk, state_args)

 else:
 # Check when the state vars are fixed already result in dof 0
 for k in blk.keys():
 if degrees_of_freedom(blk[k]) != 0:
 raise Exception("State vars fixed but degrees of freedom "
 "for state block is not zero during "
 "initialization.")
 # Set solver options
 if optarg is None:
 sopt = {'tol': 1e-8}
 else:
 sopt = optarg

 opt = SolverFactory('ipopt')
 opt.options = sopt

 # ---
 # If present, initialize bubble and dew point calculations
 # Antoine equation
 def antoine_P(b, j, T):
 return pyunits.convert_value(
 value(10**(b.params.antoine_coeff_A[j] -
 b.params.antoine_coeff_B[j] /
 (T + b.params.antoine_coeff_C[j]))),
 from_units=pyunits.bar,
 to_units=pyunits.Pa)

 # Bubble temperature initialization
 for k in blk.keys():
 if hasattr(blk[k], "_mole_frac_tbub"):
 Tbub0 = 0
 for j in blk[k].params.component_list:
 Tbub0 += value(
 blk[k].mole_frac_comp[j] *
 (blk[k].params.antoine_coeff_B[j] /
 (blk[k].params.antoine_coeff_A[j] -
 math.log10(value(pyunits.convert(
 blk[k].pressure, to_units=pyunits.bar)))) -
 blk[k].params.antoine_coeff_C[j]))

 err = 1
 counter = 0

 while err > 1e-2 and counter < 100:
 f = value(sum(antoine_P(blk[k], j, Tbub0) *
 blk[k].mole_frac_comp[j]
 for j in blk[k].params.component_list) -
 blk[k].pressure)
 df = value(sum(
 blk[k].mole_frac_comp[j] *
 blk[k].params.antoine_coeff_B[j] *
 math.log(10)*antoine_P(blk[k], j, Tbub0) /
 (Tbub0 + blk[k].params.antoine_coeff_C[j])**2
 for j in blk[k].params.component_list))

 if f/df > 20:
 Tbub1 = Tbub0 - 20
 elif f/df < -20:
 Tbub1 = Tbub0 + 20
 else:
 Tbub1 = Tbub0 - f/df

 err = abs(Tbub1 - Tbub0)
 Tbub0 = Tbub1
 counter += 1

 blk[k].temperature_bubble.value = Tbub0

 for j in blk[k].params.component_list:
 blk[k]._mole_frac_tbub[j].value = value(
 blk[k].mole_frac_comp[j] *
 antoine_P(blk[k], j, Tbub0) /
 blk[k].pressure)

 # Dew temperature initialization
 for k in blk.keys():
 if hasattr(blk[k], "_mole_frac_tdew"):
 Tdew0 = 0
 for j in blk[k].params.component_list:
 Tdew0 += value(
 blk[k].mole_frac_comp[j] *
 (blk[k].params.antoine_coeff_B[j] /
 (blk[k].params.antoine_coeff_A[j] -
 math.log10(value(pyunits.convert(
 blk[k].pressure, to_units=pyunits.bar)))) -
 blk[k].params.antoine_coeff_C[j]))

 err = 1
 counter = 0

 while err > 1e-2 and counter < 100:
 f = value(blk[k].pressure *
 sum(blk[k].mole_frac_comp[j] /
 antoine_P(blk[k], j, Tdew0)
 for j in blk[k].params.component_list) - 1)
 df = -value(blk[k].pressure*math.log(10) *
 sum(blk[k].mole_frac_comp[j] *
 blk[k].params.antoine_coeff_B[j] /
 ((Tdew0 +
 blk[k].params.antoine_coeff_C[j])**2 *
 antoine_P(blk[k], j, Tdew0))
 for j in blk[k].params.component_list))

 if f/df > 20:
 Tdew1 = Tdew0 - 20
 elif f/df < -20:
 Tdew1 = Tdew0 + 20
 else:
 Tdew1 = Tdew0 - f/df

 err = abs(Tdew1 - Tdew0)
 Tdew0 = Tdew1
 counter += 1

 blk[k].temperature_dew.value = Tdew0

 for j in blk[k].params.component_list:
 blk[k]._mole_frac_tdew[j].value = value(
 blk[k].mole_frac_comp[j]*blk[k].pressure /
 antoine_P(blk[k], j, Tdew0))

 # Bubble pressure initialization
 for k in blk.keys():
 if hasattr(blk[k], "_mole_frac_pbub"):
 blk[k].pressure_bubble.value = value(
 sum(blk[k].mole_frac_comp[j] *
 antoine_P(blk[k], j, blk[k].temperature)
 for j in blk[k].params.component_list))

 for j in blk[k].params.component_list:
 blk[k]._mole_frac_pbub[j].value = value(
 blk[k].mole_frac_comp[j] *
 antoine_P(blk[k], j, blk[k].temperature) /
 blk[k].pressure_bubble)

 blk[k].pressure_bubble.display()
 blk[k]._mole_frac_pbub.display()

 # Dew pressure initialization
 for k in blk.keys():
 if hasattr(blk[k], "_mole_frac_pdew"):
 blk[k].pressure_dew.value = value(
 sum(1/(blk[k].mole_frac_comp[j] /
 antoine_P(blk[k], j, blk[k].temperature))
 for j in blk[k].params.component_list))

 for j in blk[k].params.component_list:
 blk[k]._mole_frac_pdew[j].value = value(
 blk[k].mole_frac_comp[j]*blk[k].pressure_bubble /
 antoine_P(blk[k], j, blk[k].temperature))

 # Solve bubble and dew point constraints
 cons_count = 0
 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 # Deactivate all property constraints
 if c.local_name not in ("eq_pressure_dew",
 "eq_pressure_bubble",
 "eq_temperature_dew",
 "eq_temperature_bubble",
 "_sum_mole_frac_tbub",
 "_sum_mole_frac_tdew",
 "_sum_mole_frac_pbub",
 "_sum_mole_frac_pdew"):
 c.deactivate()
 cons_count += number_activated_equalities(blk[k])

 if cons_count > 0:
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 else:
 res = ""
 init_log.info("Dew and bubble point init complete {}.".format(
 idaeslog.condition(res))
)

 # ---
 # If flash, initialize T1 and Teq
 for k in blk.keys():
 if ((blk[k].params.config.valid_phase == ('Liq', 'Vap')) or
 (blk[k].params.config.valid_phase == ('Vap', 'Liq'))):
 blk[k]._t1.value = max(blk[k].temperature.value,
 blk[k].temperature_bubble.value)
 blk[k]._teq.value = min(blk[k]._t1.value,
 blk[k].temperature_dew.value)
 init_log.info("Equilibrium temperature init complete.")

 # ---
 # Initialize flow rates and compositions
 # TODO : This will need to be generalised more when we move to a
 # modular implementation
 for k in blk.keys():
 if blk[k].params.config.valid_phase == "Liq":
 blk[k].flow_mol_phase['Liq'].value = \
 blk[k].flow_mol.value

 for j in blk[k].params.component_list:
 blk[k].mole_frac_phase_comp['Liq', j].value = \
 blk[k].mole_frac_comp[j].value

 elif blk[k].params.config.valid_phase == "Vap":
 blk[k].flow_mol_phase['Vap'].value = \
 blk[k].flow_mol.value

 for j in blk[k].params.component_list:
 blk[k].mole_frac_phase_comp['Vap', j].value = \
 blk[k].mole_frac_comp[j].value

 else:
 if blk[k].temperature.value > blk[k].temperature_dew.value:
 # Pure vapour
 blk[k].flow_mol_phase["Vap"].value = blk[k].flow_mol.value
 blk[k].flow_mol_phase["Liq"].value = \
 1e-5*blk[k].flow_mol.value

 for j in blk[k].params.component_list:
 blk[k].mole_frac_phase_comp['Vap', j].value = \
 blk[k].mole_frac_comp[j].value
 blk[k].mole_frac_phase_comp['Liq', j].value = \
 blk[k]._mole_frac_tdew[j].value
 elif blk[k].temperature.value < \
 blk[k].temperature_bubble.value:
 # Pure liquid
 blk[k].flow_mol_phase["Vap"].value = \
 1e-5*blk[k].flow_mol.value
 blk[k].flow_mol_phase["Liq"].value = blk[k].flow_mol.value

 for j in blk[k].params.component_list:
 blk[k].mole_frac_phase_comp['Vap', j].value = \
 blk[k]._mole_frac_tbub[j].value
 blk[k].mole_frac_phase_comp['Liq', j].value = \
 blk[k].mole_frac_comp[j].value
 else:
 # Two-phase
 # Estimate vapor fraction from distance from Tbub and Tdew
 # Thanks to Rahul Gandhi for the method
 vapRatio = value((blk[k].temperature -
 blk[k].temperature_bubble) /
 (blk[k].temperature_dew -
 blk[k].temperature_bubble))

 blk[k].flow_mol_phase["Vap"].value = value(
 vapRatio*blk[k].flow_mol)
 blk[k].flow_mol_phase["Liq"].value = value(
 (1-vapRatio)*blk[k].flow_mol)

 # Initialize compositions using Rachford-Rice equation
 for j in blk[k].params.component_list:
 kfact = value(
 antoine_P(blk[k], j, blk[k].temperature.value) /
 blk[k].pressure)
 blk[k].mole_frac_phase_comp["Liq", j].value = value(
 blk[k].mole_frac_comp[j]/(1+vapRatio*(kfact-1)))
 blk[k].mole_frac_phase_comp["Vap", j].value = value(
 blk[k].mole_frac_phase_comp["Liq", j]*kfact)

 # ---
 # Solve phase equilibrium constraints
 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 # Activate equilibrium constraints
 if c.local_name in ("total_flow_balance",
 "component_flow_balances",
 "equilibrium_constraint",
 "sum_mole_frac",
 "_t1_constraint",
 "_teq_constraint"):
 c.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Phase equilibrium init: {}.".format(
 idaeslog.condition(results))
)

 # ---
 # Initialize other properties
 for k in blk.keys():
 for c in blk[k].component_objects(Constraint):
 # Activate all constraints except sum_mole_frac_out
 if c.local_name not in ("sum_mole_frac_out"):
 c.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 results = solve_indexed_blocks(opt, [blk], tee=slc.tee)
 init_log.info("Property init: {}.".format(
 idaeslog.condition(results))
)

 # ---
 if state_vars_fixed is False:
 if hold_state is True:
 return flags
 else:
 blk.release_state(flags, outlvl=outlvl)

 init_log.info("Initialization complete.")

 def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 '''
 Method to relase state variables fixed during initialization.
 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state=True.
 outlvl : sets output level of of logging
 '''
 for k in blk.keys():
 if not blk[k].config.defined_state:
 blk[k].sum_mole_frac_out.activate()

 if flags is None:
 return

 # Unfix state variables
 revert_state_vars(blk, flags)

 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="properties")
 init_log.info_high('States released.')

[docs]@declare_process_block_class("CubicStateBlock",
 block_class=_CubicStateBlock)
class CubicStateBlockData(StateBlockData):
 """An general property package for cubic equations of state with VLE."""

[docs] def build(self):
 """Callable method for Block construction."""
 super(CubicStateBlockData, self).build()

 # Add state variables
 self.flow_mol = Var(initialize=1.0,
 domain=NonNegativeReals,
 doc='Component molar flowrate [mol/s]',
 units=pyunits.mol/pyunits.s)
 self.mole_frac_comp = Var(
 self.params.component_list,
 bounds=(0, None),
 initialize=1/len(self.params.component_list),
 doc='Mixture mole fractions [-]')
 self.pressure = Var(initialize=101325,
 domain=NonNegativeReals,
 doc='State pressure [Pa]',
 units=pyunits.Pa)
 self.temperature = Var(initialize=298.15,
 domain=NonNegativeReals,
 doc='State temperature [K]',
 units=pyunits.K)

 # Add supporting variables
 self.flow_mol_phase = Var(self.params.phase_list,
 initialize=0.5,
 domain=NonNegativeReals,
 doc='Phase molar flow rates [mol/s]',
 units=pyunits.mol/pyunits.s)

 self.mole_frac_phase_comp = Var(
 self.params.phase_list,
 self.params.component_list,
 initialize=1/len(self.params.component_list),
 bounds=(0, None),
 doc='Phase mole fractions [-]')

 if self.params.config.valid_phase == "Liq":
 self._make_liq_phase_eq()
 elif self.params.config.valid_phase == "Vap":
 self._make_vap_phase_eq()
 elif ((self.params.config.valid_phase == ('Liq', 'Vap')) or
 (self.params.config.valid_phase == ('Vap', 'Liq'))):
 self._make_flash_eq()
 else:
 raise BurntToast("{} found unexpected value for valid_phases. "
 "Please contact the "
 "IDAES developers with this bug."
 .format(self.name))

 def _make_liq_phase_eq(self):
 # Add equilibrium temperature - in this case the state temperature
 self._teq = Expression(expr=self.temperature)

 # Add supporting equations for Cubic EoS
 self.common_cubic()

 def rule_total_mass_balance(b):
 return b.flow_mol_phase['Liq'] == b.flow_mol
 self.total_flow_balance = Constraint(rule=rule_total_mass_balance)

 def rule_comp_mass_balance(b, i):
 return b.mole_frac_comp[i] == b.mole_frac_phase_comp['Liq', i]
 self.component_flow_balances = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 if self.config.defined_state is False:
 # applied at outlet only
 self.sum_mole_frac_out = Constraint(
 expr=1 == sum(self.mole_frac_comp[i]
 for i in self.params.component_list))

 def _make_vap_phase_eq(self):
 # Add equilibrium temperature - in this case the state temperature
 self._teq = Expression(expr=self.temperature)

 # Add supporting equations for Cubic EoS
 self.common_cubic()

 def rule_total_mass_balance(b):
 return b.flow_mol_phase['Vap'] == b.flow_mol
 self.total_flow_balance = Constraint(rule=rule_total_mass_balance)

 def rule_comp_mass_balance(b, i):
 return b.mole_frac_comp[i] == b.mole_frac_phase_comp['Vap', i]
 self.component_flow_balances = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 if self.config.defined_state is False:
 # applied at outlet only
 self.sum_mole_frac_out = \
 Constraint(expr=1 == sum(self.mole_frac_comp[i]
 for i in self.params.component_list))

 def _make_flash_eq(self):
 """
 Implementation of smooth VLE formulation.
 See module header for reference.
 """
 def rule_total_mass_balance(b):
 return b.flow_mol_phase['Liq'] + \
 b.flow_mol_phase['Vap'] == b.flow_mol
 self.total_flow_balance = Constraint(rule=rule_total_mass_balance)

 def rule_comp_mass_balance(b, i):
 return b.flow_mol*b.mole_frac_comp[i] == \
 b.flow_mol_phase['Liq']*b.mole_frac_phase_comp['Liq', i] + \
 b.flow_mol_phase['Vap']*b.mole_frac_phase_comp['Vap', i]
 self.component_flow_balances = Constraint(self.params.component_list,
 rule=rule_comp_mass_balance)

 def rule_mole_frac(b):
 return sum(b.mole_frac_phase_comp['Liq', i]
 for i in b.params.component_list) -\
 sum(b.mole_frac_phase_comp['Vap', i]
 for i in b.params.component_list) == 0
 self.sum_mole_frac = Constraint(rule=rule_mole_frac)

 if self.config.defined_state is False:
 # applied at outlet only
 self.sum_mole_frac_out = \
 Constraint(expr=1 == sum(self.mole_frac_comp[i]
 for i in self.params.component_list))

 # Definition of equilibrium temperature for smooth VLE
 self._teq = Var(initialize=self.temperature.value,
 doc='Temperature for calculating phase equilibrium',
 units=pyunits.K)
 self._t1 = Var(initialize=self.temperature.value,
 doc='Intermediate temperature for calculating Teq',
 units=pyunits.K)

 self.eps_1 = Param(default=0.01,
 mutable=True,
 doc='Smoothing parameter for Teq',
 units=pyunits.K)
 self.eps_2 = Param(default=0.0005,
 mutable=True,
 doc='Smoothing parameter for Teq',
 units=pyunits.K)

 # Add supporting equations for Cubic EoS
 self.common_cubic()

 # PSE paper Eqn 13
 def rule_t1(b):
 return b._t1 == 0.5 * \
 (b.temperature + b.temperature_bubble +
 sqrt((b.temperature - b.temperature_bubble)**2 +
 b.eps_1**2))
 self._t1_constraint = Constraint(rule=rule_t1)

 # PSE paper Eqn 14
 # TODO : Add option for supercritical extension
 def rule_teq(b):
 return b._teq == 0.5 * (b._t1 + b.temperature_dew -
 sqrt((b._t1 - b.temperature_dew)**2 +
 b.eps_2**2))
 self._teq_constraint = Constraint(rule=rule_teq)

 def rule_tr_eq(b, i):
 return b._teq / b.params.temperature_crit[i]
 self._tr_eq = Expression(self.params.component_list,
 rule=rule_tr_eq,
 doc='Component reduced temperatures [-]')

 def rule_equilibrium(b, i):
 return (b._log_equilibrium_cubic("Vap", i) ==
 b._log_equilibrium_cubic("Liq", i))
 self.equilibrium_constraint = \
 Constraint(self.params.component_list, rule=rule_equilibrium)

Property Methods
 def _dens_mol_phase(self):
 self.dens_mol_phase = Var(self.params.phase_list,
 doc="Molar density [mol/m^3]",
 units=pyunits.mol/pyunits.m**3)

 def rule_dens_mol_phase(b, p):
 if p == 'Vap':
 return b._dens_mol_vap()
 else:
 return b._dens_mol_liq()
 self.eq_dens_mol_phase = Constraint(self.params.phase_list,
 rule=rule_dens_mol_phase)

 def _dens_mass_phase(self):
 self.dens_mass_phase = Var(self.params.phase_list,
 doc="Mass density [kg/m^3]",
 units=pyunits.kg/pyunits.m**3)

 def rule_dens_mass_phase(b, p):
 if p == 'Vap':
 return b._dens_mass_vap()
 else:
 return b._dens_mass_liq()
 self.eq_dens_mass_phase = Constraint(self.params.phase_list,
 rule=rule_dens_mass_phase)

 def _enth_mol_phase(self):
 self.enth_mol_phase = Var(
 self.params.phase_list,
 doc='Phase molar specific enthalpies [J/mol]',
 units=pyunits.J/pyunits.mol)

 def rule_enth_mol_phase(b, p):
 if p == "Vap":
 return b.enth_mol_phase[p] == b._enth_mol_vap()
 else:
 return b.enth_mol_phase[p] == b._enth_mol_liq()
 self.eq_enth_mol_phase = Constraint(self.params.phase_list,
 rule=rule_enth_mol_phase)

 def _enth_mol(self):
 self.enth_mol = Var(
 doc='Mixture molar specific enthalpies [J/mol]',
 units=pyunits.J/pyunits.mol)

 def rule_enth_mol(b):
 return b.enth_mol*b.flow_mol == sum(
 b.flow_mol_phase[p]*b.enth_mol_phase[p]
 for p in b.params.phase_list)
 self.eq_enth_mol = Constraint(rule=rule_enth_mol)

 def _entr_mol(self):
 self.entr_mol = Var(
 doc='Mixture molar specific entropies [J/mol.K]',
 units=pyunits.J/pyunits.mol/pyunits.K)

 def rule_entr_mol(b):
 return b.entr_mol*b.flow_mol == sum(
 b.flow_mol_phase[p]*b.entr_mol_phase[p]
 for p in b.params.phase_list)
 self.eq_entr_mol = Constraint(rule=rule_entr_mol)

 def _entr_mol_phase(self):
 self.entr_mol_phase = Var(
 self.params.phase_list,
 doc='Phase molar specific entropies [J/mol.K]',
 units=pyunits.J/pyunits.mol/pyunits.K)

 def rule_entr_mol_phase(b, p):
 if p == "Vap":
 return b.entr_mol_phase[p] == b._entr_mol_vap()
 else:
 return b.entr_mol_phase[p] == b._entr_mol_liq()
 self.eq_entr_mol_phase = Constraint(self.params.phase_list,
 rule=rule_entr_mol_phase)

 def _fug_phase(self):
 def rule_fug_phase(b, p, j):
 if p == 'Vap':
 return b._fug_vap(j)
 else:
 return b._fug_liq(j)
 self.fug_phase_comp = Expression(self.params.phase_list,
 self.params.component_list,
 rule=rule_fug_phase)

 def _fug_coeff_phase(self):
 def rule_fug_coeff_phase(b, p, j):
 if p == 'Vap':
 return b._fug_coeff_vap(j)
 else:
 return b._fug_coeff_liq(j)
 self.fug_coeff_phase_comp = Expression(self.params.phase_list,
 self.params.component_list,
 rule=rule_fug_coeff_phase)

 def _gibbs_mol_phase(self):
 self.gibbs_mol_phase = Var(
 self.params.phase_list,
 doc='Phase molar specific Gibbs energy [J/mol]',
 units=pyunits.J/pyunits.mol)

 def rule_gibbs_mol_phase(b, p):
 return b.gibbs_mol_phase[p] == (
 b.enth_mol_phase[p] - b.temperature*b.entr_mol_phase[p])
 self.eq_gibbs_mol_phase = Constraint(self.params.phase_list,
 rule=rule_gibbs_mol_phase)

 def _mw(self):
 def rule_mw(b):
 return sum(b.mw_phase[p] for p in b.params.phase_list)
 self.mw = Expression(rule=rule_mw)

 def _mw_phase(self):
 def rule_mw_phase(b, p):
 return sum(b.mole_frac_phase_comp[p, j]*b.params.mw_comp[j]
 for j in b.params.component_list)
 self.mw_phase = Expression(self.params.phase_list,
 rule=rule_mw_phase)

General Methods
[docs] def get_material_flow_terms(self, p, j):
 """Create material flow terms for control volume."""
 if not self.is_property_constructed("material_flow_terms"):
 try:
 def rule_material_flow_terms(b, p, j):
 return self.flow_mol_phase[p] * \
 self.mole_frac_phase_comp[p, j]
 self.material_flow_terms = Expression(
 self.params.phase_list,
 self.params.component_list,
 rule=rule_material_flow_terms
)
 except AttributeError:
 self.del_component(self.material_flow_terms)

 if j in self.params.component_list:
 return self.material_flow_terms[p, j]
 else:
 return 0

[docs] def get_enthalpy_flow_terms(self, p):
 """Create enthalpy flow terms."""
 if not self.is_property_constructed("enthalpy_flow_terms"):
 try:
 def rule_enthalpy_flow_terms(b, p):
 return self.flow_mol_phase[p] * self.enth_mol_phase[p]
 self.enthalpy_flow_terms = Expression(
 self.params.phase_list,
 rule=rule_enthalpy_flow_terms
)
 except AttributeError:
 self.del_component(self.enthalpy_flow_terms)
 return self.enthalpy_flow_terms[p]

[docs] def get_material_density_terms(self, p, j):
 """Create material density terms."""
 if not self.is_property_constructed("material_density_terms"):
 try:
 def rule_material_density_terms(b, p, j):
 return self.dens_mol_phase[p] * \
 self.mole_frac_phase_comp[p, j]
 self.material_density_terms = Expression(
 self.params.phase_list,
 self.params.component_list,
 rule=rule_material_density_terms
)
 except AttributeError:
 self.del_component(self.material_density_terms)

 if j in self.params.component_list:
 return self.material_density_terms[p, j]
 else:
 return 0

[docs] def get_energy_density_terms(self, p):
 """Create energy density terms."""
 if not self.is_property_constructed("energy_density_terms"):
 try:
 def rule_energy_density_terms(b, p):
 return self.dens_mol_phase[p] * self.enth_mol_phase[p]
 self.energy_density_terms = Expression(
 self.params.phase_list,
 rule=rule_energy_density_terms
)
 except AttributeError:
 self.del_component(self.energy_density_terms)
 return self.energy_density_terms[p]

 def default_material_balance_type(self):
 return MaterialBalanceType.componentTotal

 def default_energy_balance_type(self):
 return EnergyBalanceType.enthalpyTotal

[docs] def get_material_flow_basis(b):
 return MaterialFlowBasis.molar

[docs] def define_state_vars(self):
 """Define state vars."""
 return {"flow_mol": self.flow_mol,
 "mole_frac_comp": self.mole_frac_comp,
 "temperature": self.temperature,
 "pressure": self.pressure}

[docs] def define_display_vars(b):
 return {"Molar Flowrate": b.flow_mol,
 "Mole Fractions": b.mole_frac_comp,
 "Temperature": b.temperature,
 "Pressure": b.pressure}

[docs] def model_check(blk):
 """Model checks for property block."""
 # Check temperature bounds
 if value(blk.temperature) < blk.temperature.lb:
 _log.error('{} Temperature set below lower bound.'
 .format(blk.name))
 if value(blk.temperature) > blk.temperature.ub:
 _log.error('{} Temperature set above upper bound.'
 .format(blk.name))

 # Check pressure bounds
 if value(blk.pressure) < blk.pressure.lb:
 _log.error('{} Pressure set below lower bound.'.format(blk.name))
 if value(blk.pressure) > blk.pressure.ub:
 _log.error('{} Pressure set above upper bound.'.format(blk.name))

Bubble and Dew Points
 def _temperature_bubble(self):
 self.temperature_bubble = Var(
 doc="Bubble point temperature (K)",
 units=pyunits.K)

 self._mole_frac_tbub = Var(
 self.params.component_list,
 initialize=1/len(self.params.component_list),
 bounds=(0, None),
 doc="Vapor mole fractions at bubble point")

 self._sum_mole_frac_tbub = Constraint(
 expr=1e3 == 1e3*sum(self._mole_frac_tbub[j]
 for j in self.params.component_list))

 def rule_bubble_temp(b, j):
 return log(b.mole_frac_comp[j]) + log(b.bubble_temp_liq(j)) == \
 log(b._mole_frac_tbub[j]) + log(b.bubble_temp_vap(j))
 self.eq_temperature_bubble = Constraint(self.params.component_list,
 rule=rule_bubble_temp)

 def _temperature_dew(self):
 self.temperature_dew = Var(
 doc="Dew point temperature (K)",
 units=pyunits.K)

 self._mole_frac_tdew = Var(
 self.params.component_list,
 initialize=1/len(self.params.component_list),
 bounds=(0, None),
 doc="Liquid mole fractions at dew point")

 self._sum_mole_frac_tdew = Constraint(
 expr=1e3 == 1e3*sum(self._mole_frac_tdew[j]
 for j in self.params.component_list))

 def rule_dew_temp(b, j):
 return log(b._mole_frac_tdew[j]) + log(b.dew_temp_liq(j)) == \
 log(b.mole_frac_comp[j]) + log(b.dew_temp_vap(j))
 self.eq_temperature_dew = Constraint(self.params.component_list,
 rule=rule_dew_temp)

 def _pressure_bubble(self):
 self.pressure_bubble = Var(
 domain=PositiveReals,
 doc="Bubble point pressure (Pa)",
 units=pyunits.Pa)

 self._mole_frac_pbub = Var(
 self.params.component_list,
 initialize=1/len(self.params.component_list),
 bounds=(0, None),
 doc="Vapor mole fractions at bubble point")

 self._sum_mole_frac_pbub = Constraint(
 expr=1e3 == 1e3*sum(self._mole_frac_pbub[j]
 for j in self.params.component_list))

 def rule_bubble_pres(b, j):
 return log(b.mole_frac_comp[j]) + log(b.bubble_pres_liq(j)) == \
 log(b._mole_frac_pbub[j]) + log(b.bubble_pres_vap(j))
 self.eq_pressure_bubble = Constraint(self.params.component_list,
 rule=rule_bubble_pres)

 def _pressure_dew(self):
 self.pressure_dew = Var(
 domain=PositiveReals,
 doc="Dew point pressure (Pa)",
 units=pyunits.Pa)

 self._mole_frac_pdew = Var(
 self.params.component_list,
 initialize=1/len(self.params.component_list),
 bounds=(0, None),
 doc="Liquid mole fractions at dew point")

 self._sum_mole_frac_pdew = Constraint(
 expr=1 == sum(self._mole_frac_pdew[j]
 for j in self.params.component_list))

 def rule_dew_press(b, j):
 return log(b._mole_frac_pdew[j]) + log(b.dew_press_liq(j)) == \
 log(b.mole_frac_comp[j]) + log(b.dew_press_vap(j))
 self.eq_pressure_dew = Constraint(self.params.component_list,
 rule=rule_dew_press)

Liquid phase properties
 def _vol_mol_liq(b):
 return b._vol_mol_cubic("Liq")

 def _dens_mol_liq(b):
 return b._dens_mol_cubic("Liq")

 def _dens_mass_liq(b):
 return b._dens_mass_cubic("Liq")

 def _fug_liq(b, j):
 return b._fug_cubic("Liq", j)

 def _fug_coeff_liq(b, j):
 return b._fug_coeff_cubic("Liq", j)

 def _enth_mol_liq(b):
 return b._enth_mol_cubic("Liq")

 def _enth_mol_liq_ig(b):
 return b._enth_mol_ig("Liq")

 def _entr_mol_liq(b):
 return b._entr_mol_cubic("Liq")

 def _entr_mol_liq_ig(b):
 return b._entr_mol_ig("Liq")

 def bubble_temp_liq(b, j):
 def a(k):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[k])**2 /
 b.params.pressure_crit[k]) *
 ((1+b.fw[k]*(1-sqrt(b.temperature_bubble /
 b.params.temperature_crit[k])))**2))

 am = sum(sum(b.mole_frac_comp[i]*b.mole_frac_comp[j] *
 sqrt(a(i)*a(j))*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b.mole_frac_comp[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure/(const.gas_constant*b.temperature_bubble)**2
 B = bm*b.pressure/(const.gas_constant*b.temperature_bubble)

 delta = (2*sqrt(a(j))/am *
 sum(b.mole_frac_comp[i]*sqrt(a(i))*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_liq(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def dew_temp_liq(b, j):
 def a(k):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[k])**2 /
 b.params.pressure_crit[k]) *
 ((1+b.fw[k]*(1-sqrt(b.temperature_dew /
 b.params.temperature_crit[k])))**2))

 am = sum(sum(b._mole_frac_tdew[i]*b._mole_frac_tdew[j] *
 sqrt(a(i)*a(j))*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b._mole_frac_tdew[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure/(const.gas_constant*b.temperature_dew)**2
 B = bm*b.pressure/(const.gas_constant*b.temperature_dew)

 delta = (2*sqrt(a(j))/am *
 sum(b._mole_frac_tdew[i]*sqrt(a(i))*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_liq(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def bubble_pres_liq(b, j):
 am = sum(sum(b.mole_frac_comp[i]*b.mole_frac_comp[j] *
 sqrt(b.a[i]*b.a[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b.mole_frac_comp[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure_bubble/(const.gas_constant*b.temperature)**2
 B = bm*b.pressure_bubble/(const.gas_constant*b.temperature)

 delta = (2*sqrt(b.a[j])/am *
 sum(b.mole_frac_comp[i]*sqrt(b.a[i])*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_liq(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def dew_press_liq(b, j):
 am = sum(sum(b._mole_frac_pdew[i]*b._mole_frac_pdew[j] *
 sqrt(b.a[i]*b.a[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b._mole_frac_pdew[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure_dew/(const.gas_constant*b.temperature)**2
 B = bm*b.pressure_dew/(const.gas_constant*b.temperature)

 delta = (2*sqrt(b.a[j])/am *
 sum(b._mole_frac_pdew[i]*sqrt(b.a[i]) *
 (1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_liq(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

Vapour phase properties
 def _vol_mol_vap(b):
 return b._vol_mol_cubic("Vap")

 def _dens_mol_vap(b):
 return b._dens_mol_cubic("Vap")

 def _dens_mass_vap(b):
 return b._dens_mass_cubic("Vap")

 def _fug_vap(b, j):
 return b._fug_cubic("Vap", j)

 def _fug_coeff_vap(b, j):
 return b._fug_coeff_cubic("Vap", j)

 def _enth_mol_vap(b):
 return b._enth_mol_cubic("Vap")

 def _enth_mol_vap_ig(b):
 return b._enth_mol_ig("Vap")

 def _entr_mol_vap(b):
 return b._entr_mol_cubic("Vap")

 def _entr_mol_vap_ig(b):
 return b._entr_mol_ig("Vap")

 def bubble_temp_vap(b, j):
 def a(k):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[k])**2 /
 b.params.pressure_crit[k]) *
 ((1+b.fw[k]*(1-sqrt(b.temperature_bubble /
 b.params.temperature_crit[k])))**2))

 am = sum(sum(b._mole_frac_tbub[i]*b._mole_frac_tbub[j] *
 sqrt(a(i)*a(j))*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b._mole_frac_tbub[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure/(const.gas_constant*b.temperature_bubble)**2
 B = bm*b.pressure/(const.gas_constant*b.temperature_bubble)

 delta = (2*sqrt(a(j))/am *
 sum(b._mole_frac_tbub[i]*sqrt(a(i))*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_vap(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def dew_temp_vap(b, j):
 def a(k):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[k])**2 /
 b.params.pressure_crit[k]) *
 ((1+b.fw[k]*(1-sqrt(b.temperature_dew /
 b.params.temperature_crit[k])))**2))

 am = sum(sum(b.mole_frac_comp[i]*b.mole_frac_comp[j] *
 sqrt(a(i)*a(j))*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b.mole_frac_comp[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure/(const.gas_constant*b.temperature_dew)**2
 B = bm*b.pressure/(const.gas_constant*b.temperature_dew)

 delta = (2*sqrt(a(j))/am *
 sum(b.mole_frac_comp[i]*sqrt(a(i))*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_vap(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def bubble_pres_vap(b, j):
 am = sum(sum(b._mole_frac_pbub[i]*b._mole_frac_pbub[j] *
 sqrt(b.a[i]*b.a[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b._mole_frac_pbub[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure_bubble/(const.gas_constant*b.temperature)**2
 B = bm*b.pressure_bubble/(const.gas_constant*b.temperature)

 delta = (2*sqrt(b.a[j])/am *
 sum(b._mole_frac_pbub[i]*sqrt(b.a[i]) *
 (1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_vap(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

 def dew_press_vap(b, j):
 am = sum(sum(b.mole_frac_comp[i]*b.mole_frac_comp[j] *
 sqrt(b.a[i]*b.a[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 bm = sum(b.mole_frac_comp[i]*b.b[i] for i in b.params.component_list)

 A = am*b.pressure_dew/(const.gas_constant*b.temperature)**2
 B = bm*b.pressure_dew/(const.gas_constant*b.temperature)

 delta = (2*sqrt(b.a[j])/am *
 sum(b.mole_frac_comp[i]*sqrt(b.a[i])*(1-b.params.kappa[j, i])
 for i in b.params.component_list))

 Z = b.proc_Z_vap(b._ext_func_param, A, B)

 return exp((b.b[j]/bm*(Z-1)*(B*b.EoS_p) -
 safe_log(Z-B, eps=1e-6)*(B*b.EoS_p) +
 A*(b.b[j]/bm - delta) *
 safe_log((2*Z + B*(b.EoS_u + b.EoS_p)) /
 (2*Z + B*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (B*b.EoS_p))

Common Cubic Functions
All of these equations drawn from Properties of Gases and Liquids
Quantities appended with _eq represent calculations @ equilibrium temperature
 def common_cubic(blk):
 if hasattr(blk, "omegaA"):
 return

 blk.omegaA = EoS_param[blk.params.cubic_type]['omegaA']

 blk.EoS_Bc = EoS_param[blk.params.cubic_type]['coeff_b']
 blk.EoS_u = EoS_param[blk.params.cubic_type]['u']
 blk.EoS_w = EoS_param[blk.params.cubic_type]['w']
 blk.EoS_p = sqrt(blk.EoS_u**2 - 4*blk.EoS_w)

 # Create expressions for coefficients
 def func_fw(b, j):
 if b.params.cubic_type == CubicEoS.PR:
 return 0.37464 + 1.54226*b.params.omega[j] - \
 0.26992*b.params.omega[j]**2
 elif b.params.cubic_type == CubicEoS.SRK:
 return 0.48 + 1.574*b.params.omega[j] - \
 0.176*b.params.omega[j]**2
 else:
 raise BurntToast(
 "{} received unrecognised cubic type. This should "
 "never happen, so please contact the IDAES developers "
 "with this bug.".format(b.name))
 blk.fw = Param(blk.params.component_list,
 initialize=func_fw,
 doc='EoS S factor')

 def func_b(b, j):
 return b.EoS_Bc*const.gas_constant *\
 b.params.temperature_crit[j]/b.params.pressure_crit[j]
 blk.b = Param(blk.params.component_list,
 initialize=func_b,
 doc='Component b coefficient',
 units=pyunits.m**3/pyunits.mol)

 def func_a(b, j):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[j])**2 /
 b.params.pressure_crit[j]) *
 ((1+b.fw[j]*(1-sqrt(b.temperature /
 b.params.temperature_crit[j])))**2))
 blk.a = Expression(blk.params.component_list,
 rule=func_a,
 doc='Component a coefficient')

 def func_a_eq(b, j):
 return (b.omegaA*((const.gas_constant *
 b.params.temperature_crit[j])**2 /
 b.params.pressure_crit[j]) *
 ((1+b.fw[j]*(1-sqrt(b._teq /
 b.params.temperature_crit[j])))**2))
 blk._a_eq = Expression(blk.params.component_list,
 rule=func_a_eq,
 doc='Component a coefficient at Teq')

 def rule_am(b, p):
 return sum(sum(
 b.mole_frac_phase_comp[p, i]*b.mole_frac_phase_comp[p, j] *
 sqrt(b.a[i]*b.a[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 blk.am = Expression(blk.params.phase_list, rule=rule_am)

 def rule_am_eq(b, p):
 return sum(sum(
 b.mole_frac_phase_comp[p, i]*b.mole_frac_phase_comp[p, j] *
 sqrt(b._a_eq[i]*b._a_eq[j])*(1-b.params.kappa[i, j])
 for j in b.params.component_list)
 for i in b.params.component_list)
 blk._am_eq = Expression(blk.params.phase_list, rule=rule_am_eq)

 def rule_bm(b, p):
 return sum(b.mole_frac_phase_comp[p, i]*b.b[i]
 for i in b.params.component_list)
 blk.bm = Expression(blk.params.phase_list, rule=rule_bm)

 def rule_A(b, p):
 return (b.am[p]*b.pressure /
 (const.gas_constant*b.temperature)**2)
 blk.A = Expression(blk.params.phase_list, rule=rule_A)

 def rule_B(b, p):
 return (b.bm[p]*b.pressure /
 (const.gas_constant*b.temperature))
 blk.B = Expression(blk.params.phase_list, rule=rule_B)

 def rule_A_eq(b, p):
 return (b._am_eq[p]*b.pressure /
 (const.gas_constant*b._teq)**2)
 blk._A_eq = Expression(blk.params.phase_list, rule=rule_A_eq)

 def rule_B_eq(b, p):
 return (b.bm[p]*b.pressure /
 (const.gas_constant*b._teq))
 blk._B_eq = Expression(blk.params.phase_list, rule=rule_B_eq)

 blk.proc_Z_liq = ExternalFunction(
 library=_so,
 function="ceos_z_liq",
 units=pyunits.dimensionless,
 arg_units=[pyunits.dimensionless,
 pyunits.dimensionless,
 pyunits.dimensionless])
 blk.proc_Z_vap = ExternalFunction(
 library=_so,
 function="ceos_z_vap",
 units=pyunits.dimensionless,
 arg_units=[pyunits.dimensionless,
 pyunits.dimensionless,
 pyunits.dimensionless])
 blk.proc_Z_liq_x = ExternalFunction(
 library=_so,
 function="ceos_z_liq_extend",
 units=pyunits.dimensionless,
 arg_units=[pyunits.dimensionless,
 pyunits.dimensionless,
 pyunits.dimensionless])
 blk.proc_Z_vap_x = ExternalFunction(
 library=_so,
 function="ceos_z_vap_extend",
 units=pyunits.dimensionless,
 arg_units=[pyunits.dimensionless,
 pyunits.dimensionless,
 pyunits.dimensionless])

 def rule_delta(b, p, i):
 # See pg. 145 in Properties of Gases and Liquids
 return (2*sqrt(blk.a[i])/b.am[p] *
 sum(b.mole_frac_phase_comp[p, j]*sqrt(blk.a[j]) *
 (1-b.params.kappa[i, j])
 for j in b.params.component_list))
 blk.delta = Expression(blk.params.phase_list,
 blk.params.component_list,
 rule=rule_delta)

 def rule_delta_eq(b, p, i):
 # See pg. 145 in Properties of Gases and Liquids
 return (2*sqrt(blk._a_eq[i])/b._am_eq[p] *
 sum(b.mole_frac_phase_comp[p, j]*sqrt(blk._a_eq[j]) *
 (1-b.params.kappa[i, j])
 for j in b.params.component_list))
 blk._delta_eq = Expression(blk.params.phase_list,
 blk.params.component_list,
 rule=rule_delta_eq)

 def rule_dadT(b, p):
 # See pg. 102 in Properties of Gases and Liquids
 return -((const.gas_constant/2)*sqrt(b.omegaA) *
 sum(sum(b.mole_frac_phase_comp[p, i] *
 b.mole_frac_phase_comp[p, j] *
 (1-b.params.kappa[i, j]) *
 (b.fw[j]*sqrt(b.a[i] *
 b.params.temperature_crit[j] /
 b.params.pressure_crit[j]) +
 b.fw[i]*sqrt(b.a[j] *
 b.params.temperature_crit[i] /
 b.params.pressure_crit[i]))
 for j in b.params.component_list)
 for i in b.params.component_list) /
 sqrt(b.temperature))
 blk.dadT = Expression(blk.params.phase_list, rule=rule_dadT)

 blk._ext_func_param = Param(default=blk.params.cubic_type.value)

 def rule_compress_fact(b, p):
 if p == "Vap":
 return b.proc_Z_vap(b._ext_func_param, b.A[p], b.B[p])
 else:
 return b.proc_Z_liq(b._ext_func_param, b.A[p], b.B[p])
 blk.compress_fact_phase = Expression(blk.params.phase_list,
 rule=rule_compress_fact)

 def rule_compress_fact_eq(b, p):
 if p == "Vap":
 return b.proc_Z_vap(b._ext_func_param, b._A_eq[p], b._B_eq[p])
 else:
 return b.proc_Z_liq(b._ext_func_param, b._A_eq[p], b._B_eq[p])
 blk._compress_fact_eq = Expression(blk.params.phase_list,
 rule=rule_compress_fact_eq)

 def _vol_mol_cubic(b, p):
 return (b.pressure*b.vol_mol_phase[p] ==
 b.compress_fact_phase[p]*const.gas_constant*b.temperature)

 def _dens_mol_cubic(b, p):
 return b.pressure == (b.dens_mol_phase[p]*b.compress_fact_phase[p] *
 const.gas_constant*b.temperature)

 def _dens_mass_cubic(b, p):
 return b.dens_mass_phase[p] == b.dens_mol_phase[p]*b.mw_phase[p]

 def _fug_cubic(b, p, j):
 return b.mole_frac_phase_comp[p, j]*b.pressure * \
 b.fug_coeff_phase_comp[p, j]

 def _fug_coeff_cubic(b, p, j):
 # See pg. 145 in Properties of Gases and Liquids
 return exp((b.b[j]/b.bm[p]*(b.compress_fact_phase[p]-1) *
 (b.B[p]*b.EoS_p) -
 safe_log(b.compress_fact_phase[p]-b.B[p], eps=1e-6) *
 (b.B[p]*b.EoS_p) +
 b.A[p]*(b.b[j]/b.bm[p] - b.delta[p, j]) *
 safe_log((2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u + b.EoS_p)) /
 (2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (b.B[p]*b.EoS_p))

 def _log_equilibrium_cubic(b, p, j):
 # See pg. 145 in Properties of Gases and Liquids
 return ((b.b[j]/b.bm[p]*(b._compress_fact_eq[p]-1) *
 (b._B_eq[p]*b.EoS_p) -
 safe_log(b._compress_fact_eq[p]-b._B_eq[p], eps=1e-6) *
 (b._B_eq[p]*b.EoS_p) +
 b._A_eq[p]*(b.b[j]/b.bm[p] - b._delta_eq[p, j]) *
 safe_log((2*b._compress_fact_eq[p] +
 b._B_eq[p]*(b.EoS_u + b.EoS_p)) /
 (2*b._compress_fact_eq[p] +
 b._B_eq[p]*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (b._B_eq[p]*b.EoS_p) + log(b.mole_frac_phase_comp[p, j]))

 def _enth_mol_cubic(b, p):
 # Derived from equation on pg. 120 in Properties of Gases and Liquids
 return (((b.temperature*b.dadT[p] - b.am[p]) *
 safe_log((2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u+b.EoS_p)) /
 (2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u-b.EoS_p)), eps=1e-6) +
 const.gas_constant*b.temperature *
 (b.compress_fact_phase[p]-1)*b.bm[p]*b.EoS_p) /
 (b.bm[p]*b.EoS_p) + b._enth_mol_ig(p))

 def _enth_mol_ig(b, p):
 return sum(b.mole_frac_phase_comp[p, j] *
 (b._enth_mol_comp_ig(j) + b.params.enth_mol_form_ref[j])
 for j in b.params.component_list)

 def _entr_mol_cubic(b, p):
 # See pg. 102 in Properties of Gases and Liquids
 return ((const.gas_constant*safe_log(
 (b.compress_fact_phase[p]-b.B[p]) /
 b.compress_fact_phase[p], eps=1e-6)*b.bm[p]*b.EoS_p +
 const.gas_constant*safe_log(b.compress_fact_phase[p] *
 b.params.pressure_ref/b.pressure,
 eps=1e-6) *
 b.bm[p]*b.EoS_p +
 b.dadT[p]*safe_log((2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u + b.EoS_p)) /
 (2*b.compress_fact_phase[p] +
 b.B[p]*(b.EoS_u-b.EoS_p)), eps=1e-6)) /
 (b.bm[p]*b.EoS_p) + b._entr_mol_ig(p))

 def _entr_mol_ig(b, p):
 return sum(b.mole_frac_phase_comp[p, j] *
 (b._entr_mol_comp_ig(j) + b.params.entr_mol_form_ref[j])
 for j in b.params.component_list)

Pure component properties
 def _enth_mol_comp_ig(b, j):
 return (
 (b.params.cp_mol_ig_comp_coeff_4[j]/4) *
 (b.temperature**4-b.params.temperature_ref**4) +
 (b.params.cp_mol_ig_comp_coeff_3[j]/3) *
 (b.temperature**3-b.params.temperature_ref**3) +
 (b.params.cp_mol_ig_comp_coeff_2[j]/2) *
 (b.temperature**2-b.params.temperature_ref**2) +
 b.params.cp_mol_ig_comp_coeff_1[j] *
 (b.temperature-b.params.temperature_ref))

 def _entr_mol_comp_ig(b, j):
 return ((b.params.cp_mol_ig_comp_coeff_4[j]/3) *
 (b.temperature**3-b.params.temperature_ref**3) +
 (b.params.cp_mol_ig_comp_coeff_3[j]/2) *
 (b.temperature**2-b.params.temperature_ref**2) +
 b.params.cp_mol_ig_comp_coeff_2[j] *
 (b.temperature-b.params.temperature_ref) +
 b.params.cp_mol_ig_comp_coeff_1[j] *
 log(b.temperature/b.params.temperature_ref))

 def calculate_scaling_factors(self):
 # Get default scale factors and do caclulations from base classes
 super().calculate_scaling_factors()

 phases = self.params.config.valid_phase
 is_two_phase = len(phases) == 2 # possibly {Liq}, {Vap}, or {Liq, Vap}
 sf_flow = iscale.get_scaling_factor(
 self.flow_mol, default=1, warning=True)
 sf_T = iscale.get_scaling_factor(
 self.temperature, default=1, warning=True)
 sf_P = iscale.get_scaling_factor(
 self.pressure, default=1, warning=True)

 if self.is_property_constructed("_teq"):
 iscale.set_scaling_factor(self._teq, sf_T)
 if self.is_property_constructed("_teq_constraint"):
 iscale.constraint_scaling_transform(self._teq_constraint, sf_T)

 if self.is_property_constructed("_t1"):
 iscale.set_scaling_factor(self._t1, sf_T)
 if self.is_property_constructed("_t1_constraint"):
 iscale.constraint_scaling_transform(self._t1_constraint, sf_T)

 if self.is_property_constructed("_mole_frac_pdew"):
 iscale.set_scaling_factor(self._mole_frac_pdew, 1e3)
 iscale.constraint_scaling_transform(self._sum_mole_frac_pdew, 1e3)

 if self.is_property_constructed("total_flow_balance"):
 s = iscale.get_scaling_factor(
 self.flow_mol, default=1, warning=True)
 iscale.constraint_scaling_transform(self.total_flow_balance, s)

 if self.is_property_constructed("component_flow_balances"):
 for i, c in self.component_flow_balances.items():
 if is_two_phase:
 s = iscale.get_scaling_factor(
 self.mole_frac_comp[i], default=1, warning=True)
 s *= sf_flow
 iscale.constraint_scaling_transform(c, s)
 else:
 s = iscale.get_scaling_factor(
 self.mole_frac_comp[i], default=1, warning=True)
 iscale.constraint_scaling_transform(c, s)

 if self.is_property_constructed("dens_mol_phase"):
 for c in self.eq_dens_mol_phase.values():
 iscale.constraint_scaling_transform(c, sf_P)

 if self.is_property_constructed("dens_mass_phase"):
 for p, c in self.eq_dens_mass_phase.items():
 sf = iscale.get_scaling_factor(
 self.dens_mass_phase[p], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 if self.is_property_constructed("enth_mol_phase"):
 for p, c in self.eq_enth_mol_phase.items():
 sf = iscale.get_scaling_factor(
 self.enth_mol_phase[p], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 if self.is_property_constructed("enth_mol"):
 sf = iscale.get_scaling_factor(
 self.enth_mol, default=1, warning=True)
 sf *= sf_flow
 iscale.constraint_scaling_transform(self.eq_enth_mol, sf)

 if self.is_property_constructed("entr_mol_phase"):
 for p, c in self.eq_entr_mol_phase.items():
 sf = iscale.get_scaling_factor(
 self.entr_mol_phase[p], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 if self.is_property_constructed("entr_mol"):
 sf = iscale.get_scaling_factor(
 self.entr_mol, default=1, warning=True)
 sf *= sf_flow
 iscale.constraint_scaling_transform(self.eq_entr_mol, sf)

 if self.is_property_constructed("gibbs_mol_phase"):
 for p, c in self.eq_gibbs_mol_phase.items():
 sf = iscale.get_scaling_factor(
 self.gibbs_mol_phase[p], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 idaes.generic_models.properties.interrogator.properties_interrogator

 Source code for idaes.generic_models.properties.interrogator.properties_interrogator

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Tool to interrogate IDAES flowsheets and list the physical properties
required to simulate it.
"""
import sys

Import Pyomo libraries
from pyomo.environ import Set, Var

Import IDAES cores
from idaes.core import (declare_process_block_class,
 MaterialFlowBasis,
 PhysicalParameterBlock,
 StateBlockData,
 StateBlock,
 MaterialBalanceType,
 EnergyBalanceType,
 UnitModelBlockData,
 LiquidPhase,
 VaporPhase,
 Component)
import idaes.logger as idaeslog

Some more information about this module
__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("PropertyInterrogatorBlock")
class PropertyInterrogatorData(PhysicalParameterBlock):
 """
 Interrogator Parameter Block Class

 This class contains the methods and attributes for recording and displaying
 the properties requried by the flowsheet.
 """

[docs] def build(self):
 '''
 Callable method for Block construction.
 '''
 super(PropertyInterrogatorData, self).build()

 self._state_block_class = InterrogatorStateBlock

 # Phase objects
 # TODO : Allow users to define custom Phase obejcts/phase list
 self.Liq = LiquidPhase()
 self.Vap = VaporPhase()

 # Component objects
 self.A = Component()
 self.B = Component()

 # Set up dict to record property calls
 self.required_properties = {}

 # Dummy phase equilibrium definition so we can handle flash cases
 self.phase_equilibrium_idx = Set(initialize=[1])

 self.phase_equilibrium_list = \
 {1: ["A", ("Vap", "Liq")]}

[docs] def list_required_properties(self):
 """
 Method to list all thermophysical properties required by the flowsheet.

 Args:
 None

 Returns:
 A list of properties required
 """
 return list(self.required_properties)

[docs] def list_models_requiring_property(self, prop):
 """
 Method to list all models in the flowsheet requiring the given
 property.

 Args:
 prop : the property of interest

 Returns:
 A list of unit model names which require prop
 """
 try:
 return self.required_properties[prop]
 except KeyError:
 raise KeyError(
 "Property {} does not appear in required_properties. "
 "Please check the spelling of the property that you are "
 "interested in.".format(prop))

[docs] def list_properties_required_by_model(self, model):
 """
 Method to list all thermophysical properties required by a given unit
 model.

 Args:
 model : the unit model of interest. Can be given as either a model
 component or the unit name as a string

 Returns:
 A list of thermophysical properties required by model
 """
 prop_list = []
 if not isinstance(model, str):
 model = model.name

 for k, v in self.required_properties.items():
 if model in v:
 prop_list.append(k)

 if len(prop_list) < 1:
 raise ValueError(
 "Model {} does not appear in the flowsheet. Please check "
 "the spelling of the model provided.")
 else:
 return prop_list

[docs] def print_required_properties(self, ostream=None):
 """
 Method to print a summary of the thermophysical properties required by
 the flowsheet.

 Args:
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if ostream is None:
 ostream = sys.stdout

 # Write header
 max_str_length = 74
 tab = " "*4
 ostream.write("\n"+"="*max_str_length+"\n")
 ostream.write("Property Interrogator Summary"+"\n")
 ostream.write(
 "\n" +
 "The Flowsheet requires the following properties " +
 "(times required):" +
 "\n"+"\n")
 for k, v in self.required_properties.items():
 lead_str = tab + k
 trail_str = str(len(v))
 mid_str = " "*(max_str_length-len(lead_str)-len(trail_str))
 ostream.write(lead_str+mid_str+trail_str+"\n")
 ostream.write(
 "\n" +
 "Note: User constraints may require additional properties " +
 "which are not" + "\n" + "reported here." + "\n")

[docs] def print_models_requiring_property(self, prop, ostream=None):
 """
 Method to print a summary of the models in the flowsheet requiring a
 given property.

 Args:
 prop : the property of interest.
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if ostream is None:
 ostream = sys.stdout

 tab = " "*4

 ostream.write("\n")
 ostream.write(f"The following models in the Flowsheet "
 f"require {prop}:"+"\n")

 for m in self.required_properties[prop]:
 ostream.write(tab+m+"\n")

[docs] def print_properties_required_by_model(self, model, ostream=None):
 """
 Method to print a summary of the thermophysical properties required by
 a given unit model.

 Args:
 model : the unit model of interest.
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if not isinstance(model, str):
 model = model.name

 if ostream is None:
 ostream = sys.stdout

 tab = " "*4

 ostream.write("\n")
 ostream.write(f"The following properties are required by model "
 f"{model}:"+"\n")

 for m in self.list_properties_required_by_model(model):
 ostream.write(tab+m+"\n")

[docs] @classmethod
 def define_metadata(cls, obj):
 obj.add_default_units({'time': 's',
 'length': 'm',
 'mass': 'g',
 'amount': 'mol',
 'temperature': 'K',
 'energy': 'J',
 'holdup': 'mol'})

class _InterrogatorStateBlock(StateBlock):
 """
 This Class contains methods which should be applied to Property Blocks as a
 whole, rather than individual elements of indexed Property Blocks.
 """
 def initialize(blk, *args, **kwargs):
 '''
 Dummy initialization routine, This will raise an TypeError if a user
 tries to initialize a model using the Interrogator Property Package
 and tell them that the model cannot be solved.
 '''
 raise TypeError(
 "Models constructed using the Property Interrogator package "
 "cannot be used to solve a flowsheet. Please rebuild your "
 "flowsheet using a valid property package.")

@declare_process_block_class("InterrogatorStateBlock",
 block_class=_InterrogatorStateBlock)
class InterrogatorStateBlockData(StateBlockData):
 """
 A dummy state block for interrogating flowsheets and recording physical
 properties called for during construction.
 """

 def build(self):
 """
 Callable method for Block construction
 """
 super(InterrogatorStateBlockData, self).build()

 # Add dummy vars for building Ports and returning expressions
 self._dummy_var = Var(initialize=1)
 self._dummy_var_phase = Var(self.params.phase_list,
 initialize=1)
 self._dummy_var_comp = Var(self.params.component_list,
 initialize=1)
 self._dummy_var_phase_comp = Var(
 self.params.phase_list,
 self.params.component_list,
 initialize=1)

 # Define standard methods and log calls before returning dummy variable
 def get_material_flow_terms(self, p, j):
 self._log_call("material flow terms")
 return self._dummy_var

 def get_enthalpy_flow_terms(self, p):
 self._log_call("enthalpy flow terms")
 return self._dummy_var

 def get_material_density_terms(self, p, j):
 self._log_call("material density terms")
 return self._dummy_var

 def get_energy_density_terms(self, p):
 self._log_call("energy density terms")
 return self._dummy_var

 # Set default values for required attributes so construction doesn't fail
 def default_material_balance_type(self):
 return MaterialBalanceType.componentPhase

 def default_energy_balance_type(self):
 return EnergyBalanceType.enthalpyTotal

 def define_state_vars(b):
 return {"_dummy_var": b._dummy_var}

 def define_display_vars(b):
 raise TypeError(
 "Models constructed using the Property Interrogator package "
 "should not be used for report methods.")

 def get_material_flow_basis(b):
 return MaterialFlowBasis.molar

 def __getattr__(self, prop):
 """
 Overload getattr to log each call for an unknown attribute, assuming
 these are all properties.
 Then, return a dummy variable with the correct indexing set.
 """
 # Log call
 self._log_call(prop)

 # Return dummy var
 if prop.endswith("_phase_comp"):
 return self._dummy_var_phase_comp
 elif prop.endswith("_phase"):
 return self._dummy_var_phase
 elif prop.endswith("_comp"):
 return self._dummy_var_comp
 else:
 return self._dummy_var

 def _log_call(self, prop):
 """
 Method to log calls for properties in required_properties dict
 """
 # Get the required_properties dict from parameter block
 prop_dict = self.params.required_properties

 # Get name of parent unit to record in required_properties
 name = self._get_parent_unit_name()

 try:
 # If name is not listed for current property, add to list
 if name not in prop_dict[prop]:
 prop_dict[prop].append(name)
 except KeyError:
 # If a KeyError occurs, it means property has not been logged
 # before, so add new entry to dict
 prop_dict[prop] = [name]

 def _get_parent_unit_name(self):
 """
 Method to find the parent unit of the current StateBlock (if one
 exists) and return this so it can be logged as in required_properties.

 If current StateBlock has no parent unit, it is a stand-alone
 StateBlock, so log the name of this instead.
 """
 # Start with current block (i.e. a StateBlock)
 parent = self

 # Search up the parent tree until we find a UnitModel or top of tree
 while True:
 if isinstance(parent, UnitModelBlockData):
 # If parent is a UnitModel, we have found our target
 # Return parent name
 return parent.name
 else:
 if parent.parent_block() is None:
 # Check if the parent object has no parent, i.e. is top of
 # tree. If so, we are dealling with a stand-alone
 # StateBlock.
 # Return name of parent_component to strip indices
 return self.parent_component().name
 else:
 # Otherwise continue searching up tree
 parent = parent.parent_block()

 idaes.generic_models.properties.interrogator.reactions_interrogator

 Source code for idaes.generic_models.properties.interrogator.reactions_interrogator

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Tool to interrogate IDAES flowsheets and list the reaction properties
required to simulate it.
"""
import sys

Import Pyomo libraries
from pyomo.environ import Set, Var

Import IDAES cores
from idaes.core import (declare_process_block_class,
 MaterialFlowBasis,
 ReactionParameterBlock,
 ReactionBlockDataBase,
 ReactionBlockBase,
 UnitModelBlockData)
import idaes.logger as idaeslog

Some more information about this module
__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("ReactionInterrogatorBlock")
class ReactionInterrogatorData(ReactionParameterBlock):
 """
 Interrogator Parameter Block Class

 This class contains the methods and attributes for recording and displaying
 the reaction properties requried by the flowsheet.
 """

[docs] def build(self):
 '''
 Callable method for Block construction.
 '''
 super(ReactionInterrogatorData, self).build()

 self._reaction_block_class = InterrogatorReactionBlock

 # List of valid phases in property package
 # TODO : Allow users to define a phase list
 self.phase_list = Set(initialize=['Liq', 'Vap'])

 # Component list - a list of component identifiers
 self.component_list = Set(initialize=['A', 'B'])

 # Set up dict to record property calls
 self.required_properties = {}

 # Dummy reaction definition
 # Reaction Index
 self.rate_reaction_idx = Set(initialize=["R1"])

 # Reaction Stoichiometry
 self.rate_reaction_stoichiometry = {("R1", "Liq", "A"): -1,
 ("R1", "Liq", "B"): -1,
 ("R1", "Vap", "A"): 1,
 ("R1", "Vap", "B"): 1}

[docs] def list_required_properties(self):
 """
 Method to list all reaction properties required by the flowsheet.

 Args:
 None

 Returns:
 A list of properties required
 """
 return list(self.required_properties)

[docs] def list_models_requiring_property(self, prop):
 """
 Method to list all models in the flowsheet requiring the given
 property.

 Args:
 prop : the property of interest

 Returns:
 A list of unit model names which require prop
 """
 try:
 return self.required_properties[prop]
 except KeyError:
 raise KeyError(
 "Property {} does not appear in required_properties. "
 "Please check the spelling of the property that you are "
 "interested in.".format(prop))

[docs] def list_properties_required_by_model(self, model):
 """
 Method to list all reaction properties required by a given unit model.

 Args:
 model : the unit model of interest. Can be given as either a model
 component or the unit name as a string

 Returns:
 A list of reaction properties required by model
 """
 prop_list = []
 if not isinstance(model, str):
 model = model.name

 for k, v in self.required_properties.items():
 if model in v:
 prop_list.append(k)

 if len(prop_list) < 1:
 raise ValueError(
 "Model {} does not appear in the flowsheet. Please check "
 "the spelling of the model provided.")
 else:
 return prop_list

[docs] def print_required_properties(self, ostream=None):
 """
 Method to print a summary of the reaction properties required by the
 flowsheet.

 Args:
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if ostream is None:
 ostream = sys.stdout

 # Write header
 max_str_length = 74
 tab = " "*4
 ostream.write("\n"+"="*max_str_length+"\n")
 ostream.write("Reaction Property Interrogator Summary"+"\n")
 ostream.write(
 "\n" +
 "The Flowsheet requires the following reaction properties " +
 "(times required):" +
 "\n"+"\n")
 for k, v in self.required_properties.items():
 lead_str = tab + k
 trail_str = str(len(v))
 mid_str = " "*(max_str_length-len(lead_str)-len(trail_str))
 ostream.write(lead_str+mid_str+trail_str+"\n")
 ostream.write(
 "\n" +
 "Note: User constraints may require additional properties " +
 "which are not" + "\n" + "reported here." + "\n")

[docs] def print_models_requiring_property(self, prop, ostream=None):
 """
 Method to print a summary of the models in the flowsheet requiring a
 given property.

 Args:
 prop : the property of interest.
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if ostream is None:
 ostream = sys.stdout

 tab = " "*4

 ostream.write("\n")
 ostream.write(f"The following models in the Flowsheet "
 f"require {prop}:"+"\n")

 for m in self.required_properties[prop]:
 ostream.write(tab+m+"\n")

[docs] def print_properties_required_by_model(self, model, ostream=None):
 """
 Method to print a summary of the reaction properties required by
 a given unit model.

 Args:
 model : the unit model of interest.
 ostream : output stream to print to. If not provided will print to
 sys.stdout

 Returns:
 None
 """
 if not isinstance(model, str):
 model = model.name

 if ostream is None:
 ostream = sys.stdout

 tab = " "*4

 ostream.write("\n")
 ostream.write(f"The following reaction properties are required by "
 f"model {model}:"+"\n")

 for m in self.list_properties_required_by_model(model):
 ostream.write(tab+m+"\n")

[docs] @classmethod
 def define_metadata(cls, obj):
 obj.add_default_units({'time': 's',
 'length': 'm',
 'mass': 'g',
 'amount': 'mol',
 'temperature': 'K',
 'energy': 'J',
 'holdup': 'mol'})

class _InterrogatorReactionBlock(ReactionBlockBase):
 """
 This Class contains methods which should be applied to Reaction Blocks as a
 whole, rather than individual elements of indexed Reaction Blocks.
 """
 def initialize(blk, *args, **kwargs):
 '''
 Dummy initialization routine, This will raise an TypeError if a user
 tries to initialize a model using the Interrogator Reaction Package
 and tell them that the model cannot be solved.
 '''
 raise TypeError(
 "Models constructed using the Reaction Interrogator package "
 "cannot be used to solve a flowsheet. Please rebuild your "
 "flowsheet using a valid reaction package.")

@declare_process_block_class("InterrogatorReactionBlock",
 block_class=_InterrogatorReactionBlock)
class InterrogatorReactionBlockData(ReactionBlockDataBase):
 """
 A dummy reaction block for interrogating flowsheets and recording reaction
 properties called for during construction.
 """

 def build(self):
 """
 Callable method for Block construction
 """
 super(InterrogatorReactionBlockData, self).build()

 # Add dummy vars for returning expressions
 self._dummy_var = Var(initialize=1)
 self._dummy_var_phase = Var(self.params.phase_list,
 initialize=1)
 self._dummy_var_comp = Var(self.params.component_list,
 initialize=1)
 self._dummy_var_phase_comp = Var(
 self.params.phase_list,
 self.params.component_list,
 initialize=1)
 self._dummy_reaction_idx = Var(self.params.rate_reaction_idx,
 initialize=1)

 # Set default values for required attributes so construction doesn't fail
 def get_reaction_rate_basis(b):
 return MaterialFlowBasis.molar

 def __getattr__(self, prop):
 """
 Overload getattr to log each call for an unknown attribute, assuming
 these are all properties.
 Then, return a dummy variable with the correct indexing set.
 """
 # Log call
 self._log_call(prop)

 # Return dummy var
 if prop in ["reaction_rate", "dh_rxn"]:
 return self._dummy_reaction_idx
 elif prop.endswith("_phase_comp"):
 return self._dummy_var_phase_comp
 elif prop.endswith("_phase"):
 return self._dummy_var_phase
 elif prop.endswith("_comp"):
 return self._dummy_var_comp
 else:
 return self._dummy_var

 def _log_call(self, prop):
 """
 Method to log calls for properties in required_properties dict
 """
 # Get the required_properties dict from parameter block
 prop_dict = self.params.required_properties

 # Get name of parent unit to record in required_properties
 name = self._get_parent_unit_name()

 try:
 # If name is not listed for current property, add to list
 if name not in prop_dict[prop]:
 prop_dict[prop].append(name)
 except KeyError:
 # If a KeyError occurs, it means property has not been logged
 # before, so add new entry to dict
 prop_dict[prop] = [name]

 def _get_parent_unit_name(self):
 """
 Method to find the parent unit of the current StateBlock (if one
 exists) and return this so it can be logged as in required_properties.

 If current StateBlock has no parent unit, it is a stand-alone
 StateBlock, so log the name of this instead.
 """
 # Start with current block (i.e. a StateBlock)
 parent = self

 # Search up the parent tree until we find a UnitModel or top of tree
 while True:
 if isinstance(parent, UnitModelBlockData):
 # If parent is a UnitModel, we have found our target
 # Return parent name
 return parent.name
 else:
 if parent.parent_block() is None:
 # Check if the parent object has no parent, i.e. is top of
 # tree. If so, we are dealling with a stand-alone
 # StateBlock.
 # Return name of parent_component to strip indices
 return self.parent_component().name
 else:
 # Otherwise continue searching up tree
 parent = parent.parent_block()

 idaes.generic_models.unit_models.cstr

 Source code for idaes.generic_models.unit_models.cstr

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES CSTR model.
"""

Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.environ import Reference, Block, Var, Constraint

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block)
import idaes.core.util.unit_costing as costing

__author__ = "Andrew Lee, Vibhav Dabadghao"

[docs]@declare_process_block_class("CSTR")
class CSTRData(UnitModelBlockData):
 """
 Standard CSTR Unit Model Class
 """
 CONFIG = UnitModelBlockData.CONFIG()

 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("has_equilibrium_reactions", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Equilibrium reaction construction flag",
 doc="""Indicates whether terms for equilibrium controlled reactions
should be constructed,
default - True.
Valid values: {
True - include equilibrium reaction terms,
False - exclude equilibrium reaction terms.}"""))
 CONFIG.declare("has_phase_equilibrium", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium construction flag",
 doc="""Indicates whether terms for phase equilibrium should be
constructed,
default = False.
Valid values: {
True - include phase equilibrium terms
False - exclude phase equilibrium terms.}"""))
 CONFIG.declare("has_heat_of_reaction", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat of reaction term construction flag",
 doc="""Indicates whether terms for heat of reaction terms should be
constructed,
default - False.
Valid values: {
True - include heat of reaction terms,
False - exclude heat of reaction terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 CONFIG.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).
 Args:
 None
 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(CSTRData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 "reaction_package": self.config.reaction_package,
 "reaction_package_args": self.config.reaction_package_args})

 self.control_volume.add_geometry()

 self.control_volume.add_state_blocks(
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_reaction_blocks(
 has_equilibrium=self.config.has_equilibrium_reactions)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_rate_reactions=True,
 has_equilibrium_reactions=self.config.has_equilibrium_reactions,
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_of_reaction=self.config.has_heat_of_reaction,
 has_heat_transfer=self.config.has_heat_transfer)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 # Add object references
 self.volume = Reference(self.control_volume.volume[:])

 # Add CSTR performance equation
 @self.Constraint(self.flowsheet().config.time,
 self.config.reaction_package.rate_reaction_idx,
 doc="CSTR performance equation")
 def cstr_performance_eqn(b, t, r):
 return b.control_volume.rate_reaction_extent[t, r] == (
 b.volume[t] *
 b.control_volume.reactions[t].reaction_rate[r])

 # Set references to balance terms at unit level
 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[:])

 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[:])

 def _get_performance_contents(self, time_point=0):
 var_dict = {"Volume": self.volume[time_point]}
 if hasattr(self, "heat_duty"):
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]

 return {"vars": var_dict}

 def get_costing(self, year=None, module=costing, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year, module=module)

 self.costing = Block()
 units_meta = (self.config.property_package.get_metadata().
 get_derived_units)
 self.length = Var(initialize=1,
 units=units_meta('length'),
 doc='vessel length')
 self.diameter = Var(initialize=1,
 units=units_meta('length'),
 doc='vessel diameter')
 time = self.flowsheet().config.time.first()
 self.volume_eq = Constraint(expr=self.volume[time]
 == self.length*self.diameter)
 module.cstr_costing(self.costing, **kwargs)

 idaes.generic_models.unit_models.equilibrium_reactor

 Source code for idaes.generic_models.unit_models.equilibrium_reactor

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES Equilibrium Reactor model.
"""

Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.environ import Reference

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block)

__author__ = "Andrew Lee"

[docs]@declare_process_block_class("EquilibriumReactor")
class EquilibriumReactorData(UnitModelBlockData):
 """
 Standard Equilibrium Reactor Unit Model Class
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Equilibrium Reactors do not support dynamic behavior."""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Indicates whether holdup terms should be constructed or not.
default - False. Equilibrium reactors do not have defined volume, thus
this must be False."""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_rate_reactions", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Rate reaction construction flag",
 doc="""Indicates whether terms for rate controlled reactions
should be constructed, along with constraints equating these to zero,
default - True.
Valid values: {
True - include rate reaction terms,
False - exclude rate reaction terms.}"""))
 CONFIG.declare("has_equilibrium_reactions", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Equilibrium reaction construction flag",
 doc="""Indicates whether terms for equilibrium controlled reactions
should be constructed,
default - True.
Valid values: {
True - include equilibrium reaction terms,
False - exclude equilibrium reaction terms.}"""))
 CONFIG.declare("has_phase_equilibrium", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium term construction flag",
 doc="""Indicates whether terms for phase equilibrium should be
constructed, **default** - True.
Valid values: {
True - include phase equilibrium term,
False - exclude phase equlibirum terms.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_heat_of_reaction", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat of reaction term construction flag",
 doc="""Indicates whether terms for heat of reaction terms should be
constructed,
default - False.
Valid values: {
True - include heat of reaction terms,
False - exclude heat of reaction terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 CONFIG.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(EquilibriumReactorData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 "reaction_package": self.config.reaction_package,
 "reaction_package_args": self.config.reaction_package_args})

 # No need for control volume geometry

 self.control_volume.add_state_blocks(
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_reaction_blocks(
 has_equilibrium=self.config.has_equilibrium_reactions)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_rate_reactions=self.config.has_rate_reactions,
 has_equilibrium_reactions=self.config.has_equilibrium_reactions,
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_of_reaction=self.config.has_heat_of_reaction,
 has_heat_transfer=self.config.has_heat_transfer)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 if self.config.has_rate_reactions:
 # Add equilibrium reactor performance equation
 @self.Constraint(self.flowsheet().config.time,
 self.config.reaction_package.rate_reaction_idx,
 doc="Rate reaction equilibrium constraint")
 def rate_reaction_constraint(b, t, r):
 # Set kinetic reaction rates to zero
 return b.control_volume.reactions[t].reaction_rate[r] == 0

 # Set references to balance terms at unit level
 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[:])

 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[:])

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 if hasattr(self, "heat_duty"):
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]

 return {"vars": var_dict}

 idaes.generic_models.unit_models.feed

 Source code for idaes.generic_models.unit_models.feed

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES Feed block.
"""
Import Pyomo libraries
from pyomo.environ import Reference
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("Feed")
class FeedData(UnitModelBlockData):
 """
 Standard Feed Block Class
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Feed blocks are always steady-state."""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Feed blocks do not contain holdup, thus this must be False."""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(FeedData, self).build()

 # Add State Block
 self.properties = (
 self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties in feed",
 default={
 "defined_state": True,
 "has_phase_equilibrium": False,
 **self.config.property_package_args}))

 # Add references to all state vars
 s_vars = self.properties[
 self.flowsheet().config.time.first()].define_state_vars()
 for s in s_vars:
 l_name = s_vars[s].local_name
 if s_vars[s].is_indexed():
 slicer = self.properties[:].component(l_name)[...]
 else:
 slicer = self.properties[:].component(l_name)

 r = Reference(slicer)
 setattr(self, s, r)

 # Add outlet port
 self.add_port(name="outlet", block=self.properties, doc="Outlet Port")

[docs] def initialize(blk, state_args=None, outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 '''
 This method calls the initialization method of the state block.

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = None).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 '''
 # ---
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")

 if state_args is None:
 state_args = {}

 # Initialize state block
 blk.properties.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 **state_args)

 init_log.info('Initialization Complete.')

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {"Outlet": self.outlet},
 time_point=time_point)

 idaes.generic_models.unit_models.feed_flash

 Source code for idaes.generic_models.unit_models.feed_flash

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES Feed block with phase equilibrium.
"""
from enum import Enum

Import Pyomo libraries
from pyomo.environ import Reference
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.tables import create_stream_table_dataframe

__author__ = "Andrew Lee"

Enumerate options for material balances
class FlashType(Enum):
 isothermal = 1
 isenthalpic = 2

[docs]@declare_process_block_class("FeedFlash")
class FeedFlashData(UnitModelBlockData):
 """
 Standard Feed block with phase equilibrium
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Feed units do not support dynamic behavior."""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Feed units do not have defined volume, thus this must be
False."""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("flash_type", ConfigValue(
 default=FlashType.isothermal,
 domain=In(FlashType),
 description="Type of flash to perform",
 doc="""Indicates what type of flash operation should be used.
default - FlashType.isothermal.
Valid values: {
FlashType.isothermal - specify temperature,
FlashType.isenthalpic - specify enthalpy.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(FeedFlashData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args})

 # No need for control volume geometry

 self.control_volume.add_state_blocks(
 has_phase_equilibrium=True)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=True)

 # Add isothermal constraint
 if self.config.flash_type == FlashType.isothermal:
 @self.Constraint(self.flowsheet().config.time,
 doc="Isothermal constraint")
 def isothermal(b, t):
 return (b.control_volume.properties_in[t].temperature ==
 b.control_volume.properties_out[t].temperature)
 elif self.config.flash_type == FlashType.isenthalpic:
 @self.Constraint(self.flowsheet().config.time,
 doc="Isothermal constraint")
 def isenthalpic(b, t):
 cv = b.control_volume
 return (sum(cv.properties_in[t].get_enthalpy_flow_terms(p)
 for p in cv.properties_in[t].phase_list) ==
 sum(cv.properties_out[t].get_enthalpy_flow_terms(p)
 for p in cv.properties_in[t].phase_list))

 self.control_volume.add_momentum_balances(
 balance_type=MomentumBalanceType.pressureTotal)

 # Add references to all feed state vars
 s_vars = self.control_volume.properties_in[
 self.flowsheet().config.time.first()].define_state_vars()
 for s in s_vars:
 l_name = s_vars[s].local_name
 if s_vars[s].is_indexed():
 slicer = (
 self.control_volume.properties_in[:].component(l_name)[...])
 else:
 slicer = self.control_volume.properties_in[:].component(l_name)

 r = Reference(slicer)
 setattr(self, s, r)

 # Add Ports
 self.add_outlet_port()

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {"Outlet": self.outlet},
 time_point=time_point)

 idaes.generic_models.unit_models.flash

 Source code for idaes.generic_models.unit_models.flash

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES flash model.
"""
Import Python libraries
import logging
from pandas import DataFrame

Import Pyomo libraries
from pyomo.environ import Constraint, value, Reference, Var, Block
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.network import Port

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.generic_models.unit_models.separator import (Separator,
 SplittingType,
 EnergySplittingType)

from idaes.core.util.config import is_physical_parameter_block
import idaes.core.util.unit_costing as costing

__author__ = "Andrew Lee, Jaffer Ghouse"

Set up logger
logger = logging.getLogger('idaes.unit_model')

[docs]@declare_process_block_class("Flash")
class FlashData(UnitModelBlockData):
 """
 Standard Flash Unit Model Class
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Flash units do not support dynamic behavior."""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Indicates whether holdup terms should be constructed or not.
default - False. Flash units do not have defined volume, thus
this must be False."""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("energy_split_basis", ConfigValue(
 default=EnergySplittingType.equal_temperature,
 domain=EnergySplittingType,
 description="Type of constraint to write for energy splitting",
 doc="""Argument indicating basis to use for splitting energy this is
not used for when ideal_separation == True.
default - EnergySplittingType.equal_temperature.
Valid values: {
EnergySplittingType.equal_temperature - outlet temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal
inlet,
EnergySplittingType.enthalpy_split - apply split fractions to enthalpy
flows.}"""))
 CONFIG.declare("ideal_separation", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Ideal splitting flag",
 doc="""Argument indicating whether ideal splitting should be used.
Ideal splitting assumes perfect separation of material, and attempts to
avoid duplication of StateBlocks by directly partitioning outlet flows to
ports,
default - True.
Valid values: {
True - use ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True,
False - use explicit splitting equations with split fractions.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - True.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(FlashData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args})

 self.control_volume.add_state_blocks(
 has_phase_equilibrium=True)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=True)

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add Ports
 self.add_inlet_port()

 split_map = {}
 for p in self.control_volume.properties_in.phase_list:
 p_obj = self.config.property_package.get_phase(p)
 if p_obj.is_vapor_phase():
 # Vapor leaves through Vap outlet
 split_map[p] = "Vap"
 else:
 # All other phases leave through Liq outlet
 split_map[p] = "Liq"

 self.split = Separator(default={
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 "outlet_list": ["Vap", "Liq"],
 "split_basis": SplittingType.phaseFlow,
 "ideal_separation": self.config.ideal_separation,
 "ideal_split_map": split_map,
 "mixed_state_block": self.control_volume.properties_out,
 "has_phase_equilibrium": not self.config.ideal_separation,
 "energy_split_basis": self.config.energy_split_basis})
 if not self.config.ideal_separation:
 def split_frac_rule(b, t, o):
 return b.split.split_fraction[t, o, o] == 1
 self.split_fraction_eq = Constraint(self.flowsheet().config.time,
 self.split.outlet_idx,
 rule=split_frac_rule)

 self.vap_outlet = Port(extends=self.split.Vap)
 self.liq_outlet = Port(extends=self.split.Liq)

 # Add references
 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[:])
 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[:])

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 if hasattr(self, "heat_duty"):
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]

 return {"vars": var_dict}

 def _get_stream_table_contents(self, time_point=0):
 stream_attributes = {}

 for n, v in {"Inlet": "inlet",
 "Vapor Outlet": "vap_outlet",
 "Liquid Outlet": "liq_outlet"}.items():
 port_obj = getattr(self, v)

 stream_attributes[n] = {}

 for k in port_obj.vars:
 for i in port_obj.vars[k].keys():
 if isinstance(i, float):
 stream_attributes[n][k] = value(
 port_obj.vars[k][time_point])
 else:
 if len(i) == 2:
 kname = str(i[1])
 else:
 kname = str(i[1:])
 stream_attributes[n][k+" "+kname] = \
 value(port_obj.vars[k][time_point, i[1:]])

 return DataFrame.from_dict(stream_attributes, orient="columns")

 def get_costing(self, year=None, module=costing, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year, module=module)

 units_meta = \
 self.config.property_package.get_metadata().get_derived_units

 self.costing = Block()
 self.length = Var(initialize=1,
 doc='vessel length',
 units=units_meta('length'))
 self.diameter = Var(initialize=1,
 doc='vessel diameter',
 units=units_meta('length'))
 module.flash_costing(self.costing, **kwargs)

 idaes.generic_models.unit_models.gibbs_reactor

 Source code for idaes.generic_models.unit_models.gibbs_reactor

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES Gibbs reactor model.
"""
Import Pyomo libraries
from pyomo.environ import Constraint, Param, Reals, Reference, Var
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block, list_of_strings
from idaes.core.util.exceptions import ConfigurationError

__author__ = "Jinliang Ma, Andrew Lee"

[docs]@declare_process_block_class("GibbsReactor")
class GibbsReactorData(UnitModelBlockData):
 """
 Standard Gibbs Reactor Unit Model Class

 This model assume all possible reactions reach equilibrium such that the
 system partial molar Gibbs free energy is minimized.
 Since some species mole flow rate might be very small,
 the natural log of the species molar flow rate is used.
 Instead of specifying the system Gibbs free energy as an objective
 function, the equations for zero partial derivatives of the grand function
 with Lagrangian multiple terms with repect to product species mole flow
 rates and the multiples are specified as constraints.
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Gibbs reactors do not support dynamic models, thus this must be
False."""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag",
 doc="""Gibbs reactors do not have defined volume, thus this must be
False."""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("inert_species", ConfigValue(
 default=[],
 domain=list_of_strings,
 description="List of inert species",
 doc="List of species which do not take part in reactions."))

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(GibbsReactorData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args})

 self.control_volume.add_state_blocks(has_phase_equilibrium=False)

 # Validate list of inert species
 for i in self.config.inert_species:
 if i not in self.control_volume.properties_in.component_list:
 raise ConfigurationError(
 "{} invalid component in inert_species argument. {} is "
 "not in the property package component list."
 .format(self.name, i))

 self.control_volume.add_total_element_balances()

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 # Add performance equations
 # Add Lagrangian multiplier variables
 e_units = self.config.property_package.get_metadata(
).get_derived_units("energy_mole")
 self.lagrange_mult = Var(self.flowsheet().config.time,
 self.config.property_package.element_list,
 domain=Reals,
 initialize=100,
 doc="Lagrangian multipliers",
 units=e_units)

 # TODO : Remove this once sacling is properly implemented
 self.gibbs_scaling = Param(default=1, mutable=True)

 # Use Lagrangian multiple method to derive equations for Out_Fi
 # Use RT*lagrange as the Lagrangian multiple such that lagrange is in
 # a similar order of magnitude as log(Yi)

 @self.Constraint(self.flowsheet().config.time,
 self.control_volume.properties_in.phase_component_set,
 doc="Gibbs energy minimisation constraint")
 def gibbs_minimization(b, t, p, j):
 # Use natural log of species mole flow to avoid Pyomo solver
 # warnings of reaching infeasible point
 if j in self.config.inert_species:
 return Constraint.Skip
 return 0 == b.gibbs_scaling * (
 b.control_volume.properties_out[t].gibbs_mol_phase_comp[p, j] +
 sum(b.lagrange_mult[t, e] *
 b.control_volume.properties_out[t].
 config.parameters.element_comp[j][e]
 for e in b.config.property_package.element_list))

 if len(self.config.inert_species) > 0:
 @self.Constraint(self.flowsheet().config.time,
 self.control_volume.properties_in.phase_list,
 self.config.inert_species,
 doc="Inert species balances")
 def inert_species_balance(b, t, p, j):
 # Add species balances for inert components
 cv = b.control_volume
 e_comp = cv.properties_out[t].config.parameters.element_comp

 # Check for linear dependence with element balances
 # If an inert species is the only source of element e,
 # the inert species balance would be linearly dependent on the
 # element balance for e.
 dependent = True

 if len(self.control_volume.properties_in.phase_list) > 1:
 # Multiple phases avoid linear dependency
 dependent = False
 else:
 for e in self.config.property_package.element_list:
 if e_comp[j][e] == 0:
 # Element e not in component j, no effect
 continue
 else:
 for i in self.control_volume.properties_in.component_list:
 if i == j:
 continue
 else:
 # If comp j shares element e with comp i
 # cannot be linearly dependent
 if e_comp[i][e] != 0:
 dependent = False

 if (not dependent and (p, j) in
 self.control_volume.properties_in.phase_component_set):
 return 0 == (
 cv.properties_in[t].get_material_flow_terms(p, j) -
 cv.properties_out[t].get_material_flow_terms(p, j))
 else:
 return Constraint.Skip

 # Set references to balance terms at unit level
 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[:])
 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[:])

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 if hasattr(self, "heat_duty"):
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]

 return {"vars": var_dict}

 idaes.generic_models.unit_models.heat_exchanger

 Source code for idaes.generic_models.unit_models.heat_exchanger

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Heat Exchanger Models.
"""

__author__ = "John Eslick"

from enum import Enum

Import Pyomo libraries
from pyomo.environ import (
 Var,
 log,
 Reference,
 PositiveReals,
 SolverFactory,
 ExternalFunction,
 Block,
 units as pyunits
)
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (
 declare_process_block_class,
 UnitModelBlockData,
)

import idaes.logger as idaeslog
from idaes.core.util.functions import functions_lib
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.generic_models.unit_models.heater import (
 _make_heater_config_block,
 _make_heater_control_volume,
)

import idaes.core.util.unit_costing as costing
from idaes.core.util.misc import add_object_reference
from idaes.core.util import scaling as iscale
from idaes.core.util.exceptions import ConfigurationError

_log = idaeslog.getLogger(__name__)

class HeatExchangerFlowPattern(Enum):
 countercurrent = 1
 cocurrent = 2
 crossflow = 3

def _make_heat_exchanger_config(config):
 """
 Declare configuration options for HeatExchangerData block.
 """
 config.declare(
 "hot_side_name",
 ConfigValue(
 default="shell",
 domain=str,
 doc="Hot side name, sets control volume and inlet and outlet names",
),
)
 config.declare(
 "cold_side_name",
 ConfigValue(
 default="tube",
 domain=str,
 doc="Cold side name, sets control volume and inlet and outlet names",
),
)
 config.declare(
 "hot_side_config",
 ConfigBlock(
 implicit=True,
 description="Config block for hot side",
 doc="""A config block used to construct the hot side control volume.
This config can be given by the hot side name instead of hot_side_config.""",
),
)
 config.declare(
 "cold_side_config",
 ConfigBlock(
 implicit=True,
 description="Config block for cold side",
 doc="""A config block used to construct the cold side control volume.
This config can be given by the cold side name instead of cold_side_config.""",
),
)
 _make_heater_config_block(config.hot_side_config)
 _make_heater_config_block(config.cold_side_config)
 config.declare(
 "delta_temperature_callback",
 ConfigValue(
 default=delta_temperature_lmtd_callback,
 description="Callback for for temperature difference calculations",
),
)
 config.declare(
 "flow_pattern",
 ConfigValue(
 default=HeatExchangerFlowPattern.countercurrent,
 domain=In(HeatExchangerFlowPattern),
 description="Heat exchanger flow pattern",
 doc="""Heat exchanger flow pattern,
default - HeatExchangerFlowPattern.countercurrent.
Valid values: {
HeatExchangerFlowPattern.countercurrent - countercurrent flow,
HeatExchangerFlowPattern.cocurrent - cocurrent flow,
HeatExchangerFlowPattern.crossflow - cross flow, factor times
countercurrent temperature difference.}""",
),
)

[docs]def delta_temperature_lmtd_callback(b):
 """
 This is a callback for a temperature difference expression to calculate
 :math:`\Delta T` in the heat exchanger model using log-mean temperature
 difference (LMTD). It can be supplied to "delta_temperature_callback"
 HeatExchanger configuration option.
 """
 dT1 = b.delta_temperature_in
 dT2 = b.delta_temperature_out

 @b.Expression(b.flowsheet().config.time)
 def delta_temperature(b, t):
 return (dT1[t] - dT2[t]) / log(dT1[t] / dT2[t])

[docs]def delta_temperature_amtd_callback(b):
 """
 This is a callback for a temperature difference expression to calculate
 :math:`\Delta T` in the heat exchanger model using arithmetic-mean
 temperature difference (AMTD). It can be supplied to
 "delta_temperature_callback" HeatExchanger configuration option.
 """
 dT1 = b.delta_temperature_in
 dT2 = b.delta_temperature_out

 @b.Expression(b.flowsheet().config.time)
 def delta_temperature(b, t):
 return (dT1[t] + dT2[t]) * 0.5

[docs]def delta_temperature_underwood_callback(b):
 """
 This is a callback for a temperature difference expression to calculate
 :math:`\Delta T` in the heat exchanger model using log-mean temperature
 difference (LMTD) approximation given by Underwood (1970). It can be
 supplied to "delta_temperature_callback" HeatExchanger configuration option.
 This uses a cube root function that works with negative numbers returning
 the real negative root. This should always evaluate successfully.
 """
 dT1 = b.delta_temperature_in
 dT2 = b.delta_temperature_out
 temp_units = pyunits.get_units(dT1)

 # external function that ruturns the real root, for the cuberoot of negitive
 # numbers, so it will return without error for positive and negitive dT.
 b.cbrt = ExternalFunction(
 library=functions_lib(),
 function="cbrt",
 arg_units=[temp_units])

 @b.Expression(b.flowsheet().config.time)
 def delta_temperature(b, t):
 return ((b.cbrt(dT1[t]) + b.cbrt(dT2[t])) / 2.0) ** 3 * temp_units

[docs]@declare_process_block_class("HeatExchanger", doc="Simple 0D heat exchanger model.")
class HeatExchangerData(UnitModelBlockData):
 """
 Simple 0D heat exchange unit.
 Unit model to transfer heat from one material to another.
 """

 CONFIG = UnitModelBlockData.CONFIG(implicit=True)
 _make_heat_exchanger_config(CONFIG)

 def _process_config(self):
 """Check for configuration errors and alternate config option names.
 """
 config = self.config

 if config.hot_side_name == config.cold_side_name:
 raise NameError(
 "Heatexchanger hot and cold side cannot have the same name '{}'."
 " Be sure to set both the hot_side_name and cold_side_name.".format(
 config.hot_side_name
)
)

 for o in config:
 if not (
 o in self.CONFIG or o in [config.hot_side_name, config.cold_side_name]
):
 raise KeyError("Heatexchanger config option {} not defined".format(o))

 if config.hot_side_name in config:
 config.hot_side_config.set_value(config[config.hot_side_name])
 # Allow access to hot_side_config under the hot_side_name, backward
 # compatible with the tube and shell notation
 setattr(config, config.hot_side_name, config.hot_side_config)
 if config.cold_side_name in config:
 config.cold_side_config.set_value(config[config.cold_side_name])
 # Allow access to hot_side_config under the cold_side_name, backward
 # compatible with the tube and shell notation
 setattr(config, config.cold_side_name, config.cold_side_config)

 if config.cold_side_name in ["hot_side", "side_1"]:
 raise ConfigurationError("Cold side name cannot be in ['hot_side', 'side_1'].")
 if config.hot_side_name in ["cold_side", "side_2"]:
 raise ConfigurationError("Hot side name cannot be in ['cold_side', 'side_2'].")

[docs] def build(self):
 """
 Building model

 Args:
 None
 Returns:
 None
 """
 ##
 # Call UnitModel.build to setup dynamics and configure #
 ##
 super().build()
 self._process_config()
 config = self.config

 ##
 # Add control volumes #
 ##
 hot_side = _make_heater_control_volume(
 self,
 config.hot_side_name,
 config.hot_side_config,
 dynamic=config.dynamic,
 has_holdup=config.has_holdup,
)
 cold_side = _make_heater_control_volume(
 self,
 config.cold_side_name,
 config.cold_side_config,
 dynamic=config.dynamic,
 has_holdup=config.has_holdup,
)
 # Add references to the hot side and cold side, so that we have solid
 # names to refer to internally. side_1 and side_2 also maintain
 # compatability with older models. Using add_object_reference keeps
 # these from showing up when you iterate through pyomo compoents in a
 # model, so only the user specified control volume names are "seen"
 if not hasattr(self, "side_1"):
 add_object_reference(self, "side_1", hot_side)
 if not hasattr(self, "side_2"):
 add_object_reference(self, "side_2", cold_side)
 if not hasattr(self, "hot_side"):
 add_object_reference(self, "hot_side", hot_side)
 if not hasattr(self, "cold_side"):
 add_object_reference(self, "cold_side", cold_side)

 ##
 # Add variables #
 ##
 # Use hot side units as basis
 s1_metadata = config.hot_side_config.property_package.get_metadata()

 q_units = s1_metadata.get_derived_units("power")
 u_units = s1_metadata.get_derived_units("heat_transfer_coefficient")
 a_units = s1_metadata.get_derived_units("area")
 temp_units = s1_metadata.get_derived_units("temperature")

 u = self.overall_heat_transfer_coefficient = Var(
 self.flowsheet().config.time,
 domain=PositiveReals,
 initialize=100.0,
 doc="Overall heat transfer coefficient",
 units=u_units
)
 a = self.area = Var(
 domain=PositiveReals,
 initialize=1000.0,
 doc="Heat exchange area",
 units=a_units
)
 self.delta_temperature_in = Var(
 self.flowsheet().config.time,
 initialize=10.0,
 doc="Temperature difference at the hot inlet end",
 units=temp_units
)
 self.delta_temperature_out = Var(
 self.flowsheet().config.time,
 initialize=10.1,
 doc="Temperature difference at the hot outlet end",
 units=temp_units
)
 if self.config.flow_pattern == HeatExchangerFlowPattern.crossflow:
 self.crossflow_factor = Var(
 self.flowsheet().config.time,
 initialize=1.0,
 doc="Factor to adjust coutercurrent flow heat "
 "transfer calculation for cross flow.",
)
 f = self.crossflow_factor

 self.heat_duty = Reference(cold_side.heat)
 ##
 # Add ports #
 ##
 i1 = self.add_inlet_port(
 name=f"{config.hot_side_name}_inlet",
 block=hot_side,
 doc="Hot side inlet")
 i2 = self.add_inlet_port(
 name=f"{config.cold_side_name}_inlet",
 block=cold_side,
 doc="Cold side inlet")
 o1 = self.add_outlet_port(
 name=f"{config.hot_side_name}_outlet",
 block=hot_side,
 doc="Hot side outlet")
 o2 = self.add_outlet_port(
 name=f"{config.cold_side_name}_outlet",
 block=cold_side,
 doc="Cold side outlet")

 # Using Andrew's function for now. I want these port names for backward
 # compatablity, but I don't want them to appear if you iterate throught
 # components and add_object_reference hides them from Pyomo.
 if not hasattr(self, "inlet_1"):
 add_object_reference(self, "inlet_1", i1)
 if not hasattr(self, "inlet_2"):
 add_object_reference(self, "inlet_2", i2)
 if not hasattr(self, "outlet_1"):
 add_object_reference(self, "outlet_1", o1)
 if not hasattr(self, "outlet_2"):
 add_object_reference(self, "outlet_2", o2)

 if not hasattr(self, "hot_inlet"):
 add_object_reference(self, "hot_inlet", i1)
 if not hasattr(self, "cold_inlet"):
 add_object_reference(self, "cold_inlet", i2)
 if not hasattr(self, "hot_outlet"):
 add_object_reference(self, "hot_outlet", o1)
 if not hasattr(self, "cold_outlet"):
 add_object_reference(self, "cold_outlet", o2)
 ##
 # Add end temperature differnece constraints #
 ##

 @self.Constraint(self.flowsheet().config.time)
 def delta_temperature_in_equation(b, t):
 if b.config.flow_pattern == HeatExchangerFlowPattern.cocurrent:
 return (
 b.delta_temperature_in[t]
 == hot_side.properties_in[t].temperature
 - pyunits.convert(cold_side.properties_in[t].temperature,
 to_units=temp_units)
)
 else:
 return (
 b.delta_temperature_in[t]
 == hot_side.properties_in[t].temperature
 - pyunits.convert(cold_side.properties_out[t].temperature,
 to_units=temp_units)
)

 @self.Constraint(self.flowsheet().config.time)
 def delta_temperature_out_equation(b, t):
 if b.config.flow_pattern == HeatExchangerFlowPattern.cocurrent:
 return (
 b.delta_temperature_out[t]
 == hot_side.properties_out[t].temperature
 - pyunits.convert(cold_side.properties_out[t].temperature,
 to_units=temp_units)
)
 else:
 return (
 b.delta_temperature_out[t]
 == hot_side.properties_out[t].temperature
 - pyunits.convert(cold_side.properties_in[t].temperature,
 to_units=temp_units)
)

 ##
 # Add a unit level energy balance #
 ##
 @self.Constraint(self.flowsheet().config.time)
 def unit_heat_balance(b, t):
 return 0 == (hot_side.heat[t] +
 pyunits.convert(cold_side.heat[t],
 to_units=q_units))

 ##
 # Add delta T calculations using callack function, lots of options, #
 # and users can provide their own if needed #
 ##
 config.delta_temperature_callback(self)
 ##
 # Add Heat transfer equation #
 ##
 deltaT = self.delta_temperature

 @self.Constraint(self.flowsheet().config.time)
 def heat_transfer_equation(b, t):
 if self.config.flow_pattern == HeatExchangerFlowPattern.crossflow:
 return pyunits.convert(self.heat_duty[t], to_units=q_units) == (
 f[t] * u[t] * a * deltaT[t])
 else:
 return pyunits.convert(self.heat_duty[t], to_units=q_units) == (
 u[t] * a * deltaT[t])

 ##
 # Add symbols for LaTeX equation rendering #
 ##
 self.overall_heat_transfer_coefficient.latex_symbol = "U"
 self.area.latex_symbol = "A"
 hot_side.heat.latex_symbol = "Q_1"
 cold_side.heat.latex_symbol = "Q_2"
 self.delta_temperature.latex_symbol = "\\Delta T"

[docs] def initialize(
 self,
 state_args_1=None,
 state_args_2=None,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6},
 duty=None,
):
 """
 Heat exchanger initialization method.

 Args:
 state_args_1 : a dict of arguments to be passed to the property
 initialization for the hot side (see documentation of the specific
 property package) (default = {}).
 state_args_2 : a dict of arguments to be passed to the property
 initialization for the cold side (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')
 duty : an initial guess for the amount of heat transfered. This
 should be a tuple in the form (value, units), (default
 = (1000 J/s))

 Returns:
 None

 """
 # Set solver options
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")

 hot_side = getattr(self, self.config.hot_side_name)
 cold_side = getattr(self, self.config.cold_side_name)

 opt = SolverFactory(solver)
 opt.options = optarg
 flags1 = hot_side.initialize(
 outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args_1
)

 init_log.info_high("Initialization Step 1a (hot side) Complete.")

 flags2 = cold_side.initialize(
 outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args_2
)

 init_log.info_high("Initialization Step 1b (cold side) Complete.")
 # ---
 # Solve unit without heat transfer equation
 # if costing block exists, deactivate
 if hasattr(self, "costing"):
 self.costing.deactivate()

 self.heat_transfer_equation.deactivate()

 # Get side 1 and side 2 heat units, and convert duty as needed
 s1_units = hot_side.heat.get_units()
 s2_units = cold_side.heat.get_units()

 if duty is None:
 # Assume 1000 J/s and check for unitless properties
 if s1_units is None and s2_units is None:
 # Backwards compatability for unitless properties
 s1_duty = - 1000
 s2_duty = 1000
 else:
 s1_duty = pyunits.convert_value(-1000,
 from_units=pyunits.W,
 to_units=s1_units)
 s2_duty = pyunits.convert_value(1000,
 from_units=pyunits.W,
 to_units=s2_units)
 else:
 # Duty provided with explicit units
 s1_duty = -pyunits.convert_value(duty[0],
 from_units=duty[1],
 to_units=s1_units)
 s2_duty = pyunits.convert_value(duty[0],
 from_units=duty[1],
 to_units=s2_units)

 cold_side.heat.fix(s2_duty)
 for i in hot_side.heat:
 hot_side.heat[i].value = s1_duty

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(self, tee=slc.tee)
 init_log.info_high("Initialization Step 2 {}.".format(idaeslog.condition(res)))
 cold_side.heat.unfix()
 self.heat_transfer_equation.activate()
 # ---
 # Solve unit
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(self, tee=slc.tee)
 init_log.info_high("Initialization Step 3 {}.".format(idaeslog.condition(res)))
 # ---
 # Release Inlet state
 hot_side.release_state(flags1, outlvl=outlvl)
 cold_side.release_state(flags2, outlvl=outlvl)

 init_log.info("Initialization Completed, {}".format(idaeslog.condition(res)))
 # if costing block exists, activate and initialize
 if hasattr(self, "costing"):
 self.costing.activate()
 costing.initialize(self.costing)

 def _get_performance_contents(self, time_point=0):
 var_dict = {
 "HX Coefficient": self.overall_heat_transfer_coefficient[time_point]
 }
 var_dict["HX Area"] = self.area
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if self.config.flow_pattern == HeatExchangerFlowPattern.crossflow:
 var_dict = {"Crossflow Factor": self.crossflow_factor[time_point]}

 expr_dict = {}
 expr_dict["Delta T Driving"] = self.delta_temperature[time_point]
 expr_dict["Delta T In"] = self.delta_temperature_in[time_point]
 expr_dict["Delta T Out"] = self.delta_temperature_out[time_point]

 return {"vars": var_dict, "exprs": expr_dict}

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {
 "Hot Inlet": self.inlet_1,
 "Hot Outlet": self.outlet_1,
 "Cold Inlet": self.inlet_2,
 "Cold Outlet": self.outlet_2,
 },
 time_point=time_point,
)

 def get_costing(self, module=costing, year=None, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year)

 self.costing = Block()
 module.hx_costing(self.costing, **kwargs)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 # We have a pretty good idea that the delta Ts will be between about
 # 1 and 100 regardless of process of temperature units, so a default
 # should be fine, so don't warn. Guessing a typical delta t around 10
 # the default scaling factor is set to 0.1
 sf_dT1 = dict(zip(
 self.delta_temperature_in.keys(),
 [iscale.get_scaling_factor(v, default=0.1)
 for v in self.delta_temperature_in.values()]))
 sf_dT2 = dict(zip(
 self.delta_temperature_out.keys(),
 [iscale.get_scaling_factor(v, default=0.1)
 for v in self.delta_temperature_out.values()]))

 # U depends a lot on the process and units of measure so user should set
 # this one.
 sf_u = dict(zip(
 self.overall_heat_transfer_coefficient.keys(),
 [iscale.get_scaling_factor(v, default=1, warning=True)
 for v in self.overall_heat_transfer_coefficient.values()]))

 # Since this depends on the process size this is another scaling factor
 # the user should always set.
 sf_a = iscale.get_scaling_factor(self.area, default=1, warning=True)

 for t, c in self.heat_transfer_equation.items():
 iscale.constraint_scaling_transform(c, sf_dT1[t]*sf_u[t]*sf_a)

 for t, c in self.unit_heat_balance.items():
 iscale.constraint_scaling_transform(c, sf_dT1[t]*sf_u[t]*sf_a)

 for t, c in self.delta_temperature_in_equation.items():
 iscale.constraint_scaling_transform(c, sf_dT1[t])

 for t, c in self.delta_temperature_out_equation.items():
 iscale.constraint_scaling_transform(c, sf_dT2[t])

 if hasattr(self, "costing"):
 # import costing scaling factors
 costing.calculate_scaling_factors(self.costing)

 idaes.generic_models.unit_models.heat_exchanger_1D

 Source code for idaes.generic_models.unit_models.heat_exchanger_1D

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Basic IDAES 1D Heat Exchanger Model.

1D Single pass shell and tube HX model with 0D wall conduction model
"""
Import Python libraries
from enum import Enum

Import Pyomo libraries
from pyomo.environ import (
 SolverFactory,
 Var,
 Constraint,
 value,
 units as pyunits
)
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (
 ControlVolume1DBlock,
 UnitModelBlockData,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 FlowDirection,
 useDefault,
)
from idaes.generic_models.unit_models.heat_exchanger import HeatExchangerFlowPattern
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.misc import add_object_reference
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.util.constants import Constants as c
from idaes.core.util import scaling as iscale

import idaes.logger as idaeslog

__author__ = "Jaffer Ghouse"

Set up logger
_log = idaeslog.getLogger(__name__)

class WallConductionType(Enum):
 zero_dimensional = 0
 one_dimensional = 1
 two_dimensional = 2

[docs]@declare_process_block_class("HeatExchanger1D")
class HeatExchanger1DData(UnitModelBlockData):
 """Standard Heat Exchanger 1D Unit Model Class."""

 CONFIG = UnitModelBlockData.CONFIG()
 # Template for config arguments for shell and tube side
 _SideTemplate = ConfigBlock()
 _SideTemplate.declare(
 "dynamic",
 ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Dynamic model flag",
 doc="""Indicates whether this model will be dynamic or not,
default = useDefault.
Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model,
False - set as a steady-state model.}""",
),
)
 _SideTemplate.declare(
 "has_holdup",
 ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Holdup construction flag",
 doc="""Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True,
default - False.
Valid values: {
useDefault - get flag from parent (default = False),
True - construct holdup terms,
False - do not construct holdup terms}""",
),
)
 _SideTemplate.declare(
 "material_balance_type",
 ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}""",
),
)
 _SideTemplate.declare(
 "energy_balance_type",
 ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}""",
),
)
 _SideTemplate.declare(
 "momentum_balance_type",
 ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}""",
),
)
 _SideTemplate.declare(
 "has_pressure_change",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}""",
),
)
 _SideTemplate.declare(
 "has_phase_equilibrium",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium term construction flag",
 doc="""Argument to enable phase equilibrium on the shell side.
- True - include phase equilibrium term
- False - do not include phase equilibrium term""",
),
)
 _SideTemplate.declare(
 "property_package",
 ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a ParameterBlock object""",
),
)
 _SideTemplate.declare(
 "property_package_args",
 ConfigValue(
 default={},
 description="Arguments for constructing shell property package",
 doc="""A dict of arguments to be passed to the PropertyBlockData
and used when constructing these
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a dict (see property package for documentation)""",
),
)
 # TODO : We should probably think about adding a consistency check for the
 # TODO : discretisation methods as well.
 _SideTemplate.declare(
 "transformation_method",
 ConfigValue(
 default=useDefault,
 description="Discretization method to use for DAE transformation",
 doc="""Discretization method to use for DAE transformation. See Pyomo
documentation for supported transformations.""",
),
)
 _SideTemplate.declare(
 "transformation_scheme",
 ConfigValue(
 default=useDefault,
 description="Discretization scheme to use for DAE transformation",
 doc="""Discretization scheme to use when transformating domain. See
Pyomo documentation for supported schemes.""",
),
)

 # Create individual config blocks for shell and tube side
 CONFIG.declare("shell_side", _SideTemplate(doc="shell side config arguments"))
 CONFIG.declare("tube_side", _SideTemplate(doc="tube side config arguments"))

 # Common config args for both sides
 CONFIG.declare(
 "finite_elements",
 ConfigValue(
 default=20,
 domain=int,
 description="Number of finite elements length domain",
 doc="""Number of finite elements to use when discretizing length
domain (default=20)""",
),
)
 CONFIG.declare(
 "collocation_points",
 ConfigValue(
 default=5,
 domain=int,
 description="Number of collocation points per finite element",
 doc="""Number of collocation points to use per finite element when
discretizing length domain (default=3)""",
),
)
 CONFIG.declare(
 "flow_type",
 ConfigValue(
 default=HeatExchangerFlowPattern.cocurrent,
 domain=In(HeatExchangerFlowPattern),
 description="Flow configuration of heat exchanger",
 doc="""Flow configuration of heat exchanger
- HeatExchangerFlowPattern.cocurrent: shell and tube flows from 0 to 1
(default)
- HeatExchangerFlowPattern.countercurrent: shell side flows from 0 to 1
tube side flows from 1 to 0""",
),
)
 CONFIG.declare(
 "has_wall_conduction",
 ConfigValue(
 default=WallConductionType.zero_dimensional,
 domain=In(WallConductionType),
 description="Conduction model for tube wall",
 doc="""Argument to enable type of wall heat conduction model.
- WallConductionType.zero_dimensional - 0D wall model (default),
- WallConductionType.one_dimensional - 1D wall model along the thickness of the
tube,
- WallConductionType.two_dimensional - 2D wall model along the lenghth and
thickness of the tube""",
),
)

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(HeatExchanger1DData, self).build()

 # Set flow directions for the control volume blocks and specify
 # dicretisation if not specified.
 if self.config.flow_type == HeatExchangerFlowPattern.cocurrent:
 set_direction_shell = FlowDirection.forward
 set_direction_tube = FlowDirection.forward
 if (
 self.config.shell_side.transformation_method
 != self.config.tube_side.transformation_method
) or (
 self.config.shell_side.transformation_scheme
 != self.config.tube_side.transformation_scheme
):
 raise ConfigurationError(
 "HeatExchanger1D only supports similar transformation "
 "schemes on the shell side and tube side domains for "
 "both cocurrent and countercurrent flow patterns."
)
 if self.config.shell_side.transformation_method is useDefault:
 _log.warning(
 "Discretization method was "
 "not specified for the shell side of the "
 "co-current heat exchanger. "
 "Defaulting to finite "
 "difference method on the shell side."
)
 self.config.shell_side.transformation_method = "dae.finite_difference"
 if self.config.tube_side.transformation_method is useDefault:
 _log.warning(
 "Discretization method was "
 "not specified for the tube side of the "
 "co-current heat exchanger. "
 "Defaulting to finite "
 "difference method on the tube side."
)
 self.config.tube_side.transformation_method = "dae.finite_difference"
 if self.config.shell_side.transformation_scheme is useDefault:
 _log.warning(
 "Discretization scheme was "
 "not specified for the shell side of the "
 "co-current heat exchanger. "
 "Defaulting to backward finite "
 "difference on the shell side."
)
 self.config.shell_side.transformation_scheme = "BACKWARD"
 if self.config.tube_side.transformation_scheme is useDefault:
 _log.warning(
 "Discretization scheme was "
 "not specified for the tube side of the "
 "co-current heat exchanger. "
 "Defaulting to backward finite "
 "difference on the tube side."
)
 self.config.tube_side.transformation_scheme = "BACKWARD"
 elif self.config.flow_type == HeatExchangerFlowPattern.countercurrent:
 set_direction_shell = FlowDirection.forward
 set_direction_tube = FlowDirection.backward
 if self.config.shell_side.transformation_method is useDefault:
 _log.warning(
 "Discretization method was "
 "not specified for the shell side of the "
 "counter-current heat exchanger. "
 "Defaulting to finite "
 "difference method on the shell side."
)
 self.config.shell_side.transformation_method = "dae.finite_difference"
 if self.config.tube_side.transformation_method is useDefault:
 _log.warning(
 "Discretization method was "
 "not specified for the tube side of the "
 "counter-current heat exchanger. "
 "Defaulting to finite "
 "difference method on the tube side."
)
 self.config.tube_side.transformation_method = "dae.finite_difference"
 if self.config.shell_side.transformation_scheme is useDefault:
 _log.warning(
 "Discretization scheme was "
 "not specified for the shell side of the "
 "counter-current heat exchanger. "
 "Defaulting to backward finite "
 "difference on the shell side."
)
 self.config.shell_side.transformation_scheme = "BACKWARD"
 if self.config.tube_side.transformation_scheme is useDefault:
 _log.warning(
 "Discretization scheme was "
 "not specified for the tube side of the "
 "counter-current heat exchanger. "
 "Defaulting to forward finite "
 "difference on the tube side."
)
 self.config.tube_side.transformation_scheme = "BACKWARD"
 else:
 raise ConfigurationError(
 "{} HeatExchanger1D only supports cocurrent and "
 "countercurrent flow patterns, but flow_type configuration"
 " argument was set to {}.".format(self.name, self.config.flow_type)
)

 # Control volume 1D for shell
 self.shell = ControlVolume1DBlock(
 default={
 "dynamic": self.config.shell_side.dynamic,
 "has_holdup": self.config.shell_side.has_holdup,
 "property_package": self.config.shell_side.property_package,
 "property_package_args": self.config.shell_side.property_package_args,
 "transformation_method": self.config.shell_side.transformation_method,
 "transformation_scheme": self.config.shell_side.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points,
 }
)

 self.tube = ControlVolume1DBlock(
 default={
 "dynamic": self.config.tube_side.dynamic,
 "has_holdup": self.config.tube_side.has_holdup,
 "property_package": self.config.tube_side.property_package,
 "property_package_args": self.config.tube_side.property_package_args,
 "transformation_method": self.config.tube_side.transformation_method,
 "transformation_scheme": self.config.tube_side.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points,
 }
)

 self.shell.add_geometry(flow_direction=set_direction_shell)
 self.tube.add_geometry(flow_direction=set_direction_tube)

 self.shell.add_state_blocks(
 information_flow=set_direction_shell,
 has_phase_equilibrium=self.config.shell_side.has_phase_equilibrium,
)
 self.tube.add_state_blocks(
 information_flow=set_direction_tube,
 has_phase_equilibrium=self.config.tube_side.has_phase_equilibrium,
)

 # Populate shell
 self.shell.add_material_balances(
 balance_type=self.config.shell_side.material_balance_type,
 has_phase_equilibrium=self.config.shell_side.has_phase_equilibrium,
)

 self.shell.add_energy_balances(
 balance_type=self.config.shell_side.energy_balance_type,
 has_heat_transfer=True,
)

 self.shell.add_momentum_balances(
 balance_type=self.config.shell_side.momentum_balance_type,
 has_pressure_change=self.config.shell_side.has_pressure_change,
)

 self.shell.apply_transformation()

 # Populate tube
 self.tube.add_material_balances(
 balance_type=self.config.tube_side.material_balance_type,
 has_phase_equilibrium=self.config.tube_side.has_phase_equilibrium,
)

 self.tube.add_energy_balances(
 balance_type=self.config.tube_side.energy_balance_type,
 has_heat_transfer=True,
)

 self.tube.add_momentum_balances(
 balance_type=self.config.tube_side.momentum_balance_type,
 has_pressure_change=self.config.tube_side.has_pressure_change,
)

 self.tube.apply_transformation()

 # Add Ports for shell side
 self.add_inlet_port(name="shell_inlet", block=self.shell)
 self.add_outlet_port(name="shell_outlet", block=self.shell)

 # Add Ports for tube side
 self.add_inlet_port(name="tube_inlet", block=self.tube)
 self.add_outlet_port(name="tube_outlet", block=self.tube)

 # Add reference to control volume geometry
 add_object_reference(self, "shell_area", self.shell.area)
 add_object_reference(self, "shell_length", self.shell.length)
 add_object_reference(self, "tube_area", self.tube.area)
 add_object_reference(self, "tube_length", self.tube.length)

 self._make_performance()

 def _make_performance(self):
 """
 Constraints for unit model.

 Args:
 None

 Returns:
 None
 """
 shell_units = \
 self.config.shell_side.property_package.get_metadata().get_derived_units
 tube_units = \
 self.config.tube_side.property_package.get_metadata().get_derived_units

 # Unit model variables
 # HX dimensions
 self.d_shell = Var(initialize=1,
 doc="Diameter of shell",
 units=shell_units("length"))
 self.d_tube_outer = Var(initialize=0.011,
 doc="Outer diameter of tube",
 units=shell_units("length"))
 self.d_tube_inner = Var(initialize=0.010,
 doc="Inner diameter of tube",
 units=shell_units("length"))
 self.N_tubes = Var(initialize=1,
 doc="Number of tubes",
 units=pyunits.dimensionless)

 # Note: In addition to the above variables, "shell_length" and
 # "tube_length" need to be fixed at the flowsheet level

 # Performance variables
 self.shell_heat_transfer_coefficient = Var(
 self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=50,
 doc="Heat transfer coefficient",
 units=shell_units("heat_transfer_coefficient")
)
 self.tube_heat_transfer_coefficient = Var(
 self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=50,
 doc="Heat transfer coefficient",
 units=tube_units("heat_transfer_coefficient")
)

 # Wall 0D model (Q_shell = Q_tube*N_tubes)
 if self.config.has_wall_conduction == WallConductionType.zero_dimensional:
 self.temperature_wall = Var(
 self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=298.15,
 units=shell_units("temperature")
)

 # Performance equations
 # Energy transfer between shell and tube wall

 @self.Constraint(
 self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Heat transfer between shell and tube",
)
 def shell_heat_transfer_eq(self, t, x):
 return self.shell.heat[t, x] == -self.N_tubes * (
 self.shell_heat_transfer_coefficient[t, x]
 * c.pi
 * self.d_tube_outer
 * (
 self.shell.properties[t, x].temperature
 - self.temperature_wall[t, x]
)
)

 # Energy transfer between tube wall and tube
 @self.Constraint(
 self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Convective heat transfer",
)
 def tube_heat_transfer_eq(self, t, x):
 return self.tube.heat[t, x] == self.tube_heat_transfer_coefficient[
 t, x
] * c.pi * pyunits.convert(self.d_tube_inner,
 to_units=tube_units("length")) * (
 pyunits.convert(self.temperature_wall[t, x],
 to_units=tube_units('temperature')) -
 self.tube.properties[t, x].temperature
)

 if shell_units("length") is None:
 # Backwards compatability check
 q_units = None
 else:
 q_units = shell_units("power")/shell_units("length")
 # Wall 0D model
 @self.Constraint(
 self.flowsheet().config.time,
 self.shell.length_domain,
 doc="wall 0D model",
)
 def wall_0D_model(self, t, x):
 return pyunits.convert(self.tube.heat[t, x],
 to_units=q_units) == -(
 self.shell.heat[t, x] / self.N_tubes)

 else:
 raise NotImplementedError(
 "{} HeatExchanger1D has not yet implemented support for "
 "wall conduction models."
)

 # Define tube area in terms of tube diameter
 self.area_calc_tube = Constraint(
 expr=4 * self.tube_area == c.pi * pyunits.convert(
 self.d_tube_inner, to_units=tube_units("length"))**2
)

 # Define shell area in terms of shell and tube diameter
 self.area_calc_shell = Constraint(
 expr=4 * self.shell_area
 == c.pi * (self.d_shell**2 - self.N_tubes*self.d_tube_outer**2)
)

[docs] def initialize(
 blk,
 shell_state_args=None,
 tube_state_args=None,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6},
):
 """
 Initialization routine for the unit (default solver ipopt).

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # Initialize shell block
 flags_shell = blk.shell.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=shell_state_args,
)

 flags_tube = blk.tube.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=tube_state_args,
)

 init_log.info_high("Initialization Step 1 Complete.")

 # ---
 # Solve unit
 # Wall 0D
 if blk.config.has_wall_conduction == WallConductionType.zero_dimensional:
 shell_units = \
 blk.config.shell_side.property_package.get_metadata().get_derived_units
 for t in blk.flowsheet().config.time:
 for z in blk.shell.length_domain:
 blk.temperature_wall[t, z].fix(
 value(
 0.5
 * (
 blk.shell.properties[t, 0].temperature
 + pyunits.convert(
 blk.tube.properties[t, 0].temperature,
 to_units=shell_units('temperature'))
)
)
)

 blk.tube.deactivate()
 blk.tube_heat_transfer_eq.deactivate()
 blk.wall_0D_model.deactivate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 2 {}.".format(idaeslog.condition(res))
)

 blk.tube.activate()
 blk.tube_heat_transfer_eq.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 3 {}.".format(idaeslog.condition(res))
)

 blk.wall_0D_model.activate()
 blk.temperature_wall.unfix()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 4 {}.".format(idaeslog.condition(res))
)

 blk.shell.release_state(flags_shell)
 blk.tube.release_state(flags_tube)

 init_log.info("Initialization Complete.")

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 var_dict["Shell Area"] = self.shell.area
 var_dict["Shell Diameter"] = self.d_shell
 var_dict["Shell Length"] = self.shell.length
 var_dict["Tube Area"] = self.tube.area
 var_dict["Tube Outer Diameter"] = self.d_tube_outer
 var_dict["Tube Inner Diameter"] = self.d_tube_inner
 var_dict["Tube Length"] = self.tube.length
 var_dict["Number of Tubes"] = self.N_tubes

 return {"vars": var_dict}

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {
 "Shell Inlet": self.shell_inlet,
 "Shell Outlet": self.shell_outlet,
 "Tube Inlet": self.tube_inlet,
 "Tube Outlet": self.tube_outlet,
 },
 time_point=time_point,
)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 for i, c in self.shell_heat_transfer_eq.items():
 iscale.constraint_scaling_transform(c, iscale.get_scaling_factor(
 self.shell.heat[i], default=1, warning=True))

 for i, c in self.tube_heat_transfer_eq.items():
 iscale.constraint_scaling_transform(c, iscale.get_scaling_factor(
 self.tube.heat[i], default=1, warning=True))

 idaes.generic_models.unit_models.heater

 Source code for idaes.generic_models.unit_models.heater

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Basic heater/cooler models
"""

__author__ = "John Eslick"

Import Pyomo libraries
from pyomo.environ import Reference
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 EnergyBalanceType,
 MomentumBalanceType,
 MaterialBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

def _make_heater_control_volume(o, name, config,
 dynamic=None, has_holdup=None):
 """
 This is seperated from the main heater class so it can be reused to create
 control volumes for different types of heat exchange models.
 """
 if dynamic is None:
 dynamic = config.dynamic
 if has_holdup is None:
 has_holdup = config.has_holdup
 # we have to attach this control volume to the model for the rest of
 # the steps to work
 o.add_component(name, ControlVolume0DBlock(default={
 "dynamic": dynamic,
 "has_holdup": has_holdup,
 "property_package": config.property_package,
 "property_package_args": config.property_package_args}))
 control_volume = getattr(o, name)
 # Add inlet and outlet state blocks to control volume
 if has_holdup:
 control_volume.add_geometry()
 control_volume.add_state_blocks(
 has_phase_equilibrium=config.has_phase_equilibrium)
 # Add material balance
 control_volume.add_material_balances(
 balance_type=config.material_balance_type,
 has_phase_equilibrium=config.has_phase_equilibrium)
 # add energy balance
 control_volume.add_energy_balances(
 balance_type=config.energy_balance_type,
 has_heat_transfer=True)
 # add momentum balance
 control_volume.add_momentum_balances(
 balance_type=config.momentum_balance_type,
 has_pressure_change=config.has_pressure_change)
 return control_volume

def _make_heater_config_block(config):
 """
 Declare configuration options for HeaterData block.
 """
 config.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 config.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 config.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 config.declare("has_phase_equilibrium", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium construction flag",
 doc="""Indicates whether terms for phase equilibrium should be
constructed, **default** = False.
Valid values: {
True - include phase equilibrium terms
False - exclude phase equilibrium terms.}"""))
 config.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 config.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}"""))
 config.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))

[docs]@declare_process_block_class("Heater", doc="Simple 0D heater/cooler model.")
class HeaterData(UnitModelBlockData):
 """
 Simple 0D heater unit.
 Unit model to add or remove heat from a material.
 """
 CONFIG = UnitModelBlockData.CONFIG()
 _make_heater_config_block(CONFIG)

[docs] def build(self):
 """Building model

 Args:
 None
 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(HeaterData, self).build()
 # Add Control Volume
 _make_heater_control_volume(self, "control_volume", self.config)
 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()
 # Add a convienient reference to heat duty.
 self.heat_duty = Reference(self.control_volume.heat)
 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):

 self.deltaP = Reference(self.control_volume.deltaP)

 def _get_performance_contents(self, time_point=0):
 return {"vars": {"Heat Duty": self.heat_duty[time_point]}}

 idaes.generic_models.unit_models.mixer

 Source code for idaes.generic_models.unit_models.mixer

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
General purpose mixer block for IDAES models
"""
from enum import Enum

from pyomo.environ import (
 Constraint,
 Param,
 PositiveReals,
 Reals,
 RangeSet,
 SolverFactory,
 Var,
)
from pyomo.common.config import ConfigBlock, ConfigValue, In

from idaes.core import (
 declare_process_block_class,
 UnitModelBlockData,
 useDefault,
 MaterialBalanceType,
 MaterialFlowBasis
)
from idaes.core.util.config import (
 is_physical_parameter_block,
 is_state_block,
 list_of_strings,
)
from idaes.core.util.exceptions import (
 BurntToast,
 ConfigurationError,
 PropertyNotSupportedError,
)
from idaes.core.util.math import smooth_min
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.core.util.scaling as iscale

import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

Enumerate options for balances
class MixingType(Enum):
 none = 0
 extensive = 1

class MomentumMixingType(Enum):
 none = 0
 minimize = 1
 equality = 2
 minimize_and_equality = 3

[docs]@declare_process_block_class("Mixer")
class MixerData(UnitModelBlockData):
 """
 This is a general purpose model for a Mixer block with the IDAES modeling
 framework. This block can be used either as a stand-alone Mixer unit
 operation, or as a sub-model within another unit operation.

 This model creates a number of StateBlocks to represent the incoming
 streams, then writes a set of phase-component material balances, an
 overall enthalpy balance and a momentum balance (2 options) linked to a
 mixed-state StateBlock. The mixed-state StateBlock can either be specified
 by the user (allowing use as a sub-model), or created by the Mixer.

 When being used as a sub-model, Mixer should only be used when a set
 of new StateBlocks are required for the streams to be mixed. It should not
 be used to mix streams from mutiple ControlVolumes in a single unit model -
 in these cases the unit model developer should write their own mixing
 equations.
 """

 CONFIG = ConfigBlock()
 CONFIG.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Mixer blocks are always steady-state.""",
),
)
 CONFIG.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Mixer blocks do not contain holdup, thus this must be
False.""",
),
)
 CONFIG.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for mixer",
 doc="""Property parameter object used to define property
calculations, **default** - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}""",
),
)
 CONFIG.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)
 CONFIG.declare(
 "inlet_list",
 ConfigValue(
 domain=list_of_strings,
 description="List of inlet names",
 doc="""A list containing names of inlets,
default - None.
Valid values: {
None - use num_inlets argument,
list - a list of names to use for inlets.}""",
),
)
 CONFIG.declare(
 "num_inlets",
 ConfigValue(
 domain=int,
 description="Number of inlets to unit",
 doc="""Argument indicating number (int) of inlets to construct, not
used if inlet_list arg is provided,
default - None.
Valid values: {
None - use inlet_list arg instead, or default to 2 if neither argument
provided,
int - number of inlets to create (will be named with sequential integers
from 1 to num_inlets).}""",
),
)
 CONFIG.declare(
 "material_balance_type",
 ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}""",
),
)
 CONFIG.declare(
 "has_phase_equilibrium",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Calculate phase equilibrium in mixed stream",
 doc="""Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream,
default - False.
Valid values: {
True - calculate phase equilibrium in mixed stream,
False - do not calculate equilibrium in mixed stream.}""",
),
)
 CONFIG.declare(
 "energy_mixing_type",
 ConfigValue(
 default=MixingType.extensive,
 domain=MixingType,
 description="Method to use when mixing energy flows",
 doc="""Argument indicating what method to use when mixing energy
flows of incoming streams,
default - MixingType.extensive.
Valid values: {
MixingType.none - do not include energy mixing equations,
MixingType.extensive - mix total enthalpy flows of each phase.}""",
),
)
 CONFIG.declare(
 "momentum_mixing_type",
 ConfigValue(
 default=MomentumMixingType.minimize,
 domain=MomentumMixingType,
 description="Method to use when mixing momentum/pressure",
 doc="""Argument indicating what method to use when mixing momentum/
pressure of incoming streams,
default - MomentumMixingType.minimize.
Valid values: {
MomentumMixingType.none - do not include momentum mixing equations,
MomentumMixingType.minimize - mixed stream has pressure equal to the
minimimum pressure of the incoming streams (uses smoothMin operator),
MomentumMixingType.equality - enforces equality of pressure in mixed and
all incoming streams.,
MomentumMixingType.minimize_and_equality - add constraints for pressure
equal to the minimum pressure of the inlets and constraints for equality of
pressure in mixed and all incoming streams. When the model is initially built,
the equality constraints are deactivated. This option is useful for switching
between flow and pressure driven simulations.}""",
),
)
 CONFIG.declare(
 "mixed_state_block",
 ConfigValue(
 default=None,
 domain=is_state_block,
 description="Existing StateBlock to use as mixed stream",
 doc="""An existing state block to use as the outlet stream from the
Mixer block,
default - None.
Valid values: {
None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the destination for the mixed stream.}
""",
),
)
 CONFIG.declare(
 "construct_ports",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Construct inlet and outlet Port objects",
 doc="""Argument indicating whether model should construct Port
objects linked to all inlet states and the mixed state,
default - True.
Valid values: {
True - construct Ports for all states,
False - do not construct Ports.""",
),
)

[docs] def build(self):
 """
 General build method for MixerData. This method calls a number
 of sub-methods which automate the construction of expected attributes
 of unit models.

 Inheriting models should call `super().build`.

 Args:
 None

 Returns:
 None
 """
 # Call super.build()
 super(MixerData, self).build()

 # Call setup methods from ControlVolumeBlockData
 self._get_property_package()
 self._get_indexing_sets()

 # Create list of inlet names
 inlet_list = self.create_inlet_list()

 # Build StateBlocks
 inlet_blocks = self.add_inlet_state_blocks(inlet_list)

 if self.config.mixed_state_block is None:
 mixed_block = self.add_mixed_state_block()
 else:
 mixed_block = self.get_mixed_state_block()

 mb_type = self.config.material_balance_type
 if mb_type == MaterialBalanceType.useDefault:
 t_ref = self.flowsheet().config.time.first()
 mb_type = mixed_block[t_ref].default_material_balance_type()

 if mb_type != MaterialBalanceType.none:
 self.add_material_mixing_equations(
 inlet_blocks=inlet_blocks,
 mixed_block=mixed_block,
 mb_type=mb_type
)
 else:
 raise BurntToast(
 "{} received unrecognised value for "
 "material_mixing_type argument. This "
 "should not occur, so please contact "
 "the IDAES developers with this bug.".format(self.name)
)

 if self.config.energy_mixing_type == MixingType.extensive:
 self.add_energy_mixing_equations(
 inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
 elif self.config.energy_mixing_type == MixingType.none:
 pass
 else:
 raise ConfigurationError(
 "{} received unrecognised value for "
 "material_mixing_type argument. This "
 "should not occur, so please contact "
 "the IDAES developers with this bug.".format(self.name)
)

 # Add to try/expect to catch cases where pressure is not supported
 # by properties.
 try:
 if self.config.momentum_mixing_type == MomentumMixingType.minimize:
 self.add_pressure_minimization_equations(
 inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
 elif (self.config.momentum_mixing_type ==
 MomentumMixingType.equality):
 self.add_pressure_equality_equations(
 inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
 elif (
 self.config.momentum_mixing_type ==
 MomentumMixingType.minimize_and_equality
):
 self.add_pressure_minimization_equations(
 inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
 self.add_pressure_equality_equations(
 inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
 self.pressure_equality_constraints.deactivate()
 elif self.config.momentum_mixing_type == MomentumMixingType.none:
 pass
 else:
 raise ConfigurationError(
 "{} recieved unrecognised value for "
 "momentum_mixing_type argument. This "
 "should not occur, so please contact "
 "the IDAES developers with this bug.".format(self.name)
)
 except PropertyNotSupportedError:
 raise PropertyNotSupportedError(
 "{} The property package supplied for this unit does not "
 "appear to support pressure, which is required for momentum "
 "mixing. Please set momentum_mixing_type to "
 "MomentumMixingType.none or provide a property package which "
 "supports pressure.".format(self.name))

 self.add_port_objects(inlet_list, inlet_blocks, mixed_block)

[docs] def create_inlet_list(self):
 """
 Create list of inlet stream names based on config arguments.

 Returns:
 list of strings
 """
 if (self.config.inlet_list is not None and
 self.config.num_inlets is not None):
 # If both arguments provided and not consistent, raise Exception
 if len(self.config.inlet_list) != self.config.num_inlets:
 raise ConfigurationError(
 "{} Mixer provided with both inlet_list and "
 "num_inlets arguments, which were not consistent ("
 "length of inlet_list was not equal to num_inlets). "
 "PLease check your arguments for consistency, and "
 "note that it is only necessary to provide one of "
 "these arguments.".format(self.name)
)
 elif self.config.inlet_list is None and self.config.num_inlets is None:
 # If no arguments provided for inlets, default to num_inlets = 2
 self.config.num_inlets = 2

 # Create a list of names for inlet StateBlocks
 if self.config.inlet_list is not None:
 inlet_list = self.config.inlet_list
 else:
 inlet_list = [
 "inlet_" + str(n) for n in range(1, self.config.num_inlets + 1)
]

 return inlet_list

[docs] def add_inlet_state_blocks(self, inlet_list):
 """
 Construct StateBlocks for all inlet streams.

 Args:
 list of strings to use as StateBlock names

 Returns:
 list of StateBlocks
 """
 # Setup StateBlock argument dict
 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = False
 tmp_dict["defined_state"] = True

 # Create empty list to hold StateBlocks for return
 inlet_blocks = []

 # Create an instance of StateBlock for all inlets
 for i in inlet_list:
 i_obj = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties at inlet",
 default=tmp_dict,
)

 setattr(self, i + "_state", i_obj)

 inlet_blocks.append(getattr(self, i + "_state"))

 return inlet_blocks

[docs] def add_mixed_state_block(self):
 """
 Constructs StateBlock to represent mixed stream.

 Returns:
 New StateBlock object
 """
 # Setup StateBlock argument dict
 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = self.config.has_phase_equilibrium
 tmp_dict["defined_state"] = False

 self.mixed_state = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties of mixed stream",
 default=tmp_dict,
)

 return self.mixed_state

[docs] def get_mixed_state_block(self):
 """
 Validates StateBlock provided in user arguments for mixed stream.

 Returns:
 The user-provided StateBlock or an Exception
 """
 # Sanity check to make sure method is not called when arg missing
 if self.config.mixed_state_block is None:
 raise BurntToast(
 "{} get_mixed_state_block method called when "
 "mixed_state_block argument is None. This should "
 "not happen.".format(self.name)
)

 # Check that the user-provided StateBlock uses the same prop pack
 if (
 self.config.mixed_state_block[
 self.flowsheet().config.time.first()
].config.parameters
 != self.config.property_package
):
 raise ConfigurationError(
 "{} StateBlock provided in mixed_state_block argument "
 "does not come from the same property package as "
 "provided in the property_package argument. All "
 "StateBlocks within a Mixer must use the same "
 "property package.".format(self.name)
)

 return self.config.mixed_state_block

[docs] def add_material_mixing_equations(self, inlet_blocks,
 mixed_block, mb_type):
 """
 Add material mixing equations.
 """
 pp = self.config.property_package
 # Get phase component list(s)
 pc_set = mixed_block.phase_component_set

 # Get units metadata
 units = pp.get_metadata()

 flow_basis = mixed_block[
 self.flowsheet().config.time.first()].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 flow_units = units.get_derived_units("flow_mole")
 elif flow_basis == MaterialFlowBasis.mass:
 flow_units = units.get_derived_units("flow_mass")
 else:
 # Let this pass for now with no units
 flow_units = None

 if mb_type == MaterialBalanceType.componentPhase:
 # Create equilibrium generation term and constraints if required
 if self.config.has_phase_equilibrium is True:
 try:
 self.phase_equilibrium_generation = Var(
 self.flowsheet().config.time,
 pp.phase_equilibrium_idx,
 domain=Reals,
 doc="Amount of generation in unit by phase equilibria",
 units=flow_units
)
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} Property package does not contain a list of phase "
 "equilibrium reactions (phase_equilibrium_idx), "
 "thus does not support phase equilibrium."
 .format(self.name)
)

 # Define terms to use in mixing equation
 def phase_equilibrium_term(b, t, p, j):
 if self.config.has_phase_equilibrium:
 sd = {}
 for r in pp.phase_equilibrium_idx:
 if pp.phase_equilibrium_list[r][0] == j:
 if (
 pp.phase_equilibrium_list[r][1][
 0
]
 == p
):
 sd[r] = 1
 elif (
 pp.phase_equilibrium_list[r][1][
 1
]
 == p
):
 sd[r] = -1
 else:
 sd[r] = 0
 else:
 sd[r] = 0

 return sum(
 b.phase_equilibrium_generation[t, r] * sd[r] for r in
 pp.phase_equilibrium_idx
)
 else:
 return 0

 # Write phase-component balances
 @self.Constraint(
 self.flowsheet().config.time,
 pc_set,
 doc="Material mixing equations",
)
 def material_mixing_equations(b, t, p, j):
 if (p, j) in pc_set:
 return 0 == (
 sum(
 inlet_blocks[i][t].get_material_flow_terms(p, j)
 for i in range(len(inlet_blocks))
)
 - mixed_block[t].get_material_flow_terms(p, j)
 + phase_equilibrium_term(b, t, p, j)
)
 else:
 return Constraint.Skip

 elif mb_type == MaterialBalanceType.componentTotal:
 # Write phase-component balances
 @self.Constraint(
 self.flowsheet().config.time,
 mixed_block.component_list,
 doc="Material mixing equations",
)
 def material_mixing_equations(b, t, j):
 return 0 == sum(
 sum(
 inlet_blocks[i][t].get_material_flow_terms(p, j)
 for i in range(len(inlet_blocks))
)
 - mixed_block[t].get_material_flow_terms(p, j)
 for p in mixed_block.phase_list
 if (p, j) in pc_set
)

 elif mb_type == MaterialBalanceType.total:
 # Write phase-component balances
 @self.Constraint(
 self.flowsheet().config.time, doc="Material mixing equations"
)
 def material_mixing_equations(b, t):
 return 0 == sum(
 sum(
 sum(
 inlet_blocks[i][t].get_material_flow_terms(p, j)
 for i in range(len(inlet_blocks))
)
 - mixed_block[t].get_material_flow_terms(p, j)
 for j in mixed_block.component_list
 if (p, j) in pc_set
)
 for p in mixed_block.phase_list
)

 elif mb_type == MaterialBalanceType.elementTotal:
 raise ConfigurationError(
 "{} Mixers do not support elemental "
 "material balances.".format(self.name)
)
 elif mb_type == MaterialBalanceType.none:
 pass
 else:
 raise BurntToast(
 "{} Mixer received unrecognised value for "
 "material_balance_type. This should not happen, "
 "please report this bug to the IDAES developers."
 .format(self.name)
)

[docs] def add_energy_mixing_equations(self, inlet_blocks, mixed_block):
 """
 Add energy mixing equations (total enthalpy balance).
 """

 @self.Constraint(self.flowsheet().config.time, doc="Energy balances")
 def enthalpy_mixing_equations(b, t):
 return 0 == (
 sum(
 sum(
 inlet_blocks[i][t].get_enthalpy_flow_terms(p)
 for p in mixed_block.phase_list
)
 for i in range(len(inlet_blocks))
)
 - sum(
 mixed_block[t].get_enthalpy_flow_terms(p)
 for p in mixed_block.phase_list
)
)

[docs] def add_pressure_minimization_equations(self, inlet_blocks, mixed_block):
 """
 Add pressure minimization equations. This is done by sequential
 comparisons of each inlet to the minimum pressure so far, using
 the IDAES smooth minimum fuction.
 """
 if not hasattr(self, "inlet_idx"):
 self.inlet_idx = RangeSet(len(inlet_blocks))

 # Get units metadata
 units = self.config.property_package.get_metadata()

 # Add variables
 self.minimum_pressure = Var(
 self.flowsheet().config.time,
 self.inlet_idx,
 doc="Variable for calculating minimum inlet pressure",
 units=units.get_derived_units("pressure")
)

 self.eps_pressure = Param(
 mutable=True,
 initialize=1e-3,
 domain=PositiveReals,
 doc="Smoothing term for minimum inlet pressure",
 units=units.get_derived_units("pressure")
)

 # Calculate minimum inlet pressure
 @self.Constraint(
 self.flowsheet().config.time,
 self.inlet_idx,
 doc="Calculation for minimum inlet pressure",
)
 def minimum_pressure_constraint(b, t, i):
 if i == self.inlet_idx.first():
 return self.minimum_pressure[t, i] == (
 inlet_blocks[i - 1][t].pressure)
 else:
 return self.minimum_pressure[t, i] == (
 smooth_min(
 self.minimum_pressure[t, i - 1],
 inlet_blocks[i - 1][t].pressure,
 self.eps_pressure,
)
)

 # Set inlet pressure to minimum pressure
 @self.Constraint(
 self.flowsheet().config.time, doc="Link pressure to control volume"
)
 def mixture_pressure(b, t):
 return mixed_block[t].pressure == (
 self.minimum_pressure[t, self.inlet_idx.last()]
)

[docs] def add_pressure_equality_equations(self, inlet_blocks, mixed_block):
 """
 Add pressure equality equations. Note that this writes a number of
 constraints equal to the number of inlets, enforcing equality between
 all inlets and the mixed stream.
 """
 if not hasattr(self, "inlet_idx"):
 self.inlet_idx = RangeSet(len(inlet_blocks))

 # Create equality constraints
 @self.Constraint(
 self.flowsheet().config.time,
 self.inlet_idx,
 doc="Calculation for minimum inlet pressure",
)
 def pressure_equality_constraints(b, t, i):
 return mixed_block[t].pressure == inlet_blocks[i - 1][t].pressure

[docs] def add_port_objects(self, inlet_list, inlet_blocks, mixed_block):
 """
 Adds Port objects if required.

 Args:
 a list of inlet StateBlock objects
 a mixed state StateBlock object

 Returns:
 None
 """
 if self.config.construct_ports is True:
 # Add ports
 for p in inlet_list:
 i_state = getattr(self, p + "_state")
 self.add_port(name=p, block=i_state, doc="Inlet Port")
 self.add_port(name="outlet", block=mixed_block, doc="Outlet Port")

[docs] def model_check(blk):
 """
 This method executes the model_check methods on the associated state
 blocks (if they exist). This method is generally called by a unit model
 as part of the unit's model_check method.

 Args:
 None

 Returns:
 None
 """
 # Try property block model check
 for t in blk.flowsheet().config.time:
 try:
 inlet_list = blk.create_inlet_list()
 for i in inlet_list:
 i_block = getattr(blk, i + "_state")
 i_block[t].model_check()
 except AttributeError:
 _log.warning(
 "{} Mixer inlet property block has no model "
 "checks. To correct this, add a model_check "
 "method to the associated StateBlock class."
 .format(blk.name)
)
 try:
 if blk.config.mixed_state_block is None:
 blk.mixed_state[t].model_check()
 else:
 blk.config.mixed_state_block.model_check()
 except AttributeError:
 _log.warning(
 "{} Mixer outlet property block has no "
 "model checks. To correct this, add a "
 "model_check method to the associated "
 "StateBlock class.".format(blk.name)
)

[docs] def use_minimum_inlet_pressure_constraint(self):
 """Activate the mixer pressure = mimimum inlet pressure constraint and
 deactivate the mixer pressure and all inlet pressures are equal
 constraints. This should only be used when momentum_mixing_type ==
 MomentumMixingType.minimize_and_equality.
 """
 if (self.config.momentum_mixing_type !=
 MomentumMixingType.minimize_and_equality):
 _log.warning(
 """use_minimum_inlet_pressure_constraint() can only be used
 when momentum_mixing_type ==
 MomentumMixingType.minimize_and_equality"""
)
 return
 self.minimum_pressure_constraint.activate()
 self.pressure_equality_constraints.deactivate()

[docs] def use_equal_pressure_constraint(self):
 """Deactivate the mixer pressure = mimimum inlet pressure constraint
 and activate the mixer pressure and all inlet pressures are equal
 constraints. This should only be used when momentum_mixing_type ==
 MomentumMixingType.minimize_and_equality.
 """
 if (self.config.momentum_mixing_type !=
 MomentumMixingType.minimize_and_equality):
 _log.warning(
 """use_equal_pressure_constraint() can only be used when
 momentum_mixing_type ==
 MomentumMixingType.minimize_and_equality"""
)
 return
 self.minimum_pressure_constraint.deactivate()
 self.pressure_equality_constraints.activate()

[docs] def initialize(blk, outlvl=6, optarg={}, solver="ipopt", hold_state=False):
 """
 Initialization routine for mixer (default solver ipopt)

 Keyword Arguments:
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization, **default** - False. **Valid values:**
 True - states variables are not unfixed, and a dict of
 returned containing flags for which states were fixed
 during initialization, **False** - state variables are
 unfixed after initialization by calling the release_state
 method.

 Returns:
 If hold_states is True, returns a dict containing flags for which
 states were fixed during initialization.
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg

 # Initialize inlet state blocks
 flags = {}
 inlet_list = blk.create_inlet_list()
 i_block_list = []
 for i in inlet_list:
 i_block = getattr(blk, i + "_state")
 i_block_list.append(i_block)
 flags[i] = {}
 flags[i] = i_block.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True,
)

 # Initialize mixed state block
 if blk.config.mixed_state_block is None:
 mblock = blk.mixed_state
 else:
 mblock = blk.config.mixed_state_block

 o_flags = {}
 # Calculate initial guesses for mixed stream state
 for t in blk.flowsheet().config.time:
 # Iterate over state vars as defined by property package
 s_vars = mblock[t].define_state_vars()
 for s in s_vars:
 i_vars = []
 for k in s_vars[s]:
 # Record whether variable was fixed or not
 o_flags[t, s, k] = s_vars[s][k].fixed

 # If fixed, use current value
 # otherwise calculate guess from mixed state
 if not s_vars[s][k].fixed:
 for i in range(len(i_block_list)):
 i_vars.append(
 getattr(i_block_list[i][t],
 s_vars[s].local_name)
)

 if s == "pressure":
 # If pressure, use minimum as initial guess
 mblock[t].pressure.value = min(
 i_block_list[i][t].pressure.value
 for i in range(len(i_block_list))
)
 elif "flow" in s:
 # If a "flow" variable (i.e. extensive), sum inlets
 for k in s_vars[s]:
 s_vars[s][k].value = sum(
 i_vars[i][k].value for i in range(
 len(i_block_list))
)
 else:
 # Otherwise use average of inlets
 for k in s_vars[s]:
 s_vars[s][k].value = sum(
 i_vars[i][k].value for i in range(
 len(i_block_list))
) / len(i_block_list)

 mblock.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=False,
)

 # Revert fixed status of variables to what they were before
 for t in blk.flowsheet().config.time:
 s_vars = mblock[t].define_state_vars()
 for s in s_vars:
 for k in s_vars[s]:
 s_vars[s][k].fixed = o_flags[t, s, k]

 if blk.config.mixed_state_block is None:
 if (
 hasattr(blk, "pressure_equality_constraints")
 and blk.pressure_equality_constraints.active is True
):
 blk.pressure_equality_constraints.deactivate()
 for t in blk.flowsheet().config.time:
 sys_press = getattr(
 blk,
 blk.create_inlet_list()[0] + "_state")[t].pressure
 blk.mixed_state[t].pressure.fix(sys_press.value)
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG)as slc:
 res = opt.solve(blk, tee=slc.tee)
 blk.pressure_equality_constraints.activate()
 for t in blk.flowsheet().config.time:
 blk.mixed_state[t].pressure.unfix()
 else:
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)

 init_log.info(
 "Initialization Complete: {}".format(idaeslog.condition(res))
)
 else:
 init_log.info("Initialization Complete.")

 if hold_state is True:
 return flags
 else:
 blk.release_state(flags, outlvl=outlvl)

[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 """
 Method to release state variables fixed during initialization.

 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state = True.
 outlvl : sets output level of logging

 Returns:
 None
 """
 inlet_list = blk.create_inlet_list()
 for i in inlet_list:
 i_block = getattr(blk, i + "_state")
 i_block.release_state(flags[i], outlvl=outlvl + 1)

 def _get_stream_table_contents(self, time_point=0):
 io_dict = {}
 inlet_list = self.create_inlet_list()
 for i in inlet_list:
 io_dict[i] = getattr(self, i + "_state")
 if self.config.mixed_state_block is None:
 io_dict["Outlet"] = self.mixed_state
 else:
 io_dict["Outlet"] = self.config.mixed_state_block
 return create_stream_table_dataframe(io_dict, time_point=time_point)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 mb_type = self.config.material_balance_type

 if hasattr(self, "material_mixing_equations"):
 if mb_type == MaterialBalanceType.componentPhase:
 for (t, p, j), c in self.material_mixing_equations.items():
 flow_term = self.mixed_state[t].get_material_flow_terms(p, j)
 s = iscale.get_scaling_factor(flow_term, default=1)
 iscale.constraint_scaling_transform(c, s)
 elif mb_type == MaterialBalanceType.componentTotal:
 for (t, j), c in self.material_mixing_equations.items():
 for i, p in enumerate(self.mixed_state.phase_list):
 ft = self.mixed_state[t].get_material_flow_terms(p, j)
 if i == 0:
 s = iscale.get_scaling_factor(ft, default=1)
 else:
 _s = iscale.get_scaling_factor(ft, default=1)
 s = _s if _s < s else s
 iscale.constraint_scaling_transform(c, s)
 elif mb_type == MaterialBalanceType.total:
 pc_set = self.mixed_state.phase_component_set
 for t, c in self.material_mixing_equations.items():
 for i, (p, j) in enumerate(pc_set):
 ft = self.mixed_state[t].get_material_flow_terms(p, j)
 if i == 0:
 s = iscale.get_scaling_factor(ft, default=1)
 else:
 _s = iscale.get_scaling_factor(ft, default=1)
 s = _s if _s < s else s
 iscale.constraint_scaling_transform(c, s)

 idaes.generic_models.unit_models.plug_flow_reactor

 Source code for idaes.generic_models.unit_models.plug_flow_reactor

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES PFR model.
"""
Import Pyomo libraries
from pyomo.environ import Constraint, Var, Reference, Block
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume1DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block,
 list_of_floats)
from idaes.core.util.misc import add_object_reference
import idaes.core.util.unit_costing as costing
from idaes.core.util.constants import Constants as const

__author__ = "Andrew Lee, John Eslick"

[docs]@declare_process_block_class("PFR")
class PFRData(UnitModelBlockData):
 """
 Standard Plug Flow Reactor Unit Model Class
 """
 CONFIG = UnitModelBlockData.CONFIG()
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_equilibrium_reactions", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Equilibrium reaction construction flag",
 doc="""Indicates whether terms for equilibrium controlled reactions
should be constructed,
default - True.
Valid values: {
True - include equilibrium reaction terms,
False - exclude equilibrium reaction terms.}"""))
 CONFIG.declare("has_phase_equilibrium", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium construction flag",
 doc="""Indicates whether terms for phase equilibrium should be
constructed,
default = False.
Valid values: {
True - include phase equilibrium terms
False - exclude phase equilibrium terms.}"""))
 CONFIG.declare("has_heat_of_reaction", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat of reaction term construction flag",
 doc="""Indicates whether terms for heat of reaction terms should be
constructed,
default - False.
Valid values: {
True - include heat of reaction terms,
False - exclude heat of reaction terms.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 CONFIG.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))
 CONFIG.declare("length_domain_set", ConfigValue(
 default=[0.0, 1.0],
 domain=list_of_floats,
 description="List of points to use to initialize length domain",
 doc="""A list of values to be used when constructing the length domain
of the reactor. Point must lie between 0.0 and 1.0,
default - [0.0, 1.0].
Valid values: {
a list of floats}"""))
 CONFIG.declare("transformation_method", ConfigValue(
 default="dae.finite_difference",
 description="Method to use for DAE transformation",
 doc="""Method to use to transform domain. Must be a method recognised
by the Pyomo TransformationFactory,
default - "dae.finite_difference"."""))
 CONFIG.declare("transformation_scheme", ConfigValue(
 default="BACKWARD",
 description="Scheme to use for DAE transformation",
 doc="""Scheme to use when transformating domain. See Pyomo
documentation for supported schemes,
default - "BACKWARD"."""))
 CONFIG.declare("finite_elements", ConfigValue(
 default=20,
 description="Number of finite elements to use for DAE transformation",
 doc="""Number of finite elements to use when transforming length
domain,
default - 20."""))
 CONFIG.declare("collocation_points", ConfigValue(
 default=3,
 description="No. collocation points to use for DAE transformation",
 doc="""Number of collocation points to use when transforming length
domain,
default - 3."""))

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(PFRData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume1DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 "reaction_package": self.config.reaction_package,
 "reaction_package_args": self.config.reaction_package_args,
 "transformation_method": self.config.transformation_method,
 "transformation_scheme": self.config.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points})

 self.control_volume.add_geometry(
 length_domain_set=self.config.length_domain_set)

 self.control_volume.add_state_blocks(
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_reaction_blocks(
 has_equilibrium=self.config.has_equilibrium_reactions)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_rate_reactions=True,
 has_equilibrium_reactions=self.config.has_equilibrium_reactions,
 has_phase_equilibrium=self.config.has_phase_equilibrium)

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_of_reaction=self.config.has_heat_of_reaction,
 has_heat_transfer=self.config.has_heat_transfer)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 self.control_volume.apply_transformation()

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 # Add PFR performance equation
 @self.Constraint(self.flowsheet().config.time,
 self.control_volume.length_domain,
 self.config.reaction_package.rate_reaction_idx,
 doc="PFR performance equation")
 def performance_eqn(b, t, x, r):
 return b.control_volume.rate_reaction_extent[t, x, r] == (
 b.control_volume.reactions[t, x].reaction_rate[r] *
 b.control_volume.area)

 # Set references to balance terms at unit level
 add_object_reference(self, "length", self.control_volume.length)
 add_object_reference(self, "area", self.control_volume.area)

 # Add volume variable for full reactor
 units = self.config.property_package.get_metadata()
 self.volume = Var(initialize=1,
 doc="Reactor Volume",
 units=units.get_derived_units("volume"))

 self.geometry = Constraint(expr=self.volume == self.area*self.length)

 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[...])
 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[...])

 def _get_performance_contents(self, time_point=0):
 var_dict = {"Volume": self.volume}
 var_dict = {"Length": self.length}
 var_dict = {"Area": self.area}

 return {"vars": var_dict}

 def get_costing(self, year=None, module=costing, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year, module=module)

 self.costing = Block()
 units_meta = (self.config.property_package.get_metadata().
 get_derived_units)
 self.diameter = Var(initialize=1,
 units=units_meta('length'),
 doc='vessel diameter')
 self.diameter_eq = Constraint(expr=self.volume
 == (self.length*const.pi
 * self.diameter**2)/4)
 module.pfr_costing(self.costing, **kwargs)

 idaes.generic_models.unit_models.pressure_changer

 Source code for idaes.generic_models.unit_models.pressure_changer

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

"""
Standard IDAES pressure changer model.
"""

Import Python libraries
from enum import Enum

Import Pyomo libraries
from pyomo.environ import SolverFactory, value, Var, Block, Expression,\
 Constraint, Reference
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (
 ControlVolume0DBlock,
 declare_process_block_class,
 EnergyBalanceType,
 MomentumBalanceType,
 MaterialBalanceType,
 UnitModelBlockData,
 useDefault,
)
from idaes.core.util.config import is_physical_parameter_block
import idaes.logger as idaeslog
import idaes.core.util.unit_costing as costing
from idaes.core.util import scaling as iscale

__author__ = "Emmanuel Ogbe, Andrew Lee"
_log = idaeslog.getLogger(__name__)

class ThermodynamicAssumption(Enum):
 isothermal = 1
 isentropic = 2
 pump = 3
 adiabatic = 4

[docs]@declare_process_block_class("PressureChanger")
class PressureChangerData(UnitModelBlockData):
 """
 Standard Compressor/Expander Unit Model Class
 """

 CONFIG = UnitModelBlockData.CONFIG()

 CONFIG.declare(
 "material_balance_type",
 ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}""",
),
)
 CONFIG.declare(
 "energy_balance_type",
 ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}""",
),
)
 CONFIG.declare(
 "momentum_balance_type",
 ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be
constructed, **default** - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}""",
),
)
 CONFIG.declare(
 "has_phase_equilibrium",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Phase equilibrium construction flag",
 doc="""Indicates whether terms for phase equilibrium should be
constructed, **default** = False.
Valid values: {
True - include phase equilibrium terms
False - exclude phase equilibrium terms.}""",
),
)
 CONFIG.declare(
 "compressor",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Compressor flag",
 doc="""Indicates whether this unit should be considered a
 compressor (True (default), pressure increase) or an expander
 (False, pressure decrease).""",
),
)
 CONFIG.declare(
 "thermodynamic_assumption",
 ConfigValue(
 default=ThermodynamicAssumption.isothermal,
 domain=In(ThermodynamicAssumption),
 description="Thermodynamic assumption to use",
 doc="""Flag to set the thermodynamic assumption to use for the unit.
 - ThermodynamicAssumption.isothermal (default)
 - ThermodynamicAssumption.isentropic
 - ThermodynamicAssumption.pump
 - ThermodynamicAssumption.adiabatic""",
),
)
 CONFIG.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property
calculations, **default** - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}""",
),
)
 CONFIG.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)

[docs] def build(self):
 """

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build
 super(PressureChangerData, self).build()

 # Add a control volume to the unit including setting up dynamics.
 self.control_volume = ControlVolume0DBlock(
 default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 }
)

 # Add geomerty variables to control volume
 if self.config.has_holdup:
 self.control_volume.add_geometry()

 # Add inlet and outlet state blocks to control volume
 self.control_volume.add_state_blocks(
 has_phase_equilibrium=self.config.has_phase_equilibrium
)

 # Add mass balance
 # Set has_equilibrium is False for now
 # TO DO; set has_equilibrium to True
 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_phase_equilibrium=self.config.has_phase_equilibrium,
)

 # Add energy balance
 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_work_transfer=True
)

 # add momentum balance
 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=True
)

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 # Set Unit Geometry and holdup Volume
 if self.config.has_holdup is True:
 self.volume = Reference(self.control_volume.volume[:])

 # Construct performance equations
 # Set references to balance terms at unit level
 # Add Work transfer variable 'work'
 self.work_mechanical = Reference(self.control_volume.work[:])

 # Add Momentum balance variable 'deltaP'
 self.deltaP = Reference(self.control_volume.deltaP[:])

 # Performance Variables
 self.ratioP = Var(
 self.flowsheet().config.time, initialize=1.0, doc="Pressure Ratio"
)

 # Pressure Ratio
 @self.Constraint(self.flowsheet().config.time,
 doc="Pressure ratio constraint")
 def ratioP_calculation(b, t):
 return (
 b.ratioP[t] * b.control_volume.properties_in[t].pressure
 == b.control_volume.properties_out[t].pressure
)

 # Construct equations for thermodynamic assumption
 if (self.config.thermodynamic_assumption ==
 ThermodynamicAssumption.isothermal):
 self.add_isothermal()
 elif (self.config.thermodynamic_assumption ==
 ThermodynamicAssumption.isentropic):
 self.add_isentropic()
 elif (self.config.thermodynamic_assumption ==
 ThermodynamicAssumption.pump):
 self.add_pump()
 elif (self.config.thermodynamic_assumption ==
 ThermodynamicAssumption.adiabatic):
 self.add_adiabatic()

[docs] def add_pump(self):
 """
 Add constraints for the incompressible fluid assumption

 Args:
 None

 Returns:
 None
 """
 units_meta = self.config.property_package.get_metadata()

 self.work_fluid = Var(
 self.flowsheet().config.time,
 initialize=1.0,
 doc="Work required to increase the pressure of the liquid",
 units=units_meta.get_derived_units("power")
)
 self.efficiency_pump = Var(
 self.flowsheet().config.time, initialize=1.0, doc="Pump efficiency"
)

 @self.Constraint(self.flowsheet().config.time,
 doc="Pump fluid work constraint")
 def fluid_work_calculation(b, t):
 return b.work_fluid[t] == (
 (
 b.control_volume.properties_out[t].pressure
 - b.control_volume.properties_in[t].pressure
)
 * b.control_volume.properties_out[t].flow_vol
)

 # Actual work
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Actual mechanical work calculation"
)
 def actual_work(b, t):
 if b.config.compressor:
 return b.work_fluid[t] == (
 b.work_mechanical[t] * b.efficiency_pump[t]
)
 else:
 return b.work_mechanical[t] == (
 b.work_fluid[t] * b.efficiency_pump[t]
)

[docs] def add_isothermal(self):
 """
 Add constraints for isothermal assumption.

 Args:
 None

 Returns:
 None
 """
 # Isothermal constraint
 @self.Constraint(
 self.flowsheet().config.time,
 doc="For isothermal condition: Equate inlet and "
 "outlet temperature",
)
 def isothermal(b, t):
 return (
 b.control_volume.properties_in[t].temperature
 == b.control_volume.properties_out[t].temperature
)

[docs] def add_adiabatic(self):
 """
 Add constraints for adiabatic assumption.

 Args:
 None

 Returns:
 None
 """
 # Isothermal constraint
 @self.Constraint(
 self.flowsheet().config.time,
 doc="For isothermal condition: Equate inlet and outlet enthalpy",
)
 def adiabatic(b, t):
 return (
 b.control_volume.properties_in[t].enth_mol
 == b.control_volume.properties_out[t].enth_mol
)

[docs] def add_isentropic(self):
 """
 Add constraints for isentropic assumption.

 Args:
 None

 Returns:
 None
 """
 units_meta = self.config.property_package.get_metadata()

 # Get indexing sets from control volume
 # Add isentropic variables
 self.efficiency_isentropic = Var(
 self.flowsheet().config.time,
 initialize=0.8,
 doc="Efficiency with respect to an isentropic process [-]",
)
 self.work_isentropic = Var(
 self.flowsheet().config.time,
 initialize=0.0,
 doc="Work input to unit if isentropic process",
 units=units_meta.get_derived_units("power")
)

 # Build isentropic state block
 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = self.config.has_phase_equilibrium
 tmp_dict["defined_state"] = False

 self.properties_isentropic = (
 self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="isentropic properties at outlet",
 default=tmp_dict)
)

 # Connect isentropic state block properties
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Pressure for isentropic calculations"
)
 def isentropic_pressure(b, t):
 return (
 b.properties_isentropic[t].pressure
 == b.control_volume.properties_out[t].pressure
)

 # This assumes isentropic composition is the same as outlet
 self.add_state_material_balances(self.config.material_balance_type,
 self.properties_isentropic,
 self.control_volume.properties_out)

 # This assumes isentropic entropy is the same as inlet
 @self.Constraint(self.flowsheet().config.time,
 doc="Isentropic assumption")
 def isentropic(b, t):
 return (
 b.properties_isentropic[t].entr_mol
 == b.control_volume.properties_in[t].entr_mol
)

 # Isentropic work
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Calculate work of isentropic process"
)
 def isentropic_energy_balance(b, t):
 return b.work_isentropic[t] == (
 sum(
 b.properties_isentropic[t].get_enthalpy_flow_terms(p)
 for p in b.properties_isentropic.phase_list
)
 - sum(
 b.control_volume.properties_in[
 t].get_enthalpy_flow_terms(p)
 for p in b.control_volume.properties_in.phase_list
)
)

 # Actual work
 @self.Constraint(
 self.flowsheet().config.time,
 doc="Actual mechanical work calculation"
)
 def actual_work(b, t):
 if b.config.compressor:
 return b.work_isentropic[t] == (
 b.work_mechanical[t] * b.efficiency_isentropic[t]
)
 else:
 return b.work_mechanical[t] == (
 b.work_isentropic[t] * b.efficiency_isentropic[t]
)

[docs] def model_check(blk):
 """
 Check that pressure change matches with compressor argument (i.e. if
 compressor = True, pressure should increase or work should be positive)

 Args:
 None

 Returns:
 None
 """
 if blk.config.compressor:
 # Compressor
 # Check that pressure does not decrease
 if any(
 blk.deltaP[t].fixed and (value(blk.deltaP[t]) < 0.0)
 for t in blk.flowsheet().config.time
):
 _log.warning("{} Compressor set with negative deltaP."
 .format(blk.name))
 if any(
 blk.ratioP[t].fixed and (value(blk.ratioP[t]) < 1.0)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Compressor set with ratioP less than 1."
 .format(blk.name)
)
 if any(
 blk.control_volume.properties_out[t].pressure.fixed
 and (
 value(blk.control_volume.properties_in[t].pressure)
 > value(blk.control_volume.properties_out[t].pressure)
)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Compressor set with pressure decrease."
 .format(blk.name)
)
 # Check that work is not negative
 if any(
 blk.work_mechanical[t].fixed and (
 value(blk.work_mechanical[t]) < 0.0)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Compressor maybe set with negative work."
 .format(blk.name)
)
 else:
 # Expander
 # Check that pressure does not increase
 if any(
 blk.deltaP[t].fixed and (value(blk.deltaP[t]) > 0.0)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Expander/turbine set with positive deltaP."
 .format(blk.name)
)
 if any(
 blk.ratioP[t].fixed and (value(blk.ratioP[t]) > 1.0)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Expander/turbine set with ratioP greater "
 "than 1.".format(blk.name)
)
 if any(
 blk.control_volume.properties_out[t].pressure.fixed
 and (
 value(blk.control_volume.properties_in[t].pressure)
 < value(blk.control_volume.properties_out[t].pressure)
)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Expander/turbine maybe set with pressure ",
 "increase.".format(blk.name),
)
 # Check that work is not positive
 if any(
 blk.work_mechanical[t].fixed and (
 value(blk.work_mechanical[t]) > 0.0)
 for t in blk.flowsheet().config.time
):
 _log.warning(
 "{} Expander/turbine set with positive work."
 .format(blk.name)
)

 # Run holdup block model checks
 blk.control_volume.model_check()

 # Run model checks on isentropic property block
 try:
 for t in blk.flowsheet().config.time:
 blk.properties_in[t].model_check()
 except AttributeError:
 pass

[docs] def initialize(
 blk,
 state_args=None,
 routine=None,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6},
):
 """
 General wrapper for pressure changer initialization routines

 Keyword Arguments:
 routine : str stating which initialization routine to execute
 * None - use routine matching thermodynamic_assumption
 * 'isentropic' - use isentropic initialization routine
 * 'isothermal' - use isothermal initialization routine
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 # if costing block exists, deactivate
 try:
 blk.costing.deactivate()
 except AttributeError:
 pass

 if routine is None:
 # Use routine for specific type of unit
 routine = blk.config.thermodynamic_assumption

 # Call initialization routine
 if routine is ThermodynamicAssumption.isentropic:
 blk.init_isentropic(
 state_args=state_args,
 outlvl=outlvl,
 solver=solver,
 optarg=optarg
)
 else:
 # Call the general initialization routine in UnitModelBlockData
 super(PressureChangerData, blk).initialize(
 state_args=state_args,
 outlvl=outlvl,
 solver=solver,
 optarg=optarg
)
 # if costing block exists, activate
 try:
 blk.costing.activate()
 costing.initialize(blk.costing)
 except AttributeError:
 pass

[docs] def init_isentropic(blk, state_args, outlvl, solver, optarg):
 """
 Initialization routine for unit (default solver ipopt)

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")
 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg

 cv = blk.control_volume
 t0 = blk.flowsheet().config.time.first()
 state_args_out = {}
 if state_args is None:
 state_args = {}
 state_dict = (
 cv.properties_in[t0].define_port_members())

 for k in state_dict.keys():
 if state_dict[k].is_indexed():
 state_args[k] = {}
 for m in state_dict[k].keys():
 state_args[k][m] = state_dict[k][m].value
 else:
 state_args[k] = state_dict[k].value

 # Get initialisation guesses for outlet and isentropic states
 for k in state_args:
 if k == "pressure":
 # Work out how to estimate outlet pressure
 if cv.properties_out[t0].pressure.fixed:
 # Fixed outlet pressure, use this value
 state_args_out[k] = value(
 cv.properties_out[t0].pressure)
 elif blk.deltaP[t0].fixed:
 state_args_out[k] = value(
 state_args[k] + blk.deltaP[t0])
 elif blk.ratioP[t0].fixed:
 state_args_out[k] = value(
 state_args[k] * blk.ratioP[t0])
 else:
 # Not obvious what to do, use inlet state
 state_args_out[k] = state_args[k]
 else:
 state_args_out[k] = state_args[k]

 # Initialize state blocks
 flags = cv.properties_in.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True,
 state_args=state_args,
)
 cv.properties_out.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=False,
 state_args=state_args_out,
)

 init_log.info_high("Initialization Step 1 Complete.")
 # ---
 # Initialize Isentropic block

 blk.properties_isentropic.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_out,
)

 init_log.info_high("Initialization Step 2 Complete.")

 # ---
 # Solve for isothermal conditions
 if isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].temperature,
 Var,
):
 blk.properties_isentropic[:].temperature.fix()
 elif isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].enth_mol,
 Var,
):
 blk.properties_isentropic[:].enth_mol.fix()
 elif isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].temperature,
 Expression,
):
 def tmp_rule(b, t):
 return blk.properties_isentropic[t].temperature == \
 blk.control_volume.properties_in[t].temperature
 blk.tmp_init_constraint = Constraint(
 blk.flowsheet().config.time, rule=tmp_rule)

 blk.isentropic.deactivate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high("Initialization Step 3 {}."
 .format(idaeslog.condition(res)))

 if isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].temperature,
 Var,
):
 blk.properties_isentropic[:].temperature.unfix()
 elif isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].enth_mol,
 Var,
):
 blk.properties_isentropic[:].enth_mol.unfix()
 elif isinstance(
 blk.properties_isentropic[
 blk.flowsheet().config.time.first()].temperature,
 Expression,
):
 blk.del_component(blk.tmp_init_constraint)

 blk.isentropic.activate()

 # ---
 # Solve unit
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high("Initialization Step 4 {}."
 .format(idaeslog.condition(res)))

 # ---
 # Release Inlet state
 blk.control_volume.release_state(flags, outlvl)
 init_log.info(
 "Initialization Complete: {}"
 .format(idaeslog.condition(res))
)

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 if hasattr(self, "deltaP"):
 var_dict["Mechanical Work"] = self.work_mechanical[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]
 if hasattr(self, "ratioP"):
 var_dict["Pressure Ratio"] = self.ratioP[time_point]
 if hasattr(self, "efficiency_pump"):
 var_dict["Efficiency"] = self.efficiency_pump[time_point]
 if hasattr(self, "efficiency_isentropic"):
 var_dict["Isentropic Efficiency"] = \
 self.efficiency_isentropic[time_point]

 return {"vars": var_dict}

 def get_costing(self, module=costing, year=None, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year)

 self.costing = Block()
 module.pressure_changer_costing(
 self.costing,
 **kwargs)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 if hasattr(self, "work_fluid"):
 for t, v in self.work_fluid.items():
 iscale.set_scaling_factor(
 v,
 iscale.get_scaling_factor(
 self.control_volume.work[t],
 default=1,
 warning=True))

 if hasattr(self, "work_mechanical"):
 for t, v in self.work_mechanical.items():
 iscale.set_scaling_factor(
 v,
 iscale.get_scaling_factor(
 self.control_volume.work[t],
 default=1,
 warning=True))

 if hasattr(self, "work_isentropic"):
 for t, v in self.work_isentropic.items():
 iscale.set_scaling_factor(
 v,
 iscale.get_scaling_factor(
 self.control_volume.work[t],
 default=1,
 warning=True))

 if hasattr(self, "ratioP_calculation"):
 for t, c in self.ratioP_calculation.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.properties_in[t].pressure,
 default=1,
 warning=True))

 if hasattr(self, "fluid_work_calculation"):
 for t, c in self.fluid_work_calculation.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.deltaP[t],
 default=1,
 warning=True))

 if hasattr(self, "actual_work"):
 for t, c in self.actual_work.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.work[t],
 default=1,
 warning=True))

 if hasattr(self, "adiabatic"):
 for t, c in self.adiabatic.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.properties_in[t].enth_mol,
 default=1,
 warning=True))

 if hasattr(self, "isentropic_pressure"):
 for t, c in self.isentropic_pressure.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.properties_in[t].pressure,
 default=1,
 warning=True))

 if hasattr(self, "isentropic"):
 for t, c in self.isentropic.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.properties_in[t].entr_mol,
 default=1,
 warning=True))

 if hasattr(self, "isentropic_energy_balance"):
 for t, c in self.isentropic_energy_balance.items():
 iscale.constraint_scaling_transform(
 c,
 iscale.get_scaling_factor(
 self.control_volume.work[t],
 default=1,
 warning=True))

 if hasattr(self, "costing"):
 # import costing scaling factors
 costing.calculate_scaling_factors(self.costing)

@declare_process_block_class("Turbine", doc="Isentropic turbine model")
class TurbineData(PressureChangerData):
 # Pressure changer with isentropic turbine options
 CONFIG = PressureChangerData.CONFIG()
 CONFIG.compressor = False
 CONFIG.get("compressor")._default = False
 CONFIG.get("compressor")._domain = In([False])
 CONFIG.thermodynamic_assumption = ThermodynamicAssumption.isentropic
 CONFIG.get("thermodynamic_assumption")._default = \
 ThermodynamicAssumption.isentropic

@declare_process_block_class("Compressor", doc="Isentropic compressor model")
class CompressorData(PressureChangerData):
 # Pressure changer with isentropic turbine options
 CONFIG = PressureChangerData.CONFIG()
 CONFIG.compressor = True
 CONFIG.get("compressor")._default = True
 CONFIG.get("compressor")._domain = In([True])
 CONFIG.thermodynamic_assumption = ThermodynamicAssumption.isentropic
 CONFIG.get("thermodynamic_assumption")._default = \
 ThermodynamicAssumption.isentropic

@declare_process_block_class("Pump", doc="Pump model")
class PumpData(PressureChangerData):
 # Pressure changer with isentropic turbine options
 CONFIG = PressureChangerData.CONFIG()
 CONFIG.compressor = True
 CONFIG.get("compressor")._default = True
 CONFIG.get("compressor")._domain = In([True])
 CONFIG.thermodynamic_assumption = ThermodynamicAssumption.pump
 CONFIG.get("thermodynamic_assumption")._default = \
 ThermodynamicAssumption.pump

 idaes.generic_models.unit_models.product

 Source code for idaes.generic_models.unit_models.product

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES Product block.
"""

Import Pyomo libraries
from pyomo.environ import Reference
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("Product")
class ProductData(UnitModelBlockData):
 """
 Standard Product Block Class
 """

 CONFIG = ConfigBlock()
 CONFIG.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-state.""",
),
)
 CONFIG.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Product blocks do not contain holdup, thus this must be
False.""",
),
)
 CONFIG.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property
calculations, **default** - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}""",
),
)
 CONFIG.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None

 """
 # Call UnitModel.build to setup dynamics
 super(ProductData, self).build()

 # Add State Block
 self.properties = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties in product",
 default={
 "defined_state": True,
 "has_phase_equilibrium": False,
 **self.config.property_package_args,
 },
)

 # Add references to all state vars
 s_vars = self.properties[
 self.flowsheet().config.time.first()
].define_state_vars()
 for s in s_vars:
 l_name = s_vars[s].local_name
 if s_vars[s].is_indexed():
 slicer = self.properties[:].component(l_name)[...]
 else:
 slicer = self.properties[:].component(l_name)

 r = Reference(slicer)
 setattr(self, s, r)

 # Add outlet port
 self.add_port(name="inlet", block=self.properties, doc="Inlet Port")

[docs] def initialize(
 blk, state_args={}, outlvl=idaeslog.NOTSET,
 solver="ipopt", optarg={"tol": 1e-6}
):
 """
 This method calls the initialization method of the state block.

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 # ---
 # Initialize state block
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 blk.properties.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 **state_args
)
 init_log.info("Initialization Complete.")

 def _get_stream_table_contents(self, time_point=0):
 return create_stream_table_dataframe(
 {"Inlet": self.inlet}, time_point=time_point
)

 idaes.generic_models.unit_models.separator

 Source code for idaes.generic_models.unit_models.separator

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
General purpose separator block for IDAES models
"""

from enum import Enum
from pandas import DataFrame

from pyomo.environ import (
 Block,
 Constraint,
 Param,
 Reals,
 Reference,
 Set,
 SolverFactory,
 Var,
 value,
)
from pyomo.network import Port
from pyomo.common.config import ConfigBlock, ConfigValue, In

from idaes.core import (
 declare_process_block_class,
 UnitModelBlockData,
 useDefault,
 MaterialBalanceType,
 MaterialFlowBasis
)
from idaes.core.util.config import (
 is_physical_parameter_block,
 is_state_block,
 list_of_strings,
)
from idaes.core.util.exceptions import (
 BurntToast,
 ConfigurationError,
 PropertyNotSupportedError,
)
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.util.misc import VarLikeExpression
from idaes.core.util.model_statistics import degrees_of_freedom
import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

Enumerate options for balances
class SplittingType(Enum):
 totalFlow = 1
 phaseFlow = 2
 componentFlow = 3
 phaseComponentFlow = 4

class EnergySplittingType(Enum):
 equal_temperature = 1
 equal_molar_enthalpy = 2
 enthalpy_split = 3

[docs]@declare_process_block_class("Separator")
class SeparatorData(UnitModelBlockData):
 """
 This is a general purpose model for a Separator block with the IDAES
 modeling framework. This block can be used either as a stand-alone
 Separator unit operation, or as a sub-model within another unit operation.

 This model creates a number of StateBlocks to represent the outgoing
 streams, then writes a set of phase-component material balances, an
 overall enthalpy balance (2 options), and a momentum balance (2 options)
 linked to a mixed-state StateBlock. The mixed-state StateBlock can either
 be specified by the user (allowing use as a sub-model), or created by the
 Separator.

 When being used as a sub-model, Separator should only be used when a
 set of new StateBlocks are required for the streams to be separated. It
 should not be used to separate streams to go to mutiple ControlVolumes in a
 single unit model - in these cases the unit model developer should write
 their own splitting equations.
 """

 CONFIG = ConfigBlock()
 CONFIG.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this model will be dynamic or not,
default = False. Product blocks are always steady-state.""",
),
)
 CONFIG.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Product blocks do not contain holdup, thus this must be
False.""",
),
)
 CONFIG.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for mixer",
 doc="""Property parameter object used to define property
calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}""",
),
)
 CONFIG.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)
 CONFIG.declare(
 "outlet_list",
 ConfigValue(
 domain=list_of_strings,
 description="List of outlet names",
 doc="""A list containing names of outlets,
default - None.
Valid values: {
None - use num_outlets argument,
list - a list of names to use for outlets.}""",
),
)
 CONFIG.declare(
 "num_outlets",
 ConfigValue(
 domain=int,
 description="Number of outlets to unit",
 doc="""Argument indicating number (int) of outlets to construct,
not used if outlet_list arg is provided,
default - None.
Valid values: {
None - use outlet_list arg instead, or default to 2 if neither argument
provided,
int - number of outlets to create (will be named with sequential integers
from 1 to num_outlets).}""",
),
)
 CONFIG.declare(
 "split_basis",
 ConfigValue(
 default=SplittingType.totalFlow,
 domain=SplittingType,
 description="Basis for splitting stream",
 doc="""Argument indicating basis to use for splitting mixed stream,
default - SplittingType.totalFlow.
Valid values: {
SplittingType.totalFlow - split based on total flow (split
fraction indexed only by time and outlet),
SplittingType.phaseFlow - split based on phase flows (split fraction
indexed by time, outlet and phase),
SplittingType.componentFlow - split based on component flows (split
fraction indexed by time, outlet and components),
SplittingType.phaseComponentFlow - split based on phase-component flows (
split fraction indexed by both time, outlet, phase and components).}""",
),
)
 CONFIG.declare(
 "material_balance_type",
 ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}""",
),
)
 CONFIG.declare(
 "has_phase_equilibrium",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Calculate phase equilibrium in mixed stream",
 doc="""Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream,
default - False.
Valid values: {
True - calculate phase equilibrium in mixed stream,
False - do not calculate equilibrium in mixed stream.}""",
),
)
 CONFIG.declare(
 "energy_split_basis",
 ConfigValue(
 default=EnergySplittingType.equal_temperature,
 domain=EnergySplittingType,
 description="Type of constraint to write for energy splitting",
 doc="""Argument indicating basis to use for splitting energy this
is not used for when ideal_separation == True.
default - EnergySplittingType.equal_temperature.
Valid values: {
EnergySplittingType.equal_temperature - outlet temperatures equal inlet
EnergySplittingType.equal_molar_enthalpy - oulet molar enthalpies equal
inlet,
EnergySplittingType.enthalpy_split - apply split fractions to enthalpy
flows. Does not work with component or phase-component splitting.}""",
),
)
 CONFIG.declare(
 "ideal_separation",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Ideal splitting flag",
 doc="""Argument indicating whether ideal splitting should be used.
Ideal splitting assumes perfect spearation of material, and attempts to
avoid duplication of StateBlocks by directly partitioning outlet flows to
ports,
default - False.
Valid values: {
True - use ideal splitting methods. Cannot be combined with
has_phase_equilibrium = True,
False - use explicit splitting equations with split fractions.}""",
),
)
 CONFIG.declare(
 "ideal_split_map",
 ConfigValue(
 domain=dict,
 description="Ideal splitting partitioning map",
 doc="""Dictionary containing information on how extensive variables
should be partitioned when using ideal splitting (ideal_separation = True).
default - None.
Valid values: {
dict with keys of indexing set members and values indicating which outlet
this combination of keys should be partitioned to.
E.g. {("Vap", "H2"): "outlet_1"}}""",
),
)
 CONFIG.declare(
 "mixed_state_block",
 ConfigValue(
 domain=is_state_block,
 description="Existing StateBlock to use as mixed stream",
 doc="""An existing state block to use as the source stream from the
Separator block,
default - None.
Valid values: {
None - create a new StateBlock for the mixed stream,
StateBlock - a StateBock to use as the source for the mixed stream.}""",
),
)
 CONFIG.declare(
 "construct_ports",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Construct inlet and outlet Port objects",
 doc="""Argument indicating whether model should construct Port
objects linked the mixed state and all outlet states,
default - True.
Valid values: {
True - construct Ports for all states,
False - do not construct Ports.""",
),
)

[docs] def build(self):
 """
 General build method for SeparatorData. This method calls a number
 of sub-methods which automate the construction of expected attributes
 of unit models.

 Inheriting models should call `super().build`.

 Args:
 None

 Returns:
 None
 """
 # Call super.build()
 super(SeparatorData, self).build()

 self._validate_config_arguments()

 # Call setup methods from ControlVolumeBlockData
 self._get_property_package()
 self._get_indexing_sets()

 # Create list of inlet names
 outlet_list = self.create_outlet_list()

 if self.config.mixed_state_block is None:
 mixed_block = self.add_mixed_state_block()
 else:
 mixed_block = self.get_mixed_state_block()

 # Add inlet port
 self.add_inlet_port_objects(mixed_block)

 # Construct splitter based on ideal_separation argument
 if self.config.ideal_separation:
 # Use ideal partitioning method
 self.partition_outlet_flows(mixed_block, outlet_list)
 else:
 # Otherwise, Build StateBlocks for outlet
 outlet_blocks = self.add_outlet_state_blocks(outlet_list)

 # Add split fractions
 self.add_split_fractions(outlet_list, mixed_block)

 # Construct splitting equations
 self.add_material_splitting_constraints(mixed_block)
 self.add_energy_splitting_constraints(mixed_block)
 self.add_momentum_splitting_constraints(mixed_block)

 # Construct outlet port objects
 self.add_outlet_port_objects(outlet_list, outlet_blocks)

 def _validate_config_arguments(self):
 if self.config.has_phase_equilibrium and self.config.ideal_separation:
 raise ConfigurationError(
 """{} recieved arguments has_phase_equilibrium = True and
 ideal_separation = True. These arguments are incompatible
 with each other, and you should choose one or the other."""
 .format(self.name)
)

[docs] def create_outlet_list(self):
 """
 Create list of outlet stream names based on config arguments.

 Returns:
 list of strings
 """
 if (self.config.outlet_list is not None and
 self.config.num_outlets is not None):
 # If both arguments provided and not consistent, raise Exception
 if len(self.config.outlet_list) != self.config.num_outlets:
 raise ConfigurationError(
 "{} Separator provided with both outlet_list and "
 "num_outlets arguments, which were not consistent ("
 "length of outlet_list was not equal to num_outlets). "
 "Please check your arguments for consistency, and "
 "note that it is only necessry to provide one of "
 "these arguments.".format(self.name)
)
 elif (self.config.outlet_list is None and
 self.config.num_outlets is None):
 # If no arguments provided for outlets, default to num_outlets = 2
 self.config.num_outlets = 2

 # Create a list of names for outlet StateBlocks
 if self.config.outlet_list is not None:
 outlet_list = self.config.outlet_list
 else:
 outlet_list = [
 "outlet_" + str(n) for n in
 range(1, self.config.num_outlets + 1)
]

 return outlet_list

[docs] def add_outlet_state_blocks(self, outlet_list):
 """
 Construct StateBlocks for all outlet streams.

 Args:
 list of strings to use as StateBlock names

 Returns:
 list of StateBlocks
 """
 # Setup StateBlock argument dict
 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = False
 tmp_dict["defined_state"] = False

 # Create empty list to hold StateBlocks for return
 outlet_blocks = []

 # Create an instance of StateBlock for all outlets
 for o in outlet_list:
 o_obj = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties at outlet",
 default=tmp_dict,
)

 setattr(self, o + "_state", o_obj)

 outlet_blocks.append(getattr(self, o + "_state"))

 return outlet_blocks

[docs] def add_mixed_state_block(self):
 """
 Constructs StateBlock to represent mixed stream.

 Returns:
 New StateBlock object
 """
 # Setup StateBlock argument dict
 tmp_dict = dict(**self.config.property_package_args)
 tmp_dict["has_phase_equilibrium"] = False
 tmp_dict["defined_state"] = True

 self.mixed_state = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties of mixed stream",
 default=tmp_dict,
)

 return self.mixed_state

[docs] def get_mixed_state_block(self):
 """
 Validates StateBlock provided in user arguments for mixed stream.

 Returns:
 The user-provided StateBlock or an Exception
 """
 # Sanity check to make sure method is not called when arg missing
 if self.config.mixed_state_block is None:
 raise BurntToast(
 "{} get_mixed_state_block method called when "
 "mixed_state_block argument is None. This should "
 "not happen.".format(self.name)
)

 # Check that the user-provided StateBlock uses the same prop pack
 if (
 self.config.mixed_state_block[
 self.flowsheet().config.time.first()
].config.parameters
 != self.config.property_package
):
 raise ConfigurationError(
 "{} StateBlock provided in mixed_state_block argument "
 " does not come from the same property package as "
 "provided in the property_package argument. All "
 "StateBlocks within a Separator must use the same "
 "property package.".format(self.name)
)

 return self.config.mixed_state_block

[docs] def add_inlet_port_objects(self, mixed_block):
 """
 Adds inlet Port object if required.

 Args:
 a mixed state StateBlock object

 Returns:
 None
 """
 if self.config.construct_ports is True:
 self.add_port(name="inlet", block=mixed_block, doc="Inlet Port")

[docs] def add_outlet_port_objects(self, outlet_list, outlet_blocks):
 """
 Adds outlet Port objects if required.

 Args:
 a list of outlet StateBlock objects

 Returns:
 None
 """
 if self.config.construct_ports is True:
 # Add ports
 for p in outlet_list:
 o_state = getattr(self, p + "_state")
 self.add_port(name=p, block=o_state, doc="Outlet Port")

[docs] def add_split_fractions(self, outlet_list, mixed_block):
 """
 Creates outlet Port objects and tries to partiton mixed stream flows
 between these

 Args:
 StateBlock representing the mixed flow to be split
 a list of names for outlets

 Returns:
 None
 """
 self.outlet_idx = Set(initialize=outlet_list)
 pc_set = mixed_block.phase_component_set

 if self.config.split_basis == SplittingType.totalFlow:
 sf_idx = [self.flowsheet().config.time, self.outlet_idx]
 sf_sum_idx = [self.flowsheet().config.time]
 elif self.config.split_basis == SplittingType.phaseFlow:
 sf_idx = [
 self.flowsheet().config.time,
 self.outlet_idx,
 mixed_block.phase_list,
]
 sf_sum_idx = [
 self.flowsheet().config.time,
 mixed_block.phase_list,
]
 elif self.config.split_basis == SplittingType.componentFlow:
 sf_idx = [
 self.flowsheet().config.time,
 self.outlet_idx,
 mixed_block.component_list,
]
 sf_sum_idx = [
 self.flowsheet().config.time,
 mixed_block.component_list,
]
 elif self.config.split_basis == SplittingType.phaseComponentFlow:
 sf_idx = [
 self.flowsheet().config.time,
 self.outlet_idx,
 pc_set,
]
 sf_sum_idx = [
 self.flowsheet().config.time,
 pc_set,
]
 else:
 raise BurntToast(
 "{} split_basis has unexpected value. This "
 "should not happen.".format(self.name)
)

 # Create split fraction variable
 self.split_fraction = Var(
 *sf_idx, initialize=0.5, doc="Outlet split fractions")

 # Add constraint that split fractions sum to 1
 def sum_sf_rule(b, t, *args):
 return 1 == sum(b.split_fraction[t, o, args]
 for o in self.outlet_idx)

 self.sum_split_frac = Constraint(*sf_sum_idx, rule=sum_sf_rule)

[docs] def add_material_splitting_constraints(self, mixed_block):
 """
 Creates constraints for splitting the material flows
 """
 pc_set = mixed_block.phase_component_set

 def sf(t, o, p, j):
 if self.config.split_basis == SplittingType.totalFlow:
 return self.split_fraction[t, o]
 elif self.config.split_basis == SplittingType.phaseFlow:
 return self.split_fraction[t, o, p]
 elif self.config.split_basis == SplittingType.componentFlow:
 return self.split_fraction[t, o, j]
 elif self.config.split_basis == SplittingType.phaseComponentFlow:
 return self.split_fraction[t, o, p, j]

 mb_type = self.config.material_balance_type
 if mb_type == MaterialBalanceType.useDefault:
 t_ref = self.flowsheet().config.time.first()
 mb_type = mixed_block[t_ref].default_material_balance_type()

 if mb_type == MaterialBalanceType.componentPhase:
 if self.config.has_phase_equilibrium is True:
 # Get units from property package
 units_meta = self.config.property_package.get_metadata()
 flow_basis = mixed_block[
 self.flowsheet().config.time.first()].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 flow_units = units_meta.get_derived_units("flow_mole")
 elif flow_basis == MaterialFlowBasis.mass:
 flow_units = units_meta.get_derived_units("flow_mass")
 else:
 # Let this pass for now with no units
 flow_units = None

 try:
 self.phase_equilibrium_generation = Var(
 self.flowsheet().config.time,
 self.outlet_idx,
 self.config.property_package.phase_equilibrium_idx,
 domain=Reals,
 doc="Amount of generation in unit by phase equilibria",
 units=flow_units
)
 except AttributeError:
 raise PropertyNotSupportedError(
 "{} Property package does not contain a list of phase "
 "equilibrium reactions (phase_equilibrium_idx), thus "
 "does not support phase equilibrium.".format(self.name)
)

 # Define terms to use in mixing equation
 def phase_equilibrium_term(b, t, o, p, j):
 if self.config.has_phase_equilibrium:
 sd = {}
 sblock = mixed_block[t]
 for r in b.config.property_package.phase_equilibrium_idx:
 if sblock.params.phase_equilibrium_list[r][0] == j:
 if sblock.params.phase_equilibrium_list[r][1][0] == p:
 sd[r] = 1
 elif sblock.params.phase_equilibrium_list[r][1][1] == p:
 sd[r] = -1
 else:
 sd[r] = 0
 else:
 sd[r] = 0

 return sum(
 b.phase_equilibrium_generation[t, o, r] * sd[r]
 for r in b.config.property_package.phase_equilibrium_idx
)
 else:
 return 0

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 pc_set,
 doc="Material splitting equations",
)
 def material_splitting_eqn(b, t, o, p, j):
 o_block = getattr(self, o + "_state")
 return sf(t, o, p, j) * mixed_block[t].get_material_flow_terms(
 p, j
) == (o_block[t].get_material_flow_terms(p, j) -
 phase_equilibrium_term(b, t, o, p, j))

 elif mb_type == MaterialBalanceType.componentTotal:

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 mixed_block.component_list,
 doc="Material splitting equations",
)
 def material_splitting_eqn(b, t, o, j):
 o_block = getattr(self, o + "_state")
 return sum(
 sf(t, o, p, j) *
 mixed_block[t].get_material_flow_terms(p, j)
 for p in mixed_block.phase_list
 if (p, j) in pc_set
) == sum(
 o_block[t].get_material_flow_terms(p, j)
 for p in o_block.phase_list
 if (p, j) in pc_set
)

 elif mb_type == MaterialBalanceType.total:

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 doc="Material splitting equations",
)
 def material_splitting_eqn(b, t, o):
 o_block = getattr(self, o + "_state")
 return sum(
 sum(
 sf(t, o, p, j) *
 mixed_block[t].get_material_flow_terms(p, j)
 for j in mixed_block.component_list
 if (p, j) in pc_set
)
 for p in mixed_block.phase_list
) == sum(
 sum(
 o_block[t].get_material_flow_terms(p, j)
 for j in mixed_block.component_list
 if (p, j) in pc_set
)
 for p in o_block.phase_list
)

 elif mb_type == MaterialBalanceType.elementTotal:
 raise ConfigurationError(
 "{} Separators do not support elemental "
 "material balances.".format(self.name)
)
 elif mb_type == MaterialBalanceType.none:
 pass
 else:
 raise BurntToast(
 "{} Separator received unrecognised value for "
 "material_balance_type. This should not happen, "
 "please report this bug to the IDAES developers."
 .format(self.name)
)

[docs] def add_energy_splitting_constraints(self, mixed_block):
 """
 Creates constraints for splitting the energy flows - done by equating
 temperatures in outlets.
 """
 if self.config.energy_split_basis == \
 EnergySplittingType.equal_temperature:

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 doc="Temperature equality constraint",
)
 def temperature_equality_eqn(b, t, o):
 o_block = getattr(self, o + "_state")
 return mixed_block[t].temperature == o_block[t].temperature

 elif self.config.energy_split_basis == \
 EnergySplittingType.equal_molar_enthalpy:

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 doc="Molar enthalpy equality constraint",
)
 def molar_enthalpy_equality_eqn(b, t, o):
 o_block = getattr(self, o + "_state")
 return mixed_block[t].enth_mol == o_block[t].enth_mol

 elif self.config.energy_split_basis == \
 EnergySplittingType.enthalpy_split:
 # Validate split fraction type
 if (
 self.config.split_basis == SplittingType.phaseComponentFlow
 or self.config.split_basis == SplittingType.componentFlow
):
 raise ConfigurationError(
 "{} Cannot use energy_split_basis == enthalpy_split "
 "with split_basis == component or phaseComponent."
 .format(self.name)
)

 def sf(t, o, p):
 if self.config.split_basis == SplittingType.totalFlow:
 return self.split_fraction[t, o]
 elif self.config.split_basis == SplittingType.phaseFlow:
 return self.split_fraction[t, o, p]

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 doc="Molar enthalpy splitting constraint",
)
 def molar_enthalpy_splitting_eqn(b, t, o):
 o_block = getattr(self, o + "_state")
 return sum(
 mixed_block[t].get_enthalpy_flow_terms(p) * sf(t, o, p)
 for p in mixed_block.phase_list
) == sum(
 o_block[t].get_enthalpy_flow_terms(p)
 for p in o_block.phase_list
)

 else:
 raise BurntToast(
 "{} received unrecognised value for "
 "energy_split_basis. This should never happen, so"
 " please contact the IDAES developers with this "
 "bug.".format(self.name)
)

[docs] def add_momentum_splitting_constraints(self, mixed_block):
 """
 Creates constraints for splitting the momentum flows - done by equating
 pressures in outlets.
 """

 @self.Constraint(
 self.flowsheet().config.time,
 self.outlet_idx,
 doc="Pressure equality constraint",
)
 def pressure_equality_eqn(b, t, o):
 o_block = getattr(self, o + "_state")
 return mixed_block[t].pressure == o_block[t].pressure

[docs] def partition_outlet_flows(self, mb, outlet_list):
 """
 Creates outlet Port objects and tries to partiton mixed stream flows
 between these

 Args:
 StateBlock representing the mixed flow to be split
 a list of names for outlets

 Returns:
 None
 """
 # Check arguments
 if self.config.construct_ports is False:
 raise ConfigurationError(
 "{} cannot have and ideal separator "
 "(ideal_separation = True) with "
 "construct_ports = False.".format(self.name)
)
 if self.config.split_basis == SplittingType.totalFlow:
 raise ConfigurationError(
 "{} cannot do an ideal separation based "
 "on total flow. Either use ideal_separation = False or a "
 "different separation basis.".format(self.name)
)
 if self.config.ideal_split_map is None:
 raise ConfigurationError(
 "{} was not provided with an "
 "ideal_split_map argument which is "
 "necessary for doing an ideal_separation.".format(self.name)
)

 # Validate split map
 split_map = self.config.ideal_split_map
 idx_list = []
 if self.config.split_basis == SplittingType.phaseFlow:
 for p in mb.phase_list:
 idx_list.append((p))

 if len(idx_list) != len(split_map):
 raise ConfigurationError(
 "{} ideal_split_map does not match with "
 "split_basis chosen. ideal_split_map must"
 " have a key for each combination of indices."
 .format(self.name)
)
 for k in idx_list:
 if k not in split_map:
 raise ConfigurationError(
 "{} ideal_split_map does not match with "
 "split_basis chosen. ideal_split_map must"
 " have a key for each combination of indices."
 .format(self.name)
)

 elif self.config.split_basis == SplittingType.componentFlow:
 for j in mb.component_list:
 idx_list.append((j))

 if len(idx_list) != len(split_map):
 raise ConfigurationError(
 "{} ideal_split_map does not match with "
 "split_basis chosen. ideal_split_map must"
 " have a key for each component.".format(self.name)
)
 elif self.config.split_basis == SplittingType.phaseComponentFlow:
 for p in mb.phase_list:
 for j in mb.component_list:
 idx_list.append((p, j))

 if len(idx_list) != len(split_map):
 raise ConfigurationError(
 "{} ideal_split_map does not match with "
 "split_basis chosen. ideal_split_map must"
 " have a key for each phase-component pair."
 .format(self.name)
)

 # Check that no. outlets matches split_basis
 if len(outlet_list) != len(idx_list):
 raise ConfigurationError(
 "{} Cannot perform ideal separation. Must have one "
 "outlet for each possible combination of the "
 "chosen split_basis.".format(self.name)
)

 # Get units metadata
 units_meta = self.config.property_package.get_metadata()

 flow_basis = mb[
 self.flowsheet().config.time.first()].get_material_flow_basis()
 if flow_basis == MaterialFlowBasis.molar:
 flow_units = units_meta.get_derived_units("flow_mole")
 elif flow_basis == MaterialFlowBasis.mass:
 flow_units = units_meta.get_derived_units("flow_mass")
 else:
 # Let this pass for now with no units
 flow_units = None

 # Create tolerance Parameter for 0 flow outlets
 self.eps = Param(default=1e-8, mutable=True, units=flow_units)

 # Get list of port members
 s_vars = mb[self.flowsheet().config.time.first()].define_port_members()

 # Get phase component list(s)
 pc_set = mb.phase_component_set

 # Add empty Port objects
 for o in outlet_list:
 p_obj = Port(noruleinit=True, doc="Outlet Port")
 setattr(self, o, p_obj)

 # Iterate over members to create References or Expressions
 for s in s_vars:
 # Get local variable name of component
 l_name = s_vars[s].local_name

 if l_name == "pressure" or l_name == "temperature":
 # Assume outlets same as mixed flow - make Reference
 e_obj = Reference(mb[:].component(l_name))

 elif (l_name.startswith("mole_frac") or
 l_name.startswith("mass_frac")):
 # Mole and mass frac need special handling
 if "_phase" in l_name:

 def e_rule(b, t, p, j):
 if (p, j) in pc_set:
 if self.config.split_basis == \
 SplittingType.phaseFlow:
 return s_vars[s][p, j]
 elif self.config.split_basis == \
 SplittingType.componentFlow:
 if split_map[j] == o:
 return 1
 else:
 return self.eps
 elif (
 self.config.split_basis
 == SplittingType.phaseComponentFlow
):
 for ps in mb.phase_list:
 if split_map[ps, j] == o:
 return 1
 else:
 return self.eps
 else:
 raise BurntToast(
 "{} This should not happen. Please "
 "report this bug to the IDAES "
 "developers.".format(self.name)
)

 e_obj = VarLikeExpression(
 self.flowsheet().config.time,
 pc_set,
 rule=e_rule,
)

 else:
 if self.config.split_basis == \
 SplittingType.componentFlow:

 def e_rule(b, t, j):
 if split_map[j] == o:
 return 1
 # else:
 return self.eps

 elif (
 self.config.split_basis ==
 SplittingType.phaseComponentFlow
):

 def e_rule(b, t, j):
 if any(
 split_map[p, j] == o
 for p in mb.phase_list
):
 return 1
 # else:
 return self.eps

 else:

 def e_rule(b, t, j):
 mfp = mb[t].component(
 l_name.replace("_comp", "_phase_comp")
)

 if mfp is None:
 raise AttributeError(
 "{} Cannot use ideal splitting with "
 "this property package. Package uses "
 "indexed port member {} which cannot "
 "be partitioned. Please set "
 "configuration argument "
 "ideal_separation = False for this "
 "property package."
 .format(self.name, s)
)

 for p in mb.phase_list:
 if (
 self.config.split_basis
 == SplittingType.phaseFlow
):
 s_check = split_map[p]
 else:
 raise BurntToast(
 "{} This should not happen. Please"
 " report this bug to the IDAES "
 "developers.".format(self.name)
)

 if s_check == o and (p, j) in pc_set:
 return mfp[p, j]
 # else:
 return self.eps

 e_obj = VarLikeExpression(
 self.flowsheet().config.time,
 mb.component_list,
 rule=e_rule,
)

 elif l_name.endswith("_phase_comp"):

 def e_rule(b, t, p, j):
 if self.config.split_basis == SplittingType.phaseFlow:
 s_check = split_map[p]
 elif self.config.split_basis == \
 SplittingType.componentFlow:
 s_check = split_map[j]
 elif (
 self.config.split_basis ==
 SplittingType.phaseComponentFlow
):
 s_check = split_map[p, j]
 else:
 raise BurntToast(
 "{} This should not happen. Please"
 " report this bug to the IDAES "
 "developers.".format(self.name)
)

 if s_check == o:
 return mb[t].component(l_name)[p, j]
 else:
 return self.eps

 e_obj = VarLikeExpression(
 self.flowsheet().config.time,
 pc_set,
 rule=e_rule,
)

 elif l_name.endswith("_phase"):
 if self.config.split_basis == SplittingType.phaseFlow:

 def e_rule(b, t, p):
 if split_map[p] == o:
 return mb[t].component(l_name)[p]
 else:
 return self.eps

 else:

 def e_rule(b, t, p):
 mfp = mb[t].component(l_name + "_comp")

 if mfp is None:
 raise AttributeError(
 "{} Cannot use ideal splitting with "
 "this property package. Package uses "
 "indexed port member {} which cannot "
 "be partitioned. Please set "
 "configuration argument "
 "ideal_separation = False for this "
 "property package."
 .format(self.name, s)
)

 for j in mb.component_list:
 if (
 self.config.split_basis
 == SplittingType.componentFlow
):
 s_check = split_map[j]
 elif (
 self.config.split_basis
 == SplittingType.phaseComponentFlow
):
 s_check = split_map[p, j]
 else:
 raise BurntToast(
 "{} This should not happen. Please"
 " report this bug to the IDAES "
 "developers.".format(self.name)
)

 if s_check == o:
 return mfp[p, j]
 # else:
 return self.eps

 e_obj = VarLikeExpression(
 self.flowsheet().config.time,
 mb.phase_list,
 rule=e_rule,
)

 elif l_name.endswith("_comp"):
 if self.config.split_basis == SplittingType.componentFlow:

 def e_rule(b, t, j):
 if split_map[j] == o:
 return mb[t].component(l_name)[j]
 else:
 return self.eps

 else:

 def e_rule(b, t, j):
 mfp = mb[t].component(
 "{0}_phase{1}".format(l_name[:-5], l_name[-5:])
)

 if mfp is None:
 raise AttributeError(
 "{} Cannot use ideal splitting with "
 "this property package. Package uses "
 "indexed port member {} which cannot "
 "be partitioned. Please set "
 "configuration argument "
 "ideal_separation = False for this "
 "property package."
 .format(self.name, s)
)

 for p in mb.phase_list:
 if (p, j) in pc_set:
 if self.config.split_basis == \
 SplittingType.phaseFlow:
 s_check = split_map[p]
 elif (
 self.config.split_basis
 == SplittingType.phaseComponentFlow
):
 s_check = split_map[p, j]
 else:
 raise BurntToast(
 "{} This should not happen. Please"
 " report this bug to the IDAES "
 "developers.".format(self.name)
)

 if s_check == o:
 return mfp[p, j]
 # else:
 return self.eps

 e_obj = VarLikeExpression(
 self.flowsheet().config.time,
 mb.component_list,
 rule=e_rule,
)

 else:

 def e_rule(b, t):
 try:
 if self.config.split_basis == \
 SplittingType.phaseFlow:
 ivar = mb[t].component(l_name + "_phase")
 if ivar is not None:
 for p in mb.phase_list:
 if split_map[p] == o:
 return ivar[p]
 else:
 continue
 else:
 ivar = mb[t].component(l_name +
 "_phase_comp")
 if ivar is not None:
 for (
 p
) in mb.phase_list:
 if split_map[p] == o:
 return sum(
 ivar[p, j]
 for j in mb.component_list
 if (p, j) in pc_set
)
 else:
 continue
 else:
 raise AttributeError

 elif self.config.split_basis == \
 SplittingType.componentFlow:
 ivar = mb[t].component(l_name + "_comp")
 if ivar is not None:
 for (
 j
) in mb.component_list:
 if split_map[j] == o:
 return ivar[j]
 else:
 continue
 else:
 ivar = mb[t].component(l_name +
 "_phase_comp")
 if ivar is not None:
 for (
 j
) in (
 mb.component_list
):
 if split_map[j] == o:
 return sum(
 ivar[p, j]
 for p in mb.phase_list
 if (p, j) in pc_set
)
 else:
 continue
 else:
 raise AttributeError
 elif (
 self.config.split_basis
 == SplittingType.phaseComponentFlow
):
 ivar = mb[t].component(l_name + "_phase_comp")
 if ivar is not None:
 for p in mb.phase_list:
 for (
 j
) in (
 mb.component_list
):
 if split_map[p, j] == o and (p, j) in pc_set:
 return ivar[p, j]
 else:
 continue
 else:
 raise AttributeError
 else:
 # Unrecognised split tupe
 raise BurntToast(
 "{} received unrecognised value for "
 "split_basis argument. This should never "
 "happen, so please contact the IDAES "
 "developers with this bug."
 .format(self.name)
)

 except:
 # If cannot find equivalent var, raise exception
 raise AttributeError(
 "{} Cannot use ideal splitting with this "
 "property package. Package uses unindexed "
 "port member {} which does not have an "
 "equivalent indexed form.".format(self.name, s)
)

 e_obj = VarLikeExpression(self.flowsheet().config.time,
 rule=e_rule)

 # Add Reference/Expression object to Separator model object
 setattr(self, "_" + o + "_" + l_name + "_ref", e_obj)

 # Add member to Port object
 p_obj.add(e_obj, s)

[docs] def model_check(blk):
 """
 This method executes the model_check methods on the associated state
 blocks (if they exist). This method is generally called by a unit model
 as part of the unit's model_check method.

 Args:
 None

 Returns:
 None
 """
 # Try property block model check
 for t in blk.flowsheet().config.time:
 try:
 if blk.config.mixed_state_block is None:
 blk.mixed_state[t].model_check()
 else:
 blk.config.mixed_state_block.model_check()
 except AttributeError:
 _log.warning(
 "{} Separator inlet state block has no "
 "model check. To correct this, add a "
 "model_check method to the associated "
 "StateBlock class.".format(blk.name)
)

 try:
 outlet_list = blk.create_outlet_list()
 for o in outlet_list:
 o_block = getattr(blk, o + "_state")
 o_block[t].model_check()
 except AttributeError:
 _log.warning(
 "{} Separator outlet state block has no "
 "model checks. To correct this, add a model_check"
 " method to the associated StateBlock class."
 .format(blk.name)
)

[docs] def initialize(
 blk, outlvl=idaeslog.NOTSET, optarg={}, state_args=None,
 solver="ipopt", hold_state=False
):
 """
 Initialization routine for separator (default solver ipopt)

 Keyword Arguments:
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default=None)
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')
 state_args: unused, but retained for consistency with other
 initialization methods
 hold_state : flag indicating whether the initialization routine
 should unfix any state variables fixed during
 initialization, **default** - False. **Valid values:**
 True - states variables are not unfixed, and a dict of
 returned containing flags for which states were fixed
 during initialization, **False** - state variables are
 unfixed after initialization by calling the release_state
 method.

 Returns:
 If hold_states is True, returns a dict containing flags for which
 states were fixed during initialization.
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")
 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg

 # Initialize mixed state block
 if blk.config.mixed_state_block is not None:
 mblock = blk.config.mixed_state_block
 else:
 mblock = blk.mixed_state
 flags = mblock.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=True,
)

 # Solve for split fractions only
 component_status = {}
 for c in blk.component_objects((Block, Constraint)):
 for i in c:
 if not c[i].local_name == "sum_split_frac":
 # Record current status of components to restore later
 component_status[c[i]] = c[i].active
 c[i].deactivate()

 if degrees_of_freedom(blk) != 0:
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info(
 "Initialization Step 1 Complete: {}"
 .format(idaeslog.condition(res))
)

 for c, s in component_status.items():
 if s:
 c.activate()

 if blk.config.ideal_separation:
 # If using ideal splitting, initialization should be complete
 return flags

 # Initialize outlet StateBlocks
 outlet_list = blk.create_outlet_list()

 # Premises for initializing outlet states:
 # 1. Intensive states remain unchanged - this is either a valid premise
 # or the actual state is impossible to calcuate without solving the
 # full separator model.
 # 2. Extensive states are use split fractions if index matches, or
 # average of split fractions for outlet otherwise
 props = blk.config.property_package
 for o in outlet_list:
 # Get corresponding outlet StateBlock
 o_block = getattr(blk, o + "_state")

 # Create dict to store fixed status of state variables
 o_flags = {}
 for t in blk.flowsheet().config.time:

 # Calculate values for state variables
 s_vars = o_block[t].define_state_vars()
 for v in s_vars:
 for k in s_vars[v]:
 # Record whether variable was fixed or not
 o_flags[t, v, k] = s_vars[v][k].fixed

 # If fixed, use current value
 # otherwise calculate guess from mixed state and fix
 if not s_vars[v][k].fixed:
 m_var = getattr(mblock[t], s_vars[v].local_name)
 if "flow" in v:
 # If a "flow" variable, is extensive
 # Apply split fraction
 if (blk.config.split_basis
 == SplittingType.totalFlow):
 # All flows split by outlet
 s_vars[v][k].fix(
 value(m_var[k] *
 blk.split_fraction[(t, o)]))
 elif "_phase_comp" in v:
 # Need to match indices, but use split frac
 if (blk.config.split_basis
 == SplittingType.phaseComponentFlow):
 s_vars[v][k].fix(
 value(m_var[k] *
 blk.split_fraction[(t, o)+k]))
 elif (blk.config.split_basis
 == SplittingType.phaseFlow):
 s_vars[v][k].fix(value(
 m_var[k] *
 blk.split_fraction[(t, o)+k[0]]))
 elif (blk.config.split_basis
 == SplittingType.componentFlow):
 s_vars[v][k].fix(value(
 m_var[k] *
 blk.split_fraction[(t, o)+k[1]]))
 else:
 raise BurntToast(
 "{} encountered unrecognised "
 "SplittingType. This should not "
 "occur - please send this bug to "
 "the IDAES developers."
 .format(blk.name))
 elif "_phase" in v:
 if (blk.config.split_basis
 == SplittingType.phaseComponentFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, k, j]
 for j in mblock.component_list) /
 len(mblock.component_list))
 s_vars[v][k].fix(
 value(m_var[k] * avg_split))
 elif (blk.config.split_basis
 == SplittingType.phaseFlow):
 s_vars[v][k].fix(value(
 m_var[k] *
 blk.split_fraction[(t, o)+k]))
 elif (blk.config.split_basis
 == SplittingType.componentFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, j]
 for j in mblock.component_list) /
 len(mblock.component_list))
 s_vars[v][k].fix(value(
 m_var[k] * avg_split))
 else:
 raise BurntToast(
 "{} encountered unrecognised "
 "SplittingType. This should not "
 "occur - please send this bug to "
 "the IDAES developers."
 .format(blk.name))
 elif "_comp" in v:
 if (blk.config.split_basis
 == SplittingType.phaseComponentFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, p, k]
 for p in mblock.phase_list) /
 len(mblock.phase_list))
 s_vars[v][k].fix(
 value(m_var[k] * avg_split))
 elif (blk.config.split_basis
 == SplittingType.phaseFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, p]
 for p in mblock.phase_list) /
 len(mblock.phase_list))
 s_vars[v][k].fix(value(
 m_var[k] * avg_split))
 elif (blk.config.split_basis
 == SplittingType.componentFlow):
 s_vars[v][k].fix(value(
 m_var[k] *
 blk.split_fraction[(t, o)+k]))
 else:
 raise BurntToast(
 "{} encountered unrecognised "
 "SplittingType. This should not "
 "occur - please send this bug to "
 "the IDAES developers."
 .format(blk.name))
 else:
 # Assume unindexed extensive state
 # Need average split
 if (blk.config.split_basis
 == SplittingType.phaseComponentFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, p, j]
 for (p, j) in mblock.phase_component_set) /
 len(mblock.phase_component_set))
 elif (blk.config.split_basis
 == SplittingType.phaseFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, p]
 for p in mblock.phase_list) /
 len(mblock.phase_list))
 elif (blk.config.split_basis
 == SplittingType.componentFlow):
 # Need average split fraction
 avg_split = value(sum(
 blk.split_fraction[t, o, j]
 for j in mblock.component_list) /
 len(mblock.component_list))
 else:
 raise BurntToast(
 "{} encountered unrecognised "
 "SplittingType. This should not "
 "occur - please send this bug to "
 "the IDAES developers."
 .format(blk.name))
 s_vars[v][k].fix(value(
 m_var[k] * avg_split))
 else:
 # Otherwise intensive, equate to mixed stream
 s_vars[v][k].fix(m_var[k].value)

 # Call initialization routine for outlet StateBlock
 o_block.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=False,
)

 # Revert fixed status of variables to what they were before
 for t in blk.flowsheet().config.time:
 s_vars = o_block[t].define_state_vars()
 for v in s_vars:
 for k in s_vars[v]:
 s_vars[v][k].fixed = o_flags[t, v, k]

 if blk.config.mixed_state_block is None:
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info(
 "Initialization Step 2 Complete: {}"
 .format(idaeslog.condition(res))
)
 else:
 init_log.info("Initialization Complete.")

 if hold_state is True:
 return flags
 else:
 blk.release_state(flags, outlvl=outlvl)

[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET):
 """
 Method to release state variables fixed during initialization.

 Keyword Arguments:
 flags : dict containing information of which state variables
 were fixed during initialization, and should now be
 unfixed. This dict is returned by initialize if
 hold_state = True.
 outlvl : sets output level of logging

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")

 if blk.config.mixed_state_block is None:
 mblock = blk.mixed_state
 else:
 mblock = blk.config.mixed_state_block

 mblock.release_state(flags, outlvl=outlvl)

 def _get_performance_contents(self, time_point=0):
 if hasattr(self, "split_fraction"):
 for k in self.split_fraction.keys():
 if k[0] == time_point:
 var_dict = {
 f"Split Fraction [{str(k[1:])}]":
 self.split_fraction[k]
 }
 return {"vars": var_dict}
 else:
 return {}

 def _get_stream_table_contents(self, time_point=0):
 outlet_list = self.create_outlet_list()

 if not self.config.ideal_separation:
 io_dict = {}
 if self.config.mixed_state_block is None:
 io_dict["Inlet"] = self.mixed_state
 else:
 io_dict["Inlet"] = self.config.mixed_state_block

 for o in outlet_list:
 io_dict[o] = getattr(self, o + "_state")
 return create_stream_table_dataframe(io_dict,
 time_point=time_point)

 else:
 stream_attributes = {}

 for n in outlet_list + ["inlet"]:
 port_obj = getattr(self, n)

 stream_attributes[n] = {}

 for k in port_obj.vars:
 for i in port_obj.vars[k]:
 if isinstance(i, float):
 stream_attributes[n][k] = value(
 port_obj.vars[k][time_point]
)
 else:
 if len(i) == 2:
 kname = str(i[1])
 else:
 kname = str(i[1:])
 stream_attributes[n][k + " " + kname] = value(
 port_obj.vars[k][time_point, i[1:]]
)

 return DataFrame.from_dict(stream_attributes, orient="columns")

 idaes.generic_models.unit_models.statejunction

 Source code for idaes.generic_models.unit_models.statejunction

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES StateJunction model.
"""
Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (declare_process_block_class,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import is_physical_parameter_block
import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("StateJunction")
class StateJunctionData(UnitModelBlockData):
 """
 Standard StateJunction Unit Model Class
 """

 CONFIG = ConfigBlock()
 CONFIG.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Indicates whether this unit will be dynamic or not,
default = False.""",
),
)
 CONFIG.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Indicates whether holdup terms should be constructed or not.
default - False. StateJunctions do not have defined volume, thus
this must be False.""",
),
)
 CONFIG.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use in StateJunction",
 doc="""Property parameter object used to define property state
block, **default** - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}""",
),
)
 CONFIG.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)

[docs] def build(self):
 """
 Begin building model.
 Args:
 None
 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(StateJunctionData, self).build()

 self.properties = self.config.property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties",
 default={
 "has_phase_equilibrium": False,
 "defined_state": True,
 **self.config.property_package_args,
 },
)

 # Add Ports
 self.add_inlet_port(name="inlet",
 block=self.properties,
 doc="Inlet block")
 self.add_outlet_port(name="outlet",
 block=self.properties,
 doc="Outlet block")

[docs] def initialize(
 blk, state_args={}, outlvl=idaeslog.NOTSET,
 solver="ipopt", optarg={"tol": 1e-6}
):
 """
 This method initializes the StateJunction block by calling the
 initialize method on the property block.

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")

 # ---
 # Initialize control volume block
 blk.properties.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 hold_state=False,
 **state_args
)
 init_log.info("Initialization Step Complete.")

 idaes.generic_models.unit_models.stoichiometric_reactor

 Source code for idaes.generic_models.unit_models.stoichiometric_reactor

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Standard IDAES STOICHIOMETRIC reactor model
"""

Import Pyomo libraries
from pyomo.environ import Reference, Var, Block
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)
from idaes.core.util.config import (is_physical_parameter_block,
 is_reaction_parameter_block)
import idaes.core.util.unit_costing as costing
__author__ = "Chinedu Okoli, Andrew Lee"

[docs]@declare_process_block_class("StoichiometricReactor")
class StoichiometricReactorData(UnitModelBlockData):
 """
 Standard Stoichiometric Reactor Unit Model Class
 This model assumes that all given reactions are irreversible, and that each
 reaction has a fixed rate_reaction extent which has to be specified by the
 user.
 """
 CONFIG = UnitModelBlockData.CONFIG()

 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.useDefault.
Valid values: {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.useDefault.
Valid values: {
**EnergyBalanceType.useDefault - refer to property package for default
balance type
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single enthalpy balance for material,
EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_heat_of_reaction", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat of reaction term construction flag",
 doc="""Indicates whether terms for heat of reaction terms should be
constructed,
default - False.
Valid values: {
True - include heat of reaction terms,
False - exclude heat of reaction terms.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}"""))
 CONFIG.declare("property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("reaction_package", ConfigValue(
 default=None,
 domain=is_reaction_parameter_block,
 description="Reaction package to use for control volume",
 doc="""Reaction parameter object used to define reaction calculations,
default - None.
Valid values: {
None - no reaction package,
ReactionParameterBlock - a ReactionParameterBlock object.}"""))
 CONFIG.declare("reaction_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing reaction packages",
 doc="""A ConfigBlock with arguments to be passed to a reaction block(s)
and used when constructing these,
default - None.
Valid values: {
see reaction package for documentation.}"""))

[docs] def build(self):
 """
 Begin building model (pre-DAE transformation).
 Args:
 None
 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(StoichiometricReactorData, self).build()

 # Build Control Volume
 self.control_volume = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "property_package": self.config.property_package,
 "property_package_args": self.config.property_package_args,
 "reaction_package": self.config.reaction_package,
 "reaction_package_args": self.config.reaction_package_args})

 self.control_volume.add_state_blocks(has_phase_equilibrium=False)

 self.control_volume.add_reaction_blocks(has_equilibrium=False)

 self.control_volume.add_material_balances(
 balance_type=self.config.material_balance_type,
 has_rate_reactions=True)

 self.control_volume.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer,
 has_heat_of_reaction=self.config.has_heat_of_reaction)

 self.control_volume.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add Ports
 self.add_inlet_port()
 self.add_outlet_port()

 # Add performance equations
 self.rate_reaction_extent = Reference(
 self.control_volume.rate_reaction_extent[...])

 # Set references to balance terms at unit level
 if (self.config.has_heat_transfer is True and
 self.config.energy_balance_type != EnergyBalanceType.none):
 self.heat_duty = Reference(self.control_volume.heat[:])
 if (self.config.has_pressure_change is True and
 self.config.momentum_balance_type != MomentumBalanceType.none):
 self.deltaP = Reference(self.control_volume.deltaP[:])

 def _get_performance_contents(self, time_point=0):
 var_dict = {}
 for r in self.config.reaction_package.rate_reaction_idx:
 var_dict[f"Reaction Extent [{r}]"] = \
 self.rate_reaction_extent[time_point, r]
 if hasattr(self, "heat_duty"):
 var_dict["Heat Duty"] = self.heat_duty[time_point]
 if hasattr(self, "deltaP"):
 var_dict["Pressure Change"] = self.deltaP[time_point]

 return {"vars": var_dict}

 def get_costing(self, year=None, module=costing, **kwargs):
 if not hasattr(self.flowsheet(), "costing"):
 self.flowsheet().get_costing(year=year, module=module)

 self.costing = Block()
 units_meta = (self.config.property_package.get_metadata().
 get_derived_units)
 self.length = Var(initialize=1,
 units=units_meta('length'),
 doc='vessel length')
 self.diameter = Var(initialize=1,
 units=units_meta('length'),
 doc='vessel diameter')
 module.rstoic_costing(self.costing)

 idaes.generic_models.unit_models.translator

 Source code for idaes.generic_models.unit_models.translator

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Generic template for a translator block.
"""
Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.environ import SolverFactory

Import IDAES cores
from idaes.core import declare_process_block_class, UnitModelBlockData
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.util.exceptions import ConfigurationError
import idaes.logger as idaeslog

__author__ = "Andrew Lee"

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("Translator")
class TranslatorData(UnitModelBlockData):
 """
 Standard Translator Block Class
 """

 CONFIG = ConfigBlock()
 CONFIG.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag - must be False",
 doc="""Translator blocks are always steady-state.""",
),
)
 CONFIG.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag - must be False",
 doc="""Translator blocks do not contain holdup.""",
),
)
 CONFIG.declare(
 "outlet_state_defined",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Indicated whether outlet state will be fully defined",
 doc="""Indicates whether unit model will fully define outlet state.
If False, the outlet property package will enforce constraints such as sum
of mole fractions and phase equilibrium.
default - True.
Valid values: {
True - outlet state will be fully defined,
False - outlet property package should enforce sumation and equilibrium
constraints.}""",
),
)
 CONFIG.declare(
 "has_phase_equilibrium",
 ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Indicates whether outlet is in phase equilibrium",
 doc="""Indicates whether outlet property package should enforce
phase equilibrium constraints.
default - False.
Valid values: {
True - outlet property package should calculate phase equilibrium,
False - outlet property package should notcalculate phase equilibrium.}
""",
),
)
 CONFIG.declare(
 "inlet_property_package",
 ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for incoming stream",
 doc="""Property parameter object used to define property
calculations for the incoming stream,
default - None.
Valid values: {
PhysicalParameterObject - a PhysicalParameterBlock object.}""",
),
)
 CONFIG.declare(
 "inlet_property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property package "
 "of the incoming stream",
 doc="""A ConfigBlock with arguments to be passed to the property
block associated with the incoming stream,
default - None.
Valid values: {
see property package for documentation.}""",
),
)
 CONFIG.declare(
 "outlet_property_package",
 ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for outgoing stream",
 doc="""Property parameter object used to define property
calculations for the outgoing stream,
default - None.
Valid values: {
PhysicalParameterObject - a PhysicalParameterBlock object.}""",
),
)
 CONFIG.declare(
 "outlet_property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property package "
 "of the outgoing stream",
 doc="""A ConfigBlock with arguments to be passed to the property
block associated with the outgoing stream,
default - None.
Valid values: {
see property package for documentation.}""",
),
)

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(TranslatorData, self).build()

 # Check construction argumnet consistency
 if (self.config.outlet_state_defined and
 self.config.has_phase_equilibrium):
 raise ConfigurationError(
 "{} cannot calcuate phase equilibrium (has_phase_equilibrium "
 "= True) when outlet state is set to be fully defined ("
 "outlet_state_defined = True).".format(self.name)
)

 # Add State Blocks
 self.properties_in = self.config.inlet_property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties in incoming stream",
 default={
 "defined_state": True,
 "has_phase_equilibrium": False,
 **self.config.inlet_property_package_args,
 },
)

 self.properties_out = self.config.outlet_property_package.build_state_block(
 self.flowsheet().config.time,
 doc="Material properties in outgoing stream",
 default={
 "defined_state": self.config.outlet_state_defined,
 "has_phase_equilibrium": self.config.has_phase_equilibrium,
 **self.config.outlet_property_package_args,
 },
)

 # Add outlet port
 self.add_port(name="inlet",
 block=self.properties_in,
 doc="Inlet Port")
 self.add_port(name="outlet",
 block=self.properties_out,
 doc="Outlet Port")

[docs] def initialize(
 blk,
 state_args_in={},
 state_args_out={},
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6},
):
 """
 This method calls the initialization method of the state blocks.

 Keyword Arguments:
 state_args_in : a dict of arguments to be passed to the inlet
 property package (to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 state_args_out : a dict of arguments to be passed to the outlet
 property package (to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = {}).
 outlvl : sets output level of initialization routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating which solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")

 # Set solver options
 opt = SolverFactory(solver)
 opt.options = optarg
 # ---
 # Initialize state block
 flags = blk.properties_in.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_in,
 hold_state=True,
)

 blk.properties_out.initialize(
 outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_out,
)

 if degrees_of_freedom(blk) == 0:
 with idaeslog.solver_log(init_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)

 init_log.info("Initialization Complete {}."
 .format(idaeslog.condition(res)))
 else:
 init_log.warning("Initialization incomplete. Degrees of freedom "
 "were not zero. Please provide sufficient number "
 "of constraints linking the state variables "
 "between the two state blocks.")

 blk.properties_in.release_state(flags=flags, outlvl=outlvl)

 idaes.power_generation.unit_models.boiler_heat_exchanger

 Source code for idaes.power_generation.unit_models.boiler_heat_exchanger

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Power Plant IDAES heat exchanger model.

The boiler heat exchanger model consist of a cross flow shell and tube hx
that can be used for any of the boiler components, such as economizer,
reheater or superheaters (primary, secondary, etc).
The model includes shell and tube rigorous heat transfer calculations and
pressure drop calculations for shell side. Note that this model assumes no
phase transitions (if user requires phase transitions, they need a general
model)

The main config arguments:
 - delta T method: counter-current or co-current
 - tube_arrangement: in-line or staggered
 - has radiation: True if model is used as a reheater or superheater unit
 Gas emissivity calculated (Gas temperature above 700 K)

General assumtpions:
 - SI units (consistent with prop pack)
 - heat transfer calc U = f(Nu, Re, Pr)
 - Pressure drop tube and shell side (friction factor calc.)

"""
Import Python libraries
import logging
from enum import Enum

Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In
Additional import for the unit operation
from pyomo.environ import SolverFactory, value, Var, Param, exp, sqrt,\
 log, PositiveReals, NonNegativeReals, units as pyunits
from pyomo.opt import TerminationCondition

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)

from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.misc import add_object_reference
from idaes.core.util.constants import Constants as c

import idaes.logger as idaeslog

__author__ = "Boiler subsystem team (J Ma, M Zamarripa)"
__version__ = "1.0.0"

Set up logger
_log = logging.getLogger(__name__)

class TubeArrangement(Enum):
 inLine = 0
 staggered = 1

class DeltaTMethod(Enum):
 counterCurrent = 0
 coCurrent = 1

[docs]@declare_process_block_class("BoilerHeatExchanger")
class BoilerHeatExchangerData(UnitModelBlockData):
 """
 Standard Heat Exchanger Unit Model Class
 """
 CONFIG = ConfigBlock()
 CONFIG.declare("dynamic", ConfigValue(
 domain=In([useDefault, True, False]),
 default=useDefault,
 description="Dynamic model flag",
 doc="""Indicates whether this model will be dynamic or not,
default = useDefault.
Valid values: {
useDefault - get flag from parent (default = False),
True - set as a dynamic model,
False - set as a steady-state model.}"""))
 CONFIG.declare("has_holdup", ConfigValue(
 default=useDefault,
 domain=In([useDefault, True, False]),
 description="Holdup construction flag",
 doc="""Indicates whether holdup terms should be constructed or not.
Must be True if dynamic = True,
default - False.
Valid values: {
True - construct holdup terms,
False - do not construct holdup terms}"""))
 CONFIG.declare("side_1_property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("side_1_property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("side_2_property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("side_2_property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.useDefault,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase.
Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.useDefault,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal.
Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy balance for material,
EnergyBalanceType.enthalpyPhase - ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("delta_T_method", ConfigValue(
 default=DeltaTMethod.counterCurrent,
 domain=In(DeltaTMethod),
 description="Flow configuration in unit to compute delta T",
 doc="""Flag indicating type of flow arrangement to use for delta
default - DeltaTMethod.counterCurrent
Valid values: {
DeltaTMethod.counterCurrent}"""))
 CONFIG.declare("tube_arrangement", ConfigValue(
 default=TubeArrangement.inLine,
 domain=In(TubeArrangement),
 description='tube configuration',
 doc='Tube arrangement could be in-line and staggered'))
 CONFIG.declare("side_1_water_phase", ConfigValue(
 default='Liq',
 domain=In(['Liq', 'Vap']),
 description='side 1 water phase',
 doc='Define water phase for property calls'))
 CONFIG.declare("has_radiation", ConfigValue(
 default=False,
 domain=In([False, True]),
 description='Has side 2 gas radiation',
 doc='Define if side 2 gas radiation is to be considered'))

[docs] def build(self):
 """
 Build method for Boiler heat exchanger model

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(BoilerHeatExchangerData, self).build()

 # Build ControlVolume Block
 self.side_1 = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.side_1_property_package,
 "property_package_args": self.config.side_1_property_package_args})

 self.side_2 = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.side_2_property_package,
 "property_package_args": self.config.side_2_property_package_args})

 # Add Geometry
 self.side_1.add_geometry()
 self.side_2.add_geometry()

 # Add state block
 self.side_1.add_state_blocks(has_phase_equilibrium=False)

 # Add material balance
 self.side_1.add_material_balances(
 balance_type=self.config.material_balance_type)
 # add energy balance
 self.side_1.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=True)
 # add momentum balance
 self.side_1.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add state block
 self.side_2.add_state_blocks(has_phase_equilibrium=False)

 # Add material balance
 self.side_2.add_material_balances(
 balance_type=self.config.material_balance_type)
 # add energy balance
 self.side_2.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=True)
 # add momentum balance
 self.side_2.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Set Unit Geometry and control volume
 self._set_geometry()

 self.side_1_fluid_phase = self.config.side_1_water_phase

 # Construct performance equations
 self._make_performance()

 # Construct performance equations
 if self.config.delta_T_method == DeltaTMethod.counterCurrent:
 self._make_counter_current()
 else:
 self._make_co_current()

 self.add_inlet_port(name="side_1_inlet", block=self.side_1)
 self.add_inlet_port(name="side_2_inlet", block=self.side_2)
 self.add_outlet_port(name="side_1_outlet", block=self.side_1)
 self.add_outlet_port(name="side_2_outlet", block=self.side_2)

 def _set_geometry(self):
 """
 Define the geometry of the unit as necessary, and link to holdup volume

 Args:
 None

 Returns:
 None
 """
 # Elevation difference (outlet - inlet) for static pressure calculation
 self.delta_elevation = Var(
 initialize=0,
 within=NonNegativeReals,
 doc='Elevation increase used for static pressure calculation - m',
 units=pyunits.m)

 # Number of tube columns in the cross section plane
 # perpendicular to shell side fluid flow (y direction)
 self.tube_ncol = Var(initialize=10.0,
 within=PositiveReals,
 doc='Number of tube columns')

 # Number of tube rows in the direction of shell side
 # fluid flow (x direction)
 self.tube_nrow = Var(initialize=10.0,
 within=PositiveReals,
 doc='Number of tube rows')

 # Number of inlet tube rows
 self.nrow_inlet = Var(initialize=1,
 within=PositiveReals,
 doc='Number of inlet tube rows')

 # Length of a tube in z direction for each path
 self.tube_length = Var(initialize=5.0,
 within=PositiveReals,
 doc='Tube length - m',
 units=pyunits.m)

 # Inner diameter of tubes
 self.tube_di = Var(initialize=0.05,
 within=PositiveReals,
 doc='Inner diameter of tube - m',
 units=pyunits.m)

 # Thickness of tube
 self.tube_thickness = Var(initialize=0.005,
 within=PositiveReals,
 doc='Tube thickness - m',
 units=pyunits.m)

 # Pitch of tubes between two neighboring columns (in y direction).
 # Always greater than tube outside diameter
 self.pitch_y = Var(initialize=0.1,
 within=PositiveReals,
 doc='Pitch between two neighboring columns - m',
 units=pyunits.m)

 # Pitch of tubes between two neighboring rows (in x direction).
 # Always greater than tube outside diameter
 self.pitch_x = Var(initialize=0.1,
 within=PositiveReals,
 doc='Pitch between two neighboring rows - m',
 units=pyunits.m)

 # Tube outside diameter
 @self.Expression(doc="Outside diameter of tube - m")
 def do_tube(b):
 return b.tube_di + b.tube_thickness * 2.0

 if self.config.has_radiation is True:
 # Mean beam length for radiation
 @self.Expression(doc="Mean beam length - m")
 def mbl(b):
 return 3.6*(b.pitch_x*b.pitch_y/c.pi/b.do_tube - b.do_tube/4.0)

 # Mean beam length for radiation divided by sqrt(2)
 @self.Expression(doc="Mean beam length - m")
 def mbl_div2(b):
 return b.mbl/sqrt(2.0)

 # Mean beam length for radiation multiplied by sqrt(2)
 @self.Expression(doc="Mean beam length - m")
 def mbl_mul2(b):
 return b.mbl*sqrt(2.0)

 # Number of 180 degree bends for the tube
 @self.Expression(doc="Nbend_tube")
 def nbend_tube(b):
 return b.tube_nrow / b.nrow_inlet

 # Total flow area on tube side
 @self.Expression(doc="Total flow area on tube side - m2")
 def area_flow_tube(b):
 return 0.25 * c.pi * b.tube_di**2.0 * b.tube_ncol * b.nrow_inlet

 # Total flow area on shell side
 @self.Expression(doc="Total flow area on shell side - m2")
 def area_flow_shell(b):
 return b.tube_length * (b.pitch_y - b.do_tube) * b.tube_ncol

 # Total heat transfer area based on outside diameter
 @self.Expression(doc="Total heat transfer "
 "area based on tube outside diamer - m2")
 def area_heat_transfer(b):
 return c.pi * b.do_tube * b.tube_length * b.tube_ncol * b.tube_nrow

 # Ratio of pitch_x/do_tube
 @self.Expression(doc="Ratio of pitch in x "
 "direction to tube outside diamer")
 def pitch_x_to_do(b):
 return b.pitch_x / b.do_tube

 # Ratio of pitch_y/do_tube
 @self.Expression(doc="Ratio of pitch in y "
 "direction to tube outside diamer")
 def pitch_y_to_do(b):
 return b.pitch_y / b.do_tube

 if self.config.has_holdup is True:
 add_object_reference(self, "volume_side_1", self.side_1.volume)
 add_object_reference(self, "volume_side_2", self.side_2.volume)
 # Total tube side valume
 self.Constraint(doc="Total tube side volume")

 def volume_side_1_eqn(b):
 return b.volumne_side_1 == (
 0.25 * c.pi * b.tube_di**2.0 * b.tube_length
 * b.tube_ncol * b.tube_nrow)
 # Total shell side valume
 self.Constraint(doc="Total shell side volume")

 def volume_side_2_eqn(b):
 return b.volumne_side_2 == \
 b.tube_ncol * b.pitch_y * b.tube_length \
 * b.tube_nrow * b.pitch_x - 0.25 * c.pi * b.do_tube**2.0 \
 * b.tube_length * b.tube_ncol * b.tube_nrow

 def _make_performance(self):
 """
 Define constraints which describe the behaviour of the unit model.

 Args:
 None

 Returns:
 None
 """
 # Set references to balance terms at unit level
 add_object_reference(self, "heat_duty", self.side_1.heat)
 if self.config.has_pressure_change is True:
 add_object_reference(self, "deltaP_tube", self.side_1.deltaP)
 add_object_reference(self, "deltaP_shell", self.side_2.deltaP)

 # Performance parameters and variables
 # Wall thermal conductivity
 self.therm_cond_wall = Param(
 initialize=43.0,
 within=PositiveReals,
 doc="Thermal conductivity of the wall - W/(m K)",
 units=pyunits.W/pyunits.m/pyunits.K)

 # Loss coefficient for a 180 degree bend (u-turn),
 # usually related to radius to inside diameter ratio
 self.k_loss_uturn = Param(initialize=0.5,
 within=PositiveReals,
 mutable=True,
 doc='Loss coefficient of a tube u-turn')

 # Heat transfer resistance due to the fouling on tube side
 # (typical boiler hx)
 self.tube_r_fouling = Param(
 initialize=0.00017,
 within=NonNegativeReals,
 mutable=True,
 doc="Fouling resistance on tube side - K m2 / W",
 units=pyunits.K*pyunits.m**2*pyunits.W**-1)

 # Heat transfer resistance due to the fouling on shell side
 self.shell_r_fouling = Param(
 initialize=0.0008,
 within=NonNegativeReals,
 mutable=True,
 doc="Fouling resistance on tube side - K m2 / W",
 units=pyunits.K*pyunits.m**2*pyunits.W**-1)

 # Correction factor for overall heat transfer coefficient
 self.fcorrection_htc = Var(initialize=1.0,
 within=NonNegativeReals,
 doc="Correction factor for HTC")

 # Correction factor for tube side pressure drop due to friction
 self.fcorrection_dp_tube = Var(
 initialize=1.0,
 doc="Correction factor for tube side pressure drop")

 # Correction factor for shell side pressure drop due to friction
 self.fcorrection_dp_shell = Var(
 initialize=1.0,
 doc="Correction factor for shell side pressure drop")

 # Temperature driving force
 self.temperature_driving_force = Var(
 self.flowsheet().time,
 initialize=1.0,
 doc="Mean driving force for heat exchange - K",
 units=pyunits.K)

 if self.config.has_radiation is True:
 # Shell side wall emissivity, converted from parameter to variable
 self.emissivity_wall = Var(initialize=0.7,
 doc='Shell side wall emissivity')
 # Gas emissivity at mbl
 self.gas_emissivity = Var(
 self.flowsheet().time,
 initialize=0.5,
 doc="Emissivity at given mean beam length")

 # Gas emissivity at mbl/sqrt(2)
 self.gas_emissivity_div2 = Var(
 self.flowsheet().time,
 initialize=0.4,
 doc="Emissivity at mean beam length divided by sqrt of 2")

 # Gas emissivity at mbl*sqrt(2)
 self.gas_emissivity_mul2 = Var(
 self.flowsheet().time,
 initialize=0.6,
 doc="Emissivity at mean beam length multiplied by sqrt of 2")

 # Gray fraction of gas in entire spectrum
 self.gas_gray_fraction = Var(
 self.flowsheet().time,
 initialize=0.5,
 doc="Gray fraction of gas in entire spectrum")

 # Gas-surface radiation exchange factor for shell side wall
 self.frad_gas_shell = Var(self.flowsheet().time,
 initialize=0.5,
 doc="Gas-surface radiation exchange "
 "factor for shell side wall")

 # Shell side equivalent convective heat transfer coefficient
 # due to radiation
 self.hconv_shell_rad = Var(
 self.flowsheet().time,
 initialize=100.0,
 doc="Shell convective heat transfer coefficient due to radiation",
 units=pyunits.W/pyunits.m**2/pyunits.K)

 # Temperature difference at side 1 inlet
 self.deltaT_1 = Var(self.flowsheet().time,
 initialize=1.0,
 doc="Temperature difference at side 1 inlet - K",
 units=pyunits.K)

 # Temperature difference at side 1 outlet
 self.deltaT_2 = Var(self.flowsheet().time,
 initialize=1.0,
 doc="Temperature difference at side 1 outlet - K",
 units=pyunits.K)

 # Overall heat transfer coefficient
 self.overall_heat_transfer_coefficient = Var(
 self.flowsheet().time,
 initialize=1.0,
 units=pyunits.W/pyunits.m**2/pyunits.K)

 # Tube side convective heat transfer coefficient
 self.hconv_tube = Var(
 self.flowsheet().time,
 initialize=100.0,
 doc="Tube side convective heat transfer coefficient - W / (m2 K)",
 units=pyunits.W/pyunits.m**2/pyunits.K)

 # Shell side convective heat transfer coefficient due to convection
 self.hconv_shell_conv = Var(
 self.flowsheet().time,
 initialize=100.0,
 doc="Shell side convective heat transfer coefficient due to convection",
 units=pyunits.W/pyunits.m**2/pyunits.K)

 # Total shell side convective heat transfer coefficient
 # including convection and radiation
 self.hconv_shell_total = Var(
 self.flowsheet().time,
 initialize=150.0,
 doc="Total shell side convective heat transfer coefficient",
 units=pyunits.W/pyunits.m**2/pyunits.K)

 # Heat conduction resistance of tube wall
 self.rcond_wall = Var(
 initialize=1.0,
 doc="Heat conduction resistance of wall - K m2 / W",
 units=pyunits.m**2*pyunits.K/pyunits.W)

 if self.config.has_radiation is True:
 # Constraints for gas emissivity
 @self.Constraint(self.flowsheet().time, doc="Gas emissivity")
 def gas_emissivity_eqn(b, t):
 # This is a surrogate model, so need to do units manually
 X1 = (b.side_2.properties_in[t].temperature
 + b.side_2.properties_out[t].temperature)/2/pyunits.K
 X2 = b.mbl/pyunits.m
 X3 = b.side_2.properties_in[t].pressure/pyunits.Pa
 X4 = b.side_2.properties_in[t].mole_frac_comp['CO2']
 X5 = b.side_2.properties_in[t].mole_frac_comp['H2O']
 X6 = b.side_2.properties_in[t].mole_frac_comp['O2']

 # Surrogate model fitted using rigorous calc. - 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)

 return b.gas_emissivity[t] == \
 (- 0.116916606892E-003 * X1
 - 0.29111124038936179309056E-001 * X2
 + 0.50509651230704191577346E-006 * X3
 + 1.1844222822155641150488 * X4
 - 0.64720757767102773949652E-001 * X5
 - 0.35853593221454795048064E-001 * X6
 + 0.12227919099126832724878 * log(X1)
 + 0.45102118316418124410738E-001 * log(X2)
 + 0.33111863480179408447679E-001 * log(X3)
 + 0.17674928397780117345084E-001 * log(X5)
 - 0.12541139396423576016226E-001 * exp(X2)
 - 0.90251708836308952577099 * exp(X4)
 + 0.32447078857791738538963E-002 * X2**2
 - 0.31332075610864829615706E-004 * X1*X2
 - 0.54639645449809960433102E-009 * X1*X3
 - 0.19721467902854980460033E-003 * X1*X5
 + 0.45275517692290622763507E-004 * X1*X6
 + 0.75458754990630776904396E-006 * X2*X3
 + 0.39691751689931338564765E-001 * X2*X4
 + 0.73169514231974708273754 * X2*X5
 - 0.35852614507684822664491E-001 * X2*X6
 + 0.39743672195685803976177E-005 * X3*X5
 + 0.58802879141883679897383E-008 * (X1*X2)**2
 - 1.2994610452829884472692 * (X2*X5)**2)

 # Constraints for gas emissivity at mbl/sqrt(2)
 @self.Constraint(self.flowsheet().time,
 doc="Gas emissivity at a lower mean beam length")
 def gas_emissivity_div2_eqn(b, t):
 # This is a surrogate model, so need to do units manually
 X1 = (b.side_2.properties_in[t].temperature
 + b.side_2.properties_out[t].temperature)/2/pyunits.K
 X2 = b.mbl_div2/pyunits.m
 X3 = b.side_2.properties_in[t].pressure/pyunits.Pa
 X4 = b.side_2.properties_in[t].mole_frac_comp['CO2']
 X5 = b.side_2.properties_in[t].mole_frac_comp['H2O']
 X6 = b.side_2.properties_in[t].mole_frac_comp['O2']

 # Surrogate model fitted using rigorous calc. - 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)
 return b.gas_emissivity_div2[t] == \
 (- 0.116916606892E-003 * X1
 - 0.29111124038936179309056E-001 * X2
 + 0.50509651230704191577346E-006 * X3
 + 1.1844222822155641150488 * X4
 - 0.64720757767102773949652E-001 * X5
 - 0.35853593221454795048064E-001 * X6
 + 0.12227919099126832724878 * log(X1)
 + 0.45102118316418124410738E-001 * log(X2)
 + 0.33111863480179408447679E-001 * log(X3)
 + 0.17674928397780117345084E-001 * log(X5)
 - 0.12541139396423576016226E-001 * exp(X2)
 - 0.90251708836308952577099 * exp(X4)
 + 0.32447078857791738538963E-002 * X2**2
 - 0.31332075610864829615706E-004 * X1*X2
 - 0.54639645449809960433102E-009 * X1*X3
 - 0.19721467902854980460033E-003 * X1*X5
 + 0.45275517692290622763507E-004 * X1*X6
 + 0.75458754990630776904396E-006 * X2*X3
 + 0.39691751689931338564765E-001 * X2*X4
 + 0.73169514231974708273754 * X2*X5
 - 0.35852614507684822664491E-001 * X2*X6
 + 0.39743672195685803976177E-005 * X3*X5
 + 0.58802879141883679897383E-008 * (X1*X2)**2
 - 1.2994610452829884472692 * (X2*X5)**2)

 # Constraints for gas emissivity at mbl*sqrt(2)
 @self.Constraint(self.flowsheet().time,
 doc="Gas emissivity at a higher mean beam length")
 def gas_emissivity_mul2_eqn(b, t):
 # This is a surrogate model, so need to do units manually
 X1 = (b.side_2.properties_in[t].temperature
 + b.side_2.properties_out[t].temperature)/2/pyunits.K
 X2 = b.mbl_mul2/pyunits.m
 X3 = b.side_2.properties_in[t].pressure/pyunits.Pa
 X4 = b.side_2.properties_in[t].mole_frac_comp['CO2']
 X5 = b.side_2.properties_in[t].mole_frac_comp['H2O']
 X6 = b.side_2.properties_in[t].mole_frac_comp['O2']

 # Surrogate model fitted using rigorous calc. 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)
 return b.gas_emissivity_mul2[t] == \
 (- 0.116916606892E-003 * X1
 - 0.29111124038936179309056E-001 * X2
 + 0.50509651230704191577346E-006 * X3
 + 1.1844222822155641150488 * X4
 - 0.64720757767102773949652E-001 * X5
 - 0.35853593221454795048064E-001 * X6
 + 0.12227919099126832724878 * log(X1)
 + 0.45102118316418124410738E-001 * log(X2)
 + 0.33111863480179408447679E-001 * log(X3)
 + 0.17674928397780117345084E-001 * log(X5)
 - 0.12541139396423576016226E-001 * exp(X2)
 - 0.90251708836308952577099 * exp(X4)
 + 0.32447078857791738538963E-002 * X2**2
 - 0.31332075610864829615706E-004 * X1*X2
 - 0.54639645449809960433102E-009 * X1*X3
 - 0.19721467902854980460033E-003 * X1*X5
 + 0.45275517692290622763507E-004 * X1*X6
 + 0.75458754990630776904396E-006 * X2*X3
 + 0.39691751689931338564765E-001 * X2*X4
 + 0.73169514231974708273754 * X2*X5
 - 0.35852614507684822664491E-001 * X2*X6
 + 0.39743672195685803976177E-005 * X3*X5
 + 0.58802879141883679897383E-008 * (X1*X2)**2
 - 1.2994610452829884472692 * (X2*X5)**2)

 # fraction of gray gas spectrum
 @self.Constraint(self.flowsheet().time,
 doc="Fraction of gray gas spectrum")
 def gas_gray_fraction_eqn(b, t):
 return (b.gas_gray_fraction[t]*(2*b.gas_emissivity_div2[t] -
 b.gas_emissivity_mul2[t]) ==
 b.gas_emissivity_div2[t]**2)

 # gas-surface radiation exchange factor
 # between gas and shell side wall
 @self.Constraint(self.flowsheet().time,
 doc="Gas-surface radiation exchange "
 "factor between gas and shell side wall")
 def frad_gas_shell_eqn(b, t):
 return (b.frad_gas_shell[t] *
 ((1/b.emissivity_wall-1)*b.gas_emissivity[t] +
 b.gas_gray_fraction[t]) ==
 b.gas_gray_fraction[t]*b.gas_emissivity[t])

 # equivalent convective heat transfer coefficent due to radiation
 @self.Constraint(self.flowsheet().time,
 doc="Equivalent convective heat transfer "
 "coefficent due to radiation")
 def hconv_shell_rad_eqn(b, t):
 return b.hconv_shell_rad[t] == \
 c.stefan_constant * b.frad_gas_shell[t] * \
 ((b.side_2.properties_in[t].temperature +
 b.side_2.properties_out[t].temperature)/2
 + b.side_1.properties_in[t].temperature) * \
 (((b.side_2.properties_in[t].temperature
 + b.side_2.properties_out[t].temperature)/2)**2 +
 b.side_1.properties_in[t].temperature**2)

 # Energy balance equation
 @self.Constraint(self.flowsheet().time,
 doc="Energy balance between two sides")
 def energy_balance(b, t):
 return b.side_1.heat[t] / 1e6 == -b.side_2.heat[t] / 1e6

 # Heat transfer correlation
 @self.Constraint(self.flowsheet().time,
 doc="Heat transfer correlation")
 def heat_transfer_correlation(b, t):
 return b.heat_duty[t] / 1e6 == \
 (b.overall_heat_transfer_coefficient[t] *
 b.area_heat_transfer *
 b.temperature_driving_force[t]) / 1e6

 # Driving force
 @self.Constraint(self.flowsheet().time,
 doc="Simplified Log mean temperature "
 "difference calculation")
 def LMTD(b, t):
 return b.temperature_driving_force[t] == \
 ((b.deltaT_1[t]**0.3241 +
 b.deltaT_2[t]**0.3241)/1.99996)**(1/0.3241)

 # Tube side heat transfer coefficient and pressure drop
 # ---
 # Velocity on tube side
 self.v_tube = Var(self.flowsheet().time,
 initialize=1.0,
 doc="Velocity on tube side - m/s",
 units=pyunits.m/pyunits.s)

 # Reynalds number on tube side
 self.N_Re_tube = Var(self.flowsheet().time,
 initialize=10000.0,
 doc="Reynolds number on tube side")
 if self.config.has_pressure_change is True:
 # Friction factor on tube side
 self.friction_factor_tube = Var(self.flowsheet().time,
 initialize=1.0,
 doc='Friction factor on tube side')

 # Pressure drop due to friction on tube side
 self.deltaP_tube_friction = Var(
 self.flowsheet().time,
 initialize=-10.0,
 doc="Pressure drop due to friction on tube side - Pa",
 units=pyunits.Pa)

 # Pressure drop due to 180 degree turn on tube side
 self.deltaP_tube_uturn = Var(
 self.flowsheet().time,
 initialize=-10.0,
 doc="Pressure drop due to u-turn on tube side - Pa",
 units=pyunits.Pa)

 # Prandtl number on tube side
 self.N_Pr_tube = Var(self.flowsheet().time, initialize=1,
 doc="Prandtl number on tube side")

 # Nusselt number on tube side
 self.N_Nu_tube = Var(self.flowsheet().time, initialize=1,
 doc="Nusselts number on tube side")

 # Velocity equation
 @self.Constraint(self.flowsheet().time,
 doc="Tube side velocity equation - m/s")
 def v_tube_eqn(b, t):
 return (b.v_tube[t] * b.area_flow_tube *
 b.side_1.properties_in[t].dens_mol_phase[
 self.side_1_fluid_phase] ==
 b.side_1.properties_in[t].flow_mol)

 # Reynolds number
 @self.Constraint(self.flowsheet().time,
 doc="Reynolds number equation on tube side")
 def N_Re_tube_eqn(b, t):
 return (b.N_Re_tube[t] *
 b.side_1.properties_in[t].visc_d_phase[
 self.side_1_fluid_phase] ==
 b.tube_di * b.v_tube[t] *
 b.side_1.properties_in[t].dens_mass_phase[
 self.side_1_fluid_phase])

 if self.config.has_pressure_change is True:
 # Friction factor
 @self.Constraint(self.flowsheet().time,
 doc="Darcy friction factor on tube side")
 def friction_factor_tube_eqn(b, t):
 return b.friction_factor_tube[t]*b.N_Re_tube[t]**0.25 == \
 0.3164*b.fcorrection_dp_tube

 # Pressure drop due to friction
 @self.Constraint(self.flowsheet().time,
 doc="Pressure drop due to friction on tube side")
 def deltaP_tube_friction_eqn(b, t):
 return (b.deltaP_tube_friction[t]*b.tube_di*b.nrow_inlet ==
 -0.5 * b.side_1.properties_in[t].dens_mass_phase[
 self.side_1_fluid_phase] *
 b.v_tube[t]**2 * b.friction_factor_tube[t] *
 b.tube_length * b.tube_nrow)

 # Pressure drop due to u-turn
 @self.Constraint(self.flowsheet().time,
 doc="Pressure drop due to u-turn on tube side")
 def deltaP_tube_uturn_eqn(b, t):
 return (b.deltaP_tube_uturn[t] ==
 -0.5 * b.side_1.properties_in[t].dens_mass_phase[
 self.side_1_fluid_phase] *
 b.v_tube[t]**2 * b.k_loss_uturn)

 # Total pressure drop on tube side
 @self.Constraint(self.flowsheet().time,
 doc="Total pressure drop on tube side")
 def deltaP_tube_eqn(b, t):
 return (b.deltaP_tube[t] ==
 b.deltaP_tube_friction[t] + b.deltaP_tube_uturn[t] -
 b.delta_elevation * c.acceleration_gravity *
 (b.side_1.properties_in[t].dens_mass_phase[
 self.side_1_fluid_phase] +
 b.side_1.properties_out[t].dens_mass_phase[
 self.side_1_fluid_phase]) / 2.0)

 # Prandtl number
 @self.Constraint(self.flowsheet().time,
 doc="Prandtl number equation on tube side")
 def N_Pr_tube_eqn(b, t):
 return (b.N_Pr_tube[t] *
 b.side_1.properties_in[t].therm_cond_phase[
 self.side_1_fluid_phase] *
 b.side_1.properties_in[t].mw ==
 b.side_1.properties_in[t].cp_mol_phase[
 self.side_1_fluid_phase] *
 b.side_1.properties_in[t].visc_d_phase[
 self.side_1_fluid_phase])

 # Nusselts number
 @self.Constraint(self.flowsheet().time,
 doc="Nusselts number equation on tube side")
 def N_Nu_tube_eqn(b, t):
 return b.N_Nu_tube[t] == \
 0.023 * b.N_Re_tube[t]**0.8 * b.N_Pr_tube[t]**0.4

 # Heat transfer coefficient
 @self.Constraint(self.flowsheet().time,
 doc="Convective heat transfer "
 "coefficient equation on tube side")
 def hconv_tube_eqn(b, t):
 return (b.hconv_tube[t]*self.tube_di/1000 ==
 b.N_Nu_tube[t] *
 b.side_1.properties_in[t].therm_cond_phase[
 self.side_1_fluid_phase]/1000)

 # Pressure drop and heat transfer coefficient on shell side
 # --
 # Tube arrangement factor
 if self.config.tube_arrangement == TubeArrangement.inLine:
 self.f_arrangement = Param(initialize=0.788,
 doc="In-line tube arrangement factor")
 elif self.config.tube_arrangement == TubeArrangement.staggered:
 self.f_arrangement = Param(initialize=1.0,
 doc="Staggered tube arrangement factor")
 else:
 raise Exception('tube arrangement type not supported')
 # Velocity on shell side
 self.v_shell = Var(self.flowsheet().time,
 initialize=1.0,
 doc="Velocity on shell side - m/s",
 units=pyunits.m/pyunits.s)

 # Reynalds number on shell side
 self.N_Re_shell = Var(self.flowsheet().time,
 initialize=10000.0,
 doc="Reynolds number on shell side")

 # Friction factor on shell side
 self.friction_factor_shell = Var(self.flowsheet().time,
 initialize=1.0,
 doc='Friction factor on shell side')

 # Prandtl number on shell side
 self.N_Pr_shell = Var(self.flowsheet().time,
 initialize=1,
 doc="Prandtl number on shell side")

 # Nusselt number on shell side
 self.N_Nu_shell = Var(self.flowsheet().time,
 initialize=1,
 doc="Nusselts number on shell side")

 # Velocity equation on shell side
 @self.Constraint(self.flowsheet().time, doc="Velocity on shell side")
 def v_shell_eqn(b, t):
 return b.v_shell[t] * \
 b.side_2.properties_in[t].dens_mol_phase["Vap"] * \
 b.area_flow_shell == \
 sum(b.side_2.properties_in[t].flow_mol_comp[j]
 for j in b.side_2.properties_in[t].params.component_list)

 # Reynolds number
 @self.Constraint(self.flowsheet().time,
 doc="Reynolds number equation on shell side")
 def N_Re_shell_eqn(b, t):
 return b.N_Re_shell[t] * b.side_2.properties_in[t].visc_d == \
 b.do_tube * b.v_shell[t] \
 * b.side_2.properties_in[t].dens_mol_phase["Vap"] *\
 sum(b.side_2.properties_in[t].mw_comp[c]
 * b.side_2.properties_in[t].mole_frac_comp[c]
 for c in b.side_2.properties_in[t].
 params.component_list)

 if self.config.has_pressure_change is True:
 # Friction factor on shell side
 if self.config.tube_arrangement == TubeArrangement.inLine:
 @self.Constraint(self.flowsheet().time,
 doc="In-line friction factor on shell side")
 def friction_factor_shell_eqn(b, t):
 return b.friction_factor_shell[t] \
 * b.N_Re_shell[t]**0.15 == \
 (0.044 + 0.08 * b.pitch_x_to_do
 / (b.pitch_y_to_do - 1.0)**(0.43 + 1.13
 / b.pitch_x_to_do)
) * b.fcorrection_dp_shell

 elif self.config.tube_arrangement == TubeArrangement.staggered:
 @self.Constraint(self.flowsheet().time,
 doc="Staggered friction factor on shell side")
 def friction_factor_shell_eqn(b, t):
 return b.friction_factor_shell[t] \
 * b.N_Re_shell[t]**0.16 == \
 (0.25 + 0.118 / (b.pitch_y_to_do - 1.0)**1.08) \
 * b.fcorrection_dp_shell
 else:
 raise Exception('tube arrangement type not supported')

 # Pressure drop on shell side
 @self.Constraint(self.flowsheet().time,
 doc="Pressure change on shell side")
 def deltaP_shell_eqn(b, t):
 return (
 b.deltaP_shell[t] ==
 -1.4 * b.friction_factor_shell[t] * b.tube_nrow *
 b.side_2.properties_in[t].dens_mol_phase["Vap"] *
 sum(b.side_2.properties_in[t].mw_comp[c] *
 b.side_2.properties_in[t].mole_frac_comp[c] for c
 in b.side_2.properties_in[t].params.component_list) *
 b.v_shell[t]**2)

 # Prandtl number
 @self.Constraint(self.flowsheet().time,
 doc="Prandtl number equation on shell side")
 def N_Pr_shell_eqn(b, t):
 return b.N_Pr_shell[t] * b.side_2.properties_in[t].therm_cond \
 * sum(b.side_2.properties_in[t].mw_comp[c]
 * b.side_2.properties_in[t].mole_frac_comp[c]
 for c in b.side_2.properties_in[t].
 params.component_list) == \
 b.side_2.properties_in[t].cp_mol * \
 b.side_2.properties_in[t].visc_d

 # Nusselt number, currently assume Re>300
 @self.Constraint(self.flowsheet().time,
 doc="Nusselts number equation on shell side")
 def N_Nu_shell_eqn(b, t):
 return b.N_Nu_shell[t] == b.f_arrangement * 0.33 \
 * b.N_Re_shell[t]**0.6 * b.N_Pr_shell[t]**0.333333

 # Convective heat transfer coefficient on shell side due to convection
 @self.Constraint(self.flowsheet().time,
 doc="Convective heat transfer coefficient equation"
 "on shell side due to convection")
 def hconv_shell_conv_eqn(b, t):
 return b.hconv_shell_conv[t] * b.do_tube / 1000 == \
 b.N_Nu_shell[t] * b.side_2.properties_in[t].therm_cond\
 / 1000

 # Total convective heat transfer coefficient on shell side
 @self.Constraint(self.flowsheet().time,
 doc="Total convective heat transfer "
 "coefficient equation on shell side")
 def hconv_shell_total_eqn(b, t):
 if self.config.has_radiation is True:
 return b.hconv_shell_total[t] == \
 b.hconv_shell_conv[t] + b.hconv_shell_rad[t]
 else:
 return b.hconv_shell_total[t] == b.hconv_shell_conv[t]

 # Wall conduction heat transfer resistance
 # based on outside surface area
 @self.Constraint(doc="Wall conduction heat transfer resistance")
 def rcond_wall_eqn(b):
 return b.rcond_wall * b.therm_cond_wall == \
 0.5 * b.do_tube * log(b.do_tube / b.tube_di)

 # Overall heat transfer coefficient
 @self.Constraint(self.flowsheet().time,
 doc="Wall conduction heat transfer resistance")
 def overall_heat_transfer_coefficient_eqn(b, t):
 return b.overall_heat_transfer_coefficient[t] \
 * (b.rcond_wall + b.tube_r_fouling + b.shell_r_fouling +
 1.0 / b.hconv_shell_total[t]
 + b.do_tube / b.hconv_tube[t] / b.tube_di) == \
 b.fcorrection_htc

 def _make_co_current(self):
 """
 Add temperature driving force Constraints for co-current flow.

 Args:
 None

 Returns:
 None
 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().time,
 doc="Side 1 inlet temperature difference")
 def temperature_difference_1(b, t):
 return b.deltaT_1[t] == (
 b.side_2.properties_in[t].temperature -
 b.side_1.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().time,
 doc="Side 1 outlet temperature difference")
 def temperature_difference_2(b, t):
 return b.deltaT_2[t] == (
 b.side_2.properties_out[t].temperature -
 b.side_1.properties_out[t].temperature)

 def _make_counter_current(self):
 """
 Add temperature driving force Constraints for counter-current flow.

 Args:
 None

 Returns:
 None
 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().time,
 doc="Side 1 inlet temperature difference")
 def temperature_difference_1(b, t):
 return b.deltaT_1[t] == (
 b.side_2.properties_out[t].temperature -
 b.side_1.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().time,
 doc="Side 1 outlet temperature difference")
 def temperature_difference_2(b, t):
 return b.deltaT_2[t] == (
 b.side_2.properties_in[t].temperature -
 b.side_1.properties_out[t].temperature)

[docs] def model_check(blk):
 """
 Model checks for unit - calls model checks for both control volume
 Blocks.

 Args:
 None

 Returns:
 None
 """
 # Run control volume block model checks
 blk.side_1.model_check()
 blk.side_2.model_check()

[docs] def initialize(blk, state_args_1={}, state_args_2={},
 outlvl=idaeslog.NOTSET, solver='ipopt', optarg={'tol': 1e-6,
 'max_iter': 100}):
 '''
 General Heat Exchanger initialisation routine.

 Keyword Arguments:
 state_args_1 : a dict of arguments to be passed to the property
 package(s) for side 1 of the heat exchanger to
 provide an initial state for initialization
 (see documentation of the specific property package)
 (default = {}).
 state_args_2 : a dict of arguments to be passed to the property
 package(s) for side 2 of the heat exchanger to
 provide an initial state for initialization
 (see documentation of the specific property package)
 (default = {}).
 outlvl : sets output level of initialisation routine

 * 0 = no output (default)
 * 1 = return solver state for each step in routine
 * 2 = return solver state for each step in subroutines
 * 3 = include solver output infomation (tee=True)

 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 '''
 # Set solver options
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # Initialize inlet property blocks
 flags1 = blk.side_1.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_1)

 flags2 = blk.side_2.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_2)
 init_log.info('{} Initialisation Step 1 Complete.'.format(blk.name))

 # ---
 # Initialize temperature differentials
 p1_flags = {}
 p2_flags = {}
 h1_flags = {}
 t2_flags = {}
 for t in blk.flowsheet().time:
 p1_flags[t] = blk.side_1.properties_out[t].pressure.fixed
 if not blk.side_1.properties_out[t].pressure.fixed:
 blk.side_1.properties_out[t].pressure.fix(
 value(blk.side_1.properties_in[t].pressure))

 p2_flags[t] = blk.side_2.properties_out[t].pressure.fixed
 if not blk.side_2.properties_out[t].pressure.fixed:
 blk.side_2.properties_out[t].pressure.fix(
 value(blk.side_2.properties_in[t].pressure))

 h1_flags[t] = blk.side_1.properties_out[t].enth_mol.fixed
 if not blk.side_1.properties_out[t].enth_mol.fixed:
 blk.side_1.properties_out[t].enth_mol.fix(
 value(blk.side_1.properties_in[t].enth_mol)+100.0)

 t2_flags[t] = blk.side_2.properties_out[t].temperature.fixed
 if not blk.side_2.properties_out[t].temperature.fixed:
 blk.side_2.properties_out[t].temperature.fix(
 value(blk.side_2.properties_in[t].temperature)-5.0)
 # assuming Delta T min approach
 # Deactivate Constraints
 blk.heat_transfer_correlation.deactivate()
 blk.LMTD.deactivate()
 blk.energy_balance.deactivate()
 blk.deltaP_tube_eqn.deactivate()
 blk.deltaP_shell_eqn.deactivate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high("Initialization Step 2 {}.".format(idaeslog.condition(res)))

 # Activate energy balance and driving force
 for t in blk.flowsheet().time:
 if not p1_flags[t]:
 blk.side_1.properties_out[t].pressure.unfix()
 if not p2_flags[t]:
 blk.side_2.properties_out[t].pressure.unfix()
 if not h1_flags[t]:
 blk.side_1.properties_out[t].enth_mol.unfix()
 if not t2_flags[t]:
 blk.side_2.properties_out[t].temperature.unfix()
 blk.heat_transfer_correlation.activate()
 blk.LMTD.activate()
 blk.energy_balance.activate()
 blk.deltaP_tube_eqn.activate()
 blk.deltaP_shell_eqn.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high("Initialization Step 3 {}.".format(idaeslog.condition(res)))

 # ---
 # Release Inlet state
 blk.side_1.release_state(flags1, outlvl)
 blk.side_2.release_state(flags2, outlvl)

 init_log.info('{} Initialisation Complete.'.format(blk.name))

 idaes.power_generation.unit_models.boiler_heat_exchanger_2D

 Source code for idaes.power_generation.unit_models.boiler_heat_exchanger_2D

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
The boiler 2D heat exchanger model consist of a cross flow shell and tube
heat exchanger. 1-D Cross Flow Heat Exchanger Model with wall temperatures,
discretization based on tube rows

The model includes shell and tube rigorous heat transfer calculations and
pressure drop calculations for shell side. Note that this model assumes no
phase transitions (if user requires phase transitions, they need a general
model)

"""
Import Pyomo libraries
from pyomo.environ import (SolverFactory, Var, Param, Constraint,
 TransformationFactory, Reference,
 value, exp, sqrt, log, log10, sin, cos)
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume1DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 FlowDirection,
 UnitModelBlockData,
 useDefault)
from pyomo.dae import ContinuousSet, DerivativeVar
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.misc import add_object_reference
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.constants import Constants as const
import idaes.core.util.scaling as iscale
import idaes.logger as idaeslog

__author__ = "Jinliang Ma, Q. M. Le, M. Zamarripa "

Set up logger
_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("HeatExchangerCrossFlow2D_Header")
class HeatExchangerCrossFlow2D_HeaderData(UnitModelBlockData):
 """Standard Heat Exchanger Cross Flow Unit Model Class."""
 CONFIG = UnitModelBlockData.CONFIG()

 # Template for config arguments for shell and tube side
 _SideTemplate = ConfigBlock()
 _SideTemplate.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.componentTotal,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of mass balance should be constructed,
default - MaterialBalanceType.componentTotal.
Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 _SideTemplate.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.enthalpyTotal,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal.
Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy balance for material,
EnergyBalanceType.enthalpyPhase - ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 _SideTemplate.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 _SideTemplate.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 _SideTemplate.declare("property_package", ConfigValue(
 default=None,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a ParameterBlock object"""))
 _SideTemplate.declare("property_package_args", ConfigValue(
 default={},
 description="Arguments for constructing shell property package",
 doc="""A dict of arguments to be passed to the PropertyBlockData
and used when constructing these
(default = 'use_parent_value')
- 'use_parent_value' - get package from parent (default = None)
- a dict (see property package for documentation)"""))

 # Create individual config blocks for shell and tube side
 CONFIG.declare("shell_side",
 _SideTemplate(doc="shell side config arguments"))
 CONFIG.declare("tube_side",
 _SideTemplate(doc="tube side config arguments"))

 # Common config args for both sides
 CONFIG.declare("transformation_method", ConfigValue(
 default='dae.finite_difference',
 description="Discretization method to use for DAE transformation",
 doc="""Discretization method to use for DAE transformation. See Pyomo
documentation for supported transformations."""))
 CONFIG.declare("transformation_scheme", ConfigValue(
 default='BACKWARD',
 description="Discretization scheme to use for DAE transformation",
 doc="""Discretization scheme to use when transformating domain.
See Pyomo documentation for supported schemes."""))
 CONFIG.declare("finite_elements", ConfigValue(
 default=5,
 domain=int,
 description="Number of finite elements length domain",
 doc="""Number of finite elements to use when discretizing length
domain (default=5). Should set to the number of tube rows"""))
 CONFIG.declare("collocation_points", ConfigValue(
 default=3,
 domain=int,
 description="Number of collocation points per finite element",
 doc="""Number of collocation points to use per finite element when
discretizing length domain (default=3)"""))
 CONFIG.declare("flow_type", ConfigValue(
 default="co_current",
 domain=In(['co_current', 'counter_current']),
 description="Flow configuration of heat exchanger",
 doc="""Flow configuration of heat exchanger
co_current: shell and tube flows from 0 to 1
counter_current: shell side flows from 0 to 1
tube side flows from 1 to 0"""))
 CONFIG.declare("tube_arrangement", ConfigValue(
 default='in-line',
 domain=In(['in-line', 'staggered']),
 description='tube configuration',
 doc='Tube arrangement could be in-line or staggered'))
 CONFIG.declare("tube_side_water_phase", ConfigValue(
 default='Liq',
 domain=In(['Liq', 'Vap']),
 description='tube side water phase',
 doc='Define water phase for property calls'))
 CONFIG.declare("has_radiation", ConfigValue(
 default=False,
 domain=In([False, True]),
 description='Has side 2 gas radiation',
 doc='Define if shell side gas radiation is to be considered'))
 CONFIG.declare("tube_inner_diameter", ConfigValue(
 default=None,
 description='Inner diameter of tube',
 doc='User must define inner diameter of tube'))
 CONFIG.declare("tube_thickness", ConfigValue(
 default=None,
 description='Tube wall thickness',
 doc='User must define tube wall thickness'))
 CONFIG.declare("radial_elements", ConfigValue(
 default=5,
 domain=int,
 description="Number of finite elements in radius domain",
 doc="""Number of finite elements to use when discretizing radius
 domain (default=5)."""))
 CONFIG.declare("header_inner_diameter", ConfigValue(
 default=None,
 description='Inner diameter of header',
 doc='User must define inner diameter of header'))
 CONFIG.declare("header_wall_thickness", ConfigValue(
 default=None,
 description='Header wall thickness',
 doc='User must define header wall thickness'))
 CONFIG.declare("header_radial_elements", ConfigValue(
 default=5,
 domain=int,
 description="Number of finite elements in radius domain",
 doc="""Number of finite elements to use when discretizing radius
 domain (default=5)."""))
 CONFIG.declare("has_header", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Flag to include tube header",
 doc="""If has_header is True, user must provide header thickness and
 inner diameter."""))

[docs] def build(self):
 """
 Begin building model.

 Args:
 None

 Returns:
 None
 """
 # Call UnitModel.build to setup dynamics
 super(HeatExchangerCrossFlow2D_HeaderData, self).build()

 # Set flow directions for the control volume blocks and specify
 # dicretisation if not specified.
 if self.config.flow_type == "co_current":
 set_direction_shell = FlowDirection.forward
 set_direction_tube = FlowDirection.forward
 else:
 set_direction_shell = FlowDirection.forward
 set_direction_tube = FlowDirection.backward

 # Control volume 1D for shell and tube, set to steady-state
 # for fluid on both sides
 self.shell = ControlVolume1DBlock(default={
 # currently always set dynamic to False for fluid control volume
 "dynamic": False,
 "has_holdup": False,
 "property_package": self.config.shell_side.property_package,
 "property_package_args":
 self.config.shell_side.property_package_args,
 "transformation_method":
 self.config.transformation_method,
 "transformation_scheme":
 self.config.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points})

 self.tube = ControlVolume1DBlock(default={
 # currently alway set dynamic to False for fluid control volume
 "dynamic": False,
 "has_holdup": False,
 "property_package": self.config.tube_side.property_package,
 "property_package_args":
 self.config.tube_side.property_package_args,
 "transformation_method":
 self.config.transformation_method,
 "transformation_scheme":
 self.config.transformation_scheme,
 "finite_elements": self.config.finite_elements,
 "collocation_points": self.config.collocation_points})

 self.shell.add_geometry(flow_direction=set_direction_shell)
 self.tube.add_geometry(flow_direction=set_direction_tube)

 self.shell.add_state_blocks(
 information_flow=set_direction_shell,
 has_phase_equilibrium=False)
 self.tube.add_state_blocks(
 information_flow=set_direction_tube,
 has_phase_equilibrium=False)

 # Populate shell
 self.shell.add_material_balances(
 balance_type=self.config.shell_side.material_balance_type,
 has_phase_equilibrium=False)

 self.shell.add_energy_balances(
 balance_type=self.config.shell_side.energy_balance_type,
 has_heat_transfer=True)

 self.shell.add_momentum_balances(
 balance_type=self.config.shell_side.momentum_balance_type,
 has_pressure_change=self.config.shell_side.has_pressure_change)

 self.shell.apply_transformation()

 # Populate tube
 self.tube.add_material_balances(
 balance_type=self.config.tube_side.material_balance_type,
 has_phase_equilibrium=False)

 self.tube.add_energy_balances(
 balance_type=self.config.tube_side.energy_balance_type,
 has_heat_transfer=True)

 self.tube.add_momentum_balances(
 balance_type=self.config.tube_side.momentum_balance_type,
 has_pressure_change=self.config.tube_side.has_pressure_change)

 self.tube.apply_transformation()

 # Add Ports for shell side
 self.add_inlet_port(name="shell_inlet", block=self.shell)
 self.add_outlet_port(name="shell_outlet", block=self.shell)

 # Add Ports for tube side
 self.add_inlet_port(name="tube_inlet", block=self.tube)
 self.add_outlet_port(name="tube_outlet", block=self.tube)

 # Check input arguments
 # tube inputs:
 if self.config.tube_inner_diameter is None:
 raise ConfigurationError('User must provide a value for '
 'tube_inner_diameter')
 if self.config.tube_thickness is None:
 raise ConfigurationError('User must provide a value for '
 'tube_thickness')
 # header inputs:
 if self.config.has_header is False and \
 self.config.header_inner_diameter is True:
 _log.info_high("User set has_header to False "
 "and provided header_inner_diameter")

 if self.config.has_header and \
 self.config.header_inner_diameter is None:
 raise ConfigurationError('If has_heder is True, user must '
 'provide header_inner_diameter')

 if self.config.has_header is False and \
 self.config.header_wall_thickness is True:
 _log.info_high("User set has_header to False "
 "and provided header_wall_thickness")

 if self.config.has_header and \
 self.config.header_wall_thickness is None:
 raise ConfigurationError(
 'If has_heder is True, user must '
 'provide header_wall_thickness')

 self._make_geometry()

 self._make_performance()

 def _make_geometry(self):
 """
 Constraints for Unit Model.

 Args:
 None

 Returns:
 None
 """
 # Add object reference to control volume geometry
 add_object_reference(self, "area_flow_shell", self.shell.area)
 add_object_reference(self, "length_flow_shell", self.shell.length)
 add_object_reference(self, "area_flow_tube", self.tube.area)
 add_object_reference(self, "length_flow_tube", self.tube.length)

 # Elevation difference (outlet - inlet) for static pressure calculation
 self.delta_elevation = Var(initialize=0.0,
 doc='Elevation Increase Used for'
 'Static Pressure Calculation')

 # Number of tube columns in the cross section plane perpendicular
 # to shell side fluid flow (y direction)
 self.tube_ncol = Var(initialize=10.0,
 doc='Number of Tube Columns')

 # Number of segments of tube bundles
 self.tube_nseg = Var(initialize=10.0,
 doc='Number of Tube Segments')

 # Number of inlet tube rows
 self.tube_inlet_nrow = Var(initialize=1,
 doc='Number of Inlet Tube Rows')

 # DAE discretization scaling (tube_radius_scaling)
 self.ri_scaling = Param(initialize=0.01, mutable=True,
 doc='Inner Radius of Tube for Scaling')

 # Inner diameter of tubes
 self.tube_di = Param(initialize=self.config.tube_inner_diameter,
 mutable=False,
 doc='Inner diameter of tube')

 # Thickness of header
 self.tube_thickness = Param(initialize=self.config.tube_thickness,
 mutable=False,
 doc='Tube thickness')
 if self.config.has_header is True:
 self.head_di = Param(initialize=self.config.header_inner_diameter,
 mutable=False,
 doc='Inner Diameter of Tube')

 # Thickness of header
 self.head_thickness = Param(initialize=self.config.
 header_wall_thickness,
 mutable=False,
 doc='Header wall thickness')

 # Pitch of tubes between two neighboring columns (in y direction).
 # Always greater than tube outer diameter
 self.pitch_y = Var(initialize=0.1,
 doc='Pitch between Two Neighboring Columns')

 # Pitch of tubes between two neighboring rows (in x direction).
 # Always greater than tube outer diameter
 self.pitch_x = Var(initialize=0.1,
 doc='Pitch between Two Neighboring Rows')

 # Length of tube per segment in z direction
 self.tube_length_seg = Var(initialize=1.0,
 doc='Length of Tube per Segment')

 # Minimum cross section area on shell side
 self.area_flow_shell_min = Var(initialize=1.0,
 doc='Minimum Flow Area on Shell Side')

 # total number of tube rows
 @self.Expression(doc="Total Number of Tube Rows")
 def tube_nrow(b):
 return b.tube_nseg * b.tube_inlet_nrow

 # Tube outside diameter
 @self.Expression(doc="Outside Diameter of Tube")
 def tube_do(b):
 return b.tube_di + b.tube_thickness * 2.0

 # Mean beam length for radiation
 if self.config.has_radiation is True:
 @self.Expression(doc="Mean Beam Length")
 def mbl(b):
 return 3.6*(b.pitch_x*b.pitch_y/const.pi/b.tube_do
 - b.tube_do/4.0)

 # Mean beam length for radiation divided by sqrt(2)
 @self.Expression(doc="Sqrt(1/2) of Mean Beam Length")
 def mbl_div2(b):
 return b.mbl/sqrt(2.0)

 # Mean beam length for radiation multiplied by sqrt(2)
 @self.Expression(doc="Sqrt(2) of Mean Beam Length")
 def mbl_mul2(b):
 return b.mbl*sqrt(2.0)

 # Ratio of pitch_x/tube_do
 @self.Expression(doc="Ratio of Pitch in x Direction"
 "to Tube Outside Diameter")
 def pitch_x_to_do(b):
 return b.pitch_x / b.tube_do

 # Ratio of pitch_y/tube_do
 @self.Expression(doc="Ratio of Pitch in y Direction "
 "to Tube Outside Diameter")
 def pitch_y_to_do(b):
 return b.pitch_y / b.tube_do

 # Total cross section area of tube metal per segment
 @self.Expression(doc="Total Cross Section Area of"
 "Tube Metal Per Segment")
 def area_wall_seg(b):
 return 0.25*const.pi*(b.tube_do**2
 - b.tube_di**2)*b.tube_ncol*b.tube_inlet_nrow

 # Length of shell side flow
 @self.Constraint(doc="Length of Shell Side Flow")
 def length_flow_shell_eqn(b):
 return b.length_flow_shell == b.tube_nrow * b.pitch_x

 # Length of tube side flow
 @self.Constraint(doc="Length of Tube Side Flow")
 def length_flow_tube_eqn(b):
 return b.length_flow_tube == b.tube_nseg * b.tube_length_seg

 # Total flow area on tube side
 @self.Constraint(doc="Total Area of Tube Flow")
 def area_flow_tube_eqn(b):
 return b.area_flow_tube == 0.25 * const.pi * b.tube_di**2.0 \
 * b.tube_ncol * b.tube_inlet_nrow

 # Average flow area on shell side
 @self.Constraint(doc="Average Cross Section Area of Shell Side Flow")
 def area_flow_shell_eqn(b):
 return b.length_flow_shell*b.area_flow_shell == \
 b.tube_length_seg*b.length_flow_shell \
 * b.pitch_y*b.tube_ncol - b.tube_ncol*b.tube_nrow*0.25 \
 * const.pi*b.tube_do**2*b.tube_length_seg

 # Minimum flow area on shell side
 @self.Constraint(doc="Minimum Flow Area on Shell Side")
 def area_flow_shell_min_eqn(b):
 return b.area_flow_shell_min == b.tube_length_seg\
 * (b.pitch_y-b.tube_do)*b.tube_ncol

 # Note that the volumes of both sides are
 # calculated by the ControlVolume1D
 @self.Expression(doc="Inner Radius of Tube")
 def tube_ri(b):
 return b.tube_di/2.0

 @self.Expression(doc="Outside Radius of Tube")
 def tube_ro(b):
 return b.tube_ri + b.tube_thickness

 if self.config.has_header is True:
 # Header outside diameter
 @self.Expression(doc="Outside Diameter of Header")
 def head_do(b):
 return b.head_di + b.head_thickness * 2.0

 @self.Expression(doc="Inner Radius of Header")
 def head_ri(b):
 return b.head_di/2.0

 @self.Expression(doc="Outside Radius of Header")
 def head_ro(b):
 return b.head_ri + b.head_thickness

 self.head_r = ContinuousSet(bounds=(
 value(self.head_ri/self.ri_scaling),
 value(self.head_ro/self.ri_scaling)))

 # Define the continuous domains for model
 self.r = ContinuousSet(bounds=(value(self.tube_ri/self.ri_scaling),
 value(self.tube_ro/self.ri_scaling)))

 def _make_performance(self):
 """
 Constraints for Unit Model.

 Args:
 None

 Returns:
 None
 """
 # add object Reference
 self.tube_heat = Reference(self.tube.heat)
 self.shell_heat = Reference(self.shell.heat)
 phase_s = self.config.tube_side_water_phase

 # Parameters
 if self.config.has_radiation is True:
 # tube wall emissivity, converted from parameter to variable
 self.emissivity_wall = Var(initialize=0.7,
 doc='Shell Side Wall Emissivity')

 # Wall thermal conductivity
 self.therm_cond_wall = Param(initialize=43.0, mutable=True,
 doc='Thermal Conductivity of'
 'Tube Wall Material')

 # Wall heat capacity
 self.cp_wall = Param(initialize=502.4, mutable=True,
 doc='Tube Wall Heat Capacity')

 # Wall density
 self.dens_wall = Param(initialize=7800.0, mutable=True,
 doc='Tube Wall Density')

 # Young modulus
 self.Young_modulus = Param(initialize=1.90E5, mutable=True,
 doc='Tube Wall Young Modulus')

 # Poisson's ratio
 self.Poisson_ratio = Param(initialize=0.29, mutable=True,
 doc='Tube Wall Poisson Ratio')

 # Coefficient of thermal expansion
 self.coefficient_thermal_expansion = Param(initialize=1.2E-5,
 mutable=True,
 doc='Tube Wall Coefficient'
 'of Thermal Expansion')

 # thermal diffusivity of wall
 @self.Expression(doc="Thermal Diffusivity of Tube Wall Material")
 def diff_therm_wall(b):
 return b.therm_cond_wall/(b.dens_wall*b.cp_wall)

 # Loss coefficient for a 180 degree bend (u-turn),
 # usually related to radius to inside diameter ratio
 self.kloss_uturn = Param(initialize=0.5,
 mutable=True,
 doc='Loss Coefficient of a Tube U-Turn')

 # Heat transfer resistance due to the fouling on tube side
 self.tube_r_fouling = Param(initialize=0.0,
 mutable=True,
 doc='Fouling resistance on tube side')

 # Heat transfer resistance due to the fouling on shell side
 self.shell_r_fouling = Param(initialize=0.0001,
 mutable=True,
 doc='Fouling Resistance on Tube Side')

 # Correction factor for convective heat transfer
 # coefficient on shell side
 self.fcorrection_htc_shell = Var(initialize=1.0,
 doc="Correction Factor for"
 "Convective HTC on Shell")

 # Correction factor for convective heat transfer
 # coefficient on tube side
 self.fcorrection_htc_tube = Var(initialize=1.0,
 doc="Correction Factor for Convective"
 "HTC on Tube Side")

 # Correction factor for tube side pressure drop due to friction
 self.fcorrection_dp_tube = Var(initialize=1.0,
 doc="Correction Factor for Tube Side"
 "Pressure Drop")

 # Correction factor for shell side pressure drop due to friction
 self.fcorrection_dp_shell = Var(initialize=1.0,
 doc="Correction Factor for Shell Side"
 "Pressure Drop")

 # Performance variables
 if self.config.has_radiation is True:
 # Gas emissivity at mbl
 self.gas_emissivity = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=0.5,
 doc='Emissivity at Given'
 'Mean Beam Length')

 # Gas emissivity at mbl/sqrt(2)
 self.gas_emissivity_div2 = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=0.4,
 doc='Emissivity at Mean Beam Length'
 'Divided by Sqrt of 2')

 # Gas emissivity at mbl*sqrt(2)
 self.gas_emissivity_mul2 = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=0.6,
 doc='Emissivity at Mean Beam'
 'Length Multiplied by Sqrt Of 2')

 # Gray fraction of gas in entire spectrum
 self.gas_gray_fraction = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=0.5,
 doc='Gray Fraction of Gas'
 'in Entire Spectrum')

 # Gas-surface radiation exchange factor for shell side wall
 self.frad_gas_shell = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=0.5,
 doc='Gas-Surface Radiation Exchange'
 'Factor for Shell Side Wall')

 # Shell side equivalent convective heat transfer coefficient
 # due to radiation
 self.hconv_shell_rad = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=100.0,
 doc='Shell Side Convective Heat'
 'Transfer Coefficient due to Radiation')

 # Tube side convective heat transfer coefficient
 self.hconv_tube = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=100.0,
 doc='Tube Side Convective'
 'Heat Transfer Coefficient')

 # Tube side convective heat transfer coefficient combined with fouling
 self.hconv_tube_foul = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=100.0,
 doc='Tube Side Convective Heat Transfer'
 'Coefficient Combined with Fouling')

 # Shell side convective heat transfer coefficient
 # due to convection only
 self.hconv_shell_conv = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=100.0,
 doc='Shell Side Convective Heat Transfer'
 'Coefficient due to Convection')

 # Total shell side convective heat transfer coefficient
 # including convection and radiation
 self.hconv_shell_total = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=150.0,
 doc='Total Shell Side Convective'
 'Heat Transfer Coefficient')

 # Total shell side convective heat transfer coefficient
 # combined with fouling
 self.hconv_shell_foul = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=150.0,
 doc='Shell Side Convective Heat Transfer'
 'Coefficient Combined with Fouling')

 # Constraint for hconv_tube_foul
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Tube Side Convective Heat Transfer"
 "Coefficient with Fouling")
 def hconv_tube_foul_eqn(b, t, x):
 return 0.01 * b.hconv_tube_foul[t, x] * \
 (1 + b.hconv_tube[t, x]*b.tube_r_fouling) == \
 0.01*b.hconv_tube[t, x]

 # Constraint for hconv_shell_foul
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Shell Side Convective Heat"
 "Transfer Coefficient with Fouling")
 def hconv_shell_foul_eqn(b, t, x):
 return 0.1*b.hconv_shell_foul[t, x] \
 * (1 + b.hconv_shell_total[t, x] * b.shell_r_fouling) \
 == 0.1*b.hconv_shell_total[t, x]

 # Tube metal wall temperature profile across radius
 self.tube_wall_temperature = Var(self.flowsheet().config.time,
 self.tube.length_domain, self.r,
 initialize=500,
 doc='Tube Wall Temperature')

 self.shell_wall_temperature = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=500,
 doc='Shell Side Fouling Wall'
 'Surface Temperature')

 # Fouling wall surface temperature on shell side
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Fouling Wall Surface"
 "Temperature on Shell Side")
 def temp_wall_shell_eqn(b, t, x):
 return b.shell_wall_temperature[t, x] == \
 b.tube_wall_temperature[t, x, b.r.last()] \
 + b.shell_r_fouling*b.hconv_shell_foul[t, x] \
 * (b.shell.properties[t, x].temperature
 - b.tube_wall_temperature[t, x, b.r.last()])

 # Declare derivatives in the model
 if self.config.dynamic is True:
 self.dTdt = DerivativeVar(self.tube_wall_temperature,
 wrt=self.flowsheet().config.time)
 self.dTdr = DerivativeVar(self.tube_wall_temperature, wrt=self.r)
 self.d2Tdr2 = DerivativeVar(self.tube_wall_temperature,
 wrt=(self.r, self.r))

 discretizer = TransformationFactory('dae.finite_difference')
 discretizer.apply_to(self, nfe=self.config.radial_elements,
 wrt=self.r, scheme='CENTRAL')

 # Constraint for heat conduction equation
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain, self.r,
 doc="1-D Heat Conduction Equation Through Radius")
 def heat_conduction_eqn(b, t, x, r):
 if r == b.r.first() or r == b.r.last():
 return Constraint.Skip
 if self.config.dynamic is True:
 return b.dTdt[t, x, r] == b.diff_therm_wall/b.ri_scaling**2 \
 * (b.d2Tdr2[t, x, r] + b.dTdr[t, x, r]/r)
 else:
 return 0 == b.diff_therm_wall/b.ri_scaling**2 \
 * (b.d2Tdr2[t, x, r] + b.dTdr[t, x, r]/r)

 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Inner Wall Boundary")
 def inner_wall_bc_eqn(b, t, x):
 return 0.01*b.hconv_tube_foul[t, x] \
 * (b.tube.properties[t, x].temperature
 - b.tube_wall_temperature[t, x, b.r.first()]) == \
 - 0.01*b.dTdr[t, x, b.r.first()]/b.ri_scaling \
 * b.therm_cond_wall

 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Outer Wall Boundary")
 def outer_wall_bc_eqn(b, t, x):
 return 0.01 * b.hconv_shell_foul[t, x]\
 * (b.tube_wall_temperature[t, x, b.r.last()]
 - b.shell.properties[t, x].temperature) == \
 - 0.01*b.dTdr[t, x, b.r.last()]/b.ri_scaling*b.therm_cond_wall

 # Inner wall BC for dTdt
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Extra Inner Wall Temperature Derivative")
 def extra_at_inner_wall_eqn(b, t, x):
 if self.config.dynamic is True:
 term = b.dTdt[t, x, b.r.first()]
 else:
 term = 0
 return term == 4 * b.diff_therm_wall * (b.r.first()+b.r[2]) / \
 (b.r[2]-b.r.first())**2/(3*b.r.first()+b.r[2]) \
 / b.ri_scaling**2 \
 * (b.tube_wall_temperature[t, x, b.r[2]]
 - b.tube_wall_temperature[t, x, b.r.first()]) \
 + 8*b.diff_therm_wall/b.therm_cond_wall \
 * b.hconv_tube_foul[t, x] * b.r.first() / \
 (b.r[2]-b.r.first())/(3*b.r.first()+b.r[2]) \
 / b.ri_scaling*(b.tube.properties[t, x].temperature
 - b.tube_wall_temperature[t, x, b.r.first()])

 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Extra Outer Wall Temperature Derivative")
 def extra_at_outer_wall_eqn(b, t, x):
 if self.config.dynamic is True:
 term = b.dTdt[t, x, b.r.last()]
 else:
 term = 0
 return term == 4 * b.diff_therm_wall * (b.r.last() + b.r[-2]) / \
 (b.r.last() - b.r[-2])**2 / (3*b.r.last() + b.r[-2])\
 / b.ri_scaling**2\
 * (b.tube_wall_temperature[t, x, b.r[-2]]
 - b.tube_wall_temperature[t, x, b.r.last()]) \
 + 8*b.diff_therm_wall/b.therm_cond_wall \
 * b.hconv_shell_foul[t, x] * b.r.last() / \
 (b.r.last()-b.r[-2])/(3*b.r.last()+b.r[-2])/b.ri_scaling\
 * (b.shell.properties[t, x].temperature
 - b.tube_wall_temperature[t, x, b.r.last()])

 if self.config.has_radiation is True:
 # Constraints for gas emissivity
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Gas Emissivity")
 def gas_emissivity_eqn(b, t, x):
 # This is a surrogate model, so need to do units manually
 X1 = b.shell.properties[t, x].temperature
 X2 = b.mbl
 X3 = b.shell.properties[t, x].pressure
 X4 = b.shell.properties[t, x].mole_frac_comp['CO2']
 X5 = b.shell.properties[t, x].mole_frac_comp['H2O']
 X6 = b.shell.properties[t, x].mole_frac_comp['O2']
 # Surrogate model fitted using rigorous calc. - 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)
 return b.gas_emissivity[t, x] == \
 - 0.000116906 * X1 \
 + 1.02113 * X2 \
 + 4.81687e-07 * X3 \
 + 0.922679 * X4 \
 - 0.0708822 * X5 \
 - 0.0368321 * X6 \
 + 0.121843 * log(X1) \
 + 0.0353343 * log(X2) \
 + 0.0346181 * log(X3) \
 + 0.0180859 * log(X5) \
 - 0.256274 * exp(X2) \
 - 0.674791 * exp(X4) \
 - 0.724802 * sin(X2) \
 - 0.0206726 * cos(X2) \
 - 9.01012e-05 * cos(X3) \
 - 3.09283e-05 * X1*X2 \
 - 5.44339e-10 * X1*X3 \
 - 0.000196134 * X1*X5 \
 + 4.54838e-05 * X1*X6 \
 + 7.57411e-07 * X2*X3 \
 + 0.0395456 * X2*X4 \
 + 0.726625 * X2*X5 \
 - 0.034842 * X2*X6 \
 + 4.00056e-06 * X3*X5 \
 + 5.71519e-09 * (X1*X2)**2 \
 - 1.27853 * (X2*X5)**2

 # Constraints for gas emissivity at mbl/sqrt(2)
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Gas Emissivity at a Lower Mean Beam Length")
 def gas_emissivity_div2_eqn(b, t, x):
 X1 = b.shell.properties[t, x].temperature
 X2 = b.mbl_div2
 X3 = b.shell.properties[t, x].pressure
 X4 = b.shell.properties[t, x].mole_frac_comp['CO2']
 X5 = b.shell.properties[t, x].mole_frac_comp['H2O']
 X6 = b.shell.properties[t, x].mole_frac_comp['O2']
 # Surrogate model fitted using rigorous calc. - 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)
 return b.gas_emissivity_div2[t, x] == \
 - 0.000116906 * X1 \
 + 1.02113 * X2 \
 + 4.81687e-07 * X3 \
 + 0.922679 * X4 \
 - 0.0708822 * X5 \
 - 0.0368321 * X6 \
 + 0.121843 * log(X1) \
 + 0.0353343 * log(X2) \
 + 0.0346181 * log(X3) \
 + 0.0180859 * log(X5) \
 - 0.256274 * exp(X2) \
 - 0.674791 * exp(X4) \
 - 0.724802 * sin(X2) \
 - 0.0206726 * cos(X2) \
 - 9.01012e-05 * cos(X3) \
 - 3.09283e-05 * X1*X2 \
 - 5.44339e-10 * X1*X3 \
 - 0.000196134 * X1*X5 \
 + 4.54838e-05 * X1*X6 \
 + 7.57411e-07 * X2*X3 \
 + 0.0395456 * X2*X4 \
 + 0.726625 * X2*X5 \
 - 0.034842 * X2*X6 \
 + 4.00056e-06 * X3*X5 \
 + 5.71519e-09 * (X1*X2)**2 \
 - 1.27853 * (X2*X5)**2

 # Constraints for gas emissivity at mbl*sqrt(2)
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Gas Emissivity at a Higher Mean Beam Length")
 def gas_emissivity_mul2_eqn(b, t, x):
 X1 = b.shell.properties[t, x].temperature
 X2 = b.mbl_mul2
 X3 = b.shell.properties[t, x].pressure
 X4 = b.shell.properties[t, x].mole_frac_comp['CO2']
 X5 = b.shell.properties[t, x].mole_frac_comp['H2O']
 X6 = b.shell.properties[t, x].mole_frac_comp['O2']
 # Surrogate model fitted using rigorous calc. - 500 samples
 # Wide operating range:
 # X1: 700 – 1500 (Gas Temperature)
 # X2: 0.2 – 1 (Mean beam length)
 # X3: 79000-102000 (pressure in Pa)
 # X4: 0.12-0.16 (mol frac CO2)
 # X5: 0.075-0.15 (mol frac H2O)
 # X6: 0.01-0.07 (mol frac O2)
 return b.gas_emissivity_mul2[t, x] == \
 - 0.000116906 * X1 \
 + 1.02113 * X2 \
 + 4.81687e-07 * X3 \
 + 0.922679 * X4 \
 - 0.0708822 * X5 \
 - 0.0368321 * X6 \
 + 0.121843 * log(X1) \
 + 0.0353343 * log(X2) \
 + 0.0346181 * log(X3) \
 + 0.0180859 * log(X5) \
 - 0.256274 * exp(X2) \
 - 0.674791 * exp(X4) \
 - 0.724802 * sin(X2) \
 - 0.0206726 * cos(X2) \
 - 9.01012e-05 * cos(X3) \
 - 3.09283e-05 * X1*X2 \
 - 5.44339e-10 * X1*X3 \
 - 0.000196134 * X1*X5 \
 + 4.54838e-05 * X1*X6 \
 + 7.57411e-07 * X2*X3 \
 + 0.0395456 * X2*X4 \
 + 0.726625 * X2*X5 \
 - 0.034842 * X2*X6 \
 + 4.00056e-06 * X3*X5 \
 + 5.71519e-09 * (X1*X2)**2 \
 - 1.27853 * (X2*X5)**2

 # fraction of gray gas spectrum
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Fraction of Gray Gas Spectrum")
 def gas_gray_fraction_eqn(b, t, x):
 return b.gas_gray_fraction[t, x] \
 * (2*b.gas_emissivity_div2[t, x]
 - b.gas_emissivity_mul2[t, x])\
 == b.gas_emissivity_div2[t, x]**2

 # Gas-surface radiation exchange factor between
 # gas and shell side wall
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Gas-Surface Radiation Exchange"
 "Factor between Gas and Shell Side Wall")
 def frad_gas_shell_eqn(b, t, x):
 return b.frad_gas_shell[t, x]\
 * ((1/b.emissivity_wall-1)*b.gas_emissivity[t, x]
 + b.gas_gray_fraction[t, x]) \
 == b.gas_gray_fraction[t, x]*b.gas_emissivity[t, x]

 # equivalent convective heat transfer coefficent due to radiation
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Equivalent Convective Heat Transfer"
 "Coefficient due to Radiation")
 def hconv_shell_rad_eqn(b, t, x):
 return b.hconv_shell_rad[t, x] == const.stefan_constant \
 * b.frad_gas_shell[t, x] * (b.shell.properties[t, x].
 temperature
 + b.
 shell_wall_temperature[t, x]) \
 * (b.shell.properties[t, x].temperature**2
 + b.shell_wall_temperature[t, x]**2)

 # Tube side heat transfer coefficient and pressure drop
 # ---
 # Velocity on tube side
 self.tube_velocity = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=1.0,
 doc="Velocity on Tube Side")

 # Reynalds number on tube side
 self.tube_N_Re = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=10000.0,
 doc="Reynolds Number on Tube Side")

 # Friction factor on tube side
 self.tube_friction_factor = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=1.0,
 doc='Friction Factor on Tube Side')

 # Pressure drop due to friction on tube side
 self.deltaP_tube_friction = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=-10.0,
 doc="Pressure Drop due to"
 "Friction on Tube Side")

 # Pressure drop due to 180 degree turn on tube side
 self.deltaP_tube_uturn = Var(self.flowsheet().config.time,
 self.tube.length_domain,
 initialize=-10.0,
 doc="Pressure Drop due to U-Turn on"
 "Tube Side")

 # Prandtl number on tube side
 self.tube_N_Pr = Var(self.flowsheet().config.time,
 self.tube.length_domain, initialize=1.0,
 doc="Prandtl Number on Tube Side")

 # Nusselt number on tube side
 self.tube_N_Nu = Var(self.flowsheet().config.time,
 self.tube.length_domain, initialize=1,
 doc="Nusselts Number on Tube Side")

 # Velocity equation
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Tube Side Velocity Equation")
 def v_tube_eqn(b, t, x):
 return 0.001 * b.tube_velocity[t, x] * b.area_flow_tube * \
 b.tube.properties[t, x].dens_mol_phase[phase_s] \
 == 0.001 * b.tube.properties[t, x].flow_mol

 # Reynolds number
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Reynolds Number Equation on Tube Side")
 def N_Re_tube_eqn(b, t, x):
 return b.tube_N_Re[t, x] \
 * b.tube.properties[t, x].visc_d_phase[phase_s] == \
 b.tube_di * b.tube_velocity[t, x] \
 * b.tube.properties[t, x].dens_mass_phase[phase_s]

 # Friction factor
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Darcy Friction Factor on Tube Side")
 def friction_factor_tube_eqn(b, t, x):
 return b.tube_friction_factor[t, x] * b.tube_N_Re[t, x]**0.25 == \
 0.3164 * b.fcorrection_dp_tube

 # Pressure drop due to friction per tube length
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Pressure Drop due to Friction per Tube Length")
 def deltaP_tube_friction_eqn(b, t, x):
 return b.deltaP_tube_friction[t, x] * b.tube_di == \
 - 0.5 * b.tube.properties[t, x].dens_mass_phase[phase_s] \
 * b.tube_velocity[t, x]**2 * b.tube_friction_factor[t, x]

 # Pressure drop due to u-turn
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Pressure Drop due to U-Turn on Tube Side")
 def deltaP_tube_uturn_eqn(b, t, x):
 return b.deltaP_tube_uturn[t, x] * b.tube_length_seg == \
 - 0.5 * b.tube.properties[t, x].dens_mass_phase[phase_s] \
 * b.tube_velocity[t, x]**2 * b.kloss_uturn

 # Total pressure drop on tube side
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Total Pressure Drop on Tube Side")
 def deltaP_tube_eqn(b, t, x):
 return b.tube.deltaP[t, x] == \
 (b.deltaP_tube_friction[t, x] + b.deltaP_tube_uturn[t, x]
 - b.delta_elevation/b.tube_nseg * const.acceleration_gravity
 * b.tube.properties[t, x].dens_mass_phase[phase_s] /
 b.tube_length_seg)

 # Prandtl number
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Prandtl Number Equation on Tube Side")
 def N_Pr_tube_eqn(b, t, x):
 return b.tube_N_Pr[t, x] \
 * b.tube.properties[t, x].therm_cond_phase[phase_s] * \
 b.tube.properties[t, x].mw == \
 b.tube.properties[t, x].cp_mol_phase[phase_s] * \
 b.tube.properties[t, x].visc_d_phase[phase_s]

 # Nusselts number
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Nusselts Number Equation on Tube Side")
 def N_Nu_tube_eqn(b, t, x):
 return b.tube_N_Nu[t, x] == 0.023 * b.tube_N_Re[t, x]**0.8 \
 * b.tube_N_Pr[t, x]**0.4

 # Heat transfer coefficient
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Convective Heat Transfer Coefficient"
 "Equation on Tube Side")
 def hconv_tube_eqn(b, t, x):
 return b.hconv_tube[t, x]*self.tube_di == b.tube_N_Nu[t, x] * \
 b.tube.properties[t, x].therm_cond_phase[phase_s] \
 * b.fcorrection_htc_tube

 # Pressure drop and heat transfer coefficient on shell side
 # --
 # Tube arrangement factor
 if self.config.tube_arrangement == 'in-line':
 self.f_arrangement = Param(initialize=0.788,
 doc="In-Line Tube Arrangement Factor")
 elif self.config.tube_arrangement == 'staggered':
 self.f_arrangement = Param(initialize=1.0,
 doc="Staggered Tube Arrangement Factor")
 else:
 raise Exception('Tube Arrangement Not Supported')

 # Velocity on shell side
 self.shell_velocity = Var(self.flowsheet().config.time,
 self.shell.length_domain, initialize=1.0,
 doc="Velocity on Shell Side")

 # Reynalds number on shell side
 self.shell_N_Re = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=10000.0,
 doc="Reynolds Number on Shell Side")

 # Friction factor on shell side
 self.shell_friction_factor = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=1.0,
 doc='Friction Factor on Shell Side')

 # Prandtl number on shell side
 self.shell_N_Pr = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=1,
 doc="Prandtl Number on Shell Side")

 # Nusselt number on shell side
 self.shell_N_Nu = Var(self.flowsheet().config.time,
 self.shell.length_domain,
 initialize=1,
 doc="Nusselts Number on Shell Side")

 # Velocity equation on shell side, using inlet molar flow rate
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Velocity on Shell Side")
 def v_shell_eqn(b, t, x):
 return b.shell_velocity[t, x] \
 * b.shell.properties[t, x].dens_mol_phase["Vap"] * \
 b.area_flow_shell_min == b.shell.properties[t, 0].flow_mol

 # Reynolds number
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Reynolds Number Equation on Shell Side")
 def N_Re_shell_eqn(b, t, x):
 return b.shell_N_Re[t, x] * b.shell.properties[t, x].visc_d == \
 b.tube_do * b.shell_velocity[t, x] \
 * b.shell.properties[t, x].dens_mol_phase["Vap"] *\
 b.shell.properties[t, x].mw

 # Friction factor on shell side
 if self.config.tube_arrangement == "in-line":
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="In-Line Friction Factor on Shell Side")
 def friction_factor_shell_eqn(b, t, x):
 return b.shell_friction_factor[t, x] \
 * b.shell_N_Re[t, x]**0.15 == \
 (0.044 + 0.08 * b.pitch_x_to_do
 / (b.pitch_y_to_do - 1.0)**(0.43
 + 1.13 / b.pitch_x_to_do)) \
 * b.fcorrection_dp_shell
 elif self.config.tube_arrangement == "staggered":
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Staggered Friction Factor on Shell Side")
 def friction_factor_shell_eqn(b, t, x):
 return b.shell_friction_factor[t, x] \
 * b.shell_N_Re[t, x]**0.16 == (0.25
 + 0.118 / (b.pitch_y_to_do
 - 1.0)**1.08) \
 * b.fcorrection_dp_shell
 else:
 raise Exception('Tube Arrangement Not Supported')

 # Pressure drop on shell side
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Pressure Change on Shell Side")
 def deltaP_shell_eqn(b, t, x):
 return b.shell.deltaP[t, x] * b.pitch_x == - 1.4 \
 * b.shell_friction_factor[t, x] * \
 b.shell.properties[t, x].dens_mol_phase["Vap"] * \
 b.shell.properties[t, x].mw * b.shell_velocity[t, x]**2

 # Prandtl number
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Prandtl Number Equation on Shell Side")
 def N_Pr_shell_eqn(b, t, x):
 return b.shell_N_Pr[t, x] * b.shell.properties[t, x].therm_cond \
 * b.shell.properties[t, x].mw == \
 b.shell.properties[t, x].cp_mol \
 * b.shell.properties[t, x].visc_d

 # Nusselt number, currently assume Re > 300
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Nusselts Number Equation on Shell Side")
 def N_Nu_shell_eqn(b, t, x):
 return b.shell_N_Nu[t, x] == b.f_arrangement * 0.33 \
 * b.shell_N_Re[t, x]**0.6 * b.shell_N_Pr[t, x]**0.333333

 # Convective heat transfer coefficient on shell side
 # due to convection only
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Convective Heat Transfer Coefficient Equation"
 "on Shell Side due to Convection")
 def hconv_shell_conv_eqn(b, t, x):
 return b.hconv_shell_conv[t, x] * b.tube_do == \
 b.shell_N_Nu[t, x] * b.shell.properties[t, x].therm_cond \
 * b.fcorrection_htc_shell

 # Total convective heat transfer coefficient on shell side
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Total Convective Heat Transfer Coefficient"
 "Equation on Shell Side")
 def hconv_shell_total_eqn(b, t, x):
 if self.config.has_radiation is True:
 return b.hconv_shell_total[t, x] == b.hconv_shell_conv[t, x] \
 + b.hconv_shell_rad[t, x]
 else:
 return b.hconv_shell_total[t, x] == b.hconv_shell_conv[t, x]

 # Energy balance with tube wall
 # ------------------------------------
 # Heat to wall per length on tube side
 @self.Constraint(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Heat per Length on Tube Side")
 def heat_tube_eqn(b, t, x):
 return b.tube_heat[t, x] == b.hconv_tube_foul[t, x] * const.pi \
 * b.tube_di * b.tube_inlet_nrow * b.tube_ncol * \
 (b.tube_wall_temperature[t, x, b.r.first()]
 - b.tube.properties[t, x].temperature)

 # Heat to wall per length on shell side
 @self.Constraint(self.flowsheet().config.time,
 self.shell.length_domain,
 doc="Heat per Length on Shell Side")
 def heat_shell_eqn(b, t, x):
 return b.shell_heat[t, x] * b.length_flow_shell == \
 b.length_flow_tube*b.hconv_shell_foul[t, x] * const.pi \
 * b.tube_do * b.tube_inlet_nrow * b.tube_ncol * \
 (b.tube_wall_temperature[t, x, b.r.last()]
 - b.shell.properties[t, x].temperature)

 # Calculate mechanical and thermal stresses based on
 # EN 13445 for SH thick walled component
 # ---
 # Integer indexing for radius domain
 self.rindex = Param(self.r,
 initialize=1,
 mutable=True,
 doc="Integer Indexing for Radius Domain")

 # Calculate integral point for mean temperature in the wall
 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Mean Temperature across the Wall")
 def mean_temperature(b, t, x):
 return 2 * (b.r[2]-b.r[1]) * b.ri_scaling**2 / (b.tube_ro**2
 - b.tube_ri**2) * \
 (sum(0.5 * (b.r[i-1] * b.tube_wall_temperature[t, x, b.r[i-1]]
 + b.r[i] * b.tube_wall_temperature[t, x, b.r[i]])
 for i in range(2, len(b.r)+1)))

 for index_r, value_r in enumerate(self.r, 1):
 self.rindex[value_r] = index_r

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Discrete Point Mean Temperature")
 def discrete_mean_temperature(b, t, x, r):
 if b.rindex[r].value == 1:
 return b.tube_wall_temperature[t, x, b.r.first()]
 else:
 return 2 * (b.r[2] - b.r[1]) * b.ri_scaling**2 \
 / ((b.r[b.rindex[r].value] * b.ri_scaling)**2
 - b.tube_ri**2) *\
 (sum(0.5 * (b.r[j-1] *
 b.tube_wall_temperature[t, x, b.r[j-1]]
 + b.r[j] *
 b.tube_wall_temperature[t, x, b.r[j]])
 for j in range(2, b.rindex[r].value+1)))

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Thermal Stress at Radial Direction for Tube")
 def therm_sigma_r(b, t, x, r):
 if r == b.r.first() or r == b.r.last():
 return 0
 else:
 return 0.5 * b.Young_modulus \
 * b.coefficient_thermal_expansion / (1 - b.Poisson_ratio) \
 * ((1 - b.tube_ri**2 / (r * b.ri_scaling)**2) *
 (b.mean_temperature[t, x]
 - b.discrete_mean_temperature[t, x, r]))

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Thermal Stress at "
 "Circumferential Direction for Tube")
 def therm_sigma_theta(b, t, x, r):
 r_2 = (r*b.ri_scaling)**2
 return 0.5 * b.Young_modulus \
 * b.coefficient_thermal_expansion / (1 - b.Poisson_ratio) \
 * ((1 + b.tube_ri**2 / r_2) *
 b.mean_temperature[t, x] +
 (1 - b.tube_ri**2 / r_2) *
 b.discrete_mean_temperature[t, x, r] -
 2 * b.tube_wall_temperature[t, x, r])

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Thermal Stress at Axial Direction for Tube")
 def therm_sigma_z(b, t, x, r):
 return b.Young_modulus * b.coefficient_thermal_expansion \
 / (1-b.Poisson_ratio) * (b.mean_temperature[t, x]
 - b.tube_wall_temperature[t, x, r])

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Mechanical Stress at Radial Direction for Tube")
 def mech_sigma_r(b, t, x, r):
 if r == b.r.first():
 return 1e-6 * (-b.tube.properties[t, x].pressure)
 elif r == b.r.last():
 return 1e-6*(-b.shell.properties[t, x].pressure)
 else:
 return 0.1 * (1E-5*(b.tube.properties[t, x].pressure *
 b.tube_ri**2 -
 b.shell.properties[t, x].pressure *
 b.tube_ro**2) /
 (b.tube_ro**2 -
 b.tube_ri**2) +
 (1E-5 * (b.shell.properties[t, x].pressure
 - b.tube.properties[t, x].pressure) *
 b.tube_ri**2 * b.tube_ro**2 /
 ((r * b.ri_scaling)**2 *
 (b.tube_ro**2 - b.tube_ri**2))))

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Mechanical Stress at"
 "Circumferential Direction for Tube")
 def mech_sigma_theta(b, t, x, r):
 return 0.1 * (1E-5 * (b.tube.properties[t, x].pressure
 * b.tube_ri**2
 - b.shell.properties[t, x].pressure
 * b.tube_ro**2)
 / (b.tube_ro**2-b.tube_ri**2)
 - (1E-5*(b.shell.properties[t, x].pressure
 - b.tube.properties[t, x].pressure)
 * b.tube_ri**2 * b.tube_ro**2
 / ((r*b.ri_scaling)**2
 * (b.tube_ro**2-b.tube_ri**2))))

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 doc="Mechanical Stress at Axial Direction for Tube")
 def mech_sigma_z(b, t, x):
 return 0.1*(1E-5*(b.tube.properties[t, x].pressure * b.tube_ri**2
 - b.shell.properties[t, x].pressure
 * b.tube_ro**2)
 / (b.tube_ro**2 - b.tube_ri**2))

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Principal Structural Stress"
 "at Radial Direction for Tube")
 def sigma_r(b, t, x, r):
 if r == b.r.first():
 return 1e-6*(-b.tube.properties[t, x].pressure)
 elif r == b.r.last():
 return 1e-6*(-b.shell.properties[t, x].pressure)
 else:
 return b.mech_sigma_r[t, x, r] + b.therm_sigma_r[t, x, r]

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Principal Structural Stress"
 "at Circumferential Direction for Tube")
 def sigma_theta(b, t, x, r):
 return b.mech_sigma_theta[t, x, r] + b.therm_sigma_theta[t, x, r]

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc="Principal Structural Stress"
 "at Axial Direction for Tube")
 def sigma_z(b, t, x, r):
 return b.mech_sigma_z[t, x] + b.therm_sigma_z[t, x, r]

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r, doc='Variation Principal Stress'
 'between Radial-Circumferential Directions for Tube')
 def delta_sigma_r_theta(b, t, x, r):
 return abs(b.sigma_r[t, x, r] - b.sigma_theta[t, x, r])

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc='Variation Principal Stress'
 'between Circumferential-Axial Directions for Tube')
 def delta_sigma_theta_z(b, t, x, r):
 return abs(b.sigma_theta[t, x, r]-b.sigma_z[t, x, r])

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain,
 self.r,
 doc='Variation Principal Stress'
 'between Axial-Radial Directions for Tube')
 def delta_sigma_z_r(b, t, x, r):
 return abs(b.sigma_z[t, x, r] - b.sigma_r[t, x, r])

 @self.Expression(self.flowsheet().config.time,
 self.tube.length_domain, self.r,
 doc='Equivalent von Mises Stress for Tube')
 def sigma_von_Mises(b, t, x, r):
 return sqrt(b.sigma_r[t, x, r]**2
 + b.sigma_theta[t, x, r]**2
 + b.sigma_z[t, x, r]**2
 - (b.sigma_r[t, x, r] * b.sigma_theta[t, x, r]
 + b.sigma_r[t, x, r] * b.sigma_z[t, x, r]
 + b.sigma_theta[t, x, r] * b.sigma_z[t, x, r]))

 # Calculate creep // Using property of Steel SA 209 T1
 # data obtained from NIMS databank, date: 11/20/2020
 # https://mits.nims.go.jp/en/
 # data were assessed using Minimum-Commitment parameter
 self.creep_a = Param(initialize=168.15, mutable=True)
 self.creep_b = Param(initialize=-262.34, mutable=True)
 self.creep_c = Param(initialize=123.72, mutable=True)
 self.creep_d = Param(initialize=-19.62, mutable=True)
 self.creep_e = Param(initialize=348582.80, mutable=True)

 @self.Expression(self.flowsheet().config.time, self.tube.length_domain,
 self.r, doc='Rupture Time for Tube')
 def rupture_time(b, t, x, r):
 return 10**(b.creep_a + b.creep_b *
 log10(b.sigma_von_Mises[t, x, r])
 + b.creep_c * (log10(b.sigma_von_Mises[t, x, r]))**2
 + b.creep_d * (log10(b.sigma_von_Mises[t, x, r]))**3
 + b.creep_e / (19.1425 *
 b.tube_wall_temperature[t, x, r]))

 if self.config.has_header is True:
 # ---
 # calculate temperature distribution and stress for headers
 # @ outlet header (Because the counter current flow type,
 # be careful to define the Tgas, Tst, hgas and hst)
 # material density of header
 # thermal conductivity of header
 # Calculate outlet header of primary superheater
 # Material is SA 387 Grade 12
 # (other name EN: 13CrMo45 and DIN 13CrMo44)

 self.therm_cond_header = Param(initialize=44, mutable=True)

 # density of header
 self.dens_header = Param(initialize=7800, mutable=True)

 # heat capacity of header
 self.cp_header = Param(initialize=470, mutable=True)

 # Young modulus
 self.Young_modulus_header = Param(initialize=2.00E5, mutable=True)

 # Poisson's ratio
 self.Poisson_ratio_header = Param(initialize=0.29, mutable=True)

 # Coefficient of thermal expansion
 self.coefficient_therm_expansion_header = Param(initialize=1.2E-5,
 mutable=True)

 # Temperature across header wall thickness
 self.header_wall_temperature = Var(self.flowsheet().config.time,
 self.head_r,
 bounds=(500, 900),
 initialize=680)

 # Declare derivatives in the model
 if self.config.dynamic is True:
 self.head_dTdt = DerivativeVar(self.header_wall_temperature,
 wrt=self.flowsheet().config.
 time)
 self.head_dTdr = DerivativeVar(self.header_wall_temperature,
 wrt=self.head_r)
 self.head_d2Tdr2 = DerivativeVar(self.header_wall_temperature,
 wrt=(self.head_r, self.head_r))

 discretizer_2 = TransformationFactory('dae.finite_difference')
 discretizer_2.apply_to(self,
 nfe=self.config.header_radial_elements,
 wrt=self.head_r, scheme='CENTRAL')

 # thermal diffusivity of header
 @self.Expression(doc="Thermal Diffusivity of Header Material")
 def therm_diffus_header(b):
 return b.therm_cond_header / (b.dens_header * b.cp_header)

 # Constraint for heat conduction equation
 @self.Constraint(self.flowsheet().config.time,
 self.head_r,
 doc="1-D PDE Heat Conduction for Header")
 def head_heat_conduction_eqn(b, t, r):
 if r == b.head_r.first() or r == b.head_r.last():
 return Constraint.Skip
 if self.config.dynamic is True:
 return b.head_dTdt[t, r] == \
 b.therm_diffus_header / b.ri_scaling**2 * \
 (b.head_d2Tdr2[t, r] + b.head_dTdr[t, r] / r)
 else:
 return 0 == b.therm_diffus_header / b.ri_scaling**2 \
 * (b.head_d2Tdr2[t, r] + b.head_dTdr[t, r] / r)

 @self.Constraint(self.flowsheet().config.time,
 doc="Inner Wall Boundary")
 def head_inner_wall_bc_eqn(b, t):
 return 0.01 * b.hconv_tube_foul[t, b.tube.length_domain.
 first()] *\
 (b.tube.properties[t, b.tube.length_domain.first()].
 temperature -
 b.header_wall_temperature[t, b.head_r.first()]) == \
 - 0.01 * b.head_dTdr[t, b.head_r.first()] \
 / b.ri_scaling * b.therm_cond_header

 @self.Constraint(self.flowsheet().config.time,
 doc="Outer Wall Boundary")
 def head_outer_wall_bc_eqn(b, t):
 return 0.01 * b.hconv_shell_foul[t, b.shell.length_domain.
 first()] * \
 (b.header_wall_temperature[t, b.head_r.last()] -
 b.shell.properties[t, b.shell.length_domain.first()].
 temperature) == - 0.01 * \
 b.head_dTdr[t, b.head_r.last()] / b.ri_scaling \
 * b.therm_cond_header

 # Inner wall BC for dTdt
 @self.Constraint(self.flowsheet().config.time,
 doc="Extra Boundary at Inner Wall"
 "Temperature Derivative")
 def head_extra_at_inner_wall_eqn(b, t):
 if self.config.dynamic is True:
 term = b.head_dTdt[t, b.head_r.first()]
 else:
 term = 0
 return term == \
 (4 * b.therm_diffus_header
 * (b.head_r.first()
 + b.head_r[2]) / (b.head_r[2]
 - b.head_r.first())**2
 / (3 * b.head_r.first() + b.head_r[2])
 / b.ri_scaling**2
 * (b.header_wall_temperature[t, b.head_r[2]]
 - b.header_wall_temperature[t, b.head_r.first()])
 + 8 * b.therm_diffus_header / b.therm_cond_header
 * b.hconv_tube_foul[t, b.tube.length_domain.first()]
 * b.head_r.first() / (b.head_r[2]
 - b.head_r.first())
 / (3 * b.head_r.first()
 + b.head_r[2]) / b.ri_scaling
 * (b.tube.properties[t, b.tube.length_domain.first()].
 temperature
 - b.header_wall_temperature[t, b.head_r.first()]))

 @self.Constraint(self.flowsheet().config.time,
 doc="Extra Boundary at Outer Wall "
 "Temperature Derivative")
 def head_extra_at_outer_wall_eqn(b, t):
 if self.config.dynamic is True:
 term = b.head_dTdt[t, b.head_r.last()]
 else:
 term = 0
 return term == \
 (4 * b.therm_diffus_header * (b.head_r.last()
 + b.head_r[-2])
 / (b.head_r.last() - b.head_r[-2])**2
 / (3 * b.head_r.last()
 + b.head_r[-2]) / b.ri_scaling**2
 * (b.header_wall_temperature[t, b.head_r[-2]]
 - b.header_wall_temperature[t, b.head_r.last()])
 + 8 * b.therm_diffus_header / b.therm_cond_header
 * b.hconv_shell_foul[t, b.shell.length_domain.first()]
 * b.head_r.last() / (b.head_r.last() - b.head_r[-2])
 / (3 * b.head_r.last() + b.head_r[-2]) / b.ri_scaling
 * (b.shell.properties[t, b.shell.length_domain.first()].
 temperature
 - b.header_wall_temperature[t, b.head_r.last()]))

 # Calculate mechanical and thermal stresses based on EN 13445
 # for thick walled component
 # --
 # Integer indexing for radius domain
 self.head_rindex = Param(self.head_r,
 initialize=1, mutable=True,
 doc="Integer Indexing for Radius Domain")

 # calculate integral point for mean temperature in the wall
 @self.Expression(self.flowsheet().config.time,
 doc="Mean Temperature for Header")
 def mean_temperature_header(b, t):
 return 2 * (b.head_r[2] - b.head_r[1]) * b.ri_scaling**2 \
 / (b.head_ro**2 - b.head_ri**2) \
 * (sum(0.5 * (b.head_r[i-1] * b.
 header_wall_temperature[t, b.head_r[i-1]]
 + b.head_r[i] * b.
 header_wall_temperature[t, b.head_r[i]])
 for i in range(2, len(b.head_r)+1)))

 for head_index_r, head_value_r in enumerate(self.head_r, 1):
 self.head_rindex[head_value_r] = head_index_r

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Discrete Point Mean Temperature for Header")
 def discrete_mean_temperature_header(b, t, r):
 if b.head_rindex[r].value == 1:
 return b.header_wall_temperature[t, b.head_r.first()]
 else:
 return 2 * (
 b.head_r[2] - b.head_r[1]
) * b.ri_scaling**2 / (
 (b.head_r[b.head_rindex[r].value]
 * b.ri_scaling)**2 - b.head_ri**2
) * (sum(
 0.5 * (
 b.head_r[j-1] * b.
 header_wall_temperature[t, b.head_r[j-1]]
 + b.head_r[j] * b.
 header_wall_temperature[t, b.head_r[j]]
) for j in range(
 2, b.head_rindex[r].value + 1)))

 @self.Expression(self.flowsheet().config.time,
 self.head_r,
 doc="Thermal Stress at"
 "Radial Direction for Header")
 def therm_sigma_r_header(b, t, r):
 if r == b.head_r.first() or r == b.head_r.last():
 return 0
 else:
 return 0.5 * b.Young_modulus_header \
 * b.coefficient_therm_expansion_header \
 / (1 - b.Poisson_ratio_header) \
 * ((1 - b.head_ri**2 / (r * b.ri_scaling)**2)
 * (b.mean_temperature_header[t]
 - b.discrete_mean_temperature_header[t, r]))

 @self.Expression(self.flowsheet().config.time,
 self.head_r,
 doc="Thermal Stress at Circumferential"
 "Direction for Header")
 def therm_sigma_theta_header(b, t, r):
 r_2 = (r * b.ri_scaling)**2
 return 0.5 * b.Young_modulus_header \
 * b.coefficient_therm_expansion_header \
 / (1 - b.Poisson_ratio_header) \
 * ((1 + b.head_ri**2 / r_2) * b.mean_temperature_header[t]
 + (1 - b.head_ri**2 / r_2)
 * b.discrete_mean_temperature_header[t, r]
 - 2 * b.header_wall_temperature[t, r])

 @self.Expression(self.flowsheet().config.time,
 self.head_r,
 doc="Thermal Stress at "
 " Axial Direction for Header")
 def therm_sigma_z_header(b, t, r):
 return b.Young_modulus_header \
 * b.coefficient_therm_expansion_header \
 / (1 - b.Poisson_ratio_header) \
 * (b.mean_temperature_header[t]
 - b.header_wall_temperature[t, r])

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Mechanical Stress "
 "at Radial Direction for Header")
 def mech_sigma_r_header(b, t, r):
 if r == b.head_r.first():
 return 1e-6 * (-b.
 tube.
 properties[t,
 b.
 tube.
 length_domain.first()].pressure)
 elif r == b.head_r.last():
 return 1e-6 * (-b.
 shell.
 properties[t,
 b.
 shell.length_domain.first()].
 pressure)
 else:
 return 0.1 * (1E-5 * (b.tube.properties[t, b.
 tube.
 length_domain.
 first()].
 pressure * b.head_ri**2 - b.
 shell.
 properties[t,
 b.
 shell.
 length_domain.first()].
 pressure * b.head_ro**2)
 / (b.head_ro**2 - b.head_ri**2)
 + (1E-5 * (b.
 shell.
 properties[t, b.
 shell.
 length_domain.
 first()].
 pressure - b.
 tube.
 properties[t, b.
 tube.
 length_domain.
 first()].
 pressure) * b.head_ri**2
 * b.head_ro**2 / ((r
 * b.ri_scaling)**2
 * (b.head_ro**2
 - b.head_ri**2))))

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Mechanical Stress"
 "at Circumferential Direction for Header")
 def mech_sigma_theta_header(b, t, r):
 return 0.1 * (1E-5 * (b.
 tube.
 properties[t,
 b.
 tube.
 length_domain.
 first()].
 pressure * b.head_ri**2 - b.
 shell.
 properties[t,
 b.
 shell.
 length_domain.
 first()].
 pressure * b.head_ro**2)
 / (b.head_ro**2
 - b.head_ri**2)
 - (1E-5 * (b.
 shell.
 properties[t,
 b.
 shell.
 length_domain.
 first()].
 pressure - b.
 tube.
 properties[t,
 b.
 tube.
 length_domain.
 first()].
 pressure) *
 b.head_ri**2 * b.head_ro**2
 / ((r * b.ri_scaling)**2 * (b.head_ro**2 -
 b.head_ri**2))))

 @self.Expression(self.flowsheet().config.time,
 doc="Mechanical Stress"
 "at Axial Direction for Header")
 def mech_sigma_z_header(b, t):
 return 0.1 * (1E-5 * (b.
 tube.
 properties[t,
 b.
 tube.
 length_domain.
 first()].
 pressure *
 b.head_ri**2 - b.
 shell.
 properties[t,
 b.
 shell.
 length_domain.
 first()].
 pressure *
 b.head_ro**2) / (b.head_ro**2
 - b.head_ri**2))

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Principal Structural Stress "
 "at Radial Direction for Header")
 def sigma_r_header(b, t, r):
 if r == b.head_r.first():
 return 1e-6 * (-b.
 tube.
 properties[t, b.
 tube.
 length_domain.
 first()].pressure)
 elif r == b.head_r.last():
 return 1e-6 * (-b.
 shell.
 properties[t, b.
 shell.
 length_domain.
 first()].pressure)
 else:
 return b.mech_sigma_r_header[t, r] + \
 b.therm_sigma_r_header[t, r]

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Principal Structural Stress"
 "at Circumferential Direction for Header")
 def sigma_theta_header(b, t, r):
 return b.mech_sigma_theta_header[t, r] \
 + b.therm_sigma_theta_header[t, r]

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc="Principal Structural Stress"
 "at Axial Direction for Header")
 def sigma_z_header(b, t, r):
 return b.mech_sigma_z_header[t] + b.therm_sigma_z_header[t, r]

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc='Variation Principal Stress'
 'between Radial - Circumferential Directions'
 'for Header')
 def delta_sigma_r_theta_header(b, t, r):
 return abs(b.sigma_r_header[t, r] - b.sigma_theta_header[t, r])

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc='Variation Principal Stress'
 'between Circumferential-Axial Directions'
 'for Header')
 def delta_sigma_theta_z_header(b, t, r):
 return abs(b.sigma_theta_header[t, r]-b.sigma_z_header[t, r])

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc='Variation Principal Stress'
 'between Axial-Radial Directions for Header')
 def delta_sigma_z_r_header(b, t, r):
 return abs(b.sigma_z_header[t, r] - b.sigma_r_header[t, r])

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc='Equivalent von Mises Stress for Header')
 def sigma_von_Mises_header(b, t, r):
 return sqrt(b.sigma_r_header[t, r]**2
 + b.sigma_theta_header[t, r]**2
 + b.sigma_z_header[t, r]**2
 - (b.sigma_r_header[t, r]
 * b.sigma_theta_header[t, r]
 + b.sigma_r_header[t, r]
 * b.sigma_z_header[t, r]
 + b.sigma_theta_header[t, r]
 * b.sigma_z_header[t, r]))

 # Calculate creep
 # Using property of Steel SA 387 Grade 12
 # (Steel 13CrMo45 or UNS K11757))
 # Data obtained from EN 13445 textbook page 812/838
 # Using Manson-Haferd model
 # log(tr) = f(sigma)*(T-T0) + beta // f(sigma) = b0 + b1*log(sigma)
 # + b2*log(sigma)^2 + b3*log(sigma)^3

 self.creep_a_header = Param(initialize=0.066684094, mutable=True)
 self.creep_b_header = Param(initialize=-0.143434107, mutable=True)
 self.creep_c_header = Param(initialize=0.073764831, mutable=True)
 self.creep_d_header = Param(initialize=-0.013083912, mutable=True)
 self.creep_e_header = Param(initialize=20.32884026, mutable=True)
 self.creep_f_header = Param(initialize=280, mutable=True)

 @self.Expression(self.flowsheet().config.time, self.head_r,
 doc='Rupture Time for Header')
 def rupture_time_header(b, t, r):
 return 10**((b.creep_a_header
 + b.creep_b_header
 * log10(b.sigma_von_Mises_header[t, r])
 + b.creep_c_header
 * (log10(b.sigma_von_Mises_header[t, r]))**2
 + b.creep_d_header
 * (log10(b.sigma_von_Mises_header[t, r]))**3)
 * (b.header_wall_temperature[t, r]
 - b.creep_f_header) + b.creep_e_header)

 # Calculate stress based on EN12952 standard
 # ---
 # mechanical stress of circumferential direction / thin walled drum
 header_thickness = self.head_thickness
 # mean radius
 r_ms_head = self.head_ri + header_thickness/2

 # mechanical stress concentration factor
 # thickness of pipe //m
 pipe_th = self.tube_thickness

 # mean diameter of pipe //
 pipe_d = self.tube_do - self.tube_thickness

 # mechanical coefficients
 k_m_A = -1.14 * (pipe_th / header_thickness)**2 \
 - 0.89 * (pipe_th / header_thickness) + 1.43
 k_m_B = 0.326 * (pipe_th / header_thickness)**2 \
 - 0.59 * (pipe_th / header_thickness) + 1.08
 k_m_C = pipe_d / (2 * r_ms_head) * sqrt((2 * r_ms_head)
 / (2 * header_thickness))
 k_m_header = 2.2 + exp(k_m_A) * k_m_C**k_m_B

 # thermal stress concentration factor
 k_t_A = pipe_d / (2 * r_ms_head)
 # heat transfer coefficient:3000 for water , 1000 for steam
 k_t_B = 1000
 k_t_header = sqrt((2 - (k_t_B + 2700) / (k_t_B + 1700)
 * k_t_A + k_t_B / (k_t_B + 1700)
 * (exp(-7 * k_t_A)-1))**2 + 0.81 * k_t_A**2)

 # mechanical stress at circumferential direction
 @self.Expression(self.flowsheet().config.time,
 doc='Mechanical Stress '
 'at Circumferential Direction'
 'for Header (EN 12952-3)')
 def sigma_p(b, t):
 return 0.1 * 1E-5 * (b.
 tube.
 properties[t, b.
 tube.
 length_domain.
 first()].
 pressure - b.
 shell.
 properties[t, b.
 shell.
 length_domain.
 first()].
 pressure) * r_ms_head / header_thickness

 # thermal stress at circumferential direction
 @self.Expression(self.flowsheet().config.time,
 doc='Thermal Stress at Circumferential'
 'Direction for Header (EN 12952-3)')
 def sigma_t(b, t):
 delta_T = b.mean_temperature_header[t] \
 - b.header_wall_temperature[t, b.head_r.first()]
 return b.coefficient_therm_expansion_header \
 * b.Young_modulus_header / (1 - b.Poisson_ratio_header) \
 * delta_T

 # calculate stress at 2 locations at the hole
 # stress at crotch corner P1 and location P2

 # mechanical stress by pressure at crotch corner
 @self.Expression(self.flowsheet().config.time,
 doc='Mechanical Stress at Crotch Corner'
 'for Header')
 def sigma_p_P1(b, t):
 return b.sigma_p[t] * k_m_header

 # mechanical stress at location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Mechanical Stress at'
 'Critical Point P2 for Header')
 def sigma_p_P2(b, t):
 return b.sigma_p[t] * k_m_header / 5

 # thermal stress at crotch corner
 @self.Expression(self.flowsheet().config.time,
 doc='Thermal Stress at Crotch Corner for Header')
 def sigma_t_P1(b, t):
 return b.sigma_t[t] * k_t_header

 # thermal stress at location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Thermal Stress'
 'at Critical Point P2 for Header')
 def sigma_t_P2(b, t):
 return b.sigma_t[t] * k_t_header

 # total circumferential stress with notch effect
 # crotch corner P1
 @self.Expression(self.flowsheet().config.time,
 doc='Circumferential Stress'
 'at Crotch Corner for Header')
 def sigma_theta_P1(b, t):
 return b.sigma_p_P1[t] + b.sigma_t_P1[t]

 # location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Circumferential Stress'
 'at Critical Point P2 for Header')
 def sigma_theta_P2(b, t):
 return b.sigma_p_P2[t] + b.sigma_t_P2[t]

 # total stress with notch effect // f1 - f2
 # crotch corner
 @self.Expression(self.flowsheet().config.time,
 doc='Total Stress at Crotch Corner for Header')
 def sigma_notch_P1(b, t):
 return b.sigma_theta_P1[t] \
 + 1e-6 * \
 b.tube.properties[t,
 b.tube.length_domain.first()].pressure

 # location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Total Stress at Critial Point P2 for Header')
 def sigma_notch_P2(b, t):
 return b.sigma_theta_P2[t] \
 + 1e-6 * b.tube.properties[t, b.
 tube.
 length_domain.
 first()].pressure

 # Von Mises equivalent stress
 # VM stress at crotch corner
 @self.Expression(self.flowsheet().config.time,
 doc='Equivalent von Mises Stress'
 'at Crotch Corner for Header')
 def sigma_eff_P1(b, t):
 sigma_comer_P1 = b.sigma_theta_P1[t]
 p_in = \
 b.tube.properties[t, b.tube.length_domain.first()].pressure
 return sqrt(sigma_comer_P1**2 + (-1e-6 * p_in)**2
 + (-1e-6 * p_in)**2 - ((-1E-6 * p_in)
 * sigma_comer_P1 + (-1e-6 * p_in)
 * sigma_comer_P1 + (-1e-6 * p_in)
 * (-1e-6 * p_in)))

 # VM stress at location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Equivalent von Mises Stress'
 'at Critical Point P2 for Header')
 def sigma_eff_P2(b, t):
 sigma_comer_P2 = b.sigma_theta_P2[t]
 p_in = \
 b.tube.properties[t, b.tube.length_domain.first()].pressure
 return sqrt(sigma_comer_P2**2 + (-1e-6 * p_in)**2
 + (-1e-6*p_in)**2 - ((-1E-6 * p_in)
 * sigma_comer_P2 + (-1e-6 * p_in)
 * sigma_comer_P2 + (-1e-6 * p_in)
 * (-1e-6 * p_in)))

 # rupture time calculation at crotch corner
 @self.Expression(self.flowsheet().config.time,
 doc='Rupture Tme at Crotch Corner for Header')
 def rupture_time_crotch_corner(b, t):
 if value(b.sigma_eff_P1[t]) > 10: # MPa
 return 10**((b.creep_a_header + b.creep_b_header
 * log10(b.sigma_eff_P1[t])
 + b.creep_c_header
 * (log10(b.sigma_eff_P1[t]))**2
 + b.creep_d_header
 * (log10(b.sigma_eff_P1[t]))**3)
 * (b.header_wall_temperature[t,
 b.head_r.first()]
 - b.creep_f_header)
 + b.creep_e_header)
 else:
 return 10**13

 # rupture time calculation at location P2
 @self.Expression(self.flowsheet().config.time,
 doc='Rupture Time at Critical Point P2'
 'for Header')
 def rupture_time_P2(b, t):
 if value(b.sigma_eff_P2[t]) > 10: # MPa
 return 10**((b.creep_a_header + b.creep_b_header
 * log10(b.sigma_eff_P2[t])
 + b.creep_c_header
 * (log10(b.sigma_eff_P2[t]))**2
 + b.creep_d_header
 * (log10(b.sigma_eff_P2[t]))**3)
 * (b.header_wall_temperature[t,
 b.head_r.first()]
 - b.creep_f_header)
 + b.creep_e_header)
 else:
 return 10**13
 # ---
 # total heat released by shell side fluid assuming even discretization.
 # shell side always in forward direction and the first point is skiped

 @self.Expression(self.flowsheet().config.time,
 doc="Total Heat Released from Shell Side")
 def total_heat(b, t):
 return -(sum(b.shell_heat[t, x] for x in b.shell.length_domain)
 - b.shell_heat[t, b.shell.length_domain.first()]) \
 * b.length_flow_shell/b.config.finite_elements

 def set_initial_condition(self):
 if self.config.dynamic is True:
 t0 = self.flowsheet().config.time.first()
 self.dTdt[:, :, :].value = 0
 self.dTdt[t0, :, :].fix(0)
 if self.config.has_header is True:
 self.head_dTdt[:, :].value = 0
 self.head_dTdt[t0, :].fix(0)
 # no accumulation terms for tube and shell side fluids
 # since currently the fluid flows are modeled as steady-state only

[docs] def initialize(blk, shell_state_args=None, tube_state_args=None,
 outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 """
 HeatExchangerCrossFlow1D initialisation routine

 Keyword Arguments:
 state_args : a dict of arguments to be passed to the property
 package(s) to provide an initial state for
 initialization (see documentation of the specific
 property package) (default = None).
 outlvl : sets output level of initialisation routine

 * 0 = no output (default)
 * 1 = return solver state for each step in routine
 * 2 = return solver state for each step in subroutines
 * 3 = include solver output infomation (tee=True)

 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 """
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")

 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # Initialize shell block

 flags_tube = blk.tube.initialize(outlvl=0,
 optarg=optarg,
 solver=solver,
 state_args=tube_state_args)
 flags_shell = blk.shell.initialize(outlvl=0,
 optarg=optarg,
 solver=solver,
 state_args=shell_state_args)

 init_log.info_high("Initialization Step 1 Complete.")

 phase_s = blk.config.tube_side_water_phase
 # set initial values for header T
 T_out = value(
 blk.tube.properties[0, blk.tube.length_domain.first()].temperature
 - 1)
 T_mid = value(0.5 * (T_out + blk.tube.properties[0,
 blk.tube.length_domain.first()].temperature))
 if blk.config.has_header is True:
 r_mid = value((blk.head_r.first()+blk.head_r.last())/2)
 # assume outside wall temperature 1 K lower than fluid temperature
 slope = value((T_out - blk.tube.properties[0, blk.tube.
 length_domain.
 first()].temperature
) / (blk.head_r.last() - blk.head_r.first()) / 3)
 for x in blk.head_r:
 blk.header_wall_temperature[:, x].fix(T_mid + slope*(x-r_mid))

 blk.header_wall_temperature[:, :].unfix()

 # In Step 2, fix tube metal temperatures
 # fix fluid state variables (enthalpy/temperature and pressure)
 # calculate maximum heat duty assuming infinite area and
 # use half of the maximum duty as initial guess
 # to calculate outlet temperature
 if blk.config.flow_type == "co_current":
 mcp_shell = value(blk.shell.properties[0, 0].flow_mol
 * blk.shell.properties[0, 0].cp_mol)
 mcp_tube = value(blk.
 tube_inlet.
 flow_mol[0] * blk.
 tube.
 properties[0, 0].cp_mol_phase[phase_s])
 tout_max = (mcp_tube * value(blk.
 tube.
 properties[0, 0].
 temperature
) + mcp_shell * value(
 blk.shell.properties[0, 0].
 temperature)) / (mcp_tube
 + mcp_shell)
 q_guess = mcp_tube * value(
 tout_max - value(blk.tube.properties[0, 0].temperature))/2
 temp_out_tube_guess = value(blk.
 tube.
 properties[0, 0].
 temperature) + q_guess / mcp_tube
 temp_out_shell_guess = value(
 blk.shell.properties[0, 0].temperature) - q_guess / mcp_shell
 if phase_s == 'Liq' and temp_out_tube_guess > value(
 blk.tube.properties[0, 0].temperature_sat):
 init_log.info("Estimated Outlet Liquid Water Temperature"
 "Exceeds the Saturation Temperature.")
 init_log.info("Estimated Outlet"
 " Liquid Water Temperature = {}.".format(
 temp_out_tube_guess))
 init_log.info("Saturation Temperature at"
 " Inlet Pressure = {}.".format(
 value(blk.tube.properties[0, 0].
 temperature_sat)))
 temp_out_tube_guess = value(
 0.9 * blk.tube.properties[0, 0].temperature_sat
 + 0.1*blk.tube.properties[0, 0].temperature)
 init_log.info("Reset Estimated Outlet Liquid "
 "Water Ttemperature = {}.".format(
 temp_out_tube_guess))
 else:
 mcp_shell = value(blk.shell.properties[0, 0].flow_mol
 * blk.shell.properties[0, 0].cp_mol)
 mcp_tube = value(blk.tube_inlet.flow_mol[0] * blk.
 tube.properties[0, 1].cp_mol_phase[phase_s])
 if mcp_tube < mcp_shell:
 q_guess = mcp_tube * value(
 blk.shell.properties[0, 0].temperature
 - blk.tube.properties[0, 1].temperature) / 2
 else:
 q_guess = mcp_shell * value(
 blk.shell.properties[0, 0].temperature
 - blk.tube.properties[0, 1].temperature) / 2
 temp_out_tube_guess = value(
 blk.
 tube.
 properties[0, 1].
 temperature) + q_guess / mcp_tube
 temp_out_shell_guess = value(
 blk.shell.properties[0, 0].temperature) - q_guess / mcp_shell
 if phase_s == 'Liq' and temp_out_tube_guess > value(
 blk.tube.properties[0, 1].temperature_sat):
 init_log.info("Estimated Outlet Liquid Water Temperature"
 " Exceeds the Saturation temperature.")
 init_log.info("Estimated Outlet Liquid Water "
 "Temperature = {}.".format(
 temp_out_tube_guess))
 init_log.info("Saturation Temperature at Inlet"
 " Pressure = {}.".format(
 value(blk.tube.properties[0, 1].
 temperature_sat)))
 temp_out_tube_guess = value(0.9 * blk.
 tube.
 properties[0, 1].
 temperature_sat + 0.1 * blk.
 tube.
 properties[0, 1].
 temperature)
 init_log.info("Reset Estimated Outlet Liquid Water"
 " Temperature = {}.".format(
 temp_out_tube_guess))

 for t in blk.flowsheet().config.time:
 for z in blk.tube.length_domain:
 if blk.config.flow_type == "co_current":
 blk.tube_wall_temperature[t, z, :].fix(value(
 0.05 * ((1 - z) * blk.
 shell.
 properties[0, 0].
 temperature + z * temp_out_shell_guess
) + 0.95 * (
 (1 - z) * blk.
 tube.
 properties[0, 0].
 temperature + z * temp_out_tube_guess)))
 else:
 blk.tube_wall_temperature[t, z, :].fix(value(
 0.05 * ((1 - z) * blk.
 shell.
 properties[0, 0].
 temperature + z * temp_out_shell_guess
) + 0.95 * (
 (1 - z) * temp_out_tube_guess + z * blk.
 tube.properties[0, 1].temperature)))

 for t in blk.flowsheet().config.time:
 for z in blk.tube.length_domain:
 blk.tube.properties[t, z].enth_mol.fix(
 value(blk.tube_inlet.enth_mol[0]))
 blk.tube.properties[t, z].pressure.fix(
 value(blk.tube_inlet.pressure[0]))

 for t in blk.flowsheet().config.time:
 for z in blk.shell.length_domain:
 blk.shell.properties[t, z].temperature.fix(
 value(blk.shell.properties[0, 0].temperature))
 blk.shell.properties[t, z].pressure.fix(value(
 blk.shell.properties[0, 0].pressure))

 blk.heat_conduction_eqn.deactivate()
 blk.inner_wall_bc_eqn.deactivate()
 blk.outer_wall_bc_eqn.deactivate()
 blk.extra_at_inner_wall_eqn.deactivate()
 blk.extra_at_outer_wall_eqn.deactivate()
 blk.deltaP_tube_eqn.deactivate()
 blk.deltaP_shell_eqn.deactivate()
 blk.heat_tube_eqn.deactivate()
 blk.heat_shell_eqn.deactivate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 2 {}.".format(idaeslog.condition(res))
)

 # In Step 3, unfix fluid state variables
 # (enthalpy/temperature and pressure)
 # keep the inlet state variables fixed,
 # otherwise, the degree of freedom > 0
 for t in blk.flowsheet().config.time:
 for z in blk.tube.length_domain:
 blk.tube.properties[t, z].enth_mol.unfix()
 blk.tube.properties[t, z].pressure.unfix()
 if blk.config.flow_type == "co_current":
 blk.tube.properties[t, 0].enth_mol.fix(
 value(blk.tube_inlet.enth_mol[0]))
 blk.tube.properties[t, 0].pressure.fix(
 value(blk.tube_inlet.pressure[0]))
 else:
 blk.tube.properties[t, 1].enth_mol.fix(
 value(blk.tube_inlet.enth_mol[0]))
 blk.tube.properties[t, 1].pressure.fix(
 value(blk.tube_inlet.pressure[0]))

 for t in blk.flowsheet().config.time:
 for z in blk.shell.length_domain:
 blk.shell.properties[t, z].temperature.unfix()
 blk.shell.properties[t, z].pressure.unfix()
 blk.shell.properties[t, 0].temperature.fix(
 value(blk.shell_inlet.temperature[0]))
 blk.shell.properties[t, 0].pressure.fix(
 value(blk.shell_inlet.pressure[0]))

 blk.deltaP_tube_eqn.activate()
 blk.deltaP_shell_eqn.activate()
 blk.heat_tube_eqn.activate()
 blk.heat_shell_eqn.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 3 {}.".format(idaeslog.condition(res))
)

 blk.tube_wall_temperature[:, :, :].unfix()
 blk.heat_conduction_eqn.activate()
 blk.inner_wall_bc_eqn.activate()
 blk.outer_wall_bc_eqn.activate()
 blk.extra_at_inner_wall_eqn.activate()
 blk.extra_at_outer_wall_eqn.activate()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info_high(
 "Initialization Step 4 {}.".format(idaeslog.condition(res))
)

 blk.tube.release_state(flags_tube)
 blk.shell.release_state(flags_shell)
 init_log.info("Initialization Complete.")

 def calculate_scaling_factors(self):
 for i, c in self.heat_tube_eqn.items():
 sf = iscale.get_scaling_factor(
 self.tube_heat[i], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 for i, c in self.heat_shell_eqn.items():
 sf = iscale.get_scaling_factor(
 self.shell_heat[i], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 idaes.power_generation.unit_models.feedwater_heater_0D

 Source code for idaes.power_generation.unit_models.feedwater_heater_0D

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
This file contains 0D feedwater heater models. These models are suitable for
steady state calculations. For dynamic modeling 1D models are required. There
are two models included here.

1) FWHCondensing0D: this is a regular 0D heat exchanger model with a constraint
 added to ensure all the steam fed to the feedwater heater is condensed at
 the outlet. At the shell outlet the molar enthalpy is equal to the the
 saturated liquid molar enthalpy.
2) FWH0D is a feedwater heater model with three sections and a mixer for
 combining another feedwater heater's drain outlet with steam extracted from
 the turbine. The drain mixer, desuperheat, and drain cooling sections are
 optional. Only the condensing section is required.
"""

__author__ = "John Eslick"

from pyomo.common.config import ConfigValue, In, ConfigBlock
from pyomo.environ import SolverFactory, TransformationFactory, Var, value
from pyomo.network import Arc

from idaes.core import (
 declare_process_block_class,
 UnitModelBlockData,
 MaterialBalanceType,
)
from idaes.generic_models.unit_models.heat_exchanger import HeatExchangerData
from idaes.generic_models.unit_models import (
 Mixer, MomentumMixingType, HeatExchanger)
from idaes.core.util import from_json, to_json, StoreSpec
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core import useDefault
from idaes.core.util.config import is_physical_parameter_block
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

def _define_feedwater_heater_0D_config(config):
 config.declare(
 "has_drain_mixer",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Add a mixer to the inlet of the condensing section",
 doc="""Add a mixer to the inlet of the condensing section to add
water from the drain of another feedwaterheater to the steam, if True""",
),
)
 config.declare(
 "has_desuperheat",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Add a mixer desuperheat section to the heat exchanger",
 doc="Add a mixer desuperheat section to the heat exchanger",
),
)
 config.declare(
 "has_drain_cooling",
 ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Add a section after condensing section cool condensate.",
 doc="Add a section after condensing section to cool condensate.",
),
)
 config.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}""",
),
)
 config.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)
 config.declare("condense", HeatExchangerData.CONFIG())
 config.declare("desuperheat", HeatExchangerData.CONFIG())
 config.declare("cooling", HeatExchangerData.CONFIG())

def _set_port(p1, p2):
 """
 Copy the values from port p2 to port p1.

 Args:
 p1: port to copy values to
 p2: port to compy values from
 """
 for k, v in p1.vars.items():
 if isinstance(v, Var):
 for i in v:
 v[i].value = value(p2.vars[k][i])

def _set_prop_pack(hxcfg, fwhcfg):
 """
 Set the property package and property pacakge args to the values given for
 the overall feedwater heater model if not otherwise specified.

 Args:
 hxcfg: Heat exchanger subblock config block
 fwhcfg: Overall feedwater heater config block
 """
 # this sets the property pack for the hot and cold side, but if the user
 # provides a specific property package using the tube and shell names it
 # will override this. I think this behavior is fine, and what we'd want.
 if hxcfg.hot_side_config.property_package == useDefault:
 hxcfg.hot_side_config.property_package = fwhcfg.property_package
 hxcfg.hot_side_config.property_package_args = \
 fwhcfg.property_package_args
 if hxcfg.cold_side_config.property_package == useDefault:
 hxcfg.cold_side_config.property_package = fwhcfg.property_package
 hxcfg.cold_side_config.property_package_args = \
 fwhcfg.property_package_args

[docs]@declare_process_block_class(
 "FWHCondensing0D",
 doc="""Feedwater Heater Condensing Section
The feedwater heater condensing section model is a normal 0D heat exchanger
model with an added constraint to calculate the steam flow such that the outlet
of shell is a saturated liquid.""",
)
class FWHCondensing0DData(HeatExchangerData):
[docs] def build(self):
 super().build()
 units_meta = self.shell.config.property_package.get_metadata()
 self.enth_sub = Var(self.flowsheet().config.time,
 initialize=0,
 units=units_meta.get_derived_units("energy_mole"))
 self.enth_sub.fix()

 @self.Constraint(
 self.flowsheet().config.time,
 doc="Calculate steam extraction rate such that all steam condenses",
)
 def extraction_rate_constraint(b, t):
 return (
 b.shell.properties_out[t].enth_mol - b.enth_sub[t]
 == b.shell.properties_out[t].enth_mol_sat_phase["Liq"]
)

[docs] def initialize(self, *args, **kwargs):
 """
 Use the regular heat exchanger initialization, with the extraction rate
 constraint deactivated; then it activates the constraint and calculates
 a steam inlet flow rate.
 """
 solver = kwargs.get("solver", "ipopt")
 optarg = kwargs.get("oparg", {})
 outlvl = kwargs.get("outlvl", idaeslog.NOTSET)
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")

 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)

 self.extraction_rate_constraint.deactivate()
 self.area.fix()
 self.overall_heat_transfer_coefficient.fix()
 self.inlet_1.fix()
 self.inlet_2.fix()
 self.outlet_1.unfix()
 self.outlet_2.unfix()

 # Do regular heat exchanger intialization
 super().initialize(*args, **kwargs)
 self.extraction_rate_constraint.activate()
 self.inlet_1.flow_mol.unfix()

 opt = SolverFactory(solver)
 opt.options = optarg

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(self, tee=slc.tee)
 init_log.info(
 "Initialization Complete (w/ extraction calc): {}".format(
 idaeslog.condition(res)
)
)

 from_json(self, sd=istate, wts=sp)

@declare_process_block_class(
 "FWH0D",
 doc="""Feedwater Heater Model
This is a 0D feedwater heater model. The model may contain three 0D heat
exchanger models representing the desuperheat, condensing and drain cooling
sections of the feedwater heater. Only the condensing section must be included.
A drain mixer can also be optionally included, which mixes the drain outlet of
another feedwater heater with the steam fed into the condensing section.
""",
)
class FWH0DData(UnitModelBlockData):
 CONFIG = UnitModelBlockData.CONFIG()
 _define_feedwater_heater_0D_config(CONFIG)

 def build(self):
 super().build()
 config = self.config # sorter ref to config for less line splitting

 # All feedwater heaters have a condensing section
 _set_prop_pack(config.condense, config)
 self.condense = FWHCondensing0D(default=config.condense)

 # Add a mixer to add the drain stream from another feedwater heater
 if config.has_drain_mixer:
 mix_cfg = { # general unit model config
 "dynamic": config.dynamic,
 "has_holdup": config.has_holdup,
 "property_package": config.property_package,
 "property_package_args": config.property_package_args,
 "momentum_mixing_type": MomentumMixingType.none,
 "material_balance_type": MaterialBalanceType.componentTotal,
 "inlet_list": ["steam", "drain"],
 }
 self.drain_mix = Mixer(default=mix_cfg)

 @self.drain_mix.Constraint(self.drain_mix.flowsheet().config.time)
 def mixer_pressure_constraint(b, t):
 """
 Constraint to set the drain mixer pressure to the pressure of
 the steam extracted from the turbine. The drain inlet should
 always be a higher pressure than the steam inlet.
 """
 return b.steam_state[t].pressure == b.mixed_state[t].pressure

 # Connect the mixer to the condensing section inlet
 self.SMX = Arc(
 source=self.drain_mix.outlet, destination=self.condense.inlet_1
)

 # Add a desuperheat section before the condensing section
 if config.has_desuperheat:
 _set_prop_pack(config.desuperheat, config)
 self.desuperheat = HeatExchanger(default=config.desuperheat)
 # set default area less than condensing section area, this will
 # almost always be overridden by the user fixing an area later
 self.desuperheat.area.value = 10
 if config.has_drain_mixer:
 self.SDS = Arc(
 source=self.desuperheat.outlet_1,
 destination=self.drain_mix.steam
)
 else:
 self.SDS = Arc(
 source=self.desuperheat.outlet_1,
 destination=self.condense.inlet_1
)
 self.FW2 = Arc(
 source=self.condense.outlet_2,
 destination=self.desuperheat.inlet_2
)

 # Add a drain cooling section after the condensing section
 if config.has_drain_cooling:
 _set_prop_pack(config.cooling, config)
 self.cooling = HeatExchanger(default=config.cooling)
 # set default area less than condensing section area, this will
 # almost always be overridden by the user fixing an area later
 self.cooling.area.value = 10
 self.FW1 = Arc(
 source=self.cooling.outlet_2, destination=self.condense.inlet_2
)
 self.SC = Arc(
 source=self.condense.outlet_1, destination=self.cooling.inlet_1
)

 TransformationFactory("network.expand_arcs").apply_to(self)

 def initialize(self, *args, **kwargs):
 outlvl = kwargs.get("outlvl", idaeslog.NOTSET)

 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")

 config = self.config # shorter ref to config for less line splitting
 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)

 # the initialization here isn't straight forward since the heat
 # exchanger may have 3 stages and they are countercurrent. For
 # simplicity each stage in initialized with the same cooling water
 # inlet conditions then the whole feedwater heater is solved together.
 # There are more robust approaches which can be implimented if the
 # need arises.

 # initialize desuperheat if include
 if config.has_desuperheat:
 if config.has_drain_cooling:
 _set_port(self.desuperheat.inlet_2, self.cooling.inlet_2)
 else:
 _set_port(self.desuperheat.inlet_2, self.condense.inlet_2)
 self.desuperheat.initialize(*args, **kwargs)
 self.desuperheat.inlet_1.flow_mol.unfix()
 if config.has_drain_mixer:
 _set_port(self.drain_mix.steam, self.desuperheat.outlet_1)
 else:
 _set_port(self.condense.inlet_1, self.desuperheat.outlet_1)
 # fix the steam and fwh inlet for init
 self.desuperheat.inlet_1.fix()
 self.desuperheat.inlet_1.flow_mol.unfix() # unfix for extract calc
 # initialize mixer if included
 if config.has_drain_mixer:
 self.drain_mix.steam.fix()
 self.drain_mix.drain.fix()
 self.drain_mix.outlet.unfix()
 self.drain_mix.initialize(*args, **kwargs)
 _set_port(self.condense.inlet_1, self.drain_mix.outlet)
 if config.has_desuperheat:
 self.drain_mix.steam.unfix()
 else:
 self.drain_mix.steam.flow_mol.unfix()
 # Initialize condense section
 if config.has_drain_cooling:
 _set_port(self.condense.inlet_2, self.cooling.inlet_2)
 self.cooling.inlet_2.fix()
 else:
 self.condense.inlet_2.fix()
 if not config.has_drain_mixer and not config.has_desuperheat:
 self.condense.inlet_1.fix()
 self.condense.inlet_1.flow_mol.unfix()

 tempsat = value(self.condense.shell.properties_in[0].temperature_sat)
 temp = value(self.condense.tube.properties_in[0].temperature)
 if tempsat - temp < 30:
 init_log.warning(
 "The steam sat. temperature ({}) is near the feedwater"
 " inlet temperature ({})".format(tempsat, temp)
)

 self.condense.initialize(*args, **kwargs)
 # Initialize drain cooling if included
 if config.has_drain_cooling:
 _set_port(self.cooling.inlet_1, self.condense.outlet_1)
 self.cooling.initialize(*args, **kwargs)
 # Solve all together
 opt = SolverFactory(kwargs.get("solver", "ipopt"))
 opt.options = kwargs.get("oparg", {})
 assert degrees_of_freedom(self) == 0
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(self, tee=slc.tee)
 init_log.info(
 "Condensing shell inlet delta T = {}".format(
 value(self.condense.delta_temperature_in[0])
)
)
 init_log.info(
 "Condensing Shell outlet delta T = {}".format(
 value(self.condense.delta_temperature_out[0])
)
)
 init_log.info(
 "Steam Flow = {}".format(value(self.condense.inlet_1.flow_mol[0]))
)
 init_log.info(
 "Initialization Complete: {}".format(idaeslog.condition(res))
)

 from_json(self, sd=istate, wts=sp)

 idaes.power_generation.unit_models.heat_exchanger_3streams

 Source code for idaes.power_generation.unit_models.heat_exchanger_3streams

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
3 stream IDAES heat exchanger model with given UA.
side 1 is hot stream, side 2 and 3 are cold streams
"""
Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In

Import IDAES cores
from idaes.core import (ControlVolume0DBlock,
 declare_process_block_class,
 MaterialBalanceType,
 EnergyBalanceType,
 MomentumBalanceType,
 UnitModelBlockData,
 useDefault)

from idaes.core.util.config import is_physical_parameter_block
import idaes.core.util.scaling as iscale

import idaes.logger as idaeslog

Additional import for the unit operation
from pyomo.environ import SolverFactory, Var, Reference

__author__ = "Boiler Subsystem Team (J. Ma, M. Zamarripa)"
__version__ = "1.0.0"

[docs]@declare_process_block_class("HeatExchangerWith3Streams")
class HeatExchangerWith3StreamsData(UnitModelBlockData):
 """
 Standard Heat Exchanger Unit Model Class
 """
 CONFIG = UnitModelBlockData.CONFIG()
 CONFIG.declare("side_1_property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("side_1_property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("side_2_property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("side_2_property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("side_3_property_package", ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PhysicalParameterObject - a PhysicalParameterBlock object.}"""))
 CONFIG.declare("side_3_property_package_args", ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}"""))
 CONFIG.declare("material_balance_type", ConfigValue(
 default=MaterialBalanceType.componentPhase,
 domain=In(MaterialBalanceType),
 description="Material balance construction flag",
 doc="""Indicates what type of material balance should be constructed,
default - MaterialBalanceType.componentPhase.
Valid values: {
MaterialBalanceType.none - exclude material balances,
MaterialBalanceType.componentPhase - use phase component balances,
MaterialBalanceType.componentTotal - use total component balances,
MaterialBalanceType.elementTotal - use total element balances,
MaterialBalanceType.total - use total material balance.}"""))
 CONFIG.declare("energy_balance_type", ConfigValue(
 default=EnergyBalanceType.enthalpyTotal,
 domain=In(EnergyBalanceType),
 description="Energy balance construction flag",
 doc="""Indicates what type of energy balance should be constructed,
default - EnergyBalanceType.enthalpyTotal.
Valid values: {
EnergyBalanceType.none - exclude energy balances,
EnergyBalanceType.enthalpyTotal - single ethalpy balance for material,
EnergyBalanceType.enthalpyPhase - ethalpy balances for each phase,
EnergyBalanceType.energyTotal - single energy balance for material,
EnergyBalanceType.energyPhase - energy balances for each phase.}"""))
 CONFIG.declare("momentum_balance_type", ConfigValue(
 default=MomentumBalanceType.pressureTotal,
 domain=In(MomentumBalanceType),
 description="Momentum balance construction flag",
 doc="""Indicates what type of momentum balance should be constructed,
default - MomentumBalanceType.pressureTotal.
Valid values: {
MomentumBalanceType.none - exclude momentum balances,
MomentumBalanceType.pressureTotal - single pressure balance for material,
MomentumBalanceType.pressurePhase - pressure balances for each phase,
MomentumBalanceType.momentumTotal - single momentum balance for material,
MomentumBalanceType.momentumPhase - momentum balances for each phase.}"""))
 CONFIG.declare("has_heat_transfer", ConfigValue(
 default=True,
 domain=In([True, False]),
 description="Heat transfer term construction flag",
 doc="""Indicates whether terms for heat transfer should be constructed,
default - False.
Valid values: {
True - include heat transfer terms,
False - exclude heat transfer terms.}"""))
 CONFIG.declare("has_pressure_change", ConfigValue(
 default=False,
 domain=In([True, False]),
 description="Pressure change term construction flag",
 doc="""Indicates whether terms for pressure change should be
constructed,
default - False.
Valid values: {
True - include pressure change terms,
False - exclude pressure change terms.}"""))
 CONFIG.declare("flow_type_side_2", ConfigValue(
 default='counter-current',
 domain=In(['counter-current', 'co-current']),
 description="Flow configuration in unit",
 doc="""Flag indicating type of flow arrangement to use for heat
exchanger, **default** 'counter-current' counter-current flow arrangement"""))
 CONFIG.declare("flow_type_side_3", ConfigValue(
 default='counter-current',
 domain=In(['counter-current', 'co-current']),
 description="Flow configuration in unit",
 doc="""Flag indicating type of flow arrangement to use for heat
exchanger (default = 'counter-current' - counter-current flow arrangement"""))

[docs] def build(self):
 """
 Begin building model
 """
 # Call UnitModel.build to setup dynamics
 super(HeatExchangerWith3StreamsData, self).build()

 # Build Holdup Block
 self.side_1 = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.side_1_property_package,
 "property_package_args": self.config.side_1_property_package_args})

 self.side_2 = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.side_2_property_package,
 "property_package_args": self.config.side_2_property_package_args})

 self.side_3 = ControlVolume0DBlock(default={
 "dynamic": self.config.dynamic,
 "has_holdup": self.config.has_holdup,
 "property_package": self.config.side_3_property_package,
 "property_package_args": self.config.side_3_property_package_args})

 # Add Geometry
 self.side_1.add_geometry()
 self.side_2.add_geometry()
 self.side_3.add_geometry()

 # Add state block
 self.side_1.add_state_blocks(has_phase_equilibrium=False)

 # Add material balance
 self.side_1.add_material_balances(
 balance_type=self.config.material_balance_type)
 # add energy balance
 self.side_1.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer)
 # add momentum balance
 self.side_1.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add state block
 self.side_2.add_state_blocks(has_phase_equilibrium=False)

 # Add material balance
 self.side_2.add_material_balances(
 balance_type=self.config.material_balance_type)
 # add energy balance
 self.side_2.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer)
 # add momentum balance
 self.side_2.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 # Add state block
 self.side_3.add_state_blocks(has_phase_equilibrium=False)

 # Add material balance
 self.side_3.add_material_balances(
 balance_type=self.config.material_balance_type)
 # add energy balance
 self.side_3.add_energy_balances(
 balance_type=self.config.energy_balance_type,
 has_heat_transfer=self.config.has_heat_transfer)
 # add momentum balance
 self.side_3.add_momentum_balances(
 balance_type=self.config.momentum_balance_type,
 has_pressure_change=self.config.has_pressure_change)

 self._set_geometry()

 # Construct performance equations
 self._make_performance()

 # Construct performance equations
 if self.config.flow_type_side_2 == "counter-current":
 self._make_counter_current_side_2()
 else:
 self._make_co_current_side_2()

 # Construct performance equations
 if self.config.flow_type_side_3 == "counter-current":
 self._make_counter_current_side_3()
 else:
 self._make_co_current_side_3()

 self.add_inlet_port(name="side_1_inlet", block=self.side_1)
 self.add_inlet_port(name="side_2_inlet", block=self.side_2)
 self.add_inlet_port(name="side_3_inlet", block=self.side_3)
 self.add_outlet_port(name="side_1_outlet", block=self.side_1)
 self.add_outlet_port(name="side_2_outlet", block=self.side_2)
 self.add_outlet_port(name="side_3_outlet", block=self.side_3)

 def _set_geometry(self):
 """
 Define the geometry of the unit as necessary, and link to holdup volume

 """

 # UA (product of overall heat transfer coefficient and area)
 # between side 1 and side 2
 self.ua_side_2 = Var(self.flowsheet().config.time, initialize=10.0,
 doc='UA between side 1 and side 2')

 # UA (product of overall heat transfer coefficient and area)
 # between side 1 and side 3
 self.ua_side_3 = Var(self.flowsheet().config.time, initialize=10.0,
 doc='UA between side 1 and side 3')

 # fraction of heat from hot stream as heat loss to ambient
 self.frac_heatloss = Var(initialize=0.05,
 doc='Fraction of heat loss to ambient')

 if self.config.has_holdup is True:
 self.volume_side_1 = Reference(self.side_1.volume)
 self.volume_side_2 = Reference(self.side_2.volume)
 self.volume_side_3 = Reference(self.side_3.volume)

 def _make_performance(self):
 """
 Define constraints which describe the behaviour of the unit model.

 Args:
 None

 Returns:
 None
 """
 # Set references to balance terms at unit level
 self.heat_duty_side_1 = Reference(self.side_1.heat)
 self.heat_duty_side_2 = Reference(self.side_2.heat)
 self.heat_duty_side_3 = Reference(self.side_3.heat)

 if self.config.has_pressure_change is True:
 self.deltaP_side_1 = Reference(self.side_1.deltaP)
 self.deltaP_side_2 = Reference(self.side_2.deltaP)
 self.deltaP_side_3 = Reference(self.side_3.deltaP)

 # Performance parameters and variables
 # Temperature driving force
 self.temperature_driving_force_side_2 = Var(self.flowsheet().config.
 time,
 initialize=1.0,
 doc='Mean driving force '
 'for heat exchange')

 # Temperature driving force
 self.temperature_driving_force_side_3 = Var(self.flowsheet().
 config.time,
 initialize=1.0,
 doc='Mean driving force '
 'for heat exchange')

 # Temperature difference at side 2 inlet
 self.side_2_inlet_dT = Var(self.flowsheet().config.time,
 initialize=1.0,
 doc='Temperature difference '
 'at side 2 inlet')

 # Temperature difference at side 2 outlet
 self.side_2_outlet_dT = Var(self.flowsheet().config.time,
 initialize=1.0,
 doc='Temperature difference '
 'at side 2 outlet')

 # Temperature difference at side 3 inlet
 self.side_3_inlet_dT = Var(self.flowsheet().config.time,
 initialize=1.0,
 doc='Temperature difference'
 ' at side 3 inlet')

 # Temperature difference at side 3 outlet
 self.side_3_outlet_dT = Var(self.flowsheet().config.time,
 initialize=1.0,
 doc='Temperature difference '
 'at side 3 outlet')

 # Driving force side 2 (Underwood approximation)
 @self.Constraint(self.flowsheet().config.time,
 doc="Log mean temperature difference calculation "
 "using Underwood approximation")
 def LMTD_side_2(b, t):
 return b.temperature_driving_force_side_2[t] == \
 ((b.side_2_inlet_dT[t]**(1/3)
 + b.side_2_outlet_dT[t]**(1/3))/2)**(3)

 # Driving force side 3 (Underwood approximation)
 @self.Constraint(self.flowsheet().config.time,
 doc="Log mean temperature difference calculation "
 "using Underwood approximation")
 def LMTD_side_3(b, t):
 return b.temperature_driving_force_side_3[t] == \
 ((b.side_3_inlet_dT[t]**(1/3)
 + b.side_3_outlet_dT[t]**(1/3))/2)**(3)

 # Heat duty side 2
 @self.Constraint(self.flowsheet().config.time,
 doc="Heat transfer rate")
 def heat_duty_side_2_eqn(b, t):
 return b.heat_duty_side_2[t] == \
 (b.ua_side_2[t] * b.temperature_driving_force_side_2[t])

 # Heat duty side 3
 @self.Constraint(self.flowsheet().config.time,
 doc="Heat transfer rate")
 def heat_duty_side_3_eqn(b, t):
 return b.heat_duty_side_3[t] == \
 (b.ua_side_3[t]*b.temperature_driving_force_side_3[t])

 # Energy balance equation
 @self.Constraint(self.flowsheet().config.time,
 doc="Energy balance between two sides")
 def heat_duty_side_1_eqn(b, t):
 return -b.heat_duty_side_1[t]*(1-b.frac_heatloss) == \
 (b.heat_duty_side_2[t] + b.heat_duty_side_3[t])

 def _make_co_current_side_2(self):
 """
 Add temperature driving force Constraints for co-current flow.

 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().config.time,
 doc="Side 2 inlet temperature difference")
 def side_2_inlet_dT_eqn(b, t):
 return b.side_2_inlet_dT[t] == (
 b.side_1.properties_in[t].temperature -
 b.side_2.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().config.time,
 doc="Side 2 outlet temperature difference")
 def side_2_outlet_dT_eqn(b, t):
 return b.side_2_outlet_dT[t] == (
 b.side_1.properties_out[t].temperature -
 b.side_2.properties_out[t].temperature)

 def _make_counter_current_side_2(self):
 """
 Add temperature driving force Constraints for counter-current flow.
 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().config.time,
 doc="Side 2 inlet temperature difference")
 def side_2_inlet_dT_eqn(b, t):
 return b.side_2_inlet_dT[t] == (
 b.side_1.properties_out[t].temperature -
 b.side_2.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().config.time,
 doc="Side 2 outlet temperature difference")
 def side_2_outlet_dT_eqn(b, t):
 return b.side_2_outlet_dT[t] == (
 b.side_1.properties_in[t].temperature -
 b.side_2.properties_out[t].temperature)

 def _make_co_current_side_3(self):
 """
 Add temperature driving force Constraints for co-current flow.
 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().config.time,
 doc="Side 3 inlet temperature difference")
 def side_3_inlet_dT_eqn(b, t):
 return b.side_3_inlet_dT[t] == (
 b.side_1.properties_in[t].temperature -
 b.side_3.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().config.time,
 doc="Side 3 outlet temperature difference")
 def side_3_outlet_dT_eqn(b, t):
 return b.side_3_outlet_dT[t] == (
 b.side_1.properties_out[t].temperature -
 b.side_3.properties_out[t].temperature)

 def _make_counter_current_side_3(self):
 """
 Add temperature driving force Constraints for counter-current flow.
 """
 # Temperature Differences
 @self.Constraint(self.flowsheet().config.time,
 doc="Side 3 inlet temperature difference")
 def side_3_inlet_dT_eqn(b, t):
 return b.side_3_inlet_dT[t] == (
 b.side_1.properties_out[t].temperature -
 b.side_3.properties_in[t].temperature)

 @self.Constraint(self.flowsheet().config.time,
 doc="Side 3 outlet temperature difference")
 def side_3_outlet_dT_eqn(b, t):
 return b.side_3_outlet_dT[t] == (
 b.side_1.properties_in[t].temperature -
 b.side_3.properties_out[t].temperature)

[docs] def initialize(blk, state_args_1=None, state_args_2=None,
 state_args_3=None, outlvl=idaeslog.NOTSET,
 solver='ipopt', optarg={'tol': 1e-6}):
 '''
 General Heat Exchanger initialisation routine.

 Keyword Arguments:
 state_args_1 : a dict of arguments to be passed to the property
 package(s) for side 1 of the heat exchanger to
 provide an initial state for initialization
 (see documentation of the specific property package)
 (default = None).
 state_args_2 : a dict of arguments to be passed to the property
 package(s) for side 2 of the heat exchanger to
 provide an initial state for initialization
 (see documentation of the specific property package)
 (default = None).
 state_args_3 : a dict of arguments to be passed to the property
 package(s) for side 3 of the heat exchanger to
 provide an initial state for initialization
 (see documentation of the specific property package)
 (default = None).
 outlvl : sets output level of initialisation routine
 optarg : solver options dictionary object (default={'tol': 1e-6})
 solver : str indicating whcih solver to use during
 initialization (default = 'ipopt')

 Returns:
 None
 '''
 init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")
 opt = SolverFactory(solver)
 opt.options = optarg

 # ---
 # Initialize inlet property blocks
 flags1 = blk.side_1.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_1)

 flags2 = blk.side_2.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_2)

 flags3 = blk.side_3.initialize(outlvl=outlvl,
 optarg=optarg,
 solver=solver,
 state_args=state_args_3)

 init_log.info('Initialisation Step 1 Complete.')

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = opt.solve(blk, tee=slc.tee)
 init_log.info("Initialization Step 2 Complete: {}".format(
 idaeslog.condition(res)
)
)
 # ---
 # Release Inlet state
 blk.side_1.release_state(flags1, outlvl)
 blk.side_2.release_state(flags2, outlvl)
 blk.side_3.release_state(flags3, outlvl)

 init_log.info_low("Initialization Complete: {}".format(
 idaeslog.condition(res)
)
)

 def calculate_scaling_factors(self):
 for t, c in self.heat_duty_side_1_eqn.items():
 sf = iscale.get_scaling_factor(
 self.heat_duty_side_1[t], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 for t, c in self.heat_duty_side_2_eqn.items():
 sf = iscale.get_scaling_factor(
 self.heat_duty_side_2[t], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 for t, c in self.heat_duty_side_3_eqn.items():
 sf = iscale.get_scaling_factor(
 self.heat_duty_side_3[t], default=1, warning=True)
 iscale.constraint_scaling_transform(c, sf)

 idaes.power_generation.unit_models.helm.turbine_inlet

 Source code for idaes.power_generation.unit_models.helm.turbine_inlet

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Steam turbine inlet stage model. This model is based on:

Liese, (2014). "Modeling of a Steam Turbine Including Partial Arc Admission
 for Use in a Process Simulation Software Environment." Journal of Engineering
 for Gas Turbines and Power. v136.
"""
__Author__ = "John Eslick"

from pyomo.environ import Var, Param, sqrt, value, SolverFactory, units as pyunits
from idaes.core import declare_process_block_class
from idaes.power_generation.unit_models.helm.turbine import HelmIsentropicTurbineData
from idaes.core.util import from_json, to_json, StoreSpec
from idaes.core.util.model_statistics import degrees_of_freedom
import idaes.logger as idaeslog
import idaes.core.util.scaling as iscale

_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class(
 "HelmTurbineInletStage",
 doc="Inlet stage steam turbine model",
)
class HelmTurbineInletStageData(HelmIsentropicTurbineData):
 CONFIG = HelmIsentropicTurbineData.CONFIG()

[docs] def build(self):
 super().build()

 self.flow_coeff = Var(
 self.flowsheet().config.time,
 initialize=1.053 / 3600.0,
 doc="Turbine flow coefficient [kg*C^0.5/Pa/s]",
 units=pyunits.kg*pyunits.K**0.5/pyunits.Pa/pyunits.s
)
 self.blade_reaction = Var(
 initialize=0.9,
 doc="Blade reaction parameter"
)
 self.blade_velocity = Var(
 initialize=110.0,
 doc="Design blade velocity [m/s]",
 units=pyunits.m/pyunits.s
)
 self.eff_nozzle = Var(
 initialize=0.95,
 bounds=(0.0, 1.0),
 doc="Nozzel efficiency (typically 0.90 to 0.95)",
)
 self.efficiency_mech = Var(
 initialize=1.0,
 doc="Turbine mechanical efficiency"
)

 self.eff_nozzle.fix()
 self.blade_reaction.fix()
 self.flow_coeff.fix()
 self.blade_velocity.fix()
 self.efficiency_mech.fix()
 self.efficiency_isentropic.unfix()
 self.ratioP[:] = 0.9 # make sure these have a number value
 self.deltaP[:] = 0 # to avoid an error later in initialize

 @self.Expression(
 self.flowsheet().config.time,
 doc="Entering steam velocity calculation [m/s]",
)
 def steam_entering_velocity(b, t):
 # 1.414 = 44.72/sqrt(1000) for SI if comparing to Liese (2014),
 # b.delta_enth_isentropic[t] = -(hin - hiesn), the mw converts
 # enthalpy to a mass basis
 return 1.414 * sqrt(
 (b.blade_reaction - 1)*b.delta_enth_isentropic[t]*self.eff_nozzle
 / b.control_volume.properties_in[t].mw
)

 @self.Expression(self.flowsheet().config.time, doc="Efficiency expression")
 def efficiency_isentropic_expr(b, t):
 Vr = b.blade_velocity / b.steam_entering_velocity[t]
 R = b.blade_reaction
 return 2*Vr*((sqrt(1 - R) - Vr) + sqrt((sqrt(1 - R) - Vr)**2 + R))

 @self.Constraint(
 self.flowsheet().config.time, doc="Equation: Turbine inlet flow")
 def inlet_flow_constraint(b, t):
 # Some local vars to make the equation more readable
 g = b.control_volume.properties_in[t].heat_capacity_ratio
 mw = b.control_volume.properties_in[t].mw
 flow = b.control_volume.properties_in[t].flow_mol
 Tin = b.control_volume.properties_in[t].temperature
 cf = b.flow_coeff[t]
 Pin = b.control_volume.properties_in[t].pressure
 Pratio = b.ratioP[t]

 return flow ** 2 * mw ** 2 * Tin == (
 cf ** 2 * Pin ** 2 * g / (g - 1)
 * (Pratio ** (2.0 / g) - Pratio ** ((g + 1) / g)))

 @self.Constraint(self.flowsheet().config.time, doc="Equation: Efficiency")
 def efficiency_correlation(b, t):
 return b.efficiency_isentropic[t] == b.efficiency_isentropic_expr[t]

 @self.Expression(self.flowsheet().config.time, doc="Thermodynamic power [J/s]")
 def power_thermo(b, t):
 return b.control_volume.work[t]

 @self.Expression(self.flowsheet().config.time, doc="Shaft power [J/s]")
 def power_shaft(b, t):
 return b.power_thermo[t] * b.efficiency_mech

[docs] def initialize(
 self,
 state_args={},
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6, "max_iter": 30},
 calculate_cf=False,
):
 """
 Initialize the inlet turbine stage model. This deactivates the
 specialized constraints, then does the isentropic turbine initialization,
 then reactivates the constraints and solves. This initializtion uses a
 flow value guess, so some reasonable flow guess should be sepecified prior
 to initializtion.

 Args:
 state_args (dict): Initial state for property initialization
 outlvl (int): Amount of output (0 to 3) 0 is lowest
 solver (str): Solver to use for initialization
 optarg (dict): Solver arguments dictionary
 calculate_cf (bool): If True, use the flow and pressure ratio to
 calculate the flow coefficient.
 """
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")

 # sp is what to save to make sure state after init is same as the start
 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)

 # Setup for initializtion step 1
 self.inlet_flow_constraint.deactivate()
 self.efficiency_correlation.deactivate()
 self.eff_nozzle.fix()
 self.blade_reaction.fix()
 self.flow_coeff.fix()
 self.blade_velocity.fix()
 self.inlet.fix()
 self.outlet.unfix()

 for t in self.flowsheet().config.time:
 self.efficiency_isentropic[t] = 0.9
 super().initialize(outlvl=outlvl, solver=solver, optarg=optarg)

 # Free eff_isen and activate sepcial constarints
 self.inlet_flow_constraint.activate()
 self.efficiency_correlation.activate()

 if calculate_cf:
 self.ratioP.fix()
 self.flow_coeff.unfix()

 for t in self.flowsheet().config.time:
 g = self.control_volume.properties_in[t].heat_capacity_ratio
 mw = self.control_volume.properties_in[t].mw
 flow = self.control_volume.properties_in[t].flow_mol
 Tin = self.control_volume.properties_in[t].temperature
 Pin = self.control_volume.properties_in[t].pressure
 Pratio = self.ratioP[t]
 self.flow_coeff[t].value = value(
 flow * mw * sqrt(
 Tin/(g/(g - 1) *(Pratio**(2.0/g) - Pratio**((g + 1)/g)))
)/Pin
)

 slvr = SolverFactory(solver)
 slvr.options = optarg
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = slvr.solve(self, tee=slc.tee)
 init_log.info("Initialization Complete: {}".format(idaeslog.condition(res)))
 # reload original spec
 if calculate_cf:
 cf = {}
 for t in self.flowsheet().config.time:
 cf[t] = value(self.flow_coeff[t])

 from_json(self, sd=istate, wts=sp)
 if calculate_cf:
 # cf was probably fixed, so will have to set the value agian here
 # if you ask for it to be calculated.
 for t in self.flowsheet().config.time:
 self.flow_coeff[t] = cf[t]

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 for t, c in self.inlet_flow_constraint.items():
 s = iscale.get_scaling_factor(
 self.control_volume.properties_in[t].flow_mol)**2
 iscale.constraint_scaling_transform(c, s)

 idaes.power_generation.unit_models.helm.turbine_multistage

 Source code for idaes.power_generation.unit_models.helm.turbine_multistage

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Multistage steam turbine for power generation.

Liese, (2014). "Modeling of a Steam Turbine Including Partial Arc Admission
 for Use in a Process Simulation Software Environment." Journal of Engineering
 for Gas Turbines and Power. v136, November
"""
import copy

import pyomo.environ as pyo
from pyomo.network import Arc
from pyomo.common.config import ConfigBlock, ConfigValue, In

from idaes.core import declare_process_block_class, UnitModelBlockData, useDefault
from idaes.power_generation.unit_models.helm import (
 HelmSplitter,
 HelmMixer,
 MomentumMixingType,
 HelmTurbineInletStage,
 HelmTurbineStage,
 HelmTurbineOutletStage,
 ValveFunctionType,
)
from idaes.power_generation.unit_models.helm import HelmValve as SteamValve

from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util import from_json, to_json, StoreSpec
from idaes.core.util.misc import copy_port_values as copy_port
from pyomo.common.config import ConfigBlock, ConfigValue, In, ConfigList
from idaes.core.util.config import is_physical_parameter_block
import idaes.core.util.scaling as iscale

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

def _define_turbine_multistage_config(config):
 config.declare(
 "dynamic",
 ConfigValue(
 domain=In([False]),
 default=False,
 description="Dynamic model flag",
 doc="Only False, in a dynamic flowsheet this is psuedo-steady-state.",
),
)
 config.declare(
 "has_holdup",
 ConfigValue(
 default=False,
 domain=In([False]),
 description="Holdup construction flag",
 doc="Only False, in a dynamic flowsheet this is psuedo-steady-state.",
),
)
 config.declare(
 "property_package",
 ConfigValue(
 default=useDefault,
 domain=is_physical_parameter_block,
 description="Property package to use for control volume",
 doc="""Property parameter object used to define property calculations,
default - useDefault.
Valid values: {
useDefault - use default package from parent model or flowsheet,
PropertyParameterObject - a PropertyParameterBlock object.}""",
),
)
 config.declare(
 "property_package_args",
 ConfigBlock(
 implicit=True,
 description="Arguments to use for constructing property packages",
 doc="""A ConfigBlock with arguments to be passed to a property block(s)
and used when constructing these,
default - None.
Valid values: {
see property package for documentation.}""",
),
)
 config.declare(
 "num_parallel_inlet_stages",
 ConfigValue(
 default=4,
 domain=int,
 description="Number of parallel inlet stages to simulate partial arc "
 "admission. Default=4",
),
)
 config.declare(
 "throttle_valve_function",
 ConfigValue(
 default=ValveFunctionType.linear,
 domain=In(ValveFunctionType),
 description="Valve function type, if custom provide an expression rule",
 doc="""The type of valve function, if custom provide an expression rule
with the valve_function_rule argument.
default - ValveFunctionType.linear
Valid values - {
ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom}""",
),
)
 config.declare(
 "throttle_valve_function_callback",
 ConfigValue(
 default=None,
 description="A callback to add a custom valve function to the "
 "throttle valves or None. If a callback is provided, it should "
 "take the valve block data as an argument and add a "
 "valve_function expressions to it. Default=None",
),
)
 config.declare(
 "num_hp",
 ConfigValue(
 default=2,
 domain=int,
 description="Number of high pressure stages not including inlet stage",
 doc="Number of high pressure stages not including inlet stage",
),
)
 config.declare(
 "num_ip",
 ConfigValue(
 default=10,
 domain=int,
 description="Number of intermediate pressure stages",
 doc="Number of intermediate pressure stages",
),
)
 config.declare(
 "num_lp",
 ConfigValue(
 default=5,
 domain=int,
 description="Number of low pressure stages not including outlet stage",
 doc="Number of low pressure stages not including outlet stage",
),
)
 config.declare(
 "hp_split_locations",
 ConfigList(
 default=[],
 domain=int,
 description="Locations of splitters in HP section",
 doc="A list of index locations of splitters in the HP section. The "
 "indexes indicate after which stage to include splitters. 0 is "
 "between the inlet stage and the first regular HP stage.",
),
)
 config.declare(
 "ip_split_locations",
 ConfigList(
 default=[],
 domain=int,
 description="Locations of splitters in IP section",
 doc="A list of index locations of splitters in the IP section. The "
 "indexes indicate after which stage to include splitters.",
),
)
 config.declare(
 "lp_split_locations",
 ConfigList(
 default=[],
 domain=int,
 description="Locations of splitter in LP section",
 doc="A list of index locations of splitters in the LP section. The "
 "indexes indicate after which stage to include splitters.",
),
)
 config.declare(
 "hp_disconnect",
 ConfigList(
 default=[],
 domain=int,
 description="HP Turbine stages to not connect to next with an arc.",
 doc="HP Turbine stages to not connect to next with an arc. This is "
 "usually used to insert addtional units between stages on a "
 "flowsheet, such as a reheater",
),
)
 config.declare(
 "ip_disconnect",
 ConfigList(
 default=[],
 domain=int,
 description="IP Turbine stages to not connect to next with an arc.",
 doc="IP Turbine stages to not connect to next with an arc. This is "
 "usually used to insert addtional units between stages on a "
 "flowsheet, such as a reheater",
),
)
 config.declare(
 "lp_disconnect",
 ConfigList(
 default=[],
 domain=int,
 description="LP Turbine stages to not connect to next with an arc.",
 doc="LP Turbine stages to not connect to next with an arc. This is "
 "usually used to insert addtional units between stages on a "
 "flowsheet, such as a reheater",
),
)
 config.declare(
 "hp_split_num_outlets",
 ConfigValue(
 default={},
 domain=dict,
 description="Dict, hp split index: number of splitter outlets, if not 2",
),
)
 config.declare(
 "ip_split_num_outlets",
 ConfigValue(
 default={},
 domain=dict,
 description="Dict, ip split index: number of splitter outlets, if not 2",
),
)
 config.declare(
 "lp_split_num_outlets",
 ConfigValue(
 default={},
 domain=dict,
 description="Dict, lp split index: number of splitter outlets, if not 2",
),
)

[docs]@declare_process_block_class(
 "HelmTurbineMultistage",
 doc="Multistage steam turbine with optional reheat and extraction",
)
class HelmTurbineMultistageData(UnitModelBlockData):
 CONFIG = ConfigBlock()
 _define_turbine_multistage_config(CONFIG)

[docs] def build(self):
 super().build()
 config = self.config
 unit_cfg = { # general unit model config
 "dynamic": config.dynamic,
 "has_holdup": config.has_holdup,
 "property_package": config.property_package,
 "property_package_args": config.property_package_args,
 }
 ni = self.config.num_parallel_inlet_stages
 inlet_idx = self.inlet_stage_idx = pyo.RangeSet(ni)

 thrtl_cfg = unit_cfg.copy()
 thrtl_cfg["valve_function"] = self.config.throttle_valve_function
 thrtl_cfg["valve_function_callback"] = \
 self.config.throttle_valve_function_callback

 # Adding unit models
 # ------------------------

 # Splitter to inlet that splits main flow into parallel flows for
 # paritial arc admission to the turbine
 self.inlet_split = HelmSplitter(default=self._split_cfg(unit_cfg, ni))
 self.throttle_valve = SteamValve(inlet_idx, default=thrtl_cfg)
 self.inlet_stage = HelmTurbineInletStage(inlet_idx, default=unit_cfg)
 # mixer to combine the parallel flows back together
 self.inlet_mix = HelmMixer(default=self._mix_cfg(unit_cfg, ni))
 # add turbine sections.
 # inlet stage -> hp stages -> ip stages -> lp stages -> outlet stage
 self.hp_stages = HelmTurbineStage(pyo.RangeSet(config.num_hp), default=unit_cfg)
 self.ip_stages = HelmTurbineStage(pyo.RangeSet(config.num_ip), default=unit_cfg)
 self.lp_stages = HelmTurbineStage(pyo.RangeSet(config.num_lp), default=unit_cfg)
 self.outlet_stage = HelmTurbineOutletStage(default=unit_cfg)

 for i in self.hp_stages:
 self.hp_stages[i].ratioP.fix()
 self.hp_stages[i].efficiency_isentropic.fix()
 for i in self.ip_stages:
 self.ip_stages[i].ratioP.fix()
 self.ip_stages[i].efficiency_isentropic.fix()
 for i in self.lp_stages:
 self.lp_stages[i].ratioP.fix()
 self.lp_stages[i].efficiency_isentropic.fix()

 # Then make splitter config. If number of outlets is specified
 # make a specific config, otherwise use default with 2 outlets
 s_sfg_default = self._split_cfg(unit_cfg, 2)
 hp_splt_cfg = {}
 ip_splt_cfg = {}
 lp_splt_cfg = {}
 # Now to finish up if there are more than two outlets, set that
 for i, v in config.hp_split_num_outlets.items():
 hp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
 for i, v in config.ip_split_num_outlets.items():
 ip_splt_cfg[i] = self._split_cfg(unit_cfg, v)
 for i, v in config.lp_split_num_outlets.items():
 lp_splt_cfg[i] = self._split_cfg(unit_cfg, v)
 # put in splitters for turbine steam extractions
 if config.hp_split_locations:
 self.hp_split = HelmSplitter(
 config.hp_split_locations,
 default=s_sfg_default,
 initialize=hp_splt_cfg
)
 if config.ip_split_locations:
 self.ip_split = HelmSplitter(
 config.ip_split_locations,
 default=s_sfg_default,
 initialize=ip_splt_cfg
)
 if config.lp_split_locations:
 self.lp_split = HelmSplitter(
 config.lp_split_locations,
 default=s_sfg_default,
 initialize=lp_splt_cfg
)

 # Done with unit models. Adding Arcs (streams).
 # --

 # First up add streams in the inlet section
 def _split_to_rule(b, i):
 return {
 "source": getattr(self.inlet_split, "outlet_{}".format(i)),
 "destination": self.throttle_valve[i].inlet,
 }
 def _valve_to_rule(b, i):
 return {
 "source": self.throttle_valve[i].outlet,
 "destination": self.inlet_stage[i].inlet,
 }
 def _inlet_to_rule(b, i):
 return {
 "source": self.inlet_stage[i].outlet,
 "destination": getattr(self.inlet_mix, "inlet_{}".format(i)),
 }
 self.stream_throttle_inlet = Arc(inlet_idx, rule=_split_to_rule)
 self.stream_throttle_outlet = Arc(inlet_idx, rule=_valve_to_rule)
 self.stream_inlet_mix_inlet = Arc(inlet_idx, rule=_inlet_to_rule)

 # There are three sections HP, IP, and LP which all have the same sort
 # of internal connctions, so the functions below provide some generic
 # capcbilities for adding the internal Arcs (streams).
 def _arc_indexes(nstages, index_set, discon, splits):
 """
 This takes the index set of all possible streams in a turbine
 section and throws out arc indexes for stages that are disconnected
 and arc indexes that are not needed because there is no splitter
 after a stage.

 Args:
 nstages (int): Number of stages in section
 index_set (Set): Index set for arcs in the section
 discon (list): Disconnected stages in the section
 splits (list): Spliter locations
 """
 sr = set() # set of things to remove from the Arc index set
 for i in index_set:
 if (i[0] in discon or i[0] == nstages) and i[0] in splits:
 # don't connect stage i to next remove stream after split
 sr.add((i[0], 2))
 elif (i[0] in discon or i[0] == nstages) and i[0] not in splits:
 # no splitter and disconnect so remove both streams
 sr.add((i[0], 1))
 sr.add((i[0], 2))
 elif i[0] not in splits:
 # no splitter and not disconnected so just second stream
 sr.add((i[0], 2))
 else:
 # has splitter so need both streams don't remove anything
 pass
 for i in sr: # remove the unneeded Arc indexes
 index_set.remove(i)

 def _arc_rule(turbines, splitters):
 """
 This creates a rule function for arcs in a turbine section. When
 this is used, the indexes for nonexistant stream will have already
 been removed, so any indexes the rule will get should have a stream
 associated.

 Args:
 turbines (TurbineStage): Indexed block with turbine section stages
 splitters (Separator): Indexed block of splitters
 """

 def _rule(b, i, j):
 if i in splitters and j == 1: # stage to splitter
 return {
 "source": turbines[i].outlet,
 "destination": splitters[i].inlet,
 }
 elif j == 2: # splitter to next stage
 return {
 "source": splitters[i].outlet_1,
 "destination": turbines[i + 1].inlet,
 }
 else: # no splitter, stage to next stage
 return {
 "source": turbines[i].outlet,
 "destination": turbines[i + 1].inlet,
 }

 return _rule

 # Create initial arcs index sets with all possible streams
 self.hp_stream_idx = pyo.Set(initialize=self.hp_stages.index_set() * [1, 2])
 self.ip_stream_idx = pyo.Set(initialize=self.ip_stages.index_set() * [1, 2])
 self.lp_stream_idx = pyo.Set(initialize=self.lp_stages.index_set() * [1, 2])

 # Throw out unneeded streams for disconnected stages or no splitter
 _arc_indexes(
 config.num_hp,
 self.hp_stream_idx,
 config.hp_disconnect,
 config.hp_split_locations,
)
 _arc_indexes(
 config.num_ip,
 self.ip_stream_idx,
 config.ip_disconnect,
 config.ip_split_locations,
)
 _arc_indexes(
 config.num_lp,
 self.lp_stream_idx,
 config.lp_disconnect,
 config.lp_split_locations,
)

 # Create connections internal to each turbine section (hp, ip, and lp)
 self.hp_stream = Arc(
 self.hp_stream_idx, rule=_arc_rule(self.hp_stages, self.hp_split))
 self.ip_stream = Arc(
 self.ip_stream_idx, rule=_arc_rule(self.ip_stages, self.ip_split))
 self.lp_stream = Arc(
 self.lp_stream_idx, rule=_arc_rule(self.lp_stages, self.lp_split))

 # Connect hp section to ip section unless its a disconnect location
 last_hp = config.num_hp
 if 0 not in config.ip_disconnect and last_hp not in config.hp_disconnect:
 # Not disconnected stage so add stream, depending on splitter existance
 if last_hp in config.hp_split_locations: # connect splitter to ip
 self.hp_to_ip_stream = Arc(
 source=self.hp_split[last_hp].outlet_1,
 destination=self.ip_stages[1].inlet,
)
 else: # connect last hp to ip
 self.hp_to_ip_stream = Arc(
 source=self.hp_stages[last_hp].outlet,
 destination=self.ip_stages[1].inlet,
)
 # Connect ip section to lp section unless its a disconnect location
 last_ip = config.num_ip
 if 0 not in config.lp_disconnect and last_ip not in config.ip_disconnect:
 if last_ip in config.ip_split_locations: # connect splitter to ip
 self.ip_to_lp_stream = Arc(
 source=self.ip_split[last_ip].outlet_1,
 destination=self.lp_stages[1].inlet,
)
 else: # connect last hp to ip
 self.ip_to_lp_stream = Arc(
 source=self.ip_stages[last_ip].outlet,
 destination=self.lp_stages[1].inlet,
)
 # Connect inlet stage to hp section
 # not allowing disconnection of inlet and first regular hp stage
 if 0 in config.hp_split_locations:
 # connect inlet mix to splitter and splitter to hp section
 self.inlet_to_splitter_stream = Arc(
 source=self.inlet_mix.outlet, destination=self.hp_split[0].inlet
)
 self.splitter_to_hp_stream = Arc(
 source=self.hp_split[0].outlet_1, destination=self.hp_stages[1].inlet
)
 else: # connect mixer to first hp turbine stage
 self.inlet_to_hp_stream = Arc(
 source=self.inlet_mix.outlet, destination=self.hp_stages[1].inlet
)

 self.power = pyo.Var(
 self.flowsheet().config.time, initialize=-1e8, doc="power (W)")
 @self.Constraint(self.flowsheet().config.time)
 def power_eqn(b, t):
 return (b.power[t] ==
 b.outlet_stage.control_volume.work[t]*b.outlet_stage.efficiency_mech
 + sum(
 b.inlet_stage[i].control_volume.work[t]*b.inlet_stage[i].efficiency_mech
 for i in b.inlet_stage)
 + sum(
 b.hp_stages[i].control_volume.work[t]*b.hp_stages[i].efficiency_mech
 for i in b.hp_stages)
 + sum(
 b.ip_stages[i].control_volume.work[t]*b.ip_stages[i].efficiency_mech
 for i in b.ip_stages)
 + sum(
 b.lp_stages[i].control_volume.work[t]*b.lp_stages[i].efficiency_mech
 for i in b.lp_stages)
)

 # Connect lp section to outlet stage, not allowing outlet stage to be
 # disconnected
 last_lp = config.num_lp
 if last_lp in config.lp_split_locations: # connect splitter to outlet
 self.lp_to_outlet_stream = Arc(
 source=self.lp_split[last_lp].outlet_1,
 destination=self.outlet_stage.inlet,
)
 else: # connect last lpstage to outlet
 self.lp_to_outlet_stream = Arc(
 source=self.lp_stages[last_lp].outlet,
 destination=self.outlet_stage.inlet,
)
 pyo.TransformationFactory("network.expand_arcs").apply_to(self)

 def _split_cfg(self, unit_cfg, no=2):
 """
 This creates a configuration dictionary for a splitter.

 Args:
 unit_cfg: The base unit config dict.
 no: Number of outlets, default=2
 """
 # Create a dict for splitter config args
 cfg = copy.copy(unit_cfg)
 cfg.update(num_outlets=no)
 return cfg

 def _mix_cfg(self, unit_cfg, ni=2):
 """
 This creates a configuration dictionary for a mixer.

 Args:
 unit_cfg: The base unit config dict.
 ni: Number of inlets, default=2
 """
 cfg = copy.copy(unit_cfg)
 cfg.update(
 num_inlets=ni,
 momentum_mixing_type=MomentumMixingType.minimize_and_equality
)
 return cfg

[docs] def throttle_cv_fix(self, value):
 """
 Fix the thottle valve coefficients. These are generally the same for
 each of the parallel stages so this provides a convenient way to set
 them.

 Args:
 value: The value to fix the turbine inlet flow coefficients at
 """
 for i in self.throttle_valve:
 self.throttle_valve[i].Cv.fix(value)

[docs] def turbine_inlet_cf_fix(self, value):
 """
 Fix the inlet turbine stage flow coefficient. These are
 generally the same for each of the parallel stages so this provides
 a convenient way to set them.

 Args:
 value: The value to fix the turbine inlet flow coefficients at
 """
 for i in self.inlet_stage:
 self.inlet_stage[i].flow_coeff.fix(value)

 def _init_section(
 self,
 stages,
 splits,
 disconnects,
 prev_port,
 outlvl,
 solver,
 optarg,
 copy_disconneted_flow,
 copy_disconneted_pressure,
):
 """ Reuse the initializtion for HP, IP and, LP sections.
 """
 if 0 in splits:
 copy_port(splits[0].inlet, prev_port)
 splits[0].initialize(outlvl=outlvl, solver=solver, optarg=optarg)
 prev_port = splits[0].outlet_1
 for i in stages:
 if i - 1 not in disconnects:
 copy_port(stages[i].inlet, prev_port)
 else:
 if copy_disconneted_flow:
 for t in stages[i].inlet.flow_mol:
 stages[i].inlet.flow_mol[t] = pyo.value(prev_port.flow_mol[t])
 if copy_disconneted_pressure:
 for t in stages[i].inlet.pressure:
 stages[i].inlet.pressure[t] = pyo.value(prev_port.pressure[t])
 stages[i].initialize(outlvl=outlvl, solver=solver, optarg=optarg)
 prev_port = stages[i].outlet
 if i in splits:
 copy_port(splits[i].inlet, prev_port)
 splits[i].initialize(outlvl=outlvl, solver=solver, optarg=optarg)
 prev_port = splits[i].outlet_1
 return prev_port

[docs] def turbine_outlet_cf_fix(self, value):
 """
 Fix the inlet turbine stage flow coefficient. These are
 generally the same for each of the parallel stages so this provides
 a convenient way to set them.

 Args:
 value: The value to fix the turbine inlet flow coefficients at
 """
 self.outlet_stage.flow_coeff.fix(value)

[docs] def initialize(
 self,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 flow_iterate=2,
 optarg={"tol": 1e-6, "max_iter": 35},
 copy_disconneted_flow=True,
 copy_disconneted_pressure=True,
 calculate_outlet_cf=False,
 calculate_inlet_cf=False
):
 """
 Initialize

 Args:
 outlvl: logging level default is NOTSET, which inherits from the
 parent logger
 solver: the NL solver, default is "ipopt"
 flow_iterate: If not calculating flow coefficients, this is the
 number of times to update the flow and repeat initialization
 (1 to 5 where 1 does not update the flow guess)
 optarg: solver arguments, default is {"tol": 1e-6, "max_iter": 35}
 copy_disconneted_flow: Copy the flow through the disconnected stages
 default is True
 copy_disconneted_pressure: Copy the pressure through the disconnected
 stages default is True
 calculate_outlet_cf: Use the flow initial flow guess to calculate
 the outlet stage flow coefficient, default is False,
 calculate_inlet_cf: Use the inlet stage ratioP to calculate the flow
 coefficent for the inlet stage default is False

 Returns:
 None
 """
 # Setup loggers
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")
 # Store initial model specs, restored at the end of initializtion, so
 # the problem is not altered. This can restore fixed/free vars,
 # active/inactive constraints, and fixed variable values.
 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)

 # Assume the flow into the turbine is a reasonable guess for
 # initializtion
 flow_guess = self.inlet_split.inlet.flow_mol[0].value

 for it_count in range(flow_iterate):
 self.inlet_split.initialize(outlvl=outlvl, solver=solver, optarg=optarg)

 # Initialize valves
 for i in self.inlet_stage_idx:
 u = self.throttle_valve[i]
 copy_port(u.inlet, getattr(self.inlet_split, "outlet_{}".format(i)))
 u.initialize(outlvl=outlvl, solver=solver, optarg=optarg)

 # Initialize turbine
 for i in self.inlet_stage_idx:
 u = self.inlet_stage[i]
 copy_port(u.inlet, self.throttle_valve[i].outlet)
 u.initialize(
 outlvl=outlvl,
 solver=solver,
 optarg=optarg,
 calculate_cf=calculate_inlet_cf
)

 # Initialize Mixer
 self.inlet_mix.use_minimum_inlet_pressure_constraint()
 for i in self.inlet_stage_idx:
 copy_port(
 getattr(self.inlet_mix, "inlet_{}".format(i)),
 self.inlet_stage[i].outlet,
)
 getattr(self.inlet_mix, "inlet_{}".format(i)).fix()
 self.inlet_mix.initialize(outlvl=outlvl, solver=solver, optarg=optarg)
 for i in self.inlet_stage_idx:
 getattr(self.inlet_mix, "inlet_{}".format(i)).unfix()
 self.inlet_mix.use_equal_pressure_constraint()

 prev_port = self.inlet_mix.outlet
 prev_port = self._init_section(
 self.hp_stages,
 self.hp_split,
 self.config.hp_disconnect,
 prev_port,
 outlvl,
 solver,
 optarg,
 copy_disconneted_flow=copy_disconneted_flow,
 copy_disconneted_pressure=copy_disconneted_pressure,
)
 if len(self.hp_stages) in self.config.hp_disconnect:
 self.config.ip_disconnect.append(0)
 prev_port = self._init_section(
 self.ip_stages,
 self.ip_split,
 self.config.ip_disconnect,
 prev_port,
 outlvl,
 solver,
 optarg,
 copy_disconneted_flow=copy_disconneted_flow,
 copy_disconneted_pressure=copy_disconneted_pressure,
)
 if len(self.ip_stages) in self.config.ip_disconnect:
 self.config.lp_disconnect.append(0)
 prev_port = self._init_section(
 self.lp_stages,
 self.lp_split,
 self.config.lp_disconnect,
 prev_port,
 outlvl,
 solver,
 optarg,
 copy_disconneted_flow=copy_disconneted_flow,
 copy_disconneted_pressure=copy_disconneted_pressure,
)

 copy_port(self.outlet_stage.inlet, prev_port)
 self.outlet_stage.initialize(
 outlvl=outlvl,
 solver=solver,
 optarg=optarg,
 calculate_cf=calculate_outlet_cf
)
 if calculate_outlet_cf:
 break
 if it_count < flow_iterate - 1:
 for t in self.inlet_split.inlet.flow_mol:
 self.inlet_split.inlet.flow_mol[t].value = \
 self.outlet_stage.inlet.flow_mol[t].value

 for s in self.hp_split.values():
 for i, o in enumerate(s.outlet_list):
 if i == 0:
 continue
 o = getattr(s, o)
 self.inlet_split.inlet.flow_mol[t].value += \
 o.flow_mol[t].value
 for s in self.ip_split.values():
 for i, o in enumerate(s.outlet_list):
 if i == 0:
 continue
 o = getattr(s, o)
 self.inlet_split.inlet.flow_mol[t].value += \
 o.flow_mol[t].value
 for s in self.lp_split.values():
 for i, o in enumerate(s.outlet_list):
 if i == 0:
 continue
 o = getattr(s, o)
 self.inlet_split.inlet.flow_mol[t].value += \
 o.flow_mol[t].value

 if calculate_inlet_cf:
 # cf was probably fixed, so will have to set the value agian here
 # if you ask for it to be calculated.
 icf = {}
 for i in self.inlet_stage:
 for t in self.inlet_stage[i].flow_coeff:
 icf[i,t] = pyo.value(self.inlet_stage[i].flow_coeff[t])
 if calculate_outlet_cf:
 ocf = pyo.value(self.outlet_stage.flow_coeff)

 from_json(self, sd=istate, wts=sp)

 if calculate_inlet_cf:
 # cf was probably fixed, so will have to set the value agian here
 # if you ask for it to be calculated.
 for t in self.inlet_stage[i].flow_coeff:
 for i in self.inlet_stage:
 self.inlet_stage[i].flow_coeff[t] = icf[i,t]
 if calculate_outlet_cf:
 self.outlet_stage.flow_coeff = ocf

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 # Add a default power scale
 # pretty safe to say power is around 100 to 1000 MW

 for t in self.power:
 if iscale.get_scaling_factor(self.power[t]) is None:
 iscale.set_scaling_factor(self.power[t], 1e-8)

 for t, c in self.power_eqn.items():
 power_scale = iscale.get_scaling_factor(
 self.power[t], default=1, warning=True)
 # Set power equation scale factor
 iscale.constraint_scaling_transform(c, power_scale)

 idaes.power_generation.unit_models.helm.turbine_outlet

 Source code for idaes.power_generation.unit_models.helm.turbine_outlet

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Steam turbine outlet stage model. This model is based on:

Liese, (2014). "Modeling of a Steam Turbine Including Partial Arc Admission
 for Use in a Process Simulation Software Environment." Journal of Engineering
 for Gas Turbines and Power. v136.
"""
__Author__ = "John Eslick"

from pyomo.common.config import In
from pyomo.environ import Var, sqrt, SolverFactory, value, Param, units as pyunits
from idaes.power_generation.unit_models.helm.turbine import HelmIsentropicTurbineData
from idaes.core import declare_process_block_class
from idaes.core.util import from_json, to_json, StoreSpec
from idaes.core.util.model_statistics import degrees_of_freedom
import idaes.core.util.scaling as iscale

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class(
 "HelmTurbineOutletStage",
 doc="Outlet stage steam turbine model",
)
class HelmTurbineOutletStageData(HelmIsentropicTurbineData):
 # Same settings as the default pressure changer, but force to expander with
 # isentropic efficiency
 CONFIG = HelmIsentropicTurbineData.CONFIG()

[docs] def build(self):
 super().build()

 self.flow_coeff = Var(
 initialize=0.0333, doc="Turbine flow coefficient [kg*C^0.5/s/Pa]",
 units=pyunits.kg*pyunits.K**0.5/pyunits.s/pyunits.Pa
)
 self.eff_dry = Var(initialize=0.87, doc="Turbine dry isentropic efficiency")
 self.design_exhaust_flow_vol = Var(
 initialize=6000.0, doc="Design exit volumetirc flowrate [m^3/s]",
 units=pyunits.m**3/pyunits.s
)
 self.efficiency_mech = Var(initialize=1.0, doc="Turbine mechanical efficiency")
 self.efficiency_isentropic.unfix()
 self.eff_dry.fix()
 self.design_exhaust_flow_vol.fix()
 self.flow_coeff.fix()
 self.efficiency_mech.fix()

 @self.Expression(self.flowsheet().config.time, doc="Eff. fact. correlation")
 def tel(b, t):
 f = b.control_volume.properties_out[t].flow_vol / b.design_exhaust_flow_vol
 return 1e6 * (
 -0.0035 * f ** 5
 + 0.022 * f ** 4
 - 0.0542 * f ** 3
 + 0.0638 * f ** 2
 - 0.0328 * f
 + 0.0064
)*pyunits.J/pyunits.mol

 @self.Constraint(self.flowsheet().config.time, doc="Stodola eq. choked flow")
 def stodola_equation(b, t):
 flow = b.control_volume.properties_in[t].flow_mol
 mw = b.control_volume.properties_in[t].mw
 Tin = b.control_volume.properties_in[t].temperature
 Pin = b.control_volume.properties_in[t].pressure
 Pr = b.ratioP[t]
 cf = b.flow_coeff

 return flow ** 2 * mw ** 2 * (Tin) == (
 cf ** 2 * Pin ** 2 * (1 - Pr ** 2))

 @self.Constraint(self.flowsheet().config.time, doc="Efficiency correlation")
 def efficiency_correlation(b, t):
 x = b.control_volume.properties_out[t].vapor_frac
 eff = b.efficiency_isentropic[t]
 dh_isen = b.delta_enth_isentropic[t]
 tel = b.tel[t]
 return eff == b.eff_dry * x * (1 - 0.65 * (1 - x)) * (1 + tel / dh_isen)

 @self.Expression(self.flowsheet().config.time, doc="Thermodynamic power [J/s]")
 def power_thermo(b, t):
 return b.control_volume.work[t]

 @self.Expression(self.flowsheet().config.time, doc="Shaft power [J/s]")
 def power_shaft(b, t):
 return b.power_thermo[t] * b.efficiency_mech

[docs] def initialize(
 self,
 state_args={},
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6, "max_iter": 30},
 calculate_cf=True,
):
 """
 Initialize the outlet turbine stage model. This deactivates the
 specialized constraints, then does the isentropic turbine initialization,
 then reactivates the constraints and solves.

 Args:
 state_args (dict): Initial state for property initialization
 outlvl : sets output level of initialization routine
 solver (str): Solver to use for initialization
 optarg (dict): Solver arguments dictionary
 """
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")

 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)

 # sp is what to save to make sure state after init is same as the start
 # saves value, fixed, and active state, doesn't load originally free
 # values, this makes sure original problem spec is same but initializes
 # the values of free vars
 for t in self.flowsheet().config.time:
 if self.outlet.pressure[t].fixed:
 self.ratioP[t] = value(
 self.outlet.pressure[t]/self.inlet.pressure[t])
 self.deltaP[t] = value(
 self.outlet.pressure[t] - self.inlet.pressure[t])

 # Deactivate special constraints
 self.stodola_equation.deactivate()
 self.efficiency_correlation.deactivate()
 self.efficiency_isentropic.fix()
 self.deltaP.unfix()
 self.ratioP.unfix()
 self.inlet.fix()
 self.outlet.unfix()

 super().initialize(outlvl=outlvl, solver=solver, optarg=optarg)

 for t in self.flowsheet().config.time:
 mw = self.control_volume.properties_in[t].mw
 Tin = self.control_volume.properties_in[t].temperature
 Pin = self.control_volume.properties_in[t].pressure
 Pr = self.ratioP[t]
 if not calculate_cf:
 cf = self.flow_coeff
 self.inlet.flow_mol[t].fix(
 value(cf * Pin * sqrt(1 - Pr ** 2) / mw / sqrt(Tin))
)

 super().initialize(outlvl=outlvl, solver=solver, optarg=optarg)
 self.control_volume.properties_out[:].pressure.fix()

 # Free eff_isen and activate sepcial constarints
 self.efficiency_isentropic.unfix()
 self.outlet.pressure.fix()
 if calculate_cf:
 self.flow_coeff.unfix()
 self.inlet.flow_mol.unfix()
 self.inlet.flow_mol[0].fix()
 flow = self.control_volume.properties_in[0].flow_mol
 mw = self.control_volume.properties_in[0].mw
 Tin = self.control_volume.properties_in[0].temperature
 Pin = self.control_volume.properties_in[0].pressure
 Pr = self.ratioP[0]
 self.flow_coeff.value = value(
 flow * mw * sqrt(Tin/(1 - Pr ** 2))/Pin)

 else:
 self.inlet.flow_mol.unfix()

 self.stodola_equation.activate()
 self.efficiency_correlation.activate()
 slvr = SolverFactory(solver)
 slvr.options = optarg
 self.display()
 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = slvr.solve(self, tee=slc.tee)
 init_log.info(
 "Initialization Complete (Outlet Stage): {}".format(idaeslog.condition(res))
)

 # reload original spec
 if calculate_cf:
 cf = value(self.flow_coeff)
 from_json(self, sd=istate, wts=sp)
 if calculate_cf:
 # cf was probably fixed, so will have to set the value agian here
 # if you ask for it to be calculated.
 self.flow_coeff = cf

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()
 for t, c in self.stodola_equation.items():
 s = iscale.get_scaling_factor(
 self.control_volume.properties_in[t].flow_mol,
 default=1,
 warning=True)**2
 iscale.constraint_scaling_transform(c, s)

 idaes.power_generation.unit_models.helm.turbine_stage

 Source code for idaes.power_generation.unit_models.helm.turbine_stage

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
"""
Steam turbine stage model. This is a standard isentropic turbine. Under off-design
conditions the base efficiency and pressure ratio do not change much for the stages
between the inlet and outlet. This model is based on:

Liese, (2014). "Modeling of a Steam Turbine Including Partial Arc Admission
 for Use in a Process Simulation Software Environment." Journal of Engineering
 for Gas Turbines and Power. v136.
"""
__Author__ = "John Eslick"

from pyomo.environ import Var, SolverFactory, value, units as pyunits
from pyomo.opt import TerminationCondition

from idaes.core import declare_process_block_class
from idaes.power_generation.unit_models.helm.turbine import HelmIsentropicTurbineData
from idaes.core.util import from_json, to_json, StoreSpec
from idaes.core.util.model_statistics import degrees_of_freedom
import idaes.core.util.scaling as iscale

import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("HelmTurbineStage", doc="Basic steam turbine model")
class HelmTurbineStageData(HelmIsentropicTurbineData):
 CONFIG = HelmIsentropicTurbineData.CONFIG()

[docs] def build(self):
 super().build()

 self.efficiency_mech = Var(initialize=1.0, doc="Turbine mechanical efficiency")
 self.efficiency_mech.fix()
 time_set = self.flowsheet().config.time
 self.shaft_speed = Var(time_set,
 doc="Shaft speed [1/s]",
 initialize=60.0,
 units=pyunits.s**-1)
 self.shaft_speed.fix()

 @self.Expression(time_set, doc="Specific speed [dimensionless]")
 def specific_speed(b, t):
 s = b.shaft_speed[t] # 1/s
 v = b.control_volume.properties_out[t].flow_vol # m3/s
 his_rate = b.work_isentropic[t] # J/s
 m = b.control_volume.properties_out[t].flow_mass # kg/s
 return s * v ** 0.5 * (his_rate / m) ** (-0.75) # dimensionless

 @self.Expression(time_set, doc="Thermodynamic power [J/s]")
 def power_thermo(b, t):
 return b.control_volume.work[t]

 @self.Expression(self.flowsheet().config.time, doc="Shaft power [J/s]")
 def power_shaft(b, t):
 return b.power_thermo[t] * b.efficiency_mech

[docs] def initialize(
 self,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6, "max_iter": 30},
):
 """
 Initialize the turbine stage model. This deactivates the
 specialized constraints, then does the isentropic turbine initialization,
 then reactivates the constraints and solves.

 Args:
 outlvl : sets output level of initialization routine
 solver (str): Solver to use for initialization
 optarg (dict): Solver arguments dictionary
 """
 super().initialize(outlvl=outlvl, solver=solver, optarg=optarg)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 idaes.power_generation.unit_models.helm.valve_steam

 Source code for idaes.power_generation.unit_models.helm.valve_steam

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2019, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
import pyomo.environ as pyo
from pyomo.common.config import ConfigValue, In
from idaes.core import declare_process_block_class
from idaes.power_generation.unit_models.balance import BalanceBlockData
from idaes.core.util import from_json, to_json, StoreSpec
import idaes.generic_models.properties.helmholtz.helmholtz as hltz
from idaes.generic_models.properties.helmholtz.helmholtz import (
 HelmholtzThermoExpressions as ThermoExpr
)
import idaes.logger as idaeslog
import idaes.core.util.scaling as iscale
from enum import Enum

_log = idaeslog.getLogger(__name__)

class ValveFunctionType(Enum):
 linear = 1
 quick_opening = 2
 equal_percentage = 3
 custom = 4

def _assert_properties(pb):
 """Assert that the properies parameter block conforms to the requirements"""
 try:
 assert isinstance(pb, hltz.HelmholtzParameterBlockData)
 assert pb.config.phase_presentation in {
 hltz.PhaseType.MIX, hltz.PhaseType.L, hltz.PhaseType.G}
 assert pb.config.state_vars == hltz.StateVars.PH
 except AssertionError:
 _log.error("helm.HelmIsentropicTurbine requires a Helmholtz EOS with "
 "a single or mixed phase and pressure-enthalpy state vars.")
 raise

def _linear_callback(blk):
 @blk.Expression(blk.flowsheet().config.time)
 def valve_function(b, t):
 return b.valve_opening[t]

def _quick_open_callback(blk):
 @blk.Expression(blk.flowsheet().config.time)
 def valve_function(b, t):
 return sqrt(b.valve_opening[t])

def _equal_percentage_callback(blk):
 blk.alpha = Var(initialize=1, doc="Valve function parameter")
 blk.alpha.fix()
 @blk.Expression(blk.flowsheet().config.time)
 def valve_function(b, t):
 return b.alpha ** (b.valve_opening[t] - 1)

def _liquid_pressure_flow_rule(b, t):
 """
 For liquid F = Cv*sqrt(Pi**2 - Po**2)*f(x)
 """
 Po = b.control_volume.properties_out[t].pressure
 Pi = b.control_volume.properties_in[t].pressure
 F = b.control_volume.properties_in[t].flow_mol
 fun = b.valve_function[t]
 return F ** 2 == b.Cv ** 2 * (Pi - Po) * fun ** 2

def _vapor_pressure_flow_rule(b, t):
 """
 For vapor F = Cv*sqrt(Pi**2 - Po**2)*f(x)
 """
 Po = b.control_volume.properties_out[t].pressure
 Pi = b.control_volume.properties_in[t].pressure
 F = b.control_volume.properties_in[t].flow_mol
 fun = b.valve_function[t]
 return F ** 2 == b.Cv ** 2 * (Pi ** 2 - Po ** 2) * fun ** 2

[docs]@declare_process_block_class("HelmValve")
class HelmValveData(BalanceBlockData):
 """
 Basic adiabatic 0D valve model. This inherits the balance block to get
 a lot of unit model boilerplate and the mass balance, enegy balance and
 pressure equations. This model is intended to be used only with Helmholtz
 EOS property pacakges in mixed or single phase mode with P-H state vars.

 Since this inherits BalanceBlockData, and only operates in steady-state or
 pseudo-steady-state (for dynamic models) the following mass, energy and
 pressure equations are implicitly writen.

 1) Mass Balance:
 0 = flow_mol_in[t] - flow_mol_out[t]
 2) Energy Balance:
 0 = (flow_mol[t]*h_mol[t])_in - (flow_mol[t]*h_mol[t])_out
 3) Pressure:
 0 = P_in[t] + deltaP[t] - P_out[t]
 """

 CONFIG = BalanceBlockData.CONFIG()
 # For dynamics assume pseudo-steady-state
 CONFIG.dynamic = False
 CONFIG.get("dynamic")._default = False
 CONFIG.get("dynamic")._domain = In([False])
 CONFIG.has_holdup = False
 CONFIG.get("has_holdup")._default = False
 CONFIG.get("has_holdup")._domain = In([False])
 # Rest of config to make this function like a turbine
 CONFIG.has_pressure_change = True
 CONFIG.get("has_pressure_change")._default = True
 CONFIG.get("has_pressure_change")._domain = In([True])
 CONFIG.has_work_transfer = False
 CONFIG.get("has_work_transfer")._default = False
 CONFIG.get("has_work_transfer")._domain = In([False])
 CONFIG.has_heat_transfer = False
 CONFIG.get("has_heat_transfer")._default = False
 CONFIG.get("has_heat_transfer")._domain = In([False])
 CONFIG.declare(
 "valve_function",
 ConfigValue(
 default=ValveFunctionType.linear,
 domain=In(ValveFunctionType),
 description="Valve function type, if custom provide an expression rule",
 doc="""The type of valve function, if custom provide an expression rule
with the valve_function_rule argument.
default - ValveFunctionType.linear
Valid values - {
ValveFunctionType.linear,
ValveFunctionType.quick_opening,
ValveFunctionType.equal_percentage,
ValveFunctionType.custom}""",
),
)
 CONFIG.declare(
 "valve_function_callback",
 ConfigValue(
 default=None,
 description="This is a callback that adds a valve function. The "
 "callback function takes the valve bock data argument.",
),
)
 CONFIG.declare(
 "phase",
 ConfigValue(
 default="Vap",
 domain=In(("Vap", "Liq")),
 description='Expected phase of fluid in valve in {"Liq", "Vap"}',
),
)

[docs] def build(self):
 """
 Add model equations to the unit model. This is called by a default block
 construnction rule when the unit model is created.
 """
 super().build() # Basic unit model build/read config
 config = self.config # shorter config pointer

 # The thermodynamic expression writer object, te, writes expressions
 # including external function calls to calculate thermodynamic quantities
 # from a set of state variables.
 _assert_properties(config.property_package)
 te = ThermoExpr(blk=self, parameters=config.property_package)

 self.valve_opening = pyo.Var(
 self.flowsheet().config.time,
 initialize=1,
 doc="Fraction open for valve from 0 to 1",
)
 self.Cv = pyo.Var(
 initialize=0.1,
 doc="Valve flow coefficent, for vapor "
 "[mol/s/Pa] for liquid [mol/s/Pa]",
 units=pyo.units.mol/pyo.units.s/pyo.units.Pa
)
 #self.Cv.fix()

 # set up the valve function rule. I'm not sure these matter too much
 # for us, but the options are easy enough to provide.
 vfcb = self.config.valve_function_callback
 vfselect = self.config.valve_function
 if vfselect is not ValveFunctionType.custom and vfcb is not None:
 _log.warning(f"A valve function callback was provided but the valve "
 "function type is not custom.")

 if vfselect == ValveFunctionType.linear:
 _linear_callback(self)
 elif vfselect == ValveFunctionType.quick_opening:
 _quick_callback(self)
 elif vfselect == ValveFunctionType.equal_percentage:
 _equal_percentage_callback(self)
 else:
 if vfcb is None:
 raise ConfigurationError(
 "No custom valve function callback provided")
 vfcb(self)

 if self.config.phase == "Liq":
 rule = _liquid_pressure_flow_rule
 else:
 rule = _vapor_pressure_flow_rule

 self.pressure_flow_equation = pyo.Constraint(
 self.flowsheet().config.time, rule=rule
)

 def _get_performance_contents(self, time_point=0):
 """This returns a dictionary of quntities to be used in IDAES unit model
 report generation routines.
 """
 pc = super()._get_performance_contents(time_point=time_point)
 return pc

[docs] def initialize(
 self,
 outlvl=idaeslog.NOTSET,
 solver="ipopt",
 optarg={"tol": 1e-6},
):
 """
 For simplicity this initialization requires you to set values for the
 efficency, inlet, and one of pressure ratio, pressure change or outlet
 pressure.
 """
 init_log = idaeslog.getInitLogger(self.name, outlvl, tag="unit")
 solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="unit")
 # Set solver options
 solver = pyo.SolverFactory(solver)
 solver.options = optarg
 # Store original specification so initialization doesn't change the model
 # This will only resore the values of varaibles that were originally fixed
 sp = StoreSpec.value_isfixed_isactive(only_fixed=True)
 istate = to_json(self, return_dict=True, wts=sp)
 # Check for alternate pressure specs
 for t in self.flowsheet().config.time:
 if self.outlet.pressure[t].fixed:
 self.deltaP[t].fix(pyo.value(
 self.outlet.pressure[t] - self.inlet.pressure[t]))
 self.outlet.pressure[t].unfix()
 elif self.deltaP[t].fixed:
 # No outlet pressure specified guess a small pressure drop
 self.outlet.pressure[t] = pyo.value(
 self.inlet.pressure[t] + self.deltaP[t])

 self.inlet.fix()
 self.outlet.unfix()
 for t, v in self.deltaP.items():
 if v.fixed:
 self.inlet.flow_mol[t].unfix()

 with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
 res = solver.solve(self, tee=slc.tee)

 from_json(self, sd=istate, wts=sp)

 def calculate_scaling_factors(self):
 super().calculate_scaling_factors()

 for t, c in self.pressure_flow_equation.items():
 s = iscale.get_scaling_factor(
 self.control_volume.properties_in[t].flow_mol)
 s = s ** 2
 iscale.constraint_scaling_transform(c, s)

 idaes.surrogate.pysmo.kriging

 Source code for idaes.surrogate.pysmo.kriging

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

Imports from the python standard library
import os.path
import pprint
Imports from third parties
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import pickle
from pyomo.core import Param, exp
from scipy.optimize import basinhopping
import scipy.optimize as opt
Imports from IDAES namespace
from idaes.surrogate.pysmo.sampling import FeatureScaling as fs

class MyBounds(object):
 """
 The Class MyBounds tests whether the reguularization parameter value is within the expected range.
 The class is initialized with the preset valies in __init__; the __call__ function returns Booleans indicating whether the regularization parameter value is acceptable.
 The results of the __call__ function is fed into the Basinhopping algorithm using the accept_test parameter.
 """
 def __init__(self, xmax=[1], xmin=[1e-6]):
 self.xmax = np.array(xmax)
 self.xmin = np.array(xmin)

 def __call__(self, **kwargs):
 x = kwargs["x_new"]
 tmax = bool(x[-1] <= self.xmax)
 tmin = bool(x[-1] >= self.xmin)
 return tmax and tmin

[docs]class KrigingModel:
 """
 The KrigingModel class trains a Kriging model for a training data set.

 The class must first be initialized by calling **KrigingModel**. Model training is then carried out by calling the ``training`` method.

 KrigingModel is able to generate either an interpolating or a regressing Kriging model depending on the settings used during initialization..

 Example:

 .. code-block:: python

 # Initialize the class
 >>> d = KrigingModel(training_data, numerical_gradients=True, regularization=True))
 >>> p = d.get_feature_vector()

 # Train Kriging model and predict output for an test data x_test
 >>> d.training()
 >>> predictions = d.predict_output(x_test)

 Args:
 XY_data (NumPy Array or Pandas Dataframe) : The dataset for Kriging training. **XY_data** is expected to contain both the features (X) and output (Y) information, with the output values (Y) in the last column.

 Further details about the optional inputs may be found under the ``__init__`` method.

 """

[docs] def __init__(self, XY_data, numerical_gradients=True, regularization=True, fname=None, overwrite=False):
 """
 Initialization of **KrigingModel** class.

 Args:
 XY_data (NumPy Array or Pandas Dataframe) : The dataset for Kriging training. **XY_data** is expected to contain feature and output data, with the output values (y) in the last column.

 Keyword Args:
 numerical_gradients(bool) : Whether or not numerical gradients should be used in training. This choice determines the algorithm used to solve the problem.

 - numerical_gradients = True: The problem is solved with BFGS using central differencing with a step size of :math:`10^{-6}` to evaluate numerical gradients.
 - numerical_gradients = False: The problem is solved with Basinhopping, a stochastic optimization algorithm.

 regularization(bool) : This option determines whether or not regularization is considered during Kriging training. Default is True.

 - When regularization is turned off, the model generates an interpolating kriging model.

 Returns:
 self object with the input information and settings.

 Raises:
 ValueError: - The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

 Exception: - numerical_gradients is not boolean

 Exception: - regularization is not boolean

 Example:

 .. code-block:: python

 # Initialize Kriging class with no numerical gradients - solution algorithm will be Basinhopping
 >>> d = KrigingModel(XY_data, numerical_gradients=False)

 """
 if not isinstance(overwrite, bool):
 raise Exception('overwrite must be boolean.')
 self.overwrite = overwrite
 if fname is None:
 fname = 'solution.pickle'
 self.filename = 'solution.pickle'
 elif not isinstance(fname, str) or os.path.splitext(fname)[-1].lower() != '.pickle':
 raise Exception('fname must be a string with extension ".pickle". Please correct.')
 if os.path.exists(fname) and overwrite is True: # Explicit overwrite done by user
 print('Warning:', fname, 'already exists; previous file will be overwritten.\n')
 self.filename = fname
 elif os.path.exists(fname) and overwrite is False: # User is not overwriting
 self.filename = os.path.splitext(fname)[0]+'_v_'+ pd.Timestamp.today().strftime("%m-%d-%y_%H%M%S") +'.pickle'
 print('Warning:', fname, 'already exists; results will be saved to "', self.filename,'".\n')
 # self.filename = 'solution.pickle'
 elif os.path.exists(fname) is False:
 self.filename = fname

 # Check data types and shapes
 if isinstance(XY_data, pd.DataFrame):
 xy_data = XY_data.values
 self.x_data_columns = list(XY_data.columns)[:-1]
 elif isinstance(XY_data, np.ndarray):
 xy_data = XY_data
 self.x_data_columns = list(range(XY_data.shape[1] - 1))
 else:
 raise ValueError('Pandas dataframe or numpy array required for "XY_data".')

 self.x_data = xy_data[:, :-1].reshape(xy_data.shape[0], xy_data.shape[1]-1)
 self.y_data = xy_data[:, -1].reshape(xy_data.shape[0], 1)
 self.num_vars = self.x_data.shape[1] + 1 # thetas and reg parameter only
 x_data_scaled, self.x_data_min, self.x_data_max = fs.data_scaling_minmax(self.x_data)
 self.x_data_scaled = x_data_scaled.reshape(self.x_data.shape)

 if isinstance(numerical_gradients, bool):
 self.num_grads = numerical_gradients
 else:
 raise Exception('numerical_gradients must be boolean.')

 if isinstance(regularization, bool):
 self.regularization = regularization
 else:
 raise Exception('Choice of regularization must be boolean.')

 # Results
 self.optimal_weights = None
 self.optimal_p = None
 self.optimal_mean = None
 self.optimal_variance = None
 self.regularization_parameter = None
 self.optimal_covariance_matrix = None
 self.covariance_matrix_inverse = None
 self.optimal_y_mu = None
 self.output_predictions = None
 self.training_R2 = None
 self.training_rmse = None

 @staticmethod
 def covariance_matrix_generator(x, theta, reg_param, p):
 """
 The covariance_matrix_generator method generates the regularized co-variance matrix for a Kriging model

 Args:
 x : scaled features data
 theta : Kriging weights
 reg_param : regularization parameter
 p : Kriging exponent, fixed at 2 for smoothness.

 Returns:
 cov_matrix : Regularized co-variance matrix

 """
 distance_matrix = np.zeros((x.shape[0], x.shape[0]))
 for i in range(0, x.shape[0]):
 distance_matrix[i, :] = (np.matmul(((np.abs(x[i, :] - x)) ** p), theta)).transpose()
 cov_matrix = np.exp(-1 * distance_matrix)
 cov_matrix = cov_matrix + reg_param * np.eye(cov_matrix.shape[0]) # Regularization parameter addition, see Forrester book
 return cov_matrix

 @staticmethod
 def covariance_inverse_generator(x):
 """
 The covariance_inverse_generator method generates the inverse of the regularized co-variance matrix for a Kriging model

 Args:
 x : Regularized co-variance matrix

 Returns:
 inverse_x : Inverse of regularized co-variance matrix

 """
 try:
 inverse_x = np.linalg.inv(x)
 except np.linalg.LinAlgError as LAE:
 inverse_x = np.linalg.pinv(x)
 return inverse_x

 @staticmethod
 def kriging_mean(cov_inv, y):
 """
 The kriging_mean method calculates the MLE estimate of the mean.

 Args:
 cov_inv (NumPy Array) : Inverse of the co-variance matrix
 y (NumPy Array) : Output values of the training data

 Returns:
 kriging_mean : MLE estimate of the Kriging mean

 Reference:
 [1] Forrester et al.'s book "Engineering Design via Surrogate Modelling: A Practical Guide",
 https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

 """
 ones_vec = np.ones((y.shape[0], 1))
 kriging_mean = np.matmul(np.matmul(ones_vec.transpose(), cov_inv), y) / np.matmul(np.matmul(ones_vec.transpose(), cov_inv), ones_vec)
 # kriging_mean = np.matmul(ones_vec.transpose(), np.matmul(cov_inv, y)) / np.matmul(ones_vec.transpose(), np.matmul(cov_inv, ones_vec))
 return kriging_mean

 @staticmethod
 def y_mu_calculation(y, mu):
 """
 The y_mu_calculation method calculates the deviation of each output value from the MLE estimate of the mean, mu

 """
 y_mu = y - mu * np.ones((y.shape[0], 1))
 return y_mu

 @staticmethod
 def kriging_sd(cov_inv, y_mu, ns):
 """
 The kriging_sd method calculates the MLE estimate of the Kriging variance.

 Args:
 cov_inv (NumPy Array) : Inverse of the co-variance matrix
 y_mu (NumPy Array) : Deviation of y from the Kriging mean estimate (y-mean)

 Returns:
 kriging_sd : MLE estimate of the Kriging variance

 Reference:
 [1] Forrester et al.'s book "Engineering Design via Surrogate Modelling: A Practical Guide",
 https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

 """
 sigma_sq = np.matmul(np.matmul(y_mu.transpose(), cov_inv), y_mu) / ns
 # sigma_sq = np.matmul(y_mu.transpose(), np.matmul(cov_inv, y_mu)) / ns
 return sigma_sq

 @staticmethod
 def print_fun(x, f, accepted):
 print("at minimum %.4f accepted %d" % (f, int(accepted)))

 def objective_function(self, var_vector, x, y, p):
 """
 The objective_function method calculates the concentrated likelihood function

 Args:
 var_vector(NumPy Array) : Numpy array containing the Kriging paramaters (Kriging weights and regularization parameter)
 x(NumPy Array) : Scaled version of input features/variables
 y(NumPy Array) : Output variable y (unscaled)
 p(float) : Kriging model exponent (fixed to 2) to ensure model smoothness

 Returns:
 conc_log_like(float) : Concentrated likelihood value. Function incurs a large penalty (10000) when co-variance matrix is non-positive definite

 Reference:
 [1] Forrester et al.'s book "Engineering Design via Surrogate Modelling: A Practical Guide",
 https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

 """
 theta = var_vector[:-1]
 reg_param = var_vector[-1]
 theta = 10 ** theta # Assumes log(theta) provided
 ns = y.shape[0]
 cov_mat = self.covariance_matrix_generator(x, theta, reg_param, p)
 try: # Check Cholesky factorization
 L = np.linalg.cholesky(cov_mat)
 lndetcov = 2 * np.sum(np.log(np.abs(np.diag(L)))) # Approximation to 2nd term from Forrester book, making use of the Ch. factorization
 cov_inv = self.covariance_inverse_generator(cov_mat)
 km = self.kriging_mean(cov_inv, y)
 y_mu = self.y_mu_calculation(y, km)
 ssd = self.kriging_sd(cov_inv, y_mu, ns)
 # log_like = (0.5 * ns * np.log(ssd)) + (0.5 * np.log(np.abs(np.linalg.det(cov_mat))))
 log_like = (0.5 * ns * np.log(ssd)) + (0.5 * lndetcov)
 conc_log_like = log_like[0, 0]
 except: # When Cholesky fails - non-positive definite covariance matrix
 conc_log_like = 1e4
 return conc_log_like

 def numerical_gradient(self, var_vector, x, y, p):
 """
 The numerical_gradient method calculates numerical gradients for the Kriging hyperparameters via central differencing,

 grad(theta) = (f(theta + eps) - f(theta - eps))/(2 * eps)

 Args:
 var_vector(NumPy Array) : Numpy array containing the Kriging paramaters (Kriging weights and regularization parameter)
 x(NumPy Array) : Scaled version of input features/variables
 y(NumPy Array) : Output variable y (unscaled)
 p(float) : Kriging model exponent (fixed to 2) to ensure model smoothness

 Returns:
 grad_vec(NumPy Array) : Array of the gradients of the variables in var_vector

 """
 eps = 1e-6
 grad_vec = np.zeros(len(var_vector),)
 for i in range(0, len(var_vector)):
 var_vector_plus = np.copy(var_vector)
 var_vector_plus[i] = var_vector[i] + eps
 var_vector_minus = np.copy(var_vector)
 var_vector_minus[i] = var_vector[i] - eps
 # of = self.objective_function(var_vector, x, y, p)
 of_plus = self.objective_function(var_vector_plus, x, y, p)
 of_minus = self.objective_function(var_vector_minus, x, y, p)
 grad_current = (of_plus - of_minus) / (2 * eps)
 grad_vec[i,] = grad_current
 if self.regularization is False:
 grad_vec[-1,] = 0
 return grad_vec

 def parameter_optimization(self, p):
 """
 Parameter (theta) optimization using BFGS or Basinhopping algorithm. This is the core of the Kriging Class.
 Algorithm used will depend on whether the numerical_gradients was set to True or False.
 """
 initial_value_list = np.random.randn(self.num_vars - 1,)
 initial_value_list = initial_value_list.tolist()
 initial_value_list.append(1e-4)
 initial_value = np.array(initial_value_list)
 initial_value = initial_value.reshape(initial_value.shape[0], 1)
 # Create bounds for variables. All logthetas btw (-4, 4), reg param between (1e-9, 0.1)
 bounds = []
 for i in range(0, len(initial_value_list)):
 if i == len(initial_value_list) - 1:
 if self.regularization is True:
 bounds.append((1e-6, 0.1))
 else:
 bounds.append((1e-10, 1e-10))
 else:
 bounds.append((-3, 3))
 bounds = tuple(bounds)

 if self.num_grads:
 print('Optimizing kriging parameters using L-BFGS-B algorithm...')
 other_args = (self.x_data_scaled, self.y_data, p)
 #opt_results = opt.minimize(self.objective_function, initial_value, args=other_args, method='L-BFGS-B', jac=self.numerical_gradient, bounds=bounds, options={'gtol': 1e-7}) #, 'disp': True})
 opt_results1 = opt.minimize(self.objective_function, initial_value, args=other_args, method='tnc', jac=self.numerical_gradient, bounds=bounds, options={'gtol': 1e-7})
 opt_results2 = opt.minimize(self.objective_function, initial_value, args=other_args, method='L-BFGS-B', jac=self.numerical_gradient, bounds=bounds, options={'gtol': 1e-7}) # , 'disp': True})
 if opt_results1.fun < opt_results2.fun:
 opt_results = opt_results1
 else:
 opt_results = opt_results2
 else:
 print('Optimizing Kriging parameters using Basinhopping algorithm...')
 other_args = {"args": (self.x_data_scaled, self.y_data, p), 'bounds': bounds}
 # other_args = {"args": (self.x_data, self.y_data, p)}
 mybounds = MyBounds() # Bounds on regularization parameter
 opt_results = basinhopping(self.objective_function, initial_value_list, minimizer_kwargs=other_args, niter=250, disp=True, accept_test=mybounds) # , interval=5)
 return opt_results

 def optimal_parameter_evaluation(self, var_vector, p):
 """
 The optimal_parameter_evaluation method evaluates the values of all the parameters of the final Kriging model.
 For an input set of Kriging parameters var_vector and p, it:

 (1) Generates the covariance matrix by calling covariance_matrix_generator
 (2) Finds the co-variance matrix inverse
 (3) Evaluates the Kriging mean and variance
 (4) Evaluates the deviation of each training point from the Kriging mean

 Args:
 var_vector : Optimal Kriging parameters (weights + regularization parameter)
 p : Krigng exponents

 Returns:
 theta : Optimal Kriging weights for each variable
 reg_param : Optimal regularization parameter
 mean : Final MLE estimate of the mean
 variance : Final MLE estimate of the variance
 cov_mat : Co-variance matrix of the final model
 cov_inv : Inverse of final co-variance matrix
 y_mu : Deviation of each output value in the training data from the Kriging mean.

 """
 theta = var_vector[:-1]
 reg_param = var_vector[-1]
 theta = 10 ** theta # Assumes log(theta) provided. Ensures that theta is always positive
 ns = self.y_data.shape[0]
 cov_mat = self.covariance_matrix_generator(self.x_data_scaled, theta, reg_param, p)
 cov_inv = self.covariance_inverse_generator(cov_mat)
 mean = self.kriging_mean(cov_inv, self.y_data)
 y_mu = self.y_mu_calculation(self.y_data, mean)
 variance = self.kriging_sd(cov_inv, y_mu, ns)
 print('\nFinal results\n================\nTheta:', theta, '\nMean:', mean, '\nRegularization parameter:', reg_param)
 return theta, reg_param, mean, variance, cov_mat, cov_inv, y_mu

 @staticmethod
 def error_calculation(theta, p, mean, cov_inv, y_mu, x, y_data):
 """
 This method calculates the SSE and RMSE errors between the actual and predicted output values,
 ss_error = sum of squared errors / number of samples
 rmse_error = sqrt(sum of squared errors / number of samples)

 Args:
 theta : Kriging weights
 p : Kriging exponents
 mean : MLE estimate of the Kriging mean
 cov_inv : Inverse of the co-variance matrix of the current solution
 y_mu : Deviation of y valuers from the mean estimate
 x : Input test data
 y_data : Actual outputs corresponding to input test data x

 Returns:
 ss_error : The average sum of squared errors
 rmse_error : The root-mean-squared error (RMSE)
 y_prediction : Predicted values of y

 """
 y_prediction = np.zeros((x.shape[0], 1))
 for i in range(0, x.shape[0]):
 cmt = (np.matmul(((np.abs(x[i, :] - x)) ** p), theta)).transpose()
 cov_matrix_tests = np.exp(-1 * cmt)
 y_prediction[i, 0] = mean + np.matmul(np.matmul(cov_matrix_tests.transpose(), cov_inv), y_mu)
 ss_error = (1 / y_data.shape[0]) * (np.sum((y_data - y_prediction) ** 2))
 rmse_error = np.sqrt(ss_error)
 return ss_error, rmse_error, y_prediction

[docs] @staticmethod
 def r2_calculation(y_true, y_predicted):
 """
 ``r2_calculation`` returns the :math:`R^{2}` as a measure-of-fit between the true and predicted values of the output variable.

 Args:
 y_true(NumPy Array) : Vector of actual values of the output variable
 y_predicted(NumPy Array) : Vector of predictions for the output variable based on the surrogate

 Returns:
 float : :math:`R^{2}` measure-of-fit between actual and predicted data

 """
 y_true = y_true.reshape(y_true.shape[0], 1)
 y_predicted = y_predicted.reshape(y_predicted.shape[0], 1)
 input_y_mean = np.mean(y_true, axis=0)
 ss_total = np.sum((y_true - input_y_mean) ** 2)
 ss_residual = np.sum((y_predicted - y_true) ** 2)
 r_square = 1 - (ss_residual / ss_total)
 return r_square

[docs] def predict_output(self, x_pred):
 """
 The ``predict_output`` method generates output predictions for input data x_pred based a previously trained Kriging model.

 Args:
 x_pred(NumPy Array) : Array of designs for which the output is to be evaluated/predicted.

 Returns:
 NumPy Array : Output variable predictions based on the Kriging model.

 """
 x_pred_scaled = ((x_pred - self.x_data_min) / (self.x_data_max - self.x_data_min))
 x_pred = x_pred_scaled.reshape(x_pred.shape)
 if x_pred.ndim == 1:
 x_pred = x_pred.reshape(1, len(x_pred))
 y_pred = np.zeros((x_pred.shape[0], 1))
 for i in range(0, x_pred.shape[0]):
 cmt = (np.matmul(((np.abs(x_pred[i, :] - self.x_data_scaled)) ** self.optimal_p), self.optimal_weights)).transpose()
 cov_matrix_tests = np.exp(-1 * cmt)
 y_pred[i, 0] = self.optimal_mean + np.matmul(np.matmul(cov_matrix_tests.transpose(), self.covariance_matrix_inverse), self.optimal_y_mu)
 return y_pred

[docs] def training(self):
 """
 Main function for Kriging training.

 To train the Kriging model:
 (1) The Kriging exponent :math:`\\tau_{i}` is fixed at 2.
 (2) The optimal Kriging hyperparameters :math:`\\left(\mu,\sigma^{2},\\theta_{1},\ldots,\\theta_{n}\\right)` are evaluated by calling the ``optimal_parameter_evaluation`` method using either BFGS or Basinhopping.
 (3) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the functions ``error_calculation`` and ``self.r2_calculation``
 (4) A results object is generated by calling the ``ResultsReport`` class.

 Returns:
 tuple : self object (**results**) containing the all information about the best Kriging model obtained, including:
 - the Kriging model hyperparameters (**results.optimal_weights**),
 - when relevant, the optimal regularization parameter found :math:`\lambda` (**results.regularization_parameter**),
 - the Kriging mean (**results.optimal_mean**),
 - the Kriging variance (**results.optimal_variance**),
 - the Kriging model regularized co-variance matrix (**results.optimal_covariance_matrix**),
 - the inverse of the co-variance matrix (**results.covariance_matrix_inverse**),
 - the RBF predictions for the training data (**results.output_predictions**),
 - the RMSE of the training output predictions (**results.training_rmse**), and
 - the :math:`R^{2}` value on the training data (**results.R2**)

 """

 # Create p values, for now fixed at p=2. Arraying p makes the code significantly (at least 7x slower)
 p = 2
 # Solve optimization problem
 bh_results = self.parameter_optimization(p)
 # Calculate other variables and parameters
 optimal_theta, optimal_reg_param, optimal_mean, optimal_variance, optimal_cov_mat, opt_cov_inv, optimal_ymu = self.optimal_parameter_evaluation(bh_results.x, p)
 # Training performance
 training_ss_error, rmse_error, y_training_predictions = self.error_calculation(optimal_theta, p, optimal_mean, opt_cov_inv, optimal_ymu, self.x_data_scaled, self.y_data)
 r2_training = self.r2_calculation(self.y_data, y_training_predictions)

 # Return results
 self.optimal_weights = optimal_theta
 self.optimal_p = p
 self.optimal_mean = optimal_mean
 self.optimal_variance = optimal_variance
 self.regularization_parameter = optimal_reg_param
 self.optimal_covariance_matrix = optimal_cov_mat
 self.covariance_matrix_inverse = opt_cov_inv
 self.optimal_y_mu = optimal_ymu
 self.output_predictions = y_training_predictions
 self.training_R2 = r2_training
 self.training_rmse = rmse_error
 self.pickle_save({'model' : self})
 return self

[docs] def generate_expression(self, variable_list):
 """
 The ``generate_expression`` method returns the Pyomo expression for the Kriging model trained.

 The expression is constructed based on the supplied list of variables **variable_list** and the results of the previous Kriging training process.

 Args:
 variable_list(list) : List of input variables to be used in generating expression. This can be the a list generated from the output of ``get_feature_vector``. The user can also choose to supply a new list of the appropriate length.

 Returns:
 Pyomo Expression : Pyomo expression of the Kriging model based on the variables provided in **variable_list**

 """
 t1 = np.array([variable_list])
 phi_var = []
 for i in range(0, self.x_data.shape[0]):
 curr_term = sum(self.optimal_weights[j] * (((t1[0, j] - self.x_data_min[0, j])/(self.x_data_max[0, j] - self.x_data_min[0, j])) - self.x_data_scaled[i, j]) ** self.optimal_p for j in range(0, self.x_data.shape[1]))

 curr_term = exp(-curr_term)
 phi_var.append(curr_term)
 phi_var_array = np.asarray(phi_var)

 phi_inv_times_y_mu = np.matmul(self.covariance_matrix_inverse, self.optimal_y_mu)
 phi_inv_times_y_mu = phi_inv_times_y_mu.reshape(phi_inv_times_y_mu.shape[0],)
 kriging_expr = self.optimal_mean[0,0]
 kriging_expr += sum(w * t for w, t in zip(np.nditer(phi_inv_times_y_mu), np.nditer(phi_var_array, flags=['refs_ok'])))
 return kriging_expr

[docs] def get_feature_vector(self):
 """

 The ``get_feature_vector`` method generates the list of regression features from the column headers of the input dataset.

 Returns:
 Pyomo IndexedParam : An indexed parameter list of the variables supplied in the original data

 """
 p = Param(self.x_data_columns, mutable=True, initialize=0)
 p.index_set().construct()
 p.construct()
 self.feature_list = p
 return p

 def pickle_save(self, solutions):
 """
 The poly_training method saves the results of the run in a pickle object. It saves an object with two elements: the setup (index[0]) and the results (index[1]).
 """
 try:
 filehandler = open(self.filename, 'wb')
 pickle.dump(solutions, filehandler)
 print('\nResults saved in ', str(self.filename))
 except:
 raise IOError('File could not be saved.')

 @staticmethod
 def pickle_load(solution_file):
 """
 pickle_load loads the results of a saved run 'file.obj'.])

 Input arguments:
 solution_file : Pickle object file containing previous solution to be loaded.

 """
 try:
 filehandler = open(solution_file, 'rb')
 return pickle.load(filehandler)
 except:
 raise Exception('File could not be loaded.')

 def parity_residual_plots(self):
 """

 inputs:

 Returns:

 """

 fig1 = plt.figure(figsize=(16, 9), tight_layout=True)
 ax = fig1.add_subplot(121)
 ax.plot(self.y_data, self.y_data, '-')
 ax.plot(self.y_data, self.output_predictions, 'o')
 ax.set_xlabel(r'True data', fontsize=12)
 ax.set_ylabel(r'Surrogate values', fontsize=12)
 ax.set_title(r'Parity plot', fontsize=12)

 ax2 = fig1.add_subplot(122)
 ax2.plot(self.y_data, self.y_data - self.output_predictions, 's', mfc='w', mec='m', ms=6)
 ax2.axhline(y=0, xmin=0, xmax=1)
 ax2.set_xlabel(r'True data', fontsize=12)
 ax2.set_ylabel(r'Residuals', fontsize=12)
 ax2.set_title(r'Residual plot', fontsize=12)

 plt.show()

 return

 def _report(self):
 ## Will only work with Python > 3.5
 variable_headers = self.get_feature_vector()
 var_list = []
 for i in variable_headers:
 var_list.append(variable_headers[i])
 eqn = self.generate_expression(var_list)

 double_line = "=" * 120
 s = (f"\n{double_line}"
 f"\nResults of Kriging run:\n"
 f"\nKriging mean : {self.optimal_mean}\n"
 f"Kriging variance : {self.optimal_variance}\n"
 f"Kriging weights : {self.optimal_weights}\n"
 f"Regularization parameter : {self.regularization_parameter}\n"
 f"Number of terms in Kriging model : {self.optimal_y_mu.size + 1}\n"
 f"\nKriging Expression:\n"
 f"--------------------\n"
 f"\n{eqn}\n"
 f"--------------------------\n"
 f"\nModel training errors:"
 f"\n-----------------------\n"
 f"Mean Squared Error (MSE) : {self.training_rmse ** 2}\n"
 f"Root Mean Squared Error (RMSE) : {self.training_rmse}\n"
 f"Goodness of fit (R2) : {self.training_R2}\n"
 f"\n{double_line}"
)
 return(s)

 def print_report(self):
 s = self._report()
 print(s)

 def _repr_pretty_(self, p, cycle=False):
 s = self._report()
 p.text(s)

 idaes.surrogate.pysmo.polynomial_regression

 Source code for idaes.surrogate.pysmo.polynomial_regression

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

Imports from the python standard library
from __future__ import division
#from builtins import int, str
import os.path
import pprint
import random
import warnings
Imports from third parties
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import pickle
from pyomo.environ import *
from pyomo.core.expr.visitor import replace_expressions
import scipy.optimize as opt
from scipy.special import comb as comb
from six import string_types
Imports from IDAES namespace
from idaes.surrogate.pysmo.utils import NumpyEvaluator

"""
The purpose of this file is to perform polynomial regression in Pyomo.
This will be done in two stages. First, a sampling plan will
be used to select samples for generating a surrogate model.
In the second stage, the surrogate model is constructed by fitting to
different order polynomials. Long term, an iterative adaptive sampling
approach will be incorporated for model improvement.
Cross-validation is used to select the best model.

FeatureScaling:
Simple script for scaling and un-scaling the input data

Polynomial Regression:
Three approaches are implemented for evaluating polynomial coefficients -
a. Moore-Penrose maximum likelihood method (Forrester et al.)
b. Optimization using the BFGS algorithm.
c. Optimization with Pyomo
The Pyomo optimization approach is enabled as the default at this time.
"""

[docs]class FeatureScaling:
 """

 A class for scaling and unscaling input and output data. The class contains two main methods: ``data_scaling`` and ``data_unscaling``
 """
 def __init__(self):
 pass

[docs] @staticmethod
 def data_scaling(data):
 """
 ``data_scaling`` performs column-wise minimax scaling on the input dataset.

 Args:
 data : The input data set to be scaled. Must be a numpy array or dataframe.

 Returns:
 (tuple): tuple containing:
 - **scaled_data** : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].
 - **data_minimum** : A 2-D row vector containing the column-wise minimums of the input data.
 - **data_maximum** : A 2-D row vector containing the column-wise maximums of the input data.

 Raises:
 TypeError:
 Raised when the input data is not a numpy array or dataframe

 """
 # Confirm that data type is an array or DataFrame
 if isinstance(data, np.ndarray):
 input_data = data
 data_headers = []
 elif isinstance(data, pd.DataFrame):
 input_data = data.values
 data_headers = data.columns.values.tolist()
 else:
 raise TypeError('original_data_input: Pandas dataframe or numpy array required.')

 if input_data.ndim == 1:
 input_data = input_data.reshape(len(input_data), 1)
 data_minimum = np.min(input_data, axis=0)
 data_maximum = np.max(input_data, axis=0)
 scale = data_maximum - data_minimum
 scale[scale == 0.0] = 1.0
 scaled_data = (input_data - data_minimum)/scale
 # scaled_data = (input_data - data_minimum)/(data_maximum - data_minimum)
 data_minimum = data_minimum.reshape(1, data_minimum.shape[0])
 data_maximum = data_maximum.reshape(1, data_maximum.shape[0])

 if len(data_headers) > 0:
 scaled_data = pd.DataFrame(scaled_data, columns=data_headers)

 return scaled_data, data_minimum, data_maximum

[docs] @staticmethod
 def data_unscaling(x_scaled, x_min, x_max):
 """

 ``data_unscaling`` performs column-wise un-scaling on the a minmax-scaled input dataset.

 Args:
 x_scaled (NumPy Array) : Data to be un-scaled. Data values should be between 0 and 1.
 x_min (NumPy vector) : :math:`n \\times 1` vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.
 x_max (NumPy vector) : :math:`n \\times 1` vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

 Returns:
 NumPy Array : A 2-D numpy array containing the scaled data, :math:`x_{min} + x_{scaled} * (x_{max} - x_{min})`

 Raises:
 IndexError: Raised when the dimensions of the arrays are inconsistent.

 """
 # Check if it can be evaluated. Will return index error if dimensions are wrong
 if x_scaled.ndim == 1: # Check if 1D, and convert to 2D if required.
 x_scaled = x_scaled.reshape(len(x_scaled), 1)
 if (x_scaled.shape[1] != x_min.size) or (x_scaled.shape[1] != x_max.size):
 raise IndexError('Dimensionality problems with data for un-scaling.')
 unscaled_data = x_min + x_scaled * (x_max - x_min)
 return unscaled_data

[docs]class PolynomialRegression:
 """
	
 The PolynomialRegression class performs polynomial regression on a training data set.

 The class must first be initialized by calling PolynomialRegression. Regression is then carried out by calling ``training``.

 For a given dataset with :math:`n` features :math:`x_{1},x_{2},\ldots,x_{n}`, Polyregression is able to consider three types of basis functions:
 (a) Mononomial terms (:math:`x_{i}^{p},p \leq 10`) for all individual features. The maximum degree to be considered can be set by the user (**maximum_polynomial_order**)
 (b) All first order interaction terms :math:`x_{1}x_{2}`, :math:`x_{1}x_{3}` etc. This can be turned on or off by the user (set **multinomials**)
 (c) User defined input features, e.g. :math:`\sin(x_{1})`. These must be Pyomo functions and should be provided as a list by the user calling ``set_additional_terms`` method before the polynomial training is done.

 Example:

 .. code-block:: python

 # Initialize the class and set additional terms
 >>> d = PolynomialRegression(full_data, training_data, maximum_polynomial_order=2, max_iter=20, multinomials=1, solution_method='pyomo')
 >>> p = d.get_feature_vector()
 >>> d.set_additional_terms([...extra terms...])

 # Train polynomial model and predict output for an test data x_test
 >>> d.training()
 >>> predictions = d.predict_output(x_test)

 Args:
 regression_data_input(NumPy Array of Pandas Dataframe) : The dataset for regression training. It is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.
 original_data_input(NumPy Array of Pandas Dataframe) : If **regression_data_input** was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.
 When additional data is not available, the same data supplied for training_data can be supplied - this tells the algorithm not to carry out adaptive sampling.
 maximum_polynomial_order(int): The maximum polynomial order to be considered.

 Further details about the optional inputs may be found under the ``__init__`` method.
	
 """

[docs] def __init__(self, original_data_input, regression_data_input, maximum_polynomial_order, number_of_crossvalidations=None,
 no_adaptive_samples=None, training_split=None, max_fraction_training_samples=None, max_iter=None, solution_method=None, multinomials=None, fname=None, overwrite=False):
 """
 Initialization of PolynomialRegression class.

 Args:
 regression_data_input(NumPy Array of Pandas Dataframe) : The dataset for regression training. It is expected to contain features and output data, with the output values (Y) in the last column.
 original_data_input(NumPy Array of Pandas Dataframe) : If **regression_data_input** was drawn from a larger dataset by some sampling approach, the larger dataset may be provided here.
 maximum_polynomial_order(int) : The maximum polynomial order to be considered.

 Keyword Args:
 number_of_crossvalidations(int) : The number of polynomial fittings and cross-validations to be carried out for each polynomial function/expression. Must be a positive, non-zero integer. Default=3.

 training_split(float): The training/test split to be used for regression_data_input. Must be between 0 and 1. Default = 0.75

 solution_method(str): The method to be used for solving the least squares optimization problem for polynomial regression. Three options are available:

 (a) "MLE" : The mle (maximum likelihood estimate) method solves the least squares problem using linear algebra. Details of the method may be found in Forrester et al.
 (b) "BFGS" : This approach solves the least squares problem using scipy's BFGS algorithm.
 (c) "pyomo": This option solves the optimization problem in pyomo with IPOPT as solver. This is the default option.

 multinomials(bool): This option determines whether or not multinomial terms are considered during polynomial fitting. Takes 0 for No and 1 for Yes. Default = 1.

 Returns:
 self object containing all the input information.

 Raises:
 ValueError:
 - The input datasets (**original_data_input** or **regression_data_input**) are of the wrong type (not Numpy arrays or Pandas Dataframes)

 Exception:
 * **maximum_polynomial_order** is not a positive, non-zero integer or **maximum_polynomial_order** is higher than the number of training samples available
 Exception:
 * **solution_method** is not 'mle', 'pyomo' or 'bfgs
 Exception:
 - **multinomials** is not binary (0 or 1)
 Exception:
 - **training_split** is not between 0 and 1
 Exception:
 - **number_of_crossvalidations** is not a positive, non-zero integer
 Exception:
 - **max_fraction_training_samples** is not between 0 and 1
 Exception:
 - **no_adaptive_samples** is not a positive, non-zero integer
 Exception:
 - **max_iter** is not a positive, non-zero integer

 warnings.warn:
 - When the number of cross-validations is too high, i.e. number_of_crossvalidations > 10
 """

 print('\n===========================Polynomial Regression===\n')
 # Checks if fname is provided or exists in the path
 if not isinstance(overwrite, bool):
 raise Exception('overwrite must be boolean.')
 self.overwrite = overwrite
 if fname is None:
 fname = 'solution.pickle'
 self.filename = 'solution.pickle'
 elif not isinstance(fname, str) or os.path.splitext(fname)[-1].lower() != '.pickle':
 raise Exception('fname must be a string with extension ".pickle". Please correct.')
 if os.path.exists(fname) and overwrite is True: # Explicit overwrite done by user
 print('Warning:', fname, 'already exists; previous file will be overwritten.\n')
 self.filename = fname
 elif os.path.exists(fname) and overwrite is False: # User is not overwriting
 self.filename = os.path.splitext(fname)[0]+'_v_'+ pd.Timestamp.today().strftime("%m-%d-%y_%H%M%S") +'.pickle'
 print('Warning:', fname, 'already exists; results will be saved to "', self.filename,'".\n')
 # self.filename = 'solution.pickle'
 elif os.path.exists(fname) is False:
 self.filename = fname

 if isinstance(original_data_input, pd.DataFrame):
 original_data = original_data_input.values
 # FIXME: if we add an option to specify the response column, this needs to change
 self.regression_data_columns = list(original_data_input.columns)[:-1]
 elif isinstance(original_data_input, np.ndarray):
 original_data = original_data_input
 self.regression_data_columns = list(range(original_data_input.shape[1]-1))
 else:
 raise ValueError('original_data_input: Pandas dataframe or numpy array required.')

 if isinstance(regression_data_input, pd.DataFrame):
 regression_data = regression_data_input.values
 elif isinstance(regression_data_input, np.ndarray):
 regression_data = regression_data_input
 else:
 raise ValueError('regression_data_input: Pandas dataframe or numpy array required.')

 # Check for potential dimensionality problems in input data
 if regression_data.shape[0] > original_data.shape[0]:
 raise Exception('The sampled data has more entries than the original dataset.')
 elif regression_data.shape[1] != original_data.shape[1]:
 raise Exception('Dimensional discrepancies in the dimensions of the original and regression datasets.')
 elif (regression_data.shape[1] == 1) or (original_data.shape[1] == 1):
 raise Exception('Input data requires at least two dimensions (X and Y data).')

 self.original_data = original_data
 self.regression_data = regression_data

 if number_of_crossvalidations is None:
 print('The number of cross-validation cases (3) is used.')
 number_of_crossvalidations = 3
 elif number_of_crossvalidations > 10:
 warnings.warn('The number of cross-validations entered is large. The simulation may take a while to run')
 self.number_of_crossvalidations = number_of_crossvalidations

 if not isinstance(maximum_polynomial_order, int):
 raise Exception('Maximum polynomial order must be an integer')
 elif maximum_polynomial_order > 10:
 warnings.warn('The maximum allowed polynomial order is 10. Value has been adjusted to 10.')
 maximum_polynomial_order = 10
 self.max_polynomial_order = maximum_polynomial_order

 self.number_of_x_vars = regression_data.shape[1] - 1

 if training_split is None:
 print('The default training/cross-validation split of 0.75 is used.')
 training_split = 0.75
 elif training_split >= 1 or training_split <= 0:
 raise Exception('Fraction of samples used for training must be between 0 and 1')
 self.fraction_training = training_split

 if no_adaptive_samples is None:
 no_adaptive_samples = 4
 self.no_adaptive_samples = no_adaptive_samples

 self.number_of_samples = regression_data.shape[0]

 if max_fraction_training_samples is None:
 max_fraction_training_samples = 0.5
 elif max_fraction_training_samples > 1 or max_fraction_training_samples < 0:
 raise Exception('The fraction for the maximum number of training samples must be between 0 and 1')
 self.max_fraction_training_samples = max_fraction_training_samples

 if (regression_data.shape[0] < original_data.shape[0]) and max_iter is None:
 max_iter = 10
 if regression_data.shape[0] == original_data.shape[0] or no_adaptive_samples == 0:
 print('No iterations will be run.')
 max_iter = 0
 self.max_iter = max_iter

 # Ensure all other key variables are integers
 if not isinstance(self.number_of_crossvalidations, int):
 raise Exception('Number of cross-validations must be an integer')
 elif not isinstance(self.no_adaptive_samples, int):
 raise Exception('Number of adaptive samples must be an integer')
 elif not isinstance(self.max_iter, int):
 raise Exception('Maximum number of iterations must be an integer')
 elif self.max_polynomial_order >= regression_data.shape[0]:
 raise Exception('max_polynomial_order too high for the number of samples supplied')

 if (self.max_polynomial_order <= 0) or (self.number_of_crossvalidations <= 0):
 raise Exception('maximum_polynomial_order and number_of_crossvalidations must be positive, non-zero integers')
 elif (self.no_adaptive_samples < 0) or (self.max_iter < 0):
 raise Exception('no_adaptive_samples and max_iter must be positive')

 if solution_method is None:
 solution_method = 'pyomo'
 self.solution_method = solution_method
 print('Default parameter estimation method is used.')
 elif not isinstance(solution_method, string_types):
 raise Exception('Invalid solution method. Must be of type <str>.')
 elif (solution_method.lower() == 'mle') or (solution_method.lower() == 'pyomo') or (solution_method.lower() == 'bfgs'):
 solution_method = solution_method.lower()
 self.solution_method = solution_method
 else:
 raise Exception('Invalid parameter estimation method entered. Select one of maximum likelihood (solution_method="mle"), Pyomo optimization (solution_method="pyomo") or BFGS (solution_method="bfgs") methods. ')
 print('Parameter estimation method: ', self.solution_method, '\n')

 if multinomials is None:
 self.multinomials = 1
 elif multinomials == 1:
 self.multinomials = 1
 elif multinomials == 0:
 self.multinomials = 0
 else:
 raise Exception('Multinomial must be binary: input "1" for "Yes" and "0" for "No". ')

 self.feature_list = []
 self.additional_term_expressions = []

 # Results
 self.optimal_weights_array = None
 self.final_polynomial_order = None
 self.errors = None
 self.number_of_iterations = None
 self.iteration_summary = None
 self.additional_features_data = None
 self.final_training_data = None
 self.dataframe_of_optimal_weights_polynomial = None
 self.dataframe_of_optimal_weights_extra_terms = None
 self.extra_terms_feature_vector = None
 self.fit_status = None

 def training_test_data_creation(self, additional_features=None):

 """

 The training_test_data_creation splits data into training and test data sets.

 Given the number of cross-validations and the required training/test split, it:
 - calculates the number of training samples as num_training = int(training_split x total number of samples),
 - shuffles regression_data number_of_crossvalidations times,
 - splits off the top num_training samples in each shuffle as individual training sets, and
 - takes the bottom (total number of samples - num_training) samples in each shuffle to create its corresponding test dataset.

 Args:
 self: containing the number of training samples (self.number_of_samples), training/test split (self.fraction_training) and the required number of cross-validations (self.number_of_crossvalidations).

 Keyword Args:
 additional_features(NumPy Array): A numpy array containing additional features provided by the user. When supplied, additional_features is column-appended to self.regression data before the training and tests sets are created.

 Returns:
 - training_data: Dictionary containing all the training datasets created.
			
				* When no additional features have been specified, the dictionary has a length of number_of_crossvalidations.
				* When additional features have been specified, the dictionary has a length of 2 * number_of_crossvalidations, with the training data for additional_features stored separately.

 - cross_val_data: Dictionary containing all the test datasets created. Dictionary will have the same length as training_data.

 """
 training_data = {}
 cross_val_data = {}
 num_training = int(np.around(self.number_of_samples * self.fraction_training))
 if num_training == 0:
 raise Exception('The inputted of fraction_training is too low.')
 elif num_training == self.number_of_samples:
 raise Exception('The inputted of fraction_training is too high.')
 for i in range(1, self.number_of_crossvalidations + 1):
 np.random.seed(i)
 if additional_features is None:
 A = np.zeros((self.regression_data.shape[0], self.regression_data.shape[1]))
 A[:, :] = self.regression_data
 np.random.shuffle(A) # Shuffles the rows of the regression data randomly
 training_data["training_set_" + str(i)] = A[0:num_training, :]
 cross_val_data["test_set_" + str(i)] = A[num_training:, :]
 elif additional_features is not None:
 A = np.zeros((self.regression_data.shape[0], self.regression_data.shape[1] + additional_features.shape[1]))
 A[:, 0:self.regression_data.shape[1]] = self.regression_data
 A[:, self.regression_data.shape[1]:] = additional_features
 np.random.shuffle(A) # Shuffles the rows of the regression data randomly
 training_data["training_set_" + str(i)] = A[0:num_training, :self.regression_data.shape[1]]
 training_data["training_extras_" + str(i)] = A[0:num_training, self.regression_data.shape[1]:]
 cross_val_data["test_set_" + str(i)] = A[num_training:, :self.regression_data.shape[1]]
 cross_val_data["test_extras_" + str(i)] = A[num_training:, self.regression_data.shape[1]:]
 return training_data, cross_val_data

 @classmethod
 def polygeneration(self, polynomial_order, multinomials, x_input_train_data, additional_x_training_data=None):
 """

 This function generates a x-variable vector for the required polynomial order. This is done in four stages:
 - First, generates the pure mononomials are generated by increasing the polynomial degree by 1 until polynomial_order is reached.
 - Next, the first-order multinomials are generated if self.multinomials = 1. This is implemented in suci a way that each multinomial appears only once, i.e. x_i.x_j = x_j.x_i. The multinomial columns are appended to the enx of the array.
 - Next, a column of ones is inserted in the first column space to represent the constant term.
 - Finally, the columns containing the extra terms supplied by the user are added to the end of the array (when available).

 Thus, the format of the output array is [constant, nmononomials, multinomials, extra terms]

 Args:
 polynomial_order(int): The polynomial order currently under consideration
 multinomials(bool): Boolean variable that determines whether or not multinomial terms are considered during polynomial fitting.
 x_input_train_data(NumPy Array): Input data containing features supplied by the user

 Keyword Args:
 additional_x_training_data(NumPy Array): Array containing additional features supplied by the user

 Returns:
 x_train_data(NumPy Array): Array containing all polynomial features to be considered during regression

 Example:
			if polynomial_order=2, numtinomials=1, x_input_train_data = [x1, x2, x3], additional_x_training_data = [sin(x1), tanh(x3)], then x_train_data will contain the regression features
 x_train_data = [1, x1, x2, x3, x1^2, x2^2, x3^2, x1.x2, x1.x3, x2.x3, sin(x1), tanh(x3)]

 """
 N = x_input_train_data.shape[0]
 x_train_data = x_input_train_data
 # Generate the constant and pure power terms
 for i in range(2, polynomial_order + 1):
 x_train_data = np.concatenate((x_train_data, x_input_train_data ** i), axis=1)

 if multinomials == 1:
 # Next, generate first order multinomials
 for i in range(0, x_input_train_data.shape[1]):
 for j in range(0, i):
 x_train_data = np.concatenate((x_train_data, (x_input_train_data[:, i] * x_input_train_data[:, j]).reshape(N,1)), axis=1)

 # Concatenate to generate full dataset.
 x_train_data = np.concatenate((np.ones((N, 1)), x_train_data), axis=1)

 # Add additional features if they have been provided:
 if additional_x_training_data is not None:
 x_train_data = np.concatenate((x_train_data, additional_x_training_data), axis=1)

 return x_train_data

 @staticmethod
 def cost_function(theta, x, y, reg_parameter):
 """

 This function is an implementation of the cost function for linear regression:
 cost = [sum of square errors over m samples / (2 * m)] + [reg_parameter * theta*2 / (2 * m)]

 This is the objective function for the BFGS optimization problem.

 Args:
 theta : polynomial coefficients/weights, (n x 1) in size
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)
 reg_parameter: reqularization parameter, set to

 Returns:
 cost_value : the cost value for the fit, the objective value of the optimization problem

 """

 y = y.reshape(y.shape[0], 1)
 y_prediction = np.matmul(x, theta)
 y_prediction = y_prediction.reshape(y_prediction.shape[0], 1)
 cost_value = (0.5 / x.shape[0]) * (np.sum((y - y_prediction) ** 2))
 cost_penalty = (reg_parameter * 0.5 / x.shape[0]) * (np.sum(theta ** 2))
 cost_value = cost_value + cost_penalty
 return cost_value

 @staticmethod
 def gradient_function(theta, x, y, reg_parameter):
 """

 This function is an implementation of the gradient function for linear regression:
 if
 cost = [(A.x - y)^2 / 2m] + [reg_parameter * theta*2/ (2 * m)],
 then
 gradient = [((A.x - y)* A) / m] + [reg_parameter * theta/ m]

 This is the gradient function supplied to the BFGS optimization algorithm.

 Args:
 theta : polynomial coefficients/weights, (n x 1) in size
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)
 reg_parameter: reqularization parameter

 Returns:
 grad_value : the cost gradients for the fit, size (n x 1)

 """
 y = y.reshape(y.shape[0], 1)
 y_prediction = np.matmul(x, theta)
 y_prediction = y_prediction.reshape(y_prediction.shape[0], 1)
 t1 = (y_prediction - y) * x
 grad_values = (1 / x.shape[0]) * np.sum(t1, axis=0)
 gradient_penalty = (reg_parameter / x.shape[0]) * theta
 grad_values = grad_values + gradient_penalty
 grad_values = grad_values.reshape(theta.size,)
 return grad_values

 def bfgs_parameter_optimization(self, x, y):
 """
 This function performs parameter optimization using scipy's BFGS algorithm.
 It takes in the functions pre-defined functions cost_function and gradient_function as the cost and gradient functions.

 Args:
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Initialization:
 The regularization parameter and initial weights are set to zero,
 reg_parameter = 0
 init_theta = 0

 Returns:
 theta: The optimal linear regression weights found
			
 """
 init_theta = np.zeros((x.shape[1], 1))
 reg_parameter = 0.0
 other_args = (x, y, reg_parameter)
 theta = opt.fmin_bfgs(self.cost_function, init_theta, fprime=self.gradient_function, args=other_args)
 return theta

 @staticmethod
 def MLE_estimate(x, y):
 """
		
 Maximum likelihood estimate method for solving polynomial regression problems:
		
 If
 Ax = B,
 then
 x = inv_A * B
				
 where the inv_A is called the Moore-Penrose inverse.

 Numpy's pseudoinverse function has been used to calculate the inverse here.

 Args:
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 phi: The optimal linear regression weights found

 For more details about the maximum likelihood estimate methos, see to Forrester et al.

 """
 moore_penrose_inverse = np.linalg.pinv(x) # Moore Penrose inverse of vector x
 phi = np.matmul(moore_penrose_inverse, y)
 return phi

 @staticmethod
 def pyomo_optimization(x, y):
 """
 Pyomo implementation of least squares optimization problem:

 Minimize cost = (y' - y) ^ 2
 subject to: y' = Ax

 The problem is solved within Pyomo's framework using IPOPT as solver.

 Args:
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 phi: The optimal linear regression weights found
 """

 model = ConcreteModel()

 x_data = pd.DataFrame(x)
 y_data = pd.DataFrame(y)

 model.M = Set(initialize=x_data.index.values) # Rows indices passed into set
 model.N = Set(initialize=x_data.columns.values) # x column indices passed into set
 model.P = Set(initialize=y_data.columns.values) # y column index passed into set

 model.x = Param(model.M, model.N, initialize=x_data.stack().to_dict())
 model.y_real = Param(model.M, model.P, initialize=y_data.stack().to_dict())

 # Define variables
 model.theta = Var(model.N, initialize=0.1, domain=Reals)
 model.y_predictions = Var(model.M, model.P, initialize=y_data.stack().to_dict(), domain=Reals)

 # constraint y_p = theta.X
 def xy_product(model, i, k):
 return model.y_predictions[i, k] == sum(model.theta[j] * model.x[i, j] for j in model.N for k in model.P)
 model.x_theta_product = Constraint(model.M, model.P, rule=xy_product, doc='Predicted value calc: y = hx')

 # Cost function - RMSE
 def model_rms_error(model):
 cost_value = (1 / len(model.M)) * sum(
 ((model.y_real[i, k] - model.y_predictions[i, k]) ** 2) for i in model.M for k in model.P)
 return cost_value
 model.prediction_error = Objective(rule=model_rms_error, sense=minimize, doc='Minimum RMSE error')

 instance = model
 opt = SolverFactory("ipopt")
 opt.options['max_iter'] = 10000000
 result = opt.solve(instance) # , tee=True)

 # Convert theta variable into numpy array
 phi = np.zeros((len(instance.theta), 1))
 iterator = 0
 for s in instance.N:
 phi[iterator, 0] = instance.theta[s].value
 iterator += 1
 return phi

 @staticmethod
 def cross_validation_error_calculation(phi, x_test_data, y_test_data):
 """

 This function calculates the average sum of square errors between the actual and predicted output values,
 ss_error = sum of squared errors / number of samples

 Args:
 phi : optimal weight vector obtained by optimization
 x_test_data : vector of features x_test_data
 y_test_data : actual output values associated with

 Returns:
 ss_error : The average sum of squared errors

 """
 y_test_prediction = np.matmul(x_test_data, phi)
 ss_error = (1 / y_test_data.shape[0]) * (np.sum((y_test_data - y_test_prediction) ** 2))
 return ss_error

 def polyregression(self, poly_order, training_data, test_data, additional_x_training_data=None, additional_x_test_data=None):
 """

 Function that performs polynomial regression on a given dataset. It returns the estimated parameters and the fitting errors. It

 - calls the method self.polygeneration to generate the required polynomial/feature array based on the current polynomial order poly_order,
 - calls the pre-selected solution algorithm to solve the least squares problem, and
 - calls the cross_validation_error_calculation method to calculate the training and cross-validation errors.

 Args:
 poly_order(int) : The polynomial order currently being considered - between 1 and max_polynomial_order
 training_data(NumPy Array) : The training data to be regressed
 test_data(NumPy Array) : The test data to be used to cross-validate the polynomial fit

 Keyword Args:
 additional_x_training_data : Array containing additional training features based on additional_features list supplied by the user. Will have same number of rows as training_data.
 additional_x_test_data : Array of additional cross-validation features based on additional_features list supplied by the user. Will have same number of rows as test_data.

 Returns:
 phi_vector : the optimal weight vector for the polynomial considered here, returns zeros when problem is underspecified, i.e number of features > number of training samples.
 training_error : the average SSE estimate in the training dataset, returns Inf when number of features > number of training samples (DoF < 0).
 crossval_error : the average SSE estimate on the cross-validation dataset, returns Inf when number of features > number of training samples (DoF < 0).

 """
 x_training_data = training_data[:, :-1]
 y_training_data = training_data[:, -1]
 x_test_data = test_data[:, :-1]
 y_test_data = test_data[:, -1]
 x_polynomial_data = self.polygeneration(poly_order, self.multinomials, x_training_data, additional_x_training_data)

 # Check that the problem has more samples than features - necessary for fitting. If not, return Infinity.
 if x_polynomial_data.shape[0] >= x_polynomial_data.shape[1]:
 if self.solution_method == "mle":
 phi_vector = self.MLE_estimate(x_polynomial_data, y_training_data.reshape(y_training_data.shape[0], 1))
 elif self.solution_method == "bfgs":
 phi_vector = self.bfgs_parameter_optimization(x_polynomial_data, y_training_data)
 elif self.solution_method == "pyomo":
 phi_vector = self.pyomo_optimization(x_polynomial_data, y_training_data)
 phi_vector = phi_vector.reshape(phi_vector.shape[0], 1) # Pseudo-inverse approach

 x_polynomial_data_test = self.polygeneration(poly_order, self.multinomials, x_test_data, additional_x_test_data)
 training_error = self.cross_validation_error_calculation(phi_vector, x_polynomial_data, y_training_data.reshape(y_training_data.shape[0], 1))
 crossval_error = self.cross_validation_error_calculation(phi_vector, x_polynomial_data_test, y_test_data.reshape(y_test_data.shape[0], 1))

 else:
 phi_vector = np.zeros((x_polynomial_data.shape[1], 1))
 phi_vector[:, 0] = np.Inf
 training_error = np.Inf
 crossval_error = np.Inf

 # print(poly_order, x_polynomial_data.shape[0], x_polynomial_data.shape[1], training_error, crossval_error)

 return phi_vector, training_error, crossval_error

 def surrogate_performance(self, phi_best, order_best, additional_features_array=None):
 """

 This function evaluates the performance of the surrogate model on the entire dataset.
 1. A vector is created to hold the original input data and the predicted y values from the surrogate model is created - comparison_vector
 2. The predicted values from the surrogate model are then evaluated.
 3. The errors on each datapoint(individual error), the mean absolute error and the mean square errors are calculated.
 4. The R-square coefficient is then calculated.
 5. The adjusted R2 is calculated next, taking into account the number of terms in the equation
			
 The comparison vector is sorted based on the performance of the surrogate model in its prediction - best to worst.
 Note that the error on each data point is based on the error maximization function in ALAMO (Cozad et al., Eq. 7)

 """

 comparison_vector = np.zeros((self.original_data.shape[0], self.original_data.shape[1] + 1))
 comparison_vector[:, :self.original_data.shape[1]] = self.original_data[:, :]

 # Create x terms for the whole input data, and evaluate the predicted y's as phi.X.
 x_evaluation_data = self.polygeneration(order_best, self.multinomials, self.original_data[:, 0:self.original_data.shape[1] - 1], additional_features_array)
 y_prediction = np.matmul(x_evaluation_data, phi_best)
 y_prediction = y_prediction.reshape(y_prediction.shape[0], 1)
 comparison_vector[:, self.original_data.shape[1]] = y_prediction[:, 0]

 # Error calculations:
 den = np.max(comparison_vector[:, -2]) - np.min(comparison_vector[:, -2])
 individual_error = ((comparison_vector[:, -1] - comparison_vector[:, -2]) / den) ** 2
 mae_error = (1 / comparison_vector.shape[0]) * np.sum(
 np.abs(comparison_vector[:, -1] - comparison_vector[:, -2]))
 mse_error = (1 / comparison_vector.shape[0]) * np.sum(
 (comparison_vector[:, -1] - comparison_vector[:, -2]) ** 2)
 # R-squared coefficient calculation:
 input_y_mean = np.mean(comparison_vector[:, -2], axis=0)
 ss_total = np.sum((comparison_vector[:, -2] - input_y_mean) ** 2)
 ss_residual = np.sum((comparison_vector[:, -1] - comparison_vector[:, -2]) ** 2)
 r_square = 1 - (ss_residual / ss_total)

 # Sort comparison vector based on error in predictions
 individual_error = individual_error.reshape(individual_error.shape[0], 1)
 comparison_vector = np.append(comparison_vector, individual_error, 1)
 sorted_comparison_vector = comparison_vector[comparison_vector[:, -1].argsort()]

 # Adjusted R_squared
 samp_size = self.original_data.shape[0]
 no_nonzero_terms = np.count_nonzero(phi_best[1:, 0])
 # Evaluate R2_adjusted only if R2>0: Fit is better than mean value. When fit is worse than hor. line, return 0
 if r_square > 0:
 r2_adjusted = 1 - ((1 - r_square) * ((samp_size - 1) / (samp_size - no_nonzero_terms - 1)))
 else:
 r2_adjusted = 0

 return sorted_comparison_vector, mae_error, mse_error, r_square, r2_adjusted

 def results_generation(self, beta, order):
 """
 This function prints the results of the fitting to the screen.
 """
 results_df = pd.Series()
 counter = 1
 print('\n--')
 print('The final coefficients of the regression terms are: \n')
 print('k |', beta[0, 0])
 results_df = results_df.append(pd.Series({'k': beta[0, 0]}))
 if self.multinomials == 1:
 for i in range(1, order + 1):
 for j in range(1, self.number_of_x_vars + 1):
 print('(x_', j, ')^', i, ' |', beta[counter, 0])
 col_name = '(x_'+str(j)+')^'+str(i)
 results_df = results_df.append(pd.Series({col_name: beta[counter, 0]}))
 counter += 1
 for i in range(1, self.number_of_x_vars + 1):
 for j in range(1, self.number_of_x_vars + 1):
 if i > j:
 print('x_', j, '.x_', i, ' |', beta[counter, 0])
 col_name = '(x_'+str(j)+')'+'.(x_'+str(i)+')'
 results_df = results_df.append(pd.Series({col_name: beta[counter, 0]}))
 counter += 1

 else:
 for i in range(1, order + 1):
 for j in range(1, self.number_of_x_vars + 1):
 print('(x_', j, ')^', i, ' |', beta[counter, 0])
 col_name = '(x_'+str(j)+')^'+str(i)
 results_df = results_df.append(pd.Series({col_name: beta[counter, 0]}))
 counter += 1

 return results_df

 @staticmethod
 def error_plotting(vector_of_results):
 """
 This function generates displays a plot of the different errors
 """
 ax1 = plt.subplot(2, 2, 1)
 ax1.plot(vector_of_results[:, 0], vector_of_results[:, 2], 'green', vector_of_results[:, 0],
 vector_of_results[:, 3], 'red')
 ax1.set_title('Training (green) vs Cross-validation error (red)')

 ax2 = plt.subplot(2, 2, 2)
 ax2.plot(vector_of_results[:, 0], vector_of_results[:, 4], 'green')
 ax2.set_title('MAE')

 ax3 = plt.subplot(2, 2, 3)
 ax3.plot(vector_of_results[:, 0], vector_of_results[:, 5], 'blue')
 ax3.set_title('MSE')

 ax4 = plt.subplot(2, 2, 4)
 ax4.plot(vector_of_results[:, 0], vector_of_results[:, 6], 'blue', vector_of_results[:, 0],
 vector_of_results[:, 7], 'red')
 ax4.set_title('R-squared (blue) and Adjusted R-squared (red)')

 plt.show()

 return ax1, ax2, ax3, ax4

 def user_defined_terms(self, additional_regression_features):
 """

 This function generates a 2D array of the additional features from the list supplied by the user.
 Note: It assumes that each list element is 1D

 Args:
 additional_regression_features(list): a list of features to be added to the regression problem. Each element of the list must have the same number of entries as self.number_of_samples

 Returns:
 additional_features_array(NumPy Array): an array of additional training features with len(additional_regression_features) columns to be considered during regression.

 Raises:
 Exception:
 * when additional_regression_features is not a list
 Exception:
 * when the entries in additional_regression_features are not of type 1-D NumPy Array or Pandas Series
 Exception:
 * when the length of the entries in additional_regression_features do not match the number of rows in self.regression_data

 """
 # Check for list
 if not isinstance(additional_regression_features, list):
 raise ValueError('additional_regression_features: list required.')
 # Determine number of additional features, and create 2D array for additional features
 number_additional_features = len(additional_regression_features)
 additional_features_array = np.zeros((self.regression_data.shape[0], number_additional_features))
 for i in range(0, number_additional_features):
 # If entry is an array and is of the right sizes
 if isinstance(additional_regression_features[i], np.ndarray) and (
 len(additional_regression_features[i]) == self.regression_data.shape[0]) and (
 additional_regression_features[i].ndim == 1):
 additional_features_array[:, i] = additional_regression_features[i]
 elif isinstance(additional_regression_features[i], pd.DataFrame) and (
 len(additional_regression_features[i]) == self.regression_data.shape[0]) and (
 additional_regression_features[i].ndim == 1):
 additional_features_array[:, i] = additional_regression_features[i].values
 elif isinstance(additional_regression_features[i], pd.Series) and (
 len(additional_regression_features[i]) == self.regression_data.shape[0]) and (
 additional_regression_features[i].ndim == 1):
 additional_features_array[:, i] = additional_regression_features[i].values
 else:
 raise Exception('Wrong data dimensions or type - additional_regression_features contain 1-D vectors, have same number of entries as regression_data and be of type pd.Series, pd.Dataframe or np.ndarray.')
 return additional_features_array

 def polynomial_regression_fitting(self, additional_regression_features=None):
 """

 polynomial_regression_fitting is the core method which is called in the PolynomialRegression class.
 It ties together all the other functions in the class.
		
 For each polynomial order, it
		 - calls the function user_defined_terms to generate the array of additional features (when required),
		 - calls the function training_test_data_creation to generate the training and test data sets,
		 - calls the function polyregression to determine the optimal weight vector and the fitting errors,
		 - determines whether the new fit improves is the best so far by the crossvalidation error of the current fit to the previous best,
		 - calls the function surrogate_performance to calculate the errors and R-values of the current fit, and
		 - returns results to user.

 When adaptive sampling is done, the function also
 - selects the adaptive samples to be added to the training data based on the magnitudes of the prediction errors of individual samples in self.original_data, and
 - determines when the the stopping conditions have been satisfied.

 The following stopping conditions are considered when adaptive sampling is in use:
 - The maximum number of training samples allowed by the user has been exceeded
 - Mean absolute error ~= 0
 - Mean squared error ~= 0
 - R^2 = 1
 - The preset iteration number given by the user has been reached
 - All available points in self.original_data have been used for training.

 Keyword Args:
 additional_regression_features(<list>): Additional features the user wants the algorithm to consider during regression.
 It should be noted that adaptive sampling is not available when additional features have been supplied by the user, i.e. when len(additional_regression_features) > 0.

 Returns:
 results: Python object containing the results of the polynomial regression process including the polynomial order
 (results.polynomial_order), polynomial coefficients (results.optimal_weights_array) and fit errors (results.errors).
 See information on ResultReport class for details on contents.

 """
 # Parameters that represent the best solution found at each iteration based on the cross-validation error
 best_error = 1e20
 train_error_fit = 1e20
 phi_best = 0
 order_best = 0

 if (additional_regression_features is None) or (len(additional_regression_features) == 0):
 print('max_fraction_training_samples set at ', self.max_fraction_training_samples)
 print('Number of adaptive samples (no_adaptive_samples) set at ', self.no_adaptive_samples)
 print('Maximum number of iterations (Max_iter) set at: ', self.max_iter)

 training_data, cross_val_data = self.training_test_data_creation()
 for poly_order in range(1, self.max_polynomial_order + 1):
 for cv_number in range(1, self.number_of_crossvalidations + 1):
 phi, train_error, cv_error = self.polyregression(poly_order,
 training_data["training_set_" + str(cv_number)],
 cross_val_data["test_set_" + str(cv_number)])
 if cv_error < best_error:
 best_error = cv_error
 phi_best = phi
 order_best = poly_order
 train_error_fit = train_error
 print('\nInitial surrogate model is of order', order_best, ' with a cross-val error of %4f' % best_error)
 # Next, Calculate and report errors.
 sorted_comparison_vector, mae_error, mse_error, r_square, r_square_adj = self.surrogate_performance(phi_best, order_best)
 print('Initial Regression Model Performance:\nOrder: ', order_best, ' / MAE: %4f' % mae_error,
 ' / MSE: %4f' % mse_error, ' / R^2: %4f' % r_square, ' / Adjusted R^2: %4f' % r_square_adj)

 # Parameters that retain the previous best solutions. They are compared to the best solution at each iteration based on the R-square coefficient.
 order_opt, train_error_opt, best_error_opt, mae_error_opt, mse_error_opt, r_square_opt, r_square_adj_opt, phi_opt = order_best, train_error_fit, best_error, mae_error, mse_error, r_square, r_square_adj, phi_best

 eps_neg = 1e-6
 eps_pos = 0.999999
 iteration_number = 1
 stopping_criterion = int(np.ceil(self.max_fraction_training_samples * self.original_data.shape[0]))
 vector_of_results = np.zeros((stopping_criterion, 9))
 while (self.regression_data.shape[0] < stopping_criterion) and (mae_error > eps_neg) and (
 mse_error > eps_neg) and (
 r_square < eps_pos) and (iteration_number < self.max_iter) and (self.regression_data.shape[0] + self.no_adaptive_samples < self.original_data.shape[0]):
 print('\n---')
 print('\nIteration ', iteration_number)
 best_error = 1e20

 # Select n_adaptive_samples worst fitting points to be added to the dataset used in the previous evaluation.
 scv_input_data = sorted_comparison_vector[:, :-2]
 sorted_comparison_vector_unique = scv_input_data[
 np.all(np.any((scv_input_data - self.regression_data[:, None]), axis=2), axis=0)]
 adaptive_samples = sorted_comparison_vector_unique[-self.no_adaptive_samples:, :]
 self.regression_data = np.concatenate((self.regression_data, adaptive_samples), axis=0)
 self.number_of_samples = self.regression_data.shape[0] # Never forget to update
 print("\n", self.no_adaptive_samples,
 " additional points added to training data. New number of training samples: ",
 self.regression_data.shape[0])

 training_data, cross_val_data = self.training_test_data_creation()

 for poly_order in range(1, self.max_polynomial_order + 1):
 for cv_number in range(1, self.number_of_crossvalidations + 1):
 phi, train_error, cv_error = self.polyregression(poly_order,
 training_data["training_set_" + str(cv_number)],
 cross_val_data["test_set_" + str(cv_number)])
 if cv_error < best_error:
 best_error = cv_error
 phi_best = phi
 order_best = poly_order
 train_error_fit = train_error
 print('\nThe best regression model is of order', order_best, ' with a cross-val error of %4f' % best_error)

 sorted_comparison_vector, mae_error, mse_error, r_square, r_square_adj = self.surrogate_performance(phi_best, order_best)
 print('Regression performance on full data in iteration', iteration_number, '\nOrder: ', order_best,
 ' / MAE: %4f' % mae_error,
 ' / MSE: %4f' % mse_error, ' / R_sq: %4f' % r_square, ' / Adjusted R^2: %4f' % r_square_adj)

 # Determine if solution is improved. If yes, update solution. if no, retain previous best.
 if r_square_adj > r_square_adj_opt:
 phi_opt, order_opt, mae_error_opt, mse_error_opt, r_square_opt, r_square_adj_opt, train_error_opt, best_error_opt = phi_best, order_best, mae_error, mse_error, r_square, r_square_adj, train_error_fit, best_error
 print('New solution found.')
 else:
 print('Previous solution retained.')
 vector_of_results[iteration_number, :] = [iteration_number, order_opt, train_error_opt, best_error_opt,
 mae_error_opt, mse_error_opt, r_square_opt, r_square_adj_opt, self.regression_data.shape[0]]
 iteration_number += 1

 # Remove all zero rows in the solution vector
 vector_of_results = vector_of_results[~np.all(vector_of_results == 0, axis=1)]
 # Round phi to 2.d.p and print results to screen
 beta_vector = np.round(phi_opt, 6)
 if r_square_adj_opt < 0.95:
 print('\nPolynomial regression performs poorly for this dataset.')
 else:
 print('\nPolynomial regression generates a good surrogate model for the input data.')
 if iteration_number > 1:
 _, _, _, _ = self.error_plotting(vector_of_results)
 print('\n---\n---')
 print('Best solution found: ', '\nOrder: ', order_opt, ' / MAE: %4f' % mae_error_opt,
 ' / MSE: %4f' % mse_error_opt, ' / R_sq: %4f' % r_square_opt, ' / Adjusted R^2: %4f' % r_square_adj_opt)
 dataframe_coeffs = self.results_generation(beta_vector, order_opt)

 vector_of_results_df = pd.DataFrame({'Iteration_number': vector_of_results[:, 0], 'Polynomial order': vector_of_results[:, 1], 'Training error': vector_of_results[:, 2], 'Cross-val error': vector_of_results[:, 3], 'MAE': vector_of_results[:, 4], 'MSE': vector_of_results[:, 5], 'R2': vector_of_results[:, 6], 'Adjusted R2': vector_of_results[:, 7], 'Number of training samples': vector_of_results[:, 8]})

 extra_terms_feature_vector = list(self.feature_list[i] for i in self.regression_data_columns)

 # Results
 self.optimal_weights_array = phi_opt
 self.final_polynomial_order = order_opt
 self.errors = {'MAE': mae_error_opt, 'MSE': mse_error_opt, 'R2': r_square_opt, 'Adjusted R2': r_square_adj_opt}
 self.number_of_iterations = iteration_number
 self.iteration_summary = vector_of_results_df
 self.additional_features_data = None
 self.final_training_data = self.regression_data

 self.dataframe_of_optimal_weights_polynomial = dataframe_coeffs
 self.dataframe_of_optimal_weights_extra_terms = []
 self.extra_terms_feature_vector = extra_terms_feature_vector
 if r_square_opt > 0.95:
 self.fit_status = 'ok'
 else:
 warnings.warn('Polynomial regression generates poor fit for the dataset')
 self.fit_status = 'poor'

 self.pickle_save({'model':self})
 return self

 else:
 print('No iterations will be run.')
 # Determine number of additional features based on length of list, and convert list into array
 number_additional_features = len(additional_regression_features)
 additional_features_array = self.user_defined_terms(additional_regression_features)

 training_data, cross_val_data = self.training_test_data_creation(additional_features_array)
 for poly_order in range(1, self.max_polynomial_order + 1):
 for cv_number in range(1, self.number_of_crossvalidations + 1):
 phi, train_error, cv_error = self.polyregression(poly_order, training_data["training_set_" + str(cv_number)], cross_val_data["test_set_" + str(cv_number)], training_data["training_extras_" + str(cv_number)], cross_val_data["test_extras_" + str(cv_number)])
 if cv_error < best_error:
 best_error = cv_error
 phi_best = phi
 order_best = poly_order
 train_error_fit = train_error
 print('\nBest surrogate model is of order', order_best, ' with a cross-val S.S. Error of %4f' % best_error)

 # KEY: Modification of self variable outside initialization. Required to make @surrogate_performance work here.
 self.original_data = self.regression_data
 _, mae_error, mse_error, r_square, _ = self.surrogate_performance(phi_best, order_best, additional_features_array)

 # Round solution to 6.d.p
 beta_vector = np.round(phi_best, 6)

 # Print results to screen
 dataframe_coeffs = self.results_generation(beta_vector, order_best)

 extra_terms_coeffs = pd.Series()
 print('\nThe coefficients of the extra terms in additional_regression_features are:\n')
 for af in range(number_additional_features, 0, -1):
 print('Coeff. additional_regression_features[', number_additional_features - af + 1, ']: ', beta_vector[len(beta_vector) - af, 0])
 col_name = 'Coeff. additional_regression_features['+str(number_additional_features - af + 1)+']'
 extra_terms_coeffs = extra_terms_coeffs.append(pd.Series({col_name: beta_vector[len(beta_vector) - af, 0]}))

 # Print errors
 print('\nRegression model performance on training data:\nOrder: ', order_best, ' / MAE: %4f' % mae_error,
 ' / MSE: %4f' % mse_error, ' / R^2: %4f' % r_square)

 extra_terms_feature_vector = list(self.feature_list[i] for i in self.regression_data_columns)

 # Results
 self.optimal_weights_array = phi_best
 self.final_polynomial_order = order_best
 self.errors = {'MAE': mae_error, 'MSE': mse_error, 'R2': r_square}
 self.number_of_iterations = []
 self.iteration_summary = []
 self.additional_features_data = additional_features_array
 self.final_training_data = self.regression_data
 self.dataframe_of_optimal_weights_polynomial = dataframe_coeffs
 self.dataframe_of_optimal_weights_extra_terms = extra_terms_coeffs
 self.extra_terms_feature_vector = extra_terms_feature_vector
 if r_square > 0.95:
 self.fit_status = 'ok'
 else:
 warnings.warn('Polynomial regression generates poor fit for the dataset')
 self.fit_status = 'poor'

 self.pickle_save({'model': self})

 return self

[docs] def get_feature_vector(self):
 """

 The ``get_feature_vector`` method generates the list of regression features from the column headers of the input dataset.

 Returns:
 Pyomo IndexedParam : An indexed parameter list of the variables supplied in the original data

 Example:

 .. code-block:: python

 # Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
 >>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

 # Initialize the **PolynomialRegression** class and print the column headers for the variables
 >>> f = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=1, multinomials=True, training_split=0.8)
 >>> p = f.get_feature_vector()
 >>> for i in p.keys():
 >>> print(i)
 one
 two

 """
 p = Param(self.regression_data_columns, mutable=True, initialize=0)
 p.index_set().construct()
 p.construct()
 self.feature_list = p
 return p

[docs] def set_additional_terms(self, term_list):
 """

 ``set_additional_terms`` accepts additional user-defined features for consideration during regression.

 Args:
 term_list (list) : List of additional terms to be considered as regression features. Each term in the list must be a Pyomo-supported intrinsic function.

 Example:

 .. code-block:: python

 # To add the sine and cosine of a variable with header 'X1' in the dataset as additional regression features:
 >>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['X1', 'X2', 'Y'])
 >>> A = PolynomialRegression(xy_data, xy_data, maximum_polynomial_order=5)
 >>> p = A.get_feature_vector()
 >>> A.set_additional_terms([pyo.sin(p['X1']) , pyo.cos(p['X1'])])

 """
 self.additional_term_expressions = term_list

 # def fit_surrogate(self):
[docs] def training(self):
 """

 The ``training`` method trains a polynomial model to an input dataset.
 It calls the core method which is called in the PolynomialRegression class (polynomial_regression_fitting).
 It accepts no user input, inheriting the information passed in class initialization.

 Returns:
 tuple : Python Object (**results**) containing the results of the polynomial regression process including:
 - the polynomial order (**self.final_polynomial_order**)
 - polynomial coefficients (**self.optimal_weights_array**), and
 - MAE and MSE errors as well as the :math:`R^{2}` (**results.errors**).

 """

 cMap = ComponentMap()
 for i, col in enumerate(self.regression_data_columns):
 cMap[self.feature_list[col]] = self.regression_data[:, i]
 npe = NumpyEvaluator(cMap)
 additional_data = list(
 npe.walk_expression(term) for term in self.additional_term_expressions
)
 return self.polynomial_regression_fitting(additional_data)

[docs] def generate_expression(self, variable_list):
 """

 The ``generate_expression`` method returns the Pyomo expression for the polynomial model trained.

 The expression is constructed based on a supplied list of variables **variable_list** and the output of ``training``.

 Args:
 variable_list(list) : List of input variables to be used in generating expression. This can be the a list generated from the results of ``get_feature_vector``. The user can also choose to supply a new list of the appropriate length.

 Returns:
 Pyomo Expression : Pyomo expression of the polynomial model based on the variables provided in **variable_list**.

 """
 terms = PolynomialRegression.polygeneration(
 self.final_polynomial_order, self.multinomials, np.array([variable_list])
).transpose()
 n = len(terms)

 ans = sum(w*t for w, t in zip(
 np.nditer(self.optimal_weights_array),
 np.nditer(terms, flags=['refs_ok'])
))

 user_term_map = dict((id(a), b) for a, b in zip(
 self.extra_terms_feature_vector,
 variable_list,
))
 if len(self.additional_term_expressions) > 0:
 for w, expr in zip(np.nditer(self.optimal_weights_array[n:]), self.additional_term_expressions):
 ans += float(w) * replace_expressions(expr, user_term_map)
 return ans

[docs] def predict_output(self, x_data):
 """

 The ``predict_output`` method generates output predictions for input data x_data based a previously generated polynomial fitting.

 Args:
 x_data : Numpy array of designs for which the output is to be evaluated/predicted.

 Returns:
 Numpy Array : Output variable predictions based on the polynomial fit.

 """
 nf = x_data.shape[1]
 x_list = [i for i in range(0, nf)]
 import pyomo.environ as aml
 m = aml.ConcreteModel()
 i = aml.Set(initialize=x_list)
 m.xx = aml.Var(i)
 m.o2 = aml.Objective(expr=self.generate_expression([m.xx[i] for i in x_list]))
 y_eq = np.zeros((x_data.shape[0], 1))
 for j in range(0, x_data.shape[0]):
 for i in x_list:
 m.xx[i] = x_data[j, i]
 y_eq[j, 0] = aml.value(m.o2([m.xx[i] for i in x_list]))
 return y_eq

 def pickle_save(self, solutions):
 """
 The training method saves the results of the run in a pickle object. It saves an object with two elements: the setup (index[0]) and the results (index[1]).
 """
 try:
 filehandler = open(self.filename, 'wb')
 pickle.dump(solutions, filehandler)
 print('\nResults saved in ', str(self.filename))
 except:
 raise IOError('File could not be saved.')

 @staticmethod
 def pickle_load(solution_file):
 """
 pickle_load loads the results of a saved run 'file.obj'. It returns an array of two elements: the setup (index[0]) and the results (index[1]).

 Input arguments:
 solution_file : Pickle object file containing previous solution to be loaded.

 """
 try:
 filehandler = open(solution_file, 'rb')
 return pickle.load(filehandler)
 except:
 raise Exception('File could not be loaded.')

 def parity_residual_plots(self):
 """

 inputs:

 Returns:

 """
 y_predicted = self.predict_output(self.final_training_data[:, :-1])
 fig1 = plt.figure(figsize=(16, 9), tight_layout=True)
 ax = fig1.add_subplot(121)
 ax.plot(self.final_training_data[:, -1], self.final_training_data[:, -1], '-')
 ax.plot(self.final_training_data[:, -1], y_predicted, 'o')
 ax.set_xlabel(r'True data', fontsize=12)
 ax.set_ylabel(r'Surrogate values', fontsize=12)
 ax.set_title(r'Parity plot', fontsize=12)

 ax2 = fig1.add_subplot(122)
 ax2.plot(self.final_training_data[:, -1], self.final_training_data[:, -1] - y_predicted[:,].reshape(y_predicted.shape[0],), 's', mfc='w', mec='m', ms=6)
 ax2.axhline(y=0, xmin=0, xmax=1)
 ax2.set_xlabel(r'True data', fontsize=12)
 ax2.set_ylabel(r'Residuals', fontsize=12)
 ax2.set_title(r'Residual plot', fontsize=12)

 plt.show()

 return

 def _report(self):
 ## Will only work with Python > 3.5
 variable_headers = self.get_feature_vector()
 var_list = []
 for i in variable_headers:
 var_list.append(variable_headers[i])
 eqn = self.generate_expression(var_list)

 double_line = "=" * 120
 s = (f"\n{double_line}"
 f"\nResults of polynomial regression run:\n"
 f"\nPolynomial order : {self.final_polynomial_order}\n"
 f"Number of terms in polynomial model: {self.optimal_weights_array.size}\n"
 f"\nPolynomial Expression:\n"
 f"--------------------------\n"
 f"\n{eqn}\n"
 f"--------------------------\n"
 f"\nModel training errors:"
 f"\n-----------------------\n"
 f"Mean Squared Error (MSE) : {self.errors['MSE']}\n"
 f"Root Mean Squared Error (RMSE) : {np.sqrt(self.errors['MSE'])}\n"
 f"Mean Absolute error (MSE) : {self.errors['MAE']}\n"
 f"Goodness of fit (R2) : {self.errors['R2']}\n"
 f"\n{double_line}"
)
 return s

 def print_report(self):
 s = self._report()
 print(s)

 def _repr_pretty_(self, p, cycle=False):

 s = self._report()
 p.text(s)

[docs] def confint_regression(self, confidence=0.95):
 """
 The ``confint_regression`` method prints the confidence intervals for the regression patamaters.

 Args:
 confidence : Required confidence interval level, default = 0.95 (95%)

 """
 from scipy.stats import t
 data = self.final_training_data
 y_pred = self.predict_output(data[:, :-1])
 dof = data.shape[0] - len(self.optimal_weights_array) + 1 # be careful when there are additional features
 ssr = np.sum((data[:, -1] - y_pred[:, 0]) ** 2)
 sig_sq = ssr / dof
 if (self.additional_features_data is None) or (len(self.additional_features_data) == 0):
 x_exp = self.polygeneration(self.final_polynomial_order, self.multinomials, data[:, :-1]) # will not account for additional features
 else:
 x_exp = self.polygeneration(self.final_polynomial_order, self.multinomials, data[:, :-1],additional_x_training_data = self.additional_features_data)

 covar = sig_sq * np.linalg.pinv(x_exp.transpose() @ x_exp)
 ss_reg_params = np.sqrt(np.diag(covar)) # standard error for each regression parameter
 t_dist = t.ppf((1 + confidence) / 2, dof) # alternatively, t_dist_data = st.t.interval(0.99, 8)
 # Evaluate confidence intervals, Tabulate and print results
 c_data = np.zeros((self.optimal_weights_array.shape[0], 4))
 c_data[:, 0] = self.optimal_weights_array[:, 0]
 c_data[:, 1] = ss_reg_params[:,]
 c_data[:, 2] = self.optimal_weights_array[:, 0] - t_dist * ss_reg_params[:,]
 c_data[:, 3] = self.optimal_weights_array[:, 0] + t_dist * ss_reg_params[:,]

 headers = ['Regression coeff.', 'Std. error', 'Conf. int. lower', 'Conf. int. upper']
 c_data_df = pd.DataFrame(data=c_data, columns=headers)
 print(c_data_df)
 return c_data_df

 idaes.surrogate.pysmo.radial_basis_function

 Source code for idaes.surrogate.pysmo.radial_basis_function

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##

Imports from the python standard library
from __future__ import division, print_function
from builtins import int, str
import itertools
import os.path
import pprint
import random
import warnings
Imports from third parties
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import pickle
from pyomo.environ import *
import scipy.optimize as opt
from six import string_types
Imports from IDAES namespace
from idaes.surrogate.pysmo.sampling import FeatureScaling as fs

"""
The purpose of this file is to perform radial basis functions in Pyomo.
"""

[docs]class FeatureScaling:
 """

 A class for scaling and unscaling input and output data. The class contains two main methods: ``data_scaling_minmax`` and ``data_unscaling_minmax``
 """
 def __init__(self):
 pass

[docs] @staticmethod
 def data_scaling_minmax(data):
 """
 ``data_scaling_minmax`` performs column-wise min-max scaling on the input dataset.

 Args:
 data : The input data set to be scaled. Must be a numpy array or dataframe.

 Returns:
 (tuple): tuple containing:
 - **scaled_data** : A 2-D Numpy Array containing the scaled data. All array values will be between [0, 1].
 - **data_minimum** : A 2-D row vector containing the column-wise minimums of the input data.
 - **data_maximum** : A 2-D row vector containing the column-wise maximums of the input data.

 Raises:
 TypeError: Raised when the input data is not a numpy array or dataframe

 """
 # Confirm that data type is an array or DataFrame
 if isinstance(data, np.ndarray):
 input_data = data
 data_headers = []
 elif isinstance(data, pd.DataFrame):
 input_data = data.values
 data_headers = data.columns.values.tolist()
 else:
 raise TypeError('original_data_input: Pandas dataframe or numpy array required.')

 if input_data.ndim == 1:
 input_data = input_data.reshape(len(input_data), 1)
 data_minimum = np.min(input_data, axis=0)
 data_maximum = np.max(input_data, axis=0)
 scale = data_maximum - data_minimum
 scale[scale == 0.0] = 1.0
 scaled_data = (input_data - data_minimum)/scale
 # scaled_data = (input_data - data_minimum)/(data_maximum - data_minimum)
 data_minimum = data_minimum.reshape(1, data_minimum.shape[0])
 data_maximum = data_maximum.reshape(1, data_maximum.shape[0])

 if len(data_headers) > 0:
 scaled_data = pd.DataFrame(scaled_data, columns=data_headers)
 return scaled_data, data_minimum, data_maximum

[docs] @staticmethod
 def data_unscaling_minmax(x_scaled, x_min, x_max):
 """

 ``data_unscaling_minmax`` performs column-wise un-scaling on the a minmax-scaled input dataset.

 Args:
 x_scaled (NumPy Array) : Data to be un-scaled. Data values should be between 0 and 1.
 x_min (NumPy vector) : :math:`n \\times 1` vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.
 x_max (NumPy vector) : :math:`n \\times 1` vector vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.

 Returns:
 NumPy Array : A 2-D numpy array containing the scaled data, :math:`x_{min} + x_{scaled} * (x_{max} - x_{min})`

 Raises:
 IndexError: Raised when the dimensions of the arrays are inconsistent.

 """
 # Check if it can be evaluated. Will return index error if dimensions are wrong
 if x_scaled.ndim == 1: # Check if 1D, and convert to 2D if required.
 x_scaled = x_scaled.reshape(len(x_scaled), 1)
 if (x_scaled.shape[1] != x_min.size) or (x_scaled.shape[1] != x_max.size):
 raise IndexError('Dimensionality problems with data for un-scaling.')
 unscaled_data = x_min + x_scaled * (x_max - x_min)
 return unscaled_data

 # @staticmethod
 # def data_scaling_standardization(data):
 # # Confirm that data type is an array or DataFrame
 # if isinstance(data, np.ndarray):
 # input_data = data
 # elif isinstance(data, pd.DataFrame):
 # input_data = data.values
 # else:
 # raise TypeError('original_data_input: Pandas dataframe or numpy array required.')
 #
 # if input_data.ndim == 1:
 # input_data = input_data.reshape(len(input_data), 1)
 #
 # data_mean = np.mean(input_data, axis=0)
 # data_stdev = np.std(input_data, axis=0)
 # scaled_data = (input_data - data_mean) / data_stdev
 # data_mean = data_mean.reshape(1, data_mean.shape[0])
 # data_stdev = data_stdev.reshape(1, data_stdev.shape[0])
 # return scaled_data, data_mean, data_stdev

[docs]class RadialBasisFunctions:
 """
 The RadialBasisFunctions class generates a radial basis function fitting for a training data set.

 The class must first be initialized by calling **RadialBasisFunctions**. Regression is then carried out by calling the method ``training``.

 For a given dataset with n features :math:`x_{1},\ldots,x_{n}`, RadialBasisFunctions is able to consider six types of basis transformations:
 - Linear ('linear')
 - Cubic ('cubic')
 - Gaussian ('gaussian')
 - Multiquadric ('mq')
 - Inverse multiquadric ('imq')
 - Thin-plate spline ('spline')

 ``training`` selects the best hyperparameters (regularization parameter :math:`\lambda` and shape parameter :math:`\sigma`, where necessary) by evaluating the leave-one-out cross-validation error for each (:math:`\lambda,\sigma`) pair.

 It should be noted that the all the training points are treated as centres for the RBF, resulting in a square system.

 Example:

 .. code-block:: python

 # Initialize the class
 >>> d = RadialBasisFunctions(training_data, basis_function='gaussian', solution_method='pyomo', regularization=True))
 >>> p = d.get_feature_vector()

 # Train RBF model and predict output for an test data x_test
 >>> d.training()
 >>> predictions = d.predict_output(x_test)

 Args:
 XY_data (Numpy Array or Pandas Dataframe) : The dataset for RBF training. **XY_data** is expected to contain the features (X) and output (Y) data, with the output values (Y) in the last column.

 Further details about the optional inputs may be found under the ``__init__`` method.

 """

[docs] def __init__(self, XY_data, basis_function=None, solution_method=None, regularization=None, fname=None, overwrite=False):
 """

 Initialization of **RadialBasisFunctions** class.

 Args:
 XY_data (Numpy Array or Pandas Dataframe): The dataset for RBF training. **XY_data** is expected to contain feature and output information, with the output values (y) in the last column.

 Keyword Args:
 basis_function(str): The basis function transformation to be applied to the training data. Two classes of basis transformations are available for selection:

 - Fixed basis transformations, which require no shape parameter :math:`\sigma` :

 (a) 'cubic' : Cubic basis transformation
 (b) 'linear' : Linear basis transformation
 (c) 'spline' : Thin-plate spline basis transformation

 - Parametric basis transformations which require a shape parameter:

 (a) 'gaussian' : Gaussian basis transformation (Default)
 (b) 'mq' : Multiquadric basis transformation
 (c) 'imq' : Inverse multiquadric basis transformation

 solution_method(str): The method to be used for solving the RBF least squares optimization problem. Three options are available:

 (a) 'algebraic' : The explicit algebraic method solves the least squares problem using linear algebra.
 (b) 'BFGS' : This approach solves the least squares problem using SciPy's BFGS algorithm.
 (c) 'pyomo' : This option solves the optimization problem in Pyomo with IPOPT as solver. This is the default.

 regularization(bool): This option determines whether or not the regularization parameter :math:`\lambda` is considered during RBF fitting. Default setting is True.

 Returns:
 self object with the input information

 Raises:
 ValueError: The input dataset is of the wrong type (not a NumPy array or Pandas Dataframe)

 Exception:
 * **basis_function** entry is not valid.
 Exception:
 * **solution_method** is not 'algebraic', 'pyomo' or 'bfgs'.
 Exception:
 - :math:`\lambda` is not boolean.

 Example:

 .. code-block:: python

 # Specify the gaussian basis transformation
 >>> d = RadialBasisFunctions(XY_data, basis_function='gaussian')

 """
 if not isinstance(overwrite, bool):
 raise Exception('overwrite must be boolean.')
 self.overwrite = overwrite
 if fname is None:
 fname = 'solution.pickle'
 self.filename = 'solution.pickle'
 elif not isinstance(fname, str) or os.path.splitext(fname)[-1].lower() != '.pickle':
 raise Exception('fname must be a string with extension ".pickle". Please correct.')
 if os.path.exists(fname) and overwrite is True: # Explicit overwrite done by user
 print('Warning:', fname, 'already exists; previous file will be overwritten.\n')
 self.filename = fname
 elif os.path.exists(fname) and overwrite is False: # User is not overwriting
 self.filename = os.path.splitext(fname)[0]+'_v_'+ pd.Timestamp.today().strftime("%m-%d-%y_%H%M%S") +'.pickle'
 print('Warning:', fname, 'already exists; results will be saved to "', self.filename,'".\n')
 # self.filename = 'solution.pickle'
 elif os.path.exists(fname) is False:
 self.filename = fname

 # Check data types and shapes
 if isinstance(XY_data, pd.DataFrame):
 xy_data = XY_data.values
 self.x_data_columns = list(XY_data.columns)[:-1]
 elif isinstance(XY_data, np.ndarray):
 xy_data = XY_data
 self.x_data_columns = list(range(XY_data.shape[1] - 1))
 else:
 raise ValueError('Pandas dataframe or numpy array required for "XY_data".')

 self.x_data_unscaled = xy_data[:, :-1]
 self.y_data_unscaled = xy_data[:, -1].reshape(xy_data.shape[0], 1)
 xy_data_scaled, self.data_min, self.data_max = fs.data_scaling_minmax(XY_data)
 x_data_scaled = xy_data_scaled[:, :-1]
 y_data_scaled = xy_data_scaled[:, -1]
 self.x_data = x_data_scaled.reshape(self.x_data_unscaled.shape)
 self.y_data = y_data_scaled.reshape(self.y_data_unscaled.shape)
 self.centres = xy_data_scaled[:, :-1]

 if solution_method is None:
 solution_method = 'algebraic'
 self.solution_method = solution_method
 print('Default parameter estimation method is used.')
 elif not isinstance(solution_method, string_types):
 raise Exception('Invalid solution method. Must be of type <str>.')
 elif (solution_method.lower() == 'algebraic') or (solution_method.lower() == 'pyomo') or (solution_method.lower() == 'bfgs'):
 solution_method = solution_method.lower()
 self.solution_method = solution_method
 else:
 raise Exception('Invalid solution method entered. Select one of ALGEBRAIC (solution_method="algebraic") , L-BFGS (solution_method="bfgs") or Pyomo optimization (solution_method="pyomo") methods. ')
 print('\nParameter estimation method: ', self.solution_method)

 if basis_function is None:
 basis_function = 'gaussian'
 self.basis_function = basis_function
 print('Gaussian basis function is used.')
 elif not isinstance(basis_function, string_types):
 raise Exception('Invalid basis_function. Must be of type <str>.')
 elif (basis_function.lower() == 'linear') or (basis_function.lower() == 'cubic') or (basis_function.lower() == 'gaussian') or (basis_function.lower() == 'mq') or (basis_function.lower() == 'imq') or (basis_function.lower() == 'spline'):
 basis_function = basis_function.lower()
 self.basis_function = basis_function
 else:
 raise Exception('Invalid basis function entered. See manual for available options. ')
 print('Basis function: ', self.basis_function)

 if regularization is None:
 regularization = True
 self.regularization = regularization
 elif not isinstance(regularization, bool):
 raise Exception('Invalid basis_function. Must be boolean')
 elif (regularization is True) or (regularization is False):
 self.regularization = regularization
 print('Regularization done: ', self.regularization)

 # Results
 self.weights = None
 self.sigma = None
 self.regularization_parameter = None
 self.rmse = None
 self.output_predictions = None
 self.condition_number = None
 self.R2 = None
 self.x_data_min = None
 self.x_data_max = None
 self.y_data_min = None
 self.y_data_max = None
 self.solution_status = None

 def r2_distance(self, c):
 """
 The function r2_distance calculates Euclidean distance from the point or array c.

 """
 dist = self.x_data - c
 l2_distance = np.sqrt(np.sum((dist ** 2), axis=1))
 return l2_distance

 @staticmethod
 def gaussian_basis_transformation(x, shape_parameter):
 """
 The function gaussian_basis_transformation returns the element-by-element Gaussian transformation of the input data x.

 Args:
 x(NumPy Array): Input data to be transformed
 shape parameter(float): Shape parameter of the Gaussian function

 Returns:
 x_mod(NumPy Array): Gaussian transformation of the input data x

 Examples:
 Gaussian of numbers from 0 to 2 for a shape parameter of 2:
 [In]>> rbf.RadialBasisFunctions.gaussian_basis_transformation(np.arange(3), 2)
 [Out]>> array([1.00000000e+00, 1.83156389e-02, 1.12535175e-07])

 For more information, see Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294

 """
 x_mod = np.exp(-1 * ((x * shape_parameter) ** 2))
 return x_mod

 @staticmethod
 def linear_transformation(x):
 """
 The function linear_transformation returns the element-by-element linear transformation of the input data x.

 Args:
 x(NumPy Array): Input data to be transformed

 Returns:
 x_mod(NumPy Array): Linear transformation of the input data x, x_mod = x

 Examples:
 Linear transformation of 0, 1 and 2:
 [In]>> rbf.RadialBasisFunctions.linear_transformation(np.arange(3))
 [Out]>> array([0, 1, 2], dtype=int32)

 For more information, see Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294

 """
 x_mod = x ** 1
 return x_mod

 @staticmethod
 def cubic_transformation(x):
 """
 The function cubic_transformation returns the element-by-element cubic transformation of the input data x.

 Args:
 x(NumPy Array): Input data to be transformed

 Returns:
 x_mod(NumPy Array): Cubic transformation of the input data x, x_mod = (x ** 3)

 Examples:
 Cubic transformation of 0, 1 and 2:
 [In]>> rbf.RadialBasisFunctions.cubic_transformation(np.arange(3))
 [Out]>> array([0, 1, 8], dtype=int32)

 For more information, see Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294
 """
 x_mod = x ** 3
 return x_mod

 @staticmethod
 def multiquadric_basis_transformation(x, shape_parameter):
 """
 The function multiquadric_basis_transformation returns the element-by-element Multi-quadric transformation of the input data x.

 Args:
 x(NumPy Array): Input data to be transformed
 shape parameter(float): Shape parameter of the Multiquadric function

 Returns:
 x_mod(NumPy Array): Multiquadric transformation of the input data x; x_mod = sqrt[(1 + (c.x)**2)] where c = shape parameter

 Examples:
 Multiquadric transformation of numbers from 0 to 2 for a shape parameter of 2:
 [In]>> rbf.RadialBasisFunctions.multiquadric_basis_transformation(np.arange(3), 2)
 [Out]>> array([1. , 2.23606798, 4.12310563])

 For more information, see
 (1) Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294

 (2) Santana-Quintero L.V., Montaño A.A., Coello C.A.C. (2010) A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization.
 In: Tenne Y., Goh CK. (eds) Computational Intelligence in Expensive Optimization Problems.
 https://link.springer.com/chapter/10.1007/978-3-642-10701-6_2

 """
 x_mod = np.sqrt(((x * shape_parameter) ** 2) + 1)
 # x_mod = np.sqrt(x**2 + shape_parameter**2) # Alternative implementation
 return x_mod

 @staticmethod
 def inverse_multiquadric_basis_transformation(x, shape_parameter):
 """
 The function inverse_multiquadric_basis_transformation returns the element-by-element inverse multiquadric transformation of the input data x.
 Direct inverse of the multiquadric basis transformation

 Args:
 x(NumPy Array): Input data to be transformed
 shape_parameter(float): Shape parameter of the inverse multiquadric function

 Returns:
 x_mod(NumPy Array): Inverse multiquadric transformation of the input data x; x_mod = 1 / sqrt[(1 + (c.x)**2)] where c = shape parameter

 Examples:
 Inverse multiquadric transformation of numbers from 0 to 2 for a shape parameter of 2:
 [In]>> rbf.RadialBasisFunctions.inverse_multiquadric_basis_transformation(np.arange(3), 2)
 [Out]>>array([1. , 0.4472136 , 0.24253563])

 For more information, see
 (1) Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294

 (2) Santana-Quintero L.V., Montaño A.A., Coello C.A.C. (2010) A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization.
 In: Tenne Y., Goh CK. (eds) Computational Intelligence in Expensive Optimization Problems.
 https://link.springer.com/chapter/10.1007/978-3-642-10701-6_2

 """
 x_mod = 1 / np.sqrt(((x * shape_parameter) ** 2) + 1)
 # x_mod = 1 / (np.sqrt(x ** 2 + shape_parameter ** 2)) # Alternative implementation
 return x_mod

 @staticmethod
 def thin_plate_spline_transformation(x):
 """
 The function thin_plate_spline_transformation returns the element-by-element spline transformation of the input data x.
 Direct inverse of the multiquadric basis transformation

 Args:
 x(NumPy Array): Input data to be transformed

 Returns:
 x_mod(NumPy Array): Spline transformation of the input data x; x_mod = (x**2).ln(x)

 Except:
 RuntimeWarning: thrown up when ln(x)=0

 Examples:
 Inverse multiquadric transformation of numbers from 1 and 2:
 [In]>> rbf.RadialBasisFunctions.thin_plate_spline_transformation(np.arange(1,3))
 [Out]>> array([0, 2.77258872])

 For more information, see
 (1) Hongbing Fang & Mark F. Horstemeyer (2006): Global response approximation with radial basis functions
 https://www.tandfonline.com/doi/full/10.1080/03052150500422294

 (2) Santana-Quintero L.V., Montaño A.A., Coello C.A.C. (2010) A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization.
 In: Tenne Y., Goh CK. (eds) Computational Intelligence in Expensive Optimization Problems.
 https://link.springer.com/chapter/10.1007/978-3-642-10701-6_2

 """
 # x_mod = (x ** 2) * np.log(x)
 # x_mod = np.nan_to_num(x_mod)
 with np.errstate(divide='ignore'): # catch division warnings in log function due to log(0)~=0
 log_x = np.log(x)
 with np.errstate(invalid='ignore'): # catch invalid warnings due to - Inf * 0 evaluations
 x_mod = (x ** 2) * log_x
 x_mod = np.nan_to_num(x_mod)
 return x_mod

 def basis_generation(self, r):
 """
 The function basis_generation converts the input data to the requisite basis specified by the user.
 This is done in two steps:

 1. The Euclidean distance from each of the points to each of the RBF centres is calculated by calling the r2_distance function.
 2. The distances evaluated in step 1 are transformed to the relevant basis selected by the user.

 Args:
 self(NumPy Array): contains, among other things, the input data
 r(float) : The shape parameter required for the Gaussian, Multiquadric and Inverse multiquadric transformations.

 Returns:
 x_transformed(NumPy Array): Array of transformed data based on user-defined transformation function

 """

 basis_functions = np.zeros((self.x_data.shape[0], self.centres.shape[0]))
 for i in range(0, self.centres.shape[0]):
 basis_functions[:, i] = self.r2_distance(self.centres[i, :])

 # Initialization of x_transformed
 x_transformed = np.zeros((basis_functions.shape[0], basis_functions.shape[1]))

 if self.basis_function == 'gaussian':
 x_transformed = self.gaussian_basis_transformation(basis_functions, r)
 elif self.basis_function == 'linear':
 x_transformed = self.linear_transformation(basis_functions)
 elif self.basis_function == 'cubic':
 x_transformed = self.cubic_transformation(basis_functions)
 elif self.basis_function == 'mq':
 x_transformed = self.multiquadric_basis_transformation(basis_functions, r)
 elif self.basis_function == 'imq':
 x_transformed = self.inverse_multiquadric_basis_transformation(basis_functions, r)
 elif self.basis_function == 'spline':
 x_transformed = self.thin_plate_spline_transformation(basis_functions)
 return x_transformed

 @staticmethod
 def cost_function(theta, x, y):
 """
 This function is an implementation of the cost function for linear regression with BFGS:
 cost = [sum of square errors over m samples / (2 * m)]

 This is the objective function for the BFGS optimization problem.

 Args:
 theta : polynomial coefficients/weights, (n x 1) in size
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 cost_value : the cost value for the fit, the objective value of the optimization problem

 """
 y = y.reshape(y.shape[0], 1)
 y_prediction = np.matmul(x, theta)
 y_prediction = y_prediction.reshape(y_prediction.shape[0], 1)
 cost_value = (0.5 / x.shape[0]) * (np.sum((y - y_prediction) ** 2))
 return cost_value

 @staticmethod
 def gradient_function(theta, x, y):
 """
 This function is an implementation of the gradient function for linear regression:
 if
 cost = [(A.x - y)^2 / 2m]
 then
 gradient = [((A.x - y)* A) / m]

 This is the gradient function supplied to the BFGS optimization algorithm.

 Args:
 theta : polynomial coefficients/weights, (n x 1) in size
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 grad_values : the cost gradients for the fit, size (n x 1)

 """
 y = y.reshape(y.shape[0], 1)
 y_prediction = np.matmul(x, theta)
 y_prediction = y_prediction.reshape(y_prediction.shape[0], 1)
 t1 = (y_prediction - y) * x
 grad_values = (1 / x.shape[0]) * np.sum(t1, axis=0)
 grad_values = grad_values.reshape(theta.size,)
 return grad_values

 def bfgs_parameter_optimization(self, x, y):
 """
 This function performs parameter optimization using scipy's BFGS algorithm.
 It takes in the functions pre-defined functions cost_function and gradient_function as the cost and gradient functions.

 Args:
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Initialization:
 The initial weights are set to zero,
 init_phi = 0

 Returns:
 phi: The optimal linear regression weights found

 """
 init_phi = np.zeros((x.shape[1], 1))
 other_args = (x, y)
 phi = opt.fmin_bfgs(self.cost_function, init_phi, fprime=self.gradient_function, args=other_args, disp=False, gtol=1e-20)
 return phi

 @staticmethod
 def explicit_linear_algebra_solution(x, y):
 """
 The function finds the explicit linear algebra solution to the reqularized problem (X+yI).A = B

 If:
 (x + yI).A = B,

 Then:
 A = inv(X + yI) * B

 where y is the regularization parameter and I is the identity matrix.

 Numpy's inverse and pseudoinverse functions have been used to calculate the inverse here.

 Args:
 x : regularized array of features (x + yI), (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 phi : optimal linear regression weights A

 For more details, see to Forrester et al.'s book "Engineering Design via Surrogate Modelling: A Practical Guide", https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470770801

 """
 # Find matrix inverse. Use pseudo-inverse if inverse is not available
 try:
 inverse_x = np.linalg.inv(x)
 except np.linalg.LinAlgError as LAE:
 inverse_x = np.linalg.pinv(x)

 phi = np.matmul(inverse_x, y)
 return phi

 @staticmethod
 def pyomo_optimization(x, y):
 """
 Pyomo implementation of least squares optimization problem:

 Minimize cost = (y' - y) ^ 2
 subject to: y' = Ax

 The problem is solved within Pyomo's framework using IPOPT as solver.

 Args:
 x : array of features, (m x n) in size
 y : actual output vector, size (m x 1)

 Returns:
 phi: The optimal linear regression weights found

 """
 model = ConcreteModel()

 pd.set_option('precision', 64)
 x_data = pd.DataFrame(x)
 y_data = pd.DataFrame(y)

 model.M = Set(initialize=x_data.index.values) # Rows indices passed into set
 model.N = Set(initialize=x_data.columns.values) # x column indices passed into set
 model.P = Set(initialize=y_data.columns.values) # y column index passed into set

 model.x = Param(model.M, model.N, initialize=x_data.stack().to_dict())
 model.y_real = Param(model.M, model.P, initialize=y_data.stack().to_dict())

 # Define variables
 model.theta = Var(model.N, initialize=0, domain=Reals)
 model.y_predictions = Var(model.M, model.P, initialize=y_data.stack().to_dict(), domain=Reals)

 # constraint y_p = theta.X
 def xy_product(model, i, k):
 return model.y_predictions[i, k] == sum(model.theta[j] * model.x[i, j] for j in model.N for k in model.P)

 model.x_theta_product = Constraint(model.M, model.P, rule=xy_product, doc='Predicted value calc: y = hx')

 # Cost function - RMSE
 def model_rms_error(model):
 cost_value = (1 / len(model.M)) * sum(
 ((model.y_real[i, k] - model.y_predictions[i, k]) ** 2) for i in model.M for k in model.P)
 return cost_value

 model.prediction_error = Objective(rule=model_rms_error, sense=minimize, doc='Minimum RMSE error')

 instance = model
 opt = SolverFactory("ipopt")
 opt.options['max_iter'] = 10000
 opt.options['acceptable_tol'] = 1e-30
 # model.pprint()
 result = opt.solve(instance) # , tee=True)
 # model.display()

 # Convert theta variable into numpy array
 phi = np.zeros((len(instance.theta), 1))
 iterator = 0
 for s in instance.N:
 phi[iterator, 0] = instance.theta[s].value
 iterator += 1
 return phi

 @staticmethod
 def error_calculation(phi, x, y_data):
 """
 This function calculates the SSE and RMSE errors between the actual and predicted output values,
 ss_error = sum of squared errors / number of samples
 rmse_error = sqrt(sum of squared errors / number of samples)

 Args:
 phi : weight vector obtained by optimization
 x : vector of input features
 y : actual output values

 Returns:
 ss_error : The average sum of squared errors
 rmse_error : The root-mean-squared error (RMSE)
 y_prediction : Predicted values of y, y_prediction = phi.x

 """
 y_prediction = np.matmul(x, phi)
 ss_error = (1 / y_data.shape[0]) * (np.sum((y_data - y_prediction) ** 2))
 rmse_error = np.sqrt(ss_error)
 return ss_error, rmse_error, y_prediction

[docs] @staticmethod
 def r2_calculation(y_true, y_predicted):
 """
 ``r2_calculation`` returns the :math:`R^{2}` as a measure-of-fit between the true and predicted values of the output variable.

 Args:
 y_true(NumPy Array) : Vector of actual values of the output variable
 y_predicted(NumPy Array) : Vector of predictions for the output variable based on the surrogate

 Returns:
 float : :math:`R^{2}` measure-of-fit between actual and predicted data

 """
 y_true = y_true.reshape(y_true.shape[0], 1)
 y_predicted = y_predicted.reshape(y_predicted.shape[0], 1)
 input_y_mean = np.mean(y_true, axis=0)
 ss_total = np.sum((y_true - input_y_mean) ** 2)
 ss_residual = np.sum((y_predicted - y_true) ** 2)
 r_square = 1 - (ss_residual / ss_total)
 return r_square

 def loo_error_estimation_with_rippa_method(self, sigma, lambda_reg):
 """
 The function loo_error_estimation_with_rippa_method implements the leave-one-out cross-validation (LOOCV) error for square systems

 The LOOCV error is calculated analytically using Rippa's equation:
 Error[k] = alpha[k] / inv(A[kk]),

 where:
 Error[k] = error on leaving out a particular sample k
 alpha[k] = kth radial weight based on data (kth coefficient of full data interpolation)
 A[kk] = kth diagonal element of data matrix.

 Args:
 self : contains, among other things, the input data
 sigma(float) : shape parameter for the parametric bases (Gaussian, Multiquadric, Inverse multiquadric)
 lambda_reg(float) : regularization parameter

 Returns:
 condition_number_pure : condition number of transformed matrix generated from the input data before regularization
 condition_number_regularized : condition number of transformed matrix generated from the input data after regularization
 loo_error_estimate : norm of the leave-one-out cross-validation error matrix

 For more information, see
 (1) Rippa, S. (1999) Advances in Computational Mathematics
 https://doi.org/10.1023/A:1018975909870

 (2) Mongillo M.A. (2011) Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods
 https://doi.org/10.1137/11S010840

 """
 x_transformed = self.basis_generation(sigma)
 condition_number_pure = np.linalg.cond(x_transformed)

 x_regularized = x_transformed + (lambda_reg * np.eye(x_transformed.shape[0], x_transformed.shape[1]))
 condition_number_regularized = np.linalg.cond(x_regularized)

 y_train = self.y_data.reshape(self.y_data.shape[0], 1)

 # SOLVE RADIAL WEIGHTS FOR FULL X DATA
 if self.solution_method == 'algebraic':
 radial_weights = self.explicit_linear_algebra_solution(x_regularized, y_train)
 elif self.solution_method == 'pyomo':
 radial_weights = self.pyomo_optimization(x_regularized, y_train)
 elif self.solution_method == 'bfgs':
 radial_weights = self.bfgs_parameter_optimization(x_regularized, y_train)
 radial_weights = radial_weights.reshape(radial_weights.shape[0], 1)

 # Evaluate loo-estimate with Rippa formula
 inverse_matrix = np.diag(np.linalg.pinv(x_regularized))
 error_vector = radial_weights.reshape(radial_weights.shape[0], 1) / (inverse_matrix.reshape(inverse_matrix.shape[0], 1))
 loo_error_estimate = np.linalg.norm(error_vector)
 return condition_number_pure, condition_number_regularized, loo_error_estimate

 def leave_one_out_crossvalidation(self):
 """
 The function leave_one_out_crossvalidation determines the best hyperparameters (shape and regularization parameters) for a given RBF fitting problem.
 The function cycles through a set of predefined sets to determine the shape parameter and regularization parameter combination which yields the lowest LOOCV error.
 The LOOCV error for each (shape_parameter, regulkarization parameter) pair is evaluated by calling the function loo_error_estimation_with_rippa_method
 The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000, while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

 Args:
 self: : contains, among other things, the input data

 Returns:
 r_best(float) : best found shape parameter
 lambda_best(float) : best found regularization parameter
 error_best : LOOCV error corresponding to be best found hynperparameters

 Note: The optimal shape parameter r_best is only evaluated for parametriuc bases (such as the Gaussian basis). For fixed basis (e.g. linear), the value is returned as zero.

 """
 # Define sigma and lambda ranges
 if (self.basis_function == 'gaussian') or (self.basis_function == 'mq') or (self.basis_function.lower() == 'imq'):
 r_set = [0.001, 0.002, 0.005, 0.0075, 0.01, 0.02, 0.05, 0.075, 0.1, 0.2, 0.5, 0.75, 1.0, 2.0, 5.0, 7.5, 10.0, 20.0, 50.0, 75.0, 100.0, 200.0, 500.0, 1000.0]
 else:
 r_set = [0]

 if self.regularization is True:
 # reg_parameter = [0.000001, 0.000005, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]
 reg_parameter = [0.00001, 0.00002, 0.00005, 0.000075, 0.0001, 0.0002, 0.0005, 0.00075, 0.001, 0.002, 0.005, 0.0075, 0.01, 0.02, 0.05, 0.075, 0.1, 0.2, 0.5, 0.75, 1]
 elif self.regularization is False:
 reg_parameter = [0]

 machine_precision = np.finfo(float).eps

 error_vector = np.zeros((len(r_set) * len(reg_parameter), 3))
 counter = 0
 print('===')
 for i in range(0, len(r_set)):
 sigma = r_set[i]
 for j in range(0, len(reg_parameter)):
 lambda_reg = reg_parameter[j]
 cond_no_pure, cond_no_reg, cv_error = self.loo_error_estimation_with_rippa_method(sigma, lambda_reg)
 error_vector[counter, :] = [sigma, lambda_reg, cv_error]
 counter += 1
 print(sigma, ' | ', lambda_reg, ' | ', cv_error, ' | ', cond_no_pure, ' | ', cond_no_pure * machine_precision, ' | ', cond_no_reg, ' | ', cond_no_reg * machine_precision)
 minimum_value_column = np.argmin(error_vector[:, 2], axis=0)
 r_best = error_vector[minimum_value_column, 0]
 lambda_best = error_vector[minimum_value_column, 1]
 error_best = error_vector[minimum_value_column, 2]
 return r_best, lambda_best, error_best

[docs] def training(self):
 """
 Main function for RBF training.

 To train the RBF:
 (1) The best values of the hyperparameters (:math:`\sigma, \lambda`) are selected via LOOCV.
 (2) The necessary basis transformation at the optimal hyperparameters is generated.
 (3) The condition number for the transformed matrix is calculated.
 (4) The optimal radial weights are evaluated using the selected optimization method.
 (5) The training predictions, prediction errors and r-square coefficient of fit are evaluated by calling the methods ``error_calculation`` and ``r2_calculation``
 (6) A results object is generated by calling the ResultsReport class.

 The LOOCV error for each (:math:`\sigma, \lambda`) pair is evaluated by calling the function ``loo_error_estimation_with_rippa_method``.

 The pre-defined shape parameter set considers 24 irregularly spaced values ranging between 0.001 - 1000, while the regularization parameter set considers 21 values ranging between 0.00001 - 1.

 Returns:
 tuple : self object (**results**) containing the all information about the best RBF fitting obtained, including:
 - the optimal radial weights (**results.radial_weights**),
 - when relevant, the optimal shape parameter found :math:`\sigma` (**results.sigma**),
 - when relevant, the optimal regularization parameter found :math:`\lambda` (**results.regularization**),
 - the RBF predictions for the training data (**results.output_predictions**), and
 - the :math:`R^{2}` value on the training data (**results.R2**)

 """

 # Determine best r value
 best_r_value, best_lambda_param, _ = self.leave_one_out_crossvalidation()

 # Generate x matrix
 x_transformed = self.basis_generation(best_r_value)
 x_transformed = x_transformed + (best_lambda_param * np.eye(x_transformed.shape[0], x_transformed.shape[1]))
 x_condition_number = np.linalg.cond(x_transformed)

 if self.solution_method == 'algebraic':
 radial_weights = self.explicit_linear_algebra_solution(x_transformed, self.y_data)
 elif self.solution_method == 'pyomo':
 radial_weights = self.pyomo_optimization(x_transformed, self.y_data)
 elif self.solution_method == 'bfgs':
 radial_weights = self.bfgs_parameter_optimization(x_transformed, self.y_data)
 radial_weights = radial_weights.reshape(radial_weights.shape[0], 1)

 training_ss_error, rmse_error, y_training_predictions_scaled = self.error_calculation(radial_weights, self.basis_generation(best_r_value), self.y_data)
 r_square = self.r2_calculation(self.y_data, y_training_predictions_scaled)
 y_training_predictions = self.data_min[0, -1] + y_training_predictions_scaled * (self.data_max[0, -1] - self.data_min[0, -1])

 # Results
 self.weights = radial_weights
 self.sigma = best_r_value
 self.regularization_parameter = best_lambda_param
 self.rmse = rmse_error
 self.output_predictions = y_training_predictions
 self.condition_number = x_condition_number
 self.R2 = r_square
 self.x_data_min = self.data_min[:, :-1]
 self.x_data_max = self.data_max[:, :-1]
 self.y_data_min = self.data_min[:, -1]
 self.y_data_max = self.data_max[:, -1]
 if x_condition_number < (1 / np.finfo(float).eps):
 self.solution_status = 'ok'
 else:
 warnings.warn('The parameter matrix A in A.x=B is ill-conditioned (condition number > 1e10). The solution returned may be inaccurate or unstable - inspect rmse error. Regularization (if not already done) may improve solution')
 self.solution_status = 'unstable solution'

 self.pickle_save({'model':self})
 return self

[docs] def predict_output(self, x_data):
 """

 The ``predict_output`` method generates output predictions for input data x_data based a previously generated RBF fitting.

 Args:
 x_data(NumPy Array) : Designs for which the output is to be evaluated/predicted.

 Returns:
 Numpy Array : Output variable predictions based on the rbf fit.

 """
 radial_weights = self.weights
 centres_matrix = self.centres
 r = self.sigma
 lambda_reg = self.regularization_parameter
 scale = self.x_data_max - self.x_data_min
 scale[scale == 0.0] = 1.0
 x_pred_scaled = (x_data - self.x_data_min)/scale
 x_data = x_pred_scaled.reshape(x_data.shape)

 basis_vector = np.zeros((x_data.shape[0], centres_matrix.shape[0]))
 # Calculate distances from centres
 for i in range(0, centres_matrix.shape[0]):
 basis_vector[:, i] = np.sqrt(np.sum(((x_data - centres_matrix[i, :]) ** 2), axis=1))
 # Initialization of x_transformed
 x_transformed = np.zeros((basis_vector.shape[0], basis_vector.shape[1]))

 # Transform X
 if self.basis_function == 'gaussian':
 x_transformed = RadialBasisFunctions.gaussian_basis_transformation(basis_vector, r)
 elif self.basis_function == 'linear':
 x_transformed = RadialBasisFunctions.linear_transformation(basis_vector)
 elif self.basis_function == 'cubic':
 x_transformed = RadialBasisFunctions.cubic_transformation(basis_vector)
 elif self.basis_function == 'mq':
 x_transformed = RadialBasisFunctions.multiquadric_basis_transformation(basis_vector, r)
 elif self.basis_function == 'imq':
 x_transformed = RadialBasisFunctions.inverse_multiquadric_basis_transformation(basis_vector, r)
 elif self.basis_function == 'spline':
 x_transformed = RadialBasisFunctions.thin_plate_spline_transformation(basis_vector)

 # Add regularization shifting?
 x_transformed = x_transformed + (0 * np.eye(x_transformed.shape[0], x_transformed.shape[1]))
 # x_transformed = x_transformed + (lambda_reg * np.eye(x_transformed.shape[0], x_transformed.shape[1]))
 y_prediction_scaled = np.matmul(x_transformed, radial_weights)
 y_prediction_unscaled = self.y_data_min + y_prediction_scaled * (self.y_data_max - self.y_data_min)
 return y_prediction_unscaled

[docs] def generate_expression(self, variable_list):
 """
 The ``generate_expression`` method returns the Pyomo expression for the RBF model trained.

 The expression is constructed based on the supplied list of variables **variable_list** and the results of the previous RBF training process.

 Args:
 variable_list(list) : List of input variables to be used in generating expression. This can be the a list generated from the output of ``get_feature_vector``. The user can also choose to supply a new list of the appropriate length.

 Returns:
 Pyomo Expression : Pyomo expression of the RBF model based on the variables provided in **variable_list**

 """
 t1 = np.array([variable_list])
 basis_vector = []
 # Calculate distances from centres
 for i in range(0, self.centres.shape[0]):
 ans = 0
 for j in range(0, self.centres.shape[1]):
 ans += (((t1[0, j] - self.x_data_min[0, j])/(self.x_data_max[0, j]- self.x_data_min[0, j])) - self.centres[i, j]) ** 2
 eucl_d = ans ** 0.5
 basis_vector.append(eucl_d)
 rbf_terms_list = []
 if self.basis_function == 'linear':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append(RadialBasisFunctions.linear_transformation(basis_vector[k]))
 elif self.basis_function == 'cubic':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append(RadialBasisFunctions.cubic_transformation(basis_vector[k]))
 elif self.basis_function == 'gaussian':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append(exp(-1 * ((self.sigma * basis_vector[k]) ** 2)))
 elif self.basis_function == 'mq':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append((((basis_vector[k] * self.sigma) ** 2) + 1) ** 0.5)
 elif self.basis_function == 'imq':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append(1 / ((((basis_vector[k] * self.sigma) ** 2) + 1) ** 0.5))
 elif self.basis_function == 'spline':
 for k in range(0, len(basis_vector)):
 rbf_terms_list.append(((basis_vector[k] ** 2) * log(basis_vector[k])))

 rbf_terms_array = np.asarray(rbf_terms_list)
 rbf_expr = self.y_data_min[0]
 rbf_expr += (self.y_data_max[0] - self.y_data_min[0]) * sum(w * t for w, t in zip(
 np.nditer(self.weights),
 np.nditer(rbf_terms_array, flags=['refs_ok'])
))
 return rbf_expr

[docs] def get_feature_vector(self):
 """

 The ``get_feature_vector`` method generates the list of regression features from the column headers of the input dataset.

 Returns:
 Pyomo IndexedParam : An indexed parameter list of the variables supplied in the original data

 Example:

 .. code-block:: python

 # Create a small dataframe with three columns ('one', 'two', 'three') and two rows (A, B)
 >>> xy_data = pd.DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three'])

 # Initialize the **RadialBasisFunctions** class with a linear kernel and print the column headers for the variables
 >>> f = RadialBasisFunctions(xy_data, basis_function='linear')
 >>> p = f.get_feature_vector()
 >>> for i in p.keys():
 >>> print(i)
 one
 two

 """
 p = Param(self.x_data_columns, mutable=True, initialize=0)
 p.index_set().construct()
 p.construct()
 self.feature_list = p
 return p

 def pickle_save(self, solutions):
 """
 The pickle_save method saves the results of the run in a pickle object.
 """
 try:
 filehandler = open(self.filename, 'wb')
 pickle.dump(solutions, filehandler)
 print('\nResults saved in ', str(self.filename))
 except:
 raise IOError('File could not be saved.')

 @staticmethod
 def pickle_load(solution_file):
 """
 pickle_load loads the results of a saved run 'file.obj'.

 Input arguments:
 solution_file : Pickle object file containing previous solution to be loaded.

 """
 try:
 filehandler = open(solution_file, 'rb')
 return pickle.load(filehandler)
 except:
 raise Exception('File could not be loaded.')

 def parity_residual_plots(self):
 """

 inputs:

 Returns:

 """

 fig1 = plt.figure(figsize=(16, 9), tight_layout=True)
 ax = fig1.add_subplot(121)
 ax.plot(self.y_data_unscaled, self.y_data_unscaled, '-')
 ax.plot(self.y_data_unscaled, self.output_predictions, 'o')
 ax.set_xlabel(r'True data', fontsize=12)
 ax.set_ylabel(r'Surrogate values', fontsize=12)
 ax.set_title(r'Parity plot', fontsize=12)

 ax2 = fig1.add_subplot(122)
 ax2.plot(self.y_data_unscaled, self.y_data_unscaled - self.output_predictions, 's', mfc='w', mec='m', ms=6)
 ax2.axhline(y=0, xmin=0, xmax=1)
 ax2.set_xlabel(r'True data', fontsize=12)
 ax2.set_ylabel(r'Residuals', fontsize=12)
 ax2.set_title(r'Residual plot', fontsize=12)

 plt.show()

 return

 def _report(self):
 ## Will only work with Python > 3.5
 variable_headers = self.get_feature_vector()
 var_list = []
 for i in variable_headers:
 var_list.append(variable_headers[i])
 eqn = self.generate_expression(var_list)

 double_line = "=" * 120
 s = (f"\n{double_line}"
 f"\nResults of radial basis function run:\n"
 f"\nBasis function type : {self.basis_function}\n"
 f"Shape parameter : {self.sigma}\n"
 f"Regularization parameter : {self.regularization_parameter}\n"
 f"Number of terms in RBF model : {self.weights.size + 1}\n" # The additional term is y_min
 f"\nRBF Expression:\n"
 f"--------------------------\n"
 f"\n{eqn}\n"
 f"--------------------------\n"
 f"\nModel training errors:"
 f"\n-----------------------\n"
 f"Mean Squared Error (MSE) : {self.rmse ** 2}\n"
 f"Root Mean Squared Error (RMSE) : {self.rmse}\n"
 f"Goodness of fit (R2) : {self.R2}\n"
 f"\n{double_line}"
)
 return s

 def print_report(self):
 s = self._report()
 print(s)

 def _repr_pretty_(self, p, cycle=False):
 s = self._report()
 p.text(s)

 idaes.surrogate.pysmo.sampling

 Source code for idaes.surrogate.pysmo.sampling

##
Institute for the Design of Advanced Energy Systems Process Systems
Engineering Framework (IDAES PSE Framework) Copyright (c) 2018-2020, by the
software owners: The Regents of the University of California, through
Lawrence Berkeley National Laboratory, National Technology & Engineering
Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia
University Research Corporation, et al. All rights reserved.
#
Please see the files COPYRIGHT.txt and LICENSE.txt for full copyright and
license information, respectively. Both files are also available online
at the URL "https://github.com/IDAES/idaes-pse".
##
from __future__ import division, print_function
from six import string_types
import random
from builtins import int, str
import numpy as np
import pandas as pd
import warnings
import itertools

class FeatureScaling:
 """

 A class for scaling and unscaling input and output data. The class contains three main functions
 """

 def __init__(self):
 pass

 @staticmethod
 def data_scaling_minmax(data):
 """

 This function performs column-wise minimax scaling on the input dataset.

 Args:
 data (NumPy Array or Pandas Dataframe): The input data set to be scaled. Must be a numpy array or dataframe.

 Returns:
 scaled_data(NumPy Array): A 2-D numpy array containing the scaled data. All array values will be between [0, 1].
 data_minimum(NumPy Array): A 2-D row vector containing the column-wise minimums of the input data
 data_maximum(NumPy Array): A 2-D row vector containing the column-wise maximums of the input data

 Raises:
 TypeError: Raised when the input data is not a numpy array or dataframe
 """
 # Confirm that data type is an array or DataFrame
 if isinstance(data, np.ndarray):
 input_data = data
 elif isinstance(data, pd.DataFrame):
 input_data = data.values
 else:
 raise TypeError('original_data_input: Pandas dataframe or numpy array required.')

 if input_data.ndim == 1:
 input_data = input_data.reshape(len(input_data), 1)
 data_minimum = np.min(input_data, axis=0)
 data_maximum = np.max(input_data, axis=0)
 scale = data_maximum - data_minimum
 scale[scale == 0.0] = 1.0
 scaled_data = (input_data - data_minimum)/scale
 # scaled_data = (input_data - data_minimum) / (data_maximum - data_minimum)
 data_minimum = data_minimum.reshape(1, data_minimum.shape[0])
 data_maximum = data_maximum.reshape(1, data_maximum.shape[0])
 return scaled_data, data_minimum, data_maximum

 @staticmethod
 def data_unscaling_minmax(x_scaled, x_min, x_max):
 """

 This function performs column-wise un-scaling on the a minmax-scaled input dataset.

 Args:
 x_scaled(NumPy Array): The input data set to be un-scaled. Data values should be between 0 and 1.
 x_min(NumPy Array): 1-D or 2-D (n-by-1) vector containing the actual minimum value for each column. Must contain same number of elements as the number of columns in x_scaled.
 x_max(NumPy Array): 1-D or 2-D (n-by-1) vector containing the actual maximum value for each column. Must contain same number of elements as the number of columns in x_scaled.

 Returns:
 unscaled_data(NumPy Array): A 2-D numpy array containing the scaled data, unscaled_data = x_min + x_scaled * (x_max - x_min)

 Raises:
 IndexError: Function raises index error when the dimensions of the arrays are inconsistent.
 """
 # Check if it can be evaluated. Will return index error if dimensions are wrong
 if x_scaled.ndim == 1: # Check if 1D, and convert to 2D if required.
 x_scaled = x_scaled.reshape(len(x_scaled), 1)
 if (x_scaled.shape[1] != x_min.size) or (x_scaled.shape[1] != x_max.size):
 raise IndexError('Dimensionality problems with data for un-scaling.')
 unscaled_data = x_min + x_scaled * (x_max - x_min)
 return unscaled_data

 # @staticmethod
 # def data_scaling_standardization(data):
 # # Confirm that data type is an array or DataFrame
 # if isinstance(data, np.ndarray):
 # input_data = data
 # elif isinstance(data, pd.DataFrame):
 # input_data = data.values
 # else:
 # raise TypeError('original_data_input: Pandas dataframe or numpy array required.')
 #
 # if input_data.ndim == 1:
 # input_data = input_data.reshape(len(input_data), 1)
 #
 # data_mean = np.mean(input_data, axis=0)
 # data_stdev = np.std(input_data, axis=0)
 # scaled_data = (input_data - data_mean) / data_stdev
 # data_mean = data_mean.reshape(1, data_mean.shape[0])
 # data_stdev = data_stdev.reshape(1, data_stdev.shape[0])
 # return scaled_data, data_mean, data_stdev

class SamplingMethods:

 def nearest_neighbour(self, full_data, a):
 """
 Function determines the closest point to a in data_input (user provided data).
 This is done by determining the input data with the smallest L2 distance from a.

 The function:
 1. Calculates the L2 distance between all the input data points and a,
 2. Sorts the input data based on the calculated L2-distances, and
 3. Selects the sample point in the first row (after sorting) as the closest sample point.

 Args:
 self: contains, among other things, the input data.
 full_data: refers to the input dataset supplied by the user.
 a: a single row vector containing the sample point we want to find the closest sample to.

 Returns:
 closest_point: a row vector containing the closest point to a in self.x_data
 """

 dist = full_data[:, :-1] - a
 l2_norm = np.sqrt(np.sum((dist ** 2), axis=1))
 l2_norm = l2_norm.reshape(l2_norm.shape[0], 1)
 distances = np.append(full_data, l2_norm, 1)
 sorted_distances = distances[distances[:, -1].argsort()]
 closest_point = sorted_distances[0, :-1]
 return closest_point

 def points_selection(self, full_data, generated_sample_points):
 """
 Uses L2-distance evaluation (implemented in nearest_neighbour) to find closest available points in original data to those generated by the sampling technique.
 Calls the nearest_neighbour function for each row in the input data.

 Args:
 full_data: refers to the input dataset supplied by the user.
 generated_sample_points(NumPy Array): The vector of points (number_of_sample rows) for which the closest points in the original data are to be found. Each row represents a sample point.

 Returns:
 equivalent_points: Array containing the points (in rows) most similar to those in generated_sample_points
 """

 equivalent_points = np.zeros((generated_sample_points.shape[0], generated_sample_points.shape[1] + 1))
 for i in range(0, generated_sample_points.shape[0]):
 closest_point = self.nearest_neighbour(full_data, generated_sample_points[i, :])
 equivalent_points[i, :] = closest_point
 return equivalent_points

 def sample_point_selection(self, full_data, sample_points, sampling_type):
 if sampling_type == 'selection':
 sd = FeatureScaling()
 scaled_data, data_min, data_max = sd.data_scaling_minmax(full_data)
 points_closest_scaled = self.points_selection(scaled_data, sample_points)
 points_closest_unscaled = sd.data_unscaling_minmax(points_closest_scaled, data_min, data_max)

 unique_sample_points = np.unique(points_closest_unscaled, axis=0)
 if unique_sample_points.shape[0] < points_closest_unscaled.shape[0]:
 warnings.warn(
 'The returned number of samples is less than the requested number due to repetitions during nearest neighbour selection.')
 print('\nNumber of unique samples returned by sampling algorithm:', unique_sample_points.shape[0])

 elif sampling_type == 'creation':
 sd = FeatureScaling()
 unique_sample_points = sd.data_unscaling_minmax(sample_points, full_data[0, :], full_data[1, :])

 return unique_sample_points

 def prime_number_generator(self, n):
 """
 Function generates a list of the first n prime numbers

 Args:
 n(int): Number of prime numbers required

 Returns:
 prime_list(list): A list of the first n prime numbers

 Example: Generate first three prime numbers
 >> prime_number_generator(3)
 >> [2, 3, 5]

 """
 # Alternative way of generating primes using list generators
 # prime_list = []
 # current_no = 2
 # while len(prime_list) < n:
 # matching_objs = next((o for o in range(2, current_no) if current_no % o == 0), 0)
 # if matching_objs==0:
 # prime_list.append(current_no)
 # current_no += 1

 prime_list = []
 current_no = 2
 while len(prime_list) < n:
 for i in range(2, current_no):
 if (current_no % i) == 0:
 break
 else:
 prime_list.append(current_no)
 current_no += 1
 return prime_list

 def base_conversion(self, a, b):
 """
 Function converts integer a from base 10 to base b

 Args:
 a(int): Number to be converted, base 10
 b(int): Base required

 Returns:
 string_representation(list): List containing strings of individual digits of "a" in the new base "b"

 Examples: Convert (i) 5 to base 2 and (ii) 57 to base 47
 >> base_conversion(5, 2)
 >> ['1', '0', '1']

 >> base_conversion(57, 47)
 >> ['1', '10']

 """

 string_representation = []
 if a < b:
 string_representation.append(str(a))
 else:
 while a > 0:
 a, c = (a // b, a % b)
 string_representation.append(str(c))
 string_representation = (string_representation[::-1])
 return string_representation

 def prime_base_to_decimal(self, num, base):
 """
 ===
 Function converts a fractional number "num" in base "base" to base 10. Reverses the process in base_conversion
 Note: The first string element is ignored, since this would be zero for a fractional number.

 Args:
 num(list): Number in base b to be converted. The number must be represented as a list containing individual digits of the base, with the first entry as zero.
 b(int): Original base

 Returns:
 decimal_equivalent(float): Fractional number in base 10

 Examples:
 Convert 0.01 (base 2) to base 10
 >> prime_base_to_decimal(['0', '0', '1'], 2) # Represents 0.01 in base 2
 >> 0.25

 Convert 0.01 (base 20) to base 10
 >> prime_base_to_decimal(['0', '0', '1'], 20) # Represents 0.01 in base 20
 >> 0.0025
 ==

 """
 binary = num
 decimal_equivalent = 0
 # Convert fractional part decimal equivalent
 for i in range(1, len(binary)):
 decimal_equivalent += int(binary[i]) / (base ** i)
 return decimal_equivalent

 def data_sequencing(self, no_samples, prime_base):
 """
 ===
 Function which generates the first no_samples elements of the Halton or Hammersley sequence based on the prime number prime_base
 The steps for generating the first no_samples of the sequence are as follows:
 1. Create a list of numbers between 0 and no_samples --- nums = [0, 1, 2, ..., no_samples]
 2. Convert each element in nums into its base form based on the prime number prime_base, reverse the base digits of each number in num
 3. Add a decimal point in front of the reversed number
 4. Convert the reversed numbers back to base 10
 Args:
 no_samples(int): Number of Halton/Hammersley sequence elements required
 prime_base(int): Current prime number to be used as base

 Returns:
 sequence_decimal(NumPy Array): 1-D array containing the first no_samples elements of the sequence based on prime_base

 Examples:
 First three elements of the Halton sequence based on base 2
 >> data_sequencing(self, 3, 2)
 >> [0, 0.5, 0.75]
 ==

 """
 pure_numbers = np.arange(0, no_samples)
 bitwise_rep = []
 reversed_bitwise_rep = []
 sequence_bitwise = []
 sequence_decimal = np.zeros((no_samples, 1))
 for i in range(0, no_samples):
 base_rep = self.base_conversion(pure_numbers[i], prime_base)
 bitwise_rep.append(base_rep)
 reversed_bitwise_rep.append(base_rep[::-1])
 sequence_bitwise.append(['0.'] + reversed_bitwise_rep[i])
 sequence_decimal[i, 0] = self.prime_base_to_decimal(sequence_bitwise[i], prime_base)
 sequence_decimal = sequence_decimal.reshape(sequence_decimal.shape[0],)
 return sequence_decimal

[docs]class LatinHypercubeSampling(SamplingMethods):
 """
 A class that performs Latin Hypercube Sampling. The function returns LHS samples which have been selected randomly after sample space stratification.

 It should be noted that no minimax criterion has been used in this implementation, so the LHS samples selected will not have space-filling properties.

 To use: call class with inputs, and then run ``sample_points`` method.

 Example:

 .. code-block:: python

 # To select 10 LHS samples from "data"
 >>> b = rbf.LatinHypercubeSampling(data, 10, sampling_type="selection")
 >>> samples = b.sample_points()

 """

[docs] def __init__(self, data_input, number_of_samples=None, sampling_type=None):
 """
 Initialization of **LatinHypercubeSampling** class. Two inputs are required.

 Args:
 data_input (NumPy Array, Pandas Dataframe or list) : The input data set or range to be sampled.

 - When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and **sampling_type** option must be set to "selection". The output variable (y) is assumed to be supplied in the last column.
 - When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and **sampling_type** option must be set to "creation". It is assumed that no range contains no output variable information in this case.

 number_of_samples (int): The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in **data_input**.
 sampling_type (str) : Option which determines whether the algorithm selects samples from an existing dataset ("selection") or attempts to generate sample from a supplied range ("creation"). Default is "creation".

 Returns:
 self function containing the input information

 Raises:
 ValueError: The input data (**data_input**) is the wrong type.

 Exception: When **number_of_samples** is invalid (not an integer, too large, zero, or negative)

 """
 if sampling_type is None:
 sampling_type = 'creation'
 self.sampling_type = sampling_type
 print('Creation-type sampling will be used.')
 elif not isinstance(sampling_type, string_types):
 raise Exception('Invalid sampling type entry. Must be of type <str>.')
 elif (sampling_type.lower() == 'creation') or (sampling_type.lower() == 'selection'):
 sampling_type = sampling_type.lower()
 self.sampling_type = sampling_type
 else:
 raise Exception(
 'Invalid sampling type requirement entered. Enter "creation" for sampling from a range or "selection" for selecting samples from a dataset.')
 print('Sampling type: ', self.sampling_type, '\n')

 if self.sampling_type == 'selection':
 if isinstance(data_input, pd.DataFrame):
 data = data_input.values
 data_headers = data_input.columns.values.tolist()
 elif isinstance(data_input, np.ndarray):
 data = data_input
 data_headers = []
 else:
 raise ValueError('Pandas dataframe or numpy array required for sampling_type "selection."')
 self.data = data
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif number_of_samples > data.shape[0]:
 raise Exception('LHS sample size cannot be greater than number of samples in the input data set')
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = self.data[:, :-1]

 elif self.sampling_type == 'creation':
 if not isinstance(data_input, list):
 raise ValueError('List entry of two elements expected for sampling_type "creation."')
 elif len(data_input) != 2:
 raise Exception('data_input must contain two lists of equal lengths.')
 elif not isinstance(data_input[0], list) or not isinstance(data_input[1], list):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif len(data_input[0]) != len(data_input[1]):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif data_input[0] == data_input[1]:
 raise Exception('Invalid entry: both lists are equal.')
 else:
 bounds_array = np.zeros((2, len(data_input[0]),))
 bounds_array[0, :] = np.array(data_input[0])
 bounds_array[1, :] = np.array(data_input[1])
 data_headers = []
 self.data = bounds_array
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = bounds_array # Only x data will be present in this case

 def variable_sample_creation(self, variable_min, variable_max):
 """

 Function that generates the required number of sample points for a given variable within a specified range using stratification.
 The function divides the variable sample space into self.number_of_samples equal strata and generates a single random sample from each strata based on its lower and upper bound.

 Args:
 self
 variable_min(float): The lower bound of the sample space region. Should be a single number.
 variable_max(float): The upper bound of the sample space region. Should be a single number.

 Returns:
 var_samples(NumPy Array): A numpy array of size (self.number_of_samples x 1) containing the randomly generated points from each strata
 """

 strata_size = 1 / self.number_of_samples
 var_samples = np.zeros((self.number_of_samples, 1))
 for i in range(self.number_of_samples):
 strata_lb = i * strata_size
 sample_point = strata_lb + (random.random() * strata_size)
 var_samples[i, 0] = (sample_point * (variable_max - variable_min)) + variable_min
 return var_samples

 def lhs_points_generation(self):
 """
 Generate points within each strata for each variable based on stratification. When invoked, it:
 1. Determines the mimumum and maximum value for each feature (column),
 2. Calls the variable_sample_creation function on each feature, passing in its mimmum and maximum
 3. Returns an array containing the points selected in each strata of each column

 Returns:
 sample_points_vector(NumPy Array): Array containing the columns of the random samples generated in each strata.
 """

 ns, nf = np.shape(self.x_data)
 sample_points_vector = np.zeros(
 (self.number_of_samples, nf)) # Array containing points in each interval for each variable
 for i in range(nf):
 variable_min = 0 # np.min(self.x_data[:, i])
 variable_max = 1 # np.max(self.x_data[:, i])
 var_samples = self.variable_sample_creation(variable_min, variable_max) # Data generation step
 sample_points_vector[:, i] = var_samples[:, 0]
 return sample_points_vector

 @staticmethod
 def random_shuffling(vector_of_points):
 """
 This function carries out random shuffling of column data to generate samples.
 Data in each of the columns in the input array is shuffled separately, meaning that the rows of the resultant array will contain random samples from the sample space.

 Args:
 vector_of_points(NumPy Array): Array containing ordered points generated from stratification. Should usually be the output of the lhs_points_generation function. Each column self.number_of_samples elements.

 Returns:
 vector_of_points(NumPy Array): 2-D array containing the shuffled data. Should contain number_of_sample rows, with each row representing a potential random sample from within the sample space.

 """

 _, nf = np.shape(vector_of_points)
 for i in range(0, nf):
 z_col = vector_of_points[:, i]
 np.random.shuffle(z_col)
 vector_of_points[:, i] = z_col
 return vector_of_points

[docs] def sample_points(self):
 """
 ``sample_points`` generates or selects Latin Hypercube samples from an input dataset or data range. When called, it:

 1. generates samples points from stratified regions by calling the ``lhs_points_generation``,
 2. generates potential sample points by random shuffling, and
 3. when a dataset is provided, selects the closest available samples to the theoretical sample points from within the input data.

 Returns:
 NumPy Array or Pandas Dataframe: A numpy array or Pandas dataframe containing **number_of_samples** points selected or generated by LHS.

 """

 vector_of_points = self.lhs_points_generation() # Assumes [X, Y] data is supplied.
 generated_sample_points = self.random_shuffling(vector_of_points)
 unique_sample_points = self.sample_point_selection(self.data, generated_sample_points, self.sampling_type)

 if len(self.data_headers) > 0:
 unique_sample_points = pd.DataFrame(unique_sample_points, columns=self.data_headers)
 return unique_sample_points

[docs]class UniformSampling(SamplingMethods):
 """
 A class that performs Uniform Sampling. Depending on the settings, the algorithm either returns samples from an input dataset which have been selected using Euclidean distance minimization after the uniform samples have been generated,
 or returns samples from a supplied data range.

 Full-factorial samples are based on dividing the space of each variable randomly and then generating all possible variable combinations.

 - The number of points to be sampled per variable needs to be specified in a list.

 To use: call class with inputs, and then ``sample_points`` function

 Example:

 .. code-block:: python

 # To select 50 samples on a (10 x 5) grid in a 2D space:
 >>> b = rbf.UniformSampling(data, [10, 5], sampling_type="selection")
 >>> samples = b.sample_points()

 """

[docs] def __init__(self, data_input, list_of_samples_per_variable, sampling_type=None, edges=None):
 """
 Initialization of UniformSampling class. Three inputs are required.

 Args:
 data_input (NumPy Array, Pandas Dataframe or list) : The input data set or range to be sampled.

 - When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and **sampling_type** option must be set to "selection". The output variable (Y) is assumed to be supplied in the last column.
 - When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and **sampling_type** option must be set to "creation". It is assumed that no range contains no output variable information in this case.

 list_of_samples_per_variable (list): The list containing the number of subdivisions for each variable. Each dimension (variable) must be represented by a positive integer variable greater than 1.
 sampling_type (str) : Option which determines whether the algorithm selects samples from an existing dataset ("selection") or attempts to generate sample from a supplied range ("creation"). Default is "creation".

 Keyword Args:
 edges(bool): Boolean variable representing bow the points should be selected. A value of True (default) indicates the points should be equally spaced edge to edge, otherwise they will be in the centres of the bins filling the unit cube

 Returns:
 self function containing the input information

 Raises:
 ValueError: The **data_input** is the wrong type

 ValueError: When **list_of_samples_per_variable** is of the wrong length, is not a list or contains elements other than integers

 Exception: When **edges** entry is not Boolean

 """
 if sampling_type is None:
 sampling_type = 'creation'
 self.sampling_type = sampling_type
 print('Creation-type sampling will be used.')
 elif not isinstance(sampling_type, string_types):
 raise Exception('Invalid sampling type entry. Must be of type <str>.')
 elif (sampling_type.lower() == 'creation') or (sampling_type.lower() == 'selection'):
 sampling_type = sampling_type.lower()
 self.sampling_type = sampling_type
 else:
 raise Exception(
 'Invalid sampling type requirement entered. Enter "creation" for sampling from a range or "selection" for selecting samples from a dataset.')
 print('Sampling type: ', self.sampling_type, '\n')

 if self.sampling_type == 'selection':
 if isinstance(data_input, pd.DataFrame):
 data = data_input.values
 data_headers = data_input.columns.values.tolist()
 elif isinstance(data_input, np.ndarray):
 data = data_input
 data_headers = []
 else:
 raise ValueError('Pandas dataframe or numpy array required.')
 self.data = data
 self.x_data = self.data[:, :-1]
 self.data_headers = data_headers

 elif self.sampling_type == 'creation':
 if not isinstance(data_input, list):
 raise ValueError('List entry of two elements expected for sampling_type "creation."')
 elif len(data_input) != 2:
 raise Exception('data_input must contain two lists of equal lengths.')
 elif not isinstance(data_input[0], list) or not isinstance(data_input[1], list):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif len(data_input[0]) != len(data_input[1]):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif data_input[0] == data_input[1]:
 raise Exception('Invalid entry: both lists are equal.')
 else:
 bounds_array = np.zeros((2, len(data_input[0]),))
 bounds_array[0, :] = np.array(data_input[0])
 bounds_array[1, :] = np.array(data_input[1])
 data_headers = []
 self.data = bounds_array
 self.x_data = bounds_array
 self.data_headers = data_headers

 if edges is None:
 edges = True
 self.edge = edges
 elif not isinstance(edges, bool):
 raise Exception('Invalid "edges" entry. Must be boolean')
 elif (edges is True) or (edges is False):
 self.edge = edges

 # Check that list_of_samples_per_variable is a list, list length is correct, all dimensions greater than 1 and all list values are integers
 if not isinstance(list_of_samples_per_variable, list):
 raise TypeError('list_of_samples_per_variable: list required.')
 if len(list_of_samples_per_variable) != self.x_data.shape[1]:
 raise ValueError('Length of list_of_samples_per_variable must equal the number of variables.')
 if min(list_of_samples_per_variable) < 2:
 raise ValueError('All variables must have at least two points per dimension')
 if all(isinstance(q, int) for q in list_of_samples_per_variable) is False:
 raise TypeError('All values in list must be integers')

 self.dim_vector = list_of_samples_per_variable
 self.number_of_samples = int(np.prod(self.dim_vector))

 if self.sampling_type == 'selection' and self.number_of_samples > data.shape[0]:
 raise Exception('Sample size cannot be greater than number of samples in the input data set')

[docs] def sample_points(self):
 """
 ``sample_points`` generates or selects full-factorial designs from an input dataset or data range.

 Returns:
 NumPy Array or Pandas Dataframe: A numpy array or Pandas dataframe containing the sample points generated or selected by full-factorial sampling.

 """

 points_spread = []
 if self.edge is True:
 for i in self.dim_vector:
 variable_spread = np.arange(i) / (i - 1)
 points_spread.append(variable_spread)
 elif self.edge is False:
 for i in self.dim_vector:
 variable_spread = np.arange(i + 1) / i
 shifted_points = [(variable_spread[i] + variable_spread[i - 1]) / 2 for i in
 range(1, len(variable_spread))]
 points_spread.append(shifted_points)
 samples_list = list(itertools.product(*points_spread))
 samples_array = np.asarray(samples_list)
 unique_sample_points = self.sample_point_selection(self.data, samples_array, self.sampling_type)
 if len(self.data_headers) > 0:
 unique_sample_points = pd.DataFrame(unique_sample_points, columns=self.data_headers)
 return unique_sample_points

[docs]class HaltonSampling(SamplingMethods):
 """
 A class that performs Halton Sampling.

 Halton samples are based on the reversing/flipping the base conversion of numbers using primes.

 To generate n samples in a :math:`p`-dimensional space, the first :math:`p` prime numbers are used to generate the samples.

 Note:
 Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensions, the performance of the sampling method has been shown to degrade.

 To use: call class with inputs, and then ``sample_points`` function.

 Example:

 .. code-block:: python

 # For the first 10 Halton samples in a 2-D space:
 >>> b = rbf.HaltonSampling(data, 10, sampling_type="selection")
 >>> samples = b.sample_points()

 """

[docs] def __init__(self, data_input, number_of_samples=None, sampling_type=None):
 """

 Initialization of **HaltonSampling** class. Two inputs are required.

 Args:
 data_input (NumPy Array, Pandas Dataframe or list) : The input data set or range to be sampled.

 - When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and **sampling_type** option must be set to "selection". The output variable (Y) is assumed to be supplied in the last column.
 - When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and **sampling_type** option must be set to "creation". It is assumed that no range contains no output variable information in this case.

 number_of_samples(int): The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in **data_input**.
 sampling_type(str) : Option which determines whether the algorithm selects samples from an existing dataset ("selection") or attempts to generate sample from a supplied range ("creation"). Default is "creation".

 Returns:
 self function containing the input information.

 Raises:
 ValueError: The **data_input** is the wrong type.

 Exception: When the **number_of_samples** is invalid (not an integer, too large, zero or negative.)

 """
 if sampling_type is None:
 sampling_type = 'creation'
 self.sampling_type = sampling_type
 print('Creation-type sampling will be used.')
 elif not isinstance(sampling_type, string_types):
 raise Exception('Invalid sampling type entry. Must be of type <str>.')
 elif (sampling_type.lower() == 'creation') or (sampling_type.lower() == 'selection'):
 sampling_type = sampling_type.lower()
 self.sampling_type = sampling_type
 else:
 raise Exception(
 'Invalid sampling type requirement entered. Enter "creation" for sampling from a range or "selection" for selecting samples from a dataset.')
 print('Sampling type: ', self.sampling_type, '\n')

 if self.sampling_type == 'selection':
 if isinstance(data_input, pd.DataFrame):
 data = data_input.values
 data_headers = data_input.columns.values.tolist()
 elif isinstance(data_input, np.ndarray):
 data = data_input
 data_headers = []
 else:
 raise ValueError('Pandas dataframe or numpy array required.')
 self.data = data
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif number_of_samples > data.shape[0]:
 raise Exception('Sample size cannot be greater than number of samples in the input data set')
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = self.data[:, :-1]

 elif self.sampling_type == 'creation':
 if not isinstance(data_input, list):
 raise ValueError('List entry of two elements expected for sampling_type "creation."')
 elif len(data_input) != 2:
 raise Exception('data_input must contain two lists of equal lengths.')
 elif not isinstance(data_input[0], list) or not isinstance(data_input[1], list):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif len(data_input[0]) != len(data_input[1]):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif data_input[0] == data_input[1]:
 raise Exception('Invalid entry: both lists are equal.')
 else:
 bounds_array = np.zeros((2, len(data_input[0]),))
 bounds_array[0, :] = np.array(data_input[0])
 bounds_array[1, :] = np.array(data_input[1])
 data_headers = []
 self.data = bounds_array
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = bounds_array # Only x data will be present in this case

 if self.x_data.shape[1] > 10:
 raise Exception(
 'Dimensionality problem: This method is not available for problems with dimensionality > 10: the performance of the method degrades substantially at higher dimensions')

[docs] def sample_points(self):
 """
 The ``sample_points`` method generates the Halton samples. The steps followed here are:

 1. Determine the number of features in the input data.
 2. Generate the list of primes to be considered by calling ``prime_number_generator`` from the sampling superclass.
 3. Create the first **number_of_samples** elements of the Halton sequence for each prime.
 4. Create the Halton samples by combining the corresponding elements of the Halton sequences for each prime.
 5. When in "selection" mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the ``nearest_neighbours`` method in the sampling superclass.

 Returns:
 NumPy Array or Pandas Dataframe: A numpy array or Pandas dataframe containing **number_of_samples** Halton sample points.

 """
 no_features = self.x_data.shape[1]
 # Generate list of no_features prime numbers
 prime_list = self.prime_number_generator(no_features)
 sample_points = np.zeros((self.number_of_samples, no_features))
 for i in range(0, no_features):
 sample_points[:, i] = self.data_sequencing(self.number_of_samples, prime_list[i])
 # Scale input data, then find data points closest in sample space. Unscale before returning points
 unique_sample_points = self.sample_point_selection(self.data, sample_points, self.sampling_type)
 if len(self.data_headers) > 0:
 unique_sample_points = pd.DataFrame(unique_sample_points, columns=self.data_headers)
 return unique_sample_points

[docs]class HammersleySampling(SamplingMethods):
 """
 A class that performs Hammersley Sampling.

 Hammersley samples are generated in a similar way to Halton samples - based on the reversing/flipping the base conversion of numbers using primes.

 To generate :math:`n` samples in a :math:`p`-dimensional space, the first :math:`\\left(p-1\\right)` prime numbers are used to generate the samples. The first dimension is obtained by uniformly dividing the region into **no_samples points**.

 Note:
 Use of this method is limited to use in low-dimensionality problems (less than 10 variables). At higher dimensionalities, the performance of the sampling method has been shown to degrade.

 To use: call class with inputs, and then ``sample_points`` function.

 Example:

 .. code-block:: python

 # For the first 10 Hammersley samples in a 2-D space:
 >>> b = rbf.HammersleySampling(data, 10, sampling_type="selection")
 >>> samples = b.sample_points()

 """

[docs] def __init__(self, data_input, number_of_samples=None, sampling_type=None):
 """
 Initialization of **HammersleySampling** class. Two inputs are required.

 Args:
 data_input (NumPy Array, Pandas Dataframe or list): The input data set or range to be sampled.

 - When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and **sampling_type** option must be set to "selection". The output variable (Y) is assumed to be supplied in the last column.
 - When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and **sampling_type** option must be set to "creation". It is assumed that no range contains no output variable information in this case.

 number_of_samples(int): The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in **data_input**.
 sampling_type(str) : Option which determines whether the algorithm selects samples from an existing dataset ("selection") or attempts to generate sample from a supplied range ("creation"). Default is "creation".

 Returns:
 self function containing the input information.

 Raises:
 ValueError: When **data_input** is the wrong type.

 Exception: When the **number_of_samples** is invalid (not an integer, too large, zero, negative)

 """
 if sampling_type is None:
 sampling_type = 'creation'
 self.sampling_type = sampling_type
 print('Creation-type sampling will be used.')
 elif not isinstance(sampling_type, string_types):
 raise Exception('Invalid sampling type entry. Must be of type <str>.')
 elif (sampling_type.lower() == 'creation') or (sampling_type.lower() == 'selection'):
 sampling_type = sampling_type.lower()
 self.sampling_type = sampling_type
 else:
 raise Exception(
 'Invalid sampling type requirement entered. Enter "creation" for sampling from a range or "selection" for selecting samples from a dataset.')
 print('Sampling type: ', self.sampling_type, '\n')

 if self.sampling_type == 'selection':
 if isinstance(data_input, pd.DataFrame):
 data = data_input.values
 data_headers = data_input.columns.values.tolist()
 elif isinstance(data_input, np.ndarray):
 data = data_input
 data_headers = []
 else:
 raise ValueError('Pandas dataframe or numpy array required.')
 self.data = data
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif number_of_samples > data.shape[0]:
 raise Exception('Sample size cannot be greater than number of samples in the input data set')
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = self.data[:, :-1]

 elif self.sampling_type == 'creation':
 if not isinstance(data_input, list):
 raise ValueError('List entry of two elements expected for sampling_type "creation."')
 elif len(data_input) != 2:
 raise Exception('data_input must contain two lists of equal lengths.')
 elif not isinstance(data_input[0], list) or not isinstance(data_input[1], list):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif len(data_input[0]) != len(data_input[1]):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif data_input[0] == data_input[1]:
 raise Exception('Invalid entry: both lists are equal.')
 else:
 bounds_array = np.zeros((2, len(data_input[0]),))
 bounds_array[0, :] = np.array(data_input[0])
 bounds_array[1, :] = np.array(data_input[1])
 data_headers = []
 self.data = bounds_array
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_samples = number_of_samples
 self.x_data = bounds_array # Only x data will be present in this case

 if self.x_data.shape[1] > 10:
 raise Exception(
 'Dimensionality problem: This method is not available for problems with dimensionality > 10: the performance of the method degrades substantially at higher dimensions')

[docs] def sample_points(self):
 """
 The **sampling_type** method generates the Hammersley sample points. The steps followed here are:

 1. Determine the number of features :math:`n_{f}` in the input data.
 2. Generate the list of :math:`\\left(n_{f}-1\\right)` primes to be considered by calling prime_number_generator.
 3. Divide the space [0,**number_of_samples**-1] into **number_of_samples** places to obtain the first dimension for the Hammersley sequence.
 4. For the other :math:`\\left(n_{f}-1\\right)` dimensions, create first **number_of_samples** elements of the Hammersley sequence for each of the :math:`\\left(n_{f}-1\\right)` primes.
 5. Create the Hammersley samples by combining the corresponding elements of the Hammersley sequences created in steps 3 and 4
 6. When in "selection" mode, determine the closest corresponding point in the input dataset using Euclidean distance minimization. This is done by calling the ``nearest_neighbours`` method in the sampling superclass.

 Returns:
 NumPy Array or Pandas Dataframe: A numpy array or Pandas dataframe containing **number_of_samples** Hammersley sample points.

 """
 no_features = self.x_data.shape[1]
 if no_features == 1:
 prime_list = []
 else:
 prime_list = self.prime_number_generator(no_features - 1)
 sample_points = np.zeros((self.number_of_samples, no_features))
 sample_points[:, 0] = (np.arange(0, self.number_of_samples)) / self.number_of_samples
 for i in range(0, len(prime_list)):
 sample_points[:, i + 1] = self.data_sequencing(self.number_of_samples, prime_list[i])

 unique_sample_points = self.sample_point_selection(self.data, sample_points, self.sampling_type)
 if len(self.data_headers) > 0:
 unique_sample_points = pd.DataFrame(unique_sample_points, columns=self.data_headers)
 return unique_sample_points

[docs]class CVTSampling(SamplingMethods):
 """
 A class that constructs Centroidal Voronoi Tessellation (CVT) samples.

 CVT sampling is based on the generation of samples in which the generators of the Voronoi tessellations and the mass centroids coincide.

 To use: call class with inputs, and then ``sample_points`` function.

 Example:

 .. code-block:: python

 # For the first 10 CVT samples in a 2-D space:
 >>> b = rbf.CVTSampling(data_bounds, 10, tolerance = 1e-5, sampling_type="creation")
 >>> samples = b.sample_points()

 """

[docs] def __init__(self, data_input, number_of_samples=None, tolerance=None, sampling_type=None):
 """
 Initialization of CVTSampling class. Two inputs are required, while an optional option to control the solution accuracy may be specified.

 Args:
 data_input (NumPy Array, Pandas Dataframe or list): The input data set or range to be sampled.

 - When the aim is to select a set of samples from an existing dataset, the dataset must be a NumPy Array or a Pandas Dataframe and **sampling_type** option must be set to "selection". The output variable (Y) is assumed to be supplied in the last column.
 - When the aim is to generate a set of samples from a data range, the dataset must be a list containing two lists of equal lengths which contain the variable bounds and **sampling_type** option must be set to "creation". It is assumed that no range contains no output variable information in this case.

 number_of_samples(int): The number of samples to be generated. Should be a positive integer less than or equal to the number of entries (rows) in **data_input**.
 sampling_type(str) : Option which determines whether the algorithm selects samples from an existing dataset ("selection") or attempts to generate sample from a supplied range ("creation"). Default is "creation".

 Keyword Args:
 tolerance(float): Maximum allowable Euclidean distance between centres from consectutive iterations of the algorithm. Termination condition for algorithm.

 - The smaller the value of tolerance, the better the solution but the longer the algorithm requires to converge. Default value is :math:`10^{-7}`.

 Returns:
 self function containing the input information.

 Raises:
 ValueError: When **data_input** is the wrong type.

 Exception: When the **number_of_samples** is invalid (not an integer, too large, zero, negative)

 Exception: When the tolerance specified is too loose (tolerance > 0.1) or invalid

 warnings.warn: when the tolerance specified by the user is too tight (tolerance < :math:`10^{-9}`)

 """
 if sampling_type is None:
 sampling_type = 'creation'
 self.sampling_type = sampling_type
 print('Creation-type sampling will be used.')
 elif not isinstance(sampling_type, string_types):
 raise Exception('Invalid sampling type entry. Must be of type <str>.')
 elif (sampling_type.lower() == 'creation') or (sampling_type.lower() == 'selection'):
 sampling_type = sampling_type.lower()
 self.sampling_type = sampling_type
 else:
 raise Exception(
 'Invalid sampling type requirement entered. Enter "creation" for sampling from a range or "selection" for selecting samples from a dataset.')
 print('Sampling type: ', self.sampling_type, '\n')

 if self.sampling_type == 'selection':
 if isinstance(data_input, pd.DataFrame):
 data = data_input.values
 data_headers = data_input.columns.values.tolist()
 elif isinstance(data_input, np.ndarray):
 data_headers = []
 data = data_input
 else:
 raise ValueError('Pandas dataframe or numpy array required.')

 self.data = data
 self.data_headers = data_headers

 # Make sure x_data is 2D: reshape if necessary
 x_data = data[:, :-1]
 if x_data.ndim == 1:
 x_data = x_data.reshape(len(x_data), 1)
 self.x_data = x_data

 self.y_data = data[:, -1]

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif number_of_samples > data.shape[0]:
 raise Exception('CVT sample size cannot be greater than number of samples in the input data set')
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_centres = number_of_samples

 elif self.sampling_type == 'creation':
 if not isinstance(data_input, list):
 raise ValueError('List entry of two elements expected for sampling_type "creation."')
 elif len(data_input) != 2:
 raise Exception('data_input must contain two lists of equal lengths.')
 elif not isinstance(data_input[0], list) or not isinstance(data_input[1], list):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif len(data_input[0]) != len(data_input[1]):
 raise Exception('data_input must contain two lists of equal lengths.')
 elif data_input[0] == data_input[1]:
 raise Exception('Invalid entry: both lists are equal.')
 else:
 bounds_array = np.zeros((2, len(data_input[0]),))
 bounds_array[0, :] = np.array(data_input[0])
 bounds_array[1, :] = np.array(data_input[1])
 data_headers = []
 self.data = bounds_array
 self.data_headers = data_headers

 # Catch potential errors in number_of_samples
 if number_of_samples is None:
 print("\nNo entry for number of samples to be generated. The default value of 5 will be used.")
 number_of_samples = 5
 elif not isinstance(number_of_samples, int):
 raise Exception('number_of_samples must be an integer.')
 elif number_of_samples <= 0:
 raise Exception('number_of_samples must a positive, non-zero integer.')
 self.number_of_centres = number_of_samples

 x_data = bounds_array # Only x data will be present in this case
 if x_data.ndim == 1:
 x_data = x_data.reshape(len(x_data), 1)
 self.x_data = x_data
 self.y_data = []

 if tolerance is None:
 tolerance = 1e-7
 elif tolerance > 0.1:
 raise Exception('Tolerance must be less than 0.1 to achieve good results')
 elif tolerance < 1e-9:
 warnings.warn('Tolerance too tight. CVT algorithm may take long time to converge.')
 elif (tolerance < 0.1) and (tolerance > 1e-9):
 tolerance = tolerance
 else:
 raise Exception('Invalid tolerance input')
 self.eps = tolerance

 @staticmethod
 def random_sample_selection(no_samples, no_features):
 """
 Function generates a the required number of samples (no_samples) within an no_features-dimensional space.
 This is achieved by generating an m x n 2-D array using numpy's random.rand function, where

 - m = number of training samples to be generated, and'
 - n = number of design features/variables (dimensionality of the problem).

 Args:
 no_samples(int): The number of samples to be generated.
 no_features(int): Number of design features/variables in the input data.

 Returns:
 random_points(NumPy Array): 2-D array of size no_samples x no_features generated from a uniform distribution.

 Example: Generate three samples for a two-dimensional problem
 >> rbf.CVTSampling.random_sample_selection(3, 2)
 >> array([[0.03149075, 0.70566624], [0.48319597, 0.03810093], [0.19962214, 0.57641408]])

 """
 random_points = np.random.rand(no_samples, no_features)
 return random_points

 @staticmethod
 def eucl_distance(u, v):
 """
 The function eucl_distance(u,v) calculates Euclidean distance between two points or arrays u and v.

 Args:
 u, v (NumPy Array): Two points or arrays with the same number of features (same second dimension)

 Returns:
 euc_d(NumPy Array): Array of size (u.shape[0] x 1) containing Euclidean distances.

 """
 d = u - v
 d_sq = d ** 2
 euc_d = np.sqrt(np.sum(d_sq, axis=1))
 return euc_d

 @staticmethod
 def create_centres(initial_centres, current_random_points, current_centres, counter):
 """
 The function create_centres generates new mass centroids for the design space based on McQueen's method.
 The mass centroids are created based on the previous mass centroids and the mean of random data sampling the design space.

 Args:
 initial_centres(NumPy Array): A 2-D array containing the current mass centroids, size no_samples x no_features.
 current_random_points(NumPy Array): A 2-D array containing several points generated randomly from within the design space.
 current_centres(NumPy Array): Array containing the index number of the closest mass centroid of each point in current_random_points, representing its class.
 counter(int): current iteration number

 Returns:
 centres(NumPy Array): A 2-D array containing the new mass centroids, size no_samples x no_features.

 The steps carried out in the function at each iteration are:
 (1) Classify the current random points in current_random_points based on their centres
 (2) Evaluate the mean of the random points in each class
 (3) Create the new centres as the weighted average of the current centres (initial_centres) and the mean data calculated in the second step. The weighting is done based on the number of iterations (counter).

 """
 centres = np.zeros((initial_centres.shape[0], initial_centres.shape[1]))
 current_centres = current_centres.reshape(current_centres.shape[0], 1)
 for i in range(0, initial_centres.shape[0]):
 data_matrix = current_random_points[current_centres[:, 0] == i]
 m_prime, n_prime = data_matrix.shape
 if m_prime == 0:
 centres[i, :] = np.mean(initial_centres, axis=0)
 else:
 centres[i, :] = np.mean(data_matrix, axis=0)

 # Weighted average based on previous number of iterations
 centres = ((counter * initial_centres) + centres) / (counter + 1)
 return centres

[docs] def sample_points(self):
 """
 The ``sample_points`` method determines the best/optimal centre points (centroids) for a data set based on the minimization of the total distance between points and centres.

 Procedure based on McQueen's algorithm: iteratively minimize distance, and re-position centroids.
 Centre re-calculation done as the mean of each data cluster around each centre.

 Returns:
 NumPy Array or Pandas Dataframe: A numpy array or Pandas dataframe containing the final **number_of_samples** centroids obtained by the CVT algorithm.

 """
 _, n = self.x_data.shape
 size_multiple = 1000
 initial_centres = self.random_sample_selection(self.number_of_centres, n)
 # Iterative optimization process
 cost_old = 0
 cost_new = 0
 cost_change = float('Inf')
 counter = 1
 while (cost_change > self.eps) and (counter <= 1000):
 cost_old = cost_new
 current_random_points = self.random_sample_selection(self.number_of_centres * size_multiple, n)
 distance_matrix = np.zeros(
 (current_random_points.shape[0], initial_centres.shape[0])) # Vector to store distances from centroids
 current_centres = np.zeros(
 (current_random_points.shape[0], 1)) # Vector containing the centroid each point belongs to

 # Calculate distance between random points and centres, sort and estimate new centres
 for i in range(0, self.number_of_centres):
 distance_matrix[:, i] = self.eucl_distance(current_random_points, initial_centres[i, :])
 current_centres = (np.argmin(distance_matrix, axis=1))
 new_centres = self.create_centres(initial_centres, current_random_points, current_centres, counter)

 # Estimate distance between new and old centres
 distance_btw_centres = self.eucl_distance(new_centres, initial_centres)
 cost_new = np.sqrt(np.sum(distance_btw_centres ** 2))
 cost_change = np.abs(cost_old - cost_new)
 counter += 1
 # print(counter, cost_change)
 if cost_change >= self.eps:
 initial_centres = new_centres

 sample_points = new_centres

 unique_sample_points = self.sample_point_selection(self.data, sample_points, self.sampling_type)
 if len(self.data_headers) > 0:
 unique_sample_points = pd.DataFrame(unique_sample_points, columns=self.data_headers)
 return unique_sample_points

 Bubble and Dew Point Methods

Bubble and Dew Point Methods

Contents

	Bubble and Dew Point Methods

	Ideal Assumptions (IdealBubbleDew)

	Ideal Bubble Pressure

	Ideal Bubble Temperature

	Ideal Dew Pressure

	Ideal Dew Temperature

	Equal Fugacity (log form) (LogBubbleDew)

	Bubble Pressure (log form)

	Bubble Temperature (log form)

	Dew Pressure (log form)

	Dew Temperature (log form)

Ideal Assumptions (IdealBubbleDew)

In the case where ideal behavior can be assumed, i.e. ideal gas assumption and Raoult’s Law holds, the bubble and dew points can be calculated directly from the saturation pressure using the following equations.

Ideal Bubble Pressure

\[P_{bub} = \sum_j{x_j \times P_{sat, j}(T)}\]

\[x_j(P_{bub}) \times P_{bub} = x_j \times P_{sat, j}(T)\]

where \(P_{bub}\) is the bubble pressure of the mixture, \(P_{sat, j}(T)\) is the saturation pressure of component \(j\) at the system temperature, \(T\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{bub})\) is the mole fraction of the vapor phase at the bubble pressure.

Ideal Bubble Temperature

\[\sum_j{\left(x_j \times P_{sat, j}(T_{bub})\right)} - P = 0\]

\[x_j(T_{bub}) \times P = x_j \times P_{sat, j}(T_{bub})\]

where \(P\) is the system pressure, \(P_{sat, j}(T_{bub})\) is the saturation pressure of component \(j\) at the bubble temperature, \(T_{bub}\), \(x_j\) is the overall mixture mole fraction and \(x_j(T_{bub})\) is the mole fraction of the vapor phase at the bubble temperature.

Ideal Dew Pressure

\[0 = 1 - P_{dew} \times \sum_j{x_j \times P_{sat, j}(T)}\]

\[x_j(P_{dew}) \times P_{sat, j}(T) = x_j \times P_{dew}\]

where \(P_{dew}\) is the dew pressure of the mixture, \(P_{sat, j}(T)\) is the saturation pressure of component \(j\) at the system temperature, \(T\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{dew})\) is the mole fraction of the liquid phase at the dew pressure.

Ideal Dew Temperature

\[P \times \sum_j{\left(x_j \times P_{sat, j}(T_{dew})\right)} - 1 = 0\]

\[x_j(T_{dew}) \times P_{sat, j}(T_{dew}) = x_j \times P\]

where \(P\) is the system pressure, \(P_{sat, j}(T_{dew})\) is the saturation pressure of component \(j\) at the dew temperature, \(T_{bub}\), \(x_j\) is the overall mixture mole fraction and \(y_j(T_{dew})\) is the mole fraction of the liquid phase at the dew temperature.

Equal Fugacity (log form) (LogBubbleDew)

For cases where ideal behavior is insufficient, it is necessary to calculate the fugacity of each component at the relevant transition point and enforce equality of the fugacity in each phase. As such, this methods depends upon the definition of fugacity for each phase and component. In this formulation, the logarithm of the phase equilibrium constraint is used.

Bubble Pressure (log form)

\[ln(x_j) + ln(f_{liquid, j}(P_{bub})) = ln(x_j(P_{bub})) + ln(f_{vapor, j}(P_{bub}))\]

\[1 = \sum_j{x_j(P_{bub})}\]

where \(P_{bub}\) is the bubble pressure of the mixture, \(f_{p, j}(P_{bub})\) is the fugacity of component \(j\) in phase \(p\) at \(P_{bub}\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{bub})\) is the mole fraction of the vapor phase at the bubble pressure.

Bubble Temperature (log form)

\[ln(x_j) + ln(f_{liquid, j}(T_{bub})) = ln(x_j(T_{bub})) + ln(f_{vapor, j}(T_{bub}))\]

\[1 = \sum_j{x_j(T_{bub})}\]

where \(T_{bub}\) is the bubble temperature of the mixture, \(f_{p, j}(T_{bub})\) is the fugacity of component \(j\) in phase \(p\) at \(T_{bub}\), \(x_j\) is the overall mixture mole fraction and \(x_j(T_{bub})\) is the mole fraction of the vapor phase at the bubble temperature.

Dew Pressure (log form)

\[ln(x_j(P_{dew})) + ln(f_{liquid, j}(P_{dew})) = ln(x_j) + ln(f_{vapor, j}(P_{dew}))\]

\[1 = \sum_j{x_j(P_{dew})}\]

where \(P_{dew}\) is the dew pressure of the mixture, \(f_{p, j}(P_{dew})\) is the fugacity of component \(j\) in phase \(p\) at \(P_{dew}\), \(x_j\) is the overall mixture mole fraction and \(x_j(P_{dew})\) is the mole fraction of the vapor phase at the dew pressure.

Dew Temperature (log form)

\[ln(x_j(T_{dew})) + ln(f_{liquid, j}(T_{dew})) = ln(x_j) + ln(f_{vapor, j}(T_{dew}))\]

\[1 = \sum_j{x_j(T_{dew})}\]

where \(T_{dew}\) is the dew temperature of the mixture, \(f_{p, j}(T_{dew})\) is the fugacity of component \(j\) in phase \(p\) at \(T_{dew}\), \(x_j\) is the overall mixture mole fraction and \(x_j(T_{dew})\) is the mole fraction of the vapor phase at the dew temperature.

 Developing Equation of State Modules

Developing Equation of State Modules

Contents

	Developing Equation of State Modules

	Equations of State and Multiple Phases

	General Structure

	Phase Equilibrium

	Accessing Pure Component Property Methods

	Common Methods

	Mixture Property Methods

	Example

The central part of any property package are the equations of state or equivalent models which describe how the mixture behaves under the conditions of interest. For systems with multiple phases and phase equilibrium, each phase must have its own equation of state (or equivalent), which must provide information on phase equilibrium which is compatible with the other phases in the system.

Equations of State and Multiple Phases

The IDAES Generic Property Package Framework requires users to assign an equation of state module for each phase in their system, thus equations of state can be written for specific phases (e.g. an ideal gas equation of state). In some cases, developers may wish to write equations of state for multiple phases, and the generic framework supports this by indexing all properties by phase.

Developers are encouraged to add checks to their methods to ensure their equations of state are only applied to phases where they are appropriate (e.g. an ideal gas equation of state should raise an exception if the phase argument is not “Vap”).

General Structure

Equation of State Modules in the IDAES Generic Property Package Framework are files (modules) containing a number of methods which describe the behavior of the material. These method define how each of the properties associated with a given phase should be calculated, and the list of properties supported for a given phase is limited by the methods provided by the developer of the equation of state.

Phase Equilibrium

When calculating phase equilibrium, the IDAES Generic Property Package Framework uses the general form \(\Phi^e_{\text{phase 1, j}} = \Phi^e_{\text{phase 2, j}}\) where \(\Phi^e_{p, j}\) is the fugacity of component \(j\) in phase \(p\) calculated at the equilibrium tempearture (\(T_{eq}\), variable name self._teq). The equilibrium temperature is calculated using the users’ choice of phase equilibrium formulation and determines how the property packge will handle phase transitions.

All equation of state methods should contain a method for calculating fugacity if they are to support phase equilibrium calculations.

Accessing Pure Component Property Methods

In most cases, property calculations in the equation of state methods will require calculations of the pure component properties for the system. These can be accessed using get_method (imported from from idaes.property_models.core.generic.generic_property) using the form get_method(self, “property_name”). This will return the method defined by the user in the PropertyParameterBlock for the named property, which can then be used in the equation of state methods (note that users will need to call the method and provide it with the required arguments - generally self, component and a pointer to temperature).

Common Methods

For equations of state that support multiple phases, there may be certain calculations and/or variables that are common to all phases. To support this (and avoid duplication of these), equation of state methods should contain a method named common which implements any component which are common to multiple phases. This method should also contain checks to ensure that these components have not already been created for another phase in the system (to avoid duplication). In cases where there are no common components, this method can pass.

Mixture Property Methods

The main part of an equation of state method are a set of methods which describe properties of the mixture for a given phase. Any mixture property that the property package needs to support must be defined as a method in the equation of state module, which returns an expression for the given property (construction of the actual Pyomo component will be handled by the core framework code).

Mixture properties can be defined in any way the developer desires, and can cross-link and reference other mixture properties as required. Developers should recall that the State Definition method should have defined the following properties which can be used in mixture property correlations:

	pressure

	temperature

	mole_frac_phase_comp

	phase_frac

Other state variables may have been defined by the user’s choice of State Definition, however this cannot be guaranteed. Developers may chose to assume that certain state variables will be present, but this will limit the application of their equation of state module to certain state definitions which should be clearly documented.

Example

Below is an example method for a method in an equation of state module for calculating molar density that supports both liquid and vapor phases.

def dens_mol_phase(b, phase):
 if phase == "Vap":
 return b.pressure/(b.params.gas_const*b.temperature)
 elif phase == "Liq":
 return sum(b.mole_frac_phase_comp[phase, j] *
 get_method(b, "dens_mol_liq_comp")(b, j, b.temperature)
 for j in b.params.component_list)
 else:
 raise PropertyNotSupportedError("Phase not supported")

 Developing Phase Equilibrium Methods

Developing Phase Equilibrium Methods

Contents

	Developing Phase Equilibrium Methods

	phase_equil(self)

	phase_equil_initialization(self)

Handling phase equilibrium and phase transitions within an equation oriented framework can be challenging as it is necessary to ensure that all constraints and variables has feasible solution at all states. When dealing with disappearing phases and correlations that can become ill-defined or singular outside of the two phase envelope, it is necessary to either bound the problem to the two-phase region or reformulate the problem.

The IDAES Generic Property Package Framework provides support for reformulating the problem by defining an “equilibrium temperature” (self._teq) at which all phase equilibrium calculations are performed. Issues surrounding phase transitions can be avoided by providing a definition for the equilibrium temperature that satisfies the following constraints:

\[T_{\text{bubble}} <= T_{eq} <= T{\text{dew}}\]

The Phase Equilibrium module allows users to provide a definition for the equilibrium temperature, along with any necessary instructions on how to initialize the components associated with this definition.

A Phase Equilibrium module consists of two methods , which are described below.

phase_equil(self)

The phase_equil method is responsible for defining the variables and constraints necessary for calculating the equilibrium temperature, and at a minimum must contain one constraint relating the equilibrium temperature (self._teq) to the system temperature (self.temperature).

phase_equil_initialization(self)

This method is called by the Generic Property Package Framework initialization routine and should initialize the constraints associated with the phase equilibrium definition.

Note that the Generic Property Package Framework beings by deactivating all constraints in the StateBlock so the first step in the phase_equil_initialization method should be to activate any constraints defined in phase_equil. Additionally, this method may calculate initial values for any supporting variables defined in phase_equil based on variables that have already been initialized (primarily temperature and bubble and dew points if used). Developers should be careful however to fully understand the initialization sequence of the Generic Property Package Framework to understand which variables may have been initialized at this point.

 Developing Pure Component Methods

Developing Pure Component Methods

Contents

	Developing Pure Component Methods

	Naming Methods

	Method Arguments

	Method Parameters

	Method Body

	Example

The most common task developers of new property packages will need to do is writing methods for new pure component property calculations. Most equation of state type approaches rely on a set of calculations for pure components under ideal conditions which are then modified to account for mixing and deviations from ideality. These pure component property calculations tend to be empirical correlations based on experimental data (generally as functions of temperature) and due to their empirical nature a wide range of forms have been used in literature.

In order to support different forms for these calculations, the IDAES Generic Property Package Framework uses Python methods to define the form of pure component property calculations. This allows developers and users to easily enter the form they wish to use for their application with a minimum amount of code.

Naming Methods

The IDAES Generic Property Package Framework supports two ways of providing pure component property methods:

	Providing the method directly - users may directly provide their method of choice as a config argument (config.property_name) in the PropertyParameterBlock, in which case the method can use any name the user desires.

	Providing a library module - alternatively, users can provide a module containing a library of methods as the config argument (config.property_name), in which case the framework searches the module for a method with the same name as the property (and the config argument). E.g., for the property enth_mol_phase_comp the method name would be enth_mol_phase_comp (as would the associated config argument).

Method Arguments

Note

Currently, the IDAES Generic Property Package Framework assumes pure component property calculations will be a function of only temperature. If additional functionality is required, please contact the IDAES Developers.

Currently, all pure component property methods in the IDAES Generic Property Package Framework take three arguments:

	A reference to the StateBlock where the method will be used (generally self),

	An element of a component list,

	A pointer to the temperature variable to be used in the calculation. By using a pointer rather than an absolute reference (i.e. self.temperature), this allows the method to be applied at different temperatures as necessary (e.g. the reference temperature).

Method Parameters

Pure component property methods all depend on a number of parameters, often derived from empirical data. In order to avoid duplication of parameters and facilitate parameter estimation studies, all property parameters are stored in the PropertyParameterBlock and each StateBlock contains a reference to its associated parameter block (self.params).

For pure component property methods, parameter names are define in the associated methods thus developers can choose any name they desire. However, the IDAES standard is to use the name of the property appended with _coeff and developers are encouraged to follow this convention.

Method Body

The body of the pure component property method should assemble an expression describing the specified quantity for the component given in the method arguments. This expression should involve Pyomo components from the StateBlock (i.e. self), the associated PropertyParameterBlock (self.params) and be returned in the final step of the method.

Example

Below is an example of a pure component property method for the molar heat capacity of a component in the (ideal) gas phase with the form \(c_{\text{p, ig}, j} = A + B \times T\).

def cp_mol_ig_comp(self, component, temperature):
 # Method named using standard naming convention
 # Arguments are self, a component and temperature

 # Return an expression involving temperature and parameters
 return (self.params.cp_mol_ig_comp_coeff[component, "A"] +
 self.params.cp_mol_ig_comp_coeff[component, "B"]*temperature)

Note that the method only returns an expression representing the R.H.S. of the correlation.

 Developing State Definitions

Developing State Definitions

Contents

	Developing State Definitions

	define_state(self)

	State Variables

	define_state_vars

	Auxiliary Variables

	Supporting Constraints

	always_flash

	get_material_flow_terms(phase, comp)

	get_enthalpy_flow_terms(phase)

	get_material_density_terms(phase, component)

	get_energy_density_terms(phase)

	get_material_flow_basis()

	default_material_balance_type()

	default_energy_balance_type()

	define_port_members()

	define_display_vars()

	state_initialization(self)

	self.do_not_initialize

The primary purpose of the State Definition method is to define the state variables which will be used to describe the state of the mixture in the property package. However, a number of other key aspects of the property package definition are tied to the choice of state variables and must be declared here as well.

State definitions are defined as Python modules with two methods and one list, which are describe below.

define_state(self)

The first method in a State Definition module is the define_state method. This method is used to define the state variables and associated components and methods. The define_state method must define the following things:

State Variables

The most important part of a State Definition module is the definition of the state variables that should be used in the resulting property package. The choice of state variables is up to the module developer, however the set of variables selected must contain sufficient information to fully define the extensive and intensive state of the material. That is, if all the state variables are fixed, the resulting set of variables and constraints should form a square problem (i.e. 0 degrees of freedom). Beyond this requirement however, developers may choose any combination of state variables they wish.

State variables should be defined as Pyomo Vars with names drawn from the IDAES naming standard, and should include initial values and bounds. The Generic Property Package Framework includes an optional user input of bounds for the state variables (config.state_bounds) which developers are encouraged to make use of when setting bounds and initializing variables.

define_state_vars

In order to inform the IDAES Process Modeling Framework of which variables should be considered state variable, developers are required to define a method named define_state_vars. This method should return a dict where the keys are a string identifier for each state variable and the values being pointers to the associated Var component. For example:

def define_state_vars_state_definition():
 return {"flow_mol": self.flow_mol,
 "mole_frac_comp": self.mole_frac_comp,
 "pressure": self.pressure,
 "temperature": self.temperature,}
self.define_state_vars = define_state_vars_state_definition

Auxiliary Variables

Whilst the developer is free to choose any set of state variable they wish to define their system, there are certain properties/quantities associated with material state that are frequently used in process models. For example, most property calculation methods drawn upon empirical correlations for pure component properties which are most commonly expressed as functions of temperature (and sometimes pressure). Additionally, multiphase systems often require knowledge of the volume fractions of each phase present.

To ensure that these properties/quantities are available when required, it is required that State Definition modules define the following quantities if they are not already one of the state variables chosen:

	temperature - the temperature of the mixture,

	pressure - the pressure of the mixture,

	mole_frac_phase_comp - mole fraction of the mixture by phase and component (even if only one phase is present),

	phase_frac - volume fractions of each phase (even if only one phase is present).

These quantities can be defined as either Pyomo Vars with associated Constraints, or as Pyomo Expressions as the developer desires. Developers may choose to include additional auxiliary variables as required by their needs (e.g. different forms of flow rates).

Supporting Constraints

Depending upon the choice of state and auxiliary variables, developers may need to include a number of supporting constraints in their State Definitions. Common examples include constraints for the sum of mole fractions in the system, and relationships between different types of flow rates. Any number of constraints can be included by the developer to suit their needs, subject to the limitations of degrees of freedom.

However, developers need ot be aware of the difference between inlet and outlet states and how this affects which constraints can be written. In the case of inlet states, all state variables are defined by the upstream process and thus no constraint can be written that involves only state variables (e.g. sum of mole fractions). For outlet (and intermediate) states however, it is often necessary to include these types of constraints to fully define the system. The IDAES Process Modeling Framework uses the config.defined_state configuration argument to indicate situations where the state variables should be considered fully defined (e.g. inlets) which can be used in if statements to determine whether a constraint should be included.

always_flash

Whilst the set of state variables chosen must be sufficient for fully defining the state of the material, depending on the set of state variables chosen information of the phase separation (if applicable) may or may not be explicitly included. For example, using total flow rate and composition along with pressure and specific enthalpy is sufficient to define the state of the material, however it does not explicitly describe the phase fractions of the system. In these cases, it is necessary to perform a flash calculation at every state in the system to determine the phase fractions. However, If the state is defined in terms of flow rates by phase and component along with pressure and specific enthalpy, information on the phase separation is already included in the state definition and flash calculations are not required where the state is fully defined (i.e. config.state_defined is True).

To inform the Generic Property Package Framework of whether phase equilibrium calculations should be included when config.state_defined is True, all State Definitions are required to include a component named always_flash which is a boolean indicating whether equilibrium calculations should always be included (True) or only included when the state is not fully defined (False).

get_material_flow_terms(phase, comp)

In order to automate the construction of the material balance equations, the IDAES Process Modeling Framework expects property packages to provide expressions for the flow terms in these equations. This is done via the get_material_flow_terms method which should return an expression involving variables in the StateBlock which should be used as the flow term in the material balances.

There are many forms this expression can take depending upon the state variables chosen and how the developer wishes to formulate the material balance equations, and the framework endeavors to support as many of these as possible. Material flow terms are defined on a phase-component basis (i.e. a separate expression for each component in each phase). An example of a get_material_flow_term using flow rate and mole fractions by phase is shown below.

def get_material_flow_terms_definition(phase, component):
 return self.flow_mol_phase[phase] * self.mole_frac_phase_comp[phase, component]
self.get_material_flow_terms = get_material_flow_terms_definition

get_enthalpy_flow_terms(phase)

In the same way that get_material_flow_terms is used to automate construction of the material balance equations, automating the construction of the energy balance equations requires a get_enthalpy_flow_terms method. This method should return an expression for the enthalpy flow terms involving variables in the StateBlock.

There are many forms for the enthalpy flow terms as well, and developers may choose whichever best suits their needs. Enthalpy flow terms are defined on a phase basis, and an example is shown below using flow rate and specific enthalpy by phase.

def get_enthalpy_flow_terms_definition(phase):
 return self.flow_mol_phase[phase] * self.enth_mol_phase[phase]
self.get_enthalpy_flow_terms = get_enthalpy_flow_terms_definiton

get_material_density_terms(phase, component)

For dynamic system, calculation of the material holdups also requires a material density term which is defined using the get_material_density_terms method. This method is defined in a similar fashion to the get_material_flow_terms method and is also defined on a phase-component basis.

get_energy_density_terms(phase)

For dynamic system, calculation of the energy holdups also requires an energy density term which is defined using the get_energy_density_terms method. This method is defined in a similar fashion to the get_enthalpy_flow_terms method and is also defined on a phase basis. Note however that the energy density term should only include internal energy contributions, and not the full enthalpy density (i.e. excluding the PV term).

get_material_flow_basis()

To automate generation of some terms in the balance equations, the IDAES Process Modeling Framework needs to know the basis (mass, mole or other) of the flow terms. This is defined in the State Definition by providing a get_material_flow_basis method which returns a MaterialFlowBasis Enum (importable from idaes.core). E.g.:

def get_material_flow_basis_definition():
 return MaterialFlowBasis.molar
self.get_material_flow_basis = get_material_flow_basis_definition

default_material_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the material balance equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly encouraged to define a default form for the material balance equations.

To set the default material balance type, the State Definition must implement a method which returns a MaterialBalanceType Enum (importable from idaes.core. E.g.:

def default_material_balance_type_definition():
 return MaterialBalanceType.componentTotal
self.default_material_balance_type = default_material_balance_type_definition

default_energy_balance_type()

The IDAES Process Modeling Framework allows property packages to specify a default form for the energy balance equations to be used if the modeler does not specify a form. Whilst not strictly required, developers are strongly encouraged to define a default form for the energy balance equations.

To set the default energy balance type, the State Definition must implement a method which returns an EnergyBalanceType Enum (importable from idaes.core. For an example, see default_material_balance_type above.

define_port_members()

In some situations, it is desirable to pass additional information between unit operations in a model beyond just the state variables. In these circumstance, the developer may define a define_port_members method which describes the information to be passed in Ports connecting units. This method should return a dict with a form similar to that of define_state_vars. Note that developers must also ensure that any additional information passed in Ports does not result in an over-specified problem, generally by excluding certain constraints in StateBlocks where config.defined_state is True.

If this method is not defined, Ports will default to using the variables described in define_state_vars instead.

define_display_vars()

Developers may also define a define_display_vars method which is used by the IDAES report methods to determine what information should be displayed for each state. The define_display_vars method should return a dict containing the information to display with the keys being the display name for the information and value being the quantity to display (similar to the define_state_Vars method). If this method is not defined then the define_state_vars method is used by the report methods instead.

state_initialization(self)

The state_initialization method is called as part of the Generic Property Package Framework initialize method and is expected to set initial guesses for any auxiliary variables defined by the State Definition based on the current values of the state variables. Note that the state variables will have been provided with initial guesses for the current state of the material from the process models, and thus will likely not be at their pre-defined initial conditions.

self.do_not_initialize

The do_not_initialize component is a list containing a list of Constraint names which should remain deactivated during initialization of the StateBlock and only reactivated during the final step on initialization. Common examples of these are those constraints that are only written for outlet Blocks (i.e. those when config.defined_state is False), such as overall sum of mole fraction constraints.

 Cubic Equations of State (Cubic)

Cubic Equations of State (Cubic)

Contents

	Cubic Equations of State (Cubic)

	Introduction

	General Cubic Equation of State

	Property Package Options

	Required Parameters

	Calculation of Properties

	Mass Density by Phase

	Molar Density by Phase

	Molar Enthalpy by Phase

	Component Molar Enthalpy by Phase

	Molar Entropy by Phase

	Component Molar Entropy by Phase

	Component Fugacity by Phase

	Component Fugacity Coefficient by Phase

	Molar Gibbs Energy by Phase

	Component Gibbs Energy by Phase

Introduction

This module implements a general form of a cubic equation of state which can be used for most cubic-type equations of state. The following forms are currently supported:

	Peng-Robinson

	Soave-Redlich-Kwong

General Cubic Equation of State

All equations come from “The Properties of Gases and Liquids, 4th Edition” by Reid, Prausnitz and Poling. The general cubic equation of state is represented by the following equations:

\[P = \frac{RT}{V-b}-\frac{a}{V^2-ubV+wb^2}\]

An equivalent form of the previous equation is:

\[0 = Z^3 - (1+B-uB)Z^2 + (A-uB-(u-w)B^2)Z - AB-wB^2-wB^3\]

\[A = \frac{a_mP}{R^2T^2}\]

\[B = \frac{b_mP}{RT}\]

where \(Z\) is the compressibility factor of the mixture, \(a_m\) and \(b_m\) are properties of the mixture and \(u\) and \(w\) are parameters which depend on the specific equation of state being used as show in the table below.

	Equation

	\(u\)

	\(w\)

	\(Omega_A\)

	\(Omega_B\)

	\(alpha_j\)

	Peng-Robinson

	2

	-1

	0.45724

	0.07780

	\((1+(1-T_r^2)(0.37464+1.54226\omega_j-0.26992\omega_j^2))^2\)

	Soave-Redlich-Kwong

	1

	0

	0.42748

	0.08664

	\((1+(1-T_r^2)(0.48+1.574\omega_j-0.176\omega_j^2))^2\)

The properties \(a_m\) and \(b_m\) are calculated from component specific properties \(a_j\) and \(b_j\) as shown below:

\[a_j = \frac{\Omega_AR^2T_{c,j}^2}{P_{c, j}}\alpha_j\]

\[b_j = \frac{\Omega_BRT_{c,j}}{P_{c,j}}\]

\[a_m = \sum_i{\sum_j{y_iy_j(a_ia_j)^{1/2}(1-\kappa_{ij})}}\]

\[b_m = \sum_i{y_ib_i}\]

where \(P_{c,j}\) and \(T_{c,j}\) are the component critical pressures and temperatures, \(y_j\) is the mole fraction of component \(j\), \(\kappa_{ij}\) are a set of binary interaction parameters which are specific to the equation of state and \(\Omega_A\), \(\Omega_B\) and \(\alpha_j\) are taken from the table above. \(\omega_j\) is the Pitzer acentric factor of each component.

The cubic equation of state is solved for each phase via a call to an external function which automatically identifies the correct root of the cubic and returns the value of \(Z\) as a function of \(A\) and \(B\) along with the first and second partial derivatives.

Property Package Options

When using the general cubic equation of state module, users must specify the type of cubic to use. This is done by providing a type option in the equation_of_state_options argument in the Phase definition, as shown in the example below.

from idaes.generic_models.properties.core.eos.ceos import Cubic, CubicType

configuration = {
 "phases": {
 "Liquid": {
 "type": LiquidPhase,
 "equation_of_state": Cubic,
 "equation_of_state_options": {
 "type": CubicType.PR}}}

Required Parameters

Cubic equations of state require the following parameters to be defined:

	omega (Pitzer acentricity factor) needs to be defined for each component (in the parameter_data for each component).

	kappa (binary interaction parameters) needs to be defined for each component pair in the system. This parameter needs to be defined in the general parameter_data argument for the overall property package (as it can be used in multiple phases).

Calculation of Properties

Many thermophysical properties are calculated using an ideal and residual term, such that:

\[p = p^0 + p^r\]

The residual term is derived from the partial derivatives of the cubic equation of state, whilst the ideal term is determined using pure component properties for the ideal gas phase defined for each component.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where \(p\) indicates a given phase:

\[\rho_{mass, p} = \rho_{mol, p} \times MW_p\]

where \(MW_p\) is the mixture molecular weight of phase \(p\).

Molar Density by Phase

Molar density is calculated using the following equation

\[\rho_{mol, Vap} = \frac{P}{ZRT}\]

Molar Enthalpy by Phase

The residual enthalpy term is given by:

\[h_{i}^{r}b_m\sqrt{u^2-4w} = \left(T\frac{da}{dT}-a_m\right)\ln{\left(\frac{2Z+B(u+\sqrt{u^2-4w})}{2Z+B(u-\sqrt{u^2-4w})}\right)} +RT(Z-1)b_m\sqrt{u^2-4w}\]

\[\frac{da}{dT}\sqrt{T} = -\frac{R}{2}\sqrt{\Omega_A}\sum_i{\sum_j{y_iy_j(1-k_{ij})\left(f_{w,j}\sqrt{a_i\frac{T_{c,j}}{P_{c,j}}}+f_{w,i}\sqrt{a_j\frac{T_{c,i}}{P_{c,i}}}\right)}}\]

The ideal component is calculated from the weighted sum of the (ideal) component molar enthalpies.

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the property package configuration arguments.

Molar Entropy by Phase

The residual entropy term is given by:

\[s_{i}^{r}b_m\sqrt{u^2-4w} = R\ln{\frac{Z-B}{Z}}b_m\sqrt{u^2-4w} + R\ln{\frac{ZP^{ref}}{P}}b_m\sqrt{u^2-4w} + \frac{da}{dT}\ln{\left(\frac{2Z+B(u+\sqrt{u^2-4w})}{2Z+B(u-\sqrt{u^2-4w})}\right)}\]

The ideal component is calculated from the weighted sum of the (ideal) components molar enthalpies.

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component methods provided by the users in the property package configuration arguments.

Component Fugacity by Phase

Fugacity is calculated from the system pressure and fugacity coefficients as follows:

\[f_{i, p} = \phi_{i, p} P\]

Component Fugacity Coefficient by Phase

The fugacity coefficient is calculated from the departure function of the cubic equation of state as shown below:

\[\ln{\phi_{i}} = \frac{b_i}{b_m}(Z-1) - \ln{(Z-B)} + \frac{A}{B\sqrt{u^2-4w}}\left(\frac{b_i}{b_m}-\delta_i\right)\ln{\left(\frac{2Z+B(u+\sqrt{u^2-4w})}{2Z+B(u-\sqrt{u^2-4w})}\right)}\]

\[\delta_i = \frac{2a_i^{1/2}}{a_m} \sum_j{x_j a_j^{1/2}(1-k_{ij})}\]

Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar Gibbs energies for the given phase:

\[g_{mol, p} = \sum_j{x_{p, j} \times g_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

\[g_{mol, p, j} = h_{mol, p, j} - s_{mol, p, j} \times T\]

 Ideal Gases and Liquids (Ideal)

Ideal Gases and Liquids (Ideal)

Contents

	Ideal Gases and Liquids (Ideal)

	Introduction

	Mass Density by Phase

	Molar Density by Phase

	Molar Enthalpy by Phase

	Component Molar Enthalpy by Phase

	Molar Entropy by Phase

	Component Molar Entropy by Phase

	Component Fugacity by Phase

	Component Fugacity Coefficient by Phase

	Molar Gibbs Energy by Phase

	Component Gibbs Energy by Phase

Introduction

Ideal behavior represents the simplest possible equation of state that ensures thermodynamic consistency between different properties.

Mass Density by Phase

The following equation is used for both liquid and vapor phases, where \(p\) indicates a given phase:

\[\rho_{mass, p} = \rho_{mol, p} \times MW_p\]

where \(MW_p\) is the mixture molecular weight of phase \(p\).

Molar Density by Phase

For the vapor phase, the Ideal Gas Equation is used to calculate the molar density;

\[\rho_{mol, Vap} = \frac{P}{RT}\]

whilst for the liquid phase the molar density is the weighted sum of the pure component liquid densities:

\[\rho_{mol, Liq} = \sum_j{x_{Liq, j} \times \rho_{Liq, j}}\]

where \(x_{Liq, j}\) is the mole fraction of component \(j\) in the liquid phase.

Molar Enthalpy by Phase

For both liquid and vapor phases, the molar enthalpy is calculated as the weighted sum of the component molar enthalpies for the given phase:

\[h_{mol, p} = \sum_j{x_{p, j} \times h_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Molar Enthalpy by Phase

Component molar enthalpies by phase are calculated using the pure component method provided by the users in the property package configuration arguments.

Molar Entropy by Phase

For both liquid and vapor phases, the molar entropy is calculated as the weighted sum of the component molar entropies for the given phase:

\[s_{mol, p} = \sum_j{x_{p, j} \times s_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Molar Entropy by Phase

Component molar entropies by phase are calculated using the pure component method provided by the users in the property package configuration arguments.

Component Fugacity by Phase

For the vapor phase, ideal behavior is assumed:

\[f_{Vap, j} = P\]

For the liquid phase, Raoult’s Law is used:

\[f_{Liq, j} = P_{sat, j}\]

Component Fugacity Coefficient by Phase

Ideal behavior is assumed, so all \(\phi_{p, j} = 1\) for all components and phases.

Molar Gibbs Energy by Phase

For both liquid and vapor phases, the molar Gibbs energy is calculated as the weighted sum of the component molar Gibbs energies for the given phase:

\[g_{mol, p} = \sum_j{x_{p, j} \times g_{mol, p, j}}\]

where \(x_{p, j}\) is the mole fraction of component \(j\) in the phase \(p\).

Component Gibbs Energy by Phase

Component molar Gibbs energies are calculated using the definition of Gibbs energy:

\[g_{mol, p, j} = h_{mol, p, j} - s_{mol, p, j} \times T\]

 Library of Common Equilibrium Forms

Library of Common Equilibrium Forms

The IDAES Generic Property Package Framework contains a library of common forms for phase equilibrium conditions.

Contents

	Library of Common Equilibrium Forms

	Fugacity (fugacity)

Fugacity (fugacity)

Fugacity of each component must be equal between interacting phases

\[x_{p1, j} \times f_{p1, j} = x_{p2, j} \times f_{p2, j}\]

 Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

Contents

	Smooth Vapor-Liquid Equilibrium Formulation (smooth_VLE)

	Source

	Introduction

	Formulation

Source

Burgard, A.P., Eason, J.P., Eslick, J.C., Ghouse, J.H., Lee, A., Biegler, L.T., Miller, D.C., 2018, A Smooth, Square Flash Formulation for Equation-Oriented Flowsheet Optimization. Proceedings of the 13th International Symposium on Process Systems Engineering – PSE 2018, July 1-5, 2018, San Diego.

Introduction

Typically, equilibrium calculations are only used when the user knows the current state is within the two-phase envelope. For simulation only studies, the user may know a priori the condition of the stream but when the same set of equations are used for optimization, there is a high probability that the specifications can transcend the phase envelope. In these situations, the equilibrium calculations become trivial, thus it is necessary to find a formulation that has non-trivial solutions at all states.

To address this, the smooth vapor-liquid equilibrium (VLE) formulation always solves the equilibrium calculations at a condition where a valid two-phase solution exists. In situations where only a single phase is present, the phase equilibrium is solved at the either the bubble or dew point, where the non-existent phase exists but in negligible amounts. In this way, a non-trivial solution is guaranteed but still gives near-zero material in the non-existent phase in the single phase regions.

Formulation

The approach used by the smooth VLE formulation is to define an “equilibrium temperature” (\(T_{eq}\)) at which the equilibrium calculations will be performed. The equilibrium temperature is computed as follows:

\[T_{1} = max(T_{bubble}, T)\]

\[T_{eq} = min(T_{1}, T_{dew})\]

where \(T\) is the actual stream temperature, \(T_{1}\) is an intermediate temperature variable and \(T_{bubble}\) and \(T_{dew}\) are the bubble and dew point temperature of mixture. In order to express the maximum and minimum operators in a tractable form, these equations are reformulated using the IDAES smooth_max and smooth_min operators which results in the following equations:

\[T_{1} = 0.5{\left[T + T_{bubble} + \sqrt{(T-T_{bubble})^2 + \epsilon_{1}^2}\right]}\]

\[T_{eq} = 0.5{\left[T_{1} + T_{dew} - \sqrt{(T-T_{dew})^2 + \epsilon_{2}^2}\right]}\]

where \(\epsilon_1\) and \(\epsilon_2\) are smoothing parameters(mutable Params named eps_1 and eps_2). The default values are 0.01 and 0.0005 respectively, and it is recommended that \(\epsilon_1\) > \(\epsilon_2\). It can be seen that if the stream temperature is less than that of the bubble point temperature, the VLE calculations will be computed at the bubble point. Similarly, if the stream temperature is greater than the dew point temperature, then the VLE calculations are computed at the dew point temperature. For all other conditions, the equilibrium calculations will be computed at the actual temperature.

Finally, the phase equilibrium is expressed using the following equation:

\[\Phi_{\text{Vap}, j}(T_{eq}) = \Phi_{\text{Liq}, j}(T_{eq})\]

where \(\Phi_{p, j}(T_{eq})\) is the fugacity of component \(j\) in the phase \(p\) calculated at \(T_{eq}\). The fugacities are calculated using methods defined by the equation of state chosen by the user for each phase.

 NIST Webbook (NIST)

NIST Webbook (NIST)

Contents

	NIST Webbook (NIST)

	Source

	Ideal Gas Molar Heat Capacity (Constant Pressure)

	Ideal Gas Molar Enthalpy

	Ideal Gas Molar Entropy

	Saturation (Vapor) Pressure

Source

Pure component properties as used by the NIST WebBook, https://webbook.nist.gov/chemistry/ Retrieved: September 13th, 2019

Ideal Gas Molar Heat Capacity (Constant Pressure)

NIST uses the Shomate equation for the ideal gas molar heat capacity, which is shown below:

\[c_{\text{p ig}} = A + B \times t + C \times t^2 + D \times t^3 + \frac{E}{t^2}\]

where \(t = \frac{T}{1000}\). Units are \(\text{J/mol}\cdotp\text{K}\).

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^2\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^3\)

	

	\(E\)

	cp_mol_ig_comp_coeff_E

	\(\text{J}\cdotp\text{kK}^2\text{/mol}\cdotp\text{K}\)

	

	\(F\)

	cp_mol_ig_comp_coeff_F

	\(\text{kJ/mol}\)

	

	\(G\)

	cp_mol_ig_comp_coeff_G

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(H\)

	cp_mol_ig_comp_coeff_H

	\(\text{kJ/mol}\)

	

Note

Due to the division of temperature by 1000 in the expression form, most temperature units are in kilo-Kelvins and reference enthalpies (F and H) are in kJ/mol.
The parameter cp_mol_ig_comp_coeff is also used when calculating specific enthalpy and entropy and parameters ‘F’, ‘G’ and ‘H’ are only required for these properties.

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[\frac{h_{\text{ig}} - h_{\text{ig ref}}}{1000} = A \times (t-t_{ref}) + \frac{B}{2} \times (t^2 - t_{ref}^2) + \frac{C}{3} \times (t^3 - t_{ref}^3) + \frac{D}{4} \times (t^4 - t_{ref}^4) + E \times (\frac{1}{t} - \frac{1}{t_{ref}}) + F - H\]

Units are \(\text{J/mol}\).

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^2\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^3\)

	

	\(E\)

	cp_mol_ig_comp_coeff_E

	\(\text{J}\cdotp\text{kK}^2\text{/mol}\cdotp\text{K}\)

	

	\(F\)

	cp_mol_ig_comp_coeff_F

	\(\text{kJ/mol}\)

	

	\(G\)

	cp_mol_ig_comp_coeff_G

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(H\)

	cp_mol_ig_comp_coeff_H

	\(\text{kJ/mol}\)

	

Note

This correlation uses the same parameters as for the ideal gas heat capacity with additional parameters F and H. These parameters account for the enthalpy at the reference state defined by NIST, where F is the constant of integration and H is the standard molar heat of formation. Note that the default form of the expression used by NIST subtracts the heat of formation from the specific enthalpy.
Due to the division of temperature by 1000 in the expression form, most temperature units are in kilo-Kelvins and reference enthalpies (F and H) are in kJ/mol.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{ig}} = A \times ln(t) + B \times t + \frac{C}{2} \times t^2 + \frac{D}{3} \times t^3 + \frac{E}{2 \times t^2} + G\]

Units are \(\text{J/mol}\cdotp\text{K}\).

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^2\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}\cdotp\text{kK}^3\)

	

	\(E\)

	cp_mol_ig_comp_coeff_E

	\(\text{J}\cdotp\text{kK}^2\text{/mol}\cdotp\text{K}\)

	

	\(F\)

	cp_mol_ig_comp_coeff_F

	\(\text{kJ/mol}\)

	

	\(G\)

	cp_mol_ig_comp_coeff_G

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(H\)

	cp_mol_ig_comp_coeff_H

	\(\text{kJ/mol}\)

	

Note

This correlation uses the same parameters as for the ideal gas heat capacity with additional parameter G, which accounts for the standard entropy at the reference state defined by NIST. Users wanting to use a different reference state will need to update G.
Due to the division of temperature by 1000 in the expression form, most temperature units are in kilo-Kelvins and reference enthalpies (F and H) are in kJ/mol.

Saturation (Vapor) Pressure

NIST uses the Antoine equation to calculate the vapor pressure of a component, which is given below:

\[log_{10}(P_{sat}) = A - \frac{B}{T+C}\]

Units are bar and Kelvin.

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	pressure_sat_comp_coeff_A

	None

	

	\(B\)

	pressure_sat_comp_coeff_B

	\(\text{K}\)

	

	\(C\)

	pressure_sat_comp_coeff_C

	\(\text{K}\)

	

 Perry’s Chemical Engineers’ Handbook (Perrys)

Perry’s Chemical Engineers’ Handbook (Perrys)

Contents

	Perry’s Chemical Engineers’ Handbook (Perrys)

	Source

	Ideal Liquid Molar Heat Capacity (Constant Pressure)

	Ideal Liquid Molar Enthalpy

	Ideal Liquid Molar Entropy

	Liquid Molar Density

Source

Methods for calculating pure component properties from:

Perry’s Chemical Engineers’ Handbook, 7th Edition
Perry, Green, Maloney, 1997, McGraw-Hill

Ideal Liquid Molar Heat Capacity (Constant Pressure)

Perry’s Handbook uses the following correlation for ideal liquid molar heat capacity:

\[c_{\text{p liq}} = C_1 + C_2 \times T + C_3 \times T^2 + C_4 \times T^3 + C_5 \times T^4\]

Units are \(\text{J/kmol}\cdotp\text{K}\).

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(C_1\)

	cp_mol_ig_comp_coeff_1

	\(\text{J/kmol}\cdotp\text{K}\)

	

	\(C_2\)

	cp_mol_ig_comp_coeff_2

	\(\text{J/kmol}\cdotp\text{K}^2\)

	

	\(C_3\)

	cp_mol_ig_comp_coeff_3

	\(\text{J/kmol}\cdotp\text{K}^3\)

	

	\(C_4\)

	cp_mol_ig_comp_coeff_4

	\(\text{J/kmol}\cdotp\text{K}^4\)

	

	\(C_5\)

	cp_mol_ig_comp_coeff_5

	\(\text{J/kmol}\cdotp\text{K}^5\)

	

Ideal Liquid Molar Enthalpy

The correlation for the ideal liquid molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[h_{\text{liq}} - h_{\text{liq ref}} = C_1 \times (T-T_{ref}) + \frac{C_2}{2} \times (T^2 - T_{ref}^2) + \frac{C_3}{3} \times (T^3 - T_{ref}^3) + \frac{C_4}{4} \times (T^4 - T_{ref}^4) + \frac{C_5}{5} \times (T^5 - T_{ref}^5) + \Delta h_{\text{form, Liq}}\]

Units are \(\text{J/kmol}\).

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(C_1\)

	cp_mol_ig_comp_coeff_1

	\(\text{J/kmol}\cdotp\text{K}\)

	

	\(C_2\)

	cp_mol_ig_comp_coeff_2

	\(\text{J/kmol}\cdotp\text{K}^2\)

	

	\(C_3\)

	cp_mol_ig_comp_coeff_3

	\(\text{J/kmol}\cdotp\text{K}^3\)

	

	\(C_4\)

	cp_mol_ig_comp_coeff_4

	\(\text{J/kmol}\cdotp\text{K}^4\)

	

	\(C_5\)

	cp_mol_ig_comp_coeff_5

	\(\text{J/kmol}\cdotp\text{K}^5\)

	

	\(\Delta h_{\text{form, Liq}}\)

	enth_mol_form_liq_comp_ref

	Base units

	Molar heat of formation at reference state

Note

This correlation uses the same parameters as the ideal liquid heat capacity.
Units of molar heat of formation will be derived from the base units defined for the property package.

Ideal Liquid Molar Entropy

The correlation for the ideal liquid molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{liq}} - s_{\text{liq ref}} = C_1 \times ln(T/T_{ref}) + C_2 \times (T-T_{ref}) + \frac{C_3}{2} \times (T^2-T_{ref}^2) + \frac{C_4}{3} \times (T^3-T_{ref}^3) + \frac{C_5}{4} \times (T^4-T_{ref}^4) + s_{\text{form, Liq}}\]

Units are \(\text{J/kmol}\cdotp\text{K}\).

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(C_1\)

	cp_mol_ig_comp_coeff_1

	\(\text{J/kmol}\cdotp\text{K}\)

	

	\(C_2\)

	cp_mol_ig_comp_coeff_2

	\(\text{J/kmol}\cdotp\text{K}^2\)

	

	\(C_3\)

	cp_mol_ig_comp_coeff_3

	\(\text{J/kmol}\cdotp\text{K}^3\)

	

	\(C_4\)

	cp_mol_ig_comp_coeff_4

	\(\text{J/kmol}\cdotp\text{K}^4\)

	

	\(C_5\)

	cp_mol_ig_comp_coeff_5

	\(\text{J/kmol}\cdotp\text{K}^5\)

	

	\(s_{\text{form, Liq}}\)

	entr_mol_form_liq_comp_ref

	Base units

	Standard molar entropy of formation at reference state

Note

This correlation uses the same parameters as the ideal liquid heat capacity.
Units of molar entropy of formation will be derived from the base units defined for the property package.

Liquid Molar Density

Perry’s Handbook uses the following correlation for liquid molar density:

\[\rho_{liq} = \frac{C_1}{C_2^{1 + (1-\frac{T}{C_3})^{C_4}}}\]

Units are \(\text{kmol/}\text{m}^3\).

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(C_1\)

	dens_mol_comp_liq_coeff_1

	\(\text{kmol/}\text{m}^3\)

	

	\(C_2\)

	dens_mol_comp_liq_coeff_2

	None

	

	\(C_3\)

	dens_mol_comp_liq_coeff_3

	\(\text{K}\)

	

	\(C_4\)

	dens_mol_comp_liq_coeff_4

	None`

	

Note

Currently, only the most common correlation form from Perry’s Handbook is implemented. Some components use different forms which are not yet supported.

 Properties of Gases and Liquids (RPP)

Properties of Gases and Liquids (RPP)

Contents

	Properties of Gases and Liquids (RPP)

	Source

	Ideal Gas Molar Heat Capacity (Constant Pressure)

	Ideal Gas Molar Enthalpy

	Ideal Gas Molar Entropy

	Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 4th Edition
Reid, Prausnitz and Polling, 1987, McGraw-Hill

All methods use SI units.

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

\[c_{\text{p ig}} = A + B \times T + C \times T^2 + D \times T^3\]

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}^4\)

	

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[h_{\text{ig}} - h_{\text{ig ref}} = A \times (T-T_{ref}) + \frac{B}{2} \times (T^2 - T_{ref}^2) + \frac{C}{3} \times (T^3 - T_{ref}^3) + \frac{D}{4} \times (T^4 - T_{ref}^4) + \Delta h_{\text{form, Vap}}\]

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}^4\)

	

	\(\Delta h_{\text{form, Vap}}\)

	enth_mol_form_vap_comp_ref

	Base units

	Molar heat of formation at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation.
Units of molar heat of formation will be derived from the base units defined for the property package.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{ig}} = A \times ln(T/T_{ref}) + B \times (T - T_{ref}) + \frac{C}{2} \times (T^2 - T_{ref}^2) + \frac{D}{3} \times (T^3 - T_{ref}^3) + s_{\text{form, Vap}}\]

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{J/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{J/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{J/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{J/mol}\cdotp\text{K}^4\)

	

	\(s_{\text{form, Vap}}\)

	entr_mol_form_vap_comp_ref

	Base units

	Standard molar entropy of formation at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation .
Units of molar entropy of formation will be derived from the base units defined for the property package.

Saturation (Vapor) Pressure

Properties of Gases and Liquids uses the following correlation to calculate the vapor pressure of a component:

\[ln(\frac{P_{sat}}{P_{crit}}) \times (1-x) = A \times x + B \times x^1.5 + C \times x^3 + D \times x^6\]

where \(x = 1 - \frac{T}{T_{crit}}\).

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	pressure_sat_comp_coeff_A

	None

	

	\(B\)

	pressure_sat_comp_coeff_B

	None

	

	\(C\)

	pressure_sat_comp_coeff_C

	None

	

	\(D\)

	pressure_sat_comp_coeff_D

	None

	

	\(P_{crit}\)

	pressure_crit_comp

	Same as system pressure

	Critical pressure

	\(T_{crit}\)

	temperature_crit_comp

	Same as system temperature

	Critical temperature

Note

This correlation is only valid at temperatures below the critical temperature. Above this point, there is no real solution to the equation.

 Properties of Gases and Liquids 3rd edition (RPP3)

Properties of Gases and Liquids 3rd edition (RPP3)

Contents

	Properties of Gases and Liquids 3rd edition (RPP3)

	Source

	Ideal Gas Molar Heat Capacity (Constant Pressure)

	Ideal Gas Molar Enthalpy

	Ideal Gas Molar Entropy

	Saturation (Vapor) Pressure

Source

Methods for calculating pure component properties from:

The Properties of Gases & Liquids, 3rd Edition
Reid, Prausnitz and Polling, 1977, McGraw-Hill

Ideal Gas Molar Heat Capacity (Constant Pressure)

Properties of Gases and Liquids uses the following correlation for the ideal gas molar heat capacity:

\[c_{\text{p ig}} = A + B \times T + C \times T^2 + D \times T^3\]

Units are calories per gram-mole kelvin and Kelvin.

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{cal/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{cal/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{cal/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{cal/mol}\cdotp\text{K}^4\)

	

Ideal Gas Molar Enthalpy

The correlation for the ideal gas molar enthalpy is derived from the correlation for the molar heat capacity and is given below:

\[h_{\text{ig}} - h_{\text{ig ref}} = A \times (T-T_{ref}) + \frac{B}{2} \times (T^2 - T_{ref}^2) + \frac{C}{3} \times (T^3 - T_{ref}^3) + \frac{D}{4} \times (T^4 - T_{ref}^4) + \Delta h_{\text{form, Vap}}\]

Units are calories per gram-mole kelvin and Kelvin.

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{cal/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{cal/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{cal/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{cal/mol}\cdotp\text{K}^4\)

	

	\(\Delta h_{\text{form, Vap}}\)

	enth_mol_form_vap_comp_ref

	Base units

	Molar heat of formation at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation.
Units of molar heat of formation will be derived from the base units defined for the property package.

Ideal Gas Molar Entropy

The correlation for the ideal gas molar entropy is derived from the correlation for the molar heat capacity and is given below:

\[s_{\text{ig}} = A \times ln(T/T_{ref}) + B \times (T - T_{ref}) + \frac{C}{2} \times (T^2 - T_{ref}^2) + \frac{D}{3} \times (T^3 - T_{ref}^3) + s_{\text{form, Vap}}\]

Units are calories per gram-mole kelvin and Kelvin.

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	cp_mol_ig_comp_coeff_A

	\(\text{cal/mol}\cdotp\text{K}\)

	

	\(B\)

	cp_mol_ig_comp_coeff_B

	\(\text{cal/mol}\cdotp\text{K}^2\)

	

	\(C\)

	cp_mol_ig_comp_coeff_C

	\(\text{cal/mol}\cdotp\text{K}^3\)

	

	\(D\)

	cp_mol_ig_comp_coeff_D

	\(\text{cal/mol}\cdotp\text{K}^4\)

	

	\(s_{\text{form, Vap}}\)

	entr_mol_form_vap_comp_ref

	Base units

	Standard molar entropy of formation at reference state

Note

This correlation uses the same parameters as the ideal gas heat capacity correlation .
Units of molar entropy of formation will be derived from the base units defined for the property package.

Saturation (Vapor) Pressure

Properties of Gases and Liquids 3rd edition uses the following correlation to calculate the vapor pressure of a component:

\[Ln{(P_{sat}) = A - \frac{B}{T+C}}\]

Units are mmHg and Kelvin.

Parameters

	Symbol

	Parameter Name

	Units

	Description

	\(A\)

	pressure_sat_comp_coeff_A

	None

	

	\(B\)

	pressure_sat_comp_coeff_B

	\(\text{K}\)

	

	\(C\)

	pressure_sat_comp_coeff_C

	\(\text{K}\)

	

 FPhx

FPhx

Contents

	FPhx

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (\(F\): flow_mol), overall (mixture) mole fractions (\(x_j\): mole_frac_comp), total molar enthalpy (\(h\): enth_mol) and pressure (\(P\): pressure). As such, there are \(3 + N_{components}\) state variables, however only \(2 + N_{components}\) are independent as the mole fraction must sum to 1.

Application

This approach is commonly used by other process simulation tools as it avoids the issues associated with using temperature and pressure as state variables in single component systems. However, as the user generally does not know the specific enthalpy of their feed streams, this approach requires some method to calculate this for feed streams. This can generally be done by specifying temperature of the feed, and then solving for the specific enthalpy.

This approach suffers from the following limitation which the user should be aware of:

	If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit, as the state definition does not contain information on multiphase flow. This increases the number of complex equilibrium calculations that must be performed, which could be avoided by using a different state definition.

Bounds

The FPhx module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol

	enth_mol

	pressure

	temperature

Supplying bounds for temperature is supported as these are often known to greater accuracy than the enthalpy bounds, and specifying these can help the solver find a feasible solution.

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is implicitly defined by the sum of mole fractions constraint.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	flow_mol_phase (\(F_{mol, p}\))

	mole_frac_phase_comp (\(x_{p, j}\))

	temperature (\(T\))

	phase_frac (\(\psi_p\))

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.

\[\sum_j{x_j} = 1\]

Note

The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the inlet stream.

Additionally, a constraint relating the total specific enthalpy to the specific enthalpy of each phase is written.

\[h_{mol} = \sum_j{\psi_p \times h_{mol, p}}\]

If the property package supports only one phase:

\[F_{mol, p} = F_{mol}\]

\[x_{p, j} = x_{j} \text{ for all }j\]

\[\psi_p = 1\]

If the property package supports only two phases, the Rachford-Rice formulation is used:

\[\sum_p{F_{mol, p}} = F_{mol}\]

\[F_{mol} \times x_{j} = \sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[\sum_j{x_{\text{phase 1}, j}} - \sum_j{x_{\text{phase 2}, j}} = 0\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

If the property package supports more than two phases, the following general formulation is used:

\[F_{mol} \times x_{j} = \sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[\sum_j{x_{p, j}} = 1 \text{ for all }p\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

 FTPx

FTPx

Contents

	FTPx

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total flow (\(F\): flow_mol), overall (mixture) mole fractions (\(x_j\): mole_frac_comp), temperature (\(T\): temperature) and pressure (\(P\): pressure). As such, there are \(3 + N_{components}\) state variables, however only \(2 + N_{components}\) are independent as the mole fraction must sum to 1.

Application

This is the simplest approach to fully defining the state of a material, and one of the most easily accessible to the user as it is defined in terms of variables that are easily measured and understood. However, this approach has a number of limitations which the user should be aware of:

	If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit, as the state definition does not contain information on multiphase flow. This increases the number of complex equilibrium calculations that must be performed, which could be avoided by using a different state definition.

	State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FTPx module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol

	temperature

	pressure

Note that mole fractions are automatically assigned a lower bound of 0, but the upper bound is left free as this is implicitly defined by the sum of mole fractions constraint.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	flow_mol_phase (\(F_{mol, p}\))

	mole_frac_phase_comp (\(x_{p, j}\))

	phase_frac (\(\psi_p\))

Constraints

In all cases, a constraint is written for the sum of the overall mole fractions.

\[\sum_j{x_j} = 1\]

Note

The sum of mole fractions constraint is not written at inlet states, as all mole fractions should be defined in the inlet stream.

If the property package supports only one phase:

\[F_{mol, p} = F_{mol}\]

\[x_{p, j} = x_{j} \text{ for all }j\]

\[\psi_p = 1\]

If the property package supports only two phases, the Rachford-Rice formulation is used:

\[\sum_p{F_{mol, p}} = F_{mol}\]

\[F_{mol} \times x_{j} = \sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[\sum_j{x_{\text{phase 1}, j}} - \sum_j{x_{\text{phase 2}, j}} = 0\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

If the property package supports more than two phases, the following general formulation is used:

\[F_{mol} \times x_{j} = \sum_p{F_{mol, p} \times x_{p, j}} \text{ for all }j\]

\[\sum_j{x_{p, j}} = 1 \text{ for all }p\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

 FcPh

FcPh

Contents

	FcPh

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total component flow (\(F\): flow_mol_comp), total specific enthalpy (\(h\): enth_mol) and pressure (\(P\): pressure). As such, there are \(2 + N_{components}\) state variables.

Application

This approach is similar to the FPhx formulation used by many process simulators, with the exception that component flow rates are used in place of total flow and mole fractions. This changes where the bilinear terms (flow rate time mole fractions) appear in the problem structure and may improve robustness in some cases. The use of pressure and enthalpy as state variables avoids the issues related to using temperature and pressure as state variables for single component systems. However, as the user generally does not know the specific enthalpy of their feed streams, this approach requires some method to calculate this for feed streams. This can generally be done by specifying temperature of the feed, and then solving for the specific enthalpy.

This approach suffers from the following limitation which the user should be aware of:

	If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit, as the state definition does not contain information on multiphase flow. This increases the number of complex equilibrium calculations that must be performed, which could be avoided by using a different state definition.

Bounds

The FcPh module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol_comp

	enth_mol

	pressure

	temperature

Supplying bounds for temperature is supported as these are often known to greater accuracy than the enthalpy bounds, and specifying these can help the solver find a feasible solution.

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	flow_mol_phase (\(F_{mol, p}\))

	mole_frac_comp (\(x_{j}\))

	mole_frac_phase_comp (\(x_{p, j}\))

	temperature (\(T\))

	phase_frac (\(\psi_p\))

Expressions

An Expression is created for the total flowrate such that \(F = \sum{F_j}\)

Constraints

In all cases, a constraint is created to calculate component mole fractions from the component flow rates.

\[F_j = x_j \times \sum{F_j}\]

Note

If only one component is present in the property package, this is simplified to \(x_j = 1\).

If the property package supports only one phase:

\[F_{mol, p} = F_{mol}\]

\[x_{p, j} = x_{j} \text{ for all }j\]

\[\psi_p = 1\]

If the property package supports only two phases, the Rachford-Rice formulation is used:

\[\sum_p{F_{mol, p}} = F_{mol}\]

\[F_{mol, j} = \sum_p{(F_{mol, p} \times x_{p, j})} \text{ for all }j\]

\[\sum_j{x_{\text{phase 1}, j}} - \sum_j{x_{\text{phase 2}, j}} = 0\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

If the property package supports more than two phases, the following general formulation is used:

\[F_{mol, j} = \sum_p{(F_{mol, p} \times x_{p, j})} \text{ for all }j\]

\[\sum_j{x_{p, j}} = 1 \text{ for all }p\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

 FcTP

FcTP

Contents

	FcTP

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of total component flow (\(F\): flow_mol_comp), temperature (\(T\): temperature) and pressure (\(P\): pressure). As such, there are \(2 + N_{components}\) state variables.

Application

This approach is similar to using total flow rate and mole fractions as state variable, and is generally accessible to the user as the state variables are easily measured and understood. Compared to using total flow rate and mole fractions, this approach changes how the bilinear terms (flow rate times mole fraction) appear in the problem structure, and may result in improved performance for some applications. However, this approach has a number of limitations which the user should be aware of:

	If the property package is set up for multiphase flow, an equilibrium calculation is required at the inlet of each unit, as the state definition does not contain information on multiphase flow. This increases the number of complex equilibrium calculations that must be performed, which could be avoided by using a different state definition.

	State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FcTP module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol_comp

	temperature

	pressure

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	flow_mol_phase (\(F_{mol, p}\))

	mole_frac_comp (\(x_{j}\))

	mole_frac_phase_comp (\(x_{p, j}\))

	phase_frac (\(\psi_p\))

Expressions

An Expression is created for the total flowrate such that \(F = \sum{F_j}\)

Constraints

In all cases, a constraint is created to calculate component mole fractions from the component flow rates.

\[F_j = x_j \times \sum{F_j}\]

Note

If only one component is present in the property package, this is simplified to \(x_j = 1\).

If the property package supports only one phase:

\[F_{mol, p} = F_{mol}\]

\[x_{p, j} = x_{j} \text{ for all }j\]

\[\psi_p = 1\]

If the property package supports only two phases, the Rachford-Rice formulation is used:

\[\sum_p{F_{mol, p}} = F_{mol}\]

\[F_{mol, j} = \sum_p{(F_{mol, p} \times x_{p, j})} \text{ for all }j\]

\[\sum_j{x_{\text{phase 1}, j}} - \sum_j{x_{\text{phase 2}, j}} = 0\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

If the property package supports more than two phases, the following general formulation is used:

\[F_{mol, j} = \sum_p{(F_{mol, p} \times x_{p, j})} \text{ for all }j\]

\[\sum_j{x_{p, j}} = 1 \text{ for all }p\]

\[\psi_p \times F_{mol} = F_{mol, p} \text{ for all }p\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

 FpcTP

FpcTP

Contents

	FpcTP

	State Definition

	Application

	Bounds

	Supporting Variables and Constraints

	Default Balance Types and Flow Basis

State Definition

This approach describes the material state in terms of phase-component flow (\(F_{p, j}\): flow_mol_phase_comp), temperature (\(T\): temperature) and pressure (\(P\): pressure). As such, there are \(2 + phases*N_{components}\) state variables.

Application

This approach required knowledge of the phase-equilibrium of the material in order to define the state variables. Compared to using total flow rate and mole fractions, this approach contains full information on the phase equilibria within the state variables, and thus avoids the needs for flash calculations in many cases. This can greatly reduce the complexity of the problem, and results can significantly affect the tractablity of the problem. However, this approach has a number of limitations which the user should be aware of:

	Users must have knowledge of , or calculate, the phase-component flows of all inlet streams. For sinlge phase flows this is often known, but for streasm with potetnial two-phase behaviour this can reqruire a set of flash calculations for the feed streasm (users can make use of Feed blocks to assist with this).

	State becomes ill-defined when only one component is present and multiphase behavior can occur, as temperature and pressure are insufficient to fully define the thermodynamic state under these conditions.

Bounds

The FpcTP module supports bounding of the following variables through the state_bounds configuration argument:

	flow_mol_phase_comp

	temperature

	pressure

Supporting Variables and Constraints

In addition to the state variables, this definition of state creates a number of supporting variables and constraints.

Variables

	mole_frac_phase_comp (\(x_{p, j}\))

Expressions

	flow_mol (\(F = \sum{F_{p,j}}\))

	flow_mol_phase (\(F_p = \sum{F_{p,j}}_j\))

	flow_mol_comp (\(F_j = \sum{F_{p,j}}_p\))

	mole_frac_comp (\(x_j = \frac{\sum{F_{p,j}}}{F}\))

	phase_frac (\(\psi_p = \frac{F_p}{F}\) or \(\psi_p = 1\) if only single phase)

Constraints

A set of constraints is created to calculate phase-component mole fractions from the phase-component flow rates.

\[F_j = x_{p, j} \times \sum{F_p} = F_{p, j}\]

Default Balance Types and Flow Basis

The following defaults are specified for Unit Models using this state definition:

	Material balances: total component balances

	Material flow basis: molar flow

	Energy balances: total enthalpy

_static/testing-conceptual.png
Scope of test

End-to-end
application

Multiple
functions

One function

One line

<1s

10s minutes

Time for test to run

hours

_static/up-pressed.png

_static/up.png

_static/sw-overview-workflow.png
Steps for one set of changes, or "topic"

.—»‘ Setup F—»‘ Initiate }—»‘ Develop }—»‘ Collaborate

T l Merge
No Yes >®

Approved?

_static/sw-init-workflow.png
Steps for one set of changes, or “topic"

Develop }»{Collaborate I

'_>| Setup]7*[Initiate l.»

AN No

Merge
Yes ®
Approved?

Initiate
Create issue Make local
on Github edits
Create new
l l PR in
Github
Create branch Push
in your fork changes to

your fork

_static/minus.png

_static/matopt_logo_text.png
Nanematerials

_static/plus.png

_static/pysmo-logo.png

_static/sw-dev-workflow.png
Steps for one set of changes, or “topic"

N, Merge

.-—[Setup },{ Initiate H Develop HCollaborateJ

No ™. g Yes ®

Ap‘fmgved ?

Make local

edits

Run tests

—

Tests fail

Tests

Commit

succeed

changes

_static/sw-collaborate-workflow.png
Steps for one set of changes, or “topic"

'->| Setup]7-»[Initiate }—»l Develop }»{CollaborateJ

,,—"(¢ \\Merge
- No Yes ®
e Approved?

Collaborate

Changes
requested?
<>—NO> Merge

Request
review

Yes
. To "Develop" :

S

(Tidy up)

_static/matopt_logo_name.png
MatOpt

_static/matopt_logo_full.png
MatOpt

Nanematerials

_static/matopt_logo_simplex.png

_static/modelvis/circled_url.png
In [55]: m.fs.visualize('modelname')

127.0.0.1 - - [08/May/2020 10:28:51] "

attempt 0 of 127

T oray
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020

10:28:55]

" 200

"GET /favicon.ico HTTP/1.1"

200 -

" 200 -
"GET /lib/joint.min.js HTTP/1.1" 304 -
"GET /lib/lodash.js BTTP/1.1" 304 -
"GET /1ib/jquery.js BTTP/1.1" 304 -

" 200 -
" 200 -
404 -
" 200 -
" 200 -

" 2
" 20
200 -
200 -
" 20

00 -
0 -

0 -
200 -

_static/modelvis/fs_visualize_jupyter_notebook.png
i

[55):

i

m.fs.visualize('modelname')

_static/almconf.png
80

60

put
5
3

2 out

20

ALMPIot of ALAMO Results

— Regressed line
--- Confidence interval

08 10
x_input

12

14

16

_static/beer-coffee-cheers-small.png

_static/c-python-performance-graph.png
Comparing C and Embedded Python Performance

I Solver
rr— time

I Varsha.

[Tr— T Fropetty

funcion

-
et ruc oo
e
0 7500 15000 2800 30000

Time (milliseconds)

_static/blue-white-band.png

_static/ajax-loader.gif

_static/IDAES_structure.png
Ideal Property Models

Equilibrium Equations

Mixing Rules

Property
Packages

Optimization

Dynamics &
Control

Conceptual
Design

Parameter
Estimation

Data
Reconciliation

_images/IDAES_structure.png
Ideal Property Models

Equilibrium Equations

Mixing Rules

Property
Packages

Optimization

Dynamics &
Control

Conceptual
Design

Parameter
Estimation

Data
Reconciliation

_images/almconf.png
80

60

put
5
3

2 out

20

ALMPIot of ALAMO Results

— Regressed line
--- Confidence interval

08 10
x_input

12

14

16

_images/Boiler_scpc_PFD.png
SUPERCRITICAL BOILER HX NETWORK FLOWSHEET

R - EWCE
e 2 | :E»«;Um
i
2

SR [FRIRAR
o [o
PAFD Fan
et —— e
e
. i mass (kg o
T erpentre (0 |
7. e () b v
- Vepor rscoan — e =

_images/beer-coffee-cheers-small.png

_static/github-fork-repo_pse.png
= IDAES / idaes-pse ® Watchv 15 Y7 star 38 % Fork

<> Code (@ Issues 5 I Pull requests () Actions (™ Projects [wiki @ Security [~ Insights

¥ Branch: master ~ Go to file Add file ¥ About

20

The IDAES Process Systems

‘ ksbeattie committed cdcdseb 8 days ago ... X 9 50 commits ¥ 8 branches & 23 tags Engineering Framework

_static/github-start-pullrequest.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 8

<> Code () Issues 32 1 Pull requests 9 [Projects o

lili Insights 43 Settings

The internal development repository for the IDAES PSE Framework Edit

Manage topics

D 907 commits ¥ 1 branch © 1 release 42 12 contributors sfs View license

——
Your recently pushed branches:

¥ username:mybranch-issue3000 (8 minutes ago) 19 Compare & pull request
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

|:f| jghouse88 Merge pull request #81 from andrewlee94/issue_54 Latest commit 25f4a57 2 days ago

_static/github-issue-priority.png
£ IDAES / idaes-devV | Private @unwatch~ 16 | %kstar 0 YFork 8

Code Q@ Issues 32 Pull requests 8 Projects 0 Wiki Insights Settings

My new issue Assignees

No one—assign yourself
Show related issues

@ R N Labels
norevet Click here..

Write Preview M B i [{ER =)

Solve a pressing problem that only | have the expertise to deal with.

Projects

Projects

..then click here

Recent Repository Organization

Priorities

Attach files by dragging & dropping, selecting them, or pasting from the clipboard. 2 IDAES

LI Styling with Markdown is supported 2019 April Release

73 IDAES

_static/idaes-logo-100x100.png

_static/idaes-footer-logo.png
IDAES

Institute for the Design of
Advanced Energy Systems

_static/logocappresse-01.png

_static/idaes-logo.png

_static/down.png

_static/github-fork-repo.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 7

<> Code Issues 30 Pull requests 6 Projects 0 Wiki Insights Settings '
Click here
The internal development repository for the IDAES PSE Framework Edit
Manage topics
D 879 commits ¥ 1 branch © 1release 42 12 contributors &s View license
| I —

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

aclicki Marae nill ramiect #6872 fram oclickildran 27 tecte

1 atect ~rarmmit Ea12Fa2 2 hAatire ana

_static/file.png

_static/content-divider.png

_static/content-divider.jpg

_static/ddm-software.png
ALAMO | RIPE@®

_static/down-pressed.png

_static/dmf-workspace-resource.png
Data Management Framework

Workspace

Resource Resource

Relations

Resource / Resource

N
~
~
~
~
~
~

Flowsheet, Property Data, Jupyter Notebook, etc.

_static/comment-bright.png

_static/clc_superstructure.jpg

_static/comment.png

_static/comment-close.png

_static/content-divider-color.png

_images/boiler2D_2.png
T,

2y, W
My, 9°T,, adl,,
o e @

Figure 2. Discretization of heat conduction along tube radius direction

_images/boilerfireside.png
Primary Air
ANy

Coal Raw

Secondary Air
—®

I¢ﬂ»vluten
N .
Y
combustion

Hot Flue Gas

_images/blue-white-band.png

_images/boiler2D_1.png
| Alsper |

o~
Il
-

Altupe n—

Shell Side Flow Out

I
/L

Shell Side Flow In

Tube Side Flow Out Tube Side Flow In

_images/dmf-workspace-resource.png
Data Management Framework

Workspace

Resource Resource

Relations

Resource / Resource

N
~
~
~
~
~
~

Flowsheet, Property Data, Jupyter Notebook, etc.

_images/drum1D_1.png
Saturated
Steam

Insulation
Drum Wall

”
"
N X
R e
AL
R AR
R A
AL B S

AN >

R

R

X

X

3

55555555555,
o
G555
45555
K
%55

‘
”
53
”
o
AN IS
S AN
o) l" l" SR
it
SONNSINSINN
i
ASISSINN
AN
S
53

S
Ko

A\

N
SRR
W
S
&

R
o>

%
S

N

3
N
3

S
R
TN

SRR

W

S
funnan)

Mixture From WW

Water/Steam

AR, RRRAAAN

Feed Water

CORRAAANAAY

N/
///o

Ambient Air

W

sy

i

To Downcomers

O

099295559595550%;

999999292925%s.

3
SRS
SRS
NN\ SRR
4 SIS
R SRS
AN s SIS
AN IS IRANNAAN
AR SRR
AR SN
AN
AN,
AT
RN
R RIS
SRR
S IIINNNNN S

9999559959555,

N
S

%

o
SR
8 N8
N AR

S
3
S

S
"W
W
AN
AN
AN
RARAAAN:
R
AN
W

5

_images/circled_url.png
In [55]: m.fs.visualize('modelname')

127.0.0.1 - - [08/May/2020 10:28:51] "

attempt 0 of 127

T oray
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020
[08/May/2020

10:28:55]

" 200

"GET /favicon.ico HTTP/1.1"

200 -

" 200 -
"GET /lib/joint.min.js HTTP/1.1" 304 -
"GET /lib/lodash.js BTTP/1.1" 304 -
"GET /1ib/jquery.js BTTP/1.1" 304 -

" 200 -
" 200 -
404 -
" 200 -
" 200 -

" 2
" 20
200 -
200 -
" 20

00 -
0 -

0 -
200 -

_images/ddm-software.png
ALAMO | RIPE@®

_images/drum1D_2.png
St
VW

7,

o

rO

/
// P

_images/drum_1.png
Steam Outlet

DRUM Model

Vapor outlet

SatWater = Liquid outlet

Feed Water Inlet

FeedWater Water_Steam Inlet

Mixed_state = Control Volume In

Water Tank

Control Volume Out

Liquid Outlet

nav.xhtml

 Table of Contents

 		
 Institute for the Design of Advanced Energy Systems (IDAES)

 		
 Getting Started

 		
 Installation

 		
 Windows

 		
 Linux

 		
 Mac/OSX

 		
 Generic Install

 		
 Optional Dependencies

 		
 Updating an existing installation

 		
 User Guide

 		
 Why IDAES

 		
 Key Features

 		
 Concepts

 		
 Modeling Components

 		
 Model Libraries

 		
 Modeling Extensions

 		
 Components

 		
 Flowsheet

 		
 Property Package

 		
 Unit Model

 		
 Data Management Framework

 		
 Conventions

 		
 Units of Measurement and Reference States

 		
 Standard Variable Names

 		
 Workflow

 		
 General Workflow

 		
 Data Reconciliation and Parameter Estimation

 		
 Command-line interface

 		
 idaes command

 		
 Visualization

 		
 Overview

 		
 Installation instructions

 		
 Usage

 		
 Stream Labels

 		
 Misc. Features

 		
 IDAES Model Libraries

 		
 Logging

 		
 Getting Loggers

 		
 Tags

 		
 Levels

 		
 Utility Functions

 		
 Logging Solver Output

 		
 Modeling Extensions

 		
 Surrogate modeling

 		
 MatOpt: Nanomaterials Optimization

 		
 Caprese

 		
 Advanced User Guide

 		
 Advanced User Installation

 		
 Git and GitHub Basics

 		
 Installation with GitHub

 		
 Developer Documentation

 		
 Developer Contents

 		
 Developing Custom Models

 		
 Creating New Modeling Components

 		
 Defining New Model Classes

 		
 Inheriting from Existing Models

 		
 Config Blocks

 		
 The build Method

 		
 Types of Models

 		
 Tutorials and Examples

 		
 Technical Specifications

 		
 Core

 		
 Process Block

 		
 Flowsheet Block

 		
 0D Control Volume Class

 		
 1D Control Volume Class

 		
 Physical Property Package Classes

 		
 Reaction Property Package Classes

 		
 Unit Model Class

 		
 Component Class

 		
 Phase Class

 		
 Utility Methods

 		
 Model Libaries

 		
 Generic IDAES Model Library

 		
 Power Generation Model Library

 		
 Gas Solid Contactors Model Library

 		
 License

 		
 Copyright

_images/github-fork-repo_pse.png
= IDAES / idaes-pse ® Watchv 15 Y7 star 38 % Fork

<> Code (@ Issues 5 I Pull requests () Actions (™ Projects [wiki @ Security [~ Insights

¥ Branch: master ~ Go to file Add file ¥ About

20

The IDAES Process Systems

‘ ksbeattie committed cdcdseb 8 days ago ... X 9 50 commits ¥ 8 branches & 23 tags Engineering Framework

_images/github-issue-priority.png
£ IDAES / idaes-devV | Private @unwatch~ 16 | %kstar 0 YFork 8

Code Q@ Issues 32 Pull requests 8 Projects 0 Wiki Insights Settings

My new issue Assignees

No one—assign yourself
Show related issues

@ R N Labels
norevet Click here..

Write Preview M B i [{ER =)

Solve a pressing problem that only | have the expertise to deal with.

Projects

Projects

..then click here

Recent Repository Organization

Priorities

Attach files by dragging & dropping, selecting them, or pasting from the clipboard. 2 IDAES

LI Styling with Markdown is supported 2019 April Release

73 IDAES

_images/fs_visualize_jupyter_notebook.png
i

[55):

i

m.fs.visualize('modelname')

_images/github-fork-repo.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 7

<> Code Issues 30 Pull requests 6 Projects 0 Wiki Insights Settings '
Click here
The internal development repository for the IDAES PSE Framework Edit
Manage topics
D 879 commits ¥ 1 branch © 1release 42 12 contributors &s View license
| I —

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

aclicki Marae nill ramiect #6872 fram oclickildran 27 tecte

1 atect ~rarmmit Ea12Fa2 2 hAatire ana

_images/logocappresse-01.png

_images/logocappresse-011.png

_images/github-start-pullrequest.png
2 IDAES / idaes-devV | private @unwatch~ 16 | %star 0 | YFork 8

<> Code () Issues 32 1 Pull requests 9 [Projects o

lili Insights 43 Settings

The internal development repository for the IDAES PSE Framework Edit

Manage topics

D 907 commits ¥ 1 branch © 1 release 42 12 contributors sfs View license

——
Your recently pushed branches:

¥ username:mybranch-issue3000 (8 minutes ago) 19 Compare & pull request
Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download ¥

|:f| jghouse88 Merge pull request #81 from andrewlee94/issue_54 Latest commit 25f4a57 2 days ago

_images/initial_layout.png
Help

O ® 127002

Save ShowfHide Arc Labels

Molar Flow (Lig, benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('VapMolar Flow ('Liq', 'benzene’) 0.5
Temperature 298. Molar Flow (Lig’ toluene’) 0.5
Pressure 10132 Molar Flow (Lig’, hydrogen) 0.5
Molar Flow (Lig', ‘methane’) 0.5
Molar Flow ('Vap!, 'benzene) 0.5
Molar Florwfgar Flow (Lig', benzene') 0.5
Molar Flo'Molar Flow (Lig','toluene’) 0.5
Molar Flo Molar Flow ('Liq", hydrogen') 0.5
Temperatt\folar Flow (Liq’, ‘methane’) 0.5
Pressure 1 Molar Flow ('Vap', benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen') 0.5

>

Mio1

HI01

RI01 Molar Flow ('Vap','methanc’) 0.5
Temperature 29815 Molar Flow (Lig’, benzene) 0.5
"Pressure Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
-) Molar Flow (Liq', ‘methane’) 0.5
Molar Flow (Lig’, benzene') 0.5 Molar Flow ('Vap', 'benzene) 0.5

Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

/ap’. toluene)) 0.5

)05 Molar Flow (Lig), 'benzene)) 0.5

05 Molar Flow (Liq', toluene’) 0.5
(Liq Molar Flow (Lig', hydrogen’) 0.5
(Liq Molar Flow (Lig', 'methanc’) 0.5
(Liq Molar Flow ('Vap', 'benzenc) 0.5
(Lia' Molar Flow ('Vap', toluenc) 0.5
(VapNfolar Flow ('Vap', hydrogen’) 0.5
(VapNfolar Flow ('Vap', 'methane’) 0.5
('Vap Temperature 298.15
(Vaxpm“m 10132

Fl01

s101

F102

_images/matopt_logo_full.png
MatOpt

Nanematerials

_images/modified_layout.png
c @ O ® 127001

& Gmail # Slack

Help Save ShowfHide Arc Labels

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5

Molar Flow ('Vap', benzene)) 05
[> Molar Flow ('Vap', toluene) 0.5

Molar Flow ('Vap', hydrogen) 0.5 - .
il : Molar Flow (Lig’, benzene’) 0.5
;{‘;;;2;,‘7;2‘{,?,'5""‘“'“‘ (X Molar Flow (Lig', oluene) 0.5
Mi01 Pressure 10132 Molar Flow (Lig, 'hydrogen) 0.5
s Molar Flow (Lid, ‘methanc') 0.5
¢ Molar Flow ('Vap/, benzene) 0.5
Molar Flow ('Vap' toluene)) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', methane’) 0.5
‘Temperature 298,15
Hiol Pressure 10132

l Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap’, hydrogen) 0.5
“Molar Flow (Vap', methane’) 05— >
Temperature 298,15
Pressure 10132 Flot

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

j Molar Flow (Lig', benzene) 0.5

s101 Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15
Pressure 10132

cio

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap', toluene) 0.5
Molar Flow ('Vap’, hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

0

F102

_images/new_unit_model_layout.png
c @ O ® 127001

& Gmail # Slack

Help Save ShowfHide Arc Labels

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5

Molar Flow ('Vap, benzene) 0.5
Molar Flow ('Vap, foluene’) 0.5
Molar Flow ('Vap' hydrogen) 0.5 it emen
Molor How (VoD arogetns Molar Flow (Lig, benzene’) 05
Tevmperdiute 20813 Molar Flow (Lig . olueae) 0.5
MioL ot Molar Flow (ILig" hydrogen) 0.5
" Molar Flow (Lig’ methane)) 0.5
Molar Flow ('Vap, benzene') 0.5
Molar Flow ('Vap, toluenc) 0.5
Molar Flow ('Vap' hydrogen) 0.5
Molar Flow ('Vap' ‘methane)) 0.5
“Temperature 298.15
Pressure 10132
Molar Flow (Lig', benzene) 0.5
Molar Flow (Liq", foluenc’) 0.5
Molar Flow (Lig', hydrogen) 0.5
Molar Flow (Lig’ ‘methanc)) 0.5
Molar Flow ('Vap, benzene) 0.5
Molar Flow ('Vap, foluene’) 0.5
RIOI Molar Flow ('Vap' hydrogen) 0.5
‘Molar Flow ('Vap' ‘methane) 05—
Temperature 208.15
Pressure 10132 Flot
Molar Flow (Lig', benzene) 0.5
Molar Flow (Liq", foluenc’) 0.5
Molar Flow (Lig', hydrogen) 0.5
Molar Flow (Lig’ ‘methanc)) 0.5
Molar Flow ('Vap', benzene)) 05 Molar Flow (Lig', benzene) 0.5
Molar Flow (Vap! foluenc) 0.5 Molar Flow (Lig',‘toluenc’) 0.5
ol How (Vap yciogen) 05 Volar Flow (L ydogen) 05
olar Flow (Vap, methane) 0. olar Flow (Liq' ‘methane) 0.
g Temperature 208.15 Molar Flow ('Vap, benzene) 0.5
Pressure 10132 Molar Flow ('Vap", foluene’) 0.5
Molar Flow ('Vap' hydrogen) 0.5
Molar Flow ('Vap, 'methan)) 0.5
Temperature 208.15
4 Pressure 10132
Molar Flow (Lig', benzene) 0.5
Molar Flow (i, toluene’) 0.5
Molar Flow (L', benzene) 0.5 stal Mot Flow (L0 Idsosent 0.5
Molar Flow (Lig', 'toluene’) 0.5 Molar Flow ('Liq, 'methane’) 0.5
Molar Flow (Lig, hydrogen') 0.5 Molar Flow ('Vap', ‘benzene’) 0.5
Molar Flow (L', ‘methane’) 0.5 Molar Flow (Vap' foluene) 0.5
Molar Flow (Vap!, benzene) 05 Molar Flow (Vap', hydrogen’) 0.5
Molar Flow (Vap' folene) 0.5 Molar Flow (Vap' methane)) 0.5
Molar Flow ('Vap', hydrogen) 0.5 Tomperature 298,15 Fl02
Molar Flow ('Vap', methanc) 0.5 Presture 10132
Temperature 208.15
Pressure 10132

cio

_images/sw-collaborate-workflow.png
Steps for one set of changes, or “topic"

'->| Setup]7-»[Initiate }—»l Develop }»{CollaborateJ

,,—"(¢ \\Merge
- No Yes ®
e Approved?

Collaborate

Changes
requested?
<>—NO> Merge

Request
review

Yes
. To "Develop" :

S

(Tidy up)

_images/sw-dev-workflow.png
Steps for one set of changes, or “topic"

N, Merge

.-—[Setup },{ Initiate H Develop HCollaborateJ

No ™. g Yes ®

Ap‘fmgved ?

Make local

edits

Run tests

—

Tests fail

Tests

Commit

succeed

changes

_images/pysmo-logo.png

_images/pysmo-logo1.png

_images/testing-conceptual.png
Scope of test

End-to-end
application

Multiple
functions

One function

One line

<1s

10s minutes

Time for test to run

hours

_images/tube_arrangement.png
v » Flow
m ¥ Direction

IO+ = 0,050
O O O On0p

In-line Tube Arrangement Staggered Tube Arrangement

. o [
54 096y
O

O
O

_images/sw-init-workflow.png
Steps for one set of changes, or “topic"

Develop }»{Collaborate I

'_>| Setup]7*[Initiate l.»

AN No

Merge
Yes ®
Approved?

Initiate
Create issue Make local
on Github edits
Create new
l l PR in
Github
Create branch Push
in your fork changes to

your fork

_images/sw-overview-workflow.png
Steps for one set of changes, or "topic"

.—»‘ Setup F—»‘ Initiate }—»‘ Develop }—»‘ Collaborate

T l Merge
No Yes >®

Approved?

_images/waterwall_1.png
Fire Side Model Fluid Side Model
—

Zone 10
Tw,slag Tfluid
Fluid Out

Zone 9

%

Zone 8

.
/
/

// fire n fire
/ 'l"l' qrad’net qCOTLU
/

Zone 5 Jone 2
/
e, 7

Zone 3 [EE R 7

IR ' 4
INERNENNNNINANNANEARENNINY
Zone 2 HHHHHHHHHH
IRIRRININNINNRRERRIRAREEND
INNENINNRNENNNENEERENEINY ' ‘

RN VIT7777/77/7Z 8 D
RN

Slag Tube Fluid In

Zone 7

fluid
conv

—)

Zone 6

/

4

Zone 1

_images/waterwall_2.png
Tht

Tw,slag —VW— Tf luid

tFluid Out

‘?
P
P

//
V)
V)

I//

Truia

_static/modelvis/modified_layout.png
c @ O ® 127001

& Gmail # Slack

Help Save ShowfHide Arc Labels

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5

Molar Flow ('Vap', benzene)) 05
[> Molar Flow ('Vap', toluene) 0.5

Molar Flow ('Vap', hydrogen) 0.5 - .
il : Molar Flow (Lig’, benzene’) 0.5
;{‘;;;2;,‘7;2‘{,?,'5""‘“'“‘ (X Molar Flow (Lig', oluene) 0.5
Mi01 Pressure 10132 Molar Flow (Lig, 'hydrogen) 0.5
s Molar Flow (Lid, ‘methanc') 0.5
¢ Molar Flow ('Vap/, benzene) 0.5
Molar Flow ('Vap' toluene)) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', methane’) 0.5
‘Temperature 298,15
Hiol Pressure 10132

l Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap’, hydrogen) 0.5
“Molar Flow (Vap', methane’) 05— >
Temperature 298,15
Pressure 10132 Flot

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

j Molar Flow (Lig', benzene) 0.5

s101 Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15
Pressure 10132

cio

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap', toluene) 0.5
Molar Flow ('Vap’, hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

0

F102

_static/modelvis/initial_layout.png
Help

O ® 127002

Save ShowfHide Arc Labels

Molar Flow (Lig, benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('VapMolar Flow ('Liq', 'benzene’) 0.5
Temperature 298. Molar Flow (Lig’ toluene’) 0.5
Pressure 10132 Molar Flow (Lig’, hydrogen) 0.5
Molar Flow (Lig', ‘methane’) 0.5
Molar Flow ('Vap!, 'benzene) 0.5
Molar Florwfgar Flow (Lig', benzene') 0.5
Molar Flo'Molar Flow (Lig','toluene’) 0.5
Molar Flo Molar Flow ('Liq", hydrogen') 0.5
Temperatt\folar Flow (Liq’, ‘methane’) 0.5
Pressure 1 Molar Flow ('Vap', benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen') 0.5

>

Mio1

HI01

RI01 Molar Flow ('Vap','methanc’) 0.5
Temperature 29815 Molar Flow (Lig’, benzene) 0.5
"Pressure Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
-) Molar Flow (Liq', ‘methane’) 0.5
Molar Flow (Lig’, benzene') 0.5 Molar Flow ('Vap', 'benzene) 0.5

Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5
Molar Flow ('Vap', 'benzene) 0.5
Molar Flow ('Vap!, toluene) 0.5
Molar Flow ('Vap', hydrogen) 0.5
Molar Flow ('Vap', ‘methane') 0.5
Temperature 298.15

Pressure 10132

/ap’. toluene)) 0.5

)05 Molar Flow (Lig), 'benzene)) 0.5

05 Molar Flow (Liq', toluene’) 0.5
(Liq Molar Flow (Lig', hydrogen’) 0.5
(Liq Molar Flow (Lig', 'methanc’) 0.5
(Liq Molar Flow ('Vap', 'benzenc) 0.5
(Lia' Molar Flow ('Vap', toluenc) 0.5
(VapNfolar Flow ('Vap', hydrogen’) 0.5
(VapNfolar Flow ('Vap', 'methane’) 0.5
('Vap Temperature 298.15
(Vaxpm“m 10132

Fl01

s101

F102

_static/modelvis/new_unit_model_layout.png
c @ O ® 127001

& Gmail # Slack

Help Save ShowfHide Arc Labels

Molar Flow (Lig', benzene) 0.5
Molar Flow (Lig, toluene) 0.5
Molar Flow (Lig, hydrogen) 0.5
Molar Flow (Liq', ‘methane’) 0.5

Molar Flow ('Vap, benzene) 0.5
Molar Flow ('Vap, foluene’) 0.5
Molar Flow ('Vap' hydrogen) 0.5 it emen
Molor How (VoD arogetns Molar Flow (Lig, benzene’) 05
Tevmperdiute 20813 Molar Flow (Lig . olueae) 0.5
MioL ot Molar Flow (ILig" hydrogen) 0.5
" Molar Flow (Lig’ methane)) 0.5
Molar Flow ('Vap, benzene') 0.5
Molar Flow ('Vap, toluenc) 0.5
Molar Flow ('Vap' hydrogen) 0.5
Molar Flow ('Vap' ‘methane)) 0.5
“Temperature 298.15
Pressure 10132
Molar Flow (Lig', benzene) 0.5
Molar Flow (Liq", foluenc’) 0.5
Molar Flow (Lig', hydrogen) 0.5
Molar Flow (Lig’ ‘methanc)) 0.5
Molar Flow ('Vap, benzene) 0.5
Molar Flow ('Vap, foluene’) 0.5
RIOI Molar Flow ('Vap' hydrogen) 0.5
‘Molar Flow ('Vap' ‘methane) 05—
Temperature 208.15
Pressure 10132 Flot
Molar Flow (Lig', benzene) 0.5
Molar Flow (Liq", foluenc’) 0.5
Molar Flow (Lig', hydrogen) 0.5
Molar Flow (Lig’ ‘methanc)) 0.5
Molar Flow ('Vap', benzene)) 05 Molar Flow (Lig', benzene) 0.5
Molar Flow (Vap! foluenc) 0.5 Molar Flow (Lig',‘toluenc’) 0.5
ol How (Vap yciogen) 05 Volar Flow (L ydogen) 05
olar Flow (Vap, methane) 0. olar Flow (Liq' ‘methane) 0.
g Temperature 208.15 Molar Flow ('Vap, benzene) 0.5
Pressure 10132 Molar Flow ('Vap", foluene’) 0.5
Molar Flow ('Vap' hydrogen) 0.5
Molar Flow ('Vap, 'methan)) 0.5
Temperature 208.15
4 Pressure 10132
Molar Flow (Lig', benzene) 0.5
Molar Flow (i, toluene’) 0.5
Molar Flow (L', benzene) 0.5 stal Mot Flow (L0 Idsosent 0.5
Molar Flow (Lig', 'toluene’) 0.5 Molar Flow ('Liq, 'methane’) 0.5
Molar Flow (Lig, hydrogen') 0.5 Molar Flow ('Vap', ‘benzene’) 0.5
Molar Flow (L', ‘methane’) 0.5 Molar Flow (Vap' foluene) 0.5
Molar Flow (Vap!, ben