Source code for idaes.core.solvers.homotopy

#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2024 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved.  Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
IDAES Homotopy meta-solver routine.
"""

__author__ = "Andrew Lee"

import logging

from pyomo.environ import Block, SolverFactory, TerminationCondition
from pyomo.core.base.var import VarData
from pyomo.contrib.parmest.utils.ipopt_solver_wrapper import ipopt_solve_with_stats

from idaes.core.util.model_serializer import to_json, from_json
from idaes.core.util.model_statistics import degrees_of_freedom
from idaes.core.util.exceptions import ConfigurationError
import idaes.logger as idaeslog

_log = idaeslog.getLogger(__name__)


[docs] def homotopy( model, variables, targets, max_solver_iterations=50, max_solver_time=10, step_init=0.1, step_cut=0.5, iter_target=4, step_accel=0.5, max_step=1, min_step=0.05, max_eval=200, ): """ Homotopy meta-solver routine using Ipopt as the non-linear solver. This routine takes a model along with a list of fixed variables in that model and a list of target values for those variables. The routine then tries to iteratively move the values of the fixed variables to their target values using an adaptive step size. Args: model : model to be solved variables : list of Pyomo Var objects to be varied using homotopy. Variables must be fixed. targets : list of target values for each variable max_solver_iterations : maximum number of solver iterations per homotopy step (default=50) max_solver_time : maximum cpu time for the solver per homotopy step (default=10) step_init : initial homotopy step size (default=0.1) step_cut : factor by which to reduce step size on failed step (default=0.5) step_accel : acceleration factor for adjusting step size on successful step (default=0.5) iter_target : target number of solver iterations per homotopy step (default=4) max_step : maximum homotopy step size (default=1) min_step : minimum homotopy step size (default=0.05) max_eval : maximum number of homotopy evaluations (both successful and unsuccessful) (default=200) Returns: Termination Condition : A Pyomo TerminationCondition Enum indicating how the meta-solver terminated (see documentation) Solver Progress : a fraction indication how far the solver progressed from the initial values to the target values Number of Iterations : number of homotopy evaluations before solver terminated """ eps = 1e-3 # Tolerance for homotopy step convergence to 1 # Get model logger _log = logging.getLogger(__name__) # Validate model is an instance of Block if not isinstance(model, Block): raise TypeError( "Model provided was not a valid Pyomo model object " "(instance of Block). Please provide a valid model." ) if degrees_of_freedom(model) != 0: raise ConfigurationError( "Degrees of freedom in model are not equal to zero. Homotopy " "should not be used on problems which are not well-defined." ) # Validate variables and targets if len(variables) != len(targets): raise ConfigurationError("Number of variables and targets do not match.") for i, v in enumerate(variables): t = targets[i] if not isinstance(v, VarData): raise TypeError( "Variable provided ({}) was not a valid Pyomo Var " "component.".format(v) ) # Check that v is part of model parent = v.parent_block() while parent != model: if parent is None: raise ConfigurationError("Variable {} is not part of model".format(v)) parent = parent.parent_block() # Check that v is fixed if not v.fixed: raise ConfigurationError( "Homotopy metasolver provided with unfixed variable {}." "All variables must be fixed.".format(v.name) ) # Check bounds on v (they don't really matter, but check for sanity) if v.ub is not None: if v.value > v.ub: raise ConfigurationError( "Current value for variable {} is greater than the " "upper bound for that variable. Please correct this " "before continuing.".format(v.name) ) if t > v.ub: raise ConfigurationError( "Target value for variable {} is greater than the " "upper bound for that variable. Please correct this " "before continuing.".format(v.name) ) if v.lb is not None: if v.value < v.lb: raise ConfigurationError( "Current value for variable {} is less than the " "lower bound for that variable. Please correct this " "before continuing.".format(v.name) ) if t < v.lb: raise ConfigurationError( "Target value for variable {} is less than the " "lower bound for that variable. Please correct this " "before continuing.".format(v.name) ) # TODO : Should we be more restrictive on these values to avoid users # TODO : picking numbers that are less likely to solve (but still valid)? # Validate homotopy parameter selections if not 0.05 <= step_init <= 0.8: raise ConfigurationError( "Invalid value for step_init ({}). Must lie " "between 0.05 and 0.8.".format(step_init) ) if not 0.1 <= step_cut <= 0.9: raise ConfigurationError( "Invalid value for step_cut ({}). Must lie " "between 0.1 and 0.9.".format(step_cut) ) if step_accel < 0: raise ConfigurationError( "Invalid value for step_accel ({}). Must be " "greater than or equal to 0.".format(step_accel) ) if iter_target < 1: raise ConfigurationError( "Invalid value for iter_target ({}). Must be " "greater than or equal to 1.".format(iter_target) ) if not isinstance(iter_target, int): raise ConfigurationError( "Invalid value for iter_target ({}). Must be " "an an integer.".format(iter_target) ) if not 0.05 <= max_step <= 1: raise ConfigurationError( "Invalid value for max_step ({}). Must lie " "between 0.05 and 1.".format(max_step) ) if not 0.01 <= min_step <= 0.1: raise ConfigurationError( "Invalid value for min_step ({}). Must lie " "between 0.01 and 0.1.".format(min_step) ) if min_step > max_step: raise ConfigurationError( "Invalid arguments: step_min must be less or equal to step_max." ) if not min_step <= step_init <= max_step: raise ConfigurationError( "Invalid arguments: step_init must lie between min_step and max_step." ) if max_eval < 1: raise ConfigurationError( "Invalid value for max_eval ({}). Must be " "greater than or equal to 1.".format(step_accel) ) if not isinstance(max_eval, int): raise ConfigurationError( "Invalid value for max_eval ({}). Must be " "an an integer.".format(iter_target) ) # Create solver object solver_obj = SolverFactory("ipopt") # Perform initial solve of model to confirm feasible initial solution ( results, # pylint: disable=unused-variable solved, sol_iter, sol_time, # pylint: disable=unused-variable sol_reg, ) = ipopt_solve_with_stats( model, solver_obj, max_solver_iterations, max_solver_time ) if not solved: _log.exception("Homotopy Failed - initial solution infeasible.") return TerminationCondition.infeasible, 0, 0 elif sol_reg != "-": _log.warning("Homotopy - initial solution converged with regularization.") return TerminationCondition.other, 0, 0 else: _log.info("Homotopy - initial point converged") # Set up homotopy variables # Get initial values and deltas for all variables v_init = [] for i, v in enumerate(variables): v_init.append(v.value) n_0 = 0.0 # Homotopy progress variable s = step_init # Set step size to step_init iter_count = 0 # Counter for homotopy iterations # Save model state to dict # TODO : for very large models, it may be necessary to dump this to a file current_state = to_json(model, return_dict=True) while n_0 < 1.0: iter_count += 1 # Increase iter_count regardless of success or failure # Calculate next n value given current step size if n_0 + s >= 1.0 - eps: n_1 = 1.0 else: n_1 = n_0 + s _log.info(f"Homotopy Iteration {iter_count}. Next Step: {n_1} (Current: {n_0})") # Update values for all variables using n_1 for i, v in enumerate(variables): v.fix(targets[i] * n_1 + v_init[i] * (1 - n_1)) # Solve model at new state results, solved, sol_iter, sol_time, sol_reg = ipopt_solve_with_stats( model, solver_obj, max_solver_iterations, max_solver_time ) # Check solver output for convergence if solved: # Step succeeded - accept current state current_state = to_json(model, return_dict=True) # Update n_0 to accept current step n_0 = n_1 # Check solver iterations and calculate next step size s_proposed = s * (1 + step_accel * (iter_target / sol_iter - 1)) if s_proposed > max_step: s = max_step elif s_proposed < min_step: s = min_step else: s = s_proposed else: # Step failed - reload old state from_json(model, current_state) # Try to cut back step size if s > min_step: # Step size can be cut s = max(min_step, s * step_cut) else: # Step is already at minimum size, terminate homotopy _log.exception( f"Homotopy failed - could not converge at minimum step " f"size. Current progress is {n_0}" ) return TerminationCondition.minStepLength, n_0, iter_count if iter_count >= max_eval: # Use greater than or equal to to be safe _log.exception( f"Homotopy failed - maximum homotopy iterations " f"exceeded. Current progress is {n_0}" ) return TerminationCondition.maxEvaluations, n_0, iter_count if sol_reg == "-": _log.info( f"Homotopy successful - converged at target values in {iter_count} iterations." ) return TerminationCondition.optimal, n_0, iter_count else: _log.exception( f"Homotopy failed - converged at target values with " f"regularization in {iter_count} iterations." ) return TerminationCondition.other, n_0, iter_count