Source code for idaes.models.unit_models.mixer

#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2024 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved.  Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
General purpose mixer block for IDAES models
"""
from enum import Enum

from pyomo.environ import (
    Block,
    check_optimal_termination,
    Constraint,
    Param,
    PositiveReals,
    Reals,
    RangeSet,
    Var,
)
from pyomo.common.config import ConfigBlock, ConfigValue, In, ListOf, Bool

from idaes.core import (
    declare_process_block_class,
    UnitModelBlockData,
    useDefault,
    MaterialBalanceType,
    MaterialFlowBasis,
)
from idaes.core.util.config import (
    is_physical_parameter_block,
    is_state_block,
)
from idaes.core.util.exceptions import (
    BurntToast,
    ConfigurationError,
    PropertyNotSupportedError,
    InitializationError,
)
from idaes.core.util.math import smooth_min
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.core.util.scaling as iscale
from idaes.core.solvers import get_solver
from idaes.core.initialization import ModularInitializerBase

import idaes.logger as idaeslog

__author__ = "Andrew Lee"


# Set up logger
_log = idaeslog.getLogger(__name__)


# Enumerate options for balances
class MixingType(Enum):
    """
    Enum of supported mixing types.
    """

    none = 0
    extensive = 1


class MomentumMixingType(Enum):
    """
    Enum of supported approaches to pressure mixing.
    """

    none = 0
    minimize = 1
    equality = 2
    minimize_and_equality = 3


[docs] class MixerInitializer(ModularInitializerBase): """ Hierarchical Initializer for Mixer blocks. """
[docs] def initialization_routine( self, model: Block, ): """ Initialization routine for Mixer Blocks. This routine starts by initializing each of the inlet streams, then uses those results to estimate the outlet state before solving the full model. Args: model: model to be initialized Returns: Pyomo solver status object """ init_log = idaeslog.getInitLogger( model.name, self.get_output_level(), tag="unit" ) solve_log = idaeslog.getSolveLogger( model.name, self.get_output_level(), tag="unit" ) # Create solver solver = self._get_solver() # Initialize inlet state blocks inlet_list = model.create_inlet_list() i_block_list = [] for i in inlet_list: i_block = getattr(model, i + "_state") i_block_list.append(i_block) # Get initializer for inlet iinit = self.get_submodel_initializer(i_block) iinit.initialize(i_block) # Initialize mixed state block if model.config.mixed_state_block is None: mblock = model.mixed_state else: mblock = model.config.mixed_state_block # Calculate initial guesses for mixed stream state for t in model.flowsheet().time: # Iterate over state vars as defined by property package s_vars = mblock[t].define_state_vars() for s in s_vars: i_vars = [] for k in s_vars[s]: # If fixed, use current value # otherwise calculate guess from mixed state if not s_vars[s][k].fixed: for ib in i_block_list: i_vars.append(getattr(ib[t], s_vars[s].local_name)) if s == "pressure": # If pressure, use minimum as initial guess mblock[t].pressure.set_value( min( i_block_list[i][t].pressure.value for i in range(len(i_block_list)) ) ) elif "flow" in s: # If a "flow" variable (i.e. extensive), sum inlets for k in s_vars[s]: s_vars[s][k].set_value( sum( i_vars[i][k].value for i in range(len(i_block_list)) ) ) else: # Otherwise use average of inlets for k in s_vars[s]: s_vars[s][k].set_value( sum( i_vars[i][k].value for i in range(len(i_block_list)) ) / len(i_block_list) ) # Get initializer for mixed block minit = self.get_submodel_initializer(mblock) minit.initialize(mblock) res = None if model.config.mixed_state_block is None: if ( hasattr(model, "pressure_equality_constraints") and model.pressure_equality_constraints.active is True ): model.pressure_equality_constraints.deactivate() for t in model.flowsheet().time: sys_press = getattr(model, model.create_inlet_list()[0] + "_state")[ t ].pressure model.mixed_state[t].pressure.fix(sys_press.value) with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = solver.solve(model, tee=slc.tee) model.pressure_equality_constraints.activate() for t in model.flowsheet().time: model.mixed_state[t].pressure.unfix() else: with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = solver.solve(model, tee=slc.tee) init_log.info("Initialization Complete: {}".format(idaeslog.condition(res))) else: init_log.info("Initialization Complete.") return res
[docs] @declare_process_block_class("Mixer") class MixerData(UnitModelBlockData): """ This is a general purpose model for a Mixer block with the IDAES modeling framework. This block can be used either as a stand-alone Mixer unit operation, or as a sub-model within another unit operation. This model creates a number of StateBlocks to represent the incoming streams, then writes a set of phase-component material balances, an overall enthalpy balance and a momentum balance (2 options) linked to a mixed-state StateBlock. The mixed-state StateBlock can either be specified by the user (allowing use as a sub-model), or created by the Mixer. When being used as a sub-model, Mixer should only be used when a set of new StateBlocks are required for the streams to be mixed. It should not be used to mix streams from multiple ControlVolumes in a single unit model - in these cases the unit model developer should write their own mixing equations. """ default_initializer = MixerInitializer CONFIG = ConfigBlock() CONFIG.declare( "dynamic", ConfigValue( domain=In([False]), default=False, description="Dynamic model flag - must be False", doc="""Indicates whether this model will be dynamic or not, **default** = False. Mixer blocks are always steady-state.""", ), ) CONFIG.declare( "has_holdup", ConfigValue( default=False, domain=In([False]), description="Holdup construction flag - must be False", doc="""Mixer blocks do not contain holdup, thus this must be False.""", ), ) CONFIG.declare( "property_package", ConfigValue( default=useDefault, domain=is_physical_parameter_block, description="Property package to use for mixer", doc="""Property parameter object used to define property calculations, **default** - useDefault. **Valid values:** { **useDefault** - use default package from parent model or flowsheet, **PropertyParameterObject** - a PropertyParameterBlock object.}""", ), ) CONFIG.declare( "property_package_args", ConfigBlock( implicit=True, description="Arguments to use for constructing property packages", doc="""A ConfigBlock with arguments to be passed to a property block(s) and used when constructing these, **default** - None. **Valid values:** { see property package for documentation.}""", ), ) CONFIG.declare( "inlet_list", ConfigValue( domain=ListOf(str), description="List of inlet names", doc="""A list containing names of inlets, **default** - None. **Valid values:** { **None** - use num_inlets argument, **list** - a list of names to use for inlets.}""", ), ) CONFIG.declare( "num_inlets", ConfigValue( domain=int, description="Number of inlets to unit", doc="""Argument indicating number (int) of inlets to construct, not used if inlet_list arg is provided, **default** - None. **Valid values:** { **None** - use inlet_list arg instead, or default to 2 if neither argument provided, **int** - number of inlets to create (will be named with sequential integers from 1 to num_inlets).}""", ), ) CONFIG.declare( "material_balance_type", ConfigValue( default=MaterialBalanceType.useDefault, domain=In(MaterialBalanceType), description="Material balance construction flag", doc="""Indicates what type of mass balance should be constructed, **default** - MaterialBalanceType.useDefault. **Valid values:** { **MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none** - exclude material balances, **MaterialBalanceType.componentPhase** - use phase component balances, **MaterialBalanceType.componentTotal** - use total component balances, **MaterialBalanceType.elementTotal** - use total element balances, **MaterialBalanceType.total** - use total material balance.}""", ), ) CONFIG.declare( "has_phase_equilibrium", ConfigValue( default=False, domain=Bool, description="Calculate phase equilibrium in mixed stream", doc="""Argument indicating whether phase equilibrium should be calculated for the resulting mixed stream, **default** - False. **Valid values:** { **True** - calculate phase equilibrium in mixed stream, **False** - do not calculate equilibrium in mixed stream.}""", ), ) CONFIG.declare( "energy_mixing_type", ConfigValue( default=MixingType.extensive, domain=MixingType, description="Method to use when mixing energy flows", doc="""Argument indicating what method to use when mixing energy flows of incoming streams, **default** - MixingType.extensive. **Valid values:** { **MixingType.none** - do not include energy mixing equations, **MixingType.extensive** - mix total enthalpy flows of each phase.}""", ), ) CONFIG.declare( "momentum_mixing_type", ConfigValue( default=MomentumMixingType.minimize, domain=MomentumMixingType, description="Method to use when mixing momentum/pressure", doc="""Argument indicating what method to use when mixing momentum/ pressure of incoming streams, **default** - MomentumMixingType.minimize. **Valid values:** { **MomentumMixingType.none** - do not include momentum mixing equations, **MomentumMixingType.minimize** - mixed stream has pressure equal to the minimimum pressure of the incoming streams (uses smoothMin operator), **MomentumMixingType.equality** - enforces equality of pressure in mixed and all incoming streams., **MomentumMixingType.minimize_and_equality** - add constraints for pressure equal to the minimum pressure of the inlets and constraints for equality of pressure in mixed and all incoming streams. When the model is initially built, the equality constraints are deactivated. This option is useful for switching between flow and pressure driven simulations.}""", ), ) CONFIG.declare( "mixed_state_block", ConfigValue( default=None, domain=is_state_block, description="Existing StateBlock to use as mixed stream", doc="""An existing state block to use as the outlet stream from the Mixer block, **default** - None. **Valid values:** { **None** - create a new StateBlock for the mixed stream, **StateBlock** - a StateBock to use as the destination for the mixed stream.} """, ), ) CONFIG.declare( "construct_ports", ConfigValue( default=True, domain=Bool, description="Construct inlet and outlet Port objects", doc="""Argument indicating whether model should construct Port objects linked to all inlet states and the mixed state, **default** - True. **Valid values:** { **True** - construct Ports for all states, **False** - do not construct Ports.""", ), )
[docs] def build(self): """ General build method for MixerData. This method calls a number of sub-methods which automate the construction of expected attributes of unit models. Inheriting models should call `super().build`. Args: None Returns: None """ # Call super.build() super(MixerData, self).build() # Call setup methods from ControlVolumeBlockData self._get_property_package() self._get_indexing_sets() # Create list of inlet names inlet_list = self.create_inlet_list() # Build StateBlocks inlet_blocks = self.add_inlet_state_blocks(inlet_list) if self.config.mixed_state_block is None: mixed_block = self.add_mixed_state_block() else: mixed_block = self.get_mixed_state_block() mb_type = self.config.material_balance_type if mb_type == MaterialBalanceType.useDefault: t_ref = self.flowsheet().time.first() mb_type = mixed_block[t_ref].default_material_balance_type() if mb_type != MaterialBalanceType.none: self.add_material_mixing_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block, mb_type=mb_type ) else: raise BurntToast( "{} received unrecognised value for " "material_mixing_type argument. This " "should not occur, so please contact " "the IDAES developers with this bug.".format(self.name) ) if self.config.energy_mixing_type == MixingType.extensive: self.add_energy_mixing_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block ) elif self.config.energy_mixing_type == MixingType.none: pass else: raise ConfigurationError( "{} received unrecognised value for " "material_mixing_type argument. This " "should not occur, so please contact " "the IDAES developers with this bug.".format(self.name) ) # Add to try/expect to catch cases where pressure is not supported # by properties. try: if self.config.momentum_mixing_type == MomentumMixingType.minimize: self.add_pressure_minimization_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block ) elif self.config.momentum_mixing_type == MomentumMixingType.equality: self.add_pressure_equality_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block ) elif ( self.config.momentum_mixing_type == MomentumMixingType.minimize_and_equality ): self.add_pressure_minimization_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block ) self.add_pressure_equality_equations( inlet_blocks=inlet_blocks, mixed_block=mixed_block ) self.pressure_equality_constraints.deactivate() elif self.config.momentum_mixing_type == MomentumMixingType.none: pass else: raise ConfigurationError( "{} received unrecognised value for " "momentum_mixing_type argument. This " "should not occur, so please contact " "the IDAES developers with this bug.".format(self.name) ) except PropertyNotSupportedError: raise PropertyNotSupportedError( "{} The property package supplied for this unit does not " "appear to support pressure, which is required for momentum " "mixing. Please set momentum_mixing_type to " "MomentumMixingType.none or provide a property package which " "supports pressure.".format(self.name) ) self.add_port_objects(inlet_list, inlet_blocks, mixed_block)
[docs] def create_inlet_list(self): """ Create list of inlet stream names based on config arguments. Returns: list of strings """ if self.config.inlet_list is not None and self.config.num_inlets is not None: # If both arguments provided and not consistent, raise Exception if len(self.config.inlet_list) != self.config.num_inlets: raise ConfigurationError( "{} Mixer provided with both inlet_list and " "num_inlets arguments, which were not consistent (" "length of inlet_list was not equal to num_inlets). " "PLease check your arguments for consistency, and " "note that it is only necessary to provide one of " "these arguments.".format(self.name) ) elif self.config.inlet_list is None and self.config.num_inlets is None: # If no arguments provided for inlets, default to num_inlets = 2 self.config.num_inlets = 2 # Create a list of names for inlet StateBlocks if self.config.inlet_list is not None: inlet_list = self.config.inlet_list else: inlet_list = [ "inlet_" + str(n) for n in range(1, self.config.num_inlets + 1) ] return inlet_list
[docs] def add_inlet_state_blocks(self, inlet_list): """ Construct StateBlocks for all inlet streams. Args: list of strings to use as StateBlock names Returns: list of StateBlocks """ # Setup StateBlock argument dict tmp_dict = dict(**self.config.property_package_args) tmp_dict["has_phase_equilibrium"] = False tmp_dict["defined_state"] = True # Create empty list to hold StateBlocks for return inlet_blocks = [] # Create an instance of StateBlock for all inlets for i in inlet_list: i_obj = self.config.property_package.build_state_block( self.flowsheet().time, doc="Material properties at inlet", **tmp_dict ) setattr(self, i + "_state", i_obj) inlet_blocks.append(getattr(self, i + "_state")) return inlet_blocks
[docs] def add_mixed_state_block(self): """ Constructs StateBlock to represent mixed stream. Returns: New StateBlock object """ # Setup StateBlock argument dict tmp_dict = dict(**self.config.property_package_args) tmp_dict["has_phase_equilibrium"] = self.config.has_phase_equilibrium tmp_dict["defined_state"] = False self.mixed_state = self.config.property_package.build_state_block( self.flowsheet().time, doc="Material properties of mixed stream", **tmp_dict ) return self.mixed_state
[docs] def get_mixed_state_block(self): """ Validates StateBlock provided in user arguments for mixed stream. Returns: The user-provided StateBlock or an Exception """ # Sanity check to make sure method is not called when arg missing if self.config.mixed_state_block is None: raise BurntToast( "{} get_mixed_state_block method called when " "mixed_state_block argument is None. This should " "not happen.".format(self.name) ) # Check that the user-provided StateBlock uses the same prop pack if ( self.config.mixed_state_block[ self.flowsheet().time.first() ].config.parameters != self.config.property_package ): raise ConfigurationError( "{} StateBlock provided in mixed_state_block argument " "does not come from the same property package as " "provided in the property_package argument. All " "StateBlocks within a Mixer must use the same " "property package.".format(self.name) ) return self.config.mixed_state_block
[docs] def add_material_mixing_equations(self, inlet_blocks, mixed_block, mb_type): """ Add material mixing equations. """ pp = self.config.property_package # Get phase component list(s) pc_set = mixed_block.phase_component_set # Get units metadata units = pp.get_metadata() flow_basis = mixed_block[ self.flowsheet().time.first() ].get_material_flow_basis() if flow_basis == MaterialFlowBasis.molar: flow_units = units.get_derived_units("flow_mole") elif flow_basis == MaterialFlowBasis.mass: flow_units = units.get_derived_units("flow_mass") else: # Let this pass for now with no units flow_units = None if mixed_block.include_inherent_reactions: if mb_type == MaterialBalanceType.total: raise ConfigurationError( "Cannot do total flow mixing with inherent reaction; " "problem is under-constrained. Please use a different " "mixing type." ) # Add extents of reaction and stoichiometric constraints self.inherent_reaction_extent = Var( self.flowsheet().time, mixed_block.params.inherent_reaction_idx, domain=Reals, initialize=0.0, doc="Extent of inherent reactions in outlet", units=flow_units, ) self.inherent_reaction_generation = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=0.0, doc="Generation due to inherent reactions in outlet", units=flow_units, ) @self.Constraint( self.flowsheet().time, pc_set, ) def inherent_reaction_constraint(b, t, p, j): if (p, j) in pc_set: return b.inherent_reaction_generation[t, p, j] == ( sum( mixed_block[t].params.inherent_reaction_stoichiometry[ r, p, j ] * self.inherent_reaction_extent[t, r] for r in mixed_block[t].params.inherent_reaction_idx ) ) return Constraint.Skip if mb_type == MaterialBalanceType.componentPhase: # Create equilibrium generation term and constraints if required if self.config.has_phase_equilibrium is True: try: self.phase_equilibrium_generation = Var( self.flowsheet().time, pp.phase_equilibrium_idx, domain=Reals, doc="Amount of generation in unit by phase equilibria", units=flow_units, ) except AttributeError: raise PropertyNotSupportedError( "{} Property package does not contain a list of phase " "equilibrium reactions (phase_equilibrium_idx), " "thus does not support phase equilibrium.".format(self.name) ) # Write phase-component balances @self.Constraint( self.flowsheet().time, pc_set, doc="Material mixing equations", ) def material_mixing_equations(b, t, p, j): rhs = sum( inlet_blocks[i][t].get_material_flow_terms(p, j) for i in range(len(inlet_blocks)) ) - mixed_block[t].get_material_flow_terms(p, j) if self.config.has_phase_equilibrium: rhs += sum( b.phase_equilibrium_generation[t, r] for r in pp.phase_equilibrium_idx if pp.phase_equilibrium_list[r][0] == j and pp.phase_equilibrium_list[r][1][0] == p ) - sum( b.phase_equilibrium_generation[t, r] for r in pp.phase_equilibrium_idx if pp.phase_equilibrium_list[r][0] == j and pp.phase_equilibrium_list[r][1][1] == p ) if mixed_block.include_inherent_reactions: rhs += b.inherent_reaction_generation[t, p, j] return 0 == rhs elif mb_type == MaterialBalanceType.componentTotal: # Write phase-component balances @self.Constraint( self.flowsheet().time, mixed_block.component_list, doc="Material mixing equations", ) def material_mixing_equations(b, t, j): rhs = sum( sum( inlet_blocks[i][t].get_material_flow_terms(p, j) for i in range(len(inlet_blocks)) ) - mixed_block[t].get_material_flow_terms(p, j) for p in mixed_block.phase_list if (p, j) in pc_set ) if mixed_block.include_inherent_reactions: rhs += sum( b.inherent_reaction_generation[t, p, j] for p in mixed_block.phase_list if (p, j) in pc_set ) return 0 == rhs elif mb_type == MaterialBalanceType.total: # Write phase-component balances @self.Constraint(self.flowsheet().time, doc="Material mixing equations") def material_mixing_equations(b, t): rhs = sum( sum( sum( inlet_blocks[i][t].get_material_flow_terms(p, j) for i in range(len(inlet_blocks)) ) - mixed_block[t].get_material_flow_terms(p, j) for j in mixed_block.component_list if (p, j) in pc_set ) for p in mixed_block.phase_list ) return 0 == rhs elif mb_type == MaterialBalanceType.elementTotal: raise ConfigurationError( "{} Mixers do not support elemental " "material balances.".format(self.name) ) elif mb_type == MaterialBalanceType.none: pass else: raise BurntToast( "{} Mixer received unrecognised value for " "material_balance_type. This should not happen, " "please report this bug to the IDAES developers.".format(self.name) )
[docs] def add_energy_mixing_equations(self, inlet_blocks, mixed_block): """ Add energy mixing equations (total enthalpy balance). """ @self.Constraint(self.flowsheet().time, doc="Energy balances") def enthalpy_mixing_equations(b, t): return 0 == ( sum( sum( inlet_blocks[i][t].get_enthalpy_flow_terms(p) for p in mixed_block.phase_list ) for i in range(len(inlet_blocks)) ) - sum( mixed_block[t].get_enthalpy_flow_terms(p) for p in mixed_block.phase_list ) )
[docs] def add_pressure_minimization_equations(self, inlet_blocks, mixed_block): """ Add pressure minimization equations. This is done by sequential comparisons of each inlet to the minimum pressure so far, using the IDAES smooth minimum function. """ if not hasattr(self, "inlet_idx"): self.inlet_idx = RangeSet(len(inlet_blocks)) # Get units metadata units = mixed_block.params.get_metadata() # Add variables self.minimum_pressure = Var( self.flowsheet().time, self.inlet_idx, doc="Variable for calculating minimum inlet pressure", units=units.get_derived_units("pressure"), ) self.eps_pressure = Param( mutable=True, initialize=1e-3, domain=PositiveReals, doc="Smoothing term for minimum inlet pressure", units=units.get_derived_units("pressure"), ) # Calculate minimum inlet pressure @self.Constraint( self.flowsheet().time, self.inlet_idx, doc="Calculation for minimum inlet pressure", ) def minimum_pressure_constraint(b, t, i): if i == self.inlet_idx.first(): return self.minimum_pressure[t, i] == (inlet_blocks[i - 1][t].pressure) else: return self.minimum_pressure[t, i] == ( smooth_min( self.minimum_pressure[t, i - 1], inlet_blocks[i - 1][t].pressure, self.eps_pressure, ) ) # Set inlet pressure to minimum pressure @self.Constraint(self.flowsheet().time, doc="Link pressure to control volume") def mixture_pressure(b, t): return mixed_block[t].pressure == ( self.minimum_pressure[t, self.inlet_idx.last()] )
[docs] def add_pressure_equality_equations(self, inlet_blocks, mixed_block): """ Add pressure equality equations. Note that this writes a number of constraints equal to the number of inlets, enforcing equality between all inlets and the mixed stream. """ if not hasattr(self, "inlet_idx"): self.inlet_idx = RangeSet(len(inlet_blocks)) # Create equality constraints @self.Constraint( self.flowsheet().time, self.inlet_idx, doc="Calculation for minimum inlet pressure", ) def pressure_equality_constraints(b, t, i): return mixed_block[t].pressure == inlet_blocks[i - 1][t].pressure
[docs] def add_port_objects(self, inlet_list, inlet_blocks, mixed_block): """ Adds Port objects if required. Args: a list of inlet StateBlock objects a mixed state StateBlock object Returns: None """ if self.config.construct_ports is True: # Add ports for p in inlet_list: i_state = getattr(self, p + "_state") self.add_port(name=p, block=i_state, doc="Inlet Port") self.add_port(name="outlet", block=mixed_block, doc="Outlet Port")
[docs] def model_check(blk): """ This method executes the model_check methods on the associated state blocks (if they exist). This method is generally called by a unit model as part of the unit's model_check method. Args: None Returns: None """ # Try property block model check for t in blk.flowsheet().time: try: inlet_list = blk.create_inlet_list() for i in inlet_list: i_block = getattr(blk, i + "_state") i_block[t].model_check() except AttributeError: _log.warning( "{} Mixer inlet property block has no model " "checks. To correct this, add a model_check " "method to the associated StateBlock class.".format(blk.name) ) try: if blk.config.mixed_state_block is None: blk.mixed_state[t].model_check() else: blk.config.mixed_state_block.model_check() except AttributeError: _log.warning( "{} Mixer outlet property block has no " "model checks. To correct this, add a " "model_check method to the associated " "StateBlock class.".format(blk.name) )
[docs] def use_minimum_inlet_pressure_constraint(self): """Activate the mixer pressure = minimum inlet pressure constraint and deactivate the mixer pressure and all inlet pressures are equal constraints. This should only be used when momentum_mixing_type == MomentumMixingType.minimize_and_equality. """ if self.config.momentum_mixing_type != MomentumMixingType.minimize_and_equality: _log.warning( """use_minimum_inlet_pressure_constraint() can only be used when momentum_mixing_type == MomentumMixingType.minimize_and_equality""" ) return self.minimum_pressure_constraint.activate() self.pressure_equality_constraints.deactivate()
[docs] def use_equal_pressure_constraint(self): """Deactivate the mixer pressure = minimum inlet pressure constraint and activate the mixer pressure and all inlet pressures are equal constraints. This should only be used when momentum_mixing_type == MomentumMixingType.minimize_and_equality. """ if self.config.momentum_mixing_type != MomentumMixingType.minimize_and_equality: _log.warning( """use_equal_pressure_constraint() can only be used when momentum_mixing_type == MomentumMixingType.minimize_and_equality""" ) return self.minimum_pressure_constraint.deactivate() self.pressure_equality_constraints.activate()
[docs] def fix_initialization_states(self): """ Iterate over inlet ports and fix all variables. For Mixers with pressure equality, we will assume that pressure has been correctly specified and not fix pressures. Returns: None """ inlet_list = self.create_inlet_list() for p in inlet_list: p_obj = getattr(self, p) # Iterate over vars for v in p_obj.iter_vars(): if ( self.config.momentum_mixing_type == MomentumMixingType.equality or self.config.momentum_mixing_type == MomentumMixingType.minimize_and_equality ) and v.local_name == "pressure": # Don't fix pressure in cases where pressure equality is specified continue else: v.fix()
[docs] def initialize_build( blk, outlvl=idaeslog.NOTSET, optarg=None, solver=None, hold_state=False ): """ Initialization routine for mixer. Keyword Arguments: outlvl : sets output level of initialization routine optarg : solver options dictionary object (default=None, use default solver options) solver : str indicating which solver to use during initialization (default = None, use default solver) hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization, **default** - False. **Valid values:** **True** - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization, **False** - state variables are unfixed after initialization by calling the release_state method. Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. """ init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="unit") solve_log = idaeslog.getSolveLogger(blk.name, outlvl, tag="unit") # Create solver opt = get_solver(solver, optarg) # Initialize inlet state blocks flags = {} inlet_list = blk.create_inlet_list() i_block_list = [] for i in inlet_list: i_block = getattr(blk, i + "_state") i_block_list.append(i_block) flags[i] = {} flags[i] = i_block.initialize( outlvl=outlvl, optarg=optarg, solver=solver, hold_state=True, ) # Initialize mixed state block if blk.config.mixed_state_block is None: mblock = blk.mixed_state else: mblock = blk.config.mixed_state_block o_flags = {} # Calculate initial guesses for mixed stream state for t in blk.flowsheet().time: # Iterate over state vars as defined by property package s_vars = mblock[t].define_state_vars() for s in s_vars: i_vars = [] for k in s_vars[s]: # Record whether variable was fixed or not o_flags[t, s, k] = s_vars[s][k].fixed # If fixed, use current value # otherwise calculate guess from mixed state if not s_vars[s][k].fixed: for ib in i_block_list: i_vars.append(getattr(ib[t], s_vars[s].local_name)) if s == "pressure": # If pressure, use minimum as initial guess mblock[t].pressure.value = min( i_block_list[i][t].pressure.value for i in range(len(i_block_list)) ) elif "flow" in s: # If a "flow" variable (i.e. extensive), sum inlets for k in s_vars[s]: s_vars[s][k].value = sum( i_vars[i][k].value for i in range(len(i_block_list)) ) else: # Otherwise use average of inlets for k in s_vars[s]: s_vars[s][k].value = sum( i_vars[i][k].value for i in range(len(i_block_list)) ) / len(i_block_list) mblock.initialize( outlvl=outlvl, optarg=optarg, solver=solver, hold_state=False, ) res = None # Revert fixed status of variables to what they were before for t in blk.flowsheet().time: s_vars = mblock[t].define_state_vars() for s in s_vars: for k in s_vars[s]: s_vars[s][k].fixed = o_flags[t, s, k] if blk.config.mixed_state_block is None: if ( hasattr(blk, "pressure_equality_constraints") and blk.pressure_equality_constraints.active is True ): blk.pressure_equality_constraints.deactivate() for t in blk.flowsheet().time: sys_press = getattr(blk, blk.create_inlet_list()[0] + "_state")[ t ].pressure blk.mixed_state[t].pressure.fix(sys_press.value) with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = opt.solve(blk, tee=slc.tee) blk.pressure_equality_constraints.activate() for t in blk.flowsheet().time: blk.mixed_state[t].pressure.unfix() else: with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = opt.solve(blk, tee=slc.tee) init_log.info("Initialization Complete: {}".format(idaeslog.condition(res))) else: init_log.info("Initialization Complete.") if res is not None and not check_optimal_termination(res): raise InitializationError( f"{blk.name} failed to initialize successfully. Please check " f"the output logs for more information." ) if hold_state is True: return flags else: blk.release_state(flags, outlvl=outlvl)
[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET): """ Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables were fixed during initialization, and should now be unfixed. This dict is returned by initialize if hold_state = True. outlvl : sets output level of logging Returns: None """ inlet_list = blk.create_inlet_list() for i in inlet_list: i_block = getattr(blk, i + "_state") i_block.release_state(flags[i], outlvl=outlvl)
def _get_stream_table_contents(self, time_point=0): io_dict = {} inlet_list = self.create_inlet_list() for i in inlet_list: io_dict[i] = getattr(self, i + "_state") if self.config.mixed_state_block is None: io_dict["Outlet"] = self.mixed_state else: io_dict["Outlet"] = self.config.mixed_state_block return create_stream_table_dataframe(io_dict, time_point=time_point) def calculate_scaling_factors(self): super().calculate_scaling_factors() mb_type = self.config.material_balance_type if mb_type == MaterialBalanceType.useDefault: t_ref = self.flowsheet().time.first() mb_type = self.mixed_state[t_ref].default_material_balance_type() if hasattr(self, "pressure_equality_constraints"): for (t, i), c in self.pressure_equality_constraints.items(): s = iscale.get_scaling_factor( self.mixed_state[t].pressure, default=1, warning=True ) iscale.constraint_scaling_transform(c, s) if hasattr(self, "minimum_pressure"): for (t, i), v in self.minimum_pressure.items(): s = iscale.get_scaling_factor( self.mixed_state[t].pressure, default=1, warning=True ) iscale.set_scaling_factor(v, s) if hasattr(self, "minimum_pressure_constraint"): for (t, i), c in self.minimum_pressure_constraint.items(): s = iscale.get_scaling_factor( self.mixed_state[t].pressure, default=1, warning=True ) iscale.constraint_scaling_transform(c, s) if hasattr(self, "mixture_pressure"): for t, c in self.mixture_pressure.items(): s = iscale.get_scaling_factor( self.mixed_state[t].pressure, default=1, warning=True ) iscale.constraint_scaling_transform(c, s) if hasattr(self, "material_mixing_equations"): if mb_type == MaterialBalanceType.componentPhase: for (t, p, j), c in self.material_mixing_equations.items(): flow_term = self.mixed_state[t].get_material_flow_terms(p, j) s = iscale.get_scaling_factor(flow_term, default=1) iscale.constraint_scaling_transform(c, s, overwrite=False) elif mb_type == MaterialBalanceType.componentTotal: for (t, j), c in self.material_mixing_equations.items(): for i, p in enumerate(self.mixed_state.phase_list): try: ft = self.mixed_state[t].get_material_flow_terms(p, j) except (KeyError, AttributeError): continue # component not in phase if i == 0: s = iscale.get_scaling_factor(ft, default=1) else: _s = iscale.get_scaling_factor(ft, default=1) s = _s if _s < s else s iscale.constraint_scaling_transform(c, s, overwrite=False) elif mb_type == MaterialBalanceType.total: pc_set = self.mixed_state.phase_component_set for t, c in self.material_mixing_equations.items(): for i, (p, j) in enumerate(pc_set): ft = self.mixed_state[t].get_material_flow_terms(p, j) if i == 0: s = iscale.get_scaling_factor(ft, default=1) else: _s = iscale.get_scaling_factor(ft, default=1) s = _s if _s < s else s iscale.constraint_scaling_transform(c, s, overwrite=False) if hasattr(self, "enthalpy_mixing_equations"): def scale_gen(t): for p in self.mixed_state[t].phase_list: yield self.mixed_state[t].get_enthalpy_flow_terms(p) for t, c in self.enthalpy_mixing_equations.items(): s = iscale.min_scaling_factor(scale_gen(t), default=1) iscale.constraint_scaling_transform(c, s, overwrite=False)