Source code for idaes.core.base.control_volume0d

#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2024 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved.  Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
Base class for control volumes.
"""
# TODO: Missing docstrings
# pylint: disable=missing-function-docstring

# We use some private attributes here to hide these from the user
# pylint: disable=protected-access

__author__ = "Andrew Lee"

# Import Pyomo libraries
from pyomo.environ import Constraint, Reals, units as pyunits, Var, value
from pyomo.dae import DerivativeVar
from pyomo.common.deprecation import deprecation_warning

# Import IDAES cores
from idaes.core import (
    declare_process_block_class,
    ControlVolumeBlockData,
    FlowDirection,
    MaterialFlowBasis,
    MaterialBalanceType,
)
from idaes.core.util.exceptions import (
    BalanceTypeNotSupportedError,
    BurntToast,
    ConfigurationError,
    PropertyNotSupportedError,
)
from idaes.core.util.tables import create_stream_table_dataframe
from idaes.core.util import scaling as iscale
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)

# TODO : Custom terms in material balances, other types of material balances
# TODO : Improve flexibility for get_material_flow_terms and associated


[docs] @declare_process_block_class( "ControlVolume0DBlock", doc=""" ControlVolume0DBlock is a specialized Pyomo block for IDAES non-discretized control volume blocks, and contains instances of ControlVolume0DBlockData. ControlVolume0DBlock should be used for any control volume with a defined volume and distinct inlets and outlets which does not require spatial discretization. This encompasses most basic unit models used in process modeling.""", ) class ControlVolume0DBlockData(ControlVolumeBlockData): """ 0-Dimensional (Non-Discretized) ControlVolume Class This class forms the core of all non-discretized IDAES models. It provides methods to build property and reaction blocks, and add mass, energy and momentum balances. The form of the terms used in these constraints is specified in the chosen property package. """
[docs] def add_geometry(self): """ Method to create volume Var in ControlVolume. Args: None Returns: None """ units = self.config.property_package.get_metadata().get_derived_units self.volume = Var( self.flowsheet().time, initialize=1.0, doc="Volume of material in control volume", units=units("volume"), )
[docs] def add_state_blocks( self, information_flow=FlowDirection.forward, has_phase_equilibrium=None ): """ This method constructs the inlet and outlet state blocks for the control volume. Args: information_flow: a FlowDirection Enum indicating whether information flows from inlet-to-outlet or outlet-to-inlet has_phase_equilibrium: indicates whether equilibrium calculations will be required in state blocks package_arguments: dict-like object of arguments to be passed to state blocks as construction arguments Returns: None """ if has_phase_equilibrium is None: raise ConfigurationError( "{} add_state_blocks method was not provided with a " "has_phase_equilibrium argument.".format(self.name) ) elif has_phase_equilibrium not in [True, False]: raise ConfigurationError( "{} add_state_blocks method was provided with an invalid " "has_phase_equilibrium argument. Must be True or False".format( self.name ) ) tmp_dict = dict(**self.config.property_package_args) tmp_dict["has_phase_equilibrium"] = has_phase_equilibrium # tmp_dict["parameters"] = self.config.property_package if information_flow == FlowDirection.forward: tmp_dict["defined_state"] = True elif information_flow == FlowDirection.backward: tmp_dict["defined_state"] = False else: raise ConfigurationError( "{} invalid value for information_flow argument. " "Valid values are FlowDirection.forward and " "FlowDirection.backward".format(self.name) ) self.properties_in = self.config.property_package.build_state_block( self.flowsheet().time, doc="Material properties at inlet", **tmp_dict ) # Reverse defined_state tmp_dict_2 = dict(**tmp_dict) tmp_dict_2["defined_state"] = not tmp_dict["defined_state"] self.properties_out = self.config.property_package.build_state_block( self.flowsheet().time, doc="Material properties at outlet", **tmp_dict_2 )
[docs] def add_reaction_blocks(self, has_equilibrium=None): """ This method constructs the reaction block for the control volume. Args: has_equilibrium: indicates whether equilibrium calculations will be required in reaction block package_arguments: dict-like object of arguments to be passed to reaction block as construction arguments Returns: None """ if has_equilibrium is None: raise ConfigurationError( "{} add_reaction_blocks method was not provided with a " "has_equilibrium argument.".format(self.name) ) elif has_equilibrium not in [True, False]: raise ConfigurationError( "{} add_reaction_blocks method was provided with an " "invalid has_equilibrium argument. Must be True or False".format( self.name ) ) tmp_dict = dict(**self.config.reaction_package_args) tmp_dict["state_block"] = self.properties_out tmp_dict["has_equilibrium"] = has_equilibrium self.reactions = self.config.reaction_package.build_reaction_block( self.flowsheet().time, doc="Reaction properties in control volume", **tmp_dict, )
def _add_material_balance_common( self, balance_type, has_rate_reactions, has_equilibrium_reactions, has_phase_equilibrium, has_mass_transfer, custom_molar_term, custom_mass_term, ): # Get dynamic and holdup flags from config block dynamic = self.config.dynamic has_holdup = self.config.has_holdup component_list = self.properties_in.component_list phase_list = self.properties_in.phase_list pc_set = self.properties_in.phase_component_set # Check that reaction block exists if required if has_rate_reactions or has_equilibrium_reactions: try: rblock = self.reactions except AttributeError: raise ConfigurationError( "{} does not contain a Reaction Block, but material " "balances have been set to contain reaction terms. " "Please construct a reaction block before adding " "balance equations.".format(self.name) ) if has_equilibrium_reactions: # Check that reaction block is set to calculate equilibrium for t in self.flowsheet().time: if self.reactions[t].config.has_equilibrium is False: raise ConfigurationError( "{} material balance was set to include " "equilibrium reactions, however the associated " "ReactionBlock was not set to include equilibrium " "constraints (has_equilibrium_reactions=False). " "Please correct your configuration arguments.".format(self.name) ) if has_phase_equilibrium: # First, check that phase equilibrium makes sense if len(self.config.property_package.phase_list) < 2: msg = ( "Property package has only one phase; control volume cannot include phase " "equilibrium terms. Some property packages support phase equilibrium " "implicitly in which case additional terms are not necessary. " "You should set has_phase_equilibrium=False." ) deprecation_warning( msg=msg, logger=_log, version="2.0.0", remove_in="3.0.0" ) has_phase_equilibrium = False else: # Check that state blocks are set to calculate equilibrium for t in self.flowsheet().time: if not self.properties_out[t].config.has_phase_equilibrium: raise ConfigurationError( "{} material balance was set to include phase " "equilibrium, however the associated outlet " "StateBlock was not set to include equilibrium " "constraints (has_phase_equilibrium=False). Please" " correct your configuration arguments.".format(self.name) ) if not self.properties_in[t].config.has_phase_equilibrium: raise ConfigurationError( "{} material balance was set to include phase " "equilibrium, however the associated inlet " "StateBlock was not set to include equilibrium " "constraints (has_phase_equilibrium=False). Please" " correct your configuration arguments.".format(self.name) ) # Get units from property package units = self.config.property_package.get_metadata().get_derived_units if ( self.properties_in[self.flowsheet().time.first()].get_material_flow_basis() == MaterialFlowBasis.molar ): flow_units = units("flow_mole") elif ( self.properties_in[self.flowsheet().time.first()].get_material_flow_basis() == MaterialFlowBasis.mass ): flow_units = units("flow_mass") else: flow_units = None # Get units for accumulation term if required if self.config.dynamic: f_time_units = self.flowsheet().time_units if (f_time_units is None) ^ (units("time") is None): raise ConfigurationError( "{} incompatible time unit specification between " "flowsheet and property package. Either both must use " "units, or neither.".format(self.name) ) if f_time_units is None: acc_units = None elif ( self.properties_in[ self.flowsheet().time.first() ].get_material_flow_basis() == MaterialFlowBasis.molar ): acc_units = units("amount") / f_time_units elif ( self.properties_in[ self.flowsheet().time.first() ].get_material_flow_basis() == MaterialFlowBasis.mass ): acc_units = units("mass") / f_time_units else: acc_units = None # Check if reaction package exists, and get units if hasattr(self.config, "reaction_package"): if self.config.reaction_package is not None: if ( self.reactions[ self.flowsheet().time.first() ].get_reaction_rate_basis() == MaterialFlowBasis.molar ): rxn_flow_units = units("flow_mole") elif ( self.reactions[ self.flowsheet().time.first() ].get_reaction_rate_basis() == MaterialFlowBasis.mass ): rxn_flow_units = units("flow_mass") else: # reaction basis not defined rxn_flow_units = None else: # reaction package is NoneType object rxn_flow_units = None else: # reaction package not defined rxn_flow_units = None # Test for components that must exist prior to calling this method if has_holdup: if not hasattr(self, "volume"): raise ConfigurationError( "{} control volume must have volume defined to have " "holdup and/or rate reaction terms. Please call the " "add_geometry method before adding balance equations.".format( self.name ) ) # Material holdup and accumulation if has_holdup: if ( self.properties_in[ self.flowsheet().time.first() ].get_material_flow_basis() == MaterialFlowBasis.mass ): holdup_units = units("mass") elif ( self.properties_in[ self.flowsheet().time.first() ].get_material_flow_basis() == MaterialFlowBasis.molar ): holdup_units = units("amount") else: holdup_units = None self.material_holdup = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=1.0, doc="Material holdup in control volume", units=holdup_units, ) if dynamic: self.material_accumulation = DerivativeVar( self.material_holdup, wrt=self.flowsheet().time, doc="Material accumulation in control volume", units=acc_units, ) # Create material balance terms as required # Kinetic reaction generation if has_rate_reactions: if not hasattr(self.config.reaction_package, "rate_reaction_idx"): raise PropertyNotSupportedError( "{} Reaction package does not contain a list of rate " "reactions (rate_reaction_idx), thus does not support " "rate-based reactions.".format(self.name) ) self.rate_reaction_generation = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=0.0, doc="Amount of component generated in unit by kinetic reactions", units=rxn_flow_units, ) # use reaction package flow basis # Equilibrium reaction generation if has_equilibrium_reactions: if not hasattr(self.config.reaction_package, "equilibrium_reaction_idx"): raise PropertyNotSupportedError( "{} Reaction package does not contain a list of " "equilibrium reactions (equilibrium_reaction_idx), thus " "does not support equilibrium-based reactions.".format(self.name) ) self.equilibrium_reaction_generation = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=0.0, doc="Amount of component generated in control volume " "by equilibrium reactions", units=rxn_flow_units, ) # use reaction package flow basis # Inherent reaction generation if self.properties_out.include_inherent_reactions: if not hasattr(self.config.property_package, "inherent_reaction_idx"): raise PropertyNotSupportedError( "{} Property package does not contain a list of " "inherent reactions (inherent_reaction_idx), but " "include_inherent_reactions is True.".format(self.name) ) self.inherent_reaction_generation = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=0.0, doc="Amount of component generated in control volume " "by inherent reactions", units=flow_units, ) # use property package flow basis # Phase equilibrium generation if has_phase_equilibrium and balance_type == MaterialBalanceType.componentPhase: if not hasattr(self.config.property_package, "phase_equilibrium_idx"): raise PropertyNotSupportedError( "{} Property package does not contain a list of phase " "equilibrium reactions (phase_equilibrium_idx), thus does " "not support phase equilibrium.".format(self.name) ) self.phase_equilibrium_generation = Var( self.flowsheet().time, self.config.property_package.phase_equilibrium_idx, domain=Reals, initialize=0.0, doc="Amount of generation in control volume by phase equilibria", units=flow_units, ) # use property package flow basis # Material transfer term if has_mass_transfer: self.mass_transfer_term = Var( self.flowsheet().time, pc_set, domain=Reals, initialize=0.0, doc="Component material transfer into unit", units=flow_units, ) # Create rules to substitute material balance terms # Accumulation term def accumulation_term(b, t, p, j): return ( pyunits.convert(b.material_accumulation[t, p, j], to_units=flow_units) if dynamic else 0 ) def phase_equilibrium_term(b, t, p, j): sd = {} for r in b.config.property_package.phase_equilibrium_idx: if b.config.property_package.phase_equilibrium_list[r][0] == j: if b.config.property_package.phase_equilibrium_list[r][1][0] == p: sd[r] = 1 elif b.config.property_package.phase_equilibrium_list[r][1][1] == p: sd[r] = -1 else: sd[r] = 0 else: sd[r] = 0 return sum( b.phase_equilibrium_generation[t, r] * sd[r] for r in b.config.property_package.phase_equilibrium_idx ) # TODO: Need to set material_holdup = 0 for non-present component-phase # pairs. Not ideal, but needed to close DoF. Is there a better way? # Material Holdup if has_holdup: if not hasattr(self, "phase_fraction"): self._add_phase_fractions() @self.Constraint( self.flowsheet().time, pc_set, doc="Material holdup calculations" ) def material_holdup_calculation(b, t, p, j): if (p, j) in pc_set: return b.material_holdup[t, p, j] == ( b.volume[t] * self.phase_fraction[t, p] * b.properties_out[t].get_material_density_terms(p, j) ) if has_rate_reactions: # Add extents of reaction and stoichiometric constraints self.rate_reaction_extent = Var( self.flowsheet().time, self.config.reaction_package.rate_reaction_idx, domain=Reals, initialize=0.0, doc="Extent of kinetic reactions", units=rxn_flow_units, ) # use reaction package flow basis @self.Constraint( self.flowsheet().time, pc_set, doc="Kinetic reaction stoichiometry constraint", ) def rate_reaction_stoichiometry_constraint(b, t, p, j): if (p, j) in pc_set: rparam = rblock[t].params return b.rate_reaction_generation[t, p, j] == ( sum( rparam.rate_reaction_stoichiometry[r, p, j] * b.rate_reaction_extent[t, r] for r in b.config.reaction_package.rate_reaction_idx ) ) else: return Constraint.Skip if has_equilibrium_reactions: # Add extents of reaction and stoichiometric constraints self.equilibrium_reaction_extent = Var( self.flowsheet().time, self.config.reaction_package.equilibrium_reaction_idx, domain=Reals, initialize=0.0, doc="Extent of equilibrium reactions", units=rxn_flow_units, ) # use reaction package flow basis @self.Constraint( self.flowsheet().time, pc_set, doc="Equilibrium reaction stoichiometry" ) def equilibrium_reaction_stoichiometry_constraint(b, t, p, j): if (p, j) in pc_set: return b.equilibrium_reaction_generation[t, p, j] == ( sum( rblock[t].params.equilibrium_reaction_stoichiometry[r, p, j] * b.equilibrium_reaction_extent[t, r] for r in b.config.reaction_package.equilibrium_reaction_idx ) ) else: return Constraint.Skip if self.properties_out.include_inherent_reactions: # Add extents of reaction and stoichiometric constraints self.inherent_reaction_extent = Var( self.flowsheet().time, self.config.property_package.inherent_reaction_idx, domain=Reals, initialize=0.0, doc="Extent of inherent reactions", units=flow_units, ) # use property package flow basis @self.Constraint( self.flowsheet().time, pc_set, doc="Inherent reaction stoichiometry" ) def inherent_reaction_stoichiometry_constraint(b, t, p, j): if (p, j) in pc_set: return b.inherent_reaction_generation[t, p, j] == ( sum( b.properties_out[t].params.inherent_reaction_stoichiometry[ r, p, j ] * b.inherent_reaction_extent[t, r] for r in b.config.property_package.inherent_reaction_idx ) ) else: return Constraint.Skip # Add custom terms and material balances if balance_type == MaterialBalanceType.componentPhase: def user_term_mol(b, t, p, j): flow_basis = b.properties_out[t].get_material_flow_basis() if flow_basis == MaterialFlowBasis.molar: return custom_molar_term(t, p, j) elif flow_basis == MaterialFlowBasis.mass: try: return ( custom_molar_term(t, p, j) * b.properties_out[t].mw_comp[j] ) except AttributeError: raise PropertyNotSupportedError( "{} property package does not support " "molecular weight (mw), which is required for " "using custom terms in material balances.".format(self.name) ) else: raise ConfigurationError( "{} contained a custom_molar_term argument, but " "the property package used an undefined basis " "(MaterialFlowBasis.other). Custom terms can " "only be used when the property package declares " "a molar or mass flow basis.".format(self.name) ) def user_term_mass(b, t, p, j): flow_basis = b.properties_out[t].get_material_flow_basis() if flow_basis == MaterialFlowBasis.mass: return custom_mass_term(t, p, j) elif flow_basis == MaterialFlowBasis.molar: try: return ( custom_mass_term(t, p, j) / b.properties_out[t].mw_comp[j] ) except AttributeError: raise PropertyNotSupportedError( "{} property package does not support " "molecular weight (mw), which is required for " "using custom terms in material balances.".format(self.name) ) else: raise ConfigurationError( "{} contained a custom_mass_term argument, but " "the property package used an undefined basis " "(MaterialFlowBasis.other). Custom terms can " "only be used when the property package declares " "a molar or mass flow basis.".format(self.name) ) @self.Constraint(self.flowsheet().time, pc_set, doc="Material balances") def material_balances(b, t, p, j): if (p, j) in pc_set: rhs = b.properties_in[t].get_material_flow_terms( p, j ) - b.properties_out[t].get_material_flow_terms(p, j) if has_rate_reactions: rhs += b.rate_reaction_generation[t, p, j] * b._rxn_rate_conv( t, j ) if has_equilibrium_reactions: rhs += b.equilibrium_reaction_generation[t, p, j] if b.properties_out.include_inherent_reactions: rhs += b.inherent_reaction_generation[t, p, j] if ( has_phase_equilibrium and balance_type == MaterialBalanceType.componentPhase ): rhs += phase_equilibrium_term(b, t, p, j) if has_mass_transfer: rhs += b.mass_transfer_term[t, p, j] if custom_molar_term is not None: rhs += user_term_mol(b, t, p, j) if custom_mass_term is not None: rhs += user_term_mass(b, t, p, j) return accumulation_term(b, t, p, j) == rhs else: return Constraint.Skip elif balance_type == MaterialBalanceType.componentTotal: def user_term_mol(b, t, j): flow_basis = b.properties_out[t].get_material_flow_basis() if flow_basis == MaterialFlowBasis.molar: return custom_molar_term(t, j) elif flow_basis == MaterialFlowBasis.mass: try: return custom_molar_term(t, j) * b.properties_out[t].mw_comp[j] except AttributeError: raise PropertyNotSupportedError( "{} property package does not support " "molecular weight (mw), which is required for " "using custom terms in material balances.".format(self.name) ) else: raise ConfigurationError( "{} contained a custom_molar_term argument, but " "the property package used an undefined basis " "(MaterialFlowBasis.other). Custom terms can " "only be used when the property package declares " "a molar or mass flow basis.".format(self.name) ) def user_term_mass(b, t, j): flow_basis = b.properties_out[t].get_material_flow_basis() if flow_basis == MaterialFlowBasis.mass: return custom_mass_term(t, j) elif flow_basis == MaterialFlowBasis.molar: try: return custom_mass_term(t, j) / b.properties_out[t].mw_comp[j] except AttributeError: raise PropertyNotSupportedError( "{} property package does not support " "molecular weight (mw), which is required for " "using custom terms in material balances.".format(self.name) ) else: raise ConfigurationError( "{} contained a custom_mass_term argument, but " "the property package used an undefined basis " "(MaterialFlowBasis.other). Custom terms can " "only be used when the property package declares " "a molar or mass flow basis.".format(self.name) ) @self.Constraint( self.flowsheet().time, component_list, doc="Material balances" ) def material_balances(b, t, j): cplist = [] for p in phase_list: if (p, j) in pc_set: cplist.append(p) rhs = sum( b.properties_in[t].get_material_flow_terms(p, j) for p in cplist ) - sum( b.properties_out[t].get_material_flow_terms(p, j) for p in cplist ) if has_rate_reactions: rhs += sum( b.rate_reaction_generation[t, p, j] for p in cplist ) * b._rxn_rate_conv(t, j) if has_equilibrium_reactions: rhs += sum( b.equilibrium_reaction_generation[t, p, j] for p in cplist ) if b.properties_out.include_inherent_reactions: rhs += sum(b.inherent_reaction_generation[t, p, j] for p in cplist) if has_mass_transfer: rhs += sum(b.mass_transfer_term[t, p, j] for p in cplist) if custom_molar_term is not None: rhs += user_term_mol(b, t, j) if custom_mass_term is not None: rhs += user_term_mass(b, t, j) return sum(accumulation_term(b, t, p, j) for p in cplist) == rhs else: raise BurntToast() return self.material_balances
[docs] def add_phase_component_balances( self, has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None, ): """ This method constructs a set of 0D material balances indexed by time, phase and component. Args: has_rate_reactions: whether default generation terms for rate reactions should be included in material balances has_equilibrium_reactions: whether generation terms should for chemical equilibrium reactions should be included in material balances has_phase_equilibrium: whether generation terms should for phase equilibrium behaviour should be included in material balances has_mass_transfer: whether generic mass transfer terms should be included in material balances custom_molar_term: a Pyomo Expression representing custom terms to be included in material balances on a molar basis. Expression must be indexed by time, phase list and component list custom_mass_term: a Pyomo Expression representing custom terms to be included in material balances on a mass basis. Expression must be indexed by time, phase list and component list Returns: Constraint object representing material balances """ self._add_material_balance_common( balance_type=MaterialBalanceType.componentPhase, has_rate_reactions=has_rate_reactions, has_equilibrium_reactions=has_equilibrium_reactions, has_phase_equilibrium=has_phase_equilibrium, has_mass_transfer=has_mass_transfer, custom_molar_term=custom_molar_term, custom_mass_term=custom_mass_term, ) return self.material_balances
[docs] def add_total_component_balances( self, has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_molar_term=None, custom_mass_term=None, ): """ This method constructs a set of 0D material balances indexed by time and component. Args: has_rate_reactions: whether default generation terms for rate reactions should be included in material balances has_equilibrium_reactions: whether generation terms should for chemical equilibrium reactions should be included in material balances has_phase_equilibrium: whether generation terms should for phase equilibrium behaviour should be included in material balances has_mass_transfer: whether generic mass transfer terms should be included in material balances custom_molar_term: a Pyomo Expression representing custom terms to be included in material balances on a molar basis. Expression must be indexed by time, phase list and component list custom_mass_term: a Pyomo Expression representing custom terms to be included in material balances on a mass basis. Expression must be indexed by time, phase list and component list Returns: Constraint object representing material balances """ self._add_material_balance_common( balance_type=MaterialBalanceType.componentTotal, has_rate_reactions=has_rate_reactions, has_equilibrium_reactions=has_equilibrium_reactions, has_phase_equilibrium=has_phase_equilibrium, has_mass_transfer=has_mass_transfer, custom_molar_term=custom_molar_term, custom_mass_term=custom_mass_term, ) return self.material_balances
[docs] def add_total_element_balances( self, has_rate_reactions=False, has_equilibrium_reactions=False, has_phase_equilibrium=False, has_mass_transfer=False, custom_elemental_term=None, ): """ This method constructs a set of 0D element balances indexed by time. Args: has_rate_reactions: whether default generation terms for rate reactions should be included in material balances has_equilibrium_reactions: whether generation terms should for chemical equilibrium reactions should be included in material balances has_phase_equilibrium: whether generation terms should for phase equilibrium behaviour should be included in material balances has_mass_transfer: whether generic mass transfer terms should be included in material balances custom_elemental_term: a Pyomo Expression representing custom terms to be included in material balances on a molar elemental basis. Expression must be indexed by time and element list Returns: Constraint object representing material balances """ # Get dynamic and holdup flags from config block dynamic = self.config.dynamic has_holdup = self.config.has_holdup component_list = self.properties_in.component_list phase_list = self.properties_in.phase_list phase_component_set = self.properties_in.phase_component_set # Check that property package supports element balances if not hasattr(self.config.property_package, "element_list"): raise PropertyNotSupportedError( "{} property package provided does not contain a list of " "elements (element_list), and thus does not support " "elemental material balances. Please choose another type " "of material balance or a property package which supports " "elemental balances." ) # Check for valid arguments to write total elemental balance if has_rate_reactions: raise ConfigurationError( "{} add_total_element_balances method provided with " "argument has_rate_reactions = True. Total element " "balances do not support rate based reactions, " "please correct your configuration arguments".format(self.name) ) if has_equilibrium_reactions: raise ConfigurationError( "{} add_total_element_balances method provided with " "argument has_equilibrium_reactions = True. Total element " "balances do not support equilibrium based reactions, " "please correct your configuration arguments".format(self.name) ) if has_phase_equilibrium: raise ConfigurationError( "{} add_total_element_balances method provided with " "argument has_phase_equilibrium = True. Total element " "balances do not support equilibrium based reactions, " "please correct your configuration arguments".format(self.name) ) # Test for components that must exist prior to calling this method if has_holdup: if not hasattr(self, "volume"): raise ConfigurationError( "{} control volume must have volume defined to have " "holdup terms. Please call the " "add_geometry method before adding balance equations.".format( self.name ) ) # Get units from property package units = self.config.property_package.get_metadata().get_derived_units # Get units for accumulation term if required if self.config.dynamic: f_time_units = self.flowsheet().time_units if (f_time_units is None) ^ (units("time") is None): raise ConfigurationError( "{} incompatible time unit specification between " "flowsheet and property package. Either both must use " "units, or neither.".format(self.name) ) if f_time_units is None: acc_units = None else: acc_units = units("amount") / f_time_units # Identify linearly dependent elements # It is possible for there to be linearly dependent element balances # e.g. if a single species is the only source of two different elements linearly_dependent = [] # Get a representative time point rtime = self.flowsheet().time.first() # For each component in the material, search for elements which are # unique to it for i in component_list: unique_elements = [] for e in self.config.property_package.element_list: if self.properties_out[rtime].params.element_comp[i][e] != 0: # Assume unique until shown otherwise unique = True for j in component_list: if j == i: continue # If element appears in any other component, not unique if self.properties_out[rtime].params.element_comp[j][e] != 0: unique = False if unique: unique_elements.append(e) # If more than 1 unique element, they are linearly dependent if len(unique_elements) > 1: # Add all but the first to the list of linearly dependent linearly_dependent.extend(unique_elements[1:]) # Set indexing set for element balances if len(linearly_dependent) == 0: # No linearly depednet equations, so use full element list e_index = self.config.property_package.element_list else: # Otherwise, use only non-dependent elements, and log a message _log.info_low( "{} detected linearly dependent element balance " "equations. Element balances will NOT be written " "for the following elements: {}".format(self.name, linearly_dependent) ) e_index = self.config.property_package.element_list - linearly_dependent # Add Material Balance terms if has_holdup: self.element_holdup = Var( self.flowsheet().time, self.config.property_package.element_list, domain=Reals, initialize=1.0, doc="Elemental holdup in control volume", units=units("amount"), ) if dynamic: self.element_accumulation = DerivativeVar( self.element_holdup, wrt=self.flowsheet().time, doc="Elemental accumulation in control volume", units=acc_units, ) # Method to convert mass flow basis to mole flow basis def conv_factor(b, t, j): flow_basis = b.properties_out[t].get_material_flow_basis() if flow_basis == MaterialFlowBasis.molar: return 1 elif flow_basis == MaterialFlowBasis.mass: return 1 / b.properties_out[t].mw_comp[j] else: raise BalanceTypeNotSupportedError( "{} property package MaterialFlowBasis == 'other'. Cannot " "automatically generate elemental balances.".format(self.name) ) @self.Expression( self.flowsheet().time, phase_list, self.config.property_package.element_list, doc="Inlet elemental flow terms", ) def elemental_flow_in(b, t, p, e): return sum( conv_factor(b, t, j) * b.properties_in[t].get_material_flow_terms(p, j) * b.properties_out[t].params.element_comp[j][e] for j in component_list ) @self.Expression( self.flowsheet().time, phase_list, self.config.property_package.element_list, doc="Outlet elemental flow terms", ) def elemental_flow_out(b, t, p, e): return sum( conv_factor(b, t, j) * b.properties_out[t].get_material_flow_terms(p, j) * b.properties_out[t].params.element_comp[j][e] for j in component_list ) # Create material balance terms as needed if has_mass_transfer: self.elemental_mass_transfer_term = Var( self.flowsheet().time, e_index, domain=Reals, initialize=0.0, doc="Element material transfer into unit", units=units("flow_mole"), ) # Create rules to substitute material balance terms # Accumulation term def accumulation_term(b, t, e): return ( pyunits.convert( b.element_accumulation[t, e], to_units=units("flow_mole") ) if dynamic else 0 ) # Element balances @self.Constraint( self.flowsheet().time, e_index, doc="Elemental material balances" ) def element_balances(b, t, e): rhs = sum(b.elemental_flow_in[t, p, e] for p in phase_list) - sum( b.elemental_flow_out[t, p, e] for p in phase_list ) if has_mass_transfer: rhs += b.elemental_mass_transfer_term[t, e] if custom_elemental_term is not None: rhs += custom_elemental_term(t, e) return accumulation_term(b, t, e) == rhs # Elemental Holdup if has_holdup: if not hasattr(self, "phase_fraction"): self._add_phase_fractions() @self.Constraint( self.flowsheet().time, self.config.property_package.element_list, doc="Elemental holdup calculation", ) def elemental_holdup_calculation(b, t, e): return b.element_holdup[t, e] == ( b.volume[t] * sum( conv_factor(b, t, j) * b.phase_fraction[t, p] * b.properties_out[t].get_material_density_terms(p, j) * b.properties_out[t].params.element_comp[j][e] for p, j in phase_component_set ) ) return self.element_balances
[docs] def add_total_material_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_total_material_balances (yet).".format(self.name) )
[docs] def add_total_enthalpy_balances( self, has_heat_of_reaction=False, has_heat_transfer=False, has_work_transfer=False, has_enthalpy_transfer=False, custom_term=None, ): """ This method constructs a set of 0D enthalpy balances indexed by time and phase. Args: has_heat_of_reaction: whether terms for heat of reaction should be included in enthalpy balance has_heat_transfer: whether terms for heat transfer should be included in enthalpy balances has_work_transfer: whether terms for work transfer should be included in enthalpy balances has_enthalpy_transfer: whether terms for enthalpy transfer due to mass transfer should be included in enthalpy balance. This should generally be the same as the has_mass_transfer argument in the material balance methods custom_term: a Python method which returns Pyomo expressions representing custom terms to be included in enthalpy balances. Method should accept time and phase list as arguments. Returns: Constraint object representing enthalpy balances """ # Get dynamic and holdup flags from config block dynamic = self.config.dynamic has_holdup = self.config.has_holdup phase_list = self.properties_in.phase_list # Test for components that must exist prior to calling this method if has_holdup: if not hasattr(self, "volume"): raise ConfigurationError( "{} control volume must have volume defined to have " "holdup terms. Please call the " "add_geometry method before adding balance equations.".format( self.name ) ) if has_heat_of_reaction: if not ( hasattr(self, "rate_reaction_extent") or hasattr(self, "equilibrium_reaction_extent") ): raise ConfigurationError( "{} extent of reaction terms must exist in order to " "have heat of reaction terms. Please ensure that " "add_material_balance (or equivalent) is called before" " adding energy balances.".format(self.name) ) # Get units from property package units = self.config.property_package.get_metadata().get_derived_units # Get units for accumulation term if required if self.config.dynamic: f_time_units = self.flowsheet().time_units if (f_time_units is None) ^ (units("time") is None): raise ConfigurationError( "{} incompatible time unit specification between " "flowsheet and property package. Either both must use " "units, or neither.".format(self.name) ) if f_time_units is None: acc_units = None else: acc_units = units("energy") / f_time_units # Create variables if has_holdup: self.energy_holdup = Var( self.flowsheet().time, phase_list, domain=Reals, initialize=1.0, doc="Energy holdup in control volume", units=units("energy"), ) if dynamic is True: self.energy_accumulation = DerivativeVar( self.energy_holdup, wrt=self.flowsheet().time, doc="Energy accumulation in control volume", units=acc_units, ) # Create energy balance terms as needed # Heat transfer term if has_heat_transfer: self.heat = Var( self.flowsheet().time, domain=Reals, initialize=0.0, doc="Heat transferred into control volume", units=units("power"), ) # Work transfer if has_work_transfer: self.work = Var( self.flowsheet().time, domain=Reals, initialize=0.0, doc="Work transferred into control volume", units=units("power"), ) # Enthalpy transfer if has_enthalpy_transfer: self.enthalpy_transfer = Var( self.flowsheet().time, domain=Reals, initialize=0.0, doc="Enthalpy transferred into control volume due to mass transfer", units=units("power"), ) # Heat of Reaction if has_heat_of_reaction: @self.Expression(self.flowsheet().time, doc="Heat of reaction term") def heat_of_reaction(b, t): if hasattr(self, "rate_reaction_extent"): rate_heat = -sum( b.rate_reaction_extent[t, r] * b.reactions[t].dh_rxn[r] for r in self.config.reaction_package.rate_reaction_idx ) else: rate_heat = 0 if hasattr(self, "equilibrium_reaction_extent"): equil_heat = -sum( b.equilibrium_reaction_extent[t, e] * b.reactions[t].dh_rxn[e] for e in self.config.reaction_package.equilibrium_reaction_idx ) else: equil_heat = 0 return rate_heat + equil_heat # Create rules to substitute energy balance terms # Accumulation term def accumulation_term(b, t, p): return ( pyunits.convert(b.energy_accumulation[t, p], to_units=units("power")) if dynamic else 0 ) # Energy balance equation @self.Constraint(self.flowsheet().time, doc="Energy balances") def enthalpy_balances(b, t): rhs = sum( b.properties_in[t].get_enthalpy_flow_terms(p) for p in phase_list ) - sum(b.properties_out[t].get_enthalpy_flow_terms(p) for p in phase_list) if has_heat_transfer: rhs += b.heat[t] if has_work_transfer: rhs += b.work[t] if has_enthalpy_transfer: rhs += b.enthalpy_transfer[t] if has_heat_of_reaction: rhs += b.heat_of_reaction[t] if custom_term is not None: rhs += custom_term(t) return sum(accumulation_term(b, t, p) for p in phase_list) == rhs # Energy Holdup if has_holdup: if not hasattr(self, "phase_fraction"): self._add_phase_fractions() @self.Constraint( self.flowsheet().time, phase_list, doc="Enthalpy holdup constraint" ) def energy_holdup_calculation(b, t, p): return b.energy_holdup[t, p] == ( b.volume[t] * self.phase_fraction[t, p] * b.properties_out[t].get_energy_density_terms(p) ) return self.enthalpy_balances
[docs] def add_phase_enthalpy_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_phase_enthalpy_balances.".format(self.name) )
[docs] def add_phase_energy_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_phase_energy_balances.".format(self.name) )
[docs] def add_total_energy_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_total_energy_balances.".format(self.name) )
[docs] def add_total_pressure_balances(self, has_pressure_change=False, custom_term=None): """ This method constructs a set of 0D pressure balances indexed by time. Args: has_pressure_change - whether terms for pressure change should be included in enthalpy balances custom_term - a Python method which returns Pyomo expressions representing custom terms to be included in enthalpy balances. Method should accept time as an arguments. Returns: Constraint object representing pressure balances """ # Get units from property package units = self.config.property_package.get_metadata().get_derived_units # Add Momentum Balance Variables as necessary if has_pressure_change: self.deltaP = Var( self.flowsheet().time, domain=Reals, initialize=0.0, doc="Pressure difference across unit", units=units("pressure"), ) # Momentum balance equation @self.Constraint(self.flowsheet().time, doc="Momentum balance") def pressure_balance(b, t): rhs = b.properties_in[t].pressure - b.properties_out[t].pressure if has_pressure_change: rhs += b.deltaP[t] if custom_term is not None: rhs += custom_term(t) return 0 == rhs return self.pressure_balance
[docs] def add_phase_pressure_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_phase_pressure_balances.".format(self.name) )
[docs] def add_phase_momentum_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_phase_momentum_balances.".format(self.name) )
[docs] def add_total_momentum_balances(self, *args, **kwargs): """Not Supported""" raise BalanceTypeNotSupportedError( "{} OD control volumes do not support " "add_total_momentum_balances.".format(self.name) )
[docs] def model_check(blk): """ This method executes the model_check methods on the associated state blocks (if they exist). This method is generally called by a unit model as part of the unit's model_check method. Args: None Returns: None """ # Try property block model check for t in blk.flowsheet().time: try: blk.properties_in[t].model_check() except AttributeError: _log.warning( "{} ControlVolume inlet property block has no " "model checks. To correct this, add a model_check" " method to the associated StateBlock class.".format(blk.name) ) try: blk.properties_out[t].model_check() except AttributeError: _log.warning( "{} ControlVolume outlet property block has no " "model checks. To correct this, add a " "model_check method to the associated " "StateBlock class.".format(blk.name) ) try: blk.reactions[t].model_check() except AttributeError: _log.warning( "{} ControlVolume outlet reaction block has no " "model check. To correct this, add a " "model_check method to the associated " "ReactionBlock class.".format(blk.name) )
def estimate_outlet_state(self, always_estimate=False): for t in self.flowsheet().time: self._estimate_next_state( self.properties_in[t], self.properties_out[t], index=t, always_estimate=always_estimate, )
[docs] def initialize( blk, state_args=None, outlvl=idaeslog.NOTSET, optarg=None, solver=None, hold_state=True, ): """ Initialization routine for 0D control volume. Keyword Arguments: state_args : a dict of arguments to be passed to the property package(s) to provide an initial state for initialization (see documentation of the specific property package) (default = {}). outlvl : sets output log level of initialization routine optarg : solver options dictionary object (default=None, use default solver options) solver : str indicating which solver to use during initialization (default = None) hold_state : flag indicating whether the initialization routine should unfix any state variables fixed during initialization, **default** - True. **Valid values:** **True** - states variables are not unfixed, and a dict of returned containing flags for which states were fixed during initialization, **False** - state variables are unfixed after initialization by calling the release_state method. Returns: If hold_states is True, returns a dict containing flags for which states were fixed during initialization. """ # Get inlet state if not provided init_log = idaeslog.getInitLogger(blk.name, outlvl, tag="control_volume") # Initialize state blocks in_flags = blk.properties_in.initialize( outlvl=outlvl, optarg=optarg, solver=solver, hold_state=hold_state, state_args=state_args, ) if state_args is None: # If no initial guesses provided, estimate values for states blk.estimate_outlet_state(always_estimate=True) out_flags = blk.properties_out.initialize( outlvl=outlvl, optarg=optarg, solver=solver, hold_state=True, state_args=state_args, ) try: # TODO: setting state_vars_fixed may not work for heterogeneous # systems where a second control volume is involved, as we cannot # assume those state vars are also fixed. For now, heterogeneous # reactions should ignore the state_vars_fixed argument and always # check their state_vars. blk.reactions.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_vars_fixed=True, ) except AttributeError: pass # Unfix outlet properties blk.properties_out.release_state( flags=out_flags, outlvl=outlvl, ) init_log.info("Initialization Complete") return in_flags
[docs] def release_state(blk, flags, outlvl=idaeslog.NOTSET): """ Method to release state variables fixed during initialization. Keyword Arguments: flags : dict containing information of which state variables were fixed during initialization, and should now be unfixed. This dict is returned by initialize if hold_state = True. outlvl : sets output level of logging Returns: None """ blk.properties_in.release_state(flags, outlvl=outlvl)
def _add_phase_fractions(self): """ This method constructs the phase_fraction variables for the control volume, and the associated constraint on the sum of phase_fractions == 1. For systems with only one phase, phase_fraction is created as a Pyomo Expression with a value of 1. Args: None Returns: None """ phase_list = self.properties_in.phase_list if len(phase_list) > 1: self.phase_fraction = Var( self.flowsheet().time, phase_list, initialize=1 / len(phase_list), doc="Volume fraction of holdup by phase", ) @self.Constraint(self.flowsheet().time, doc="Sum of phase fractions == 1") def sum_of_phase_fractions(self, t): return 1 == sum(self.phase_fraction[t, p] for p in phase_list) else: @self.Expression( self.flowsheet().time, phase_list, doc="Volume fraction of holdup by phase", ) def phase_fraction(self, t, p): return 1 def _rxn_rate_conv(b, t, j): """ Wrapper method for the _rxn_rate_conv method to hide the x argument required for 1D control volumes. """ # Call the method in control_volume_base with x=None return super()._rxn_rate_conv(t, None, j) def _get_performance_contents(self, time_point=0): """ Collect all CV variables which are present to report. """ var_dict = {} expr_dict = {} param_dict = {} phase_component_set = self.properties_in.phase_component_set phase_list = self.properties_in.phase_list time_only_vars = { "volume": "Volume", "heat": "Heat Transfer", "work": "Work Transfer", "deltaP": "Pressure Change", } for v, n in time_only_vars.items(): try: var_dict[n] = getattr(self, v)[time_point] except AttributeError: pass p_vars = { "phase_fraction": "Phase Fraction", "energy_holdup": "Energy Holdup", "energy_accumulation": "Energy Accumulation", } for v, n in p_vars.items(): try: var_obj = getattr(self, v) for p in phase_list: var_dict[f"{n} [{p}]"] = var_obj[time_point, p] except AttributeError: pass pc_vars = { "material_holdup": "Material Holdup", "material_accumulation": "Material Accumulation", "rate_reaction_generation": "Rate Reaction Generation", "equilibrium_reaction_generation": "Equilibrium Reaction Generation", "mass_transfer_term": "Mass Transfer Term", } for v, n in pc_vars.items(): try: var_obj = getattr(self, v) for p, j in phase_component_set: var_dict[f"{n} [{p}, {j}]"] = var_obj[time_point, p, j] except AttributeError: pass if hasattr(self, "rate_reaction_extent"): for r in self.config.reaction_package.rate_reaction_idx: var_dict[f"Rate Reaction Extent [{r}]"] = self.rate_reaction_extent[ time_point, r ] if hasattr(self, "equilibrium_reaction_extent"): for r in self.config.reaction_package.equilibrium_reaction_idx: var_dict[f"Equilibrium Reaction Extent [{r}]"] = ( self.equilibrium_reaction_extent[time_point, r] ) if hasattr(self, "phase_equilibrium_generation"): for r in self.config.property_package.phase_equilibrium_idx: var_dict[f"Phase Equilibrium Generation [{r}]"] = ( self.phase_equilibrium_generation[time_point, r] ) e_vars = { "element_holdup": "Elemental Holdup", "element_accumulation": "Elemental Accumulation", "elemental_mass_transfer_term": "Elemental Transfer Term", } for v, n in e_vars.items(): try: var_obj = getattr(self, v) for e in self.config.property_package.element_list: var_dict[f"{n} [{e}]"] = var_obj[time_point, e] except AttributeError: pass time_only_exprs = {"heat_of_reaction": "Heat of Reaction Term"} for e, n in time_only_exprs.items(): try: expr_dict[n] = getattr(self, e)[time_point] except AttributeError: pass e_exprs = { "elemental_flow_in": "Element Flow In", "elemental_flow_out": "Element Flow Out", } for o, n in e_exprs.items(): try: expr_obj = getattr(self, o) for p in phase_list: for e in self.config.property_package.element_list: expr_dict[f"{n} [{p}, {e}]"] = expr_obj[time_point, p, e] except AttributeError: pass params = {} for p, n in params.items(): try: param_dict[n] = getattr(self, p) except AttributeError: pass return {"vars": var_dict, "exprs": expr_dict, "params": param_dict} def _get_stream_table_contents(self, time_point=0): """ Assume unit has standard configuration of 1 inlet and 1 outlet. Developers should overload this as appropriate. """ try: return create_stream_table_dataframe( {"In": self.properties_in, "Out": self.properties_out}, time_point=time_point, ) except AttributeError: return ( f"Unit model {self.name} does not have the standard Port " f"names (inet and outlet). Please contact the unit model " f"developer to develop a unit specific stream table." ) def calculate_scaling_factors(self): super().calculate_scaling_factors() # If the parent component of an indexed component has a scale factor, # but some of the data objects don't, propagate the indexed component # scale factor to the missing scaling factors. iscale.propagate_indexed_component_scaling_factors(self) phase_list = self.properties_in.phase_list phase_component_set = self.properties_in.phase_component_set # Set scaling for geometry variables if hasattr(self, "volume"): for t, v in self.volume.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.volume, default=1e-2, warning=True ) iscale.set_scaling_factor(v, sf) if hasattr(self, "phase_fraction"): for v in self.phase_fraction.values(): if iscale.get_scaling_factor(v) is None: # phase fraction typically between 0.1 and 1 iscale.set_scaling_factor(v, 10) # Set scaling factors for common material balance variables if hasattr(self, "material_holdup"): for (t, p, j), v in self.material_holdup.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor(self.volume[t]) sf *= iscale.get_scaling_factor(self.phase_fraction[t, p]) sf *= iscale.get_scaling_factor( self.properties_out[t].get_material_density_terms(p, j), default=1, warning=True, ) iscale.set_scaling_factor(v, sf) if hasattr(self, "material_accumulation"): for (t, p, j), v in self.material_accumulation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.properties_out[t].get_material_flow_terms(p, j), default=1, warning=True, ) iscale.set_scaling_factor(v, sf) # Control Volume has no way of knowing how best to scale # reaction extents - this is something only the unit model can provide # This also applies to the phase_equilibrium_generation term. if hasattr(self, "rate_reaction_generation"): for (t, p, j), v in self.rate_reaction_generation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor(self.rate_reaction_extent[t, :]) iscale.set_scaling_factor(v, sf) if hasattr(self, "equilibrium_reaction_generation"): for (t, p, j), v in self.equilibrium_reaction_generation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor( self.equilibrium_reaction_extent[t, ...] ) iscale.set_scaling_factor(v, sf) if hasattr(self, "inherent_reaction_generation"): for (t, p, j), v in self.inherent_reaction_generation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor( self.inherent_reaction_extent[t, ...] ) iscale.set_scaling_factor(v, sf) if hasattr(self, "mass_transfer_term"): for (t, p, j), v in self.mass_transfer_term.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.properties_out[t].get_material_flow_terms(p, j), default=1, warning=True, ) iscale.set_scaling_factor(v, sf) # Set scaling factors for element balance variables if hasattr(self, "elemental_flow_out"): for (t, p, e), v in self.elemental_flow_out.items(): flow_basis = self.properties_out[t].get_material_flow_basis() sf = iscale.min_scaling_factor( [ self.properties_out[t].get_material_density_terms(p, j) for (p, j) in phase_component_set ], default=1, warning=True, ) if flow_basis == MaterialFlowBasis.molar: sf *= 1 elif flow_basis == MaterialFlowBasis.mass: # MW scaling factor is the inverse of its value sf *= value(self.properties_out[t].mw_comp[j]) iscale.set_scaling_factor(v, sf) iscale.set_scaling_factor(self.elemental_flow_in[t, p, e], sf) if hasattr(self, "element_holdup"): for (t, e), v in self.element_holdup.items(): flow_basis = self.properties_out[t].get_material_flow_basis() sf_list = [] for p, j in phase_component_set: if flow_basis == MaterialFlowBasis.molar: sf = 1 elif flow_basis == MaterialFlowBasis.mass: # MW scaling factor is the inverse of its value sf = value(self.properties_out[t].mw_comp[j]) sf *= iscale.get_scaling_factor(self.phase_fraction[t, p]) sf *= iscale.get_scaling_factor( self.properties_out[t].get_material_density_terms(p, j), default=1, warning=True, ) sf *= value(self.properties_out[t].params.element_comp[j][e]) ** -1 sf_list.append(sf) sf_h = min(sf_list) * iscale.get_scaling_factor(self.volume[t]) iscale.set_scaling_factor(v, sf_h) if hasattr(self, "element_accumulation"): for (t, e), v in self.element_accumulation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor( self.elemental_flow_out[t, ...], default=1, warning=True ) iscale.set_scaling_factor(v, sf) if hasattr(self, "elemental_mass_transfer_term"): for (t, e), v in self.elemental_mass_transfer_term.items(): # minimum scaling factor for elemental_flow terms sf_list = [] flow_basis = self.properties_out[t].get_material_flow_basis() if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor( self.elemental_flow_out[t, ...], default=1, warning=True ) iscale.set_scaling_factor(v, sf) # Set scaling factors for enthalpy balance variables if hasattr(self, "energy_holdup"): for (t, p), v in self.energy_holdup.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor(self.volume[t]) sf *= iscale.get_scaling_factor(self.phase_fraction[t, p]) sf *= iscale.get_scaling_factor( self.properties_out[t].get_energy_density_terms(p), default=1, warning=True, ) iscale.set_scaling_factor(v, sf) if hasattr(self, "energy_accumulation"): for (t, p), v in self.energy_accumulation.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.properties_out[t].get_enthalpy_flow_terms(p), default=1, warning=True, ) iscale.set_scaling_factor(v, sf) if hasattr(self, "heat"): for v in self.heat.values(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.heat, default=1e-6, warning=True ) iscale.set_scaling_factor(v, sf) if hasattr(self, "work"): for v in self.work.values(): if iscale.get_scaling_factor(v) is None: sf = iscale.get_scaling_factor( self.work, default=1e-6, warning=True ) iscale.set_scaling_factor(v, sf) if hasattr(self, "enthalpy_transfer"): for t, v in self.enthalpy_transfer.items(): if iscale.get_scaling_factor(v) is None: sf = iscale.min_scaling_factor( [ self.properties_out[t].get_enthalpy_flow_terms(p) for p in phase_list ] ) iscale.set_scaling_factor(v, sf) # Set scaling for momentum balance variables if hasattr(self, "deltaP"): for t, v in self.deltaP.items(): if iscale.get_scaling_factor(v) is None: sf = 10 * iscale.get_scaling_factor( self.properties_in[t].pressure, default=1, warning=True ) iscale.set_scaling_factor(v, sf) # Transform constraints in order of appearance if hasattr(self, "material_holdup_calculation"): for (t, p, j), c in self.material_holdup_calculation.items(): sf = iscale.get_scaling_factor(self.material_holdup[t, p, j]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "rate_reaction_stoichiometry_constraint"): for (t, p, j), c in self.rate_reaction_stoichiometry_constraint.items(): sf = iscale.get_scaling_factor(self.rate_reaction_generation[t, p, j]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "equilibrium_reaction_stoichiometry_constraint"): for ( t, p, j, ), c in self.equilibrium_reaction_stoichiometry_constraint.items(): sf = iscale.get_scaling_factor( self.equilibrium_reaction_generation[t, p, j] ) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "inherent_reaction_stoichiometry_constraint"): for (t, p, j), c in self.inherent_reaction_stoichiometry_constraint.items(): sf = iscale.get_scaling_factor( self.inherent_reaction_generation[t, p, j] ) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "material_balances"): mb_type = self._constructed_material_balance_type if mb_type == MaterialBalanceType.componentPhase: for (t, p, j), c in self.material_balances.items(): sf = iscale.get_scaling_factor( self.properties_in[t].get_material_flow_terms(p, j), default=1, warning=True, ) iscale.constraint_scaling_transform(c, sf, overwrite=False) elif mb_type == MaterialBalanceType.componentTotal: for (t, j), c in self.material_balances.items(): sf = iscale.min_scaling_factor( [ self.properties_in[t].get_material_flow_terms(p, j) for p in phase_list if (p, j) in phase_component_set ] ) iscale.constraint_scaling_transform(c, sf, overwrite=False) else: # There are some other material balance types but they create # constraints with different names. _log.warning(f"Unknown material balance type {mb_type}") if hasattr(self, "element_balances"): for (t, e), c in self.element_balances.items(): sf = iscale.min_scaling_factor( [self.elemental_flow_out[t, p, e] for p in phase_list] ) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "elemental_holdup_calculation"): for (t, e), c in self.elemental_holdup_calculation.items(): sf = iscale.get_scaling_factor(self.element_holdup[t, e]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "enthalpy_balances"): for t, c in self.enthalpy_balances.items(): sf = iscale.min_scaling_factor( [ self.properties_in[t].get_enthalpy_flow_terms(p) for p in phase_list ], hint="enthalpy_flow_terms", ) if hasattr(self, "work"): sf = min( sf, iscale.get_scaling_factor( self.work[t], default=1, warning=True ), ) if hasattr(self, "heat"): sf = min( sf, iscale.get_scaling_factor( self.heat[t], default=1, warning=True ), ) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "energy_holdup_calculation"): for (t, p), c in self.energy_holdup_calculation.items(): sf = iscale.get_scaling_factor(self.energy_holdup[t, p]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "pressure_balance"): for t, c in self.pressure_balance.items(): sf = iscale.get_scaling_factor( self.properties_in[t].pressure, default=1, warning=True ) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "sum_of_phase_fractions"): for t, c in self.sum_of_phase_fractions.items(): sf = iscale.min_scaling_factor( [self.phase_fraction[t, p] for p in phase_list] ) iscale.constraint_scaling_transform(c, sf, overwrite=False) # Scaling for discretization equations if hasattr(self, "material_accumulation_disc_eq"): for (t, p, j), c in self.material_accumulation_disc_eq.items(): sf = iscale.get_scaling_factor(self.material_accumulation[t, p, j]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "energy_accumulation_disc_eq"): for (t, p), c in self.energy_accumulation_disc_eq.items(): sf = iscale.get_scaling_factor(self.energy_accumulation[t, p]) iscale.constraint_scaling_transform(c, sf, overwrite=False) if hasattr(self, "element_accumulation_disc_eq"): for (t, e), c in self.element_accumulation_disc_eq.items(): sf = iscale.get_scaling_factor(self.element_accumulation[t, e]) iscale.constraint_scaling_transform(c, sf, overwrite=False)