#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2024 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
General purpose mixer block for IDAES models
"""
from enum import Enum
from pyomo.environ import (
Block,
check_optimal_termination,
Constraint,
Param,
PositiveReals,
Reals,
RangeSet,
Var,
)
from pyomo.common.config import ConfigBlock, ConfigValue, In, ListOf, Bool
from idaes.core import (
declare_process_block_class,
UnitModelBlockData,
useDefault,
MaterialBalanceType,
MaterialFlowBasis,
)
from idaes.core.util.config import (
is_physical_parameter_block,
is_state_block,
)
from idaes.core.util.exceptions import (
BurntToast,
ConfigurationError,
PropertyNotSupportedError,
InitializationError,
)
from idaes.core.util.math import smooth_min
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.core.util.scaling as iscale
from idaes.core.solvers import get_solver
from idaes.core.initialization import ModularInitializerBase
import idaes.logger as idaeslog
__author__ = "Andrew Lee"
# Set up logger
_log = idaeslog.getLogger(__name__)
# Enumerate options for balances
class MixingType(Enum):
"""
Enum of supported mixing types.
"""
none = 0
extensive = 1
class MomentumMixingType(Enum):
"""
Enum of supported approaches to pressure mixing.
"""
none = 0
minimize = 1
equality = 2
minimize_and_equality = 3
[docs]
class MixerInitializer(ModularInitializerBase):
"""
Hierarchical Initializer for Mixer blocks.
"""
[docs]
def initialization_routine(
self,
model: Block,
):
"""
Initialization routine for Mixer Blocks.
This routine starts by initializing each of the inlet streams, then uses those
results to estimate the outlet state before solving the full model.
Args:
model: model to be initialized
Returns:
Pyomo solver status object
"""
init_log = idaeslog.getInitLogger(
model.name, self.get_output_level(), tag="unit"
)
solve_log = idaeslog.getSolveLogger(
model.name, self.get_output_level(), tag="unit"
)
# Create solver
solver = self._get_solver()
# Initialize inlet state blocks
inlet_list = model.create_inlet_list()
i_block_list = []
for i in inlet_list:
i_block = getattr(model, i + "_state")
i_block_list.append(i_block)
# Get initializer for inlet
iinit = self.get_submodel_initializer(i_block)
iinit.initialize(i_block)
# Initialize mixed state block
if model.config.mixed_state_block is None:
mblock = model.mixed_state
else:
mblock = model.config.mixed_state_block
# Calculate initial guesses for mixed stream state
for t in model.flowsheet().time:
# Iterate over state vars as defined by property package
s_vars = mblock[t].define_state_vars()
for s in s_vars:
i_vars = []
for k in s_vars[s]:
# If fixed, use current value
# otherwise calculate guess from mixed state
if not s_vars[s][k].fixed:
for ib in i_block_list:
i_vars.append(getattr(ib[t], s_vars[s].local_name))
if s == "pressure":
# If pressure, use minimum as initial guess
mblock[t].pressure.set_value(
min(
i_block_list[i][t].pressure.value
for i in range(len(i_block_list))
)
)
elif "flow" in s:
# If a "flow" variable (i.e. extensive), sum inlets
for k in s_vars[s]:
s_vars[s][k].set_value(
sum(
i_vars[i][k].value
for i in range(len(i_block_list))
)
)
else:
# Otherwise use average of inlets
for k in s_vars[s]:
s_vars[s][k].set_value(
sum(
i_vars[i][k].value
for i in range(len(i_block_list))
)
/ len(i_block_list)
)
# Get initializer for mixed block
minit = self.get_submodel_initializer(mblock)
minit.initialize(mblock)
res = None
if model.config.mixed_state_block is None:
if (
hasattr(model, "pressure_equality_constraints")
and model.pressure_equality_constraints.active is True
):
model.pressure_equality_constraints.deactivate()
for t in model.flowsheet().time:
sys_press = getattr(model, model.create_inlet_list()[0] + "_state")[
t
].pressure
model.mixed_state[t].pressure.fix(sys_press.value)
with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
res = solver.solve(model, tee=slc.tee)
model.pressure_equality_constraints.activate()
for t in model.flowsheet().time:
model.mixed_state[t].pressure.unfix()
else:
with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
res = solver.solve(model, tee=slc.tee)
init_log.info("Initialization Complete: {}".format(idaeslog.condition(res)))
else:
init_log.info("Initialization Complete.")
return res
[docs]
@declare_process_block_class("Mixer")
class MixerData(UnitModelBlockData):
"""
This is a general purpose model for a Mixer block with the IDAES modeling
framework. This block can be used either as a stand-alone Mixer unit
operation, or as a sub-model within another unit operation.
This model creates a number of StateBlocks to represent the incoming
streams, then writes a set of phase-component material balances, an
overall enthalpy balance and a momentum balance (2 options) linked to a
mixed-state StateBlock. The mixed-state StateBlock can either be specified
by the user (allowing use as a sub-model), or created by the Mixer.
When being used as a sub-model, Mixer should only be used when a set
of new StateBlocks are required for the streams to be mixed. It should not
be used to mix streams from multiple ControlVolumes in a single unit model -
in these cases the unit model developer should write their own mixing
equations.
"""
default_initializer = MixerInitializer
CONFIG = ConfigBlock()
CONFIG.declare(
"dynamic",
ConfigValue(
domain=In([False]),
default=False,
description="Dynamic model flag - must be False",
doc="""Indicates whether this model will be dynamic or not,
**default** = False. Mixer blocks are always steady-state.""",
),
)
CONFIG.declare(
"has_holdup",
ConfigValue(
default=False,
domain=In([False]),
description="Holdup construction flag - must be False",
doc="""Mixer blocks do not contain holdup, thus this must be
False.""",
),
)
CONFIG.declare(
"property_package",
ConfigValue(
default=useDefault,
domain=is_physical_parameter_block,
description="Property package to use for mixer",
doc="""Property parameter object used to define property
calculations, **default** - useDefault.
**Valid values:** {
**useDefault** - use default package from parent model or flowsheet,
**PropertyParameterObject** - a PropertyParameterBlock object.}""",
),
)
CONFIG.declare(
"property_package_args",
ConfigBlock(
implicit=True,
description="Arguments to use for constructing property packages",
doc="""A ConfigBlock with arguments to be passed to a property
block(s) and used when constructing these,
**default** - None.
**Valid values:** {
see property package for documentation.}""",
),
)
CONFIG.declare(
"inlet_list",
ConfigValue(
domain=ListOf(str),
description="List of inlet names",
doc="""A list containing names of inlets,
**default** - None.
**Valid values:** {
**None** - use num_inlets argument,
**list** - a list of names to use for inlets.}""",
),
)
CONFIG.declare(
"num_inlets",
ConfigValue(
domain=int,
description="Number of inlets to unit",
doc="""Argument indicating number (int) of inlets to construct, not
used if inlet_list arg is provided,
**default** - None.
**Valid values:** {
**None** - use inlet_list arg instead, or default to 2 if neither argument
provided,
**int** - number of inlets to create (will be named with sequential integers
from 1 to num_inlets).}""",
),
)
CONFIG.declare(
"material_balance_type",
ConfigValue(
default=MaterialBalanceType.useDefault,
domain=In(MaterialBalanceType),
description="Material balance construction flag",
doc="""Indicates what type of mass balance should be constructed,
**default** - MaterialBalanceType.useDefault.
**Valid values:** {
**MaterialBalanceType.useDefault - refer to property package for default
balance type
**MaterialBalanceType.none** - exclude material balances,
**MaterialBalanceType.componentPhase** - use phase component balances,
**MaterialBalanceType.componentTotal** - use total component balances,
**MaterialBalanceType.elementTotal** - use total element balances,
**MaterialBalanceType.total** - use total material balance.}""",
),
)
CONFIG.declare(
"has_phase_equilibrium",
ConfigValue(
default=False,
domain=Bool,
description="Calculate phase equilibrium in mixed stream",
doc="""Argument indicating whether phase equilibrium should be
calculated for the resulting mixed stream,
**default** - False.
**Valid values:** {
**True** - calculate phase equilibrium in mixed stream,
**False** - do not calculate equilibrium in mixed stream.}""",
),
)
CONFIG.declare(
"energy_mixing_type",
ConfigValue(
default=MixingType.extensive,
domain=MixingType,
description="Method to use when mixing energy flows",
doc="""Argument indicating what method to use when mixing energy
flows of incoming streams,
**default** - MixingType.extensive.
**Valid values:** {
**MixingType.none** - do not include energy mixing equations,
**MixingType.extensive** - mix total enthalpy flows of each phase.}""",
),
)
CONFIG.declare(
"momentum_mixing_type",
ConfigValue(
default=MomentumMixingType.minimize,
domain=MomentumMixingType,
description="Method to use when mixing momentum/pressure",
doc="""Argument indicating what method to use when mixing momentum/
pressure of incoming streams,
**default** - MomentumMixingType.minimize.
**Valid values:** {
**MomentumMixingType.none** - do not include momentum mixing equations,
**MomentumMixingType.minimize** - mixed stream has pressure equal to the
minimimum pressure of the incoming streams (uses smoothMin operator),
**MomentumMixingType.equality** - enforces equality of pressure in mixed and
all incoming streams.,
**MomentumMixingType.minimize_and_equality** - add constraints for pressure
equal to the minimum pressure of the inlets and constraints for equality of
pressure in mixed and all incoming streams. When the model is initially built,
the equality constraints are deactivated. This option is useful for switching
between flow and pressure driven simulations.}""",
),
)
CONFIG.declare(
"mixed_state_block",
ConfigValue(
default=None,
domain=is_state_block,
description="Existing StateBlock to use as mixed stream",
doc="""An existing state block to use as the outlet stream from the
Mixer block,
**default** - None.
**Valid values:** {
**None** - create a new StateBlock for the mixed stream,
**StateBlock** - a StateBock to use as the destination for the mixed stream.}
""",
),
)
CONFIG.declare(
"construct_ports",
ConfigValue(
default=True,
domain=Bool,
description="Construct inlet and outlet Port objects",
doc="""Argument indicating whether model should construct Port
objects linked to all inlet states and the mixed state,
**default** - True.
**Valid values:** {
**True** - construct Ports for all states,
**False** - do not construct Ports.""",
),
)
[docs]
def build(self):
"""
General build method for MixerData. This method calls a number
of sub-methods which automate the construction of expected attributes
of unit models.
Inheriting models should call `super().build`.
Args:
None
Returns:
None
"""
# Call super.build()
super(MixerData, self).build()
# Call setup methods from ControlVolumeBlockData
self._get_property_package()
self._get_indexing_sets()
# Create list of inlet names
inlet_list = self.create_inlet_list()
# Build StateBlocks
inlet_blocks = self.add_inlet_state_blocks(inlet_list)
if self.config.mixed_state_block is None:
mixed_block = self.add_mixed_state_block()
else:
mixed_block = self.get_mixed_state_block()
mb_type = self.config.material_balance_type
if mb_type == MaterialBalanceType.useDefault:
t_ref = self.flowsheet().time.first()
mb_type = mixed_block[t_ref].default_material_balance_type()
if mb_type != MaterialBalanceType.none:
self.add_material_mixing_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block, mb_type=mb_type
)
else:
raise BurntToast(
"{} received unrecognised value for "
"material_mixing_type argument. This "
"should not occur, so please contact "
"the IDAES developers with this bug.".format(self.name)
)
if self.config.energy_mixing_type == MixingType.extensive:
self.add_energy_mixing_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
elif self.config.energy_mixing_type == MixingType.none:
pass
else:
raise ConfigurationError(
"{} received unrecognised value for "
"material_mixing_type argument. This "
"should not occur, so please contact "
"the IDAES developers with this bug.".format(self.name)
)
# Add to try/expect to catch cases where pressure is not supported
# by properties.
try:
if self.config.momentum_mixing_type == MomentumMixingType.minimize:
self.add_pressure_minimization_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
elif self.config.momentum_mixing_type == MomentumMixingType.equality:
self.add_pressure_equality_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
elif (
self.config.momentum_mixing_type
== MomentumMixingType.minimize_and_equality
):
self.add_pressure_minimization_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
self.add_pressure_equality_equations(
inlet_blocks=inlet_blocks, mixed_block=mixed_block
)
self.pressure_equality_constraints.deactivate()
elif self.config.momentum_mixing_type == MomentumMixingType.none:
pass
else:
raise ConfigurationError(
"{} received unrecognised value for "
"momentum_mixing_type argument. This "
"should not occur, so please contact "
"the IDAES developers with this bug.".format(self.name)
)
except PropertyNotSupportedError:
raise PropertyNotSupportedError(
"{} The property package supplied for this unit does not "
"appear to support pressure, which is required for momentum "
"mixing. Please set momentum_mixing_type to "
"MomentumMixingType.none or provide a property package which "
"supports pressure.".format(self.name)
)
self.add_port_objects(inlet_list, inlet_blocks, mixed_block)
[docs]
def create_inlet_list(self):
"""
Create list of inlet stream names based on config arguments.
Returns:
list of strings
"""
if self.config.inlet_list is not None and self.config.num_inlets is not None:
# If both arguments provided and not consistent, raise Exception
if len(self.config.inlet_list) != self.config.num_inlets:
raise ConfigurationError(
"{} Mixer provided with both inlet_list and "
"num_inlets arguments, which were not consistent ("
"length of inlet_list was not equal to num_inlets). "
"PLease check your arguments for consistency, and "
"note that it is only necessary to provide one of "
"these arguments.".format(self.name)
)
elif self.config.inlet_list is None and self.config.num_inlets is None:
# If no arguments provided for inlets, default to num_inlets = 2
self.config.num_inlets = 2
# Create a list of names for inlet StateBlocks
if self.config.inlet_list is not None:
inlet_list = self.config.inlet_list
else:
inlet_list = [
"inlet_" + str(n) for n in range(1, self.config.num_inlets + 1)
]
return inlet_list
[docs]
def add_inlet_state_blocks(self, inlet_list):
"""
Construct StateBlocks for all inlet streams.
Args:
list of strings to use as StateBlock names
Returns:
list of StateBlocks
"""
# Setup StateBlock argument dict
tmp_dict = dict(**self.config.property_package_args)
tmp_dict["has_phase_equilibrium"] = False
tmp_dict["defined_state"] = True
# Create empty list to hold StateBlocks for return
inlet_blocks = []
# Create an instance of StateBlock for all inlets
for i in inlet_list:
i_obj = self.config.property_package.build_state_block(
self.flowsheet().time, doc="Material properties at inlet", **tmp_dict
)
setattr(self, i + "_state", i_obj)
inlet_blocks.append(getattr(self, i + "_state"))
return inlet_blocks
[docs]
def add_mixed_state_block(self):
"""
Constructs StateBlock to represent mixed stream.
Returns:
New StateBlock object
"""
# Setup StateBlock argument dict
tmp_dict = dict(**self.config.property_package_args)
tmp_dict["has_phase_equilibrium"] = self.config.has_phase_equilibrium
tmp_dict["defined_state"] = False
self.mixed_state = self.config.property_package.build_state_block(
self.flowsheet().time, doc="Material properties of mixed stream", **tmp_dict
)
return self.mixed_state
[docs]
def get_mixed_state_block(self):
"""
Validates StateBlock provided in user arguments for mixed stream.
Returns:
The user-provided StateBlock or an Exception
"""
# Sanity check to make sure method is not called when arg missing
if self.config.mixed_state_block is None:
raise BurntToast(
"{} get_mixed_state_block method called when "
"mixed_state_block argument is None. This should "
"not happen.".format(self.name)
)
# Check that the user-provided StateBlock uses the same prop pack
if (
self.config.mixed_state_block[
self.flowsheet().time.first()
].config.parameters
!= self.config.property_package
):
raise ConfigurationError(
"{} StateBlock provided in mixed_state_block argument "
"does not come from the same property package as "
"provided in the property_package argument. All "
"StateBlocks within a Mixer must use the same "
"property package.".format(self.name)
)
return self.config.mixed_state_block
[docs]
def add_material_mixing_equations(self, inlet_blocks, mixed_block, mb_type):
"""
Add material mixing equations.
"""
pp = self.config.property_package
# Get phase component list(s)
pc_set = mixed_block.phase_component_set
# Get units metadata
units = pp.get_metadata()
flow_basis = mixed_block[
self.flowsheet().time.first()
].get_material_flow_basis()
if flow_basis == MaterialFlowBasis.molar:
flow_units = units.get_derived_units("flow_mole")
elif flow_basis == MaterialFlowBasis.mass:
flow_units = units.get_derived_units("flow_mass")
else:
# Let this pass for now with no units
flow_units = None
if mixed_block.include_inherent_reactions:
if mb_type == MaterialBalanceType.total:
raise ConfigurationError(
"Cannot do total flow mixing with inherent reaction; "
"problem is under-constrained. Please use a different "
"mixing type."
)
# Add extents of reaction and stoichiometric constraints
self.inherent_reaction_extent = Var(
self.flowsheet().time,
mixed_block.params.inherent_reaction_idx,
domain=Reals,
initialize=0.0,
doc="Extent of inherent reactions in outlet",
units=flow_units,
)
self.inherent_reaction_generation = Var(
self.flowsheet().time,
pc_set,
domain=Reals,
initialize=0.0,
doc="Generation due to inherent reactions in outlet",
units=flow_units,
)
@self.Constraint(
self.flowsheet().time,
pc_set,
)
def inherent_reaction_constraint(b, t, p, j):
if (p, j) in pc_set:
return b.inherent_reaction_generation[t, p, j] == (
sum(
mixed_block[t].params.inherent_reaction_stoichiometry[
r, p, j
]
* self.inherent_reaction_extent[t, r]
for r in mixed_block[t].params.inherent_reaction_idx
)
)
return Constraint.Skip
if mb_type == MaterialBalanceType.componentPhase:
# Create equilibrium generation term and constraints if required
if self.config.has_phase_equilibrium is True:
try:
self.phase_equilibrium_generation = Var(
self.flowsheet().time,
pp.phase_equilibrium_idx,
domain=Reals,
doc="Amount of generation in unit by phase equilibria",
units=flow_units,
)
except AttributeError:
raise PropertyNotSupportedError(
"{} Property package does not contain a list of phase "
"equilibrium reactions (phase_equilibrium_idx), "
"thus does not support phase equilibrium.".format(self.name)
)
# Write phase-component balances
@self.Constraint(
self.flowsheet().time,
pc_set,
doc="Material mixing equations",
)
def material_mixing_equations(b, t, p, j):
rhs = sum(
inlet_blocks[i][t].get_material_flow_terms(p, j)
for i in range(len(inlet_blocks))
) - mixed_block[t].get_material_flow_terms(p, j)
if self.config.has_phase_equilibrium:
rhs += sum(
b.phase_equilibrium_generation[t, r]
for r in pp.phase_equilibrium_idx
if pp.phase_equilibrium_list[r][0] == j
and pp.phase_equilibrium_list[r][1][0] == p
) - sum(
b.phase_equilibrium_generation[t, r]
for r in pp.phase_equilibrium_idx
if pp.phase_equilibrium_list[r][0] == j
and pp.phase_equilibrium_list[r][1][1] == p
)
if mixed_block.include_inherent_reactions:
rhs += b.inherent_reaction_generation[t, p, j]
return 0 == rhs
elif mb_type == MaterialBalanceType.componentTotal:
# Write phase-component balances
@self.Constraint(
self.flowsheet().time,
mixed_block.component_list,
doc="Material mixing equations",
)
def material_mixing_equations(b, t, j):
rhs = sum(
sum(
inlet_blocks[i][t].get_material_flow_terms(p, j)
for i in range(len(inlet_blocks))
)
- mixed_block[t].get_material_flow_terms(p, j)
for p in mixed_block.phase_list
if (p, j) in pc_set
)
if mixed_block.include_inherent_reactions:
rhs += sum(
b.inherent_reaction_generation[t, p, j]
for p in mixed_block.phase_list
if (p, j) in pc_set
)
return 0 == rhs
elif mb_type == MaterialBalanceType.total:
# Write phase-component balances
@self.Constraint(self.flowsheet().time, doc="Material mixing equations")
def material_mixing_equations(b, t):
rhs = sum(
sum(
sum(
inlet_blocks[i][t].get_material_flow_terms(p, j)
for i in range(len(inlet_blocks))
)
- mixed_block[t].get_material_flow_terms(p, j)
for j in mixed_block.component_list
if (p, j) in pc_set
)
for p in mixed_block.phase_list
)
return 0 == rhs
elif mb_type == MaterialBalanceType.elementTotal:
raise ConfigurationError(
"{} Mixers do not support elemental "
"material balances.".format(self.name)
)
elif mb_type == MaterialBalanceType.none:
pass
else:
raise BurntToast(
"{} Mixer received unrecognised value for "
"material_balance_type. This should not happen, "
"please report this bug to the IDAES developers.".format(self.name)
)
[docs]
def add_energy_mixing_equations(self, inlet_blocks, mixed_block):
"""
Add energy mixing equations (total enthalpy balance).
"""
@self.Constraint(self.flowsheet().time, doc="Energy balances")
def enthalpy_mixing_equations(b, t):
return 0 == (
sum(
sum(
inlet_blocks[i][t].get_enthalpy_flow_terms(p)
for p in mixed_block.phase_list
)
for i in range(len(inlet_blocks))
)
- sum(
mixed_block[t].get_enthalpy_flow_terms(p)
for p in mixed_block.phase_list
)
)
[docs]
def add_pressure_minimization_equations(self, inlet_blocks, mixed_block):
"""
Add pressure minimization equations. This is done by sequential
comparisons of each inlet to the minimum pressure so far, using
the IDAES smooth minimum function.
"""
if not hasattr(self, "inlet_idx"):
self.inlet_idx = RangeSet(len(inlet_blocks))
# Get units metadata
units = mixed_block.params.get_metadata()
# Add variables
self.minimum_pressure = Var(
self.flowsheet().time,
self.inlet_idx,
doc="Variable for calculating minimum inlet pressure",
units=units.get_derived_units("pressure"),
)
self.eps_pressure = Param(
mutable=True,
initialize=1e-3,
domain=PositiveReals,
doc="Smoothing term for minimum inlet pressure",
units=units.get_derived_units("pressure"),
)
# Calculate minimum inlet pressure
@self.Constraint(
self.flowsheet().time,
self.inlet_idx,
doc="Calculation for minimum inlet pressure",
)
def minimum_pressure_constraint(b, t, i):
if i == self.inlet_idx.first():
return self.minimum_pressure[t, i] == (inlet_blocks[i - 1][t].pressure)
else:
return self.minimum_pressure[t, i] == (
smooth_min(
self.minimum_pressure[t, i - 1],
inlet_blocks[i - 1][t].pressure,
self.eps_pressure,
)
)
# Set inlet pressure to minimum pressure
@self.Constraint(self.flowsheet().time, doc="Link pressure to control volume")
def mixture_pressure(b, t):
return mixed_block[t].pressure == (
self.minimum_pressure[t, self.inlet_idx.last()]
)
[docs]
def add_pressure_equality_equations(self, inlet_blocks, mixed_block):
"""
Add pressure equality equations. Note that this writes a number of
constraints equal to the number of inlets, enforcing equality between
all inlets and the mixed stream.
"""
if not hasattr(self, "inlet_idx"):
self.inlet_idx = RangeSet(len(inlet_blocks))
# Create equality constraints
@self.Constraint(
self.flowsheet().time,
self.inlet_idx,
doc="Calculation for minimum inlet pressure",
)
def pressure_equality_constraints(b, t, i):
return mixed_block[t].pressure == inlet_blocks[i - 1][t].pressure
[docs]
def add_port_objects(self, inlet_list, inlet_blocks, mixed_block):
"""
Adds Port objects if required.
Args:
a list of inlet StateBlock objects
a mixed state StateBlock object
Returns:
None
"""
if self.config.construct_ports is True:
# Add ports
for p in inlet_list:
i_state = getattr(self, p + "_state")
self.add_port(name=p, block=i_state, doc="Inlet Port")
self.add_port(name="outlet", block=mixed_block, doc="Outlet Port")
[docs]
def model_check(blk):
"""
This method executes the model_check methods on the associated state
blocks (if they exist). This method is generally called by a unit model
as part of the unit's model_check method.
Args:
None
Returns:
None
"""
# Try property block model check
for t in blk.flowsheet().time:
try:
inlet_list = blk.create_inlet_list()
for i in inlet_list:
i_block = getattr(blk, i + "_state")
i_block[t].model_check()
except AttributeError:
_log.warning(
"{} Mixer inlet property block has no model "
"checks. To correct this, add a model_check "
"method to the associated StateBlock class.".format(blk.name)
)
try:
if blk.config.mixed_state_block is None:
blk.mixed_state[t].model_check()
else:
blk.config.mixed_state_block.model_check()
except AttributeError:
_log.warning(
"{} Mixer outlet property block has no "
"model checks. To correct this, add a "
"model_check method to the associated "
"StateBlock class.".format(blk.name)
)
[docs]
def use_minimum_inlet_pressure_constraint(self):
"""Activate the mixer pressure = minimum inlet pressure constraint and
deactivate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.
"""
if self.config.momentum_mixing_type != MomentumMixingType.minimize_and_equality:
_log.warning(
"""use_minimum_inlet_pressure_constraint() can only be used
when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality"""
)
return
self.minimum_pressure_constraint.activate()
self.pressure_equality_constraints.deactivate()
[docs]
def use_equal_pressure_constraint(self):
"""Deactivate the mixer pressure = minimum inlet pressure constraint
and activate the mixer pressure and all inlet pressures are equal
constraints. This should only be used when momentum_mixing_type ==
MomentumMixingType.minimize_and_equality.
"""
if self.config.momentum_mixing_type != MomentumMixingType.minimize_and_equality:
_log.warning(
"""use_equal_pressure_constraint() can only be used when
momentum_mixing_type ==
MomentumMixingType.minimize_and_equality"""
)
return
self.minimum_pressure_constraint.deactivate()
self.pressure_equality_constraints.activate()
[docs]
def fix_initialization_states(self):
"""
Iterate over inlet ports and fix all variables.
For Mixers with pressure equality, we will assume that pressure has been
correctly specified and not fix pressures.
Returns:
None
"""
inlet_list = self.create_inlet_list()
for p in inlet_list:
p_obj = getattr(self, p)
# Iterate over vars
for v in p_obj.iter_vars():
if (
self.config.momentum_mixing_type == MomentumMixingType.equality
or self.config.momentum_mixing_type
== MomentumMixingType.minimize_and_equality
) and v.local_name == "pressure":
# Don't fix pressure in cases where pressure equality is specified
continue
else:
v.fix()
[docs]
def initialize_build(
blk, outlvl=idaeslog.NOTSET, optarg=None, solver=None, hold_state=False
):
"""
Initialization routine for mixer.
Keyword Arguments:
outlvl : sets output level of initialization routine
optarg : solver options dictionary object (default=None, use
default solver options)
solver : str indicating which solver to use during
initialization (default = None, use default solver)
hold_state : flag indicating whether the initialization routine
should unfix any state variables fixed during
initialization, **default** - False. **Valid values:**
**True** - states variables are not unfixed, and a dict of
returned containing flags for which states were fixed
during initialization, **False** - state variables are
unfixed after initialization by calling the release_state
method.
Returns:
If hold_states is True, returns a dict containing flags for which
states were fixed during initialization.
"""
init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit")
solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit")
# Create solver
opt = get_solver(solver, optarg)
# Initialize inlet state blocks
flags = {}
inlet_list = blk.create_inlet_list()
i_block_list = []
for i in inlet_list:
i_block = getattr(blk, i + "_state")
i_block_list.append(i_block)
flags[i] = {}
flags[i] = i_block.initialize(
outlvl=outlvl,
optarg=optarg,
solver=solver,
hold_state=True,
)
# Initialize mixed state block
if blk.config.mixed_state_block is None:
mblock = blk.mixed_state
else:
mblock = blk.config.mixed_state_block
o_flags = {}
# Calculate initial guesses for mixed stream state
for t in blk.flowsheet().time:
# Iterate over state vars as defined by property package
s_vars = mblock[t].define_state_vars()
for s in s_vars:
i_vars = []
for k in s_vars[s]:
# Record whether variable was fixed or not
o_flags[t, s, k] = s_vars[s][k].fixed
# If fixed, use current value
# otherwise calculate guess from mixed state
if not s_vars[s][k].fixed:
for ib in i_block_list:
i_vars.append(getattr(ib[t], s_vars[s].local_name))
if s == "pressure":
# If pressure, use minimum as initial guess
mblock[t].pressure.value = min(
i_block_list[i][t].pressure.value
for i in range(len(i_block_list))
)
elif "flow" in s:
# If a "flow" variable (i.e. extensive), sum inlets
for k in s_vars[s]:
s_vars[s][k].value = sum(
i_vars[i][k].value for i in range(len(i_block_list))
)
else:
# Otherwise use average of inlets
for k in s_vars[s]:
s_vars[s][k].value = sum(
i_vars[i][k].value for i in range(len(i_block_list))
) / len(i_block_list)
mblock.initialize(
outlvl=outlvl,
optarg=optarg,
solver=solver,
hold_state=False,
)
res = None
# Revert fixed status of variables to what they were before
for t in blk.flowsheet().time:
s_vars = mblock[t].define_state_vars()
for s in s_vars:
for k in s_vars[s]:
s_vars[s][k].fixed = o_flags[t, s, k]
if blk.config.mixed_state_block is None:
if (
hasattr(blk, "pressure_equality_constraints")
and blk.pressure_equality_constraints.active is True
):
blk.pressure_equality_constraints.deactivate()
for t in blk.flowsheet().time:
sys_press = getattr(blk, blk.create_inlet_list()[0] + "_state")[
t
].pressure
blk.mixed_state[t].pressure.fix(sys_press.value)
with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
res = opt.solve(blk, tee=slc.tee)
blk.pressure_equality_constraints.activate()
for t in blk.flowsheet().time:
blk.mixed_state[t].pressure.unfix()
else:
with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc:
res = opt.solve(blk, tee=slc.tee)
init_log.info("Initialization Complete: {}".format(idaeslog.condition(res)))
else:
init_log.info("Initialization Complete.")
if res is not None and not check_optimal_termination(res):
raise InitializationError(
f"{blk.name} failed to initialize successfully. Please check "
f"the output logs for more information."
)
if hold_state is True:
return flags
else:
blk.release_state(flags, outlvl=outlvl)
[docs]
def release_state(blk, flags, outlvl=idaeslog.NOTSET):
"""
Method to release state variables fixed during initialization.
Keyword Arguments:
flags : dict containing information of which state variables
were fixed during initialization, and should now be
unfixed. This dict is returned by initialize if
hold_state = True.
outlvl : sets output level of logging
Returns:
None
"""
inlet_list = blk.create_inlet_list()
for i in inlet_list:
i_block = getattr(blk, i + "_state")
i_block.release_state(flags[i], outlvl=outlvl)
def _get_stream_table_contents(self, time_point=0):
io_dict = {}
inlet_list = self.create_inlet_list()
for i in inlet_list:
io_dict[i] = getattr(self, i + "_state")
if self.config.mixed_state_block is None:
io_dict["Outlet"] = self.mixed_state
else:
io_dict["Outlet"] = self.config.mixed_state_block
return create_stream_table_dataframe(io_dict, time_point=time_point)
def calculate_scaling_factors(self):
super().calculate_scaling_factors()
mb_type = self.config.material_balance_type
if mb_type == MaterialBalanceType.useDefault:
t_ref = self.flowsheet().time.first()
mb_type = self.mixed_state[t_ref].default_material_balance_type()
if hasattr(self, "pressure_equality_constraints"):
for (t, i), c in self.pressure_equality_constraints.items():
s = iscale.get_scaling_factor(
self.mixed_state[t].pressure, default=1, warning=True
)
iscale.constraint_scaling_transform(c, s)
if hasattr(self, "minimum_pressure"):
for (t, i), v in self.minimum_pressure.items():
s = iscale.get_scaling_factor(
self.mixed_state[t].pressure, default=1, warning=True
)
iscale.set_scaling_factor(v, s)
if hasattr(self, "minimum_pressure_constraint"):
for (t, i), c in self.minimum_pressure_constraint.items():
s = iscale.get_scaling_factor(
self.mixed_state[t].pressure, default=1, warning=True
)
iscale.constraint_scaling_transform(c, s)
if hasattr(self, "mixture_pressure"):
for t, c in self.mixture_pressure.items():
s = iscale.get_scaling_factor(
self.mixed_state[t].pressure, default=1, warning=True
)
iscale.constraint_scaling_transform(c, s)
if hasattr(self, "material_mixing_equations"):
if mb_type == MaterialBalanceType.componentPhase:
for (t, p, j), c in self.material_mixing_equations.items():
flow_term = self.mixed_state[t].get_material_flow_terms(p, j)
s = iscale.get_scaling_factor(flow_term, default=1)
iscale.constraint_scaling_transform(c, s, overwrite=False)
elif mb_type == MaterialBalanceType.componentTotal:
for (t, j), c in self.material_mixing_equations.items():
for i, p in enumerate(self.mixed_state.phase_list):
try:
ft = self.mixed_state[t].get_material_flow_terms(p, j)
except (KeyError, AttributeError):
continue # component not in phase
if i == 0:
s = iscale.get_scaling_factor(ft, default=1)
else:
_s = iscale.get_scaling_factor(ft, default=1)
s = _s if _s < s else s
iscale.constraint_scaling_transform(c, s, overwrite=False)
elif mb_type == MaterialBalanceType.total:
pc_set = self.mixed_state.phase_component_set
for t, c in self.material_mixing_equations.items():
for i, (p, j) in enumerate(pc_set):
ft = self.mixed_state[t].get_material_flow_terms(p, j)
if i == 0:
s = iscale.get_scaling_factor(ft, default=1)
else:
_s = iscale.get_scaling_factor(ft, default=1)
s = _s if _s < s else s
iscale.constraint_scaling_transform(c, s, overwrite=False)
if hasattr(self, "enthalpy_mixing_equations"):
def scale_gen(t):
for p in self.mixed_state[t].phase_list:
yield self.mixed_state[t].get_enthalpy_flow_terms(p)
for t, c in self.enthalpy_mixing_equations.items():
s = iscale.min_scaling_factor(scale_gen(t), default=1)
iscale.constraint_scaling_transform(c, s, overwrite=False)