Turbine (Inlet Stage)#

This is a steam power generation turbine model for the inlet stage. It inherits HelmIsentropicTurbine <reference_guides/model_libraries/power_generation/unit_models/turbine_inlet:Turbine (Isentropic)>.

The turbine inlet model is based on:

Liese, (2014). “Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment.” Journal of Engineering for Gas Turbines and Power. v136.

Example#

from pyomo.environ import ConcreteModel, SolverFactory, TransformationFactory, units
from idaes.core import FlowsheetBlock
from idaes.models_extra.power_generation.unit_models.helm import HelmTurbineInletStage
from idaes.models.properties import iapws95

m = ConcreteModel()
m.fs = FlowsheetBlock(dynamic=False)
m.fs.properties = iapws95.Iapws95ParameterBlock()
m.fs.turb = HelmTurbineInletStage(property_package=m.fs.properties)
hin = iapws95.htpx(T=880*units.K, P=2.4233e7*units.Pa)
# set inlet
m.fs.turb.inlet[:].enth_mol.fix(hin)
m.fs.turb.inlet[:].flow_mol.fix(26000/4.0)
m.fs.turb.inlet[:].pressure.fix(2.4233e7)
m.fs.turb.eff_nozzle.fix(0.95)
m.fs.turb.blade_reaction.fix(0.9)
m.fs.turb.flow_coeff.fix(1.053/3600.0)
m.fs.turb.blade_velocity.fix(110.0)
m.fs.turb.efficiency_mech.fix(0.98)

m.fs.turb.initialize()

Degrees of Freedom#

Usually the inlet stream, or the inlet stream minus flow rate plus discharge pressure are fixed. There are also a few variables which are turbine parameters and are usually fixed, like flow coefficients. See the variables section for more information.

Model Structure#

The turbine inlet stage model contains one ControlVolume0DBlock block called control_volume and inherits HelmIsentropicTurbine <reference_guides/model_libraries/power_generation/unit_models/turbine_inlet:Turbine (Isentropic)>.

Variables#

The variables below are defined in the HelmIsentropicTurbine model.

Variable

Symbol

Index Sets

Doc

blade_reaction

\(R\)

None

Blade reaction

eff_nozzle

\(\eta_{nozzle}\)

None

Nozzle efficiency

efficiency_mech

\(\eta_{mech}\)

None

Mechanical Efficiency (accounts for losses in bearings…)

flow_coeff

\(C_{flow}\)

None

Turbine stage flow coefficient [kg*C^0.5/Pa/s]

blade_velocity

\(V_{rbl}\)

None

Turbine blade velocity (should be constant while running) [m/s]

delta_enth_isentropic

\(\Delta h_{isen}\)

time

Isentropic enthalpy change through stage [J/mol]

The table below shows important variables inherited from the pressure changer model.

Variable

Symbol

Index Sets

Doc

efficiency_isentropic

\(\eta_{isen}\)

time

Isentropic efficiency

deltaP

\(\Delta P\)

time

Pressure change (\(P_{out} - P_{in}\)) [Pa]

ratioP

\(P_{ratio}\)

time

Ratio of discharge pressure to inlet pressure \(\left(\frac{P_{out}}{P_{in}}\right)\)

Expressions#

Variable

Symbol

Index Sets

Doc

power_thermo

\(\dot{w}_{thermo}\)

time

Turbine stage power output not including mechanical loss [W]

power_shaft

\(\dot{w}_{shaft}\)

time

Turbine stage power output including mechanical loss (bearings…) [W]

steam_entering_velocity

\(V_0\)

time

Steam velocity entering stage [m/s]

The expression defined below provides a calculation for steam velocity entering the stage, which is used in the efficiency calculation.

\[V_0 = 1.414\sqrt{\frac{-(1 - R)\Delta h_{isen}}{WT_{in}\eta_{nozzel}}}\]

Constraints#

In addition to the constraints inherited from the HelmTurbineStage <reference_guides/model_libraries/power_generation/unit_models/turbine_inlet:Turbine (Stage)>, this model contains two more constraints, one to estimate efficiency and one pressure-flow relation. From the isentropic pressure changer model, these constraints eliminate the need to specify efficiency and either inlet flow or outlet pressure.

The isentropic efficiency is given by:

\[\eta_{isen} = 2 \frac{V_{rbl}}{V_0}\left[\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right) + \sqrt{\left(\sqrt{1 - R} - \frac{V_{rbl}}{V_0}\right)^2 + R}\right]\]

The pressure-flow relation is given by:

\[\dot{m} = C_{flow}\frac{P_{in}}{\sqrt{T_{in}-273.15}}\sqrt{\frac{\gamma}{\gamma-1} \left[ \left(\frac{P_{out}}{P_{in}}\right)^{\frac{2}{\gamma}} - \left(\frac{P_{out}}{P_{in}}\right)^{\frac{\gamma+1}{\gamma}} \right]}\]

Initialization#

The initialization method for this model will save the current state of the model before commencing initialization and reloads it afterwards. The state of the model will be the same after initialization, only the initial guesses for unfixed variables will be changed and optionally a flow coefficient value can be calculated. To initialize this model, provide a starting value for the inlet port variables. Then provide a guess for one of: discharge pressure, deltaP, or ratioP. Since it can be hard to determine a proper flow coefficient, the calculate_cf argument of the initialize() method can be set to True, and the deltaP guess will be used to calculate and set a corresponding flow coefficient.

The model should initialize readily, but it is possible to provide a flow coefficient that is incompatible with the given flow rate resulting in an infeasible problem.

TurbineInletStage Class#

class idaes.models_extra.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStage(*args, **kwds)#

Inlet stage steam turbine model

Parameters:
  • rule (function) – A rule function or None. Default rule calls build().

  • concrete (bool) – If True, make this a toplevel model. Default - False.

  • ctype (class) –

    Pyomo ctype of the block. Default - pyomo.environ.Block

    Config args

    dynamic

    Indicates whether this model will be dynamic or not, default = useDefault. Valid values: { useDefault - get flag from parent (default = False), True - set as a dynamic model, False - set as a steady-state model.}

    has_holdup

    Indicates whether holdup terms should be constructed or not. Must be True if dynamic = True, default - False. Valid values: { useDefault - get flag from parent (default = False), True - construct holdup terms, False - do not construct holdup terms}

    material_balance_type

    Indicates what type of mass balance should be constructed, default - MaterialBalanceType.useDefault. Valid values: { MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none - exclude material balances, MaterialBalanceType.componentPhase - use phase component balances, MaterialBalanceType.componentTotal - use total component balances, MaterialBalanceType.elementTotal - use total element balances, MaterialBalanceType.total - use total material balance.}

    energy_balance_type

    Indicates what type of energy balance should be constructed, default - EnergyBalanceType.useDefault. Valid values: { EnergyBalanceType.useDefault - refer to property package for default balance type **EnergyBalanceType.none - exclude energy balances, EnergyBalanceType.enthalpyTotal - single enthalpy balance for material, EnergyBalanceType.enthalpyPhase - enthalpy balances for each phase, EnergyBalanceType.energyTotal - single energy balance for material, EnergyBalanceType.energyPhase - energy balances for each phase.}

    momentum_balance_type

    Indicates what type of momentum balance should be constructed, default - MomentumBalanceType.pressureTotal. Valid values: { MomentumBalanceType.none - exclude momentum balances, MomentumBalanceType.pressureTotal - single pressure balance for material, MomentumBalanceType.pressurePhase - pressure balances for each phase, MomentumBalanceType.momentumTotal - single momentum balance for material, MomentumBalanceType.momentumPhase - momentum balances for each phase.}

    has_phase_equilibrium

    Indicates whether terms for phase equilibrium should be constructed, default = False. Valid values: { True - include phase equilibrium terms False - exclude phase equilibrium terms.}

    has_pressure_change

    Indicates whether terms for pressure change should be constructed, default - False. Valid values: { True - include pressure change terms, False - exclude pressure change terms.}

    property_package

    Property parameter object used to define property calculations, default - useDefault. Valid values: { useDefault - use default package from parent model or flowsheet, PropertyParameterObject - a PropertyParameterBlock object.}

    property_package_args

    A ConfigBlock with arguments to be passed to a property block(s) and used when constructing these, default - None. Valid values: { see property package for documentation.}

    has_work_transfer

    True if model a has work transfer term.

    has_heat_transfer

    True if model has a heat transfer term.

  • initialize (dict) – ProcessBlockData config for individual elements. Keys are BlockData indexes and values are dictionaries with config arguments as keys.

  • idx_map (function) – Function to take the index of a BlockData element and return the index in the initialize dict from which to read arguments. This can be provided to override the default behavior of matching the BlockData index exactly to the index in initialize.

Returns:

(HelmTurbineInletStage) New instance

TurbineInletStageData Class#

class idaes.models_extra.power_generation.unit_models.helm.turbine_inlet.HelmTurbineInletStageData(component)[source]#
build()[source]#

Add model equations to the unit model. This is called by a default block construnction rule when the unit model is created.

initialize_build(outlvl=0, solver=None, optarg=None, calculate_cf=False)[source]#

Initialize the inlet turbine stage model. This deactivates the specialized constraints, then does the isentropic turbine initialization, then reactivates the constraints and solves. This initialization uses a flow value guess, so some reasonable flow guess should be specified prior to initialization.

Parameters:
  • outlvl (int) – Amount of output (0 to 3) 0 is lowest

  • solver (str) – Solver to use for initialization

  • optarg (dict) – Solver arguments dictionary

  • calculate_cf (bool) – If True, use the flow and pressure ratio to calculate the flow coefficient.