Source code for idaes.core.util.math

# -*- coding: UTF-8 -*-
#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2024 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved.  Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
This module contains utility functions for mathematical operators of use in
equation oriented models.
"""

from pyomo.environ import Param, log, sqrt

__author__ = "Andrew Lee"


[docs] def smooth_abs(a, eps=1e-4): """General function for creating an expression for a smooth minimum or maximum. .. math:: |a| = sqrt(a^2 + eps^2) Args: a : term to get absolute value from (Pyomo component, float or int) eps : smoothing parameter (Param, float or int) (default=1e-4) Returns: An expression for the smoothed absolute value operation. """ # Check type of eps if not isinstance(eps, (float, int, Param)): raise TypeError("smooth_abs eps argument must be a float, int or Pyomo Param") # Create expression try: expr = (a**2 + eps**2) ** 0.5 except TypeError: raise TypeError( "Unsupported argument type for smooth_abs. Must be " "a Pyomo Var, Param or Expression, or a float or int." ) return expr
[docs] def smooth_minmax(a, b, eps=1e-4, sense="max"): """General function for creating an expression for a smooth minimum or maximum. Uses the smooth_abs operator. .. math:: minmax(a, b) = 0.5*(a+b +- |a-b|) Args: a : first term in mix or max function (Pyomo component, float or int) b : second term in min or max function (Pyomo component, float or int) eps : smoothing parameter (Param, float or int) (default=1e-4) sense : 'mim' or 'max' (default = 'max') Returns: An expression for the smoothed minimum or maximum operation. """ # Check type of eps if not isinstance(eps, (float, int, Param)): raise TypeError( "Smooth {} eps argument must be a float, int or " "Pyomo Param".format(sense) ) # Set sense of expression if sense == "max": mm = 1 elif sense == "min": mm = -1 else: raise ValueError( "Unrecognised sense argument to smooth_minmax. Must be 'min' or 'max'." ) # Create expression try: expr = 0.5 * (a + b + mm * smooth_abs(a - b, eps)) except TypeError: raise TypeError( "Unsupported argument type for smooth_{}. Must be " "a Pyomo Var, Param or Expression, or a float or int.".format(sense) ) return expr
[docs] def smooth_max(a, b, eps=1e-4): """Smooth maximum operator, using smooth_abs operator. .. math:: max(a, b) = 0.5*(a+b + |a-b|) Args: a : first term in max function b : second term in max function eps : smoothing parameter (Param or float, default = 1e-4) Returns: An expression for the smoothed maximum operation. """ expr = smooth_minmax(a, b, eps, sense="max") return expr
[docs] def smooth_min(a, b, eps=1e-4): """Smooth minimum operator, using smooth_abs operator. .. math:: max(a, b) = 0.5*(a+b - |a-b|) Args: a : first term in min function b : second term in min function eps : smoothing parameter (Param or float, default = 1e-4) Returns: An expression for the smoothed minimum operation. """ expr = smooth_minmax(a, b, eps, sense="min") return expr
[docs] def smooth_bound(val, lb, ub, eps=1e-4, eps_lb=None, eps_ub=None): """Returns a smooth expression that returns approximately the value of val between lb and ub, the value of ub if val > ub and the value of lb if val < lb. The expression returned is ..math:: smooth_min(smooth_max(val, lb, eps_lb), ub, eps_ub) **Example Usage** This function is useful when calculating the value of a quantity with physical limitations that may not be otherwise captured. A good example of this is using a controller to manipulate a valve to maintain, for example, a set flow rate. Under some process conditions the controller may indicate the valve should be more than fully opened or closed. In this example, the smooth_bound expression can be applied to the unbounded controller output to get a bounded controller output, ensuring the valve opening stays in the feasible region, while maintaining smoothness. Args: val: an expression for a bounded version of this value is returned lb: lower bound ub: lower bound eps: smoothing parameter eps_lb: (optional) lower bound smoothing parameter if not provided use eps eps_ub: (optional) upper bound smoothing parameter if not provided use eps Returns: expression: smooth bounded version of val. """ if eps_lb is None: eps_lb = eps if eps_ub is None: eps_ub = eps return smooth_min(smooth_max(val, lb, eps_lb), ub, eps_ub)
[docs] def safe_sqrt(a, eps=1e-4): """Returns the square root of max(a, 0) using the smooth_max expression. This can be used to avoid transient evaluation errors when changing a model from one state to another. This can be used when a at the solution is not expected to be near 0. Args: a: Pyomo expression eps: epsilon parameter for smooth max Returns: approximately sqrt(max(a, 0)) """ return sqrt(smooth_max(a, 0, eps))
[docs] def safe_log(a, eps=1e-4): """Returns the log of max(a, eps) using the smooth_max expression. This can be used to avoid transient evaluation errors when changing a model from one state to another. This can be used when at the solution, a >> eps. Args: a: Pyomo expression eps: epsilon parameter for smooth max Returns: approximately log(max(a, eps)) """ return log(smooth_max(a, eps, eps=eps))