CrossFlowHeatExchanger1D#
This model is for a cross flow heat exchanger between two gases. The gas in the shell has a straight path,
while the gas in the tubes snakes back and forth across the shell’s path. Note that the finite_elements
option in the shell and tube control volume configs should be set to an integer factor of number_passes
in order for the discretization equations to make sense as a cross-flow heat exchanger.
Example#
import pyomo.environ as pyo
from idaes.core import FlowsheetBlock
import idaes.core.util.scaling as iscale
from idaes.models.unit_models import HeatExchangerFlowPattern
from idaes.models.properties.modular_properties import GenericParameterBlock
from idaes.models_extra.power_generation.properties.natural_gas_PR import (
get_prop,
EosType,
)
from idaes.models_extra.power_generation.unit_models import CrossFlowHeatExchanger1D
from idaes.core.util.model_statistics import degrees_of_freedom
optarg = {
"constr_viol_tol": 1e-8,
"nlp_scaling_method": "user-scaling",
"linear_solver": "ma57",
"OF_ma57_automatic_scaling": "yes",
"max_iter": 350,
"tol": 1e-8,
"halt_on_ampl_error": "no",
}
m = pyo.ConcreteModel()
m.fs = pyo.FlowsheetBlock(dynamic=False)
m.fs.properties = GenericParameterBlock(
**get_prop(["H2", "H2O", "Ar", "N2"], {"Vap"}, eos=EosType.IDEAL),
doc="H2O + H2 gas property parameters",
)
m.fs.heat_exchanger = CrossFlowHeatExchanger1D(
has_holdup=True,
dynamic=False,
cold_side={
"property_package": m.fs.h2_side_prop_params,
"has_holdup": False,
"dynamic": False,
"has_pressure_change": pressure_drop,
"transformation_method": "dae.finite_difference",
"transformation_scheme": "FORWARD",
},
hot_side={
"property_package": m.fs.h2_side_prop_params,
"has_holdup": False,
"dynamic": False,
"has_pressure_change": pressure_drop,
"transformation_method": "dae.finite_difference",
"transformation_scheme": "BACKWARD",
},
shell_is_hot=True,
flow_type=HeatExchangerFlowPattern.countercurrent,
finite_elements=12,
tube_arrangement="staggered",
)
hx = m.fs.heat_exchanger
hx.hot_side_inlet.flow_mol.fix(2619.7)
hx.hot_side_inlet.temperature.fix(971.6)
hx.hot_side_inlet.pressure.fix(1.2e5)
hx.hot_side_inlet.mole_frac_comp[0, "H2"].fix(0.79715)
hx.hot_side_inlet.mole_frac_comp[0, "H2O"].fix(0.20177)
hx.hot_side_inlet.mole_frac_comp[0, "Ar"].fix(0.00086358)
hx.hot_side_inlet.mole_frac_comp[0, "N2"].fix(0.00021589)
hx.cold_side_inlet.flow_mol.fix(2619.7)
hx.cold_side_inlet.temperature.fix(446.21)
hx.cold_side_inlet.pressure.fix(1.2e5)
hx.cold_side_inlet.mole_frac_comp[0, "H2"].fix(0.36203)
hx.cold_side_inlet.mole_frac_comp[0, "H2O"].fix(0.63689)
hx.cold_side_inlet.mole_frac_comp[0, "Ar"].fix(0.00086358)
hx.cold_side_inlet.mole_frac_comp[0, "N2"].fix(0.00021589)
hx.di_tube.fix(0.0525018)
hx.thickness_tube.fix(0.0039116)
hx.length_tube_seg.fix(4.3)
hx.number_passes.fix(12)
hx.number_columns_per_pass.fix(50)
hx.number_rows_per_pass.fix(25)
hx.pitch_x.fix(0.1)
hx.pitch_y.fix(0.1)
hx.therm_cond_wall = 43.0
hx.rfouling_tube = 0.0001
hx.rfouling_shell = 0.0001
hx.fcorrection_htc_tube.fix(1)
hx.fcorrection_htc_shell.fix(1)
hx.cp_wall.value = 502.4
pp = m.fs.properties
pp.set_default_scaling("enth_mol_phase", 1e-3)
pp.set_default_scaling("pressure", 1e-5)
pp.set_default_scaling("temperature", 1e-2)
pp.set_default_scaling("flow_mol", 1e-3)
_mf_scale = {
"H2": 1,
"H2O": 1,
"N2": 10,
"Ar": 10,
}
for comp, s in _mf_scale.items():
pp.set_default_scaling("mole_frac_comp", s, index=comp)
pp.set_default_scaling("mole_frac_phase_comp", s, index=("Vap", comp))
pp.set_default_scaling("flow_mol_phase_comp", s * 1e-3, index=("Vap", comp))
shell = hx.hot_side
tube = hx.cold_side
iscale.set_scaling_factor(shell.area, 1e-1)
iscale.set_scaling_factor(shell.heat, 1e-6)
iscale.set_scaling_factor(tube.area, 1)
iscale.set_scaling_factor(tube.heat, 1e-6)
iscale.set_scaling_factor(shell._enthalpy_flow, 1e-8) # pylint: disable=W0212
iscale.set_scaling_factor(tube._enthalpy_flow, 1e-8) # pylint: disable=W0212
iscale.set_scaling_factor(shell.enthalpy_flow_dx, 1e-7)
iscale.set_scaling_factor(tube.enthalpy_flow_dx, 1e-7)
iscale.set_scaling_factor(hx.heat_holdup, 1e-8)
iscale.calculate_scaling_factors(m)
initializer = m.fs.heat_exchanger.default_initializer(
solver="ipopt",
solver_options=optarg
)
initializer.initialize(m.fs.heat_exchanger)
Heat Exchanger Geometry#
Variable |
Index Sets |
Doc |
---|---|---|
|
None |
Number of columns of tube per pass |
|
None |
Number of rows of tube per pass |
|
None |
Number of tube banks of |
|
None |
Distance between tubes parallel to shell flow, measured from center-of-tube to center-of-tube |
|
None |
Distance between tubes perpendicular to shell flow, measured from center-of-tube to center-of-tube |
|
None |
Length of tube segment perpendicular to flow in each pass |
|
None |
Reference to flow area on shell control volume |
|
None |
Reference to flow length on shell control volume |
|
None |
Minimum flow area on shell side |
|
None |
Inner diameter of tubes |
|
None |
Thickness of tube wall. |
|
None |
Reference to flow area on tube control volume |
|
None |
Reference to flow length on tube control volume |
Expression |
Index Sets |
Doc |
---|---|---|
|
None |
Total number of rows of tube |
|
None |
Outer diameter of tube (equal to |
|
None |
Ratio of |
|
None |
Ratio of |
|
None |
Total cross-sectional area of tube per pass |
|
None |
Total heat transfer area, as measured on outer surface of tubes |
Constraint |
Index Sets |
Doc |
---|---|---|
|
None |
Constrains shell flow length from control volume to equal value implied by geometry |
|
None |
Constrains shell flow cross-sectional area from control volume to equal value implied by geometry |
|
None |
Constraints |
|
None |
Constrains tube flow length from control volume to equal value implied by geometry |
|
None |
Constrains tube flow cross-sectional area from control volume to equal value implied by geometry |
Performance Equations#
Variable |
Index Sets |
Doc |
---|---|---|
|
time, length |
Correction factor for shell convective heat transfer |
|
time, length |
Shell-side convective heat transfer coefficient |
|
time, length |
Shell-side wall temperature of tube |
|
time, length |
Temperature at center of tube wall |
|
time, length |
Flow velocity on shell side through minimum area |
|
time, length |
Reynolds number on shell side |
|
time, length |
Nusselt number on shell side |
|
time, length |
Tube-side heat transfer coefficient |
|
time, length |
Tube-side wall temperature of tube |
|
time, length |
Flow velocity of gas in tube |
|
time, length |
Reynolds number in tube |
|
time, length |
Nusselt number on tube side |
Parameter |
Index Sets |
Doc |
---|---|---|
|
None |
Thermal conductivity of tube wall |
|
None |
Mass density of tube wall metal |
|
None |
Tube wall heat capacity (mass basis) |
|
None |
Fouling resistance on shell side |
|
None |
Adjustment factor depending on |
Constraint |
Index Sets |
Doc |
---|---|---|
|
time, length |
Calculates velocity of flow through shell using |
|
time, length |
Calculates the shell-side Reynolds number |
|
time, length |
Calculates the shell-side convective heat transfer coefficient |
|
time, length |
Calculates gas velocity in tube |
|
time, length |
Calculates the tube-side Reynolds number |
|
time, length |
Calculates the tube-side heat transfer coefficient |
|
time, length |
Calculate the shell-side Nusselt number |
|
time, length |
Calculate the tube-side Nusselt number |
|
time, length |
Calculates heat transfer per unit length |
|
time, length |
Calculates heat transfer per unit length |
|
time, length |
Calculate the wall temperature of the inner tube |
|
time, length |
Calculate the wall temperature of the outer tube |
|
time, length |
Overall energy balance on tube metal |
Expression |
Index Sets |
Doc |
---|---|---|
|
time |
Returns |
|
time |
Created only if not |
|
time |
Created only if not |
|
time |
Created only if not |
Pressure Change Equations#
Parameter |
Index Sets |
Doc |
---|---|---|
|
None |
Correction factor for shell side pressure drop |
|
None |
Loss coefficient of a tube u-turn |
|
None |
Correction factor for tube side pressure drop |
Variable |
Index Sets |
Doc |
---|---|---|
|
None |
Correction factor for shell side pressure drop |
|
time, length |
Friction factor on shell side |
|
time, length |
Friction factor on tube side |
|
time, length |
Change of pressure in tube due to friction |
|
time, length |
Change of pressure in tube due to U turns |
Constraint |
Index Sets |
Doc |
---|---|---|
|
time, length |
Calculates the shell-side friction factor |
|
time, length |
Sets |
|
time, length |
Calculates the tube-side friction factor |
|
time, length |
Sets |
|
time, length |
Sets |
|
time, length |
Sets |
Holdup Equations#
Created when has_holdup=True
in the config.
Variable |
Index Sets |
Doc |
---|---|---|
|
time, length |
Energy holdup per unit length of shell flow path |
Constraint |
Index Sets |
Doc |
---|---|---|
|
time, length |
Defines heat holdup in terms of geometry and physical properties |
Dynamic Equations#
Created when dynamic=True
in the config.
Derivative Variable |
Index Sets |
Doc |
---|---|---|
|
time, length |
Energy accumulation in tube wall per unit length of shell flow path per unit time |
CrossFlowHeatExchanger1D Class#
- class idaes.models_extra.power_generation.unit_models.cross_flow_heat_exchanger_1D.CrossFlowHeatExchanger1D(*args, **kwds)#
- Parameters:
rule (function) – A rule function or None. Default rule calls build().
concrete (bool) – If True, make this a toplevel model. Default - False.
ctype (class) –
Pyomo ctype of the block. Default - pyomo.environ.Block
Config args
- dynamic
Indicates whether this model will be dynamic or not, default = useDefault. Valid values: { useDefault - get flag from parent (default = False), True - set as a dynamic model, False - set as a steady-state model.}
- has_holdup
Indicates whether holdup terms should be constructed or not. Must be True if dynamic = True, default - False. Valid values: { useDefault - get flag from parent (default = False), True - construct holdup terms, False - do not construct holdup terms}
- hot_side
hot side config arguments
- hot_side
- dynamic
Indicates whether this model will be dynamic or not, default = useDefault. Valid values: { useDefault - get flag from parent (default = False), True - set as a dynamic model, False - set as a steady-state model.}
- has_holdup
Indicates whether holdup terms should be constructed or not. Must be True if dynamic = True, default - False. Valid values: { useDefault - get flag from parent (default = False), True - construct holdup terms, False - do not construct holdup terms}
- material_balance_type
Indicates what type of mass balance should be constructed, default - MaterialBalanceType.useDefault. Valid values: { MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none - exclude material balances, MaterialBalanceType.componentPhase - use phase component balances, MaterialBalanceType.componentTotal - use total component balances, MaterialBalanceType.elementTotal - use total element balances, MaterialBalanceType.total - use total material balance.}
- energy_balance_type
Indicates what type of energy balance should be constructed, default - EnergyBalanceType.useDefault. Valid values: { EnergyBalanceType.useDefault - refer to property package for default balance type **EnergyBalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase, EnergyBalanceType.energyTotal - single energy balance for material, EnergyBalanceType.energyPhase - energy balances for each phase.}
- momentum_balance_type
Indicates what type of momentum balance should be constructed, default - MomentumBalanceType.pressureTotal. Valid values: { MomentumBalanceType.none - exclude momentum balances, MomentumBalanceType.pressureTotal - single pressure balance for material, MomentumBalanceType.pressurePhase - pressure balances for each phase, MomentumBalanceType.momentumTotal - single momentum balance for material, MomentumBalanceType.momentumPhase - momentum balances for each phase.}
- has_pressure_change
Indicates whether terms for pressure change should be constructed, default - False. Valid values: { True - include pressure change terms, False - exclude pressure change terms.}
- has_phase_equilibrium
Argument to enable phase equilibrium. - True - include phase equilibrium term - False - do not include phase equilibrium term
- property_package
Property parameter object used to define property calculations (default = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default = None) - a ParameterBlock object
- property_package_args
A dict of arguments to be passed to the PropertyBlockData and used when constructing these (default = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default = None) - a dict (see property package for documentation)
- transformation_method
Discretization method to use for DAE transformation. See Pyomo documentation for supported transformations.
- transformation_scheme
Discretization scheme to use when transformating domain. See Pyomo documentation for supported schemes.
- cold_side
cold side config arguments
- cold_side
- dynamic
Indicates whether this model will be dynamic or not, default = useDefault. Valid values: { useDefault - get flag from parent (default = False), True - set as a dynamic model, False - set as a steady-state model.}
- has_holdup
Indicates whether holdup terms should be constructed or not. Must be True if dynamic = True, default - False. Valid values: { useDefault - get flag from parent (default = False), True - construct holdup terms, False - do not construct holdup terms}
- material_balance_type
Indicates what type of mass balance should be constructed, default - MaterialBalanceType.useDefault. Valid values: { MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none - exclude material balances, MaterialBalanceType.componentPhase - use phase component balances, MaterialBalanceType.componentTotal - use total component balances, MaterialBalanceType.elementTotal - use total element balances, MaterialBalanceType.total - use total material balance.}
- energy_balance_type
Indicates what type of energy balance should be constructed, default - EnergyBalanceType.useDefault. Valid values: { EnergyBalanceType.useDefault - refer to property package for default balance type **EnergyBalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase, EnergyBalanceType.energyTotal - single energy balance for material, EnergyBalanceType.energyPhase - energy balances for each phase.}
- momentum_balance_type
Indicates what type of momentum balance should be constructed, default - MomentumBalanceType.pressureTotal. Valid values: { MomentumBalanceType.none - exclude momentum balances, MomentumBalanceType.pressureTotal - single pressure balance for material, MomentumBalanceType.pressurePhase - pressure balances for each phase, MomentumBalanceType.momentumTotal - single momentum balance for material, MomentumBalanceType.momentumPhase - momentum balances for each phase.}
- has_pressure_change
Indicates whether terms for pressure change should be constructed, default - False. Valid values: { True - include pressure change terms, False - exclude pressure change terms.}
- has_phase_equilibrium
Argument to enable phase equilibrium. - True - include phase equilibrium term - False - do not include phase equilibrium term
- property_package
Property parameter object used to define property calculations (default = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default = None) - a ParameterBlock object
- property_package_args
A dict of arguments to be passed to the PropertyBlockData and used when constructing these (default = ‘use_parent_value’) - ‘use_parent_value’ - get package from parent (default = None) - a dict (see property package for documentation)
- transformation_method
Discretization method to use for DAE transformation. See Pyomo documentation for supported transformations.
- transformation_scheme
Discretization scheme to use when transformating domain. See Pyomo documentation for supported schemes.
- finite_elements
Number of finite elements to use when discretizing length domain (default=20)
- collocation_points
Number of collocation points to use per finite element when discretizing length domain (default=3)
- flow_type
Flow configuration of heat exchanger - HeatExchangerFlowPattern.cocurrent: hot and cold flows from 0 to 1 (default) - HeatExchangerFlowPattern.countercurrent: hot side flows from 0 to 1 cold side flows from 1 to 0
- hot_side_name
Hot side name, sets control volume and inlet and outlet names. Default = None.
- cold_side_name
Cold side name, sets control volume and inlet and outlet names. Default = None.
- shell_is_hot
Boolean flag indicating whether shell side contains hot fluid (default=True). If True, shell side will be the hot_side, if False shell side will be cold_side.
- tube_arrangement
tube arrangement could be in-line or staggered
initialize (dict) – ProcessBlockData config for individual elements. Keys are BlockData indexes and values are dictionaries with config arguments as keys.
idx_map (function) – Function to take the index of a BlockData element and return the index in the initialize dict from which to read arguments. This can be provided to override the default behavior of matching the BlockData index exactly to the index in initialize.
- Returns:
(CrossFlowHeatExchanger1D) New instance
CrossFlowHeatExchanger1DData Class#
- class idaes.models_extra.power_generation.unit_models.cross_flow_heat_exchanger_1D.CrossFlowHeatExchanger1DData(component)[source]#
Standard Cross Flow Heat Exchanger Unit Model Class.
- default_initializer#
alias of
CrossFlowHeatExchanger1DInitializer
CrossFlowHeatExchanger1DInitializer Class#
- class idaes.models_extra.power_generation.unit_models.cross_flow_heat_exchanger_1D.CrossFlowHeatExchanger1DInitializer(**kwargs)[source]#
Initializer for Cross Flow Heat Exchanger 1D units.
First, the shell and tube control volumes are initialized without heat transfer. Next the total possible heat transfer between streams is estimated based on heat capacity, flow rate, and inlet/outlet temperatures. The actual temperature change is set to be half the theoretical maximum, and the shell and tube are initialized with linear temperature profiles. Finally, temperatures besides the inlets are unfixed and the performance equations are activated before a full solve of the system model.
- constraint_tolerance
Tolerance for checking constraint convergence
- output_level
Set output level for logging messages
- solver
Solver to use for initialization
- solver_options
Dict of options to pass to solver
- writer_config
Dict of writer_config arguments to pass to solver
- default_submodel_initializer
Default Initializer object to use for sub-models. Only used if no Initializer defined in submodel_initializers.
- always_estimate_states
Whether initialization routine should estimate values for state variables that already have values. Note that if set to True, this will overwrite any initial guesses provided.
- initialize_main_model(model, copy_inlet_state=False)[source]#
Initialization routine for the main Cross Flow Heat Exchanger 1D model (as opposed to submodels like costing, which presently do not exist).
- Parameters:
model (Block) – Pyomo Block to be initialized.
copy_inlet_state (bool) – bool (default=False). Whether to copy inlet state to other states or not (0-D control volumes only). Copying will generally be faster, but inlet states may not contain all properties required elsewhere.
duty – initial guess for heat duty to assist with initialization. Can be a Pyomo expression with units.
- Returns:
Pyomo solver results object.