Source code for idaes.core.solvers.features

#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021
# by the software owners: The Regents of the University of California, through
# Lawrence Berkeley National Laboratory,  National Technology & Engineering
# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University
# Research Corporation, et al.  All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and
# license information.
#################################################################################

from functools import lru_cache
import pyomo.environ as pyo
from pyomo.common.errors import ApplicationError

[docs]def lp(): """This provides a simple LP model for solver testing. Args: None Returns: (tuple): Pyomo ConcreteModel, correct solved value for m.x """ m = pyo.ConcreteModel() m.x = pyo.Var(initialize=3) m.y = pyo.Var(initialize=3) m.c1 = pyo.Constraint(expr=m.x >= 1) m.c2 = pyo.Constraint(expr=m.y >= 2) m.c3 = pyo.Constraint(expr=m.x <= 5) m.c4 = pyo.Constraint(expr=m.y <= 5) m.obj = pyo.Objective(expr=m.x + m.y) return m, 1
[docs]def milp(): """This provides a simple MILP model for solver testing. Args: None Returns: (tuple): Pyomo ConcreteModel, correct solved value for m.x """ m = pyo.ConcreteModel() m.x = pyo.Var(domain=pyo.Integers, initialize=3) m.y = pyo.Var(domain=pyo.Integers, initialize=3) m.c1 = pyo.Constraint(expr=m.x >= 0.5) m.c2 = pyo.Constraint(expr=m.y >= 1.5) m.c3 = pyo.Constraint(expr=m.x <= 5) m.c4 = pyo.Constraint(expr=m.y <= 5) m.obj = pyo.Objective(expr=m.x + m.y) return m, 1
def nle(): """This provides a simple system of nonlinear equations model for solver testing. Args: None Returns: (tuple): Pyomo ConcreteModel, correct solved value for m.x """ m = pyo.ConcreteModel() m.x = pyo.Var(initialize=-0.1) m.eq1 = pyo.Constraint(expr=m.x**2 == 1) return m, 1
[docs]def nlp(): """This provides a simple NLP model for solver testing. Args: None Returns: (tuple): Pyomo ConcreteModel, correct solved value for m.x """ m = pyo.ConcreteModel() m.x = pyo.Var(initialize=-0.1) m.y = pyo.Var(initialize=1) m.c = pyo.Constraint(expr=m.x >= 1) m.obj = pyo.Objective(expr=m.x**2 + m.y**2) return m, 1
[docs]def minlp(): """This provides a simple MINLP model for solver testing. Args: None Returns: (tuple): Pyomo ConcreteModel, correct solved value for m.x and m.i """ m = pyo.ConcreteModel() m.x = pyo.Var(initialize=-0.1) m.y = pyo.Var(initialize=1) m.i = pyo.Var(domain=pyo.Binary, initialize=0) m.c = pyo.Constraint(expr=m.x >= 1) m.obj = pyo.Objective( expr=m.i * (m.x**2 + m.y**2) + (1 - m.i) * 4 *(m.x**2 + m.y**2)) return m, 1, 1
[docs]@lru_cache(maxsize=10) def ipopt_has_linear_solver(linear_solver): """Check if IPOPT can use the specified linear solver. Args: linear_solver (str): linear solver in {"ma27", "ma57", "ma77", "ma86", "ma97", "pardiso", "pardisomkl", "spral", "wsmp", "mumps"} or other custom solver. Returns: (bool): True if Ipopt is available with the specified linear solver or False if either Ipopt or the linear solver is not available. """ m, x = nlp() solver = pyo.SolverFactory('ipopt', options={"linear_solver": linear_solver}) try: solver.solve(m) except ApplicationError: return False try: assert abs(x - pyo.value(m.x)) < 1e-8 except AssertionError: return False # solver mysteriously doesn't work right return True